WorldWideScience

Sample records for app-dependent proinflammatory signaling

  1. Store-operated calcium channels and pro-inflammatory signals

    Institute of Scientific and Technical Information of China (English)

    Wei-chiao CHANG

    2006-01-01

    In non-excitable cells such as T lymphocytes,hepatocytes,mast cells,endothelia and epithelia,the major pathway for calcium(Ca2+)entry is through store-operated Ca2+ channels in the plasma membrane.These channels are activated by the emptying of intracellular Ca2+ stores,however,neither the gating mechanism nor the downstream targets of these channels has been clear established.Here,I review some of the proposed gating mechanisms of store-operated Ca2+ channels and the functional implications in regulating pro-inflammatory signals.

  2. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways.

    Science.gov (United States)

    Huang, Shurong; Rutkowsky, Jennifer M; Snodgrass, Ryan G; Ono-Moore, Kikumi D; Schneider, Dina A; Newman, John W; Adams, Sean H; Hwang, Daniel H

    2012-09-01

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for solubilizing fatty acids. This report raised doubt about proinflammatory effects of SFAs. Our studies herein demonstrate that sodium palmitate (C16:0) or laurate (C12:0) without BSA solubilization induced phosphorylation of inhibitor of nuclear factor-κB α, c-Jun N-terminal kinase (JNK), p44/42 mitogen-activated-kinase (ERK), and nuclear factor-κB subunit p65, and TLR target gene expression in THP1 monocytes or RAW264.7 macrophages, respectively, when cultured in low FBS (0.25%) medium. C12:0 induced NFκB activation through TLR2 dimerized with TLR1 or TLR6, and through TLR4. Because BSA was not used in these experiments, contaminants in BSA have no relevance. Unlike in suspension cells (THP-1), BSA-solubilized C16:0 instead of sodium C16:0 is required to induce TLR target gene expression in adherent cells (RAW264.7). C16:0-BSA transactivated TLR2 dimerized with TLR1 or TLR6 and through TLR4 as seen with C12:0. These results and additional studies with the LPS sequester polymixin B and in MyD88(-/-) macrophages indicated that SFA-induced activation of TLR2 or TLR4 is a fatty acid-specific effect, but not due to contaminants in BSA or fatty acid preparations.

  3. Host Intracellular Signaling Events and Pro-inflammatory Cytokine Production in African Trypanosomiasis.

    Science.gov (United States)

    Kuriakose, Shiby M; Singh, Rani; Uzonna, Jude E

    2016-01-01

    Pathogens, such as bacteria, viruses, and parasites, possess specific molecules or proteins that are recognized by several host innate immune receptors, leading to the activation of several intracellular signaling molecules and pathways. The magnitude and quality of these events significantly affect the outcome of infection. African trypanosomes, including Trypanosoma congolense, are capable of manipulating the host immune response, including the activity of macrophages, which are the key immune cells that contribute to the immunopathogenesis of African trypanosomiasis. Although it is known that immune hyperactivation and excessive pro-inflammatory cytokine production are the hallmarks of African trypanosomiasis, the mechanisms through which these events are triggered are poorly defined. However, it is known that macrophages may play a significant role in these processes, because phagocytosis of trypanosomes by macrophages initiates intracellular signal transduction cascades that lead to the release of pro-inflammatory cytokines and alteration in cell function. This review highlights recent progress in our understanding of the innate immune receptors, signaling pathways, and transcription factors involved in T. congolense-induced pro-inflammatory cytokine production in macrophages. It will reveal the existence of complex signaling events through which the parasite modulates the host immune response, thus identifying novel targets that could aid in designing strategies to effectively control the disease.

  4. Lipin-2 reduces proinflammatory signaling induced by saturated fatty acids in macrophages.

    Science.gov (United States)

    Valdearcos, Martín; Esquinas, Esperanza; Meana, Clara; Peña, Lucía; Gil-de-Gómez, Luis; Balsinde, Jesús; Balboa, María A

    2012-03-30

    Lipin-2 is a member of the lipin family of enzymes, which are key effectors in the biosynthesis of lipids. Mutations in the human lipin-2 gene are associated with inflammatory-based disorders; however, the role of lipin-2 in cells of the immune system remains obscure. In this study, we have investigated the role of lipin-2 in the proinflammatory action of saturated fatty acids in murine and human macrophages. Depletion of lipin-2 promotes the increased expression of the proinflammatory genes Il6, Ccl2, and Tnfα, which depends on the overstimulation of the JNK1/c-Jun pathway by saturated fatty acids. In contrast, overexpression of lipin-2 reduces the release of proinflammatory factors. Metabolically, the absence of lipin-2 reduces the cellular content of triacylglycerol in saturated fatty acid-overloaded macrophages. Collectively, these studies demonstrate a protective role for lipin-2 in proinflammatory signaling mediated by saturated fatty acids that occurs concomitant with an enhanced cellular capacity for triacylglycerol synthesis. The data provide new insights into the role of lipin-2 in human and murine macrophage biology and may open new avenues for controlling the fatty acid-related low grade inflammation that constitutes the sine qua non of obesity and associated metabolic disorders.

  5. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8 Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Laura M. Campbell

    2013-08-01

    Full Text Available It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies. Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations.

  6. Intrinsic proinflammatory signaling in podocytes contributes to podocyte damage and prolonged proteinuria.

    Science.gov (United States)

    Brähler, Sebastian; Ising, Christina; Hagmann, Henning; Rasmus, Melanie; Hoehne, Martin; Kurschat, Christine; Kisner, Tuelay; Goebel, Heike; Shankland, Stuart; Addicks, Klaus; Thaiss, Friedrich; Schermer, Bernhard; Pasparakis, Manolis; Benzing, Thomas; Brinkkoetter, Paul Thomas

    2012-11-15

    Inflammation conveys the development of glomerular injury and is a major cause of progressive kidney disease. NF-κB signaling is among the most important regulators of proinflammatory signaling. Its role in podocytes, the epithelial cells at the kidney filtration barrier, is poorly understood. Here, we inhibited NF-κB signaling in podocytes by specific ablation of the NF-κB essential modulator (NEMO, IKKγ). Podocyte-specific NEMO-deficient mice (NEMO(pko)) were viable and did not show proteinuria or overt changes in kidney morphology. After induction of glomerulonephritis, both NEMO(pko) and control mice developed significant proteinuria. However, NEMO(pko) mice recovered much faster, showing rapid remission of proteinuria and restoration of podocyte morphology. Interestingly, quantification of infiltrating macrophages, T-lymphocytes, and granulocytes at day 7 revealed no significant difference between wild-type and NEMO(pko). To further investigate the underlying mechanisms, we created a stable NEMO knockdown mouse podocyte cell line. Again, no overt changes in morphology were observed. Translocation of NF-κB to the nucleus after stimulation with TNFα or IL-1 was sufficiently inhibited. Moreover, secretion of proinflammatory chemokines from podocytes after stimulation with TNFα or IL-1 was significantly reduced in NEMO-deficient podocytes and in glomerular samples obtained at day 7 after induction of nephrotoxic nephritis. Collectively, these results show that proinflammatory activity of NF-κB in podocytes aggravates proteinuria in experimental glomerulonephritis in mice. Based on these data, it may be speculated that immunosuppressive drugs may not only target professional immune cells but also podocytes directly to convey their beneficial effects in various types of glomerulonephritis.

  7. Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88

    Science.gov (United States)

    2012-07-27

    Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88...Maryland, United States of America Abstract Staphylococcal enterotoxin B (SEB) exposure triggers an exaggerated pro-inflammatory cytokine response...Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88

  8. LAPTM5 protein is a positive regulator of proinflammatory signaling pathways in macrophages.

    Science.gov (United States)

    Glowacka, Wioletta K; Alberts, Philipp; Ouchida, Rika; Wang, Ji-Yang; Rotin, Daniela

    2012-08-10

    LAPTM5 (lysosomal-associated protein transmembrane 5) is a protein that is preferentially expressed in immune cells, and it interacts with the Nedd4 family of ubiquitin ligases. Recent studies in T and B cells identified LAPTM5 as a negative regulator of T and B cell receptor levels at the plasma membrane. Here we investigated the function of LAPTM5 in macrophages. We demonstrate that expression of LAPTM5 is required for the secretion of proinflammatory cytokines in response to Toll-like receptor ligands. We also show that RAW264.7 cells knocked down for LAPTM5 or macrophages from LAPTM5(-/-) mice exhibit reduced activation of NF-κB and MAPK signaling pathways mediated by the TNF receptor, as well as multiple pattern recognition receptors in various cellular compartments. TNF stimulation of LAPTM5-deficient macrophages leads to reduced ubiquitination of RIP1 (receptor-interacting protein 1), suggesting a role for LAPTM5 at the receptor-proximate level. Interestingly, we find that macrophages from LAPTM5(-/-) mice display up-regulated levels of A20, a ubiquitin-editing enzyme responsible for deubiquitination of RIP1 and subsequent termination of NF-κB activation. Our studies thus indicate that, in contrast to its negative role in T and B cell activation, LAPTM5 acts as a positive modulator of inflammatory signaling pathways and hence cytokine secretion in macrophages. They also highlight a role for the endosomal/lysosomal system in regulating signaling via cytokine and pattern recognition receptors.

  9. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    Science.gov (United States)

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

  10. Hepatitis C virus (HCV)-induced suppressor of cytokine signaling (SOCS) 3 regulates proinflammatory TNF-α responses.

    Science.gov (United States)

    Collins, Aideen S; Ahmed, Suaad; Napoletano, Silvia; Schroeder, Martina; Johnston, James A; Hegarty, John E; O'Farrelly, Cliona; Stevenson, Nigel J

    2014-08-01

    TNF-α is a proinflammatory cytokine, dramatically elevated during pathogenic infection and often responsible for inflammation-induced disease pathology. SOCS proteins are inhibitors of cytokine signaling and regulators of inflammation. In this study, we found that both SOCS1 and SOCS3 were transiently induced by TNF-α and negatively regulate its NF-κB-mediated signal transduction. We discovered that PBMCs from HCV-infected patients have elevated endogenous SOCS3 expression but less TNF-α-mediated IκB degradation and proinflammatory cytokine production than healthy controls. HCV protein expression in Huh7 hepatocytes also induced SOCS3 and directly inhibited TNF-α-mediated IL-8 production. Furthermore, we found that SOCS3 associates with TRAF2 and inhibits TRAF2-mediated NF-κB promoter activity, suggesting a mechanism by which SOCS3 inhibits TNF-α-mediated signaling. These results demonstrate a role for SOCS3 in regulating proinflammatory TNF-α signal transduction and reveal a novel immune-modulatory mechanism by which HCV suppresses inflammatory responses in primary immune cells and hepatocytes, perhaps explaining mild pathology often associated with acute HCV infection.

  11. ROS detoxification and proinflammatory cytokines are linked by p38 MAPK signaling in a model of mature astrocyte activation.

    Directory of Open Access Journals (Sweden)

    Adrian Nahirnyj

    Full Text Available Astrocytes are the most abundant glial cell in the retinal nerve fiber layer (NFL and optic nerve head (ONH, and perform essential roles in maintaining retinal ganglion cell (RGC detoxification and homeostasis. Mature astrocytes are relatively quiescent, but rapidly undergo a phenotypic switch in response to insult, characterized by upregulation of intermediate filament proteins, loss of glutamate buffering, secretion of pro-inflammatory cytokines, and increased antioxidant production. These changes result in both positive and negative influences on RGCs. However, the mechanism regulating these responses is still unclear, and pharmacologic strategies to modulate select aspects of this switch have not been thoroughly explored. Here we describe a system for rapid culture of mature astrocytes from the adult rat retina that remain relatively quiescent, but respond robustly when challenged with oxidative damage, a key pathogenic stress associated with inner retinal injury. When primary astrocytes were exposed to reactive oxygen species (ROS we consistently observed characteristic changes in activation markers, along with increased expression of detoxifying genes, and secretion of proinflammatory cytokines. This in vitro model was then used for a pilot chemical screen to target specific aspects of this switch. Increased activity of p38α and β Mitogen Activated Protein Kinases (MAPKs were identified as a necessary signal regulating expression of MnSOD, and heme oxygenase 1 (HO-1, with consequent changes in ROS-mediated injury. Additionally, multiplex cytokine profiling detected p38 MAPK-dependent secretion of IL-6, MCP-1, and MIP-2α, which are proinflammatory signals recently implicated in damage to the inner retina. These data provide a mechanism to link increased oxidative stress to proinflammatory signaling by astrocytes, and establish this assay as a useful model to further dissect factors regulating the reactive switch.

  12. OSCAR-collagen signaling in monocytes plays a proinflammatory role and may contribute to the pathogenesis of rheumatoid arthritis

    DEFF Research Database (Denmark)

    Schultz, Heidi Schiøler; Guo, Li; Keller, Pernille;

    2016-01-01

    functional maturation of monocyte-derived dendritic cells. OSCAR is upregulated on monocytes from rheumatoid arthritis (RA) patients with active disease, and these monocytes show an increased proosteoclastogenic potential. In the current study, we have addressed a functional role for an OSCAR...... fluid of RA patients plated on ColII secreted TNF-α and IL-8 in an OSCAR-dependent manner. Global RNA profiling showed that components of multiple signaling pathways relevant to RA pathogenesis are regulated at the transcriptional level by OSCAR in monocytes. Thus, OSCAR can play a proinflammatory role...... in monocyte-derived cells and may contribute crucially on multiple levels to RA pathogenesis....

  13. Defining the role of DAG, mitochondrial function, and lipid deposition in palmitate-induced proinflammatory signaling and its counter-modulation by palmitoleate.

    Science.gov (United States)

    Macrae, Katherine; Stretton, Clare; Lipina, Christopher; Blachnio-Zabielska, Agnieszka; Baranowski, Marcin; Gorski, Jan; Marley, Anna; Hundal, Harinder S

    2013-09-01

    Chronic exposure of skeletal muscle to saturated fatty acids, such as palmitate (C16:0), enhances proinflammatory IKK-NFκB signaling by a mechanism involving the MAP kinase (Raf-MEK-ERK) pathway. Raf activation can be induced by its dissociation from the Raf-kinase inhibitor protein (RKIP) by diacylglycerol (DAG)-sensitive protein kinase C (PKC). However, whether these molecules mediate the proinflammatory action of palmitate, an important precursor for DAG synthesis, is currently unknown. Here, involvement of DAG-sensitive PKCs, RKIP, and the structurally related monounsaturated fatty acid palmitoleate (C16:1) on proinflammatory signaling are investigated. Palmitate, but not palmitoleate, induced phosphorylation/activation of the MEK-ERK-IKK axis and proinflammatory cytokine (IL-6, CINC-1) expression. Palmitate increased intramyocellular DAG and invoked PKC-dependent RKIP(Ser153) phosphorylation, resulting in RKIP-Raf1 dissociation and MEK-ERK signaling. These responses were mimicked by PMA, a DAG mimetic and PKC activator. However, while pharmacological inhibition of PKC suppressed PMA-induced activation of MEK-ERK-IKK signaling, activation by palmitate was upheld, suggesting that DAG-sensitive PKC and RKIP were dispensable for palmitate's proinflammatory action. Strikingly, the proinflammatory effect of palmitate was potently repressed by palmitoleate. This repression was not due to reduced palmitate uptake but linked to increased neutral lipid storage and enhanced cellular oxidative capacity brought about by palmitoleate's ability to restrain palmitate-induced mitochondrial dysfunction.

  14. Adipocytes from New Zealand Obese Mice Exhibit Aberrant Proinflammatory Reactivity to the Stress Signal Heat Shock Protein 60

    Directory of Open Access Journals (Sweden)

    Tina Märker

    2014-01-01

    Full Text Available Adipocytes release immune mediators that contribute to diabetes-associated inflammatory processes. As the stress protein heat shock protein 60 (Hsp60 induces proinflammatory adipocyte activities, we hypothesized that adipocytes of diabetes-predisposed mice exhibit an increased proinflammatory reactivity to Hsp60. Preadipocytes and mature adipocytes from nonobese diabetic (NOD, New Zealand obese (NZO, and C57BL/6J mice were analyzed for Hsp60 binding, Hsp60-activated signaling pathways, and Hsp60-induced release of the chemokine CXCL-1 (KC, interleukin 6 (IL-6, and macrophage chemoattractant protein-1 (MCP-1. Hsp60 showed specific binding to (pre-adipocytes of NOD, NZO, and C57BL/6J mice. Hsp60 binding involved conserved binding structure(s and Hsp60 epitopes and was strongest to NZO mouse-derived mature adipocytes. Hsp60 exposure induced KC, IL-6, and MCP-1 release from (pre-adipocytes of all mouse strains with a pronounced increase of IL-6 release from NZO mouse-derived adipocytes. Compared to NOD and C57BL/6J mouse derived cells, Hsp60-induced formation of IL-6, KC, and MCP-1 from NZO mouse-derived (pre-adipocytes strongly depended on NFκB-activation. Increased Hsp60 binding and Hsp60-induced IL-6 release by mature adipocytes of NZO mice suggest that enhanced adipocyte reactivity to the stress signal Hsp60 contributes to inflammatory processes underlying diabetes associated with obesity and insulin resistance.

  15. Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent.

    Science.gov (United States)

    Liu, Lingling; Lu, Yun; Martinez, Jennifer; Bi, Yujing; Lian, Gaojian; Wang, Tingting; Milasta, Sandra; Wang, Jian; Yang, Mao; Liu, Guangwei; Green, Douglas R; Wang, Ruoning

    2016-02-01

    As a phenotypically plastic cellular population, macrophages change their physiology in response to environmental signals. Emerging evidence suggests that macrophages are capable of tightly coordinating their metabolic programs to adjust their immunological and bioenergetic functional properties, as needed. Upon mitogenic stimulation, quiescent macrophages enter the cell cycle, increasing their bioenergetic and biosynthetic activity to meet the demands of cell growth. Proinflammatory stimulation, however, suppresses cell proliferation, while maintaining a heightened metabolic activity imposed by the production of bactericidal factors. Here, we report that the mitogenic stimulus, colony-stimulating factor 1 (CSF-1), engages a myelocytomatosis viral oncogen (Myc)-dependent transcriptional program that is responsible for cell cycle entry and the up-regulation of glucose and glutamine catabolism in bone marrow-derived macrophages (BMDMs). However, the proinflammatory stimulus, lipopolysaccharide (LPS), suppresses Myc expression and cell proliferation and engages a hypoxia-inducible factor alpha (HIF1α)-dependent transcriptional program that is responsible for heightened glycolysis. The acute deletion of Myc or HIF1α selectively impaired the CSF-1- or LPS-driven metabolic activities in BMDM, respectively. Finally, inhibition of glycolysis by 2-deoxyglucose (2-DG) or genetic deletion of HIF1α suppressed LPS-induced inflammation in vivo. Our studies indicate that a switch from a Myc-dependent to a HIF1α-dependent transcriptional program may regulate the robust bioenergetic support for an inflammatory response, while sparing Myc-dependent proliferation.

  16. Overexpression of HDAC6 induces pro-inflammatory responses by regulating ROS-MAPK-NF-κB/AP-1 signaling pathways in macrophages.

    Science.gov (United States)

    Youn, Gi Soo; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-08-01

    Although histone deacetylase 6 (HDAC6) has been implicated in inflammatory diseases, direct involvement and its action mechanism of HDAC6 in the transcriptional regulation of pro-inflammatory genes have been unclear. In this study, we investigated the possible role of HDAC6 in the expression of pro-inflammatory mediators, indicator of macrophage activation, in RAW 264.7 cells and primary mouse macrophages. HDAC6 overexpression significantly enhanced expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, with concomitant reduction in acetylated α-tubulin. HDAC6 overexpression significantly induced ROS generation via upregulation of NADPH oxidase expression and activity. Inhibition of ROS generation by N-acetyl cysteine, diphenyl iodonium and apocynin suppressed HDAC6-induced pro-inflammatory cytokines. An HDAC6 enzymatic inhibitor significantly inhibited ROS generation and expression of HDAC6-induced pro-inflammatory mediators, indicating the requirement of HDAC6 enzymatic activity for induction of pro-inflammatory cytokines. In addition, HDAC6 overexpression increased activation of MAPK species including ERK, JNK, and p38. Furthermore, HDAC6 overexpression resulted in activation of the NF-κB and AP-1 signaling pathways. Overall, our results provide the first evidence that HDAC6 is capable of inducing expression of pro-inflammatory genes by regulating the ROS-MAPK-NF-κB/AP-1 pathways and serves as a molecular target for inflammation.

  17. Stimulation of pro-inflammatory responses by mebendazole in human monocytic THP-1 cells through an ERK signaling pathway.

    Science.gov (United States)

    Mizuno, Katsuhiko; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2011-03-01

    Oral helminthic mebendazole (MBZ) has been reported to cause liver injury with inflammatory responses. However, the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether MBZ and other helminthic drugs increase the release of pro-inflammatory cytokines and chemokines using human monocytic cells. The release of interleukin (IL)-8 and tumor necrosis factor (TNF) α from human monocytic THP-1 cells was significantly increased by treatment with MBZ, albendazole (ABZ), fenbendazole (FBZ), or oxibendazole (OBZ), but not by albendazole sulfoxide or praziquantel, suggesting that MBZ and structurally similar drugs can stimulate monocytes and increase the release of pro-inflammatory cytokines. MBZ also significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) 1/2 in THP-1 cells. Pretreatment with the MAP kinase/ERK kinase 1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by MBZ, ABZ, FBZ, or OBZ treatment in THP-1 cells, but the p38 mitogen-activated protein kinase inhibitor SB203580 or JNK1/2 inhibitor SP600125 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with MBZ and structurally similar drugs. In conclusion, the release of inflammatory mediators by MBZ might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to hepatotoxicity.

  18. The signal transduction mediated by erythropoietin and proinflammatory cytokines in the JAK/STAT pathway in the children with cerebral palsy.

    Science.gov (United States)

    Tao, Weiyuan; Wen, Fang; Zhang, Hong; Liu, Guheng

    2009-03-01

    It is well established that erythropoietin (EPO) is a pleiotropic cytokine, which has a brain-derived neuroprotective effect in the central nervous system (CNS). Immune abnormality has a close relationship with cerebral palsy (CP), and may be even involved in the development of CP. There is evidence that the amount of EPO in CP children is lower than in normal children, but the levels of proinflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha, are higher in the CP children. The signal transduction mediated by EPO that has a neuroprotective effect and mediated by proinflammatory cytokines that lead to brain damage shares the common JAK/STAT pathway. Under acute stress, the JAK/STAT pathway is occupied by massive proinflammatory cytokines, and the negative feedback inhibition factors like suppressor of cytokine signaling (SOCS) proteins are simultaneously activated, which exist in reciprocal inhibition to EPO in the JAK/STAT pathway. As a result, the signal transduction mediated by EPO is prevented or reduced, and the neuroprotective effect of EPO is eventually weakened. In this review, a novel approach to CP treatment through neurodevelopmental treatment (NDT) is put forward by analysis of the interrelationship of signal transduction mediated by EPO and proinflammatory cytokines in the JAK/STAT pathway and their roles in the development of CP, and some reasonable ideas for CP treatment are provided.

  19. Generation of Reactive Oxygen Species (ROS) and Pro-Inflammatory Signaling in Human Brain Cells in Primary Culture.

    Science.gov (United States)

    Lukiw, Walter J; Bjattacharjee, Surjyadipta; Zhao, Yuhai; Pogue, Aileen I; Percy, Maire E

    2012-01-25

    The cellular generation of reactive oxygen species (ROS) has been implicated in contributing to the pathology of human neurological disorders including Alzheimer's disease (AD) and Parkinson's disease (PD). To further understand the triggering and participation of ROS-generating species to pro-inflammatory and pathological signaling in human brain cells, in these experiments we studied the effects of 22 different substances (including various common drugs, interleukins, amyloid precursor protein, amyloid peptides and trace metals) at nanomolar concentrations, in a highly sensitive human neuronal-glial (HNG) cell primary co-culture assay. The evolution of ROS was assayed using the cell-permeate fluorescent indicator 2',7'-dichlorofluorescein diacetate (H2DCFDA), that reacts with major ROS species, including singlet oxygen, hydroxyl radicals or superoxides (λEx 488 nm; λEm 530 nm). Western analysis was performed for cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and cytosolic phospholipase A (cPLA2) to study the effects of induced ROS on inflammatory gene expression within the same brain cell sample. The data indicate that apart from acetylsalicylic acid (aspirin) and simvastatin, several neurophysiologically-relevant concentrations of Aβpeptides and neurotoxic trace metals variably induced ROS induction, COX-2 and cPLA2 expression. These findings have mechanistic implications for ROS-triggered inflammatory gene expression programs that may contribute to AD and PD neuropathologic mechanisms.

  20. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling.

    Science.gov (United States)

    Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung

    2012-11-09

    Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.

  1. Mutant ubiquitin attenuates interleukin-1β- and tumor necrosis factor-α-induced pro-inflammatory signaling in human astrocytic cells.

    Directory of Open Access Journals (Sweden)

    Kyungsun Choi

    Full Text Available A frameshift mutation of ubiquitin called ubiquitin(+1 (UBB(+1 was found in the aging and Alzheimer's disease brains and thought to be associated with neuronal dysfuction and degeneration. Even though ubiquitylation has been known to regulate vital cellular functions mainly through proteasome-dependent degradation of polyubiquitinated substrates, proteolysis-independent roles of ubiquitylation have emerged as key mechanisms in various signaling cascades. In this study, we have investigated the effect of UBB(+1 on proinflammatory signaling such as interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α in human astrocytes. Treatment with TNF-α and IL-1β induced expression of CCL2 and CXCL8 by human astrocytic cells; while ectopic expression of UBB(+1 significantly abrogated the proinflammatory cytokine-induced expression of chemokines. Ectopic expression of UBB(+1 suppressed TNF-α- and IL-1β-induced activation of NF-κB and JNK signaling pathway. Furthermore, we have demonstrated that polyubiquitylation of TRAFs and subsequent phosphorylation of TAK1 were significantly inhibited by stable expression of UBB(+1. Collectively, these results suggest that UBB(+1 may affect proinflammatory signaling in the central nervous system via inhibitory mechanisms of ubiquitin-dependent signaling in human astrocytes.

  2. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  3. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome

    Science.gov (United States)

    Malinen, Marjo; Niskanen, Einari A.; Kaikkonen, Minna U.; Palvimo, Jorma J.

    2017-01-01

    Inflammatory processes and androgen signaling are critical for the growth of prostate cancer (PC), the most common cancer among males in Western countries. To understand the importance of potential interplay between pro-inflammatory and androgen signaling for gene regulation, we have interrogated the crosstalk between androgen receptor (AR) and NF-κB, a key transcriptional mediator of inflammatory responses, by utilizing genome-wide chromatin immunoprecipitation sequencing and global run-on sequencing in PC cells. Co-stimulation of LNCaP cells with androgen and pro-inflammatory cytokine TNFα invoked a transcriptome which was very distinct from that induced by either stimulation alone. The altered transcriptome that included gene programs linked to cell migration and invasiveness was orchestrated by significant remodeling of NF-κB and AR cistrome and enhancer landscape. Although androgen multiplied the NF-κB cistrome and TNFα restrained the AR cistrome, there was no general reciprocal tethering of the AR to the NF-κB on chromatin. Instead, redistribution of FOXA1, PIAS1 and PIAS2 contributed to the exposure of latent NF-κB chromatin-binding sites and masking of AR chromatin-binding sites. Taken together, concomitant androgen and pro-inflammatory signaling significantly remodels especially the NF-κB cistrome, reprogramming the PC cell transcriptome in fashion that may contribute to the progression of PC. PMID:27672034

  4. Transmembrane TNF-α Reverse Signaling Inhibits Lipopolysaccharide-Induced Proinflammatory Cytokine Formation in Macrophages by Inducing TGF-β: Therapeutic Implications.

    Science.gov (United States)

    Pallai, Anna; Kiss, Beáta; Vereb, György; Armaka, Marietta; Kollias, George; Szekanecz, Zoltán; Szondy, Zsuzsa

    2016-02-01

    TNF-α, a potent proinflammatory cytokine, is generated in a precursor form called transmembrane (m)TNF-α that is expressed as a type II polypeptide on the surface of certain cells. mTNF-α was shown to act both as a ligand by binding to TNF-α receptors, as well as a receptor that transmits outside-to-inside (reverse) signals back into the mTNF-α-bearing cells. In this study, we show that nonactivated macrophages express basal levels of mTNF-α and respond to anti-TNF-α Abs by triggering the MAPK kinase 4 signaling pathway. The pathway induces TGF-β. Based on inhibitory experiments, the production of TGF-β1 is regulated via Jun kinases, whereas that of other TGF-βs is regulated via p38 MAPKs. Exposure to LPS further induced the expression of mTNF-α, and triggering of mTNF-α strongly suppressed the LPS-induced proinflammatory response. Neutralizing TGF-β by Abs prevented the mTNF-α-mediated suppression of LPS-induced proinflammatory cytokine formation, indicating that the immune-suppressive effect of mTNF-α is mediated via TGF-β. Although apoptotic cells are also known to suppress LPS-induced proinflammatory cytokine formation in macrophages by upregulating TGF-β, we show that they do not use the mTNF-α signaling pathway. Because TGF-β possesses a wide range of immune-suppressive effects, our data indicate that upregulation of TGF-β synthesis by those TNF-α-targeting molecules, which are able to trigger mTNF-α, might contribute to their therapeutic effect in the treatment of certain inflammatory diseases such as Crohn's disease, Wegener's granulomatosis, or sarcoidosis. Additionally, none of the TNF-α-targeting molecules is expected to interfere with the immune-silencing effects of apoptotic cells.

  5. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation

    Directory of Open Access Journals (Sweden)

    Halleskog Carina

    2012-05-01

    Full Text Available Abstract Background WNT-5A signaling in the central nervous system is important for morphogenesis, neurogenesis and establishment of functional connectivity; the source of WNT-5A and its importance for cellular communication in the adult brain, however, are mainly unknown. We have previously investigated the inflammatory effects of WNT/β-catenin signaling in microglia in Alzheimer's disease. WNT-5A, however, generally recruits β-catenin-independent signaling. Thus, we aim here to characterize the role of WNT-5A and downstream signaling pathways for the inflammatory transformation of the brain's macrophages, the microglia. Methods Mouse brain sections were used for immunohistochemistry. Primary isolated microglia and astrocytes were employed to characterize the WNT-induced inflammatory transformation and underlying intracellular signaling pathways by immunoblotting, quantitative mRNA analysis, proliferation and invasion assays. Further, measurements of G protein activation by [γ-35 S]GTP binding, examination of calcium fluxes and cyclic AMP production were used to define intracellular signaling pathways. Results Astrocytes in the adult mouse brain express high levels of WNT-5A, which could serve as a novel astroglia-microglia communication pathway. The WNT-5A-induced proinflammatory microglia response is characterized by increased expression of inducible nitric oxide synthase, cyclooxygenase-2, cytokines, chemokines, enhanced invasive capacity and proliferation. Mapping of intracellular transduction pathways reveals that WNT-5A activates heterotrimeric Gi/o proteins to reduce cyclic AMP levels and to activate a Gi/o protein/phospholipase C/calcium-dependent protein kinase/extracellular signal-regulated kinase 1/2 (ERK1/2 axis. We show further that WNT-5A-induced ERK1/2 signaling is responsible for distinct aspects of the proinflammatory transformation, such as matrix metalloprotease 9/13 expression, invasion and proliferation. Conclusions

  6. Pinellia ternata lectin exerts a pro-inflammatory effect on macrophages by inducing the release of pro-inflammatory cytokines, the activation of the nuclear factor-κB signaling pathway and the overproduction of reactive oxygen species.

    Science.gov (United States)

    Yu, Hong-Li; Zhao, Teng-Fei; Wu, Hao; Pan, Yao-Zong; Zhang, Qian; Wang, Kui-Long; Zhang, Chen-Chao; Jin, Yang-Ping

    2015-10-01

    Pinellia ternata (PT) is a widely used traditional Chinese medicine. The raw material has a throat-irritating toxicity that is associated with the PT lectin (PTL). PTL is a monocot lectin isolated from the tubers of PT, which exhibits mouse peritoneal acute inflammatory effects in vivo. The present study aimed to investigate the pro-inflammatory effect of PTL on macrophages. PTL (50 µg/ml)‑stimulated macrophages enhanced the chemotactic activity of neutrophils. PTL (50, 100, 200 and 400 µg/ml) significantly elevated the production of cytokines [tumor necrosis factor‑α (TNF-α) , interleukin (IL)‑1β and IL‑6]. PTL (25, 50 and 100 µg/ml) induced intracellular reactive oxygen species (ROS) overproduction. PTL also caused transfer of p65 from the macrophage cytoplasm to the nucleus and activated the nuclear factor‑κB (NF‑κB) signaling pathway. Scanning electron microscope images revealed severe cell swelling and membrane integrity defection of macrophages following PTL (100 µg/ml) stimulation, which was also associated with inflammation. PTL had pro‑inflammatory activity, involving induced neutrophil migration, cytokine release, ROS overproduction and the activation of the NF-κB signaling pathway, which was associated with the activation of macrophages.

  7. Therapeutic inhibition of pro-inflammatory signaling and toxicity to staphylococcal enterotoxin B by a synthetic dimeric BB-loop mimetic of MyD88.

    Directory of Open Access Journals (Sweden)

    Teri L Kissner

    Full Text Available Staphylococcal enterotoxin B (SEB exposure triggers an exaggerated pro-inflammatory cytokine response that often leads to toxic shock syndrome (TSS associated with organ failure and death. MyD88 mediates pro-inflammatory cytokine signaling induced by SEB exposure and MyD88(-/- mice are resistant to SEB intoxication, suggesting that MyD88 may be a potential target for therapeutic intervention. We targeted the BB loop region of the Toll/IL-1 receptor (TIR domain of MyD88 to develop small-molecule therapeutics. Here, we report that a synthetic compound (EM-163, mimic to dimeric form of BB-loop of MyD88 attenuated tumor necrosis factor (TNF- α, interferon (IFN-γ, interleukin (IL-1β, IL-2 and IL-6 production in human primary cells, whether administered pre- or post-SEB exposure. Results from a direct binding assay, and from MyD88 co-transfection/co-immunoprecipitation experiments, suggest that EM-163 inhibits TIR-TIR domain interaction. Additional results indicate that EM-163 prevents MyD88 from mediating downstream signaling. In an NF-kB-driven reporter assay of lipopolysaccharide-stimulated MyD88 signaling, EM-163 demonstrated a dose-dependent inhibition of reporter activity as well as TNF-α and IL-1β production. Importantly, administration of EM-163 pre- or post exposure to a lethal dose of SEB abrogated pro-inflammatory cytokine responses and protected mice from toxic shock-induced death. Taken together, our results suggest that EM-163 exhibits a potential for therapeutic use against SEB intoxication.

  8. Features under dermoscopy as well as the expression of pro-inflammatory factors, TGF-β signaling pathway and apoptosis molecules of psoriasis vulgaris

    Institute of Scientific and Technical Information of China (English)

    Fan Yang; Shi-Chao Lv

    2016-01-01

    Objective:To study the features under dermoscopy as well as the expression of pro-inflammatory factors, TGF-β signaling pathway and apoptosis molecules of psoriasis vulgaris. Methods:A total of 134 cases of skin lesion tissues diagnosed with psoriasis vulgaris in our hospital between May 2012 and December 2015 were collected as the pathological group, fresh normal limb skin tissues trimmed in the orthopaedic surgery during the same period were selected as control group, dermoscopy was used to observe the features of pathological group, and the expression levels of pro-inflammatory factors, TGF-β signal molecules and apoptosis-related molecules in pathological group and control group were determined.Results: The typical features of patients with psoriasis vulgaris under dermoscopy were pink background, dotted vascular morphology and regular vascular arrangement pattern; IFN-γ, IL-12, IL-17, IL-18, c-myc, Bcl-2 and Survivin content in pathological group were significantly higher than those in control group while IL-4, IL-10, TGF-β1, TGF-β1R-I, TGF-β1R-II, Smad2, Smad3, PTEN and CEACAM1 content were significantly lower than those in control group.Conclusions:The feature of psoriasis vulgaris under dermoscopy is regular dotted angiogenesis, and the Th1/Th2 and Th17/Treg disorder as well as abnormal apoptotic signals in skin lesion tissue are associated with the occurrence of psoriasis.

  9. The Effect of Therapeutic Blockades of Dust Particles-Induced Ca2+ Signaling and Proinflammatory Cytokine IL-8 in Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ju Hee Yoon

    2015-01-01

    Full Text Available Bronchial epithelial cells are the first barrier of defense against respiratory pathogens. Dust particles as extracellular stimuli are associated with inflammatory reactions after inhalation. It has been reported that dust particles induce intracellular Ca2+ signal, which subsequently increases cytokines production such as interleukin- (IL- 8. However, the study of therapeutic blockades of Ca2+ signaling induced by dust particles in human bronchial epithelial cells is poorly understood. We investigated how to modulate dust particles-induced Ca2+ signaling and proinflammatory cytokine IL-8 expression. Bronchial epithelial BEAS-2B cells were exposed to PM10 dust particles and subsequent mediated intracellular Ca2+ signaling and reactive oxygen species signal. Our results show that exposure to several inhibitors of Ca2+ pathway attenuated the PM10-induced Ca2+ response and subsequent IL-8 mRNA expression. PM10-mediated Ca2+ signal and IL-8 expression were attenuated by several pharmacological blockades such as antioxidants, IP3-PLC blockers, and TRPM2 inhibitors. Our results show that blockades of PLC or TRPM2 reduced both of PM10-mediated Ca2+ signal and IL-8 expression, suggesting that treatment with these blockades should be considered for potential therapeutic trials in pulmonary epithelium for inflammation caused by environmental events such as seasonal dust storm.

  10. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9.

    Science.gov (United States)

    Lindner, Maren; Thümmler, Katja; Arthur, Ariel; Brunner, Sarah; Elliott, Christina; McElroy, Daniel; Mohan, Hema; Williams, Anna; Edgar, Julia M; Schuh, Cornelia; Stadelmann, Christine; Barnett, Susan C; Lassmann, Hans; Mücklisch, Steve; Mudaliar, Manikhandan; Schaeren-Wiemers, Nicole; Meinl, Edgar; Linington, Christopher

    2015-07-01

    Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched 'pre-myelinating' MBP+ / PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients.

  11. Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood.

    Science.gov (United States)

    Chen, E; Miller, G E; Kobor, M S; Cole, S W

    2011-07-01

    The notion that family support may buffer individuals under adversity from poor outcomes has been theorized to have important implications for mental and physical health, but little is known about the biological mechanisms that explain these links. We hypothesized that adults who grew up in low socioeconomic status (SES) households but who experienced high levels of maternal warmth would be protected from the pro-inflammatory states typically associated with low SES. A total of 53 healthy adults (aged 25-40 years) low in SES early in life were assessed on markers of immune activation and systemic inflammation. Genome-wide transcriptional profiling also was conducted. Low early-life SES individuals who had mothers, who expressed high warmth toward them, exhibited less Toll-like receptor-stimulated production of interleukin 6, and reduced bioinformatic indications of pro-inflammatory transcription factor activity (NF-κB) and immune activating transcription factor activity (AP-1) compared to those who were low in SES early in life but experienced low maternal warmth. To the extent that such effects are causal, they suggest the possibility that the detrimental immunologic effects of low early-life SES environments may be partly diminished through supportive family climates.

  12. Activated factor X signaling via protease-activated receptor 2 suppresses pro-inflammatory cytokine production from LPS-stimulated myeloid cells.

    LENUS (Irish Health Repository)

    Gleeson, Eimear M

    2013-07-19

    Vitamin K-dependent proteases generated in response to vascular injury and infection enable fibrin clot formation, but also trigger distinct immuno-regulatory signaling pathways on myeloid cells. Factor Xa, a protease crucial for blood coagulation, also induces protease-activated receptor-dependent cell signaling. Factor Xa can bind both monocytes and macrophages, but whether factor Xa-dependent signaling stimulates or suppresses myeloid cell cytokine production in response to Toll-like receptor activation is not known. In this study, exposure to factor Xa significantly impaired pro-inflammatory cytokine production from lipopolysaccharide-treated peripheral blood mononuclear cells, THP-1 monocytic cells and murine macrophages. Furthermore, factor Xa inhibited nuclear factor-kappa B activation in THP-1 reporter cells, requiring phosphatidylinositide 3-kinase activity for its anti-inflammatory effect. Active-site blockade, γ-carboxyglutamic acid domain truncation and a peptide mimic of the factor Xa inter-epidermal growth factor-like region prevented factor Xa inhibition of lipopolysaccharide-induced tumour necrosis factor-α release. In addition, factor Xa anti-inflammatory activity was markedly attenuated by the presence of an antagonist of protease-activated receptor 2, but not protease-activated receptor 1. The key role of protease-activated receptor 2 in eliciting factor Xa-dependent anti-inflammatory signaling on macrophages was further underscored by the inability of factor Xa to mediate inhibition of tumour necrosis factor-α and interleukin-6 release from murine bone marrow-derived protease-activated receptor 2-deficient macrophages. We also show for the first time that, in addition to protease-activated receptor 2, factor Xa requires a receptor-associated protein-sensitive low-density lipoprotein receptor to inhibit lipopolysaccharide-induced cytokine production. Collectively, this study supports a novel function for factor Xa as an endogenous, receptor

  13. Ebola virus-like particles stimulate type I interferons and proinflammatory cytokine expression through the toll-like receptor and interferon signaling pathways.

    Science.gov (United States)

    Ayithan, Natarajan; Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Dye, John M; Bavari, Sina; Bray, Mike; Ozato, Keiko

    2014-02-01

    Ebola viruses (EBOV) can cause severe hemorrhagic disease with high case fatality rates. Currently, no vaccines or therapeutics are approved for use in humans. Ebola virus-like particles (eVLP) comprising of virus protein (VP40), glycoprotein, and nucleoprotein protect rodents and nonhuman primates from lethal EBOV infection, representing as a candidate vaccine for EBOV infection. Previous reports have shown that eVLP stimulate the expression of proinflammatory cytokines in dendritic cells (DCs) and macrophages (MΦs) in vitro. However, the molecular mechanisms and signaling pathways through which eVLP induce innate immune responses remain obscure. In this study, we show that eVLP stimulate not only the expression of proinflammatory cytokines but also the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) in murine bone marrow-derived DCs (BMDCs) and MΦs. Our data indicate that eVLP trigger host responses through toll-like receptor (TLR) pathway utilizing 2 distinct adaptors, MyD88 and TRIF. More interestingly, eVLP activated the IFN signaling pathway by inducing a set of potent antiviral ISGs. Last, eVLP and synthetic adjuvants, Poly I:C and CpG DNA, cooperatively increased the expression of cytokines and ISGs. Further supporting this synergy, eVLP when administered together with Poly I:C conferred mice enhanced protection against EBOV infection. These results indicate that eVLP stimulate early innate immune responses through TLR and type I IFN signaling pathways to protect the host from EBOV infection.

  14. Isoorientin attenuates lipopolysaccharide-induced pro-inflammatory responses through down-regulation of ROS-related MAPK/NF-κB signaling pathway in BV-2 microglia.

    Science.gov (United States)

    Yuan, Li; Wu, Yuchen; Ren, Xiaomeng; Liu, Qian; Wang, Jing; Liu, Xuebo

    2014-01-01

    Isoorientin (ISO) is a flavonoid compound in the human diet, and has been known to possess various bioactivities. However, the effects of ISO on microglia inflammation have not been investigated. The current study investigates the neuroprotective effect of ISO in LPS-activated mouse microglial (BV-2) cells. ISO significantly increased the BV-2 cells viability, blocked the protein expression of inducible nitric oxide synthase and cyclooxygenase-2, and decreased the production of nitric oxide, pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-1β. The activation of mitogen-activated protein kinases (MAPKs) was blocked by ISO, and NF-κB nuclear translocation was decreased by ISO both alone and together with NF-κB inhibitor (PDTC) and MAPKs inhibitors (U0126, SP 600125, and SB 203580). Furthermore, ISO strongly quenched intracellular reactive oxygen species (ROS) generation. ROS inhibitor (N-acetyl cysteine, NAC) significantly inhibited pro-inflammatory cytokines release and NF-κB and MAPKs activation, indicating that ISO attenuated neuroinflammation by inhibiting the ROS-related MAPK/NF-κB signaling pathway.

  15. Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: Implication of chemical components and NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Jen Nelson

    2010-03-01

    Full Text Available Abstract Background Epidemiological evidence supports the association between exposure to ambient particulate matter (PM and cardiovascular diseases. Chronic exposure to ultrafine particles (UFP; Dp Results UFP2 contained a higher level of redox active organic compounds and metals on a per PM mass basis than UFP1. While both UFP1 and UFP2 induced superoxide production and up-regulated stress response genes such as heme oxygenease-1 (HO-1, OKL38, and tissue factor (TF, only UFP2 induced the expression of pro-inflammatory genes such as IL-8 (2.8 ± 0.3-fold, MCP-1 (3.9 ± 0.4-fold, and VCAM (6.5 ± 1.1-fold (n = 3, P P Conclusion While UFP1 induced higher level of oxidative stress and stress response gene expression, only UFP2, with higher levels of redox active organic compounds and metals, induced pro-inflammatory responses via NF-κB signaling. Thus, UFP with distinct chemical compositions caused differential response patterns in endothelial cells.

  16. Pro-inflammatory Signaling in a 3D Organotypic Skin Model after Low LET Irradiation—NF-κB, COX-2 Activation, and Impact on Cell Differentiation

    Science.gov (United States)

    Acheva, Anna; Schettino, Giuseppe; Prise, Kevin M.

    2017-01-01

    Nearly 85% of radiotherapy patients develop acute radiation dermatitis, which is an inflammatory reaction of the skin at the treatment field and in the surrounding area. The aims of this study were to unravel the mechanisms of radiation-induced inflammatory responses after localized irradiation in a human 3D organotypic skin culture model. This could provide possible inflammatory targets for reduction of skin side effects. 3D organotypic skin cultures were set up and locally irradiated with 225 kVp X-rays, using a combination of full exposure and partial shielding (50%) of the cultures. The secretion of pro-inflammatory cytokines, the phenotype, and the differentiation markers expression of the cultures were assessed up to 10 days postirradiation. The pro-inflammatory transcription factor nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2) pathways have been studied. The results showed fast activation of NF-κB, most likely triggered by DNA damage in the irradiated cells, followed by upregulation of p38 MAPK and COX-2 in the irradiated and surrounding, non-irradiated, areas of the 3D cultures. The application of the COX-2 inhibitor sc-236 was effective at reducing the COX-2 mRNA levels 4 h postirradiation. The same inhibitor also suppressed the PGE2 secretion significantly 72 h after the treatment. The expression of a pro-inflammatory phenotype and abnormal differentiation markers of the cultures were also reduced. However, the use of an NF-κB inhibitor (Bay 11-7085) did not have the predicted positive effect on the cultures phenotype postirradiation. Radiation-induced pro-inflammatory responses have been observed in the 3D skin model. The activated signaling pathways involved NF-κB transcription factor and its downstream target COX-2. Further experiments aiming to suppress the inflammatory response via specific inhibitors showed that COX-2 is a suitable target for reduction of the normal skin inflammatory responses at radiotherapy, while NF

  17. Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics

    DEFF Research Database (Denmark)

    Reales-Calderón, Jose Antonio; Sylvester, Marc; Strijbis, Karin

    2013-01-01

    Macrophages play a pivotal role in the prevention of Candida albicans infections. Yeast recognition and phagocytosis by macrophages is mediated by Pattern Recognition Receptors (PRRs) that initiate downstream signal transduction cascades by protein phosphorylation and dephosphorylation. We exposed...

  18. Contribution of Pro-Inflammatory Cytokine Signaling within Midbrain Periaqueductal Gray to Pain Sensitivity in Parkinson's disease via GABAergic Pathway

    Directory of Open Access Journals (Sweden)

    Xianbo Zhuang

    2016-07-01

    Full Text Available Background/Aims: Hypersensitive pain response is often observed in patients with Parkinson's disease (PD; however, the mechanisms responsible for hyperalgesia are not well understood. Chronic neuroinflammation is one of the hallmarks of PD pathophysiology. Since the midbrain periaqueductal gray (PAG is an important component of the descending inhibitory pathway controlling on central pain transmission, we examined the role for pro-inflammatory cytokines (PICs system of PAG in regulating exaggerated pain evoked by PD. Methods: We used a rat model of PD to perform the experimental protocols. PD was induced by microinjection of 6-hydroxydopamine to lesion the left medial forebrain bundle. Pain responses to mechanical and thermal stimulation were first examined in control rats and PD rats. Then, ELISA and Western Blot analysis were used to determine PIC levels and their receptors expression. Results: Protein expression of IL-1β, IL-6 and TNF-α receptors (namely, IL-1R, IL-6R and TNFR subtype TNFR1 in the plasma membrane PAG of PD rats was upregulated, whereas the total expression of PIC receptors was not significantly altered. The ratio of membrane protein and total protein (IL-1R, IL-6R and TNFR1 was 1.48±0.15, 1.59±0.18 and 1.67±0.16 in PAG of PD rats (P < 0.05 vs. their respective controls. This was accompanied with increases of PICs of PAG, and decreases of GABA (623±21 ng/mg in control rats and 418±18 ng/mg in PD rats; P < 0.05 vs. control rats and withdrawal thresholds to mechanical and thermal stimuli. Our data further showed that the concentrations of GABA and withdrawal thresholds were largely restored by blocking those PIC receptors in PAG of PD rats. Stimulation of GABA receptors in PAG of PD rats also blunted a decrease in withdrawal thresholds. Conclusions: Our data suggest that upregulation of the membrane PIC receptor in the PAG of PD rats is likely to impair the descending inhibitory pathways in regulating pain transmission

  19. Regulation of enhanced cerebrovascular expression of proinflammatory mediators in experimental subarachnoid hemorrhage via the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway

    Directory of Open Access Journals (Sweden)

    Maddahi Aida

    2012-12-01

    Full Text Available Abstract Background Subarachnoid hemorrhage (SAH is associated with high morbidity and mortality. It is suggested that the associated inflammation is mediated through activation of the mitogen-activated protein kinase (MAPK pathway which plays a crucial role in the pathogenesis of delayed cerebral ischemia after SAH. The aim of this study was first to investigate the timecourse of altered expression of proinflammatory cytokines and matrix metalloproteinase in the cerebral arteries walls following SAH. Secondly, we investigated whether administration of a specific mitogen-activated protein kinase kinase (MEK1/2 inhibitor, U0126, given at 6 h after SAH prevents activation of the MEK/extracellular signal-regulated kinase 1/2 pathway and the upregulation of cerebrovascular inflammatory mediators and improves neurological function. Methods SAH was induced in rats by injection of 250 μl of autologous blood into basal cisterns. U0126 was given intracisternally using two treatment regimens: (A treatments at 6, 12, 24 and 36 h after SAH and experiments terminated at 48 h after SAH, or (B treatments at 6, 12, and 24 h after SAH and terminated at 72 h after SAH. Cerebral arteries were harvested and interleukin (IL-6, IL-1β, tumor necrosis factor α (TNFα, matrix metalloproteinase (MMP-9 and phosphorylated ERK1/2 (pERK1/2 levels investigated by immunohistochemistry. Early activation of pERK1/2 was measured by western blot. Functional neurological outcome after SAH was also analyzed. Results Expression levels of IL-1β, IL-6, MMP-9 and pERK1/2 proteins were elevated over time with an early increase at around 6 h and a late peak at 48 to 72 h post-SAH in cerebral arteries. Enhanced expression of TNFα in cerebral arteries started at 24 h and increased until 96 h. In addition, SAH induced sensorimotor and spontaneous behavior deficits in the animals. Treatment with U0126 starting at 6 h after SAH prevented activation of MEK-ERK1/2 signaling. Further, U0126

  20. Dietary Fish Oil Inhibits Pro-Inflammatory and ER Stress Signalling Pathways in the Liver of Sows during Lactation.

    Directory of Open Access Journals (Sweden)

    Denise K Gessner

    Full Text Available Lactating sows have been shown to develop typical signs of an inflammatory condition in the liver during the transition from pregnancy to lactation. Hepatic inflammation is considered critical due to the induction of an acute phase response and the activation of stress signaling pathways like the endoplasmic reticulum (ER stress-induced unfolded protein response (UPR, both of which impair animal's health and performance. Whether ER stress-induced UPR is also activated in the liver of lactating sows and whether dietary fish oil as a source of anti-inflammatory effects n-3 PUFA is able to attenuate hepatic inflammation and ER stress-induced UPR in the liver of sows is currently unknown. Based on this, two experiments with lactating sows were performed. The first experiment revealed that ER stress-induced UPR occurs also in the liver of sows during lactation. This was evident from the up-regulation of a set of genes regulated by the UPR and numerically increased phosphorylation of the ER stress-transducer PERK and PERK-mediated phosphorylation of eIF2α and IκB. The second experiment showed that fish oil inhibits ER stress-induced UPR in the liver of lactating sows. This was demonstrated by decreased mRNA levels of a number of UPR-regulated genes and reduced phosphorylation of PERK and PERK-mediated phosphorylation of eIF2α and IκB in the liver of the fish oil group. The mRNA levels of various nuclear factor-κB-regulated genes encoding inflammatory mediators and acute phase proteins in the liver of lactating sows were also reduced in the fish oil group. In line with this, the plasma levels of acute phase proteins were reduced in the fish oil group, although differences to the control group were not significant. In conclusion, ER stress-induced UPR is present in the liver of lactating sows and fish oil is able to inhibit inflammatory signaling pathways and ER stress-induced UPR in the liver.

  1. Veronicastrum axillare Alleviates Lipopolysaccharide-Induced Acute Lung Injury via Suppression of Proinflammatory Mediators and Downregulation of the NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Quanxin Ma

    2016-01-01

    Full Text Available Veronicastrum axillare is a traditional medical plant in China which is widely used in folk medicine due to its versatile biological activities, especially for its anti-inflammatory effects. However, the detailed mechanism underlying this action is not clear. Here, we studied the protective effects of V. axillare against acute lung injury (ALI, and we further explored the pharmacological mechanisms of this action. We found that pretreatment with V. axillare suppressed the release of proinflammatory cytokines in the serum of ALI mice. Histological analysis of lung tissue demonstrated that V. axillare inhibited LPS-induced lung injury, improved lung morphology, and reduced the activation of nuclear factor-κB (NF-κB in the lungs. Furthermore, the anti-inflammatory actions of V. axillare were investigated in vitro. We observed that V. axillare suppressed the mRNA expression of interleukin-1β (IL-1β, IL-6, monocyte chemotactic protein-1 (MCP-1, cyclooxygenase-2 (COX-2, and tumor necrosis factor-α (TNF-α in RAW264.7 cells challenged with LPS. Furthermore, pretreatment of V. axillare in vitro reduced the phosphorylation of p65 and IκB-α which is activated by LPS. In conclusion, our data firstly demonstrated that the anti-inflammatory effects of V. axillare against ALI were achieved through downregulation of the NF-κB signaling pathway, thereby reducing the production of inflammatory mediators.

  2. ß-Hydroxybutyrate Activates the NF-κB Signaling Pathway to Promote the Expression of Pro-Inflammatory Factors in Calf Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xiaoxia Shi

    2014-01-01

    Full Text Available Background/Aims: ß-hydroxybutyrate (BHBA is the major component of ketone bodies in ketosis. Dairy cows with ketosis often undergo oxidative stress. BHBA is related to the inflammation involved in other diseases of dairy cattle. However, whether BHBA can induce inflammatory injury in dairy cow hepatocytes and the potential mechanism of this induction are not clear. The NF-κB pathway plays a vital role in the inflammatory response. Methods: Therefore, this study evaluated the oxidative stress, pro-inflammatory factors and NF-κB pathway in cultured calf hepatocytes treated with different concentrations of BHBA, pyrrolidine dithiocarbamate (PDTC, an NF-κB pathway inhibitor and N-acetylcysteine (NAC, antioxidant. Results: The results showed that BHBA could significantly increase the levels of oxidation indicators (MDA, NO and iNOS, whereas the levels of antioxidation indicators (GSH-Px, CAT and SOD were markedly decreased in hepatocytes. The IKKß activity and phospho-IκBa (p-IκBa contents were increased in BHBA-treated hepatocytes. This increase was accompanied by the increased expression level and transcription activity of p65. The expression levels of NF-κB-regulated inflammatory cytokines, namely TNF-a, IL-6 and IL-1ß, were markedly increased after BHBA treatment, while significantly decreased after NAC treatment. However, the p-IκBa level and the expression and activity of p65 and its target genes were markedly decreased in the PDTC + BHBA group compared with the BHBA (1.8 mM group. Moreover, immunocytofluorescence of p65 showed a similar trend. Conclusion: The present data indicate that higher concentrations of BHBA can induce cattle hepatocyte inflammatory injury through the NF-κB signaling pathway, which may be activated by oxidative stress.

  3. Suppressive Effect on Lipopolysaccharide-Induced Proinflammatory Mediators by Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-κB Signal Pathway

    Directory of Open Access Journals (Sweden)

    Sang-Rim Kang

    2011-01-01

    Full Text Available Citrus fruits have been used as an edible fruit and a traditional medicine since ancient times. In particular, the peels of immature citrus fruits are used widely in traditional herbal medicine in Korea, as they are believed to contain bioactive components exerting anti-inflammatory activity. This study examined whether the crude methanol extract of Citrus aurantium L. (CME has a suppressive effect on inducible enzymes and proinflammatory cytokines by inhibiting the NF-κB pathway in LPS-stimulated macrophage RAW 264.7 cells. The cells were pretreated with the indicated concentrations of CME (5, 10, 20, and 50 μg/mL and then treated with LPS (1 μg/mL. The results showed that CME (10, 20, and 50 μg/mL inhibited the LPS- (1 μg/mL induced mRNA and protein expression of iNOS in macrophage Raw 264.7 cells. In addition, the expression of COX-2 was inhibited at the mRNA and protein levels by CME in a dose-dependent manner. The mRNA expression of proinflammatory cytokines, such as TNF-α and IL-6, were markedly reduced by CME (10, 20, and 50 μg/mL. Moreover, CME clearly suppressed the nuclear translocation of the NF-κB p65 subunits, which was correlated with its inhibitory effect on I-κB phosphorylation. These results suggest that CME has anti-inflammatory properties by modulating the expression of COX-2, iNOS, and proinflammatory cytokines, such as TNF-α and IL-6, in macrophage RAW 264.7 cells via the NF-κB pathway.

  4. Krüppel-Like Factor 4 Is a Regulator of Proinflammatory Signaling in Fibroblast-Like Synoviocytes through Increased IL-6 Expression

    Directory of Open Access Journals (Sweden)

    Xinjing Luo

    2016-01-01

    Full Text Available Human fibroblast-like synoviocytes play a vital role in joint synovial inflammation in rheumatoid arthritis (RA. Proinflammatory cytokines induce fibroblast-like synoviocyte activation and dysfunction. The inflammatory mediator Krüppel-like factor 4 is upregulated during inflammation and plays an important role in endothelial and macrophage activation during inflammation. However, the role of Krüppel-like factor 4 in fibroblast-like synoviocyte activation and RA inflammation remains to be defined. In this study, we identify the notion that Krüppel-like factor 4 is higher expressed in synovial tissues and fibroblast-like synoviocytes from RA patients than those from osteoarthritis patients. In vitro, the expression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes is induced by proinflammatory cytokine tumor necrosis factor-α. Overexpression of Krüppel-like factor 4 in RA fibroblast-like synoviocytes robustly induced interleukin-6 production in the presence or absence of tumor necrosis factor-α. Conversely, knockdown of Krüppel-like factor 4 markedly attenuated interleukin-6 production in the presence or absence of tumor necrosis factor-α. Krüppel-like factor 4 not only can bind to and activate the interleukin-6 promoter, but also may interact directly with nuclear factor-kappa B. These results suggest that Krüppel-like factor 4 may act as a transcription factor mediating the activation of fibroblast-like synoviocytes in RA by inducing interleukin-6 expression in response to tumor necrosis factor-α.

  5. Proinflammatory cytokines oppose opioid induced acute and chronic analgesia

    OpenAIRE

    Hutchinson, Mark R.; Coats, Benjamen D; Lewis, Susannah S.; Zhang, Yingning; Sprunger, David B.; Rezvani, Niloofar; Baker, Eric M.; Jekich, Brian M.; Wieseler, Julie L.; Somogyi, Andrew A; Martin, David; Poole, Stephen; Judd, Charles M.; Steven F. Maier; Watkins, Linda R.

    2008-01-01

    Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morp...

  6. Effect of a negative energy balance induced by feed restriction on pro-inflammatory and endoplasmic reticulum stress signalling pathways in the liver and skeletal muscle of lactating sows.

    Science.gov (United States)

    Gessner, Denise K; Gröne, Birthe; Rosenbaum, Susann; Most, Erika; Hillen, Sonja; Becker, Sabrina; Erhardt, Georg; Reiner, Gerald; Ringseis, Robert; Eder, Klaus

    2015-01-01

    High-producing sows develop typical signs of an inflammatory condition and endoplasmic reticulum (ER) stress in the liver during lactation. At present, it is unknown whether a negative energy balance (NEB) is causative for this. Therefore, an experiment with lactating sows, which were either restricted in their feed intake to 82% of their energy requirement (Group FR) or were fed to meet their energy requirement (Control), was performed and the effect on ER stress-induced unfolded protein response (UPR), nuclear factor kappa B (NF-κB), nuclear factor E2-related factor 2 (Nrf2) and NOD-like receptor P3 (NLRP3) inflammasome signalling in the liver was evaluated. Relative mRNA concentrations of several genes involved in ER stress-induced UPR, NF-κB and NLRP3 inflammasome signalling were reduced in the liver of Group FR compared to the Control group. Plasma concentrations of haptoglobin and C-reactive protein were 13% and 37%, respectively, lower in Group FR than in the Control group, but these differences were not significant. In conclusion, feed restriction in lactating sows inhibits pro-inflammatory and ER stress signalling pathways in the liver, which suggests that not the NEB per se is causative for inflammation and ER stress induction in the liver of lactating sows. Rather it is likely that ER stress during lactation is the consequence of the presence of potent pro-inflammatory and ER stress-inducing stimuli, such as cytokines, reactive oxygen species and microbial components, which enter the circulation as a result of infectious diseases that frequently occur in sows after farrowing.

  7. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  8. Influenza A Viruses Replicate Productively in Mouse Mastocytoma Cells (P815) and Trigger Pro-inflammatory Cytokine and Chemokine Production through TLR3 Signaling Pathway

    Science.gov (United States)

    Meng, Di; Huo, Caiyun; Wang, Ming; Xiao, Jin; Liu, Bo; Wei, Tangting; Dong, Hong; Zhang, Guozhong; Hu, Yanxin; Sun, Lunquan

    2017-01-01

    The influenza A viruses (IAVs) cause acute respiratory infection in both humans and animals. As a member of the initial lines of host defense system, the role of mast cells during IAV infection has been poorly understood. Here, we characterized for the first time that both avian-like (α-2, 3-linked) and human-like (α-2, 6- linked) sialic acid (SA) receptors were expressed by the mouse mastocytoma cell line (P815). The P815 cells did support the productive replication of H1N1 (A/WSN/33), H5N1 (A/chicken/ Henan/1/04) and H7N2 (A/chicken/Hebei/2/02) in vitro while the in vivo infection of H5N1 in mast cells was confirmed by the specific staining of nasal mucosa and lung tissue from mice. All the three viruses triggered the infected P815 cells to produce pro-inflammatory cytokines and chemokines including IL-6, IFN-γ, TNF-α, CCL-2, CCL-5, and IP-10, but not the antiviral type I interferon. It was further confirmed that TLR3 pathway was involved in P815 cell response to IAV-infection. Our findings highlight the remarkable tropism and infectivity of IAV to P815 cells, indicating that mast cells may be unneglectable player in the development of IAV infection. PMID:28127293

  9. The angiotensin-(1-7/Mas axis counteracts angiotensin II-dependent and –independent pro-inflammatory signaling in human vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Laura A Villalobos

    2016-12-01

    Full Text Available Background and aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7 is a member of the renin-angiotensin system (RAS that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7 to counteract human aortic smooth muscle cell (HASMC inflammation triggered by RAS-dependent and –independent stimuli, such as Ang II or interleukin (IL-1.Methods and Results: In cultured HASMC, the expression of iNOS and the release of nitric oxide were stimulated by both Ang II and IL-1, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7 in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro7-Ang-(1-7, suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and NF-B. Indeed, Ang-(1-7 markedly inhibited the activation of the NADPH oxidase and subsequently of NF-B, as determined by lucigenin-derived chemiluminiscence and electromobility shift assay, respectively.Conclusion: Ang-(1-7 can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  10. The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Villalobos, Laura A; San Hipólito-Luengo, Álvaro; Ramos-González, Mariella; Cercas, Elena; Vallejo, Susana; Romero, Alejandra; Romacho, Tania; Carraro, Raffaele; Sánchez-Ferrer, Carlos F; Peiró, Concepción

    2016-01-01

    Background and Aims: Targeting inflammation is nowadays considered as a challenging pharmacological strategy to prevent or delay the development of vascular diseases. Angiotensin-(1-7) is a member of the renin-angiotensin system (RAS) that binds Mas receptors and has gained growing attention in the last years as a regulator of vascular homeostasis. Here, we explored the capacity of Ang-(1-7) to counteract human aortic smooth muscle cell (HASMC) inflammation triggered by RAS-dependent and -independent stimuli, such as Ang II or interleukin (IL)-1β. Methods and Results: In cultured HASMC, the expression of inducible nitric oxide synthase (iNOS) and the release of nitric oxide were stimulated by both Ang II and IL-1β, as determined by Western blot and indirect immunofluorescence or the Griess method, respectively. iNOS induction was inhibited by Ang-(1-7) in a concentration-dependent manner. This effect was equally blocked by two different Mas receptor antagonists, A779 and D-Pro(7)-Ang-(1-7), suggesting the participation of a unique Mas receptor subtype. Using pharmacological inhibitors, the induction of iNOS was proven to rely on the consecutive upstream activation of NADPH oxidase and nuclear factor (NF)-κB. Indeed, Ang-(1-7) markedly inhibited the activation of the NADPH oxidase and subsequently of NF-κB, as determined by lucigenin-derived chemiluminescence and electromobility shift assay, respectively. Conclusion: Ang-(1-7) can act as a counter-regulator of the inflammation of vascular smooth muscle cells triggered by Ang II, but also by other stimuli beyond the RAS. Activating or mimicking the Ang-(1-7)/Mas axis may represent a pharmacological opportunity to attenuate the pro-inflammatory environment that promotes and sustains the development of vascular diseases.

  11. Scoring of senescence signalling in multiple human tumour gene expression datasets, identification of a correlation between senescence score and drug toxicity in the NCI60 panel and a pro-inflammatory signature correlating with survival advantage in peritoneal mesothelioma

    Directory of Open Access Journals (Sweden)

    Burns Sharon

    2010-10-01

    Full Text Available Abstract Background Cellular senescence is a major barrier to tumour progression, though its role in pathogenesis of cancer and other diseases is poorly understood in vivo. Improved understanding of the degree to which latent senescence signalling persists in tumours might identify intervention strategies to provoke "accelerated senescence" responses as a therapeutic outcome. Senescence involves convergence of multiple pathways and requires ongoing dynamic signalling throughout its establishment and maintenance. Recent discovery of several new markers allows for an expression profiling approach to study specific senescence phenotypes in relevant tissue samples. We adopted a "senescence scoring" methodology based on expression profiles of multiple senescence markers to examine the degree to which signals of damage-associated or secretory senescence persist in various human tumours. Results We first show that scoring captures differential induction of damage or inflammatory pathways in a series of public datasets involving radiotherapy of colon adenocarcinoma, chemotherapy of breast cancer cells, replicative senescence of mesenchymal stem cells, and progression of melanoma. We extended these results to investigate correlations between senescence score and growth inhibition in response to ~1500 compounds in the NCI60 panel. Scoring of our own mesenchymal tumour dataset highlighted differential expression of secretory signalling pathways between distinct subgroups of MPNST, liposarcomas and peritoneal mesothelioma. Furthermore, a pro-inflammatory signature yielded by hierarchical clustering of secretory markers showed prognostic significance in mesothelioma. Conclusions We find that "senescence scoring" accurately reports senescence signalling in a variety of situations where senescence would be expected to occur and highlights differential expression of damage associated and secretory senescence pathways in a context-dependent manner.

  12. Pro-Inflammatory Cytokine IL-1β Up-Regulates CXC Chemokine Receptor 4 via Notch and ERK Signaling Pathways in Tongue Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Yi Sun

    Full Text Available Chronic inflammation contributes to tumor development through the induction of oncogenic mutations, genomic instability, early tumor promotion, and enhanced angiogenesis. Here, we report that IL-1 receptor 1 (IL-1R1 was expressed in 40 of 41 human tongue squamous cell carcinomas (TSCC. IL-1β up-regulated the expression of CXCR4, a CXC chemokine receptor that mediates cancer growth and metastasis, at both mRNA and protein levels in Tca8113 TSCC cells. IL-1β treatment of Tca8113 cells promoted migration in response to CXCR4 ligand stromal-derived factor α (SDF-1α. The inhibition of IL-1R1 by its antagonist IL-1Ra or RNA interference significantly reversed the up-regulation of CXCR4 induced by IL-1β. IL-1R1 activation also up-regulated the expression of IL-1β itself, suggesting a positive feedback regulation of CXCR4 expression. Furthermore, IL-1β induced the activation of Notch, which was originally considered a stem cell regulator. Pharmacological inhibition of Notch signaling reversed the up-regulation of CXCR4 induced by IL-1β, suggesting that Notch signaling may be involved in the growth and metastasis of cancers via up-regulation of CXCR4. In addition, IL-1β induced the activation of extracellular signal regulated kinase (ERK and ERK inhibition decreased the up-regulation of CXCR4 induced by IL-1β, suggesting the involvement of ERK signaling in cancer metastasis. Taken together these data suggest that IL-1β and IL-1R1 promote cancer growth and metastasis by up-regulating CXCR4 expression and that CXCR4 may be a link between inflammation and cancer.

  13. N(6)-(2-Hydroxyethyl)adenosine in the Medicinal Mushroom Cordyceps cicadae Attenuates Lipopolysaccharide-Stimulated Pro-inflammatory Responses by Suppressing TLR4-Mediated NF-κB Signaling Pathways.

    Science.gov (United States)

    Lu, Meng-Ying; Chen, Chin-Chu; Lee, Li-Ya; Lin, Ting-Wei; Kuo, Chia-Feng

    2015-10-23

    Natural products play an important role in promoting health with relation to the prevention of chronic inflammation. N(6)-(2-Hydroxyethyl)adenosine (HEA), a physiologically active compound in the medicinal mushroom Cordyceps cicadae, has been identified as a Ca(2+) antagonist and shown to control circulation and possess sedative activity in pharmacological tests. The fruiting body of C. cicadae has been widely applied in Chinese medicine. However, neither the anti-inflammatory activities of HEA nor the fruiting bodies of C. cicadae have been carefully examined. In this study, we first cultured the fruiting bodies of C. cicadae and then investigated the anti-inflammatory activities of water and methanol extracts of wild and artificially cultured C. cicadae fruiting bodies. Next, we determined the amount of three bioactive compounds, adenosine, cordycepin, and HEA, in the extracts and evaluated their synergistic anti-inflammatory effects. Moreover, the possible mechanism involved in anti-inflammatory action of HEA isolated from C. cicadae was investigated. The results indicate that cordycepin is more potent than adenosine and HEA in suppressing the lipopolysaccharide (LPS)-stimulated release of pro-inflammatory cytokines by RAW 264.7 macrophages; however, no synergistic effect was observed with these three compounds. HEA attenuated the LPS-induced pro-inflammatory responses by suppressing the toll-like receptor (TLR)4-mediated nuclear factor-κB (NF-κB) signaling pathway. This result will support the use of HEA as an anti-inflammatory agent and C. cicadae fruiting bodies as an anti-inflammatory mushroom.

  14. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection.

    Science.gov (United States)

    Stahl, Martin; Ries, Jenna; Vermeulen, Jenny; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M; Badayeva, Yuliya; Turvey, Stuart E; Gaynor, Erin C; Li, Xiaoxia; Vallance, Bruce A

    2014-07-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr(-/-)), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr(-/-) mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr(-/-) mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4(-/-)/Sigirr(-/-) mice were largely unresponsive to infection by C. jejuni, whereas Tlr2(-/-)/Sigirr(-/-) mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr(-/-) mice as an exciting and relevant animal model for

  15. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection.

    Directory of Open Access Journals (Sweden)

    Martin Stahl

    2014-07-01

    Full Text Available Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr(-/-, a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr(-/- mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM and motility/flagella (flaA. We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr(-/- mice, focusing on the roles played by Toll-like receptors (TLR 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4(-/-/Sigirr(-/- mice were largely unresponsive to infection by C. jejuni, whereas Tlr2(-/-/Sigirr(-/- mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr(-/- mice as an exciting and relevant animal model for

  16. Resveratrol inhibits enterovirus 71 replication and pro-inflammatory cytokine secretion in rhabdosarcoma cells through blocking IKKs/NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Polydatin and resveratrol, as major active components in Polygonum cuspidatum, have anti-inflammatory, antioxidant and antitumor functions. However, the effect and mechanism of polydatin and resveratrol on enterovirus 71 (EV71 have not been reported. In this study, resveratrol revealed strong antiviral activity on EV71, while polydatin had weak effect. Neither polydatin nor resveratrol exhibited influence on viral attachment. Resveratrol could effectively inhibit the synthesis of EV71/VP1 and the phosphorylation of IKKα, IKKβ, IKKγ, IKBα, NF-κB p50 and NF-κB p65, respectively. Meanwhile, the remarkably increased secretion of IL-6 and TNF-α in EV71-infected rhabdosarcoma (RD cells could be blocked by resveratrol. These results demonstrated that resveratrol inhibited EV71 replication and cytokine secretion in EV71-infected RD cells through blocking IKKs/NF-κB signaling pathway. Thus, resveratrol may have potent antiviral effect on EV71 infection.

  17. IL-17A signaling in colonic epithelial cells inhibits pro-inflammatory cytokine production by enhancing the activity of ERK and PI3K.

    Directory of Open Access Journals (Sweden)

    Xiaoqin Guo

    Full Text Available Our previous data suggested that IL-17A contributes to the inhibition of Th1 cell function in the gut. However, the underlying mechanisms remain unclear. Here we demonstrate that IL-17A signaling in colonic epithelial cells (CECs increases TNF-α-induced PI3K-AKT and ERK phosphorylation and inhibits TNF-α induced expression of IL-12P35 and of a Th1 cell chemokine, CXCL11 at mRNA level. In a co-culture system using HT-29 cells and PBMCs, IL-17A inhibited TNF-α-induced IL-12P35 expression by HT-29 cells and led to decreased expression of IFN-γ and T-bet by PBMCs. Finally, adoptive transfer of CECs from mice with Crohn's Disease (CD led to an enhanced Th1 cell response and exacerbated colitis in CD mouse recipients. The pathogenic effect of CECs derived from CD mice was reversed by co-administration of recombinant IL-17A. Our data demonstrate a new IL-17A-mediated regulatory mechanism in CD. A better understanding of this pathway might shed new light on the pathogenesis of CD.

  18. Sickle red cells as danger signals on proinflammatory gene expression, leukotriene B4 and interleukin-1 beta production in peripheral blood mononuclear cell.

    Science.gov (United States)

    Pitanga, Thassila N; Oliveira, Ricardo R; Zanette, Dalila L; Guarda, Caroline C; Santiago, Rayra P; Santana, Sanzio S; Nascimento, Valma M L; Lima, Jonilson B; Carvalho, Graziele Q; Maffili, Vitor V; Carvalho, Magda O S; Alcântara, Luiz C J; Borges, Valéria M; Goncalves, Marilda S

    2016-07-01

    This study tested the hypothesis that sickle red blood cell (SS-RBC) induce Toll-like receptors (TLR) and Nod-like receptor family, pyrin domain containing 3 (NLRP3)- inflammasome expression in peripheral blood mononuclear cells (PBMC). TLR and NLRP3 inflammasome could contribute to the maintenance of the inflammatory status in sickle cell anemia (SCA) patients, since SS-RBC act as danger signals activating these pathways. In this study, first, we evaluated TLR (2, 4, 5 and 9), NLRP3, Caspase-1, interleukin (IL)-1β and IL-18 expression in PBMC freshly isolated from SCA patients (SS-PBMC) in comparison with PBMC from healthy individuals (AA-PBMC). In the second moment, we investigated whether SS-RBC could interfere with the expression of these molecules in PBMC from healthy donor, in the absence or presence of hydroxyurea (HU) in vitro. TLRs and NLRP3 inflammasome expression were investigated by qPCR. IL-1β, Leukotriene-B4 (LTB4) and nitrite production were measured in PBMC (from healthy donor) culture supernatants. TLR2, TLR4, TLR5, NLRP3 and IL-1β were highly expressed in SS-PBMC when compared to AA-PBMC. Additionally, SS-RBC induced TLR9, NLRP3, Caspase-1, IL-1β and IL-18 expression and induced IL-1β, LTB4 and nitrite production in PBMC cultures. HU did not prevent TLR and NLRP3 inflammasome expression, but increased TLR2 and IL-18 expression and reduced nitrite production. In conclusion, our data suggest that TLR and inflammasome complexes may be key inducers of inflammation in SCA patients, probably through SS-RBC; also, HU does not prevent NLRP3 inflammasome- and TLR-dependent inflammation, indicating the need to develop new therapeutic strategies to SCA patients that act with different mechanisms of those observed for HU.

  19. WIN-34B May Have Analgesic and Anti-Inflammatory Effects by Reducing the Production of Pro-Inflammatory Mediators in Cells via Inhibition of IκB Signaling Pathways

    Science.gov (United States)

    Kim, Kyoung Soo; Choi, Hyun Mi; Yang, Hyung-In; Yoo, Myung Chul

    2012-01-01

    WIN-34B showed analgesic and anti-inflammatory effects in various animal models of pain and osteoarthritis. However, the molecular mechanism by which WIN-34B inhibits pain and inflammation in vivo remains to be elucidated. We investigated the molecular mechanisms of the actions of WIN-34B using various in vitro models using fibroblast-like synoviocytes from patients with rheumatoid arthritis (RA FLSs), RAW264.7 cells and peritoneal macrophages. WIN-34B inhibited the level of IL-6, PGE2, and MMP-13 in IL-1β-stimulated RA FLSs in a dose-dependent manner. The mRNA levels were also inhibited by WIN-34B. The level of PGE2, NO, IL-1β, and TNF-α were inhibited by WIN-34B at different concentrations in LPS-stimulated RAW264.7 cells. The production of NO and PGE2 was inhibited by WIN-34B in a dose-dependent manner in LPS-stimulated peritoneal macrophages. All of these effects were comparable to the positive control, celecoxib or indomethacin. IκB signaling pathways were inhibited by WIN-34B, and the migration of NF-κB into the nucleus was inhibited, which is consistent with the degradation of IκB-α. Taken together, the results suggest that WIN-34B has potential as a therapeutic drug to reduce pain and inflammation by inhibiting the production of pro-inflammatory mediators. PMID:24116274

  20. MicroRNA-Regulated Proinflammatory Cytokines in Sarcopenia

    OpenAIRE

    Jingjing Fan; Xianjuan Kou; Yi Yang; Ning Chen

    2016-01-01

    Sarcopenia has been defined as the aging-related disease with the declined mass, strength, and function of skeletal muscle, which is the major cause of frailty and falls in elders. The activation of inflammatory signal pathways due to diseases and aging is suggested to reveal the critical impact on sarcopenia. Several proinflammatory cytokines, especially interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), play crucial roles in modulation of inflammatory signaling pathway during the...

  1. MicroRNA-Regulated Proinflammatory Cytokines in Sarcopenia

    Directory of Open Access Journals (Sweden)

    Jingjing Fan

    2016-01-01

    Full Text Available Sarcopenia has been defined as the aging-related disease with the declined mass, strength, and function of skeletal muscle, which is the major cause of frailty and falls in elders. The activation of inflammatory signal pathways due to diseases and aging is suggested to reveal the critical impact on sarcopenia. Several proinflammatory cytokines, especially interleukin-6 (IL-6 and tumor necrosis factor-alpha (TNF-α, play crucial roles in modulation of inflammatory signaling pathway during the aging-related loss of skeletal muscle. MicroRNAs (miRNAs have emerged as the important regulators for the mass and functional maintenance of skeletal muscle through regulating gene expression of proinflammatory cytokines. In this paper, we have systematically discussed regulatory mechanisms of miRNAs for the expression and secretion of inflammatory cytokines during sarcopenia, which will provide some novel targets and therapeutic strategies for controlling aging-related atrophy of skeletal muscle and corresponding chronic inflammatory diseases.

  2. Dysregulated proinflammatory and fibrogenic phenotype of fibroblasts in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    François Huaux

    Full Text Available Morbi-mortality in cystic fibrosis (CF is mainly related to chronic lung infection and inflammation, uncontrolled tissue rearrangements and fibrosis, and yet the underlying mechanisms remain largely unknown. We evaluated inflammatory and fibrosis responses to bleomycin in F508del homozygous and wild-type mice, and phenotype of fibroblasts explanted from mouse lungs and skin. The effect of vardenafil, a cGMP-specific phosphodiesterase type 5 inhibitor, was tested in vivo and in culture. Responses of proinflammatory and fibrotic markers to bleomycin were enhanced in lungs and skin of CF mice and were prevented by treatment with vardenafil. Purified lung and skin fibroblasts from CF mice proliferated and differentiated into myofibroblasts more prominently and displayed higher sensitivity to growth factors than those recovered from wild-type littermates. Under inflammatory stimulation, mRNA and protein expression of proinflammatory mediators were higher in CF than in wild-type fibroblasts, in which CFTR expression reached similar levels to those observed in other non-epithelial cells, such as macrophages. Increased proinflammatory responses in CF fibroblasts were reduced by half with submicromolar concentrations of vardenafil. Proinflammatory and fibrogenic functions of fibroblasts are upregulated in CF and are reduced by vardenafil. This study provides compelling new support for targeting cGMP signaling pathway in CF pharmacotherapy.

  3. The effects of a synthetic curcuminoid analogue, 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone on proinflammatory signaling pathways and CLP-induced lethal sepsis in mice.

    Science.gov (United States)

    Tham, Chau Ling; Lam, Kok Wai; Rajajendram, Revathee; Cheah, Yoke Kqueen; Sulaiman, Mohd Roslan; Lajis, Nordin H; Kim, Min Kyu; Israf, Daud A

    2011-02-10

    We previously showed that 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone (BHMC), suppressed the synthesis of various proinflammatory mediators. In this study we explain the mechanism of action of BHMC in lipopolysaccharide (LPS)-induced U937 monocytes and further show that BHMC prevents lethality of CLP-induced sepsis. BHMC showed dose-dependent inhibitory effects on p38, JNK and ERK 1/2 activity as determined by inhibition of phosphorylation of downstream transcription factors ATF-2, c-Jun and Elk-1 respectively. Inhibition of these transcription factors subsequently caused total abolishment of AP-1-DNA binding. BHMC inhibited p65 NF-κB nuclear translocation and DNA binding of p65 NF-κB only at the highest concentration used (12.5μM) but failed to alter phosphorylation of JNK, ERK1/2 and STAT-1. Since the inhibition of p38 activity was more pronounced we evaluated the possibility that BHMC may bind to p38. Molecular docking experiments confirmed that BHMC fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We also show that BHMC was able to improve survival from lethal sepsis in a murine caecal-ligation and puncture (CLP) model.

  4. Alcoholism: a systemic proinflammatory condition.

    Science.gov (United States)

    González-Reimers, Emilio; Santolaria-Fernández, Francisco; Martín-González, María Candelaria; Fernández-Rodríguez, Camino María; Quintero-Platt, Geraldine

    2014-10-28

    Excessive ethanol consumption affects virtually any organ, both by indirect and direct mechanisms. Considerable research in the last two decades has widened the knowledge about the paramount importance of proinflammatory cytokines and oxidative damage in the pathogenesis of many of the systemic manifestations of alcoholism. These cytokines derive primarily from activated Kupffer cells exposed to Gram-negative intestinal bacteria, which reach the liver in supra-physiological amounts due to ethanol-mediated increased gut permeability. Reactive oxygen species (ROS) that enhance the inflammatory response are generated both by activation of Kupffer cells and by the direct metabolic effects of ethanol. The effects of this increased cytokine secretion and ROS generation lie far beyond liver damage. In addition to the classic consequences of endotoxemia associated with liver cirrhosis that were described several decades ago, important research in the last ten years has shown that cytokines may also induce damage in remote organs such as brain, bone, muscle, heart, lung, gonads, peripheral nerve, and pancreas. These effects are even seen in alcoholics without significant liver disease. Therefore, alcoholism can be viewed as an inflammatory condition, a concept which opens the possibility of using new therapeutic weapons to treat some of the complications of this devastating and frequent disease. In this review we examine some of the most outstanding consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver.

  5. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms

    OpenAIRE

    Hye Joo Kim; Seong Hwan Kim; Jung-Mi Yun

    2012-01-01

    Diabetes is characterized by a proinflammatory state, and several inflammatory processes have been associated with both type 1 and type 2 diabetes and the resulting complications. High glucose levels induce the release of proinflammatory cytokines. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Cotinus coggygria), and is also widely distributed in fruits and vegetables. Fisetin is known to exert anti-inflammatory effects via inhibition of the NF-κB signaling pathway. In this...

  6. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia

    Institute of Scientific and Technical Information of China (English)

    Cheng-yun JIN; Jae-dong LEE; Cheol PARK; Yung hyun CHOI; Gi-young KIM

    2007-01-01

    Aim: Pro-inflammatory mediators, such as prostaglandin E2 (PGE2) and nitric oxide(NO), and pro-inflammatory cytokines such as intedeukini(IL)- 1β, IL-6, and TNF-α, play pivotal roles in brain injuries. The anti-inflammatory properties are known to be associated with significant reductions in pro-inflammatory mediators in brain injuries. In the present study we investigate whether the effects of curcumin on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimu-lated BV2 microglia. Methods: Curcumin were administered and their effects on LPS-induced pro-inflammatory mediators were monitored by Western blotting and RT-PCR. Result: Curcumin significantly inhibited the release of NO, PGE2,and pro-inflammatory cytokines in a dose-dependent manner. Curcumin also attenuated the expressions of inducible NO synthase and cyclooxygenase-2 mRNA and protein levels. Moreover, curcumin suppressed NF-κB activation via the translocation of p65 into the nucleus. Our data also indicate that curcumin exerts anti-inflammatory properties by suppressing the transcription of proinflammatory cytokine genes through the NF-rd3 signaling pathway. Conclusion: Anti-inflam-matory properties of curcumin may be useful for treating the inflammatory and deleterious effects of microglial activation in response to LPS stimulation.

  7. Cystatin cures visceral leishmaniasis by NF-κB-mediated proinflammatory response through co-ordination of TLR/MyD88 signaling with p105-Tpl2-ERK pathway.

    Science.gov (United States)

    Kar, Susanta; Ukil, Anindita; Das, Pijush K

    2011-01-01

    Cystatin could completely cure experimental visceral leishmaniasis by switching the differentiation of Th2 cells to Th1 type, as well as upregulating NO, and activation of NF-κB played a major role in these processes. Analysis of upstream signaling events revealed that TLR 2/4-mediated MyD88-dependent participation of IL-1R-activated kinase (IRAK)1, TNF receptor-associated factor (TRAF)6 and TGFβ-activated kinase (TAK)1 is essential to induce cystatin-mediated IκB kinase (IKK)/NF-κB activation in macrophages. Cystatin plus IFN-γ activated the IKK complex to induce phosphorylation-mediated degradation of p105, the physiological partner and inhibitor of the MEK kinase, tumor progression locus 2 (Tpl-2). Consequently, Tpl-2 was liberated from p105, thereby stimulating activation of the MEK/ERK MAPK cascade. Cystatin plus IFN-γ-induced IKK-β post-transcriptionally modified p65/RelA subunit of NF-κB by dual phosphorylation in infected phagocytic cells. IKK induced the phosphorylation of p65 directly on Ser-536 residue whereas phosphorylation on Ser 276 residue was by sequential activation of Tpl-2/MEK/ERK/MSK1. Collectively, the present study indicates that cystatin plus IFN-γ-induced MyD88 signaling may bifurcate at the level of IKK, leading to a divergent pathway regulating NF-κB activation by IκBα phosphorylation and by p65 transactivation through Tpl-2/MEK/ERK/MSK1.

  8. Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling.

    Science.gov (United States)

    Villodre Tudela, Carmen; Boudry, Christelle; Stumpff, Friederike; Aschenbach, Jörg R; Vahjen, Wilfried; Zentek, Jürgen; Pieper, Robert

    2015-02-28

    The present study investigated the influence of bacterial metabolites on monocarboxylate transporter 1 (MCT1) expression in pigs using in vivo, ex vivo and in vitro approaches. Piglets (n 24) were fed high-protein (26 %) or low-protein (18 %) diets with or without fermentable carbohydrates. Colonic digesta samples were analysed for a broad range of bacterial metabolites. The expression of MCT1, TNF-α, interferon γ (IFN-γ) and IL-8 was determined in colonic tissue. The expression of MCT1 was lower and of TNF-α and IL-8 was higher with high-protein diets (P< 0·05). MCT1 expression was positively correlated with l-lactate, whereas negatively correlated with NH₃ and putrescine (P< 0·05). The expression of IL-8 and TNF-α was negatively correlated with l-lactate and positively correlated with NH₃ and putrescine, whereas the expression of IFN-γ was positively correlated with histamine and 4-ethylphenol (P< 0·05). Subsequently, porcine colonic tissue and Caco-2 cells were incubated with Na-butyrate, NH₄Cl or TNF-α as selected bacterial metabolites or mediators of inflammation. Colonic MCT1 expression was higher after incubation with Na-butyrate (P< 0·05) and lower after incubation with NH₄Cl or TNF-α (P< 0·05). Incubation of Caco-2 cells with increasing concentrations of these metabolites confirmed the up-regulation of MCT1 expression by Na-butyrate (linear, P< 0·05) and down-regulation by TNF-α and NH₄Cl (linear, P< 0·05). The high-protein diet decreased the expression of MCT1 in the colon of pigs, which appears to be linked to NH₃- and TNF-α-mediated signalling.

  9. FUNDAMENTAL IMMUNOBIOLOGY OF PRO-INFLAMMATORY CYTOKINES AND MIF

    Directory of Open Access Journals (Sweden)

    A. P. Suslov

    2006-01-01

    Full Text Available Fundamental immunobiology of proinflammatory cytokines and MIFThere are a lot of similarity as well as differences when we compare cytokines with MIF according their biological properties. MIF characteristics are unique structure, organs and tissues ubiquity, extremely wide variety of functions (proinflammatory cytokine, enzyme, hormone, ability to be induced by glucocorticoid hormones and affects as their immunosuppressive effects antagonist. MIF exists in preformed condition in lymphocytes, macrophages and endothelium cells. It secrets by these cells and operates as a mobilizing defense system factor in the first minutes of foreign invasion. MIF exhibits the properties of super-ligand binding with many biologically important molecules. This factor carries out the functions that are important for cell activation, proliferation and death, using a variety of intracellular signaling pathways. Some of MIF homologues exists in plants and bacteria earlier than innate and adaptive immune systems appears in evolution. In ontogenesis MIF appears at the stage of firsts cell divisions. MIF has a lot of functions, variety of ligand bindings, many effector pathways, it appears early in ontogeny and phylogeny. MIF takes part into protective reactions at any levels – from cell up to whole organism. All these MIF features taking together into account make it possible to possess it as a particular type of cytokine – eocytokine (from Greek word “eo” – early. It is assumed that MIF may function as some kind of cells and organisms "natural stability" key factor.

  10. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  11. Sleep duration, cardiovascular disease, and proinflammatory biomarkers

    Directory of Open Access Journals (Sweden)

    Grandner MA

    2013-07-01

    Full Text Available Michael A Grandner,1,2 Megan R Sands-Lincoln,3 Victoria M Pak,2,4 Sheila N Garland1,5 1Behavioral Sleep Medicine Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, PA, USA; 2Center for Sleep and Circadian Neurobiology, University of Pennsylvania, PA, USA; 3Center for Evidence Based Medicine, Elsevier Inc, Philadelphia, PA, USA; 4Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA; 5Department of Family Medicine and Community Health, Perelman School of Medicine, University of Pennsylvania, PA, USA Abstract: Habitual sleep duration has been associated with cardiometabolic disease, via several mechanistic pathways, but few have been thoroughly explored. One hypothesis is that short and/or long sleep duration is associated with a proinflammatory state, which could increase risk for cardiovascular and metabolic diseases. This hypothesis has been largely explored in the context of experimental sleep deprivation studies which have attempted to demonstrate changes in proinflammatory markers following acute sleep loss in the laboratory. Despite the controlled environment available in these studies, samples tend to lack generalization to the population at large and acute sleep deprivation may not be a perfect analog for short sleep. To address these limitations, population based studies have explored associations between proinflammatory markers and habitual sleep duration. This review summarizes what is known from experimental and cross-sectional studies about the association between sleep duration, cardiovascular disease, and proinflammatory biomarkers. First, the association between sleep duration with both morbidity and mortality, with a focus on cardiovascular disease, is reviewed. Then, a brief review of the potential role of proinflammatory markers in cardiovascular disease is presented. The majority of this review details specific findings related to specific

  12. PAMPs and DAMPs stimulate the expression of pro-inflammatory cytokines in vitro in fibroblasts from fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Ossum, C.G.; Przybylska, Dominika;

    activates downstream signalling pathways, which subsequently leads to expression of pro-inflammatory cytokines and chemokines. DAMPs released from necrotic cells may also bind to and activate similar downstream signalling events. In teleosts it was found that mechanical damage of the muscle tissue using...... sterile needles induced a very rapid expression of the pro-inflammatory cytokines IL-1β, IL-8 and IL-10 as measured by real-time PCR. The results imply that cells located in the muscular tissue in addition to recruited cells are involved in the observed increased cytokine / chemokine expression...

  13. The Pro-inflammatory Role of TGFβ1: A Paradox?

    Directory of Open Access Journals (Sweden)

    Gangwen Han, Fulun Li, Tej Pratap Singh, Peter Wolf, Xiao-Jing Wang

    2012-01-01

    Full Text Available TGFβ1 was initially identified as a potent chemotactic cytokine to initiate inflammation, but the autoimmune phenotype seen in TGFβ1 knockout mice reversed the dogma of TGFβ1 being a pro-inflammatory cytokine to predominantly an immune suppressor. The discovery of the role of TGFβ1 in Th17 cell activation once again revealed the pro-inflammatory effect of TGFβ1. We developed K5.TGFβ1 mice with latent human TGFβ1 overexpression targeted to epidermal keratinocytes by keratin 5. These transgenic mice developed significant skin inflammation. Further studies revealed that inflammation severity correlated with switching TGFβ1 transgene expression on and off, and genome wide expression profiling revealed striking similarities between K5.TGFβ1 skin and human psoriasis, a Th1/Th17-associated inflammatory skin disease. Our recent study reveals that treatments alleviating inflammatory skin phenotypes in this mouse model reduced Th17 cells, and antibodies against IL-17 also lessen the inflammatory phenotype. Examination of inflammatory cytokines/chemokines affected by TGFβ1 revealed predominantly Th1-, Th17-related cytokines in K5.TGFβ1 skin. However, the finding that K5.TGFβ1 mice also express Th2-associated inflammatory cytokines under certain pathological conditions raises the possibility that deregulated TGFβ signaling is involved in more than one inflammatory disease. Furthermore, activation of both Th1/Th17 cells and regulatory T cells (Tregs by TGFβ1 reversely regulated by IL-6 highlights the dual role of TGFβ1 in regulating inflammation, a dynamic, context and organ specific process. This review focuses on the role of TGFβ1 in inflammatory skin diseases.

  14. The Pro-inflammatory Role of TGFβ1: A Paradox?

    Science.gov (United States)

    Han, Gangwen; Li, Fulun; Singh, Tej Pratap; Wolf, Peter; Wang, Xiao-Jing

    2012-01-01

    TGFβ1 was initially identified as a potent chemotactic cytokine to initiate inflammation, but the autoimmune phenotype seen in TGFβ1 knockout mice reversed the dogma of TGFβ1 being a pro-inflammatory cytokine to predominantly an immune suppressor. The discovery of the role of TGFβ1 in Th17 cell activation once again revealed the pro-inflammatory effect of TGFβ1. We developed K5.TGFβ1 mice with latent human TGFβ1 overexpression targeted to epidermal keratinocytes by keratin 5. These transgenic mice developed significant skin inflammation. Further studies revealed that inflammation severity correlated with switching TGFβ1 transgene expression on and off, and genome wide expression profiling revealed striking similarities between K5.TGFβ1 skin and human psoriasis, a Th1/Th17-associated inflammatory skin disease. Our recent study reveals that treatments alleviating inflammatory skin phenotypes in this mouse model reduced Th17 cells, and antibodies against IL-17 also lessen the inflammatory phenotype. Examination of inflammatory cytokines/chemokines affected by TGFβ1 revealed predominantly Th1-, Th17-related cytokines in K5.TGFβ1 skin. However, the finding that K5.TGFβ1 mice also express Th2-associated inflammatory cytokines under certain pathological conditions raises the possibility that deregulated TGFβ signaling is involved in more than one inflammatory disease. Furthermore, activation of both Th1/Th17 cells and regulatory T cells (Tregs) by TGFβ1 reversely regulated by IL-6 highlights the dual role of TGFβ1 in regulating inflammation, a dynamic, context and organ specific process. This review focuses on the role of TGFβ1 in inflammatory skin diseases. PMID:22253566

  15. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway.

    Science.gov (United States)

    Zhang, Qiang; Yang, Yujie; Yan, Shuxian; Liu, Jiantao; Xu, Zhongmin; Yu, Junping; Song, Yajing; Zhang, Anding; Jin, Meilin

    2015-01-01

    Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway.

  16. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration

    OpenAIRE

    Julie Anne Seguin; Jordan Brennan; Emily Mangano; Shawn Hayley

    2009-01-01

    Julie Anne Seguin, Jordan Brennan, Emily Mangano, Shawn HayleyInstitute of Neuroscience, Carleton University, Ottawa, Ontario, CanadaAbstract: Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accor...

  17. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration

    OpenAIRE

    Hayley, Shawn

    2008-01-01

    Julie Anne Seguin, Jordan Brennan, Emily Mangano, Shawn HayleyInstitute of Neuroscience, Carleton University, Ottawa, Ontario, CanadaAbstract: Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accor...

  18. Pro-inflammatory and vasoconstricting prostanoid PGF2α causes no headache in man

    DEFF Research Database (Denmark)

    Antonova, Maria; Wienecke, Troels; Olesen, Jes;

    2011-01-01

    During two decades of migraine provocation studies with naturally occurring signalling molecules, vasodilators such as prostaglandin E(2), prostaglandin I(2) (prostacyclin) and prostaglandin D(2) were shown to be able to induce headache in man. To elucidate the role of inflammation and vasodilata...... and vasodilatation in the generation of headache, we investigated whether the pro-inflammatory and vasoconstricting prostanoid prostaglandin F(2α) (PGF(2α)) would cause headache in a human model of headache....

  19. The Role of Proinflammatory Cytokine Interleukin-18 in Radiation Injury.

    Science.gov (United States)

    Xiao, Mang

    2016-08-01

    Massive radiation-induced inflammatory factors released from injured cells may cause innate and acquired immune reactions that can further result in stress response signal activity-induced local and systemic damage. IL-1 family members IL-1β, IL-18, and IL-33 play key roles in inflammatory and immune responses and have been recognized to have significant influences on the pathogenesis of diseases. IL-1β, IL-18, and IL-33 share similarities of cytokine biology, but differences exist in signaling pathways. A key component of the inflammatory reaction is the inflammasome, which is a caspase-1-containing multiprotein oligomer. Pathological stimuli such as radiation can induce inflammasome and caspase-1 activation, and subsequently cause maturation (activation) of pro-forms of IL-1 and IL-18 upon caspase-1 cleavage. This caspase-1 dependent and IL-1 and IL-18 associated cell damage is defined as pyroptosis. Activated IL-1 and IL-18 as proinflammatory cytokines drive pathology at different immune and inflammatory disorders through Toll-like receptor (TLR) signaling. While the mechanisms of IL-1β-induced pathophysiology of diseases have been well studied, IL-18 has received less attention. The author recently reported that gamma radiation highly increased IL-1β, IL-18 and IL-33 expression in mouse thymus, spleen and/or bone marrow cells; also circulating IL-18 can be used as a radiation biomarker to track radiation injury in mice, minipigs, and nonhuman primates. This mini-review focuses on the role of IL-18 in response to gamma radiation-induced injury.

  20. Proinflammatory and anti-inflammatory cytokines in meningococcal disease.

    OpenAIRE

    Riordan, F A; Marzouk, O; Thomson, A. P.; Sills, J A; Hart, C. A.

    1996-01-01

    Interleukin-10 (IL-10), an anti-inflammatory cytokine, was measured in 131 children with meningococcal disease. IL-10 concentrations were significantly higher in children who died and correlated positively with proinflammatory cytokines. Children who die from meningococcal disease have high IL-10 concentrations, which do not suppress proinflammatory cytokines.

  1. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells

    DEFF Research Database (Denmark)

    Hansen, Peter Riis; Rieneck, Klaus; Bendtzen, Klaus

    2004-01-01

    The mineralocorticoid receptor antagonist spironolactone (SPIR) reduces the mortality and morbidity in patients with congestive heart failure (CHF). Overexpression of proinflammatory cytokines contribute to the development and progression of CHF.......The mineralocorticoid receptor antagonist spironolactone (SPIR) reduces the mortality and morbidity in patients with congestive heart failure (CHF). Overexpression of proinflammatory cytokines contribute to the development and progression of CHF....

  2. Chemically induced neuronal damage and gliosis: enhanced expression of the proinflammatory chemokine, monocyte chemoattractant protein (MCP)-1, without a corresponding increase in proinflammatory cytokines(1).

    Science.gov (United States)

    Little, A R; Benkovic, S A; Miller, D B; O'Callaghan, J P

    2002-01-01

    Enhanced expression of proinflammatory cytokines and chemokines has long been linked to neuronal and glial responses to brain injury. Indeed, inflammation in the brain has been associated with damage that stems from conditions as diverse as infection, multiple sclerosis, trauma, and excitotoxicity. In many of these brain injuries, disruption of the blood-brain barrier (BBB) may allow entry of blood-borne factors that contribute to, or serve as the basis of, brain inflammatory responses. Administration of trimethyltin (TMT) to the rat results in loss of hippocampal neurons and an ensuing gliosis without BBB compromise. We used the TMT damage model to discover the proinflammatory cytokines and chemokines that are expressed in response to neuronal injury. TMT caused pyramidal cell damage within 3 days and a substantial loss of these neurons by 21 days post dosing. Marked microglial activation and astrogliosis were evident over the same time period. The BBB remained intact despite the presence of multiple indicators of TMT-induced neuropathology. TMT caused large increases in whole hippocampal-derived monocyte chemoattractant protein (MCP)-1 mRNA (1,000%) by day 3 and in MCP-1 (300%) by day 7. The mRNA levels for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, cytokines normally expressed during the earliest stage of inflammation, were not increased up to 21 days post dosing. Lipopolysaccharide, used as a positive control, caused large inductions of cytokine mRNA in liver, as well as an increase in IL-1beta in hippocampus, but it did not result in the induction of astrogliosis. The data suggest that enhanced expression of the proinflammatory cytokines, TNF-alpha, IL-1beta and IL-6, is not required for neuronal and glial responses to injury and that MCP-1 may serve a signaling function in the damaged CNS that is distinct from its role in proinflammatory events.

  3. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Veréb, Zoltán, E-mail: jzvereb@gmail.com [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Uray, Iván P., E-mail: ipuray@mdanderson.org [Clinical Cancer Prevention Department, The University of Texas, MD Anderson Cancer Center, Houston, TX (United States); Fésüs, László, E-mail: fesus@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); MTA DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences (Hungary); Balajthy, Zoltán, E-mail: balajthy@med.unideb.hu [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  4. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity.

    Science.gov (United States)

    Hucke, Stephanie; Eschborn, Melanie; Liebmann, Marie; Herold, Martin; Freise, Nicole; Engbers, Annika; Ehling, Petra; Meuth, Sven G; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-02-01

    The increasing incidence in Multiple Sclerosis (MS) during the last decades in industrialized countries might be linked to a change in dietary habits. Nowadays, enhanced salt content is an important characteristic of Western diet and increased dietary salt (NaCl) intake promotes pathogenic T cell responses contributing to central nervous system (CNS) autoimmunity. Given the importance of macrophage responses for CNS disease propagation, we addressed the influence of salt consumption on macrophage responses in CNS autoimmunity. We observed that EAE-diseased mice receiving a NaCl-high diet showed strongly enhanced macrophage infiltration and activation within the CNS accompanied by disease aggravation during the effector phase of EAE. NaCl treatment of macrophages elicited a strong pro-inflammatory phenotype characterized by enhanced pro-inflammatory cytokine production, increased expression of immune-stimulatory molecules, and an antigen-independent boost of T cell proliferation. This NaCl-induced pro-inflammatory macrophage phenotype was accompanied by increased activation of NF-kB and MAPK signaling pathways. The pathogenic relevance of NaCl-conditioned macrophages is illustrated by the finding that transfer into EAE-diseased animals resulted in significant disease aggravation compared to untreated macrophages. Importantly, also in human monocytes, NaCl promoted a pro-inflammatory phenotype that enhanced human T cell proliferation. Taken together, high dietary salt intake promotes pro-inflammatory macrophages that aggravate CNS autoimmunity. Together with other studies, these results underline the need to further determine the relevance of increased dietary salt intake for MS disease severity.

  5. Pro-Inflammatory Cytokine-Mediated Anemia: Regarding Molecular Mechanisms of Erythropoiesis

    Directory of Open Access Journals (Sweden)

    F. Morceau

    2009-01-01

    Full Text Available Anemia of cancer and chronic inflammatory diseases is a frequent complication affecting quality of life. For cancer patients it represents a particularly bad prognostic. Low level of erythropoietin is considered as one of the causes of anemia in these pathologies. The deficiency in erythropoietin production results from pro-inflammatory cytokines effect. However, few data is available concerning molecular mechanisms involved in cytokine-mediated anemia. Some recent publications have demonstrated the direct effect of pro-inflammatory cytokines on cell differentiation towards erythroid pathway, without erythropoietin defect. This suggested that pro-inflammatory cytokine-mediated signaling pathways affect erythropoietin activity. They could interfere with erythropoietin-mediated signaling pathways, inducing early apoptosis and perturbing the expression and regulation of specific transcription factors involved in the control of erythroid differentiation. In this review we summarize the effect of tumor necrosis factor (TNFα, TNF-related apoptosis-inducing ligand (TRAIL, and interferon (IFN-γ on erythropoiesis with a particular interest for molecular feature.

  6. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada); Klegeris, Andis [Department of Biology, University of British Columbia Okanagan, Kelowna, BC (Canada); Little, Jonathan P., E-mail: jonathan.little@ubc.ca [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada)

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  7. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    Science.gov (United States)

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages.

  8. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB.

    Science.gov (United States)

    So, Hongseob; Kim, HyungJin; Lee, Jeong-Han; Park, Channy; Kim, Yunha; Kim, Eunsook; Kim, Jin-Kyung; Yun, Ki-Jung; Lee, Kang-Min; Lee, Haa-Yung; Moon, Sung-Kyun; Lim, David J; Park, Raekil

    2007-09-01

    The ototoxicity of cisplatin, a widely used chemotherapeutic agent, involves a number of mechanisms, including perturbation of redox status, increase in lipid peroxidation, and formation of DNA adducts. In this study, we demonstrate that cisplatin increased the early immediate release and de novo synthesis of proinflammatory cytokines, including TNF-alpha, IL-1beta, and IL-6, through the activation of ERK and NF-kappaB in HEI-OC1 cells, which are conditionally immortalized cochlear cells that express hair cell markers. Both neutralization of proinflammatory cytokines and pharmacologic inhibition of ERK significantly attenuated the death of HEI-OC1 auditory cells caused by cisplatin and proinflammatory cytokines. We also observed a significant increase in the protein and mRNA levels of proinflammatory cytokines in both serum and cochleae of cisplatin-injected rats, which was suppressed by intraperitoneal injection of etanercept, an inhibitor of TNF-alpha. Immunohistochemical studies revealed that TNF-alpha expression was mainly located in the spiral ligament, spiral limbus, and the organ of Corti in the cochleae of cisplatin-injected rats. NF-kappaB protein expression, which overlapped with terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling-positive signal, was very strong in specific regions of the cochleae, including the organ of Corti, spiral ligament, and stria vascularis. These results indicate that proinflammatory cytokines, especially TNF-alpha, play a central role in the pathophysiology of sensory hair cell damage caused by cisplatin.

  9. Parenchymal and Stromal Cells Contribute to Pro-Inflammatory Myocardial Environment at Early Stages of Diabetes: Protective Role of Resveratrol

    Science.gov (United States)

    Savi, Monia; Bocchi, Leonardo; Sala, Roberto; Frati, Caterina; Lagrasta, Costanza; Madeddu, Denise; Falco, Angela; Pollino, Serena; Bresciani, Letizia; Miragoli, Michele; Zaniboni, Massimiliano; Quaini, Federico; Del Rio, Daniele; Stilli, Donatella

    2016-01-01

    Background: Little information is currently available concerning the relative contribution of cardiac parenchymal and stromal cells in the activation of the pro-inflammatory signal cascade, at the initial stages of diabetes. Similarly, the effects of early resveratrol (RSV) treatment on the negative impact of diabetes on the different myocardial cell compartments remain to be defined. Methods: In vitro challenge of neonatal cardiomyocytes and fibroblasts to high glucose and in vivo/ex vivo experiments on a rat model of Streptozotocin-induced diabetes were used to specifically address these issues. Results: In vitro data indicated that, besides cardiomyocytes, neonatal fibroblasts contribute to generating initial changes in the myocardial environment, in terms of pro-inflammatory cytokine expression. These findings were mostly confirmed at the myocardial tissue level in diabetic rats, after three weeks of hyperglycemia. Specifically, monocyte chemoattractant protein-1 and Fractalkine were up-regulated and initial abnormalities in cardiomyocyte contractility occurred. At later stages of diabetes, a selective enhancement of pro-inflammatory macrophage M1 phenotype and a parallel reduction of anti-inflammatory macrophage M2 phenotype were associated with a marked disorganization of cardiomyocyte ultrastructural properties. RSV treatment inhibited pro-inflammatory cytokine production, leading to a recovery of cardiomyocyte contractile efficiency and a reduced inflammatory cell recruitment. Conclusion: Early RSV administration could inhibit the pro-inflammatory diabetic milieu sustained by different cardiac cell types. PMID:27854328

  10. Ephedrine hydrochloride protects mice from LPS challenge by promoting IL-10 secretion and inhibiting proinflammatory cytokines.

    Science.gov (United States)

    Zheng, Yuejuan; Guo, Ziyi; He, Weigang; Yang, Yang; Li, Yuhu; Zheng, Aoxiang; Li, Ping; Zhang, Yan; Ma, Jinzhu; Wen, Mingyue; Yang, Muyi; An, Huazhang; Ji, Guang; Yu, Yizhi

    2012-05-01

    Sepsis and its derivative endotoxic shock are still serious conditions with high mortality in the intensive care unit. The mechanisms that ensure the balance of proinflammatory cytokines and anti-inflammatory cytokine production are of particular importance. As an active α- and β-adrenergic agonist, ephedrine hydrochloride (EH) is a widely used agent for cardiovascular diseases, especially boosting blood pressure. Here we demonstrate that EH increased Toll-like receptor 4 (TLR4)-mediated production of interleukin 10 (IL-10) through p38 MAPK activation. Simultaneously, EH negatively regulated the production of proinflammatory cytokines. Consistently, EH increased lipopolysaccharide (LPS)-induced serum IL-10 and inhibited tumor necrotic factor-α (TNFα) production in vivo. As a result, EH treatment protected mice from endotoxic shock by lethal LPS challenge. In brief, our data demonstrated that EH could contribute to immune homeostasis by balancing the production of proinflammatory cytokines and anti-inflammatory cytokine in TLR4 signaling. This study provides a potential usage of EH in autoimmunologic diseases or other severe inflammations.

  11. TLR4-dependant pro-inflammatory effects of HMGB1 on human adipocyte.

    Science.gov (United States)

    Gunasekaran, Manoj Kumar; Virama-Latchoumy, Anne-Laurence; Girard, Anne-Claire; Planesse, Cynthia; Guérin-Dubourg, Alexis; Ottosson, Lars; Andersson, Ulf; Césari, Maya; Roche, Régis; Hoareau, Laurence

    2016-01-01

    Chronic low grade inflammation is one of the major metabolic disorders in case of obesity and associated pathologies. By its important secretion function, the role of adipose tissue in this metabolic low grade inflammation is well known. Recently, it was demonstrated that the alarmin high mobility group box protein 1 (HMGB1) is involved in obesity-related pathologies by its increased serum levels in obese compared to normal weight individuals, and by its pro-inflammatory effects. However, the role of HMGB1 on adipocytes inflammation is poorly documented and we propose to investigate this point. Primary culture of human subcutaneous adipocytes were performed from human adipose tissue samples. Cells were treated with recombinant HMGB1 with/without anti-TLR4 antibody and inhibitors of NF-κB and P38 MAPK. Supernatants were collected for IL-6 and MCP-1 ELISA. HMGB1 initiates Toll-like receptor 4 (TLR4)-dependent activation of inflammation through the downstream NF-κB and P38 MAPK signaling pathway to upregulate the secretion of the pro-inflammatory cytokine IL-6. HMGB1 has pro-inflammatory effects on adipocytes. This reinforces the role of TLR4 in adipose tissue inflammation and antagonizing the HMGB1 inflammatory pathway could bring on new therapeutic targets to counteract obesity-associated pathologies.

  12. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Hye Joo Kim

    2012-01-01

    Full Text Available Diabetes is characterized by a proinflammatory state, and several inflammatory processes have been associated with both type 1 and type 2 diabetes and the resulting complications. High glucose levels induce the release of proinflammatory cytokines. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Cotinus coggygria, and is also widely distributed in fruits and vegetables. Fisetin is known to exert anti-inflammatory effects via inhibition of the NF-κB signaling pathway. In this study, we analyzed the effects of fisetin on proinflammatory cytokine secretion and epigenetic regulation, in human monocytes cultured under hyperglycemic conditions. Human monocytic (THP-1 cells were cultured under control (14.5 mmol/L mannitol, normoglycemic (NG, 5.5 mmol/L glucose, or hyperglycemic (HG, 20 mmol/L glucose conditions, in the absence or presence of fisetin. Fisetin was added (3–10 μM for 48 h. While the HG condition significantly induced histone acetylation, NF-κB activation, and proinflammatory cytokine (IL-6 and TNF-α release from THP-1 cells, fisetin suppressed NF-κB activity and cytokine release. Fisetin treatment also significantly reduced CBP/p300 gene expression, as well as the levels of acetylation and HAT activity of the CBP/p300 protein, which is a known NF-κB coactivator. These results suggest that fisetin inhibits HG-induced cytokine production in monocytes, through epigenetic changes involving NF-κB. We therefore propose that fisetin supplementation be considered for diabetes prevention.

  13. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  14. Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion.

    Directory of Open Access Journals (Sweden)

    Anding Liu

    Full Text Available High mobility group box 1 (HMGB1 is a nuclear transcription factor. Once HMGB1 is released by damaged cells or activated immune cells, it acts as danger molecule and triggers the inflammatory signaling cascade. Currently, evidence is accumulating that posttranslational modifications such as oxidation may modulate the pro-inflammatory potential of danger signals. We hypothesized that oxidation of HMGB1 may reduce its pro-inflammatory potential and could take place during prolonged ischemia and upon reperfusion.Liver grafts were cold preserved for 24 h and flushed with saline in hourly intervals to collect the effluent. Liver grafts, cold-preserved for 6 h, were transplanted into syngeneic recipients to obtain serum and liver samples 24 h after initiation of reperfusion. Addition of the effluent to a macrophage culture induced the synthesis of tumor necrosis factor-alpha (TNF-α and interleukin (IL-6. The stimulatory activity of graft effluent was reduced after depletion of HMGB1 via immunoprecipitation. Oxidation of the effluent HMGB1 using H(2O(2 attenuated its stimulatory activity as well. Liver transplantation of cold preserved grafts caused HMGB1 translocation and release as determined by immunohistochemistry and ELISA-assay, respectively. Using Western blot with non-reducing conditions revealed the presence of oxidized HMGB1 in liver samples obtained after 12 h and in effluent samples after 16 h of cold preservation as well as in liver and serum samples obtained 24 h after reperfusion.These observations confirm that post-translational oxidation of HMGB1 attenuates its pro-inflammatory activity. Oxidation of HMGB1 as induced during prolonged ischemia and by reoxygenation during reperfusion in vivo might also attenuate its pro-inflammatory activity. Our findings also call for future studies to investigate the mechanism of the inhibitory effect of oxidized HMGB1 on the pro-inflammatory potential.

  15. Cancer as a Proinflammatory Environment: Metastasis and Cachexia

    Directory of Open Access Journals (Sweden)

    Nelson Inácio Pinto

    2015-01-01

    Full Text Available The development of the syndrome of cancer cachexia and that of metastasis are related with a poor prognostic for cancer patients. They are considered multifactorial processes associated with a proinflammatory environment, to which tumour microenvironment and other tissues from the tumour bearing individuals contribute. The aim of the present review is to address the role of ghrelin, myostatin, leptin, HIF, IL-6, TNF-α, and ANGPTL-4 in the regulation of energy balance, tumour development, and tumoural cell invasion. Hypoxia induced factor plays a prominent role in tumour macro- and microenvironment, by modulating the release of proinflammatory cytokines.

  16. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    Science.gov (United States)

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  17. Myeloperoxidase modulates lung epithelial responses to pro-inflammatory agents

    NARCIS (Netherlands)

    Haegens, A.; Vernooy, J. H. J.; Heeringa, P.; Mossman, B. T.; Wouters, E. F. M.

    2008-01-01

    During extensive inflammation, neutrophils undergo secondary necrosis causing myeloperoxidase (MPO) release that may damage resident lung cells. Recent observations suggest that MPO has pro-inflammatory properties, independent of its enzymatic activity. The aims of the present study were to characte

  18. ALPK1 affects testosterone mediated regulation of proinflammatory cytokines production.

    Science.gov (United States)

    Kuo, Tzer-Min; Yeh, Kun-Tu; Hsu, Hui-Ting; Chiang, Shang-Lun; Chang, Jan-Gowth; Huang, Chung-Ming; Tu, Hung-Pin; Liu, Chiu-Shong; Ko, Ying-Chin

    2015-11-01

    Alpha-protein kinase 1, also known as alpha-kinase 1 (ALPK1), is associated with chronic kidney disease (CKD), myocardial infarction, gout and type 2 diabetes mellitus (DM). In addition to having an inductive effect on the proinflammatory cytokines in monocytic THP1 cells, ALPK1 is expressed abundantly in the mouse testes. Low testosterone levels are commonly associated with arthritis, CKD, type 2 DM, cardiovascular disease and inflammation. The testosterone's anti-inflammatory effect has been demonstrated to reduce proinflammatory cytokines and adhesion molecules. In this study, we found that ALPK1 transgenic mice showed lower levels of testosterone in both the testes and the serum. Decreasing endogenous ALPK1 enhanced testosterone levels and transcripts of testosterone-regulated genes (P450scc, 3beta-HSD, P450C17, 17beta-HSD, StAR, and INSL3) in TM3 Leydig cells. In contrast, increasing testosterone decreased ALPK1 in both TM3 and monocytic THP1 cells. This decrease was accompanied by a reduction of the proinflammatory cytokines. Increased ALPK1 levels attenuated the testosterone effects in THP1 cells. Finally, we also found that ALPK1 increased the release of TNF-alpha and TGF-beta1 in the human embryonic kidney 293 cells, while testosterone inhibited ALPK1 in the primary kidney cells. Taken together, this data suggests that the balance between ALPK1 and testosterone plays a critical role in the testosterone-mediated inhibition of proinflammatory cytokines.

  19. Long-Time Treatment by Low-Dose N-Acetyl-L-Cysteine Enhances Proinflammatory Cytokine Expressions in LPS-Stimulated Macrophages

    OpenAIRE

    Tomokazu Ohnishi; Kenjiro Bandow; Kyoko Kakimoto; Joji Kusuyama; Tetsuya Matsuguchi

    2014-01-01

    N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines in...

  20. REDUCED TISSUE OSMOLARITY INCREASES TRPV4 EXPRESSION AND PRO-INFLAMMATORY CYTOKINES IN INTERVERTEBRAL DISC CELLS

    Science.gov (United States)

    Walter, B.A.; Purmessur, D; Moon, A.; Occhiogrosso, J.; Laudier, D.M.; Hecht, A.C.; Iatridis, J.C.

    2016-01-01

    The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs) and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4) ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα) regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β) and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease. PMID:27434269

  1. Controlled Inhibition of the Mesenchymal Stromal Cell Pro-inflammatory Secretome via Microparticle Engineering

    Directory of Open Access Journals (Sweden)

    Sudhir H. Ranganath

    2016-06-01

    Full Text Available Mesenchymal stromal cells (MSCs are promising therapeutic candidates given their potent immunomodulatory and anti-inflammatory secretome. However, controlling the MSC secretome post-transplantation is considered a major challenge that hinders their clinical efficacy. To address this, we used a microparticle-based engineering approach to non-genetically modulate pro-inflammatory pathways in human MSCs (hMSCs under simulated inflammatory conditions. Here we show that microparticles loaded with TPCA-1, a small-molecule NF-κB inhibitor, when delivered to hMSCs can attenuate secretion of pro-inflammatory factors for at least 6 days in vitro. Conditioned medium (CM derived from TPCA-1-loaded hMSCs also showed reduced ability to attract human monocytes and prevented differentiation of human cardiac fibroblasts to myofibroblasts, compared with CM from untreated or TPCA-1-preconditioned hMSCs. Thus, we provide a broadly applicable bioengineering solution to facilitate intracellular sustained release of agents that modulate signaling. We propose that this approach could be harnessed to improve control over MSC secretome post-transplantation, especially to prevent adverse remodeling post-myocardial infarction.

  2. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration

    Directory of Open Access Journals (Sweden)

    Julie Anne Seguin

    2008-12-01

    Full Text Available Julie Anne Seguin, Jordan Brennan, Emily Mangano, Shawn HayleyInstitute of Neuroscience, Carleton University, Ottawa, Ontario, CanadaAbstract: Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accordingly, the present investigation assessed whether three proinflammatory cytokines, namely interleukin-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α (associated with depression influenced cellular proliferation within the hippocampus. In this regard, systemic administration of TNF-α reduced 5-bromo-2-deoxyuridine (BrdU labeling within the hippocampus, whereas IL-1β and IL-6 had no such effect. However, repeated but not a single intra-hippocampal infusion of IL-6 and IL-1β actually increased cellular proliferation and IL-6 infusion also enhanced microglial staining within the hippocampus. Yet, no changes in doublecortin expression were apparent, suggesting that the cytokine did not influence the birth of cells destined to become neurons. Essentially, the route of administration and chronicity of cytokine administration had a marked influence upon the nature of hippocampal alterations provoked, suggesting that cytokines may differentially regulate hippocampal plasticity in neuropsychiatric conditions.Keywords: cytokine, depression, neuroplasticity, hippocampus, stressor

  3. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration.

    Science.gov (United States)

    Seguin, Julie Anne; Brennan, Jordan; Mangano, Emily; Hayley, Shawn

    2009-01-01

    Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accordingly, the present investigation assessed whether three proinflammatory cytokines, namely interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor-alpha (TNF-alpha) (associated with depression) influenced cellular proliferation within the hippocampus. In this regard, systemic administration of TNF-alpha reduced 5-bromo-2-deoxyuridine (BrdU) labeling within the hippocampus, whereas IL-1beta and IL-6 had no such effect. However, repeated but not a single intra-hippocampal infusion of IL-6 and IL-1beta actually increased cellular proliferation and IL-6 infusion also enhanced microglial staining within the hippocampus. Yet, no changes in doublecortin expression were apparent, suggesting that the cytokine did not influence the birth of cells destined to become neurons. Essentially, the route of administration and chronicity of cytokine administration had a marked influence upon the nature of hippocampal alterations provoked, suggesting that cytokines may differentially regulate hippocampal plasticity in neuropsychiatric conditions.

  4. Endocannabinoids alleviate proinflammatory conditions by modulating innate immune response in muller glia during inflammation.

    Science.gov (United States)

    Krishnan, Gopinath; Chatterjee, Nivedita

    2012-11-01

    Muller cells play a prominent role in inflammatory conditions of the retina. They are part of the retinal innate immune response. The endocannabinoid system functions as an immune modulator in both the peripheral immune system as well as the central nervous system. We hypothesized that the neuroprotective ability of exogenous endocannabinoids in the retina is partially mediated through Muller glia. This study reports that exposure to endocannabinoids in activated but not resting primary human Muller glia inhibit production of several proinflammatory cytokines, while elevating anti-inflammatory mediators. Cytokine generation in activated Muller glia is regulated by endocannabinoids through the mitogen-activated protein kinase (MAPK) family at multiple signaling stages. Anandamide (AEA) acts to control MAPK phosphorylation through MKP-1. Both AEA and 2-arachidonoylglycerol (2-AG) inhibit the transcription factor NF-κB and increases the regulatory protein, IL1-R-associated kinase 1-binding protein 1. Endocannabinoids also increase expression of Tristetraprolin in activated Muller cells, which is implicated in affecting AU-rich proinflammatory cytokine mRNA. We demonstrate that exogenous application of AEA and 2-AG aid in retinal cell survival under inflammatory conditions by creating an anti-inflammatory milieu. Endocannabinoids or synthetic cannabinoid therapy may therefore orchestrate a molecular switch to bias the innate immune system suchthat the balance of pro- and anti-inflammatory cytokine generation creates a prosurvival milieu.

  5. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways.

    Science.gov (United States)

    DelNero, Peter; Lane, Maureen; Verbridge, Scott S; Kwee, Brian; Kermani, Pouneh; Hempstead, Barbara; Stroock, Abraham; Fischbach, Claudia

    2015-07-01

    Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation.

  6. Chronic exposure to exogenous glucocorticoids primes microglia to pro-inflammatory stimuli and induces NLRP3 mRNA in the hippocampus.

    Science.gov (United States)

    Frank, Matthew G; Hershman, Sarah A; Weber, Michael D; Watkins, Linda R; Maier, Steven F

    2014-02-01

    Chronic stress as well as chronic treatment with glucocorticoids (GCs) primes the neuroinflammatory response to a subsequent pro-inflammatory challenge. However, it remains unclear whether chronic GCs sensitize the response of key CNS immune substrates (i.e. microglia) to pro-inflammatory stimuli. In the present set of studies, male Sprague-Dawley rats underwent sham surgery or were adrenalectomized and then treated with varying concentrations of corticosterone (CORT; 0, 25, 50, and 75 μg/ml) administered in their drinking water. After 10 days of CORT exposure, whole hippocampus was collected and expression of glial activation markers measured or hippocampal microglia were isolated and challenged with LPS to probe for CORT-induced sensitization of pro-inflammatory responses. Chronic CORT exposure increased the gene expression of NLRP3, Iba-1, MHCII, and NF-κBIα in a concentration dependent manner. Chronic CORT (75 μg/ml) exposure potentiated the microglial proinflammatory response (TNFα, IL-1β, IL-6 and NLRP3) to LPS compared to the microglial response of sham surgery animals treated with vehicle. The present set of results demonstrate that chronic exposure to GCs primes microglia to pro-inflammatory stimuli and add to a growing body of evidence suggesting that a permissive function of GCs is that of an endogenous danger signal or alarmin.

  7. Pro-inflammatory and pro-oxidant status of pancreatic islet in vitro is controlled by TLR-4 and HO-1 pathways.

    Directory of Open Access Journals (Sweden)

    Kevin Vivot

    Full Text Available Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1 and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2 expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species production (Dihydroethidine staining, DHE and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095 and HO-1 activation (cobalt protoporphyrin,CoPP was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS. Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation.

  8. Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila.

    Directory of Open Access Journals (Sweden)

    Sunny Shin

    2008-11-01

    Full Text Available The immune system must discriminate between pathogenic and nonpathogenic microbes in order to initiate an appropriate response. Toll-like receptors (TLRs detect microbial components common to both pathogenic and nonpathogenic bacteria, whereas Nod-like receptors (NLRs sense microbial components introduced into the host cytosol by the specialized secretion systems or pore-forming toxins of bacterial pathogens. The host signaling pathways that respond to bacterial secretion systems remain poorly understood. Infection with the pathogen Legionella pneumophila, which utilizes a type IV secretion system (T4SS, induced an increased proinflammatory cytokine response compared to avirulent bacteria in which the T4SS was inactivated. This enhanced response involved NF-kappaB activation by TLR signaling as well as Nod1 and Nod2 detection of type IV secretion. Furthermore, a TLR- and RIP2-independent pathway leading to p38 and SAPK/JNK MAPK activation was found to play an equally important role in the host response to virulent L. pneumophila. Activation of this MAPK pathway was T4SS-dependent and coordinated with TLR signaling to mount a robust proinflammatory cytokine response to virulent L. pneumophila. These findings define a previously uncharacterized host response to bacterial type IV secretion that activates MAPK signaling and demonstrate that coincident detection of multiple bacterial components enables immune discrimination between virulent and avirulent bacteria.

  9. β-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells.

    Science.gov (United States)

    Keerthivasan, Shilpa; Aghajani, Katayoun; Dose, Marei; Molinero, Luciana; Khan, Mohammad W; Venkateswaran, Vysak; Weber, Christopher; Emmanuel, Akinola Olumide; Sun, Tianjao; Bentrem, David J; Mulcahy, Mary; Keshavarzian, Ali; Ramos, Elena M; Blatner, Nichole; Khazaie, Khashayarsha; Gounari, Fotini

    2014-02-26

    The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of T helper 17 (T(H)17) cells and inflammation predict poor outcome, whereas infiltration by T regulatory cells (Tregs) that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become proinflammatory and tumor-promoting. These properties were directly linked with their expression of RORγt (retinoic acid-related orphan receptor-γt), the signature transcription factor of T(H)17 cells. We report that Wnt/β-catenin signaling in T cells promotes expression of RORγt. Expression of β-catenin was elevated in T cells, including Tregs, of patients with colon cancer. Genetically engineered activation of β-catenin in mouse T cells resulted in enhanced chromatin accessibility in the proximity of T cell factor-1 (Tcf-1) binding sites genome-wide, induced expression of T(H)17 signature genes including RORγt, and promoted T(H)17-mediated inflammation. Strikingly, the mice had inflammation of small intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. On the basis of these findings, we conclude that activation of Wnt/β-catenin signaling in effector T cells and/or Tregs is causatively linked with the imprinting of proinflammatory properties and the promotion of colon cancer.

  10. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuai [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Lv, Jiaju [Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@pathology.ufl.edu [Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein

  11. Nanostructured TiO2 surfaces promote polarized activation of microglia, but not astrocytes, toward a proinflammatory profile

    Science.gov (United States)

    de Astis, Silvia; Corradini, Irene; Morini, Raffaella; Rodighiero, Simona; Tomasoni, Romana; Lenardi, Cristina; Verderio, Claudia; Milani, Paolo; Matteoli, Michela

    2013-10-01

    Activation of glial cells, including astrocytes and microglia, has been implicated in the inflammatory responses underlying brain injury and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The classic activation state (M1) is characterized by high capacity to present antigens, high production of nitric oxide (NO) and reactive oxygen species (ROS) and proinflammatory cytokines. Classically activated cells act as potent effectors that drive the inflammatory response and may mediate detrimental effects on neural cells. The second phenotype (M2) is an alternative, apparently beneficial, activation state, more related to a fine tuning of inflammation, scavenging of debris, promotion of angiogenesis, tissue remodeling and repair. Specific environmental chemical signals are able to induce these different polarization states. We provide here evidence that nanostructured substrates are able, exclusively in virtue of their physical properties, to push microglia toward the proinflammatory activation phenotype, with an efficacy which reflects the graded nanoscale rugosity. The acquisition of a proinflammatory phenotype appears specific for microglia and not astrocytes, indicating that these two cell types, although sharing common innate immune responses, respond differently to external physical stimuli.

  12. Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells.

    Science.gov (United States)

    Ebert, Regina; Benisch, Peggy; Krug, Melanie; Zeck, Sabine; Meißner-Weigl, Jutta; Steinert, Andre; Rauner, Martina; Hofbauer, Lorenz; Jakob, Franz

    2015-07-01

    The role of serum amyloid A (SAA) proteins, which are ligands for toll-like receptors, was analyzed in human bone marrow-derived mesenchymal stem cells (hMSCs) and their osteogenic offspring with a focus on senescence, differentiation and mineralization. In vitro aged hMSC developed a senescence-associated secretory phenotype (SASP), resulting in enhanced SAA1/2, TLR2/4 and proinflammatory cytokine (IL6, IL8, IL1β, CXCL1, CXCL2) expression before entering replicative senescence. Recombinant human SAA1 (rhSAA1) induced SASP-related genes and proteins in MSC, which could be abolished by cotreatment with the TLR4-inhibitor CLI-095. The same pattern of SASP-resembling genes was stimulated upon induction of osteogenic differentiation, which is accompanied by autocrine SAA1/2 expression. In this context additional rhSAA1 enhanced the SASP-like phenotype, accelerated the proinflammatory phase of osteogenic differentiation and enhanced mineralization. Autocrine/paracrine and rhSAA1 via TLR4 stimulate a proinflammatory phenotype that is both part of the early phase of osteogenic differentiation and the development of senescence. This signaling cascade is tightly involved in bone formation and mineralization, but may also propagate pathological extraosseous calcification conditions such as calcifying inflammation and atherosclerosis.

  13. Proinflammatory signal transduction pathway induced by Shigella flexneri porins in caco-2 cells Via de transdução de sinal pró-inflamatória induzida por porinas de Shigella flexneri em células caco-2

    Directory of Open Access Journals (Sweden)

    Grimaldi Elena

    2009-09-01

    Full Text Available The recognition of bacterial components on the intestinal epithelial cells occurs through the toll-like receptors and is followed by the induction of an effective innate immune response. We analyzed receptor expression and signaling pathways involved in activation of human colon adenocarcinoma cells after stimulation with porins and LPS of Shigella flexneri. We also analyzed the expression and production of some cytokines, of intercellular adhesion molecule-1, of antimicrobial peptides human ²-defensins, and of the inducible form of nitric oxide synthase. Our data demonstrate that TLR2 is involved in porin recognition, whereas TLR4 with MD2, is required for LPS recognition.O reconhecimento de componentes bacterianos nas células epiteliais intestinais ocorre através de receptores toll-like e é seguido de indução de uma resposta imune inata efetiva. Neste estudo foram analisadas as vias de expressão do receptor e sinalização envolvidas na ativação de células humanas de adenocarcinoma do colon após a estimulação com porinas e LPS de Shigella flexneri. Foram também analisadas a expressão e produção de algumas citoquinas, da molécula -1 de adesão intercelular, de ²-defensinas humanas a peptídios antimicrobianos e da forma indutível de oxido nítrico sintase. Os resultados demonstraram que TLR-2 está envolvido no reconhecimento de porinas, enquanto TLR4 com MD2 é necessário para o reconhecimento de LPS.

  14. Fucoidan delays apoptosis and induces pro-inflammatory cytokine production in human neutrophils.

    Science.gov (United States)

    Jin, Jun-O; Yu, Qing

    2015-02-01

    Although some immune modulatory effects of fucoidan have been elucidated, the effects of fucoidan on the apoptosis and activation of human neutrophils have not been investigated. In this study, we demonstrated that fucoidan purified from the brown seaweed Undaria pinnatifilda delays spontaneous apoptosis of human neutrophils and induces their activation. Fucoidan treatment inhibited apoptotic nuclei changes and phosphatidyl serine (PS) exposure on neutrophils cultured in vitro for 24h. The delay in neutrophil apoptosis mediated by fucoidan was associated with increased levels of the anti-apoptotic protein Mcl-1 and decreased levels of activated caspase-3. Screening of the signaling pathways by specific inhibitors indicated that fucoidan-induced delay in neutrophil apoptosis was dependent on the activation of PI3K/AKT signaling pathway, whereas MAPK signaling pathway was not critical. In addition, fucoidan enhanced the production of IL-6, IL-8 and TNF-α from neutrophils in an AKT-dependent manner. Taken together, these results demonstrated that fucoidan delays human neutrophil apoptosis and induces their production of pro-inflammatory cytokines. This knowledge could facilitate the development of novel therapeutic strategies for infectious diseases and neutropenia by controlling neutrophil homeostasis and function with fucoidan.

  15. The novel chicken interleukin 26 protein is overexpressed in T cells and induces proinflammatory cytokines.

    Science.gov (United States)

    Truong, Anh Duc; Park, Boyeong; Ban, Jihye; Hong, Yeong Ho

    2016-06-16

    In the present study, we describe the cloning and functional characterization of chicken interleukin 26 (ChIL-26). ChIL-26, a member of the IL-10 cytokine family, induces the production of proinflammatory cytokines by T cells. The ChIL-26 cDNA encodes an 82-amino-acid protein whose amino acid sequence has 22.63, 46.31 and 43.15% homology with human IL-26, pig IL-26 and canary IL-26, respectively. ChIL-26 signals through a heterodimeric receptor complex composed of the IL-20R1 and IL-10R2 chains, which are expressed primarily in the CU91 T cell line as well as CD4(+) and CD8(+) T cells. Recombinant ChIL-26 protein induced Th1 cytokines (IL-16 and IFN-γ), Th2 cytokines (IL-4, IL-6 and IL-10), Th17 cytokines (IL-17A, IL-17D, and IL-17F), and chemokine transcripts (mainly CCL3, CCL4, CCL5, CCL20 and CXCL13) in the CU91 T cell line and in CD4(+) and CD8(+) T cells, however IL-18 was not expressed in the CU91 T cell line. Taken together, the data demonstrates that T cells express the functional ChIL-26 receptor complex and that ChIL-26 modulates T cell proliferation and proinflammatory gene expression. To the best of our knowledge, this is the first report of cloned ChIL-26. We evaluated its functional roles, particularly in the pathogenic costimulation of T cells, which may be significantly associated with the induction of cytokines.

  16. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    Directory of Open Access Journals (Sweden)

    Maria Ruweka Fernando

    Full Text Available Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  17. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    Science.gov (United States)

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  18. Stop feeding cancer: pro-inflammatory role of visceral adiposity in liver cancer.

    Science.gov (United States)

    Zhao, Jun; Lawless, Matthew W

    2013-12-01

    Liver cancer is the fifth most common cancer in the world with an estimated over half a million new cases diagnosed every year. Due to the difficulty in early diagnosis and lack of treatment options, the prevalence of liver cancer continues to climb with a 5-year survival rate of between 6% and 11%. Coinciding with the rise of liver cancer, the prevalence of obesity has rapidly increased over the past two decades. Evidence from epidemiological studies demonstrates a higher risk of hepatocellular carcinoma (HCC) in obese individuals. Obesity is recognised as a low-grade inflammatory disease, this is of particular relevance as inflammation has been proposed as the seventh hallmark of cancer development with abdominal visceral adiposity considered as an important source of pro-inflammatory stimuli. Emerging evidence points towards the direct role of visceral adipose tissue rather than generalised body fat in carcinogenesis. Cytokines such as IL-6 and TNF-α secreted from visceral adipose tissue have been demonstrated to induce a chronic inflammatory condition predisposing the liver to a protumourigenic milieu. This review focuses on excess visceral adiposity rather than simple obesity; particularly adipokines and their implications for chronic inflammation, lipid accumulation, insulin resistance, Endoplasmic Reticulum (ER) stress and angiogenesis. Evidence of molecular signalling pathways that may give rise to the onset and progression of HCC in this context are depicted. Delineation of the pro-inflammatory role of visceral adiposity in liver cancer and its targeting will provide better rational and therapeutic approaches for HCC prevention and elimination. The concept of a central role for metabolism in cancer is the culmination of an effort that began with one of the 20th century's leading biochemists and Nobel laureate of 1931, Otto Warburg.

  19. Science Signaling Podcast for 7 June 2016: Modeling signal integration.

    Science.gov (United States)

    Janes, Kevin A; VanHook, Annalisa M

    2016-06-07

    This Podcast features an interview with Kevin Janes, senior author of a Research Article that appears in the 7 June 2016 issue of Science Signaling, about a statistical modeling method that can extract useful information from complex data sets. Cells exist in very complex environments. They are constantly exposed to growth factors, hormones, nutrients, and many other factors that influence cellular behavior. When cells integrate information from multiple stimuli, the resulting output does not necessarily reflect a simple additive effect of the responses to each individual stimulus. Chitforoushzadeh et al employed a statistical modeling approach that maintained the multidimensional nature of the data to analyze the responses of colonic epithelial cells to various combinations of the proinflammatory cytokine TNF, the growth factor EGF, and insulin. As the model predicted, experiments confirmed that insulin suppressed TNF-induced proinflammatory signaling through a mechanism that involved the transcription factor GATA6.Listen to Podcast.

  20. PAMPs and DAMPs stimulate the expression of pro-inflammatory cytokines in vitro in a fibroblast cell-line from rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Ossum, C.G.; Nielsen, Michael Engelbrecht

    activates downstream signalling pathways, which subsequently leads to expression of pro-inflammatory cytokines and chemokines. DAMPs released from necrotic cells may also bind to and activate similar downstream signalling events. In telosts was found that mechanical damage of the muscle tissue using sterile...... needles induced a very rapid expression of the pro-inflammatory cytokines IL-1β, IL-8 and IL-10 as measured by real-time PCR. The results imply that cells located in the muscular tissue in addition to recruited cells are involved in the observed increased cytokine / chemokine expression. It is believed...... in this evolutionary lineage of the bony fishes. The expression of TLR-3 and -9 receptors were significantly up-regulated following physical damage of muscle tissue as well as in stimulated fibroblasts, where LPS induced both TLR-3 and -9, supernatant from sonicated cells only TLR-9 while debris caused no induction...

  1. TARM1 Is a Novel Leukocyte Receptor Complex-Encoded ITAM Receptor That Costimulates Proinflammatory Cytokine Secretion by Macrophages and Neutrophils

    DEFF Research Database (Denmark)

    Radjabova, Valeria; Mastroeni, Piero; Skjødt, Karsten;

    2015-01-01

    , consistent with association with a signaling adaptor. TARM1 associated with the ITAM adaptor FcRγ but not with DAP10 or DAP12. In healthy mice, TARM1 is constitutively expressed on the cell surface of mature and immature CD11b(+)Gr-1(+) neutrophils within the bone marrow. Following i.p. LPS treatment...... in vitro. Ligation of TARM1 receptor in the presence of TLR ligands, such as LPS, enhanced the secretion of proinflammatory cytokines by macrophages and primary mouse neutrophils, whereas TARM1 stimulation alone had no effect. Finally, an immobilized TARM1-Fc fusion protein suppressed CD4(+) T cell...... activation and proliferation in vitro. These results suggest that a putative T cell ligand can interact with TARM1 receptor, resulting in bidirectional signaling and raising the T cell activation threshold while costimulating the release of proinflammatory cytokines by macrophages and neutrophils....

  2. A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus.

    Science.gov (United States)

    Wieseler-Frank, Julie; Jekich, Brian M; Mahoney, John H; Bland, Sondra T; Maier, Steven F; Watkins, Linda R

    2007-07-01

    Pain is enhanced in response to elevations of proinflammatory cytokines in spinal cerebrospinal fluid (CSF), following either intrathecal injection of these cytokines or intrathecal immune challenge with HIV-1 gp120 that induces cytokine release. Spinal cord glia have been assumed to be the source of endogenous proinflammatory cytokines that enhance pain. However, assuming that spinal cord glia are the sole source of CSF cytokines may be an underestimate, as the cellular composition of the meninges surrounding the spinal cord CSF space includes several cell types known to produce proinflammatory cytokines. The present experiments provide the first investigation of the immunocompetent nature of the spinal cord meninges. Here, we explore whether rat meninges are responsive to intrathecal gp120. These studies demonstrate that: (a) intrathecal gp120 upregulates meningeal gene expression of proinflammatory signals, including tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin 6 (IL-6), and inducible nitric oxide synthase (iNOS), and (b) intrathecal gp120 induces meningeal release of TNF-alpha, IL-1beta, and IL-6. In addition, stimulation of isolated meninges in vitro with gp120 induced the release of TNF-alpha and IL-1beta, indicating that the resident cells of the meninges are able to respond without immune cell recruitment. Taken together, these data document that the meninges are responsive to immunogenic stimuli in the CSF and that the meninges may be a source of immune products detected in CSF. The ability of the meninges to release to proinflammatory signals suggests a potential role in the modulation of pain.

  3. Modulation of the pro-inflammatory cytokines and matrix metalloproteinases production in co-cultivated human keratinocytes and melanocytes.

    Science.gov (United States)

    Decean, H; Perde-Schrepler, M; Tatomir, C; Fischer-Fodor, E; Brie, I; Virag, P

    2013-10-01

    The human epidermis exerts immunoregulatory functions through the variety of cytokines and other molecules elaborated by keratinocytes and melanocytes. Their constitutive production is very low; however, considerably increased upon stimulation. In vivo, keratinocytes and melanocytes have a typical exposure in the skin, referred as melanocyte epidermal unit. In the present study we co-cultivated these cells in vitro proposing to elucidate some communication links in close cell-to-cell association. We assessed the amounts of IL-6, IL-8, and matrix metalloproteinases (MMP-2 and MMP-9) in individually and co-cultured cells, exposed or not to UVB radiation. Normal human epidermal keratinocytes and melanocytes were grown in specific media and supplements. Cells were exposed to UVB radiation (100 mJ/cm(2)) to create comparable stress to the environmental one. Cytokines were determined with ELISA and confirmed with Western blot and metalloproteinases with gel zimography. Pure cultures of keratinocytes and melanocytes released low amounts of cytokines and metalloproteinases, these secretions being enhanced by UVB irradiation. In co-cultures, the cell-to-cell proximity triggered signals which markedly augmented the cytokines' secretions, whereas metalloproteinases were down-regulated. UVB irradiation did not influence either of these secretions in co-cultures. Concurrently with the highest levels of the pro-inflammatory cytokines, MMP-9 was up-regulated creating pro-inflammatory conditions and premises for changes in cellular survival, differentiation and phenotype. A complex network of interactions occurred between keratinocytes and melanocytes in co-cultures, resulting in modulated pro-inflammatory cytokines and metalloproteinases productions. Therefore, any disturbances in the microenvironmental signaling system and its molecular constituents may result in inflammation or even tumorigenesis in the epidermis.

  4. Lipidomics of Mesenchymal Stromal Cells: Understanding the Adaptation of Phospholipid Profile in Response to Pro-Inflammatory Cytokines.

    Science.gov (United States)

    Campos, Ana Margarida; Maciel, Elisabete; Moreira, Ana S P; Sousa, Bebiana; Melo, Tânia; Domingues, Pedro; Curado, Liliana; Antunes, Brígida; Domingues, M Rosário M; Santos, Francisco

    2016-05-01

    Mesenchymal stromal cells (MSCs) present anti-inflammatory properties and are being used with great success as treatment for inflammatory and autoimmune diseases. In clinical applications MSCs are subjected to a strong pro-inflammatory environment, essential to their immunosuppressive action. Despite the wide clinical use of these cells, how MSCs exert their effect remains unclear. Several lipids are known to be involved in cell's signaling and modulation of cellular functions. The aim of this paper is to examine the variation in lipid profile of MSCs under pro-inflammatory environment, induced by the presence of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), using the most modern lipidomic approach. Major changes in lipid molecular profile of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), lysoPC (LPC), and sphingomyelin (SM) classes were found. No changes were observed in the phosphatidylinositol (PI) profile. The levels of PC species with shorter fatty acids (FAs), mainly C16:0, decreased under pro-inflammatory stimuli. The level of PC(40:6) also decreased, which may be correlated with enhanced levels of LPC(18:0), which is known to be an anti-inflammatory LPC, observed in MSCs subjected to TNF-α and IFN-γ. Simultaneously, the relative amounts of PC(36:1) and PC(38:4) increased. TNF-α and IFN-γ also enhanced the levels of PE(40:6) and decreased the levels of PE(O-38:6). Higher expression of PS(36:1) and SM(34:0) along with a decrease in PS(38:6) levels were observed. These results indicate that lipid metabolism and signaling are modulated during MSCs activation, which suggests that lipids may be involved in MSCs functional and anti-inflammatory activities.

  5. Cross-Regulation of Proinflammatory Cytokines by Interleukin-10 and miR-155 in Orientia tsutsugamushi-Infected Human Macrophages Prevents Cytokine Storm.

    Science.gov (United States)

    Tsai, Ming-Hsien; Chang, Chung-Hsing; Tsai, Rong-Kung; Hong, Yi-Ren; Chuang, Tsung-Hsien; Fan, Kan-Tang; Peng, Chi-Wen; Wu, Ching-Ying; Hsu, Wen-Li; Wang, Lih-Shinn; Chen, Li-Kuang; Yu, Hsin-Su

    2016-07-01

    Scrub typhus is caused by the obligate intracellular bacterium Orientia tsutsugamushi. Macrophages are host cells for its replication and clearance. Severe complications in patients are mainly caused by a cytokine storm resulting from overproduction of proinflammatory cytokines; nevertheless, the molecular mechanism for the occurrence remains obscure. Herein, we investigate the interactive regulation of cytokines and micro-RNA (miR) in human macrophages infected with low and high doses of O. tsutsugamushi. During low dose infection, macrophages produce high levels of IL-10 through extracellular signal-regulated kinase activation, which inhibits proinflammatory cytokine production and facilitates pathogen replication. Increasing levels of pathogen results in reduced levels of IL-10, and macrophages begin to generate high levels of proinflammatory cytokines through NF-κB activation. However, during a high dose infection, macrophages produce high levels of miR-155 to slow the proinflammatory response. The extracellular signal-regulated kinase/IL-10 axis suppresses the NF-κB/tumor necrosis factor alpha axis via activation of signal transducer and activator of transcription 3. Both IL-10 and miR-155 inhibit the NF-κB signaling pathway. Furthermore, IL-10 is a potent inhibitor of miR-155. Patients susceptible to a cytokine storm, peripheral blood mononuclear cells showed significantly lower IL-10 and miR-155 responses to O. tsutsugamushi challenge. Thus, IL-10 and miR-155 operate inhibitory mechanisms to achieve a proper defense mechanism and prevent a cytokine storm.

  6. Epigenetic synergies between biotin and folate in the regulation of pro-inflammatory cytokines and repeats.

    Science.gov (United States)

    Xue, J; Zempleni, J

    2013-11-01

    The protein biotin ligase, holocarboxylase synthetase (HLCS), is a chromatin protein that interacts physically with the DNA methyltransferase DNMT1, the methylated cytosine-binding protein MeCP2 and the histone H3 K9-methyltransferase EHMT1, all of which participate in folate-dependent gene repression. Here we tested the hypothesis that biotin and folate synergize in the repression of pro-inflammatory cytokines and long-terminal repeats (LTRs), mediated by interactions between HLCS and other chromatin proteins. Biotin and folate supplementation could compensate for each other's deficiency in the repression of LTRs in Jurkat and U937 cells. For example, when biotin-deficient Jurkat cells were supplemented with folate, the expression of LTRs decreased by >70%. Epigenetic synergies were more complex in the regulation of cytokines compared with LTRs. For example, the abundance of TNF-α was 100% greater in folate- and biotin-supplemented U937 cells compared with biotin-deficient and folate-supplemented cells. The NF-κB inhibitor curcumin abrogated the effects of folate and biotin in cytokine regulation, suggesting that transcription factor signalling adds an extra layer of complexity to the regulation of cytokine genes by epigenetic phenomena. We conclude that biotin and folate synergize in the repression of LTRs and that these interactions are probably mediated by HLCS-dependent epigenetic mechanisms. In contrast, synergies between biotin and folate in the regulation of cytokines need to be interpreted in the context of transcription factor signalling.

  7. A novel benzenediamine derivate rescued mice from experimental sepsis by attenuating proinflammatory mediators via IRAK4.

    Science.gov (United States)

    Dou, Huan; Song, Yuxian; Liu, Xianqin; Yang, Liu; Jiang, Nan; Chen, Dai; Li, Erguang; Tan, Renxiang; Hou, Yayi

    2014-08-01

    We designed and synthesized a novel benzenediamine derivate, FC-99, that was tested for its ability to protect mice from experimental sepsis. Moreover, we sought to determine whether FC-99 could control a bacterial infection and to clarify the mechanism by which FC-99 inhibited LPS-activated macrophages. The effects of FC-99 on inflammation were evaluated in two experimental sepsis models and in cultured macrophages. Microarrays and docking and molecular dynamics simulations were used to determine the target of FC-99. Surface plasmon resonance and molecular detection were performed to confirm the direct interaction of FC-99 with its target. FC-99 protected mice from experimental sepsis. The mice that received FC-99 exhibited a diminished inflammatory response, had a lower local bacterial burden, and experienced a significantly improved survival rate. Genome-wide transcriptional profiling of FC-99-treated macrophages identified IRAK4 as a drug-regulated gene involved in LPS/TLR4 signaling. A computer search and calculations indicated that IRAK4 directly interacted with FC-99. Surface plasmon resonance, IRAK4-regulated signaling pathway analysis, and gene expression profiling of proinflammatory mediators confirmed the direct interaction between FC-99 and IRAK4. FC-99 is a potential therapeutic molecule for sepsis that alleviated experimental sepsis by directly inhibiting IRAK4 activation, which represents a novel target for sepsis therapy.

  8. [Interleukins network in rheumatoid arthritis pathophysiology: beyond proinflammatory cytokines].

    Science.gov (United States)

    Sánchez-Ramón, Silvia; López-Longo, Francisco Javier; Carreño, Luis

    2011-03-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovitis and progressive destruction of the joint cartilage and underlying bone, together with diverse extra-articular manifestations. Cytokines act as soluble effector mediators of the inflammatory process. Therapeutic neutralization with monoclonal antibodies against the pro-inflammatory cytokines TNF-alpha and interleukin 1 (IL-1) has shown a clear efficacy on inflammation and clinical manifestations of RA, although a percentage of patients do not respond. This review covers new relevant cytokines in the RA physiopathology and potential biomarkers of inflammation. The current challenge is to develop biomarkers that enable an earlier diagnosis, as well as prognostic markers and new therapeutic candidates. Combined administration of several of these cytokines could eventually address a personalized treatment approach for each patient.

  9. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  10. Proinflammatory cytokines induce bronchial hyperplasia and squamous metaplasia in smokers: implications for chronic obstructive pulmonary disease therapy.

    Science.gov (United States)

    Herfs, Michael; Hubert, Pascale; Poirrier, Anne-Lise; Vandevenne, Patricia; Renoux, Virginie; Habraken, Yvette; Cataldo, Didier; Boniver, Jacques; Delvenne, Philippe

    2012-07-01

    Tracheobronchial squamous metaplasia is common in smokers, and is associated with both airway obstruction in chronic obstructive pulmonary disease (COPD) and increased risk of lung cancer. Although this reversible epithelial replacement is almost always observed in association with chronic inflammation, the role of inflammatory mediators in the pathogenesis of squamous metaplasia remains unclear. In the present study, we investigated the implication of cigarette smoke-mediated proinflammatory cytokine up-regulation in the development and treatment of tracheobronchial epithelial hyperplasia and squamous metaplasia. Using immunohistological techniques, we showed a higher epithelial expression of TNF-α, IL-1β, and IL-6, as well as an activation of NF-κB and activator protein-1/mitogen-activated protein kinase signaling pathways in the respiratory tract of smoking patients, compared with the normal ciliated epithelium of nonsmoking patients. In addition, we demonstrated that these signaling pathways strongly influence the proliferation and differentiation state of in vitro-generated normal human airway epithelial basal cells. Finally, we exposed mice to cigarette smoke for 16 weeks, and demonstrated that anti-TNF-α (etanercept), anti-IL-1β (anakinra), and/or anti-IL-6R (tocilizumab) therapies significantly reduced epithelial hyperplasia and the development of squamous metaplasia. These data highlight the importance of soluble inflammatory mediators in the pathogenesis of tracheobronchial squamous metaplasia. Therefore, the administration of proinflammatory cytokine antagonists may have clinical applications in the management of patients with COPD.

  11. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Griffiths Gareth

    2009-07-01

    Full Text Available Abstract Background Phosphatidylcholine (PC is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs. Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC

  12. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Jane T. Jones

    2016-08-01

    Full Text Available Nuclear Factor kappa B (NF-κB is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ, among other NF-κB proteins. Glutathione S-transferase Pi (GSTP is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS. TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor.

  13. DMPD: Post-transcriptional regulation of proinflammatory proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15075353 Post-transcriptional regulation of proinflammatory proteins. Anderson P, P...hillips K, Stoecklin G, Kedersha N. J Leukoc Biol. 2004 Jul;76(1):42-7. Epub 2004 Apr 1. (.png) (.svg) (.html) (.csml) Show Post...-transcriptional regulation of proinflammatory proteins. PubmedID 15075353 Title Post-tr

  14. Comparison of Proinflammatory Gene Expression in Lesions Caused by either Burn Injuries or Cutaneous Leishmaniasis

    OpenAIRE

    Akhzari; Rezvan; Zolhavarieh; Moafi

    2016-01-01

    Background Leishmaniasis is a worldwide disease prevalent in tropical and sub-tropical countries in the world. Characterization of inflammatory responses produced in cutaneous Leishmaniasis has not yet been completed. The current study aims to assess and compare pro-inflammatory cytokines between burning injuries and Leishmania infection. Methods the specific primers were designed for 10 proinflammatory genes including CCL4, CCL3,...

  15. Transmembrane oligomeric form of Vibrio cholerae cytolysin triggers TLR2/TLR6-dependent proinflammatory responses in monocytes and macrophages.

    Science.gov (United States)

    Khilwani, Barkha; Mukhopadhaya, Arunika; Chattopadhyay, Kausik

    2015-02-15

    Vibrio cholerae cytolysin (VCC) kills target eukaryotic cells by forming transmembrane oligomeric β-barrel pores. Once irreversibly converted into the transmembrane oligomeric form, VCC acquires an unusual structural stability and loses its cytotoxic property. It is therefore possible that, on exertion of its cytotoxic activity, the oligomeric form of VCC retained in the disintegrated membrane fractions of the lysed cells would survive within the host cellular milieu for a long period, without causing any further cytotoxicity. Under such circumstances, VCC oligomers may potentially be recognized by the host immune cells. Based on such a hypothesis, in the present study we explored the interaction of the transmembrane oligomeric form of VCC with the monocytes and macrophages of the innate immune system. Our study shows that the VCC oligomers assembled in the liposome membranes elicit potent proinflammatory responses in monocytes and macrophages, via stimulation of the toll-like receptor (TLR)2/TLR6-dependent signalling cascades that involve myeloid differentiation factor 88 (MyD88)/interleukin-1-receptor-associated kinase (IRAK)1/tumour-necrosis-factor-receptor-associated factor (TRAF)6. VCC oligomer-mediated proinflammatory responses critically depend on the activation of the transcription factor nuclear factor-κB. Proinflammatory responses induced by the VCC oligomers also require activation of the mitogen-activated protein kinase (MAPK) family member c-Jun N-terminal kinase, which presumably acts via stimulation of the transcription factor activator protein-1. Notably, the role of the MAPK p38 could not be documented in the process.

  16. Interleukin-21 Induces Proliferation and Proinflammatory Cytokine Profile of Fibroblast-like Synoviocytes of Patients with Rheumatoid Arthritis.

    Science.gov (United States)

    Xing, R; Yang, L; Jin, Y; Sun, L; Li, C; Li, Z; Zhao, J; Liu, X

    2016-01-01

    Fibroblast-like synoviocytes (FLS) play a pivotal role in the pathogenesis of rheumatoid arthritis (RA) through aggressive proliferation and invasion, and certain proinflammatory cytokines may affect synoviocyte proliferation. To evaluate whether interleukin-21 (IL-21) could promote proliferation and proinflammatory cytokine production by RA-FLS, immunohistochemistry and immunoblotting were performed to observe the expression of IL-21 receptor (IL-21R) in synovial tissues and FLS from RA and osteoarthritis (OA) patients. The MTS assay was used to analyse RA-FLS proliferation. The concentrations of IL-6 and tumour necrosis factor-α (TNF-α) in culture supernatants were determined by enzyme-linked immunosorbent assay (ELISA). The signalling pathways triggered by IL-21 were characterized by immunoblotting. IL-21R was upregulated in the synovial tissues and FLS of RA patients as compared with OA patients. IL-21 stimulated RA-FLS proliferation and promoted the production of TNF-α and IL-6 and blockade of IL-21/IL-21R pathway with IL-21R.Fc attenuated IL-21-induced proliferation and secretion of TNF-α and IL-6. Moreover, IL-21 induced activation of the ERK1/2, PI3K/AKT and STAT3 pathways, and blockade of these pathways attenuated IL-21-induced proliferation and secretion of TNF-α and IL-6. These results suggest that IL-21 could promote RA-FLS proliferation and production of proinflammatory cytokines. Therefore, therapeutic strategies targeting IL-21 might be effective for the treatment of RA.

  17. Follicular Proinflammatory Cytokines and Chemokines as Markers of IVF Success

    Directory of Open Access Journals (Sweden)

    Aili Sarapik

    2012-01-01

    Full Text Available Cytokines are key modulators of the immune system and also contribute to regulation of the ovarian cycle. In this study, Bender MedSystems FlowCytomix technology was used to analyze follicular cytokines (proinflammatory: IL-1β, IL-6, IL-18, IFN-γ, IFN-α, TNF-α, IL-12, and IL-23;, and anti-inflammatory: G-CSF, chemokines (MIP-1α, MIP-1β, MCP-1, RANTES, and IL-8, and other biomarkers (sAPO-1/Fas, CD44(v6 in 153 women undergoing in vitro fertilization (IVF. Cytokine origin was studied by mRNA analysis of granulosa cells. Higher follicular MIP-1α and CD44(v6 were found to correlate with polycystic ovary syndrome, IL-23, INF-γ, and TNF-α with endometriosis, higher CD44(v6 but lower IL-β and INF-α correlated with tubal factor infertility, and lower levels of IL-18 and CD44(v6 characterized unexplained infertility. IL-12 positively correlated with oocyte fertilization and embryo development, while increased IL-18, IL-8, and MIP-1β were associated with successful IVF-induced pregnancy.

  18. The Proinflammatory Cytokine High-Mobility Group Box-1 Mediates Retinal Neuropathy Induced by Diabetes

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu El-Asrar

    2014-01-01

    Full Text Available To test the hypothesis that increased expression of proinflammatory cytokine high-mobility group box-1 (HMGB1 in epiretinal membranes and vitreous fluid from patients with proliferative diabetic retinopathy and in retinas of diabetic rats plays a pathogenetic role in mediating diabetes-induced retinal neuropathy. Retinas of 1-month diabetic rats and HMGB1 intravitreally injected normal rats were studied using Western blot analysis, RT-PCR and glutamate assay. In addition, we studied the effect of the HMGB1 inhibitor glycyrrhizin on diabetes-induced biochemical changes in the retina. Diabetes and intravitreal injection of HMGB1 in normal rats induced significant upregulation of HMGB1 protein and mRNA, activated extracellular signal-regulated kinase 1 and 2 (ERK1/2, cleaved caspase-3 and glutamate; and significant downregulation of synaptophysin, tyrosine hydroxylase, glutamine synthetase, and glyoxalase 1. Constant glycyrrhizin intake from the onset of diabetes did not affect the metabolic status of the diabetic rats, but it significantly attenuated diabetes-induced upregulation of HMGB1 protein and mRNA, activated ERK1/2, cleaved caspase-3, and glutamate. In the glycyrrhizin-fed diabetic rats, the decrease in synaptophysin, tyrosine hydroxylase, and glyoxalase 1 caused by diabetes was significantly attenuated. These findings suggest that early retinal neuropathy of diabetes involves upregulated expression of HMGB1 and can be ameliorated by inhibition of HMGB1.

  19. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    Science.gov (United States)

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  20. Role of Calprotectin as a Modulator of the IL27-Mediated Proinflammatory Effect on Endothelial Cells

    Science.gov (United States)

    Ginolhac, Aurélien; Kähne, Thilo; Sauter, Thomas; Salsmann, Alexandre; Bueb, Jean-Luc

    2015-01-01

    An underlying endothelial dysfunction plays a fundamental role in the pathogenesis of cardiovascular events and is the central feature of atherosclerosis. The protein-based communication between leukocytes and inflamed endothelial cells leading to diapedesis has been largely investigated and several key players such as IL6, TNFα, or the damage associated molecular pattern molecule (DAMP) calprotectin are now well identified. However, regarding cytokine IL27, the controversial current knowledge about its inflammatory role and the involved regulatory elements requires clarification. Therefore, we examined the inflammatory impact of IL27 on primary endothelial cells and the potentially modulatory effect of calprotectin on both transcriptome and proteome levels. A qPCR-based screening demonstrated high IL27-mediated gene expression of IL7, IL15, CXCL10, and CXCL11. Calprotectin time-dependent downregulatory effects were observed on IL27-induced IL15 and CXCL10 gene expression. A mass spectrometry-based approach of IL27 ± calprotectin cell stimulation enlightened a calprotectin modulatory role in the expression of 28 proteins, mostly involved in the mechanism of leukocyte transmigration. Furthermore, we showed evidence for STAT1 involvement in this process. Our findings provide new evidence about the IL27-dependent proinflammatory signaling which may be under the control of calprotectin and highlight the need for further investigations on molecules which might have antiatherosclerotic functions. PMID:26663990

  1. Role of Calprotectin as a Modulator of the IL27-Mediated Proinflammatory Effect on Endothelial Cells.

    Science.gov (United States)

    Dorosz, Susann A; Ginolhac, Aurélien; Kähne, Thilo; Naumann, Michael; Sauter, Thomas; Salsmann, Alexandre; Bueb, Jean-Luc

    2015-01-01

    An underlying endothelial dysfunction plays a fundamental role in the pathogenesis of cardiovascular events and is the central feature of atherosclerosis. The protein-based communication between leukocytes and inflamed endothelial cells leading to diapedesis has been largely investigated and several key players such as IL6, TNFα, or the damage associated molecular pattern molecule (DAMP) calprotectin are now well identified. However, regarding cytokine IL27, the controversial current knowledge about its inflammatory role and the involved regulatory elements requires clarification. Therefore, we examined the inflammatory impact of IL27 on primary endothelial cells and the potentially modulatory effect of calprotectin on both transcriptome and proteome levels. A qPCR-based screening demonstrated high IL27-mediated gene expression of IL7, IL15, CXCL10, and CXCL11. Calprotectin time-dependent downregulatory effects were observed on IL27-induced IL15 and CXCL10 gene expression. A mass spectrometry-based approach of IL27 ± calprotectin cell stimulation enlightened a calprotectin modulatory role in the expression of 28 proteins, mostly involved in the mechanism of leukocyte transmigration. Furthermore, we showed evidence for STAT1 involvement in this process. Our findings provide new evidence about the IL27-dependent proinflammatory signaling which may be under the control of calprotectin and highlight the need for further investigations on molecules which might have antiatherosclerotic functions.

  2. Role of Calprotectin as a Modulator of the IL27-Mediated Proinflammatory Effect on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Susann A. Dorosz

    2015-01-01

    Full Text Available An underlying endothelial dysfunction plays a fundamental role in the pathogenesis of cardiovascular events and is the central feature of atherosclerosis. The protein-based communication between leukocytes and inflamed endothelial cells leading to diapedesis has been largely investigated and several key players such as IL6, TNFα, or the damage associated molecular pattern molecule (DAMP calprotectin are now well identified. However, regarding cytokine IL27, the controversial current knowledge about its inflammatory role and the involved regulatory elements requires clarification. Therefore, we examined the inflammatory impact of IL27 on primary endothelial cells and the potentially modulatory effect of calprotectin on both transcriptome and proteome levels. A qPCR-based screening demonstrated high IL27-mediated gene expression of IL7, IL15, CXCL10, and CXCL11. Calprotectin time-dependent downregulatory effects were observed on IL27-induced IL15 and CXCL10 gene expression. A mass spectrometry-based approach of IL27 ± calprotectin cell stimulation enlightened a calprotectin modulatory role in the expression of 28 proteins, mostly involved in the mechanism of leukocyte transmigration. Furthermore, we showed evidence for STAT1 involvement in this process. Our findings provide new evidence about the IL27-dependent proinflammatory signaling which may be under the control of calprotectin and highlight the need for further investigations on molecules which might have antiatherosclerotic functions.

  3. Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP.

    Directory of Open Access Journals (Sweden)

    Kishore V L Parsa

    2006-07-01

    Full Text Available Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.

  4. Hederagenin Supplementation Alleviates the Pro-Inflammatory and Apoptotic Response to Alcohol in Rats

    Directory of Open Access Journals (Sweden)

    Gyeong-Ji Kim

    2017-01-01

    Full Text Available In this study, we determined the effects of hederagenin isolated from Akebia quinata fruit on alcohol-induced hepatotoxicity in rats. Specifically, we investigated the hepatoprotective, anti-inflammatory, and anti-apoptotic effects of hederagenin, as well as the role of AKT and mitogen-activated protein kinase (MAPK signaling pathways in ethanol-induced liver injury. Experimental animals were randomly divided into three groups: normal (sham, 25% ethanol, and 25% ethanol + hederagenin (50 mg/kg/day. Each group was orally administered the respective treatments once per day for 21 days. Acetaldehyde dehydrogenase-2 mRNA expression was higher and alcohol dehydrogenase mRNA expression was lower in the ethanol + hederagenin group than those in the ethanol group. Pro-inflammatory cytokines, including TNF-α, IL-6, and cyclooxygenase-2, significantly increased in the ethanol group, but these increases were attenuated by hederagenin. Moreover, Western blot analysis showed increased expression of the apoptosis-associated protein, Bcl-2, and decreased expression of Bax and p53 after treatment with hederagenin. Hederagenin treatment attenuated ethanol-induced increases in activated p38 MAPK and increased the levels of phosphorylated AKT and ERK. Hederagenin alleviated ethanol-induced liver damage through anti-inflammatory and anti-apoptotic activities. These results suggest that hederagenin is a potential candidate for preventing alcoholic liver injury.

  5. Euglena gracilis paramylon activates human lymphocytes by upregulating pro-inflammatory factors.

    Science.gov (United States)

    Russo, Rossella; Barsanti, Laura; Evangelista, Valter; Frassanito, Anna M; Longo, Vincenzo; Pucci, Laura; Penno, Giuseppe; Gualtieri, Paolo

    2017-03-01

    The aim of this study was to verify the activation details and products of human lymphomonocytes, stimulated by different β-glucans, that is Euglena paramylon, MacroGard(®), and lipopolysaccharide. We investigated the gene expression of inflammation-related cytokines and mediators, transactivation of relevant transcription factors, and phagocytosis role in cell-glucan interactions, by means of RT-PCR, immunocytochemistry, and colorimetric assay. Our results show that sonicated and alkalized paramylon upregulates pro-inflammatory factors (NO, TNF-α, IL-6, and COX-2) in lymphomonocytes. A clear demonstration of this upregulation is the increased transactivation of NF-kB visualized by immunofluorescence microscopy. Phagocytosis assay showed that internalization is not a mandatory step for signaling cascade to be triggered, since immune activity is not present in the lymphomonocytes that have internalized paramylon granules and particulate MacroGard(®). Moreover, the response of Euglena β-glucan-activated lymphomonocytes is much greater than that induced by commercially used β-glucans such as MacroGard(®). Our in vitro results indicate that linear fibrous Euglena β-glucan, obtained by sonication and alkaline treatment can act as safe and effective coadjutant of the innate immune system response.

  6. Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury.

    Science.gov (United States)

    Lai, Aaron Y; Todd, Kathryn G

    2008-02-01

    Microglial activation has been reported to promote neurotoxicity and also neuroprotective effects. A possible contributor to this dichotomy of responses may be the degree to which proximal neurons are injured. The aim of this study was to determine whether varying the severity of neuronal injury influenced whether microglia were neuroprotective or neurotoxic. We exposed cortical neuronal cultures to varying degrees of hypoxia thereby generating mild (70% death, 6 h hypoxia) injuries. Twenty-four hours after hypoxia, the media from the neuronal cultures was collected and incubated with primary microglial cultures for 24 h. Results showed that the classic microglial proinflammatory mediators including inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin-1-beta were upregulated only in response to mild neuronal injuries, while the trophic microglial effectors brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were upregulated in response to all degrees of neuronal injury. Microglia stimulated with media from damaged neurons were co-cultured with hypoxic neurons. Microglia stimulated by moderate, but not mild or severe damage were neuroprotective in these co-cultures. We also showed that the severity-dependent phenomenon was not related to autocrine microglial signaling and was dependent on the neurotransmitters released by neurons after injury, namely glutamate and adenosine 5'-triphosphate. Together our results show that severity of neuronal injury is an important factor in determining microglial release of "toxic" versus "protective" effectors and the resulting neurotoxicity versus neuroprotection.

  7. Statins decrease expression of the proinflammatory neuropeptides calcitonin gene-related peptide and substance P in sensory neurons.

    Science.gov (United States)

    Bucelli, Robert C; Gonsiorek, Eugene A; Kim, Woo-Yang; Bruun, Donald; Rabin, Richard A; Higgins, Dennis; Lein, Pamela J

    2008-03-01

    Clinical and experimental observations suggest that statins may be useful for treating diseases presenting with predominant neurogenic inflammation, but the mechanism(s) mediating this potential therapeutic effect are poorly understood. In this study, we tested the hypothesis that statins act directly on sensory neurons to decrease expression of proinflammatory neuropeptides that trigger neurogenic inflammation, specifically calcitonin gene-related peptide (CGRP) and substance P. Reverse transcriptase-polymerase chain reaction, radioimmunoassay, and immunocytochemistry were used to quantify CGRP and substance P expression in dorsal root ganglia (DRG) harvested from adult male rats and in primary cultures of sensory neurons derived from embryonic rat DRG. Systemic administration of statins at pharmacologically relevant doses significantly reduced CGRP and substance P levels in DRG in vivo. In cultured sensory neurons, statins blocked bone morphogenetic protein (BMP)-induced CGRP and substance P expression and decreased expression of these neuropeptides in sensory neurons pretreated with BMPs. These effects were concentration-dependent and occurred independent of effects on cell survival or axon growth. Statin inhibition of neuropeptide expression was reversed by supplementation with mevalonate and cholesterol, but not isoprenoid precursors. BMPs signal via Smad activation, and cholesterol depletion by statins inhibited Smad1 phosphorylation and nuclear translocation. These findings identify a novel action of statins involving down-regulation of proinflammatory neuropeptide expression in sensory ganglia via cholesterol depletion and decreased Smad1 activation and suggest that statins may be effective in attenuating neurogenic inflammation.

  8. Induction of STAT1 phosphorylation at serine 727 and expression of proinflammatory cytokines by porcine reproductive and respiratory syndrome virus.

    Directory of Open Access Journals (Sweden)

    Ying Yu

    Full Text Available Porcine reproductive and respiratory syndrome virus (PRRSV is a viral pathogen that causes acute respiratory illnesses in young pigs. Since 1987, PRRSV has contributed substantial economic losses to the swine industry. Elevation of proinflammatory cytokines in PRRSV-infected pigs is thought to contribute to PRRSV pathogenesis. In this study, PRRSV VR-2385, a Type 2 strain with moderate virulence, was found to induce phosphorylation of signal transducer and activator of transcription 1 (STAT1 at serine 727 (pSTAT1-S727 in MARC-145 cells. No phosphorylated STAT1 at tyrosine 701 was detected, which indicates that the pSTAT1-S727 elevation was interferon-independent. The PRRSV-induced pSTAT1-S727, however, was dose-dependent and its levels increased with infection time. IngelVac PRRS MLV strain had a minimal effect on pSTAT1-S727. Compared to MLV-infected cells, VR-2385 infection caused significantly higher level of expression of proinflammatory cytokines, including interleukin 1 beta (IL-1beta and IL-8. The VR-2385-induced pSTAT1-S727 and cytokine expression were reduced after SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK, or methylthioadenosine (MTA, a methyl transferase inhibitor, was added to the cells. The SB203580 and MTA-mediated inhibition suggested that the virus-induced pSTAT1-S727 was dependent on p38 MAPK pathway. In primary porcine alveolar macrophages (PAMs, VR-2385 also induced pSTAT1-S727 and expression of proinflammatory cytokines and chemokines, including IL-1beta, IL-8, chemokine ligand 2 (CCL2 and chemokine (C-X-C motif ligand 10 (CXCL10. Similarly, SB203580 treatment of PAM cells blocked the elevation of pSTAT1-S727 and cytokine expression. Overexpression of individual viral proteins showed that non-structural protein 12 (nsp12 was able to induce elevation of pSTAT1-S727 and the expression of IL-1β and IL-8. These results indicated that PRRSV VR-2385 induces pSTAT1-S727 and the expression of

  9. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression

    NARCIS (Netherlands)

    Jansen, H.J.; Essen, P. van; Koenen, T.; Joosten, L.A.B.; Netea, M.G.; Tack, C.J.J.; Stienstra, R.

    2012-01-01

    Autophagy, an evolutionary conserved process aimed at recycling damaged organelles and protein aggregates in the cell, also modulates proinflammatory cytokine production in peripheral blood mononuclear cells. Because adipose tissue inflammation accompanied by elevated levels of proinflammatory cytok

  10. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  11. INDICATORS OF DYNAMICAL PROINFLAMMATORY CYTOKINES IN WOMEN USING INTRAUTERINE CONTRACEPTIVES

    Directory of Open Access Journals (Sweden)

    Umida Yusupova

    2015-06-01

    Full Text Available Birth rate regulation is a major problem of modern medicine. Unfortunately, frequency of artificial abortions is still high not only in developing, but also in developed countries. Abortion results in severe gynecologic and endocrine complications in the woman’s body (Alieva, 2001.Use of intrauterine devices (IUDs is a most effective method of contraception. A great number of studies in the field of utilization and possible complications of IUDs revealed the occurrence of inflammatory diseases of small pelvis organs (IDSPO.With this in mind, we studied the data obtained from 77 women using copper IUDs in maternity facility №2 of the city of Andizhan (Uzbekistan. Duration of patients’ follow-up ranged 40 days to 6 months. Women did not have contraindications for IUDs according to WHO medical eligibility criteria. Blood was a material for study; it was taken in 40 days, 3 and 6 months following IUD insertion. After insertion of copper IUDs to women, a cytokine cascade was studied in dynamics. The serum content of IL-1, IL-6 and concentration of TNFα was measured in all patients according to the instruction attached to immunoenzymatic analyzer "АТ-858" manufactured in China. The minimum concentration of TNFα reliably identified in this test system made 4 pg/ml.During the study, the women of the test group showed increased proinflammatory cytokines. The further study of vaginal smears confirmed development of bacterial vaginoses in them that suggests a relation of complications due to IUDs with imbalance of the cytokine cascade.Elevated serum concentration of cytokines was revealed in women with IUDs already on the first days of their application.Sharp increase in IL-1 on days 40 and 90 after insertion of IUDs is associated with presence of complications in the form of expulsions and possible development of inflammatory diseases of small pelvis organs.

  12. Iodinated contrast media alter immune responses in pro-inflammatory states.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Hypertonic saline causes a transient elevation of blood osmolality and has been shown to alter cellular inflammatory responses in pro-inflammatory states. Intravascular administration of iodine contrast media also causes a transient elevation of blood osmolarity.

  13. Proinflammatory cytokines and matrix metalloproteinases in CSF of patients with VZV vasculopathy

    OpenAIRE

    Jones, Dallas; Alvarez, Enrique; Selva, Sean; Gilden, Don; Nagel, Maria A.

    2016-01-01

    Objective: To determine the levels of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the CSF of patients with virologically verified varicella zoster virus (VZV) vasculopathy. Methods: CSF from 30 patients with virologically verified VZV vasculopathy was analyzed for levels of proinflammatory cytokines and MMPs using the Meso Scale Discovery multiplex ELISA platform. Positive CNS inflammatory disease controls were provided by CSF from 30 patients with multiple sclerosis. Ne...

  14. Proinflammatory cytokines in alcohol or gallstone induced acute pancreatitis. A prospective study

    DEFF Research Database (Denmark)

    Novovic, Srdan; Andersen, Anders Møller; Ersbøll, Annette Kjaer;

    2009-01-01

    OBJECTIVES: If differences of inflammatory pathways in acute pancreatitis exist for various etiologies, selective and specific antiinflammatory and other modulatory treatment regimens might be indicated. Circulating levels of prominent proinflammatory cytokines IL-6, 8, 18, and TNF-alpha were mea...... and clinical outcome is independent of the underlying etiology. Revealing the complex spatial and temporal profile of proinflammatory cytokine expression in acute pancreatitis is necessary and important for the development of a more targeted rational therapy....

  15. Monocyte-Platelet Interaction Induces a Pro-Inflammatory Phenotype in Circulating Monocytes

    OpenAIRE

    2011-01-01

    BACKGROUND: Activated platelets exert a pro-inflammatory action that can be largely ascribed to their ability to interact with leukocytes and modulate their activity. We hypothesized that platelet activation and consequent formation of monocyte-platelet aggregates (MPA) induces a pro-inflammatory phenotype in circulating monocytes. METHODOLOGY/PRINCIPAL FINDINGS: CD62P(+) platelets and MPA were measured, and monocytes characterized, by whole blood flow cytometry in healthy subjects, before an...

  16. The UII/UT system mediates upregulation of proinflammatory cytokines through p38 MAPK and NF-κB pathways in LPS-stimulated Kupffer cells.

    Science.gov (United States)

    Liu, Liang Ming; Liang, Dong Yu; Ye, Chang Gen; Tu, Wen Juan; Zhu, Tong

    2015-01-01

    The urotensin II (UII)/UII receptor (UT) system is closely related to immune inflammation. In acute liver failure (ALF), the UII/UT system can promote the production and release of proinflammatory cytokines, inducing an inflammatory injury response in liver tissue. However, the mechanism by which the hepatic UII/UT system promotes proinflammatory cytokine production and release is not clear. To solve this problem, we used primary Kupffer cells (KCs) as the model system in the current study. The results showed that after lipopolysaccharide (LPS) stimulation, KCs showed significantly increased expression and release of UII/UT and proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β). Pretreatment with urantide, which is a UT receptor antagonist, significantly inhibited the LPS-stimulated expression and release of UII/UT, TNF-α, and IL-1β by KCs. In addition, LPS stimulation induced nuclear p38 mitogen-activated protein kinase (MAPK) protein phosphorylation and expression of the nuclear nuclear factor κB (NF-κB) p65 subunit in KCs and enhanced the binding activity of NF-κB to DNA molecules, whereas urantide pretreatment significantly inhibited the LPS-stimulated nuclear expression and activity of these molecules in KCs. Therefore, our conclusion is that the UII/UT system mediates LPS-stimulated production and release of proinflammatory cytokine by KCs, and this mediating effect at least partially relies on the inflammatory signaling pathway molecules p38 MAPK and NF-κB.

  17. The role of interleukin-1 and interleukin-18 in pro-inflammatory and anti-viral responses to rhinovirus in primary bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Siân C Piper

    Full Text Available Human Rhinovirus (HRV is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α, interleukin-1beta (IL-1β and interleukin-18 (IL-18 have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses.

  18. Ozone induces a proinflammatory response in primary human bronchial epithelial cells through mitogen-activated protein kinase activation without nuclear factor-κB activation.

    Science.gov (United States)

    McCullough, Shaun D; Duncan, Kelly E; Swanton, Samantha M; Dailey, Lisa A; Diaz-Sanchez, David; Devlin, Robert B

    2014-09-01

    Ground-level ozone (O3) is a ubiquitous environmental air pollutant that is a potent inducer of airway inflammation and has been linked with respiratory and cardiovascular morbidity and mortality. Some studies using transformed or immortalized cells have attributed O3-mediated expression of inflammatory cytokines with activation of the canonical NF-κB pathway. In this study, we sought to characterize the O3-mediated activation of cellular signaling pathways using primary human bronchial epithelial cells obtained from a panel of donors. We demonstrate that the O3-induced expression of proinflammatory cytokines requires the activation of the epidermal growth factor receptor/MEK/ERK and MKK4/p38 mitogen-activated signaling pathways but does not appear to involve activation of canonical NF-κB signaling. In addition to providing a novel mechanistic model for the O3-mediated induction of proinflammatory cytokines, these findings highlight the importance of using primary cells over cell lines in mechanistic studies.

  19. Proinflammatory Cytokines in Prostate Cancer Development and Progression Promoted by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2015-01-01

    Full Text Available Background. We aimed to examine whether proinflammatory cytokines participated in prostate cancer (PCa development and progression promoted by high-fat diet (HFD. Methods. TRAMP (transgenic adenocarcinoma mouse prostate mice were randomly divided into two groups: normal diet group and HFD group. Mortality rate and tumor formation rate were examined. TRAMP mice were sacrificed and sampled on the 20th, 24th, and 28th week, respectively. Levels of proinflammatory cytokines, including IL-1α, IL-1β, IL-6, and TNF-α, were tested by FlowCytomix. Prostate tissue of TRAMP mice was used for histology study. Results. A total of 13 deaths of TRAMP mice were observed, among which 3 (8.33% were from the normal diet group and 10 (27.78% from the HFD group. The mortality rate of TRAMP mice from HFD group was significantly higher than that of normal diet group (P=0.032. Tumor formation rate at 20th week of age of HFD group was significantly higher than that of normal diet group (P=0.045. Proinflammatory cytokines levels, including IL-1α, IL-1β, IL-6, and TNF-α, were significantly higher in HFD TRAMP mice. Conclusions. HFD could promote TRAMP mouse PCa development and progression with elevated proinflammatory cytokines levels. Proinflammatory cytokines could contribute to PCa development and progression promoted by HFD.

  20. Nitric Oxide Is a Mediator of Antiproliferative Effects Induced by Proinflammatory Cytokines on Pancreatic Beta Cells

    Science.gov (United States)

    Quintana-Lopez, Laura; Blandino-Rosano, Manuel; Perez-Arana, Gonzalo; Lechuga-Sancho, Alfonso; Aguilar-Diosdado, Manuel

    2013-01-01

    Nitric oxide (NO) is involved in several biological processes. In type 1 diabetes mellitus (T1DM), proinflammatory cytokines activate an inducible isoform of NOS (iNOS) in β cells, thus increasing NO levels and inducing apoptosis. The aim of the current study is to determine the role of NO (1) in the antiproliferative effect of proinflammatory cytokines IL-1β, IFN-γ, and TNF-α on cultured islet β cells and (2) during the insulitis stage prior to diabetes onset using the Biobreeding (BB) rat strain as T1DM model. Our results indicate that NO donors exert an antiproliferative effect on β cell obtained from cultured pancreatic islets, similar to that induced by proinflammatory cytokines. This cytokine-induced antiproliferative effect can be reversed by L-NMMA, a general NOS inhibitor, and is independent of guanylate cyclase pathway. Assays using NOS isoform specific inhibitors suggest that the NO implicated in the antiproliferative effect of proinflammatory cytokines is produced by inducible NOS, although not in an exclusive way. In BB rats, early treatment with L-NMMA improves the initial stage of insulitis. We conclude that NO is an important mediator of antiproliferative effect induced by proinflammatory cytokines on cultured β cell and is implicated in β-cell proliferation impairment observed early from initial stage of insulitis. PMID:23840099

  1. Nitric Oxide Is a Mediator of Antiproliferative Effects Induced by Proinflammatory Cytokines on Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Laura Quintana-Lopez

    2013-01-01

    Full Text Available Nitric oxide (NO is involved in several biological processes. In type 1 diabetes mellitus (T1DM, proinflammatory cytokines activate an inducible isoform of NOS (iNOS in β cells, thus increasing NO levels and inducing apoptosis. The aim of the current study is to determine the role of NO (1 in the antiproliferative effect of proinflammatory cytokines IL-1β, IFN-γ, and TNF-α on cultured islet β cells and (2 during the insulitis stage prior to diabetes onset using the Biobreeding (BB rat strain as T1DM model. Our results indicate that NO donors exert an antiproliferative effect on β cell obtained from cultured pancreatic islets, similar to that induced by proinflammatory cytokines. This cytokine-induced antiproliferative effect can be reversed by L-NMMA, a general NOS inhibitor, and is independent of guanylate cyclase pathway. Assays using NOS isoform specific inhibitors suggest that the NO implicated in the antiproliferative effect of proinflammatory cytokines is produced by inducible NOS, although not in an exclusive way. In BB rats, early treatment with L-NMMA improves the initial stage of insulitis. We conclude that NO is an important mediator of antiproliferative effect induced by proinflammatory cytokines on cultured β cell and is implicated in β-cell proliferation impairment observed early from initial stage of insulitis.

  2. Role of proinflammatory cytokines on lipopolysaccharide-induced phase shifts in locomotor activity circadian rhythm.

    Science.gov (United States)

    Leone, M Juliana; Marpegan, Luciano; Duhart, José M; Golombek, Diego A

    2012-07-01

    We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1β, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1β induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1β antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines in vivo, producing phase shifts in locomotor activity rhythms. Moreover, we show that the LPS-induced phase delays are mediated through the action of TNF-α at the central level, and that systemic induction of proinflammatory cytokines might be necessary, but not sufficient, for this behavioral outcome.

  3. Proinflammatory cytokine levels in fibromyalgia patients are independent of body mass index

    Directory of Open Access Journals (Sweden)

    Estrada Iris

    2010-06-01

    Full Text Available Abstract Background Fibromyalgia (FM is characterized by chronic, widespread muscular pain and tenderness and is generally associated with other somatic and psychological symptoms. Further, circulatory levels of proinflammatory cytokines (IL-1β, TNF-α, and IL-6 may be altered in FM patients, possibly in association with their symptoms. Recently, rises in BMI have been suggested to contribute to increased circulating levels of proinflammatory cytokines in FM patients. Our aim was to measure the circulatory levels of proinflammatory cytokines to determine the influence of BMI on these levels in FM patients and healthy volunteers (HVs. In Spanish FM patients (n = 64 and HVs (n = 25, we measured BMI and serum concentrations of proinflammatory cytokines by capture ELISA. Findings There were significant differences in BMI levels between FM patients (26.40 ± 4.46 and HVs (23.64 ± 3.45 and significant increase in IL-6 in FM patients (16.28 ± 8.13 vs 0.92 ± 0.32 pg/ml (P Conclusions Our analysis in FM patients of BMI as a covariate of proinflammatory cytokines levels showed that serum TNF-α and IL-6 levels are independent of BMI. Further studies are necessary to dissect these findings and their implication in future therapeutic approaches for FM patients.

  4. Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ben Bacha Abir G

    2011-10-01

    Full Text Available Abstract Objectives Autism is a developmental disorder characterized by social and emotional deficits, language impairments and stereotyped behaviors that manifest in early postnatal life. This study aims to clarify the relationship amongst absolute and relative concentrations of K+, Na+, Ca2+, Mg2+ and/or proinflammatory and proapoptotic biomarkers. Materials and methods Na+, K+, Ca2+, Mg2+, Na+/K+, Ca2+/Mg2+ together with IL6, TNFα as proinflammatory cytokines and caspase3 as proapoptotic biomarker were determined in plasma of 25 Saudi autistic male patients and compared to 16 age and gender matching control samples. Results The obtained data recorded that Saudi autistic patients have a remarkable lower plasma caspase3, IL6, TNFα, Ca2+ and a significantly higher K+ compared to age and gender matching controls. On the other hand both Mg2+ and Na+ were non-significantly altered in autistic patients. Pearson correlations revealed that plasma concentrations of the measured cytokines and caspase-3 were positively correlated with Ca2+ and Ca2+/K+ ratio. Reciever Operating Characteristics (ROC analysis proved that the measured parameters recorded satisfactory levels of specificity and sensitivity. Conclusion Alteration of the selected measured ions confirms that oxidative stress and defective mitochondrial energy production could be contributed in the pathogenesis of autism. Moreover, it highlights the relationship between the measured ions, IL6, TNFα and caspase3 as a set of signalling pathways that might have a role in generating this increasingly prevalent disorder. The role of ions in the possible proinflammation and proapoptic mechanisms of autistics' brains were hypothesized and explained.

  5. Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products

    Directory of Open Access Journals (Sweden)

    Greten Johannes

    2006-03-01

    Full Text Available Summary Background Atherosclerosis is an inflammatory disease in which a perpetuated activation of NFkappaB via the RAGE (receptor for advanced glycation end products-MAPK signalling pathway may play an important pathogenetic role. As recently S100 proteins have been identified as ligands of RAGE, we sought to determine the effects of the proinflammatory heterodimer of S100A8/S100A9 on the RAGE-NFkappaB mediated induction of proinflammatory gene expression. Methods Human umbilical vein endothelial cells (HUVEC were preincubated for 72 h with AGE-albumin or unmodified albumin for control, whereas AGE-albumin induction resulted in an upregulation of RAGE. Following this preactivation, cells were stimulated for 48 h with heterodimeric human recombinant S100A8/S100A9. Results Heterodimeric S100A8/S100A9 enhanced secretion of IL-6, ICAM-1, VCAM-1 and MCP1 in AGE-albumin pretreated HUVEC in a dose dependent manner. These effects could not be detected after stimulation with the homodimeric proteins S100A8, S100A9, S100A1 and S100B. The effects of heterodimeric S100A8/S100A9 were reduced by inhibition of the MAP-kinase pathways ERK1/2 and p38 by PD 98059 and SB 203580, respectively. Conclusion The heterodimeric S100A8/S100A9 might therefore play a hitherto unknown role in triggering atherosclerosis in diabetes and renal failure, pathophysiological entities associated with a high AGE burden. Thus, blocking heterodimeric S100A8/S100A9 might represent a novel therapeutic modality in treating atherosclerosis.

  6. β-agonists selectively modulate proinflammatory gene expression in skeletal muscle cells via non-canonical nuclear crosstalk mechanisms.

    Directory of Open Access Journals (Sweden)

    Krzysztof Kolmus

    Full Text Available The proinflammatory cytokine Tumour Necrosis Factor (TNF-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1 and β2-adrenoreceptors (β2-ARs. TNF-α activated the canonical Nuclear Factor-κB (NF-κB pathway and Mitogen-Activated Protein Kinases (MAPKs, culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6 and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB, CREB-binding protein (CBP and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.

  7. Entamoeba histolytica cysteine proteinase 5 binds integrin on colonic cells and stimulates NFkappaB-mediated pro-inflammatory responses.

    Science.gov (United States)

    Hou, Yongzhong; Mortimer, Leanne; Chadee, Kris

    2010-11-12

    Integrins are important mammalian receptors involved in normal cellular functions and the pathogenesis of inflammation and disease. Entamoeba histolytica is a protozoan parasite that colonizes the gut, and in 10% of infected individuals, causes amebic colitis and liver abscess resulting in 10(5) deaths/year. E. histolytica-induced host inflammatory responses are critical in the pathogenesis of the disease, yet the host and parasite factors involved in disease are poorly defined. Here we show that pro-mature cysteine proteinase 5 (PCP5), a major virulent factor that is abundantly secreted and/or present on the surface of ameba, binds via its RGD motif to α(V)β(3) integrin on Caco-2 colonic cells and stimulates NFκB-mediated pro-inflammatory responses. PCP5 RGD binding to α(V)β(3) integrin triggered integrin-linked kinase(ILK)-mediated phosphorylation of Akt-473 that bound and induced the ubiquitination of NF-κB essential modulator (NEMO). As NEMO is required for activation of the IKKα-IKKβ complex and NFκB signaling, these events markedly up-regulated pro-inflammatory mediator expressions in vitro in Caco-2 cells and in vivo in colonic loop studies in wild-type and Muc2(-/-) mice lacking an intact protective mucus barrier. These results have revealed that EhPCP5 RGD motif is a ligand for α(V)β(3) integrin-mediated adhesion on colonic cells and represents a novel mechanism that E. histolytica trophozoites use to trigger an inflammatory response in the pathogenesis of intestinal amebiasis.

  8. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Haller, D.; Holt, L.; Parlesak, Alexandr;

    2004-01-01

    of immune-epithelial cell cross-talk on Gram-negative enteric bacteria-induced NF-kappaB signalling and pro-inflammatory gene expression in IEC using HT-29/MTX as well as CaCO-2 transwell cultures Interestingly, while differentiated HT-29/MTX cells are unresponsive to non-pathogenic Gram negative bacterial......-kappaB signalling and IL-8 gene expression in IEC cocultured with immune cells and suggests the presence of mechanisms that assure hyporesponsiveness of the intestinal epithelium to certain commensally enteric bacteria.......We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-kappaB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism...

  9. The anti-inflammatory fungal compound (S)-curvularin reduces proinflammatory gene expression in an in vivo model of rheumatoid arthritis.

    Science.gov (United States)

    Schmidt, Nadine; Art, Julia; Forsch, Ingrid; Werner, Anke; Erkel, Gerhard; Jung, Mathias; Horke, Sven; Kleinert, Hartmut; Pautz, Andrea

    2012-10-01

    In previous studies, we identified the fungal macrocyclic lactone (S)-curvularin (SC) as an anti-inflammatory agent using a screening system detecting inhibitors of the Janus kinase/signal transducer and activator of transcription pathway. The objective of the present study was to investigate whether SC is able to decrease proinflammatory gene expression in an in vivo model of a chronic inflammatory disease. Therefore, the effects of SC and dexamethasone were compared in the model of collagen-induced arthritis (CIA) in mice. Total genomic microarray analyses were performed to identify SC target genes. In addition, in human C28/I2 chondrocytes and MonoMac6 monocytes, the effect of SC on proinflammatory gene expression was tested at the mRNA and protein level. In the CIA model, SC markedly reduced the expression of a number of proinflammatory cytokines and chemokines involved in the pathogenesis of CIA as well as human rheumatoid arthritis (RA). In almost all cases, the effects of SC were comparable with those of dexamethasone. In microarray analyses, we identified additional new therapeutic targets of SC. Some of them, such as S100A8, myeloperoxidase, or cathelicidin, an antimicrobial peptide, are known to be implicated in pathophysiological processes in RA. Similar anti-inflammatory effects of SC were also observed in human C28/I2 chondrocyte cells, which are resistant to glucocorticoid treatment. These data indicate that SC and glucocorticoid effects are mediated via independent signal transduction pathways. In summary, we demonstrate that SC is a new effective anti-inflammatory compound that may serve as a lead compound for the development of new drugs for the therapy of chronic inflammatory diseases.

  10. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    Science.gov (United States)

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J; Romero, Fernando; Gil, Angel

    2013-01-01

    Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory

  11. Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells

    DEFF Research Database (Denmark)

    Grunnet, Lars G; Aikin, Reid; Tonnesen, Morten F;

    2009-01-01

    of the intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in beta-cells. RESEARCH DESIGN AND METHODS: Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1beta, interferon-gamma, and/or tumor necrosis......OBJECTIVE: Proinflammatory cytokines are cytotoxic to beta-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced beta-cell death is unclear. Here, cytokine activation...... to investigate the role of Bad and Bax activation, respectively. RESULTS: We found that proinflammatory cytokines induced calcineurin-dependent dephosphorylation of Bad Ser136, mitochondrial stress, cytochrome c release, activation of caspase-9 and -3, and DNA fragmentation. Inhibition of Bad Ser136...

  12. Modeling the pro-inflammatory tumor microenvironment in acute lymphoblastic leukemia predicts a breakdown of hematopoietic-mesenchymal communication networks

    Directory of Open Access Journals (Sweden)

    Jennifer Enciso

    2016-08-01

    Full Text Available Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs and mesenchymal stromal cells (MSCs within the bone marrow. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells.

  13. Low pH Environmental Stress Inhibits LPS and LTA-Stimulated Proinflammatory Cytokine Production in Rat Alveolar Macrophages

    Directory of Open Access Journals (Sweden)

    Stanley F. Fernandez

    2013-01-01

    Full Text Available Gastric aspiration increases the risks for developing secondary bacterial pneumonia. Cytokine elaboration through pathogen recognition receptors (PRRs is an important mechanism in initiating innate immune host response. Effects of low pH stress, a critical component of aspiration pathogenesis, on the PRR pathways were examined, specifically toll-like receptor-2 (TLR2 and TLR4, using isolated rat alveolar macrophages (aMØs. We assessed the ability of aMØs after brief exposure to acidified saline to elaborate proinflammatory cytokines in response to lipopolysaccharide (LPS and lipoteichoic acid (LTA stimulation, known ligands of TLR4 and TLR2, respectively. Low pH stress reduced LPS- and LTA-mediated cytokine release (CINC-1, MIP-2, TNF-, MCP-1, and IFN-. LPS and LTA increased intracellular Ca2+ concentrations while Ca2+ chelation by BAPTA decreased LPS- and LTA-mediated cytokine responses. BAPTA blocked the effects of low pH stress on most of LPS-stimulated cytokines but not of LTA-stimulated responses. In vivo mouse model demonstrates suppressed E. coli and S. pneumoniae clearance following acid aspiration. In conclusion, low pH stress inhibits antibacterial cytokine response of aMØs due to impaired TLR2 (MyD88 pathway and TLR4 signaling (MyD88 and TRIF pathways. The role of Ca2+ in low pH stress-induced signaling is complex but appears to be distinct between LPS- and LTA-mediated responses.

  14. Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks.

    Science.gov (United States)

    Enciso, Jennifer; Mayani, Hector; Mendoza, Luis; Pelayo, Rosana

    2016-01-01

    Lineage fate decisions of hematopoietic cells depend on intrinsic factors and extrinsic signals provided by the bone marrow microenvironment, where they reside. Abnormalities in composition and function of hematopoietic niches have been proposed as key contributors of acute lymphoblastic leukemia (ALL) progression. Our previous experimental findings strongly suggest that pro-inflammatory cues contribute to mesenchymal niche abnormalities that result in maintenance of ALL precursor cells at the expense of normal hematopoiesis. Here, we propose a molecular regulatory network interconnecting the major communication pathways between hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs) within the BM. Dynamical analysis of the network as a Boolean model reveals two stationary states that can be interpreted as the intercellular contact status. Furthermore, simulations describe the molecular patterns observed during experimental proliferation and activation. Importantly, our model predicts instability in the CXCR4/CXCL12 and VLA4/VCAM1 interactions following microenvironmental perturbation due by temporal signaling from Toll like receptors (TLRs) ligation. Therefore, aberrant expression of NF-κB induced by intrinsic or extrinsic factors may contribute to create a tumor microenvironment where a negative feedback loop inhibiting CXCR4/CXCL12 and VLA4/VCAM1 cellular communication axes allows for the maintenance of malignant cells.

  15. Diabetic pregnancies: the challenge of developing in a pro-inflammatory environment.

    Science.gov (United States)

    Jawerbaum, A; González, E

    2006-01-01

    The maternal diabetic environment alters the embryo and the feto-placental development. The results of these alterations are: increased embryo resorption and malformation rates, placental dysfunction, fetal alterations that lead to increased neonatal morbidity and mortality rates, and also diseases that will be evident later in the adult life of the newborn. The etiology of these many maternal diabetes-induced complications are not yet understood in full. In this review the role of maternal diabetes as an inductor of a pro-inflammatory environment that impairs embryo and placental development is discussed. An overproduction of pro-inflammatory agents is found in the uterus during implantation and the developing embryo and placenta from experimental models of diabetes, as well as in placenta from diabetic women. In these tissues there are increases in reactive oxygen species, pro-inflammatory cytokines and prostaglandins, nitric oxide and peroxynitrites. These pro-inflammatory agents lead to the intrauterine activation of matrix metalloproteinases, proteases involved in remodeling the extracellular matrix during implantation and feto-placental development. Many of these pro-inflammatory agents have overlapping mechanisms of action and cross regulatory pathways that propagate the inflammatory processes. Antioxidants, PPARgamma activators, and NF-kappaB inhibitors are able to reduce the concentrations of these agents in intrauterine gestational tissues. This article reviews the current understanding of maternal diabetes-induced changes in pro-inflammatory and anti-inflammatory pathways that affect the embryo and placental development in maternal diabetes, and stresses the need of a strict maternal control of the pathology to prevent deleterious consequences in the offspring.

  16. Oxysterols exert proinflammatory effects in placental trophoblasts via TLR4-dependent, cholesterol-sensitive activation of NF-κB.

    Science.gov (United States)

    Aye, Irving L M H; Waddell, Brendan J; Mark, Peter J; Keelan, Jeffrey A

    2012-07-01

    Oxidized cholesterol metabolites (oxysterols) promote inflammation in a variety of cell types and are thought to be involved in a number of disease pathologies. Oxysterol concentrations are increased in pregnancy, together with systemic oxidative stress and inflammation. We tested the hypothesis that oxysterols 25-hydroxycholesterol (25-OHC) and 7-ketocholesterol (7-ketoC) promote placental trophoblast inflammation, and determined the mechanisms involved. Treatment of primary trophoblasts in culture with 25-OHC and 7-ketoC increased the production of proinflammatory cytokines (interleukin-6, macrophage inflammatory protein-1β and tumour necrosis factor-α) in a concentration-dependent fashion. Inhibition of TLR4 activation using selective inhibitors of TLR4 complex formation (OxPAPC) or signalling transmission (CLI095) prevented lipopolysaccharide (LPS)- and oxysterol-induced inflammatory cytokine production. Pretreatment of trophoblasts with selective inhibitors of I-kB kinase activity (parthenolide and TPCA-1) reduced oxysterol- and LPS-stimulated inflammatory responses, consistent with the involvement of the nuclear factor kappa B (NF-κB) pathway downstream of TLR4 signalling. Both oxysterols also increased the phosphorylation and nuclear localization of NF-κB subunit p65/RelA. Oxysterols are also known to activate liver X receptors (LXRs) which can inhibit inflammatory signalling, either directly or indirectly via membrane cholesterol reduction. Treatment with the LXR agonist, T0901317, exerted significant anti-inflammatory effects, reducing LPS- and oxysterol-driven cytokine production. Treatment with methyl-β-cyclodextrin to deplete membrane microdomain cholesterol and thereby disrupt TLR4 signalling, similarly abrogated their effects. Together, these findings indicate that although oxysterols likely activate both pro- and anti-inflammatory pathways in the placenta, the predominant effect is the promotion of placental inflammation via TLR4-dependent

  17. Pro-inflammatory cytokines: Useful markers for the diagnosis of canine mammary tumours?

    Science.gov (United States)

    Andaluz, Ana; Yeste, Marc; Rodríguez-Gil, Joan E; Rigau, Teresa; García, Félix; Rivera del Álamo, Maria Montserrat

    2016-04-01

    The aim of the present study was to analyse the expression of 60 pro-inflammatory cytokines as possible markers of malignancy in canine mammary tumours using a human cytokine antibody array. The cytokines were grouped into two different categories: (1) cytokines in which expression indicated the presence of a mammary tumour and (2) cytokines in which expression differentiated between simple mammary adenoma, tubulopapillary carcinoma or complex carcinoma. These data suggest that specific pro-inflammatory cytokines could be useful as tools for the diagnosis of canine mammary tumours.

  18. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms

    Directory of Open Access Journals (Sweden)

    Johan Øvrevik

    2015-07-01

    Full Text Available Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.

  19. Signal Words

    Science.gov (United States)

    SIGNAL WORDS TOPIC FACT SHEET NPIC fact sheets are designed to answer questions that are commonly asked by the ... making decisions about pesticide use. What are Signal Words? Signal words are found on pesticide product labels, ...

  20. Complete artificial saliva alters expression of proinflammatory cytokines in human dermal fibroblasts.

    Science.gov (United States)

    Malpass, Gloria E; Arimilli, Subhashini; Prasad, Gaddamanugu L; Howlett, Allyn C

    2013-07-01

    Complete artificial saliva (CAS) is a saliva substitute often used as a vehicle for test articles, including smokeless tobacco products. In the course of a study employing normal adult human dermal fibroblasts (HDFa) as a model in vitro, we discovered that CAS as a vehicle introduced a significant change in the expression of proinflammatory cytokines. To determine the effects of CAS on gene expression, real-time quantitative reverse-transcriptase PCR gene array analysis was used. Results indicate that robust changes in the expression of the proinflammatory cytokine interleukin 8 (IL8) and the vascular cell adhesion molecule 1 (VCAM1) occur within 5h of exposure to CAS. To determine whether CAS also alters cytokine release into the culture media, cytometric bead array assays for human inflammatory cytokines were performed. Analysis shows that CAS induced the release of IL8 and IL6. This study focused on determining which components in CAS were responsible for the proinflammatory response in HDFa. The following components were investigated: α-amylase, lysozyme, acid phosphatase, and urea. Results demonstrated that enzymatically active α-amylase induced gene expression for proinflammatory cytokines IL8, IL6, tumor necrosis factor-α, and IL1α and for VCAM1. Therefore, it is important to carefully evaluate the "vehicle effects" of CAS and its components in in vitro toxicology research.

  1. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines

    OpenAIRE

    Koshy, P.; Henderson, N; Logan, C.; Life, P; Cawston, T; Rowan, A

    2002-01-01

    Objective: To investigate whether interleukin 17 (IL17), derived specifically from T cells, can promote type II collagen release from cartilage. The ability of IL17 to synergise with other proinflammatory mediators to induce collagen release from cartilage, and what effect anti-inflammatory agents had on this process, was also assessed.

  2. Association of transient receptor potential canonical type 3 (TRPC3) channel transcripts with proinflammatory cytokines

    DEFF Research Database (Denmark)

    Thilo, Florian; Scholze, Alexandra; Liu, Dao Yan;

    2008-01-01

    We investigated whether expression of non-selective cation channels of the transient receptor potential canonical (TRPC) channel family are associated with proinflammatory cytokines in monocytes. Using quantitative RT-PCR we studied the expression of TRPC3, interleukin-1beta (IL-1beta), and tumor...

  3. Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury.

    Science.gov (United States)

    Hayes, K C; Hull, T C L; Delaney, G A; Potter, P J; Sequeira, K A J; Campbell, K; Popovich, P G

    2002-06-01

    This study characterized the proinflammatory cytokines, interleukin-2 (IL-2) and tumor necrosis factor alpha (TNFalpha), the antiinflammatory cytokines, IL-4 and IL-10, autoantibodies specific for GM1 ganglioside (anti-GM1), IgG and IgM, and myelin-associated glycoprotein (anti-MAG), in the sera of infection-free, chronic (>12 months), traumatically injured SCI patients (n = 24). Healthy able-bodied subjects (n = 26) served as controls. The proinflammatory cytokines and anti-GM1 antibodies were of particular interest as they have been implicated in an autoimmune "channelopathy" component to central and peripheral conduction deficits in various chronic neuroinflammatory diseases. Antibody and cytokine titers were established using enzyme-linked immunosorbent assays (ELISA). The mean anti-GM(1) (IgM) titer value for the SCI group was significantly higher (p proinflammatory cytokines relative to control values. These results provide preliminary support for the hypothesis that chronic immunological activation in the periphery occurs in a subpopulation of chronic SCI patients. It remains to be established whether elevated serum titers of proinflammatory cytokines and autoantibodies against GM1 are beneficial to the patients or whether they are surrogate markers of a channelopathy that compounds the neurological impairment associated with traumatic axonopathy or myelinopathy.

  4. Pro-inflammatory cytokines affect pancreatic carcinoma cell. Endothelial cell interactions

    NARCIS (Netherlands)

    M. ten Kate (Miranda); L.J. Hofland (Leo); P.M. van Koetsveld (Peter); J. Jeekel (Hans); C.H.J. van Eijck (Casper)

    2006-01-01

    textabstractOBJECTIVES: The potential role of surgery-induced pro-inflammatory cytokines on the development of tumor recurrence in pancreatic cancer was investigated. MAIN OUTCOME MEASURES: The adhesion of 3 human pancreatic carcinoma cell lines, PanC1, MiaPaCa and BxPC3 to monolay

  5. Retracted: Effects of pro-inflammatory cytokines on mineralization potential of rat dental pulp stem cells

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Bian, Z.; Jansen, J.A.; Fan, M.

    2011-01-01

    The following article from the Journal of Tissue Engineering and Regenerative Medicine, 'Effects of Pro-inflammatory Cytokines on Mineralization Potential of Rat Dental Pulp Stem Cells' by Yang X, Walboomers XF, Bian Z, Jansen JA, Fan M, published online on 11 July 2011 in Wiley Online Library (onli

  6. Change of scaling-induced proinflammatory cytokine on the clinical efficacy of periodontitis treatment.

    Science.gov (United States)

    Shyu, Kou-Gi; Choy, Cheuk-Sing; Wang, Daniel Chung-Lang; Huang, Wei-Chen; Chen, Shyuan-Yow; Chen, Chien-Hsun; Lin, Che-Tong; Chang, Chao-Chien; Huang, Yung-Kai

    2015-01-01

    Proinflammatory cytokines are key inflammatory mediators in periodontitis. This study aimed to investigate the relationship between proinflammatory cytokines in saliva and periodontal status. To investigate the usefulness of cytokines in the therapeutic approach for periodontal disease, the relationship between stimulated cytokine changes and the periodontitis treatment outcome was investigated in this study. Saliva was obtained from 22 patients diagnosed by dentists as having chronic periodontitis. The proinflammatory cytokine (interleukin-1α (IL-1α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor α (TNF-α), and tumor necrosis factor β (TNF-β)) levels were determined using a commercially available kit. The IL-1β and IL-6 levels increased, whereas the TNF-β levels decreased with the severity of periodontitis (4 mm pocket percentage). Poststimulation IL-1α, IL-6, and IL-8 levels were higher in patients who had an improved treatment outcome. The differences of IL-6 levels (cut point: 0.05 μg/g) yielded a sensitivity and specificity of 90.0% and 81.82%, respectively, for predicting the periodontitis treatment outcome. Among the proinflammatory cytokines, stimulated IL-6 was an excellent marker for predicting the periodontitis treatment outcome.

  7. Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species.

    Science.gov (United States)

    Rebiger, Lars; Lenzen, Sigurd; Mehmeti, Ilir

    2016-01-21

    Brown adipose tissue (BAT) cells have a very high oxidative capacity. On the other hand, in obesity and obesity-related diabetes, levels of pro-inflammatory cytokines are elevated, which might promote BAT dysfunction and consequently impair carbohydrate metabolism and thereby exacerbate cellular dysfunction and promote diabetes progression. Therefore, the antioxidative enzyme status of a brown adipocyte cell line and its susceptibility towards pro-inflammatory cytokines, which participate in the pathogenesis of diabetes, and reactive oxygen species (ROS) were analysed. Mature brown adipocytes exhibited significantly higher levels of expression of mitochondrially and peroxisomally located antioxidative enzymes compared with non-differentiated brown adipocytes. Pro-inflammatory cytokines induced a significant decrease in the viability of differentiated brown adipocytes, which was accompanied by a massive ROS production and down-regulation of BAT-specific markers, such as uncoupling protein 1 (UCP-1) and β-Klotho. Taken together, the results strongly indicate that pro-inflammatory cytokines cause brown adipocyte dysfunction and death through suppression of BAT-specific proteins, especially of UCP-1 and β-Klotho, and consequently increased oxidative stress.

  8. Modulation of pro-inflammatory cytokines in normal and inflamed skin

    NARCIS (Netherlands)

    A.R. Companjen (Arjen)

    2001-01-01

    textabstractThis thesis describes the expression and modulation of pro-inflammatory cytokines in normal and inflamed skin. During the last few decades it has become clear that the skin comprises a complex network of interacting cells including keratinocytes (KC). dendritic cells (such as Langerhans

  9. Childhood overweight and asthma symptoms, the role of pro-inflammatory proteins

    NARCIS (Netherlands)

    Bekkers, M. B. M.; Brunekreef, B.; de Jongste, J. C.; Kerkhof, M.; Smit, H. A.; Postma, D. S.; Gehring, U.; Wijga, A. H.

    2012-01-01

    Background Systemic inflammation is suggested as a mechanism by which overweight might induce asthma. However, few studies have linked childhood overweight, inflammation and asthma. Objective To study the association between body mass index (BMI), asthma symptoms and pro-inflammatory proteins. Metho

  10. Childhood overweight and asthma symptoms, the role of pro-inflammatory proteins

    NARCIS (Netherlands)

    Bekkers, M.B.M.; Brunekreef, B.; de Jongste, J.C.; Kerkhof, M.; Smit, H.A.; Postma, D.S.; Gehring, U.; Wijga, A.H.

    2012-01-01

    BACKGROUND Systemic inflammation is suggested as a mechanism by which overweight might induce asthma. However, few studies have linked childhood overweight, inflammation and asthma. OBJECTIVE To study the association between body mass index (BMI), asthma symptoms and pro-inflammatory proteins. METHO

  11. Inhibition of lovastatin on proliferation and expression of proinflammatory cytokines in cultured human glomerular mesangial cells

    Institute of Scientific and Technical Information of China (English)

    李航; 李学旺; 段琳; 李晨红

    2003-01-01

    Objective To study the effects and mechanism of lovastatin on cell proliferation and expression of proinflammatory cytokines in cultured human glomerular mesangial cells.Methods The influence of lovastatin on HMC proliferation was evaluated with 3H-thymidine incorporation. mRNA expression of proinflammatory cytokines (IL-1β, IL-6, TNF-α, and MCP-1) and activation of NF-κB of HMC were measured using Reverse transcription-polymerase chain reaction (RT-PCR) and electrophoretic mobility shift assay (EMSA) respectively.Results Lovastatin was found to have inhibitory effects on human mesangial cell (HMC) proliferation and lipopolysaccharide (LPS)-mediated human mesangine cell HMC mRNA expression of proinflammatory cytokines via activation of NF-κB. The effect of lovstatin on HMC could be prevented when the mevalonate and farnesol were added to the culture.Conclusion Lovastatin may decrease HMC proliferation and production of proinflammatory cytokines through the inhibition of NF-κB activation. This provided experimental evidence for further evaluation of the renal protective effect of HRI, suggesting that it may be a potent agent for prevention of progressive reanl diseases aside from its lipid-lowering effect.

  12. Blueberries inhibit proinflammatory cytokine TNF-alpha and IL-6 production in macrophages

    Science.gov (United States)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. However, the underlying mechanisms are not fully understood. In this study, the effect of BB on proinflammatory cytokine production in macrophages was investigated. ApoE-/- mice were fed AIN-93G diet (...

  13. Mycobacterial Signaling through Toll-like Receptors

    Directory of Open Access Journals (Sweden)

    Joyoti eBasu

    2012-11-01

    Full Text Available Studies over the past decade have helped to decipher molecular networks dependent on Toll-like receptor (TLR signaling, in mycobacteria-infected macrophages. Stimulation of TLRs by mycobacteria and their antigenic components rapidly induces intracellular signaling cascades involved in the activation of nuclear factor-κB and mitogen-activated protein kinase pathways, which play important roles in orchestrating proinflammatory responses and innate defense through generation of a variety of antimicrobial effector molecules. Recent studies have provided evidence that mycobacterial TLR-signaling cross talks with other intracellular antimicrobial innate pathways, the autophagy process and functional vitamin D receptor signaling. In this article we describe recent advances in the recognition, responses, and regulation of mycobacterial signaling through TLRs.

  14. Interleukin-32: a new proinflammatory cytokine involved in hepatitis C virus-related liver inflammation and fibrosis.

    NARCIS (Netherlands)

    Moschen, A.R.; Fritz, T.; Clouston, A.D.; Rebhan, I.; Bauhofer, O.; Barrie, H.D.; Powell, E.E.; Kim, S.H.; Dinarello, C.A.; Bartenschlager, R.; Jonsson, J.R.; Tilg, H.

    2011-01-01

    Interleukin 32 (IL-32) is a recently described proinflammatory cytokine that activates p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kappaB), thereby inducing proinflammatory cytokines such as IL-1beta and tumor necrosis factor alpha (TNF-alpha). We investigated the role

  15. The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14.

    Science.gov (United States)

    Bas, Sylvette; Neff, Laurence; Vuillet, Madeleine; Spenato, Ursula; Seya, Tsukasa; Matsumoto, Misako; Gabay, Cem

    2008-01-15

    Chlamydiae components and signaling pathway(s) responsible for the production of proinflammatory cytokines by human monocytes/macrophages are not clearly identified. To this aim, Chlamydia trachomatis-inactivated elementary bodies (EB) as well as the following seven individual Ags were tested for their ability to induce the production of proinflammatory cytokines by human monocytes/macrophages and THP-1 cells: purified LPS, recombinant heat shock protein (rhsp)70, rhsp60, rhsp10, recombinant polypeptide encoded by open reading frame 3 of the plasmid (rpgp3), recombinant macrophage infectivity potentiator (rMip), and recombinant outer membrane protein 2 (rOmp2). Aside from EB, rMip displayed the highest ability to induce release of IL-1beta, TNF-alpha, IL-6, and IL-8. rMip proinflammatory activity could not be attributed to Escherichia coli LPS contamination as determined by the Limulus Amoebocyte lysate assay, insensitivity to polymyxin B (50 microg/ml), and different serum requirement. We have recently demonstrated that Mip is a "classical" bacterial lipoprotein, exposed at the surface of EB. The proinflammatory activity of EB was significantly attenuated in the presence of polyclonal Ab to rMip. Native Mip was able to induce TNF-alpha and IL-8 secretion, whereas a nonlipidated C20A rMip variant was not. Proinflammatory activity of rMip was unaffected by heat or proteinase K treatments but was greatly reduced by treatment with lipases, supporting a role of lipid modification in this process. Stimulating pathways appeared to involve TLR2/TLR1/TLR6 with the help of CD14 but not TLR4. These data support a role of Mip lipoprotein in pathogenesis of C. trachomatis-induced inflammatory responses.

  16. A Human Anti-Toll Like Receptor 4 Fab Fragment Inhibits Lipopolysaccharide-Induced Pro-Inflammatory Cytokines Production in Macrophages.

    Science.gov (United States)

    Wang, Maorong; Zheng, Wenkai; Zhu, Xuhui; Xu, Jing; Cai, Binggang; Zhang, Yiqing; Zheng, Feng; Zhou, Linfu; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin

    2016-01-01

    The results of clinical and experimental studies suggest that endotoxin/toll-like receptor 4 (TLR4)-mediated proinflammatory and profibrotic signaling activation is critical in the development of hepatic fibrosis. However, studies examining the role of specific TLR4 inhibitor are still lacking. The present study was aimed to prepare a human anti-TLR4 Fab fragment, named hTLR4-Fab01, and to explore its immune activity. We screened the positive clone of anti-human TLR4 phagemid from a human phage-display antibody library using recombinant TLR4 protein, which was used as template cDNA for the amplification of variable regions of the heavy (VH) chain and light chain (VL), then coupled with highly conserved regions of the heavy chain domain 1 (CH1) and the light chain (CL), respectively. Thus, the prokaryotic expression vector pETDuet-1 of hTLR4-Fab01 was constructed and transformed into Escherichia coli (E. coli) BL21. The characteristic of hTLR4-Fab01 was examined by SDS-PAGE, Western blotting, ELISA, affinity and kinetics assay. Further, our data demonstrate that hTLR4-Fab01 could specifically bind to TLR4, and its treatment obviously attenuated the proinflammatory effect, characterized by less LPS-induced TNF-α, IL-1, IL-6 and IL-8 production in human macrophages. In conclusion, we have successfully prepared the hTLR4-Fab01 with efficient activity for blocking LPS-induced proinflammatory cytokines production, suggesting that the hTLR4-Fab01 may be a potential candidate for the treatment of hepatic fibrosis.

  17. Apolipoprotein CIII Reduces Proinflammatory Cytokine-Induced Apoptosis in Rat Pancreatic Islets via the Akt Prosurvival Pathway

    DEFF Research Database (Denmark)

    Størling, Joachim; Juntti-Berggren, Lisa; Olivecrona, Gunilla;

    2011-01-01

    Apolipoprotein CIII (ApoCIII) is mainly synthesized in the liver and is important for triglyceride metabolism. The plasma concentration of ApoCIII is elevated in patients with type 1 diabetes (T1D), and in vitro ApoCIII causes apoptosis in pancreatic ß-cells in the absence of inflammatory stress...... µg/ml) did not cause apoptosis. In the presence of the islet-cytotoxic cytokines IL-1ß + interferon-¿, ApoCIII reduced cytokine-mediated islet cell death and impairment of ß-cell function. ApoCIII had no effects on mitogen-activated protein kinases (c-Jun N-terminal kinase, p38, and ERK) and had...... of the survival serine-threonine kinase Akt. Inhibition of the Akt signaling pathway by the phosphatidylinositol 3 kinase inhibitor LY294002 counteracted the antiapoptotic effect of ApoCIII on cytokine-induced apoptosis. We conclude that ApoCIII in the presence of T1D-relevant proinflammatory cytokines reduces...

  18. Lipoxin A4 inhibits the production of proinflammatory cytokines induced by β-amyloid in vitro and in vivo.

    Science.gov (United States)

    Wu, Jun; Wang, Aitao; Min, Zhe; Xiong, Yongjie; Yan, Qiuyue; Zhang, Jinping; Xu, Jie; Zhang, Suming

    2011-05-13

    Studies increasingly indicate that inflammation induced by β-amyloid (Aβ) contributes to the progression of Alzheimer's disease (AD). How to inhibit the enhanced production of proinflammatory cytokines stimulated by Aβ is an important research subject for the treatment of AD. In this study, we investigated the inhibitory effect and the molecular mechanism of the lipoxin A(4) (LXA(4)) on the production of interleukin-1β (IL-1β) and tumor necrosis factorα (TNFα) induced by β-amyloid in the cortex and hippocampus of mice, and in Aβ-stimulated BV2 cells, a mouse microglial cell line. LXA(4) down-regulated the protein expression of IL-1β and TNFα, attenuated the gene expressions of IL-1β and TNFα, inhibited the degradation of IκBα, inhibited translocation of NF-κB p65 subunit into the nucleus induced by β-amyloid in the cortex and hippocampus of mice, and in Aβ-stimulated BV2 cells, and the inhibitory effects were dose dependently elevated. Our findings suggest that LXA(4) inhibits the production of IL-1β and TNFα induced by β-amyloid in the cortex and hippocampus of mice, and in BV2 microglial cells via the NF-κB signal pathway.

  19. Proinflammatory Role of Vascular Endothelial Growth Factor in the Pathogenesis of Rheumatoid Arthritis: Prospects for Therapeutic Intervention

    Directory of Open Access Journals (Sweden)

    Seung-Ah Yoo

    2008-01-01

    Full Text Available Recent experimental and clinical studies have placed new emphasis on the role of angiogenesis in chronic inflammatory disease. Vascular endothelial growth factor (VEGF and its receptors are the best characterized system in the regulation of rheumatoid arthritis (RA by angiogenesis. Furthermore, in addition to its angiogenic role, VEGF can act as a direct proinflammatory mediator during the pathogenesis of RA, and protect rheumatoid synoviocytes from apoptosis, which contributes to synovial hyperplasia. Therefore, the developments of synovial inflammation, hyperplasia, and angiogenesis in the joints of RA patients seem to be regulated by a common cue, namely, VEGF. Agents that target VEGF, such as anti-VEGF antibody and aptamer, have yielded promising clinical data in patients with cancer or macular degeneration, and in RA patients, pharmacologic modulations targeting VEGF or its receptor may offer new therapeutic approaches. In this review, the authors integrate current knowledge of VEGF signaling and information on VEGF antagonists gleaned experimentally and place emphasis on the use of synthetic anti-VEGF hexapeptide to prevent VEGF interacting with its receptor.

  20. Matrix-degrading and pro-inflammatory changes in human vascular endothelial cells exposed to cigarette smoke condensate.

    Science.gov (United States)

    Nordskog, Brian K; Blixt, Allison D; Morgan, Walter T; Fields, Wanda R; Hellmann, Gary M

    2003-01-01

    Cigarette smoking has been associated with an increase in the severity and prevalence of atherosclerosis in the abdominal aorta. To begin our investigation of this finding, we used an integrated approach combining gene expression profiling, protein analysis, cytokine measurements, and cytotoxicity determinations to examine molecular responses of cultured human aortic and coronary endothelial cells exposed to cigarette smoke condensate (CSC) and nicotine. Exposure of endothelial cells to CSC (30 and 60 microg/mL TPM) for 24 h resulted in minimal cytotoxicity, and the upregulation of genes involved in matrix degradation (MMP-1, MMP-8, and MMP-9), xenobiotic metabolism (HO-1 and CYP1A2), and downregulation of genes involved in cell cycle regulation (including TOP2A, CCNB1, CCNA, CDKN3). Exposure of cells to a high physiological concentration of nicotine resulted in few differentially expressed genes. Immunoblot analysis of proteins selected from genes shown to be differentially regulated by microarray analysis revealed similar responses. Finally, a number of inflammatory cytokines measured in culture media were elevated in response to CSC. Together, these results describe a complex proinflammatory response, possibly mediating the recruitment of leukocytes through cytokine signaling. Additionally, fibrous cap destabilization may be facilitated by matrix metalloproteinase upregulation.

  1. Differential effect of immune cells on non-pathogenic Gram-negative bacteria-induced nuclear factor-kappaB activation and pro-inflammatory gene expression in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Haller, D.; Holt, L.; Parlesak, Alexandr;

    2004-01-01

    We have previously shown that non-pathogenic Gram negative bacteria induce RelA phosphorylation, nuclear factor (NF)-kappaB transcriptional activity and pro-inflammatory gene expression in intestinal epithelial cells (IEC) in vivo and in vitro. In this study, we investigated the molecular mechanism...... of immune-epithelial cell cross-talk on Gram-negative enteric bacteria-induced NF-kappaB signalling and pro-inflammatory gene expression in IEC using HT-29/MTX as well as CaCO-2 transwell cultures Interestingly, while differentiated HT-29/MTX cells are unresponsive to non-pathogenic Gram negative bacterial...... in the presence of PBMC. Interestingly, B. vulgatus- and E. coli-derived lipopolysaccharide-induced similar IL-8 mRNA expression in epithelial cells after basolateral stimulation of HT-29/PBMC cocultures. Although luminal enteric bacteria have adjuvant and antigenic properties in chronic intestinal inflammation...

  2. Infection with Theiler's murine encephalomyelitis virus directly induces proinflammatory cytokines in primary astrocytes via NF-kappaB activation: potential role for the initiation of demyelinating disease.

    Science.gov (United States)

    Palma, JoAnn P; Kwon, Daeho; Clipstone, Neil A; Kim, Byung S

    2003-06-01

    Theiler's virus infection in the central nervous system (CNS) induces a demyelinating disease very similar to human multiple sclerosis. We have assessed cytokine gene activation upon Theiler's murine encephalomyelitis virus (TMEV) infection and potential mechanisms in order to delineate the early events in viral infection that lead to immune-mediated demyelinating disease. Infection of SJL/J primary astrocyte cultures induces selective proinflammatory cytokine genes (interleukin-12p40 [IL-12p40], IL-1, IL-6, tumor necrosis factor alpha, and beta interferon [IFN-beta]) important in the innate immune response to infection. We find that TMEV-induced cytokine gene expression is mediated by the NF-kappaB pathway based on the early nuclear NF-kappaB translocation and suppression of cytokine activation in the presence of specific inhibitors of the NF-kappaB pathway. Further studies show this to be partly independent of dsRNA-dependent protein kinase (PKR) and IFN-alpha/beta pathways. Altogether, these results demonstrate that infection of astrocytes and other CNS-resident cells by TMEV provides the early NF-kappaB-mediated signals that directly activate various proinflammatory cytokine genes involved in the initiation and amplification of inflammatory responses in the CNS known to be critical for the development of immune-mediated demyelination.

  3. Artesunate ameliorates severe acute pancreatitis (SAP) in rats by inhibiting expression of pro-inflammatory cytokines and Toll-like receptor 4.

    Science.gov (United States)

    Cen, Yanyan; Liu, Chao; Li, Xiaoli; Yan, Zifei; Kuang, Mei; Su, Yujie; Pan, Xichun; Qin, Rongxin; Liu, Xin; Zheng, Jiang; Zhou, Hong

    2016-09-01

    Severe acute pancreatitis (SAP) is a severe clinical condition with significant morbidity and mortality. Multiple organs dysfunction (MOD) is the leading cause of SAP-related death. The over-release of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α is the underlying mechanism of MOD; however, there is no effective agent against the inflammation. Herein, artesunate (AS) was found to increase the survival of SAP rats significantly when injected with 3.5% sodium taurocholate into the biliopancreatic duct in a retrograde direction, improving their pancreatic pathology and decreasing serum amylase and pancreatic lipase activities along with substantially reduced pancreatic IL-1β and IL-6 release. In vitro, AS-pretreatment strongly inhibited IL-1β and IL-6 release and their mRNA expressions in the pancreatic acinar cells treated with lipopolysaccharide (LPS) but exerted little effect on TNF-α release. Additionally, AS reduced the mRNA expressions of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) p65 as well as their protein expressions in the pancreatic acinar cells. In conclusion, our results demonstrated that AS could significantly protect SAP rats, and this protection was related to the reduction of digestive enzyme activities and pro-inflammatory cytokine expressions via inhibition of TLR4/NF-κB signaling pathway. Therefore, AS may be considered as a potential therapeutic agent against SAP.

  4. Effect of pro-inflammatory interleukin-17A on epithelial cell phenotype inversion in HK-2 cells in vitro.

    Science.gov (United States)

    Liu, Li; Li, Fu-Gang; Yang, Man; Wang, Li; Chen, Yue; Wang, Li; Ji, Wen; Fan, Jun-Ming

    2016-06-01

    Renal interstitial fibrosis (RIF) is a pathological change common to a variety of chronic renal diseases, ultimately progressing to end-stage renal failure. It is believed that epithelial cell phenotype inversion plays an important role in RIF, which is characterized by expression of the mesenchymal maker α-SMA, loss of the epithelial maker E-cadherin, and enhanced secretion of extracellular matrix. IL-17, a newly discovered pro-inflammatory cytokine, has recently been reported to play an important role in tissue fibrosis, involving pulmonary, liver, intestine and skin tissues. This study aimed to investigate whether IL-17A, a member of the IL-17 family, can induce epithelial cell phenotype inversion, and to explore the molecular mechanism of this phenotype inversion, in vitro. HK-2 cells were cultured and incubated with IL-17A. Cell proliferation was measured by CCK-8 assay, and the secretion of types I and III collagen was detected by ELISA in dose-dependent and time-dependent experiments. To find out whether IL-17A can induce epithelial cell phenotype inversion, HK-2 cells were stimulated with 80 ng/mL of IL-17A and 10 ng/mL of TGF-β1 as a positive control, for 72 h. To explore the potential signaling pathway, anti-TGF-β1 antibody was added before IL-17A treatment. At the same time, anti-TGF-β1 antibody alone was added to the medium as the negative control group. The expression of types I and III collagen, α-SMA and E-cadherin proteins, and mRNA was measured by real-time PCR, western blotting and immuno-histochemistry. IL-17A promoted the proliferation of HK-2 cells and secretion of types I and III collagen in a dose-dependent and time-dependent manner. Compared with the normal control, IL-17A could stimulate the expression of α-SMA, types I and III collagen, and suppressed the expression of E-cadherin in HK-2 cells. Incubation of IL-17A with TGF-β1 antibody decreased significantly the expression of α-SMA, but increased the expression of E-cadherin in

  5. The HIV matrix protein p17 subverts nuclear receptors expression and induces a STAT1-dependent proinflammatory phenotype in monocytes.

    Directory of Open Access Journals (Sweden)

    Barbara Renga

    Full Text Available BACKGROUND: Long-term remission of HIV-1 disease can be readily achieved by combinations of highly effective antiretroviral therapy (HAART. However, a residual persistent immune activation caused by circulating non infectious particles or viral proteins is observed under HAART and might contribute to an higher risk of non-AIDS pathologies and death in HIV infected persons. A sustained immune activation supports lipid dysmetabolism and increased risk for development of accelerated atehrosclerosis and ischemic complication in virologically suppressed HIV-infected persons receiving HAART. AIM: While several HIV proteins have been identified and characterized for their ability to maintain immune activation, the role of HIV-p17, a matrix protein involved in the viral replication, is still undefined. RESULTS: Here, we report that exposure of macrophages to recombinant human p17 induces the expression of proinflammatory and proatherogenic genes (MCP-1, ICAM-1, CD40, CD86 and CD36 while downregulating the expression of nuclear receptors (FXR and PPARγ that counter-regulate the proinflammatory response and modulate lipid metabolism in these cells. Exposure of macrophage cell lines to p17 activates a signaling pathway mediated by Rack-1/Jak-1/STAT-1 and causes a promoter-dependent regulation of STAT-1 target genes. These effects are abrogated by sera obtained from HIV-infected persons vaccinated with a p17 peptide. Ligands for FXR and PPARγ counteract the effects of p17. CONCLUSIONS: The results of this study show that HIV p17 highjacks a Rack-1/Jak-1/STAT-1 pathway in macrophages, and that the activation of this pathway leads to a simultaneous dysregulation of immune and metabolic functions. The binding of STAT-1 to specific responsive elements in the promoter of PPARγ and FXR and MCP-1 shifts macrophages toward a pro-atherogenetic phenotype characterized by high levels of expression of the scavenger receptor CD36. The present work identifies p17 as a

  6. Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4.

    Directory of Open Access Journals (Sweden)

    Katharine J Goodall

    Full Text Available Heparanase is a β-D-endoglucuronidase that cleaves heparan sulfate (HS, facilitating degradation of the extracellular matrix (ECM and the release of HS-bound biomolecules including cytokines. The remodeling of the ECM by heparanase is important for various physiological and pathological processes, including inflammation, wound healing, tumour angiogenesis and metastasis. Although heparanase has been proposed to facilitate leukocyte migration through degradation of the ECM, its role in inflammation by regulating the expression and release of cytokines has not been fully defined. In this study, the role of heparanase in regulating the expression and release of cytokines from human and murine immune cells was examined. Human peripheral blood mononuclear cells treated ex vivo with heparanase resulted in the release of a range of pro-inflammatory cytokines including IL-1β, IL-6, IL-8, IL-10 and TNF. In addition, mouse splenocytes treated ex vivo with heparanase resulted in the release of IL-6, MCP-1 and TNF. A similar pattern of cytokine release was also observed when cells were treated with soluble HS. Furthermore, heparanase-induced cytokine release was abolished by enzymatic-inhibitors of heparanase, suggesting this process is mediated via the enzymatic release of cell surface HS fragments. As soluble HS can signal through the Toll-like receptor (TLR pathway, heparanase may promote the upregulation of cytokines through the generation of heparanase-cleaved fragments of HS. In support of this hypothesis, mouse spleen cells lacking the key TLR adaptor molecule MyD88 demonstrated an abolition of cytokine release after heparanase stimulation. Furthermore, TLR4-deficient spleen cells showed reduced cytokine release in response to heparanase treatment, suggesting that TLR4 is involved in this response. Consistent with these observations, the pathway involved in cytokine upregulation was identified as being NF-κB-dependent. These data identify a new

  7. Molecular mechanism of TNF signaling and beyond

    Institute of Scientific and Technical Information of China (English)

    Zheng-gang LIU

    2005-01-01

    Tumor necrosis factor (TNF) is a proinflammatory cytokine that plays a critical role in diverse cellular events,including cell proliferation, differentiation and apoptosis. TNF is also involved in many types of diseases. In recent years, the molecular mechanisms of TNF functions have been intensively investigated. Studies from many laboratories have demonstrated that the TNF-mediated diverse biological responses are achieved through activating multiple signaling pathways. Especially the activation of transcription factors NF-κB and AP-1 plays a critical role in mediating these cellular responses. Several proteins, including FADD, the death domain kinase RIP and the TNF receptor associated factor TRAF2 have been identified as the key effectors of TNF signaling. Recently, we found that the effector molecules of TNF signaling, such as RIP and TRAF2, are also involved in other cellular responses. These finding suggests that RIP and TRAF2 serve a broader role than as just an effector of TNF signaling.

  8. Respiratory dysfunction and proinflammatory chemokines in the pneumonia virus of mice (PVM) model of viral bronchiolitis.

    Science.gov (United States)

    Bonville, Cynthia A; Bennett, Nicholas J; Koehnlein, Melissa; Haines, Deborah M; Ellis, John A; DelVecchio, Alfred M; Rosenberg, Helene F; Domachowske, Joseph B

    2006-05-25

    We explore relationships linking clinical symptoms, respiratory dysfunction, and local production of proinflammatory chemokines in the pneumonia virus of mice (PVM) model of viral bronchiolitis. With a reduced inoculum of this natural rodent pathogen, we observe virus clearance by day 9, while clinical symptoms and respiratory dysfunction persist through days 14 and 17 postinoculation, respectively. Via microarray and ELISA, we identify expression profiles of proinflammatory mediators MIP-1alpha, MCP-1, and MIP-2 that correlate with persistent respiratory dysfunction. MIP-1alpha is localized in bronchial epithelium, which is also the major site of PVM replication. Interferon-gamma was detected in lung tissue, but at levels that do not correlate with respiratory dysfunction. Taken together, we present a modification of our pneumovirus infection model that results in improved survival and data that stand in support of a connection between local production of specific mediators and persistent respiratory dysfunction in the setting of acute viral bronchiolitis.

  9. Follistatin-like protein 1 suppressed pro-inflammatory cytokines expression during neuroinflammation induced by lipopolysaccharide.

    Science.gov (United States)

    Cheng, Kai-Yuan; Liu, Yi; Han, Ying-Guang; Li, Jing-Kun; Jia, Jia-Lin; Chen, Bin; Yao, Zhi-Xiao; Nie, Lin; Cheng, Lei

    2017-04-01

    Follistain-like protein 1 (FSTL1), has been recently demonstrated to be involved in the embryo development of nervous system and glioblastoma. However, the role of FSTL1 in neuroinflammation remains unexplored. In this study, the expression of FSTL1 in astrocytes was verified and its role was studied in neuroinflammation induced by in vivo intracerebroventricular (ICV) injection of lipopolysaccharide (LPS) or LPS treatment to astrocytes in vitro. FSTL1 was significantly induced after ICV LPS injection or LPS treatment. FSTL1 suppressed upregulation of pro-inflammatory cytokines in astrocytes after LPS treatment. Moreover, FSTL1 downregulated expression of pro-inflammatory cytokines through suppressing MAPK/p-ERK1/2 pathway in astrocytes. Our results suggest that FSTL1 may play an anti-inflammatory role in neuroinflammation mediated by astrocytes.

  10. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    Directory of Open Access Journals (Sweden)

    Armando Vilchis-Ordoñez

    2015-01-01

    Full Text Available B-cell acute lymphoblastic leukemia (B-ALL is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow.

  11. Proinflammatory cytokines in alcohol or gallstone induced acute pancreatitis. A prospective study

    DEFF Research Database (Denmark)

    Novovic, Srdan; Andersen, Anders Møller; Ersbøll, Annette Kjaer;

    2009-01-01

    OBJECTIVES: If differences of inflammatory pathways in acute pancreatitis exist for various etiologies, selective and specific antiinflammatory and other modulatory treatment regimens might be indicated. Circulating levels of prominent proinflammatory cytokines IL-6, 8, 18, and TNF-alpha were......, TNF-alpha, or CRP. Furthermore, no significant differences, either regarding the need for treatment at the intensive care unit or of 30-day mortality, were found. CONCLUSION: The present study confirms previous findings and supports the hypothesis that, except for IL-8, the biochemical profile...... and clinical outcome is independent of the underlying etiology. Revealing the complex spatial and temporal profile of proinflammatory cytokine expression in acute pancreatitis is necessary and important for the development of a more targeted rational therapy....

  12. Cisplatin ototoxicity involves cytokines and STAT6 signaling network.

    Science.gov (United States)

    Kim, Hyung-Jin; Oh, Gi-Su; Lee, Jeong-Han; Lyu, Ah-Ra; Ji, Hye-Min; Lee, Sang-Heon; Song, Jeho; Park, Sung-Joo; You, Yong-Ouk; Sul, Jeong-Dug; Park, Channy; Chung, Sang-Young; Moon, Sung-Kyun; Lim, David J; So, Hong-Seob; Park, Raekil

    2011-06-01

    We herein investigated the role of the STAT signaling cascade in the production of pro-inflammatory cytokines and cisplatin ototoxicity. A significant hearing impairment caused by cisplatin injection was observed in Balb/c (wild type, WT) and STAT4(-/-), but not in STAT6(-/-) mice. Moreover, the expression levels of the protein and mRNA of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, were markedly increased in the serum and cochlea of WT and STAT4(-/-), but not STAT6(-/-) mice. Organotypic culture revealed that the shape of stereocilia bundles and arrays of sensory hair cell layers in the organ of Corti from STAT6(-/-) mice were intact after treatment with cisplatin, whereas those from WT and STAT4(-/-) mice were highly distorted and disarrayed after the treatment. Cisplatin induced the phosphorylation of STAT6 in HEI-OC1 auditory cells, and the knockdown of STAT6 by STAT6-specific siRNA significantly protected HEI-OC1 auditory cells from cisplatin-induced cell death and inhibited pro-inflammatory cytokine production. We further demonstrated that IL-4 and IL-13 induced by cisplatin modulated the phosphorylation of STAT6 by binding with IL-4 receptor alpha and IL-13Rα1. These findings suggest that STAT6 signaling plays a pivotal role in cisplatin-mediated pro-inflammatory cytokine production and ototoxicity.

  13. Cisplatin ototoxicity involves cytokines and STAT6 signaling network

    Institute of Scientific and Technical Information of China (English)

    Hyung-Jin Kim; Jeong-Dug Sul; Channy Park; Sang-Young Chung; Sung-Kyun Moon; David J Lim; Hong-Seob So; Raekil Park; Gi-Su Oh; Jeong-Han Lee; Ah-Ra Lyu; Hye-Min Ji; Sang-Heon Lee; Jeho Song; Sung-Joo Park; Yong-Ouk You

    2011-01-01

    We herein investigated the role of the STAT signaling cascade in the production of pro-inflammatory cytokines and cisplatin ototoxicity. A significant hearing impairment caused by cisplatin injection was observed in Balb/c (wild type,WT) and STAT4-/-,but not in STAT6-/- mice. Moreover,the expression levels of the protein and mRNA of proinflammatory cytokines,including TNF-α,IL-1β,and IL-6,were markedly increased in the serum and cochlea of WT and STAT4+,but not STAT6-/- mice. Organotypic culture revealed that the shape of stereocilia bundles and arrays of sensory hair cell layers in the organ of Corti from STAT6-/- mice were intact after treatment with cisplatin,whereas those from WT and STAT4-/- mice were highly distorted and disarrayed after the treatment. Cisplatin induced the phosphorylation of STAT6 in HEI-OC1 auditory cells,and the knockdown of STAT6 by STAT6-specific siRNA significantly protected HEI-OC1 auditory cells from cisplatin-induced cell death and inhibited pro-inflammatory cytokine production. We further demonstrated that IL-4 and IL-13 induced by cisplatin modulated the phosphorylation of STAT6 by binding with IL-4 receptor alpha and IL-13Rα1. These findings suggest that STAT6 signaling plays a pivotal role in cisplatin-mediated pro-inflammatory cytokine production and ototoxicity.

  14. Suppressor of cytokine signaling 3 inhibits LPS-induced IL-6 expression in osteoblasts by suppressing CCAAT/enhancer-binding protein ß activity

    Science.gov (United States)

    Suppressors of cytokine signaling 3 (SOCS3) is an important intracellular regulator of TLR4 signaling and has been implicated in several inflammatory diseases. Although SOCS3 seems to contribute to the balance between the pro-inflammatory effects of IL-6 and antiinflammatory signaling of IL-10 by ne...

  15. Complement-dependent Proinflammatory Properties of the Alzheimer's Disease β-Peptide

    OpenAIRE

    Bradt, Bonnie M.; Kolb, William P.; Cooper, Neil R.

    1998-01-01

    Large numbers of neuritic plaques (NP), largely composed of a fibrillar insoluble form of the β-amyloid peptide (Aβ), are found in the hippocampus and neocortex of Alzheimer's disease (AD) patients in association with damaged neuronal processes, increased numbers of activated astrocytes and microglia, and several proteins including the components of the proinflammatory complement system. These studies address the hypothesis that the activated complement system mediates the cellular changes th...

  16. Histamine mediates the pro-inflammatory effect of latex of Calotropis procera in rats

    Directory of Open Access Journals (Sweden)

    Yatin M. Shivkar

    2003-01-01

    Full Text Available Introduction: Calotropis procera is known to produce contact dermatitis and the latex of this plant produces intense inflammation when injected locally. However, the precise mode of its pro-inflammatory effect is not known. In present study we have pharmacologically characterized the inflammation induced by latex of C. procera in a rat paw edema model and determined the role of histamine in latex-induced inflammation.

  17. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK).

    Science.gov (United States)

    Chan, Kenny L; Pillon, Nicolas J; Sivaloganathan, Darshan M; Costford, Sheila R; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-07-03

    A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.

  18. PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells.

    Science.gov (United States)

    Camatini, Marina; Corvaja, Viviana; Pezzolato, Eleonora; Mantecca, Paride; Gualtieri, Maurizio

    2012-02-01

    PM10 was collected in a Milan urban site, representative of the city air quality, during winter and summer 2006. Mean daily PM10 concentration was 48 μg m(-3) during summer and 148 μg m(-3) during winter. Particles collected on Teflon filters were chemically characterized and the endotoxin content determined by the LAL test. PM10-induced cell toxicity, assessed with MTT and LDH methods, and proinflammatory potential, monitored by IL-6 and IL-8 cytokines release, were investigated on the human alveolar epithelial cell line A549 exposed to increasing doses of PM. Besides untreated cells, exposure to inert carbon particles (2-12 μm) was also used as additional control. Both cell toxicity and proinflammatory potency resulted to be higher for summer PM10 with respect of winter PM10, with IL-6 showing the highest dose-dependent release. The relevance of biogenic components adsorbed onto PM10 in eliciting the proinflammatory mediators release was investigated by inhibition experiments. Polymixin B (Poly) was used to inhibit particle-bind LPS while Toll-like receptor-2 antibody (a-TLR2) to specifically block the activation of this receptor. While cell viability was not modulated in cells coexposed to PM10 and Poly or a-TLR2 or both, inflammatory response did it, with IL-6 release being the most inhibited. In conclusion, Milan PM10-induced seasonal-dependent biological effects, with summer particles showing higher cytotoxic and proinflammatory potential. Cytotoxicity seemed to be unaffected by the PM biogenic components, while inflammation was significantly reduced after the inhibition of some biogenic activated pathways. Besides, the PM-associated biogenic activity does not entirely justify the PM-induced inflammatory effects. © 2010 Wiley Periodicals, Inc. Environ Toxicol 2012.

  19. Putative Role of Serum Amyloid-A and Proinflammatory Cytokines as Biomarkers for Behcet's Disease

    Science.gov (United States)

    Lopalco, Giuseppe; Lucherini, Orso Maria; Vitale, Antonio; Talarico, Rosaria; Lopalco, Antonio; Galeazzi, Mauro; Lapadula, Giovanni; Cantarini, Luca; Iannone, Florenzo

    2015-01-01

    Abstract Behcet's disease (BD) is a multisystemic disorder of unknown etiology characterized by relapsing oral–genital ulcers, uveitis, and involvement of vascular, gastrointestinal, neurological, and musculoskeletal system. Although disease pathogenesis is still unclear, both innate and adaptive immunity have shown to play a pivotal role, and multiple proinflammatory cytokines seem to be involved in different pathogenic pathways that eventually lead to tissue damage. The aims of our study were to evaluate serum cytokines levels of IL-8, IL-18, IFN-α2a, IL-6, IFN-γ, CXCL10, CXCL11, CXCL9, and SAA levels in patients with BD, in comparison to healthy controls (HC), and to correlate their levels to disease activity. We included 78 serum samples obtained from 58 BD patients and analyzed a set of proinflammatory cytokines including IL-8, IL-18, IFN-α2a, IL-6, IFN-γ, CXCL10, CXCL11, and CXCL9 by multiplex bead analysis as well as SAA by enzyme-linked immunosorbent assay. Compared to HC, BD patients showed elevated cytokine levels of IL-8, IL-18, IFN-α2a, and IL-6, and low levels of CXCL11. BD patients with SAA serum levels >20 mg/L showed higher levels of proinflammatory markers than HC or group with SAA ≤20 mg/L. IL-18, IFN-α2a, and IL-6 were higher in BD group with SAA >20 mg/L than HC, while IL-8 and CXCL9 levels were higher than in patients with SAA ≤20 mg/L and HC. Active BD patients with SAA >20 mg/L exhibited elevated levels of inflammatory mediators, suggesting that may exist a relationship between SAA and proinflammatory cytokines in the intricate scenario of BD pathogenesis. PMID:26496336

  20. Subfornical organ mediates sympathetic and hemodynamic responses to blood-borne proinflammatory cytokines.

    Science.gov (United States)

    Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Yu, Yang; Johnson, Alan Kim; Felder, Robert B

    2013-07-01

    Proinflammatory cytokines play an important role in regulating autonomic and cardiovascular function in hypertension and heart failure. Peripherally administered proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), act on the brain to increase blood pressure, heart rate, and sympathetic nerve activity. These molecules are too large to penetrate the blood-brain barrier, and so the mechanisms by which they elicit these responses remain unknown. We tested the hypothesis that the subfornical organ (SFO), a forebrain circumventricular organ that lacks a blood-brain barrier, plays a major role in mediating the sympathetic and hemodynamic responses to circulating proinflammatory cytokines. Intracarotid artery injection of TNF-α (200 ng) or IL-1β (200 ng) dramatically increased mean blood pressure, heart rate, and renal sympathetic nerve activity in rats with sham lesions of the SFO (SFO-s). These excitatory responses to intracarotid artery TNF-α and IL-1β were significantly attenuated in SFO-lesioned (SFO-x) rats. Similarly, the increases in mean blood pressure, heart rate, and renal sympathetic nerve activity in response to intravenous injections of TNF-α (500 ng) or IL-1β (500 ng) in SFO-s rats were significantly reduced in the SFO-x rats. Immunofluorescent staining revealed a dense distribution of the p55 TNF-α receptor and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, in the SFO. These data suggest that SFO is a predominant site in the brain at which circulating proinflammatory cytokines act to elicit cardiovascular and sympathetic responses.

  1. Proinflammatory cytokines and their membrane-bound receptors are altered in the lymphocytes of schizophrenia patients.

    Science.gov (United States)

    Pandey, Ghanshyam N; Ren, Xinguo; Rizavi, Hooriyah S; Zhang, Hui

    2015-05-01

    Abnormalities of protein levels of proinflammatory cytokines and their soluble receptors have been reported in the plasma/serum of schizophrenia (SZ) patients. To examine if SZ is also associated with the abnormal gene expression of cytokines and their membrane-bound receptors, we studied mRNA expression of proinflammatory cytokines and their receptors in lymphocytes of SZ patients and normal control (NC) subjects. We determined the protein and mRNA expression of proinflammatory cytokines and mRNA expression of their receptors in lymphocytes from 30 SZ patients and 30 drug-free NC subjects. The subjects were diagnosed according to DSM-IV criteria. Protein levels of cytokines were determined by ELISA, and mRNA levels in lymphocytes were determined by the qPCR method. We found that the mRNA levels of IL-6, TNF-α, IL-1R1, TNFR1, and TNFR2, but not IL-1β, IL-1R2, IL-1RA, IL-6R, or GP130 were significantly increased in lymphocytes of SZ patients compared with NC subjects. We also found that the protein expression of IL-6 and TNF-α, but not IL-1β, was also significantly increased in SZ patients compared with NC subjects. These studies suggest that in addition to the reported abnormalities of proinflammatory cytokines and their soluble receptors in the plasma of SZ patients, an abnormal gene expression of these cytokines and their membrane-bound receptors may be involved in the pathogenesis of SZ.

  2. Ultraviolet Radiation and the Slug Transcription Factor Induce Proinflammatory and Immunomodulatory Mediator Expression in Melanocytes

    Directory of Open Access Journals (Sweden)

    Stephanie H. Shirley

    2012-01-01

    Full Text Available Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete proinflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce proinflammatory mediators and that Slug is important in this process. Microarray studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of proinflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  3. Paradoxical Glucose-Sensitizing yet Proinflammatory Effects of Acute ASP Administration in Mice

    Directory of Open Access Journals (Sweden)

    Alexandre Fisette

    2013-01-01

    Full Text Available Acylation stimulating protein (ASP is an adipokine derived from the immune complement system, which stimulates fat storage and is typically increased in obesity, type 2 diabetes, and cardiovascular disease. Using a diet-induced obesity (DIO mouse model, the acute effects of ASP on energy metabolism and inflammatory processes in vivo were evaluated. We hypothesized that ASP would specifically exert proinflammatory effects. C57Bl/6 wild-type mice were put on a high-fat-high-sucrose diet for 12 weeks. Mice were then subjected to both glucose and insulin tolerance tests, each manipulation being preceded by recombinant ASP or vehicle (control bolus injection. ASP supplementation increased whole-body glucose excursion, and this was accomplished with reduced concomitant insulin levels. However, ASP did not directly alter insulin sensitivity. ASP supplementation induced a proinflammatory phenotype, with higher levels of cytokines including IL-6 and TNF-α in plasma and in adipose tissue, liver, and skeletal muscle mRNA. Additionally, ASP increased M1 macrophage content of these tissues. ASP exerted a direct concentration-dependent role in the migration and M1 activation of cultured macrophages. Altogether, the in vivo and in vitro experiments demonstrate that ASP plays a role in both energy metabolism and inflammation, with paradoxical whole-body glucose-sensitizing yet proinflammatory effects.

  4. Regulation by GD3 of the proinflammatory response of microglia mediated by interleukin-15.

    Science.gov (United States)

    Gómez-Nicola, Diego; Doncel-Pérez, Ernesto; Nieto-Sampedro, Manuel

    2006-04-01

    The interleukin (IL)-15-dependent immune responses of murine microglia were strongly affected by low concentrations of the ganglioside GD3. The ganglioside binding to IL-15 inhibited the proinflammatory effects of the cytokine, reducing IL-15-dependent T-cell proliferation as well as mRNA expression for IL-15Ralpha, p65, and NFATc2 in the N13 murine microglial cell line. Treatment of primary murine microglial cultures with GD3 abolished IL-15 production, without affecting cellular viability, but decreased the production of nitric oxide, a direct sensor of inflammation and nuclear factor-kappaB activity. We conclude that low doses of GD3 could inhibit specific proinflammatory mechanisms and modulate the inflammatory environment, leading to a less reactive scene. Microglial cells are one of the main actors in the inflammatory events that follow CNS trauma or an autoimmune disease episode, modulating the internal production of cytokines, growth factors, and other homeostatic molecules that may determine the evolution and outcome of tissue damage. Proinflammatory cytokines have a relevant role in the initial events, and modulation of their activity by gangliosides could cut down their harmful effects and interfere with invasion of the CNS by peripheral immune cells. The antiinflammatory properties of GD3 could be significant in the treatment of pain subsequent to CNS damage.

  5. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    Directory of Open Access Journals (Sweden)

    Lucília Pereira da Silva

    2014-01-01

    Full Text Available Fibroblasts colonization into injured areas during wound healing (WH is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH.

  6. Synergistic proinflammatory interactions of microbial toxins and structural components characteristic to moisture-damaged buildings.

    Science.gov (United States)

    Korkalainen, M; Täubel, M; Naarala, J; Kirjavainen, P; Koistinen, A; Hyvärinen, A; Komulainen, H; Viluksela, M

    2017-01-01

    Indoor exposure to microbes and their structural and metabolic compounds is notoriously complex. To study proinflammatory interactions between the multiple microbial agents, macrophages derived from human THP-1 monocytic cells were exposed to several concentrations of microbial toxins alone (emodin, enniatin B, physcion, sterigmatocystin, valinomycin) and in combination with microbial structural components (bacterial lipopolysaccharide [LPS] or fungal β-glucan). While the expression of proinflammatory cytokines TNFα and IL-1β to single toxins alone was modest, low-dose co-exposure with structural components increased the responses of emodin, enniatin B, and valinomycin synergistically, both at the mRNA and protein level, as measured by RT-qPCR and ELISA, respectively. Co-exposure of toxins and β-glucan resulted in consistent synergistically increased expression of several inflammation-related genes, while some of the responses with LPS were also inhibitory. Co-exposure of toxins with either β-glucan or LPS induced also mitochondrial damage and autophagocytosis. The results demonstrate that microbial toxins together with bacterial and fungal structural components characteristic to moisture-damaged buildings can have drastic synergistic proinflammatory interactions at low exposure levels.

  7. Changes in proinflammatory cytokines and white matter in chronically stressed rats

    Directory of Open Access Journals (Sweden)

    Yang P

    2015-03-01

    Full Text Available Ping Yang,1 Zhenyong Gao,1 Handi Zhang,1 Zeman Fang,1 Cairu Wu,1 Haiyun Xu,1,2 Qing-Jun Huang1 1Mental Health Center, 2Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China Abstract: Although the pathogenesis of depression, an incapacitating psychiatric ailment, remains largely unknown, previous human and animal studies have suggested that both proinflammatory cytokines and altered oligodendrocytes play important roles in the condition. This study examined these two factors in the brains of rats following unpredictable chronic mild stress for 4 weeks, with the hypothesis that chronic stress may affect oligodendrocytes and elevate proinflammatory cytokines in the brain. After suffering unpredictable stressors for 4 weeks, the rats showed depression-like behaviors, including decreased locomotion in the open field, increased immobility time in the forced swim test, and decreased sucrose consumption and less sucrose preference when compared with controls. Immunohistochemical staining of brain sections showed higher immunoreactivity of proinflammatory cytokines in certain brain regions of stressed rats compared with controls; lower immunoreactivity of myelin basic protein and fewer mature oligodendrocytes were seen in the prefrontal cortex, but no demyelination was detected. These results are interpreted and discussed in the context of recent findings from human and animal studies. Keywords: cytokines, depression, myelination, oligodendrocytes, stress 

  8. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand

    Directory of Open Access Journals (Sweden)

    Jong-Sup Bae

    2013-11-01

    Full Text Available High mobility group box 1 (HMGB1 is involved in thepathogenesis of vascular diseases. Unlike activated protein C(APC, the activation of PAR-1 by thrombin is known to elicitproinflammatory responses. To determine whether the occupancyof EPCR by the Gla-domain of APC is responsible for thePAR-1-dependent antiinflammatory activity of the protease, wepretreated HUVECs with the PC zymogen and then activatedPAR-1 with thrombin. It was found that thrombin downregulatesthe HMGB1-mediated induction of both TNF-α andIL-6 and inhibits the activation of both p38 MAPK and NF-κB inHUVECs pretreated with PC. Furthermore, thrombin inhibitedHMGB1-mediated hyperpermeability and leukocyte adhesion/migration by inhibiting the expression of cell adhesion moleculesin HUVECs if EPCR was occupied. Collectively, theseresults suggest the concept that thrombin can initiate proinflammatoryresponses in vascular endothelial cells through theactivation of PAR-1 may not hold true for normal vesselsexpressing EPCR under in vivo conditions. [BMB Reports 2013;46(11: 544-549

  9. CD40 signaling and Alzheimer's disease pathogenesis.

    Science.gov (United States)

    Town, T; Tan, J; Mullan, M

    2001-01-01

    The interaction between CD40 and its cognate ligand, CD40 ligand, is a primary regulator of the peripheral immune response, including modulation of T lymphocyte activation, B lymphocyte differentiation and antibody secretion, and innate immune cell activation, maturation, and survival. Recently, we and others have identified CD40 expression on a variety of CNS cells, including endothelial cells, smooth muscle cells, astroglia and microglia, and have found that, on many of these cells, CD40 expression is enhanced by pro-inflammatory stimuli. Importantly, the CD40-CD40 ligand interaction on microglia triggers a series of intracellular signaling events that are discussed, beginning with Src-family kinase activation and culminating in microglial activation as evidenced by tumor necrosis factor-alpha secretion. Based on the involvement of microglial activation and brain inflammation in Alzheimer's disease pathogenesis, we have investigated co-stimulation of microglia, smooth muscle, and endothelial cells with CD40 ligand in the presence of low doses of freshly solubilized amyloid-beta peptides. Data reviewed herein show that CD40 ligand and amyloid-beta act synergistically to promote pro-inflammatory responses by these cells, including secretion of interleukin-1 beta by endothelial cells and tumor necrosis factor-alpha by microglia. As these cytokines have been implicated in neuronal injury, a comprehensive model of pro-inflammatory CD40 ligand and amyloid-beta initiated Alzheimer's disease pathogenesis (mediated by multiple CNS cells) is proposed.

  10. Role of Redox Signaling in Neuroinflammation and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hsi-Lung Hsieh

    2013-01-01

    Full Text Available Reactive oxygen species (ROS, a redox signal, are produced by various enzymatic reactions and chemical processes, which are essential for many physiological functions and act as second messengers. However, accumulating evidence has implicated the pathogenesis of several human diseases including neurodegenerative disorders related to increased oxidative stress. Under pathological conditions, increasing ROS production can regulate the expression of diverse inflammatory mediators during brain injury. Elevated levels of several proinflammatory factors including cytokines, peptides, pathogenic structures, and peroxidants in the central nervous system (CNS have been detected in patients with neurodegenerative diseases such as Alzheimer’s disease (AD. These proinflammatory factors act as potent stimuli in brain inflammation through upregulation of diverse inflammatory genes, including matrix metalloproteinases (MMPs, cytosolic phospholipase A2 (cPLA2, cyclooxygenase-2 (COX-2, and adhesion molecules. To date, the intracellular signaling mechanisms underlying the expression of target proteins regulated by these factors are elusive. In this review, we discuss the mechanisms underlying the intracellular signaling pathways, especially ROS, involved in the expression of several inflammatory proteins induced by proinflammatory factors in brain resident cells. Understanding redox signaling transduction mechanisms involved in the expression of target proteins and genes may provide useful therapeutic strategies for brain injury, inflammation, and neurodegenerative diseases.

  11. Neutrophils Are Essential for Containment of Vibrio cholerae to the Intestine during the Proinflammatory Phase of Infection

    OpenAIRE

    Queen, Jessica; Satchell, Karla J Fullner

    2012-01-01

    Cholera is classically considered a noninflammatory diarrheal disease, in comparison to invasive enteric organisms, although there is a low-level proinflammatory response during early infection with Vibrio cholerae and a strong proinflammatory reaction to live attenuated vaccine strains. Using an adult mouse intestinal infection model, this study examines the contribution of neutrophils to host defense to infection. Nontoxigenic El Tor O1 V. cholerae infection is characterized by the upregula...

  12. Increased secretion of pro-inflammatory cytokines by circulating polymorphonuclear neutrophils and regulation by interleukin 10 during intestinal inflammation

    OpenAIRE

    Nikolaus, S; Bauditz, J; Gionchetti, P; Witt, C; Lochs, H; Schreiber, S.

    1998-01-01

    Background—Concentrations of pro-inflammatory cytokines are increased in the intestinal mucosa of patients with active inflammatory bowel disease (IBD). Polymorphonuclear neutrophil granulocytes (PMN) are the most abundant cell type in intestinal lesions in IBD. Interleukin 10 (IL-10) is an important contra-inflammatory cytokine which induces downregulation of pro-inflammatory cytokines. 
Aims—To investigate whether PMN from patients with IBD or infectious colitis, respec...

  13. Lung function in patients with acute exacerbation and stable COPD and its correlation with serum proinflammatory cytokines and chemokines

    Institute of Scientific and Technical Information of China (English)

    Xin-Jie Wang

    2016-01-01

    Objective:To analyze the lung function in patients with acute exacerbation and stable COPD and its correlation with serum proinflammatory factors and chemokines.Methods:A total of 87 patients with chronic obstructive pulmonary disease (COPD) were divided into observation group (n=32) at acute exacerbation phase and control group (n=55) at stable phase according to the illness. Differences in lung function indexes and serum levels of proinflammatory cytokines, chemokines were compared between two groups of patients, and the correlation between lung function indexes and serum levels of proinflammatory cytokines and chemokines was further analyzed.Results: FEV1, FVC, FEV1/FVC, FEF75, PEF and IC levels of observation group were significantly lower than those of control group; serum proinflammatory cytokines IL-1β, IL-4, IL-18, IL-23, TNF-α and IFN-γ content were significantly higher than those of control group; serum chemokines Eotaxin, MDC, FKN, MCP-1, CCL18 and RANTES content were significantly higher than those of control group. FEV1, FVC and FEV1/FVC levels in patients with COPD were negatively correlated with the content of proinflammatory cytokines and chemokines.Conclusions: Lung function declines in acute exacerbation COPD, and the changes in levels of both proinflammatory cytokines and chemokines are involved in it.

  14. Signaling aggression.

    Science.gov (United States)

    van Staaden, Moira J; Searcy, William A; Hanlon, Roger T

    2011-01-01

    From psychological and sociological standpoints, aggression is regarded as intentional behavior aimed at inflicting pain and manifested by hostility and attacking behaviors. In contrast, biologists define aggression as behavior associated with attack or escalation toward attack, omitting any stipulation about intentions and goals. Certain animal signals are strongly associated with escalation toward attack and have the same function as physical attack in intimidating opponents and winning contests, and ethologists therefore consider them an integral part of aggressive behavior. Aggressive signals have been molded by evolution to make them ever more effective in mediating interactions between the contestants. Early theoretical analyses of aggressive signaling suggested that signals could never be honest about fighting ability or aggressive intentions because weak individuals would exaggerate such signals whenever they were effective in influencing the behavior of opponents. More recent game theory models, however, demonstrate that given the right costs and constraints, aggressive signals are both reliable about strength and intentions and effective in influencing contest outcomes. Here, we review the role of signaling in lieu of physical violence, considering threat displays from an ethological perspective as an adaptive outcome of evolutionary selection pressures. Fighting prowess is conveyed by performance signals whose production is constrained by physical ability and thus limited to just some individuals, whereas aggressive intent is encoded in strategic signals that all signalers are able to produce. We illustrate recent advances in the study of aggressive signaling with case studies of charismatic taxa that employ a range of sensory modalities, viz. visual and chemical signaling in cephalopod behavior, and indicators of aggressive intent in the territorial calls of songbirds.

  15. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Cansu Yıldırım

    Full Text Available Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1. In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1 and reduced numbers of CD206-positive (M2 macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular

  16. Proinflammatory proteins in female and male patients with primary antiphospholipid syndrome: preliminary data.

    Science.gov (United States)

    Bećarević, Mirjana; Ignjatović, Svetlana

    2016-10-01

    The latest classification criteria for the diagnosis of the antiphospholipid syndrome (APS, an autoimmune disease characterized by thromboses, miscarriages and presence of antiphospholipid antibodies (Abs)) emphasized that thrombotic manifestations of APS should be without any signs of an inflammatory process. However, atherosclerosis (a chronic inflammatory response to the accumulation of lipoproteins in the walls of arteries) and APS are characterized by some similar features. We evaluated whether proinflammatory proteins were associated with the features of the primary APS (PAPS). PAPS patients without obstetric complications and with impaired lipid profile were included in the study. Antiphospholipid antibodies, TNF-alpha, and apo(a) were determined by ELISA. Complement components and hsCRP were measured by immunonephelometry. Decreased C3c was observed in female patients with increased titers of IgG anti-β2gpI (χ(2) = 3.939, P = 0.047) and in male patients with increased IgM anticardiolipin Abs (χ(2) = 4.286, P = 0.038). Pulmonary emboli were associated with interleukin (IL)-6 in male (χ(2) = 6.519, P = 0.011) and in female (χ(2) = 10.405, P = 0.001) patients. Cerebrovascular insults were associated with LDL-cholesterol (P = 0.05, 95 % CI: 1.003 - 12.739) in female and with apo(a) (P = 0.016, 95 % CI: 0.000-0.003) in male patients. Older female patients had increased LDL-cholesterol levels and frequency of myocardial infarctions. Proinflammatory proteins were associated with features of primary APS. No real gender differences in regard to proinflammatory protein levels were observed. Premenopausal state of female PAPS patients confers lower cardiovascular risk.

  17. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype.

    Directory of Open Access Journals (Sweden)

    Victoria Florea

    Full Text Available The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4 were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.

  18. ACUTE PHASE PROTEINS, LIPID PROFILE AND PROINFLAMMATORY CYTOKINES IN HEALTHY AND BRONCHOPNEUMONIC WATER BUFFALO CALVES

    Directory of Open Access Journals (Sweden)

    Sabry M. El-Bahr

    2013-01-01

    Full Text Available The aim of the present study was to evaluate the diagnostic value of Acute Phase Proteins (APP, lipid profiles and proinflammatory cytokines in healthy and bronchopneumonic water buffalo calves. Therefore, sixty water buffalo calves (9±1 month old, 175±15 kg were divided into two equal groups, the first group represented healthy, control, calves whereas calves of the second group were affected with bronchopneumonia. Total leukocytic and differential counts were determined. Serum total protein, albumin, Triacylglyceol (TAG, low density lipoprotein cholesterol (LDL-c, High Density Lipoprotein cholesterol (HDL-c, Total cholesterol, Alanine Amino Transferase (ALT, Aspartate Amino Transferase (AST, Alkaline Phosphatase (ALP, Fibrinogen (Fb, Haptaglobin (Hp, Serum Amyloid A (SAA, Tumor Necrosis Factor-alpha (TNF-α, Interleukins (IL1β, IL-12 and Interferon-gamma (IFN-γ were also determined. In addition, Bronchoalveolar Lavage (BAL was collected and analyzed. The present findings indicated that, total leukocytic and neutrophils counts were significantly (p<0.05 higher in pneumonic water buffalo calves compare with control. The examined biochemical parameters were significantly (p<0.05 increased in pneumonic calves except for total protein, albumin, cholesterol and HDL-c which were significantly (p<0.05 lower compare with control. Serum concentrations of investigated APP and proinflammatory cytokines were significantly (p<0.05 higher in pneumonic water buffalo calves than those of control. The present study demonstrated that, APP, lipid profile and proinflammatory cytokines perhaps served as biomarkers of bronchopneumonia in water buffalo calves. However, future studies with higher baseline sampling are still needed to establish and validate reference values for APP and cytokines in water buffalo calves.

  19. The pro-apoptotic and pro-inflammatory effects of calprotectin on human periodontal ligament cells.

    Science.gov (United States)

    Zheng, Yunfei; Hou, Jianxia; Peng, Lei; Zhang, Xin; Jia, Lingfei; Wang, Xian'e; Wei, Shicheng; Meng, Huanxin

    2014-01-01

    Calprotectin, a heterodimer of S100A8 and S100A9 subunits, is associated with inflammatory disorders such as rheumatoid arthritis and cystic fibrosis. Although calprotectin levels are increased significantly in the gingival crevicular fluid (GCF) of periodontitis patients, its effects on periodontal ligament cells (PDLCs) remain largely unknown. The aim of this study was to evaluate calprotectin levels in the GCF of generalized aggressive periodontitis (AgP) patients and to investigate the effects of recombinant human calprotectin (rhS100A8/A9) and its subunits (rhS100A8 and rhS100A9) in PDLCs. Both the concentration and amount of crevicular calprotectin were significantly higher in the AgP group compared with healthy controls. In addition, the GCF calprotectin levels were correlated positively with clinical periodontal parameters including bleeding index, probing depth, and clinical attachment loss. rhS100A8/A9 promoted cell apoptosis, whereas rhS100A8 and rhS100A9 individually exerted little effect on apoptosis in PDLCs. rhS100A9 and rhS100A8/A9 increased the activation of nuclear factor-κB (NF-κB) by promoting the nuclear translocation of p65 in PDLCs, subsequently inducing expression of the pro-inflammatory cytokines IL-6, IL-8, TNFα, and COX2. Treatment with an NF-κB inhibitor partially reversed the rhS100A9- and rhS100A8/A9-induced upregulation of the pro-inflammatory cytokines. rhS100A9, and not rhS100A8, was mainly responsible for the pro-inflammatory role of calprotectin. Collectively, our results suggest that calprotectin promotes apoptosis and the inflammatory response in PDLCs via rhS100A9. These findings might help identify novel treatments for periodontitis.

  20. The pro-apoptotic and pro-inflammatory effects of calprotectin on human periodontal ligament cells.

    Directory of Open Access Journals (Sweden)

    Yunfei Zheng

    Full Text Available Calprotectin, a heterodimer of S100A8 and S100A9 subunits, is associated with inflammatory disorders such as rheumatoid arthritis and cystic fibrosis. Although calprotectin levels are increased significantly in the gingival crevicular fluid (GCF of periodontitis patients, its effects on periodontal ligament cells (PDLCs remain largely unknown. The aim of this study was to evaluate calprotectin levels in the GCF of generalized aggressive periodontitis (AgP patients and to investigate the effects of recombinant human calprotectin (rhS100A8/A9 and its subunits (rhS100A8 and rhS100A9 in PDLCs. Both the concentration and amount of crevicular calprotectin were significantly higher in the AgP group compared with healthy controls. In addition, the GCF calprotectin levels were correlated positively with clinical periodontal parameters including bleeding index, probing depth, and clinical attachment loss. rhS100A8/A9 promoted cell apoptosis, whereas rhS100A8 and rhS100A9 individually exerted little effect on apoptosis in PDLCs. rhS100A9 and rhS100A8/A9 increased the activation of nuclear factor-κB (NF-κB by promoting the nuclear translocation of p65 in PDLCs, subsequently inducing expression of the pro-inflammatory cytokines IL-6, IL-8, TNFα, and COX2. Treatment with an NF-κB inhibitor partially reversed the rhS100A9- and rhS100A8/A9-induced upregulation of the pro-inflammatory cytokines. rhS100A9, and not rhS100A8, was mainly responsible for the pro-inflammatory role of calprotectin. Collectively, our results suggest that calprotectin promotes apoptosis and the inflammatory response in PDLCs via rhS100A9. These findings might help identify novel treatments for periodontitis.

  1. Ex vivo and in vitro production of pro-inflammatory cytokines in Blau syndrome

    Directory of Open Access Journals (Sweden)

    P. Galozzi

    2015-03-01

    Full Text Available The objective was to study both ex vivo and in vitro secretion of pro-inflammatory cytokines in patients affected by Blau syndrome (BS and carrying p.E383K mutation in the CARD15/NOD2 gene associated with the disease. For ex vivo studies, peripheral blood mononuclear cells (PBMCs, serum from three patients and healthy controls have been collected. PBMCs have been cultured in the presence or absence of inflammatory enhancers, such as lipopolysaccharide (LPS and muramyl dipeptide (MDP. The levels of interleukin (IL-1β, IL-6, IL-8, tumor necrosis factor (TNF-α and interferon (IFN-γ were assayed by either immunoassay or array-based system. For in vitro studies, different constructs were created cloning human wild-type and p.E383K-mutated NOD2 cDNA into the expression vector pCMV-Tag2c. HEK293 cell lines were stably transfected, cultured with or without MDP and IL-8 level was assayed in their surnatants. Statistical analysis in both studies was performed using non-parametric tests. Both ex vivo and in vitro studies have not identified a significant increase in secretion of the analyzed proinflammatory cytokines. p.E383K-mutated NOD2 transfected cells express low level of IL-8. The ex vivo basal level results from both serum and PBMCs surnatants present similar levels of IL-1β, IL-6, TNF-α and IFN-γ in patients and controls. The presence of the stimulant agents (LPS and MDP, either individual or paired, does not lead to significant increases in all cytokines concentrations in patients compared to controls. Taken together, the ex vivo and in vitro data suggest that there is not a primary mediation of IL-1β and other pro-inflammatory cytokines in BS patients carrying p.E383K.

  2. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection

    Directory of Open Access Journals (Sweden)

    Feng Yonghui

    2012-08-01

    Full Text Available Abstract Background During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL. Methods To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs, macrophages, CD4+ T and regulatory T cells (Treg were assessed by FACS. Results Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10. Conclusions Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses.

  3. Concurrent proinflammatory and apoptotic activity of a Helicobacter pylori protein (HP986 points to its role in chronic persistence.

    Directory of Open Access Journals (Sweden)

    Ayesha Alvi

    Full Text Available Helicobacter pylori induces cytokine mediated changes in gastroduodenal pathophysiology, wherein, the activated macrophages at the sub-mucosal space play a central role in mounting innate immune response against the antigens. The bacterium gains niche through persistent inflammation and local immune-suppression causing peptic ulcer disease or chronic gastritis; the latter being a significant risk factor for the development of gastric adenocarcinoma. What favors persistence of H. pylori in the gastric niches is not clearly understood. We report detailed characterization of a functionally unknown gene (HP986, which was detected in patient isolates associated with peptic ulcer and gastric carcinoma. Expression and purification of recombinant HP986 (rHP986 revealed a novel, ∼29 kDa protein in biologically active form which associates with significant levels of humoral immune responses in diseased individuals (p<0.001. Also, it induced significant levels of TNF-α and Interleukin-8 in cultured human macrophages concurrent to the translocation of nuclear transcription factor-κB (NF-κB. Further, the rHP986 induced apoptosis of cultured macrophages through a Fas mediated pathway. Dissection of the underlying signaling mechanism revealed that rHP986 induces both TNFR1 and Fas expression to lead to apoptosis. We further demonstrated interaction of HP986 with TNFR1 through computational and experimental approaches. Independent proinflammatory and apoptotic responses triggered by rHP986 as shown in this study point to its role, possibly as a survival strategy to gain niche through inflammation and to counter the activated macrophages to avoid clearance.

  4. IRAK-M expression limits dendritic cell activation and proinflammatory cytokine production in response to Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Jessica Shiu

    Full Text Available Helicobacter pylori (H. pylori infects the gastric mucosa and persists for the life of the host. Bacterial persistence may be due to the induction of regulatory T cells (Tregs whichmay have protective effects against other diseases such as asthma. It has been shown that H. pylori modulates the T cell response through dendritic cell reprogramming but the molecular pathways involved are relatively unknown. The goal of this study was to identify critical elements of dendritic cell (DC activation and evaluate potential influence on immune activation. Microarray analysis was used to demonstrate limited gene expression changes in H. pylori stimulated bone marrow derived DCs (BMDCs compared to the BMDCs stimulated with E. coli. IRAK-M, a negative regulator of TLR signaling, was upregulated and we selectedit for investigation of its role in modulating the DC and T cell responses. IRAK-M(-/- and wild type BMDC were compared for their response to H. pylori. Cells lacking IRAK-M produced significantly greater amounts of proinflammatory MIP-2 and reduced amounts of immunomodulatory IL-10 than wild type BMDC. IRAK-M(-/- cells also demonstrated increased MHC II expression upon activation. However, IRAK-M(-/- BMDCs were comparable to wild type BMDCs in inducing T-helper 17 (TH17 and Treg responses as demonstrated in vitro using BMDC CD4+ T cells co-culture assays,and in vivo though the adoptive transfer of CD4(+ FoxP3-GFP T cells into H. pylori infected IRAK-M(-/- mice. These results suggest that H. pylori infection leads to the upregulation of anti-inflammatory molecules like IRAK-M and that IRAK-M has a direct impact on innate functions in DCs such as cytokine and costimulation molecule upregulation but may not affect T cell skewing.

  5. Pro-inflammatory cytokine regulation of P-glycoprotein in the developing blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Majid Iqbal

    Full Text Available Placental P-glycoprotein (P-gp acts to protect the developing fetus from exogenous compounds. This protection declines with advancing gestation leaving the fetus and fetal brain vulnerable to these compounds and potential teratogens in maternal circulation. This vulnerability may be more pronounced in pregnancies complicated by infection, which is common during pregnancy. Pro-inflammatory cytokines (released during infection have been shown to be potent inhibitors of P-gp, but nothing is known regarding their effects at the developing blood-brain barrier (BBB. We hypothesized that P-gp function and expression in endothelial cells of the developing BBB will be inhibited by pro-inflammatory cytokines. We have derived brain endothelial cell (BEC cultures from various stages of development of the guinea pig: gestational day (GD 50, 65 (term ~68 days and postnatal day (PND 14. Once these cultures reached confluence, BECs were treated with various doses (10(0-10(4 pg/mL of pro-inflammatory cytokines: interleukin-1β (IL-1β, interleukin-6 (IL-6 or tumor necrosis factor- α (TNF-α. P-gp function or abcb1 mRNA (encodes P-gp expression was assessed following treatment. Incubation of GD50 BECs with IL-1β, IL-6 or TNF-α resulted in no change in P-gp function. GD65 BECs displayed a dose-dependent decrease in function with all cytokines tested; maximal effects at 42%, 65% and 34% with IL-1β, IL-6 and TNF-α treatment, respectively (P<0.01. Inhibition of P-gp function by IL-1β, IL-6 and TNF-α was even greater in PND14 BECs; maximal effects at 36% (P<0.01, 84% (P<0.05 and 55% (P<0.01, respectively. Cytokine-induced reductions in P-gp function were associated with decreased abcb1 mRNA expression. These data suggest that BBB P-gp function is increasingly responsive to the inhibitory effects of pro-inflammatory cytokines, with increasing developmental age. Thus, women who experience infection and take prescription medication during pregnancy may expose the

  6. THE PRO-INFLAMMATORY PROFILE OF DEPRESSED PATIENTS IS (PARTLY) RELATED TO OBESITY

    OpenAIRE

    Shelton, Richard C.; Falola, Michael; Li LI; Zajecka, John; Fava, Maurizio; Papakostas, George I

    2015-01-01

    Many people with major depressive disorder (MDD) show evidence of systemic inflammation, including elevations in inflammatory factors, but the cause is unclear. The purpose of this analysis was to determine if obesity might contribute to the pro-inflammatory state in MDD patients. Blood was obtained from 135 MDD patients and 50 controls. Serum was extracted and assayed for interleukin (IL) −1β, IL-2, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, interferon-γ (IFNγ), tumor necrosis factor α (TNFα)...

  7. Retracted: Effects of pro-inflammatory cytokines on mineralization potential of rat dental pulp stem cells.

    Science.gov (United States)

    2011-10-01

    The following article from the Journal of Tissue Engineering and Regenerative Medicine, 'Effects of Pro-inflammatory Cytokines on Mineralization Potential of Rat Dental Pulp Stem Cells' by Yang X, Walboomers XF, Bian Z, Jansen JA, Fan M, published online on 11 July 2011 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the authors, the journal Editor-in-Chief, and John Wiley & Sons, Ltd. The retraction has been agreed due to two authors (Walboomers XF, and Jansen JA) not having been involved in the research described, nor made aware of their names being listed on the manuscript, nor told of its submission to the journal.

  8. Genetic priming of a proinflammatory profile predicts low IQ in octogenarians

    DEFF Research Database (Denmark)

    Krabbe, K. S.; Mortensen, E. L.; Avlund, K.

    2009-01-01

    of cognitive function in the peripheral blood. The Wechsler Adult Intelligence Scale was administered to 112 individuals at ages 80 and 85. An IL-18 haplotype was an independent risk factor of poor Performance IQ. The TNF-308GA genotype was related to individual declines in Verbal IQ, and the IL-10-592 CC...... genotype was related to better Verbal IQ at the age of 80. Circulating levels of TNF-alpha, sTNFRs, and IL-6 were negatively correlated with IQ at age 85 and less strongly to IQ at age 80 with activation of the TNF system as the strongest biomarker. In conclusion, SNPs related to high proinflammatory...

  9. Distinct phenotypes of human prostate cancer cells associate with different adaptation to hypoxia and pro-inflammatory gene expression.

    Directory of Open Access Journals (Sweden)

    Linda Ravenna

    Full Text Available Hypoxia and inflammation are strictly interconnected both concurring to prostate cancer progression. Numerous reports highlight the role of tumor cells in the synthesis of pro-inflammatory molecules and show that hypoxia can modulate a number of these genes contributing substantially to the increase of cancer aggressiveness. However, little is known about the importance of the tumor phenotype in this process. The present study explores how different features, including differentiation and aggressiveness, of prostate tumor cell lines impact on the hypoxic remodeling of pro-inflammatory gene expression and malignancy. We performed our studies on three cell lines with increasing metastatic potential: the well differentiated androgen-dependent LNCaP and the less differentiated and androgen-independent DU145 and PC3. We analyzed the effect that hypoxic treatment has on modulating pro-inflammatory gene expression and evaluated the role HIF isoforms and NF-kB play in sustaining this process. DU145 and PC3 cells evidenced a higher normoxic expression and a more complete hypoxic induction of pro-inflammatory molecules compared to the well differentiated LNCaP cell line. The role of HIF1α and NF-kB, the master regulators of hypoxia and inflammation respectively, in sustaining the hypoxic pro-inflammatory phenotype was different according to cell type. NF-kB was observed to play a main role in DU145 and PC3 cells in which treatment with the NF-kB inhibitor parthenolide was able to counteract both the hypoxic pro-inflammatory shift and HIF1α activation but not in LNCaP cells. Our data highlight that tumor prostate cell phenotype contributes at a different degree and with different mechanisms to the hypoxic pro-inflammatory gene expression related to tumor progression.

  10. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues

    Science.gov (United States)

    Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan; Lenkov, Olga; Mahmoudi, Morteza; Shaw, Aubie; Pajarinen, Jukka Sakari; Nejadnik, Hossein; Goodman, Stuart; Moseley, Michael; Coussens, Lisa Marie; Daldrup-Link, Heike Elisabeth

    2016-11-01

    Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied 'off label' to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies.

  11. Complement-dependent proinflammatory properties of the Alzheimer's disease beta-peptide.

    Science.gov (United States)

    Bradt, B M; Kolb, W P; Cooper, N R

    1998-08-03

    Large numbers of neuritic plaques (NP), largely composed of a fibrillar insoluble form of the beta-amyloid peptide (Abeta), are found in the hippocampus and neocortex of Alzheimer's disease (AD) patients in association with damaged neuronal processes, increased numbers of activated astrocytes and microglia, and several proteins including the components of the proinflammatory complement system. These studies address the hypothesis that the activated complement system mediates the cellular changes that surround fibrillar Abeta deposits in NP. We report that Abeta peptides directly and independently activate the alternative complement pathway as well as the classical complement pathway; trigger the formation of covalent, ester-linked complexes of Abeta with activation products of the third complement component (C3); generate the cytokine-like C5a complement-activation fragment; and mediate formation of the proinflammatory C5b-9 membrane attack complex, in functionally active form able to insert into and permeabilize the membrane of neuronal precursor cells. These findings provide inflammation-based mechanisms to account for the presence of complement components in NP in association with damaged neurons and increased numbers of activated glial cells, and they have potential implications for the therapy of AD.

  12. Rapid glia expression and release of proinflammatory cytokines in experimental Klebsiella pneumoniae meningoencephalitis.

    Science.gov (United States)

    Wen, Li-Li; Chiu, Chien-Tsai; Huang, Ya-Ni; Chang, Che-Feng; Wang, Jia-Yi

    2007-05-01

    The host immune/inflammatory response following CNS infection by Klebsiella pneumoniae remains poorly understood. Using a rat model of K. pneumoniae meningoencephalitis, we investigated the temporal profiles of brain proinflammatory cytokines and their cellular sources. Leukocyte counts significantly increased in cerebrospinal fluid (CSF) at 2 h after K. pneumoniae inoculation into the rat brain but were still much lower than blood leukocyte counts. However, concentrations of tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-6 in CSF were much higher than the simultaneously collected serum levels. The rapid increase in brain expression of these cytokines at the messenger RNA (mRNA) and protein levels occurred earlier than the onset of leukocytosis. Double immunofluorescence staining revealed the presence of TNF-alpha, IL-1beta, and IL-6 in astrocytes and microglia. Exposure of primary culture of glial cells to K. pneumoniae also resulted in time-dependent increases in the concentration of these cytokines in the culture media. Taken together, our results suggest that glial cells are an important early source of proinflammatory cytokines during K. pneumonia infection of CNS.

  13. Proinflammatory Responses of Heme in Alveolar Macrophages: Repercussion in Lung Hemorrhagic Episodes

    Directory of Open Access Journals (Sweden)

    Rafael L. Simões

    2013-01-01

    Full Text Available Clinical and experimental observations have supported the notion that free heme released during hemorrhagic and hemolytic episodes may have a major role in lung inflammation. With alveolar macrophages (AM being the main line of defense in lung environments, the influence of free heme on AM activity and function was investigated. We observed that heme in a concentration range found during hemolytic episodes (3–30 μM elicits AM to present a proinflammatory profile, stimulating reactive oxygen species (ROS and nitric oxide (NO generation and inducing IL-1β, IL-6, and IL-10 secretion. ROS production is NADPH oxidase-dependent, being inhibited by DPI and apocynin, and involves p47 subunit phosphorylation. Furthermore, heme induces NF-κB nuclear translocation, iNOS, and also HO-1 expression. Moreover, AM stimulated with free heme show enhanced phagocytic and bactericidal activities. Taken together, the data support a dual role for heme in the inflammatory response associated with lung hemorrhage, acting as a proinflammatory molecule that can either act as both an adjuvant of the innate immunity and as an amplifier of the inflammatory response, leading tissue injury. The understanding of heme effects on pulmonary inflammatory processes can lead to the development of new strategies to ameliorate tissue damage associated with hemorrhagic episodes.

  14. Ghrelin's Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on β-Cell Functionality

    Science.gov (United States)

    Diaz-Ganete, Antonia; Baena-Nieto, Gloria; Lomas-Romero, Isabel M.; Lopez-Acosta, Jose Francisco; Cozar-Castellano, Irene; Medina, Francisco; Segundo, Carmen; Lechuga-Sancho, Alfonso M.

    2015-01-01

    Ghrelin is a peptidic hormone, which stimulates cell proliferation and inhibits apoptosis in several tissues, including pancreas. In preclinical stage of type 1 diabetes, proinflammatory cytokines generate a destructive environment for β-cells known as insulitis, which results in loss of β-cell mass and impaired insulin secretion, leading to diabetes. Our aim was to demonstrate that ghrelin could preserve β-cell viability, turnover rate, and insulin secretion acting as a counter balance of cytokines. In the present work we reproduced proinflammatory milieu found in insulitis stage by treating murine cell line INS-1E and rat islets with a cytokine cocktail including IL-1β, IFNγ, and TNFα and/or ghrelin. Several proteins involved in survival pathways (ERK 1/2 and Akt/PKB) and apoptosis (caspases and Bcl-2 protein family and endoplasmic reticulum stress markers) as well as insulin secretion were analyzed. Our results show that ghrelin alone has no remarkable effects on β-cells in basal conditions, but interestingly it activates cell survival pathways, downregulates apoptotic mediators and endoplasmic reticulum stress, and restores insulin secretion in response to glucose when beta-cells are cytokine-exposed. These data suggest a potential role of ghrelin in preventing or slowing down the transition from a preclinical to clinically established diabetes by ameliorating the effects of insulitis on β-cells. PMID:26257781

  15. Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity.

    Science.gov (United States)

    Guerau-de-Arellano, Mireia; Smith, Kristen M; Godlewski, Jakub; Liu, Yue; Winger, Ryan; Lawler, Sean E; Whitacre, Caroline C; Racke, Michael K; Lovett-Racke, Amy E

    2011-12-01

    Pro-inflammatory T cells mediate autoimmune demyelination in multiple sclerosis. However, the factors driving their development and multiple sclerosis susceptibility are incompletely understood. We investigated how micro-RNAs, newly described as post-transcriptional regulators of gene expression, contribute to pathogenic T-cell differentiation in multiple sclerosis. miR-128 and miR-27b were increased in naïve and miR-340 in memory CD4(+) T cells from patients with multiple sclerosis, inhibiting Th2 cell development and favouring pro-inflammatory Th1 responses. These effects were mediated by direct suppression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and interleukin-4 (IL4) expression, resulting in decreased GATA3 levels, and a Th2 to Th1 cytokine shift. Gain-of-function experiments with these micro-RNAs enhanced the encephalitogenic potential of myelin-specific T cells in experimental autoimmune encephalomyelitis. In addition, treatment of multiple sclerosis patient T cells with oligonucleotide micro-RNA inhibitors led to the restoration of Th2 responses. These data illustrate the biological significance and therapeutic potential of these micro-RNAs in regulating T-cell phenotypes in multiple sclerosis.

  16. Metoprolol Reduces Proinflammatory Cytokines and Atherosclerosis in ApoE−/− Mice

    Directory of Open Access Journals (Sweden)

    Marcus A. Ulleryd

    2014-01-01

    Full Text Available A few studies in animals and humans suggest that metoprolol (β1-selective adrenoceptor antagonist may have a direct antiatherosclerotic effect. However, the mechanism behind this protective effect has not been established. The aim of the present study was to evaluate the effect of metoprolol on development of atherosclerosis in ApoE−/− mice and investigate its effect on the release of proinflammatory cytokines. Male ApoE−/− mice were treated with metoprolol (2.5 mg/kg/h or saline for 11 weeks via osmotic minipumps. Atherosclerosis was assessed in thoracic aorta and aortic root. Total cholesterol levels and Th1/Th2 cytokines were analyzed in serum and macrophage content in lesions by immunohistochemistry. Metoprolol significantly reduced atherosclerotic plaque area in thoracic aorta (P<0.05 versus Control. Further, metoprolol reduced serum TNFα and the chemokine CXCL1 (P<0.01 versus Control for both as well as decreasing the macrophage content in the plaques (P<0.01 versus Control. Total cholesterol levels were not affected. In this study we found that a moderate dose of metoprolol significantly reduced atherosclerotic plaque area in thoracic aorta of ApoE−/− mice. Metoprolol also decreased serum levels of proinflammatory cytokines TNFα and CXCL1 and macrophage content in the plaques, showing that metoprolol has an anti-inflammatory effect.

  17. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue.

    Science.gov (United States)

    Majdoubi, Abdelilah; Kishta, Osama A; Thibodeau, Jacques

    2016-06-01

    Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.

  18. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei

    Science.gov (United States)

    Kessler, Bianca; Rinchai, Darawan; Kewcharoenwong, Chidchamai; Nithichanon, Arnone; Biggart, Rachael; Hawrylowicz, Catherine M.; Bancroft, Gregory J.; Lertmemongkolchai, Ganjana

    2017-01-01

    Melioidosis, caused by Burkholderia pseudomallei, is endemic in northeastern Thailand and Northern Australia. Severe septicemic melioidosis is associated with high levels of pro-inflammatory cytokines and is correlated with poor clinical outcomes. IL-10 is an immunoregulatory cytokine, which in other infections can control the expression of pro-inflammatory cytokines, but its role in melioidosis has not been addressed. Here, whole blood of healthy seropositive individuals (n = 75), living in N. E. Thailand was co-cultured with B. pseudomallei and production of IL-10 and IFN-γ detected and the cellular sources identified. CD3− CD14+ monocytes were the main source of IL-10. Neutralization of IL-10 increased IFN-γ, IL-6 and TNF-α production and improved bacteria killing. IFN-γ production and microbicidal activity were impaired in individuals with diabetes mellitus (DM). In contrast, IL-10 production was unimpaired in individuals with DM, resulting in an IL-10 dominant cytokine balance. Neutralization of IL-10 restored the IFN-γ response of individuals with DM to similar levels observed in healthy individuals and improved killing of B. pseudomallei in vitro. These results demonstrate that monocyte derived IL-10 acts to inhibit potentially protective cell mediated immune responses against B. pseudomallei, but may also moderate the pathological effects of excessive cytokine production during sepsis. PMID:28216665

  19. [Indicators of the persistent pro-inflammatory activation of the immune system in depression].

    Science.gov (United States)

    Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy

    2006-01-01

    The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.

  20. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Zong, L. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China); No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Yu, Q.H. [Second Military Medical University, Changhai Hospital, Department of Gastroenterology, Shanghai, China, Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai (China); Du, Y.X. [No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Deng, X.M. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2014-03-03

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  1. Inhibition of pro-inflammatory mediators: role of Bacopa monniera (L.) Wettst.

    Science.gov (United States)

    Viji, Vijayan; Helen, Antony

    2011-10-01

    Bacopa monniera (L.) Wettst is a renowned plant in the Ayurvedic system of medicine. The present study seeks to identify the anti-inflammatory activity of two fractions from the methanolic extract of Bacopa, viz. the triterpenoid and bacoside-enriched fractions. The ability of these two fractions to inhibit the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 was tested using lipopolysaccharide (LPS)-activated peripheral blood mononuclear cells and peritoneal exudate cells in vitro. We found that triterpenoid and bacoside-enriched fractions significantly inhibited LPS-activated TNF-α, IL-6 and nitrite production in mononuclear cells. Significant antioxidant activity was exhibited by the bacoside enriched fraction compared to the triterpenoid fraction. Carrageenan-induced hind paw oedema assay revealed that triterpenoid and bacoside-enriched fractions exerted anti-oedematogenic effect, while in the arthritis model only the triterpenoid fraction exerted an anti-arthritic potential. The present study provides an insight into the ability of Bacopa monniera to inhibit inflammation through modulation of pro-inflammatory mediator release.

  2. Lygodium flexuosum extract down regulates the expression of proinflammatory cytokines in CCl4 -induced hepatotoxicity

    Institute of Scientific and Technical Information of China (English)

    Pallara Janardhanan Wills; Velikkakathu Vasumathi Asha

    2012-01-01

    Objective:To examine the downregulation of proinflammatory cytokines in a time dependant manner on carbon tetrachloride induced toxicity in experimental animals.Methods:CCl4(150 μL/100 g) was dissolved in corn oil(1:1 v/v%) and administered orally.GroupI was treated as normal control and received corn oil on8th day.GroupII was toxic control and was given a single dose ofCCl4 on8th days.GroupIII wastreated withLygodium flexuosum(L. flexuosum)n-hexane extract(200 mg/kg) for8 days and on8th day a single dose ofCCl4 was received.GroupIV(negative control) receivedL. flexuosumn-hexane extract(200 mg/kg) alone for8 days.Results:Treatment withn-hexane extract prior to the administration ofCCl4 significantly prevented an increase in serumAST,ALT,LDH activity and lipid peroxidation and prevented the depletion of glutathione (GSH).Rats treated withL. flexuosum had reduced mRNA levels ofTGF-β1,TNF-α andIL-1βgenes in liver ofCCl4 intoxicated rats when compared toCCl4 control as evidenced byRT-PCR. Conclusions:The data suggest that L. flexuosum, a widely available fern, significantly reduces CCl4 induced acute hepatotoxicity by down-regulating the expression of pro-inflammatory cytokines in rats.

  3. Molecular mechanisms of differentiation of murine pro-inflammatory gamma-delta T cell subsets

    Directory of Open Access Journals (Sweden)

    Bruno eSilva-Santos

    2013-12-01

    Full Text Available Gamma-delta (gd T cells are unconventional innate-like lymphocytes that actively participate in protective immunity against tumors and infectious organisms including bacteria, viruses and parasites. However, gd T cells are also involved in the development of inflammatory and autoimmune diseases. gd T cells are functionally characterized by very rapid production of pro-inflammatory cytokines, while also impacting on (slower but long-lasting adaptive immune responses. This makes it crucial to understand the molecular mechanisms that regulate  T cell effector functions. Although they share many similarities with ab T cells, our knowledge of the molecular pathways that control effector functions in gd T cells still lags significantly behind. In this review, we focus on the segregation of interferon-gamma versus interleukin-17 production in murine thymic-derived gd T cell subsets defined by CD27 and CCR6 expression levels. We summarize the most recent studies that disclose the specific epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete pro-inflammatory gd T cell subsets, whose manipulation may be valuable for regulating (autoimmune responses.

  4. Proinflammatory role of inducible nitric oxide synthase in acute hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Kupatt Christian

    2004-09-01

    Full Text Available Abstract Background Hyperoxic exposures are often found in clinical settings of respiratory insufficient patients, although oxygen therapy (>50% O2 can result in the development of acute hyperoxic lung injury within a few days. Upon hyperoxic exposure, the inducible nitric oxide synthase (iNOS is activated by a variety of proinflammatory cytokines both in vitro and in vivo. In the present study, we used a murine hyperoxic model to evaluate the effects of iNOS deficiency on the inflammatory response. Methods Wild-type and iNOS-deficient mice were exposed to normoxia, 60% O2 or >95% O2 for 72 h. Results Exposure to >95% O2 resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. No significant effects of iNOS deficiency on cell differential in bronchoalveolar lavage fluid were observed. However, hyperoxia induced a significant increase in total cell count, protein concentration, LDH activity, lipid peroxidation, and TNF-α concentration in the bronchoalveolar lavage fluid compared to iNOS knockout mice. Moreover, binding activity of NF-κB and AP-1 appeared to be higher in wild-type than in iNOS-deficient mice. Conclusion Taken together, our results provide evidence to suggest that iNOS plays a proinflammatory role in acute hyperoxic lung injury.

  5. Effect of genistein on proinflammatory cytokines and estrogen receptor-β in mice model of endometriosis

    Institute of Scientific and Technical Information of China (English)

    Sutrisno Sutrisno; RR Catur Leny Wulandari; Dwi Wahyu Wulan Sulistyowati; Ratna Feti Wulandari; Endang Sri Wahyuni; Yuyun Yueniwati; Sanarto Santoso

    2015-01-01

    Objective: To investigate the effect of genistein on proinflammatory cytokines, NF-κB activation, and estrogen receptor-β expression in a mice model of endometriosis. Methods:Forty female mice (Mus musculus) were divided into eight groups (n=5 each), including the control (untreated) group, endometriosis group, and the endometriosis groups were given various doses of genistein (at doses of 50; 100; 200; 300; 400; 500 mg/day). Analysis of TNF-α, IL-1β, IL-6, and IL-8 level were done by ELISA technically. Analysis of estrogen receptor-β and NF-κB were done by immunohistochemistry. Results: The level of TNF-α, IL-1β, IL-6, and IL-8 were significantly higher in the EM group compared to the untreated control group (P0.05). These increased levels of IL-1β,IL-6, adn IL-8 in the EM group were significantly reduced by all doses of genistein. There were significantly (P0.05). All doses genistein significantly prevented EM-induced increase in NF-κB activation (P<0.05), to reach the expression on control group. Conclusion: In conclusion, genistein prohibits the increase in proinflammatory cytokines, NF-κB, and estrogen receptor-β expression in a mice model of endometriosis.

  6. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes.

    Science.gov (United States)

    Kaminitz, Ayelet; Ash, Shifra; Askenasy, Nadir

    2016-09-27

    As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.

  7. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice.

    Directory of Open Access Journals (Sweden)

    Chao Huang

    Full Text Available The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70 overexpression has established functions in lipopolysaccharide (LPS-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES, an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS protein expression as well as serum nitric oxide (NO, tumor necrosis factor-α (TNF-α, and interleukin-6 (IL-6 content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca(2+]i and intracellular pH value (pHi in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na(+/H(+ exchanger 1 (NHE1 association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the

  8. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators.

    Directory of Open Access Journals (Sweden)

    Shunying Jin

    Full Text Available Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC deposition-induced acute lung injury (ALI. Components of gamma amino butyric acid (GABA signaling, including GABA B receptor 2 (GABABR2, GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP, in the bronchoalveolar lavage fluid (BALF. Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting

  9. Baclofen, a GABABR agonist, ameliorates immune-complex mediated acute lung injury by modulating pro-inflammatory mediators.

    Science.gov (United States)

    Jin, Shunying; Merchant, Michael L; Ritzenthaler, Jeffrey D; McLeish, Kenneth R; Lederer, Eleanor D; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T; Lentsch, Alex B; Roman, Jesse; Klein, Jon B; Rane, Madhavi J

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  10. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses.

    Science.gov (United States)

    Barth, Kenneth; Genco, Caroline Attardo

    2016-10-04

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses.

  11. Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis

    Directory of Open Access Journals (Sweden)

    Logan Richard M

    2010-03-01

    Full Text Available Abstract Background Mucositis is a toxic side effect of anti-cancer treatments and is a major focus in cancer research. Pro-inflammatory cytokines have previously been implicated in the pathophysiology of chemotherapy-induced gastrointestinal mucositis. However, whether they play a key role in the development of radiotherapy-induced gastrointestinal mucositis is still unknown. Therefore, the aim of the present study was to characterise the expression of pro-inflammatory cytokines in the gastrointestinal tract using a rat model of fractionated radiotherapy-induced toxicity. Methods Thirty six female Dark Agouti rats were randomly assigned into groups and received 2.5 Gys abdominal radiotherapy three times a week over six weeks. Real time PCR was conducted to determine the relative change in mRNA expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF in the jejunum and colon. Protein expression of IL-1β, IL-6 and TNF in the intestinal epithelium was investigated using qualitative immunohistochemistry. Results Radiotherapy-induced sub-acute damage was associated with significantly upregulated IL-1β, IL-6 and TNF mRNA levels in the jejunum and colon. The majority of pro-inflammatory cytokine protein expression in the jejunum and colon exhibited minimal change following fractionated radiotherapy. Conclusions Pro-inflammatory cytokines play a key role in radiotherapy-induced gastrointestinal mucositis in the sub-acute onset setting.

  12. Suppressing IL-32 in monocytes impairs the induction of the proinflammatory cytokines TNFalpha and IL-1beta.

    Science.gov (United States)

    Hong, Jaewoo; Bae, Suyoung; Kang, Youngsun; Yoon, Doyoung; Bai, Xiyuan; Chan, Edward D; Azam, Tania; Dinarello, Charles A; Lee, Siyoung; Her, Erk; Rho, Gyujin; Kim, Soohyun

    2010-02-01

    Targeting major proinflammatory cytokines such as IL-1beta and TNFalpha is of great interest in patients with chronic inflammatory diseases, including rheumatoid arthritis, colitis, and psoriasis. The cytokine Interleukin (IL)-32 induces proinflammatory cytokines such as TNFalpha, IL-1beta, IL-6, and chemokines. We previously used an IL-32 ligand-affinity column to purify proteinase 3, which is abundantly expressed in neutrophil and monocytic leukocytes but not in other cell types, and found that IL-32 is mainly produced by monocytic leukocytes. This evidence suggested that silencing endogenous IL-32 by short hairpin RNA (shRNA) in monocytic cells might reveal the precise function of endogenous IL-32. Indeed, lipopolysaccharide (LPS)- or phorbol myristate acetate (PMA)-induced proinflammatory cytokine production was significantly inhibited in shRNA/IL-32 stable clones as compared to control clones. Furthermore, macrophages in PMA-differentiated shRNA/IL-32 stable clones displayed remarkably impaired LPS- and IL-1beta-induced proinflammatory cytokine production. These data suggest that IL-32 is not only involved in host defense against pathogens, but also might play a role in chronic inflammatory diseases. IL-32 production leads to major proinflammatory cytokine production during the initial immune response.

  13. Small interfering RNA targeted to IGF-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Tiphanie Durfort

    Full Text Available Insulin-like growth factor I (IGF-I and its type I receptor (IGF-IR play significant roles in tumorigenesis and in immune response. Here, we wanted to know whether an RNA interference approach targeted to IGF-IR could be used for specific antitumor immunostimulation in a breast cancer model. For that, we evaluated short interfering RNA (siRNAs for inhibition of in vivo tumor growth and immunological stimulation in immunocompetent mice. We designed 2'-O-methyl-modified siRNAs to inhibit expression of IGF-IR in two murine breast cancer cell lines (EMT6, C4HD. Cell transfection of IGF-IR siRNAs decreased proliferation, diminished phosphorylation of downstream signaling pathway proteins, AKT and ERK, and caused a G0/G1 cell cycle block. The IGF-IR silencing also induced secretion of two proinflammatory cytokines, TNF- α and IFN-γ. When we transfected C4HD cells with siRNAs targeting IGF-IR, mammary tumor growth was strongly delayed in syngenic mice. Histology of developing tumors in mice grafted with IGF-IR siRNA treated C4HD cells revealed a low mitotic index, and infiltration of lymphocytes and polymorphonuclear neutrophils, suggesting activation of an antitumor immune response. When we used C4HD cells treated with siRNA as an immunogen, we observed an increase in delayed-type hypersensitivity and the presence of cytotoxic splenocytes against wild-type C4HD cells, indicative of evolving immune response. Our findings show that silencing IGF-IR using synthetic siRNA bearing 2'-O-methyl nucleotides may offer a new clinical approach for treatment of mammary tumors expressing IGF-IR. Interestingly, our work also suggests that crosstalk between IGF-I axis and antitumor immune response can mobilize proinflammatory cytokines.

  14. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells

    Institute of Scientific and Technical Information of China (English)

    LI Li; ZHANG Xiao-Hui; LIU Guang-Rong; LIU Chang; DONG Yin-Mao

    2016-01-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm.Both cell types are involved in a variety of inflammatory and immune events,producing an array of inflammatory mediators,such as cytokines.The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation.The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI).The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays.Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels.Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines,such as interleukin (IL)-6,IL-8,IL-1β,and tumor necrosis factor (TNF)-α.The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK),revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition.Furthermore,isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells.In conclusion,the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions.

  15. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages.

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    Full Text Available Genkwanin is one of the major non-glycosylated flavonoids in many herbs with anti-inflammatory activities. Although its anti-inflammatory activity in vivo has been reported, the potential molecular mechanisms remain obscure. In this study, by pharmacological and genetic approaches, we explore the anti-inflammatory effects of genkwanin in LPS-activated RAW264.7 macrophages. Genkwanin potently decreases the proinflammatory mediators, such as iNOS, TNF-α, IL-1β and IL-6, at the transcriptional and translational levels without cytotoxicity, indicating the excellent anti-inflammatory potency of genkwanin in vitro. Mechanism study shows that genkwanin significantly suppresses the p38- and JNK-mediated AP-1 signaling pathway and increases the mitogen-activated protein kinase (MAPK phosphatase 1 (MKP-1 expression at the posttranscriptional level. We also confirmed that microRNA-101 (miR-101 is a negative regulator of MKP-1 expression. Moreover, regardless of miR-101-deficient cells or miR-101-abundant cells, the suppression effects of genkwanin on supernatant proinflammatory mediators' levels are far less than that in respective negative control cells, suggesting that genkwanin exerts anti-inflammatory effect mainly through reducing miR-101 production. However, genkwanin can't affect the level of phospho-Akt (p-Akt, indicating that the phosphorylation of Akt may be not responsible for the effect of genkwanin on miR-101 production. We conclude that genkwanin exerts its anti-inflammatory effect mainly through the regulation of the miR-101/MKP-1/MAPK pathway.

  16. Naegleria fowleri induces MUC5AC and pro-inflammatory cytokines in human epithelial cells via ROS production and EGFR activation.

    Science.gov (United States)

    Cervantes-Sandoval, Isaac; Serrano-Luna, José de Jesús; Meza-Cervantez, Patricia; Arroyo, Rossana; Tsutsumi, Víctor; Shibayama, Mineko

    2009-11-01

    Naegleria fowleri is an amoeboflagellate responsible for the fatal central nervous system (CNS) disease primary amoebic meningoencephalitis (PAM). This amoeba gains access to the CNS by invading the olfactory mucosa and crossing the cribriform plate. Studies using a mouse model of infection have shown that the host secretes mucus during the very early stages of infection, and this event is followed by an infiltration of neutrophils into the nasal cavity. In this study, we investigated the role of N. fowleri trophozoites in inducing the expression and secretion of airway mucin and pro-inflammatory mediators. Using the human mucoepidermal cell line NCI-H292, we demonstrated that N. fowleri induced the expression of the MUC5AC gene and protein and the pro-inflammatory mediators interleukin-8 (IL-8) and interleukin-1 beta (IL-1 beta), but not tumour necrosis factor-alpha or chemokine c-c motif ligand 11 (eotaxin). Since the production of reactive oxygen species (ROS) is a common phenomenon involved in the signalling pathways of these molecules, we analysed if trophozoites were capable of causing ROS production in NCI-H292 cells by detecting oxidation of the fluorescent probe 2,7-dichlorofluorescein diacetate. NCI-H292 cells generated ROS after 15-30 min of trophozoite stimulation. Furthermore, the expression of MUC5AC, IL-8 and IL-1 beta was inhibited in the presence of the ROS scavenger DMSO. In addition, the use of an epidermal growth factor receptor inhibitor decreased the expression of MUC5AC and IL-8, but not IL-1 beta. We conclude that N. fowleri induces the expression of some host innate defence mechanisms, such as mucin secretion (MUC5AC) and local inflammation (IL-8 and IL-1 beta) in respiratory epithelial cells via ROS production and suggest that these innate immune mechanisms probably prevent most PAM infections.

  17. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells.

    Science.gov (United States)

    Li, Li; Zhang, Xiao-Hui; Liu, Guang-Rong; Liu, Chang; Dong, Yin-Mao

    2016-06-01

    Mast cells and basophils are multifunctional effector cells that contain abundant secretory granules in their cytoplasm. Both cell types are involved in a variety of inflammatory and immune events, producing an array of inflammatory mediators, such as cytokines. The aim of the study was to examine whether isoquercitrin modulates allergic and inflammatory reactions in the human basophilic KU812 cells and to elucidate its influence on the phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. The KU812 cells were stimulated with phorbol-12-myristate 13-acetate plus the calcium ionophore A23187 (PMACI). The inhibitory effects of isoquercitrin on the productions of histamine and pro-inflammatory cytokines in the stimulated KU812 cells were measured using cytokine-specific enzyme-linked immunosorbent (ELISA) assays. Western blotting analysis was used to assess the effects of isoquercitrin on the MAPKs and NF-κB protein levels. Our results indicated that the isoquercitrin treatment of PMACI-stimulated KU812 cells significantly reduced the production of histamine and the pro-inflammatory cytokines, such as interleukin (IL)-6, IL-8, IL-1β, and tumor necrosis factor (TNF)-α. The treated cells exhibited decreased phosphorylation of extracellular signal-regulated kinase (ERK), revealing the role of ERK MAPK in isoquercitrin-mediated allergy inhibition. Furthermore, isoquercitrin suppressed the PMACI-mediated activation of NF-κB in the human basophil cells. In conclusion, the results from the present study provide insights into the potential therapeutic use of isoquercitrin for the treatment of inflammatory and allergic reactions.

  18. Bayesian signaling

    OpenAIRE

    Hedlund, Jonas

    2014-01-01

    This paper introduces private sender information into a sender-receiver game of Bayesian persuasion with monotonic sender preferences. I derive properties of increasing differences related to the precision of signals and use these to fully characterize the set of equilibria robust to the intuitive criterion. In particular, all such equilibria are either separating, i.e., the sender's choice of signal reveals his private information to the receiver, or fully disclosing, i.e., the outcome of th...

  19. Effects of porcine MyD88 knockdown on the expression of TLR4 pathway-related genes and proinflammatory cytokines.

    Science.gov (United States)

    Dai, Chaohui; Sun, Li; Yu, Lihuai; Zhu, Guoqiang; Wu, Shenglong; Bao, Wenbin

    2016-12-01

    As a critical adapter protein in Toll-like receptor (TLR)/Interleukin (IL)-1R signalling pathway, myeloid differentiation protein 88 (MyD88) plays an important role in immune responses and host defence against pathogens. The present study was designed to provide a foundation and an important reagent for the mechanistic study of MyD88 and its role TLR/IL-1R signalling pathways in porcine immunity. Lentivirus-mediated RNAi was used to generate a porcine PK15 cell line with a silenced MyD88 gene and quantitative real-time PCR (qPCR) and Western blotting were used to detect changes in the expression of critical genes in the Toll-like receptor 4 (TLR4) signalling pathway. ELISA was used to measure the levels of seven proinflammatory cytokines-interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), IL-6, IL-8, IL-12, macrophage inflammatory protein (MIP)-1α and MIP-1β-in cell culture supernatants after MyD88 silencing. We successfully obtained a PK15 cell line with 61% MyD88 mRNA transcript down-regulated. In PK15 cells with MyD88 silencing, the transcript levels of TLR4 and IL-1β were significantly reduced, whereas there were no significant changes in the expression levels of cluster of differentiation antigen 14 (CD14), interferon-α (IFN-α) or TNF-α The ELISA results showed that the levels of most cytokines were not significantly changed apart from IL-8 without stimulation, which was significantly up-regulated. When cells were induced by lipopolysaccharide (LPS) (0.1 μg/ml) for 6 h, the global level of seven proinflammatory cytokines up-regulated and the level of IL-1β, TNF-α, IL-6, IL-8 and IL-12 of Blank and negative control (NC) group up-regulated more significantly than RNAi group (Pproinflammatory cytokines and finally leaded to immunosuppression.

  20. High expression of arachidonate 15-lipoxygenase and proinflammatory markers in human ischemic heart tissue

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Lisa U.; Lundqvist, Annika [Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg (Sweden); Asp, Julia [Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Synnergren, Jane [Systems Biology Research Center, School of Life Sciences, University of Skoevde, Skoevde (Sweden); Johansson, Cecilia Thalen [Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg (Sweden); Palmqvist, Lars [Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg (Sweden); Jeppsson, Anders [Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg (Sweden); Hulten, Lillemor Mattsson, E-mail: Lillemor.Mattsson@wlab.gu.se [Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg (Sweden)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We found a 17-fold upregulation of ALOX15 in the ischemic heart. Black-Right-Pointing-Pointer Incubation of human muscle cells in hypoxia showed a 22-fold upregulation of ALOX15. Black-Right-Pointing-Pointer We observed increased levels of proinflammatory markers in ischemic heart tissue. Black-Right-Pointing-Pointer Suggesting a link between ischemia and inflammation in ischemic heart biopsies. -- Abstract: A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1{alpha} (HIF-1{alpha}) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques. ALOX15 has recently been shown to be present in the human myocardium, but the effect of ischemia on its expression has not been investigated. Here we test the hypothesis that ischemia of the heart leads to increased expression of ALOX15, and found an almost 2-fold increase in HIF-1{alpha} mRNA expression and a 17-fold upregulation of ALOX15 mRNA expression in the ischemic heart biopsies from patients undergoing coronary bypass surgery compared with non ischemic heart tissue. To investigate the effect of low oxygen concentration on ALOX15 we incubated human vascular muscle cells in hypoxia and showed that expression of ALOX15 increased 22-fold compared with cells incubated in normoxic conditions. We also observed increased mRNA levels of proinflammatory markers in ischemic heart tissue compared with non-ischemic controls. In summary, we demonstrate increased ALOX15 in human ischemic heart biopsies. Furthermore we demonstrate that hypoxia increases ALOX15 in human muscle cells. Our results yield

  1. Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages

    Directory of Open Access Journals (Sweden)

    Andrade Marcelle RM

    2012-08-01

    Full Text Available Abstract Background Tuberculosis, caused by Mycobacterium tuberculosis or Mycobacterium bovis, remains one of the leading infectious diseases worldwide. The ability of mycobacteria to rapidly grow in host macrophages is a factor contributing to enhanced virulence of the bacteria and disease progression. Bactericidal functions of phagocytes are strictly dependent on activation status of these cells, regulated by the infecting agent and cytokines. Pathogenic mycobacteria can survive the hostile environment of the phagosome through interference with activation of bactericidal responses. To study the mechanisms employed by highly virulent mycobacteria to promote their intracellular survival, we investigated modulating effects of two pathogenic M. bovis isolates and a reference M. tuberculosis H37Rv strain, differing in their ability to multiply in macrophages, on activation phenotypes of the cells primed with major cytokines regulating proinflammatory macrophage activity. Results Bone marrow- derived macrophages obtained from C57BL/6 mice were infected by mycobacteria after a period of cell incubation with or without treatment with IFN-γ, inducing proinflammatory type-1 macrophages (M1, or IL-10, inducing anti-inflammatory type-2 cells (M2. Phenotypic profiling of M1 and M2 was then evaluated. The M. bovis strain MP287/03 was able to grow more efficiently in the untreated macrophages, compared with the strains B2 or H37Rv. This strain induced weaker secretion of proinflammatory cytokines, coinciding with higher expression of M2 cell markers, mannose receptor (MR and arginase-1 (Arg-1. Treatment of macrophages with IFN-γ and infection by the strains B2 and H37Rv synergistically induced M1 polarization, leading to high levels of inducible nitric oxide synthase (iNOS expression, and reduced expression of the Arg-1. In contrast, the cells infected with the strain MP287/03 expressed high levels of Arg-1 which competed with iNOS for the common substrate

  2. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Saori; Terao, Mika, E-mail: mterao@derma.med.osaka-u.ac.jp; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol

  3. Alcohol,nutrition and liver cancer:Role of Toll-like receptor signaling

    Institute of Scientific and Technical Information of China (English)

    Samuel; W; French; Joan; Oliva; Barbara; A; French; Fawzia; Bardag-Gorce

    2010-01-01

    This article reviews the evidence that ties the development of hepatocellular carcinoma (HCC) to the natural immune pro-inflammatory response to chronic liver disease, with a focus on the role of Toll-like receptor (TLR) signaling as the mechanism of liver stem cell/progenitor transformation to HCC. Two exemplary models of this phenomenon are reviewed in detail. One model applies chronic ethanol/lipopolysaccharide feeding to the activated TLR4 signaling pathway. The other applies chronic feeding of a carcin...

  4. Activation of MyD88 Signaling upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules

    Science.gov (United States)

    2011-01-20

    Activation of MyD88 Signaling upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules Teri L. Kissner, Gordon Ruthel, Shahabuddin Alam...mediated signaling, which activates pro-inflammatory cytokine responses. Recently we reported that staphylococcal enterotoxins (SEA or SEB), which...upon Staphylococcal Enterotoxin Binding to MHC Class II Molecules. PLoS ONE 6(1): e15985. doi:10.1371/journal.pone.0015985 Editor: Jacques Zimmer

  5. The long polar fimbriae of STEC O157:H7 induce expression of pro-inflammatory markers by intestinal epithelial cells.

    Science.gov (United States)

    Farfan, Mauricio J; Cantero, Lidia; Vergara, Alejandra; Vidal, Roberto; Torres, Alfredo G

    2013-03-15

    Infection with Shiga toxin-producing Escherichia coli (STEC) O157:H7 is characterized by acute inflammation of the colonic mucosa. STEC O157:H7 contains two non-identical loci encoding long polar fimbriae (Lpf), which play a role in the STEC colonization of the intestinal epithelial cells. However, no information is available regarding the involvement of Lpf in the STEC-induced host inflammatory response. Hence, in this study we assess the role of Lpf as an inducer of inflammation on intestinal epithelial cells. Secretion of pro-inflammatory cytokines in response to STEC wild type and lpf isogenic mutants was evaluated on intestinal T84 cells. Of the 27 cytokines assayed, IL-6, IL-8, IL-15, FGF, GM-CSF and IP-10 were significantly reduced, when compared to the wild-type strain, in the lpfA1 lpfA2 double mutant. Further, the host intracellular signaling pathways activated in response to Lpf were determined by using an array containing genes representative of 18 different signal transduction pathways. The analysis indicated that the NF-κB pathway is activated in response to Lpf-expressing STEC. Therefore, our study supports the role of Lpf as a STEC factor mediating intestinal inflammation.

  6. Regulation of Toll-like receptor signaling in innate immunity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns(PAMPs).The members of the TLR family selectively utilize adaptor proteins MyD88,TRIF,TIRAP and TRAM to activate overlapping but distinct signal transduction pathways which trigger production of different panels of mediators such as proinflammatory cytokines and type I interferon.These mediators not only control innate immunity but also direct subsequently developed adaptive immunity.TLR activation is strictly and finely regulated at multiple levels of the signal transduction pathways.

  7. Total Intravenous Versus Inhalation Anesthesia in Patients Undergoing Laparoscopic Cholecystectomies. Effects on Two Proinflammatory Cytokines Serum Levels: Il-32 and TNF-Alfa.

    Directory of Open Access Journals (Sweden)

    Hadade Adina

    2016-01-01

    Full Text Available Introduction: It has been reported that as compared with total intravenous anesthesia (TIVA, inhalation anesthesia is increasing the postoperative level of proinflammatory interleukins.

  8. Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma

    Directory of Open Access Journals (Sweden)

    Santoro Antonio

    2011-04-01

    Full Text Available Abstract Background Adaptation to hypoxia and consequent pro-inflammatory gene expression of prostate and breast carcinomas have been implicated in the progression toward cancer malignant phenotype. Only partial data are available for the human tumor glioblastoma multiforme (GBM. The aim of our study was to analyze the hypoxic and pro-inflammatory microenvironment in GBMs and to demonstrate that in a stem/progenitor cell line derived from human glioblastoma (GBM-SCs, hypoxia activates a coordinated inflammatory response, evidencing an invasive and migratory phenotype. Methods From each of 10 human solid glioblastomas, clinically and histopathologically characterized, we obtained three surgical samples taken from the center and the periphery of the tumor, and from adjacent host normal tissue. Molecular and morphological analyses were carried out using quantitative real-time PCR and western blot (WB. GBM stem and differentiated cells were incubated under hypoxic conditions and analyzed for pro-inflammatory gene expression and for invasive/migratory behavior. Results A panel of selected representative pro-inflammatory genes (RAGE and P2X7R, COX2, NOS2 and, PTX3 were analyzed, comparing tumor, peritumor and host normal tissues. Tumors containing leukocyte infiltrates (as assessed using CD45 immunohistochemistry were excluded. Selected genes were overexpressed in the central regions of the tumors (i.e. in the more hypoxic areas, less expressed in peripheral regions, and poorly expressed or absent in adjacent normal host tissues. Western blot analysis confirmed that the corresponding pro-inflammatory proteins were also differently expressed. Hypoxic stem cell lines showed a clear time-dependent activation of the entire panel of pro-inflammatory genes as compared to differentiated tumor cells. Biological assays showed that invasive and migratory behavior was strengthened by hypoxia only in GBM stem cells. Conclusions In human solid glioblastoma we have

  9. Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels.

    Science.gov (United States)

    Palmieri, Erika Mariana; Spera, Iolanda; Menga, Alessio; Infantino, Vittoria; Iacobazzi, Vito; Castegna, Alessandra

    2014-12-20

    The role of glutamine synthetase (GS) during adipocyte differentiation is unclear. Here, we assess the impact of GS on the adipocytic response to a proinflammatory challenge at different differentiation stages. GS expression at the late stages of differentiation desensitized mature adipocytes to bacterial lipopolysaccharide (LPS) by increasing intracellular glutamine levels. Furthermore, LPS-activated mature adipocytes were unable to produce inflammatory mediators; LPS sensitivity was rescued following GS inhibition and the associated drop in intracellular glutamine levels. The ability of adipocytes to differentially respond to LPS during differentiation negatively correlates to GS expression and intracellular glutamine levels. Hence, modulation of intracellular glutamine levels by GS expression represents an endogenous mechanism through which mature adipocytes control the inflammatory response.

  10. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses

    Directory of Open Access Journals (Sweden)

    Marie-Claude eAudet

    2013-05-01

    Full Text Available The development of depressive disorders had long been attributed to monoamine variations, and pharmacological treatment strategies likewise focused on methods of altering monoamine availability. However, the limited success achieved by treatments that altered these processes spurred the search for alternative mechanisms and treatments. Here we provide a brief overview concerning a possible role for pro-inflammatory cytokines and growth factors in major depression, as well as the possibility of targeting these factors in treating this disorder. The data suggest that focusing on one or another cytokine or growth factor might be counterproductive, especially as these factors may act sequentially or in parallel in affecting depressive disorders. It is also suggested that cytokines and growth factors might be useful biomarkers for individualized treatments of depressive illnesses.

  11. Downregulation of pro-inflammatory cytokines by lupeol measured using cytometric bead array immunoassay.

    Science.gov (United States)

    Ahmad, Sheikh Fayaz; Pandey, Anjali; Kour, Kiranjeet; Bani, Sarang

    2010-01-01

    The objective of the study was to investigate the activity of Lupeol (LUP) on proinflammatory and anti-inflammatory cytokines in the pleural exudate from male swiss albino mice. We applied Cytometric bead array technology for simultaneously measurement of these cytokines in pleurisy induced mice treated with lupeol in graded oral doses. Cytometric bead array uses the sensitivity of amplified fluorescence detection by flowcytometer to measure soluble analytes in a particle based immune assay. This assay can accurately quantitate 5 cytokines in a 50 microlitre sample volume. Oral administration of LUP at doses of 25, 50, 100 and 200 mg/kg p.o. produced dose related inhibition of IL-2, IFN-gamma and TNF-alpha in the pleural exudate with the most significant effect at 100 mg/kg oral dose. LUP had a non significant inhibitory effect on the levels of IL-4 and IL-5.

  12. [Th17 cells, a novel proinflammatory effector CD4 T cell population].

    Science.gov (United States)

    Leung-Theung-Long, Stéphane; Guerder, Sylvie

    2008-11-01

    After more than 20 years of hegemony, the Th1-Th2 paradigm was recently shaken by the discovery of a novel population of CD4 effector T cells, the Th17 cells. Th17 effector cells produce IL-17 and IL-22 and thus have pro-inflammatory properties notably favoring neutrophils recruitment and thus control of extracellular bacteria mainly at the epithelium surface. Th17 cells appear also as the major inducer of organ specific autoimmune pathologies such as EAE or rheumatoid arthritis, a function previously attributed to Th1 effector cells. The discovery of Th17 cells further supports the notion that effector CD4 T cells responses are diverse in vivo and that fine tuning of these different effector cells is critical to maintain tissue integrity.

  13. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    Science.gov (United States)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  14. Ctenus medius and Phoneutria nigriventer spiders venoms share noxious proinflammatory activities.

    Science.gov (United States)

    Okamoto, Cinthya Kimori; Gonçalves-De-Andrade, Rute M; Queiroz, Giselle Pidde; Gutierez, Vanessa P; De Almeida, Daniel Manzoni; Cury, Yara; Bertani, Rogério; Portaro, Fernanda C V; Tambourgi, Denise V

    2009-01-01

    Ctenus medius Keyserling, 1891 (Araneae: Ctenidae) co-occurs in various microhabitats of the Brazilian Atlantic Forest and can be easily misidentified as the medically important spider Phoneutria nigriventer Keyserling, 1981 (Ctenidae). Despite being phylogenetically close to Phoneutria, no data are available about the toxic potential of Ctenus medius venom. Here we show that, although presenting different profile of protein composition, C. medius venom displays some of the toxic properties exhibited by P. nigriventer venom, including proteolytic, hyaluronidasic and phospholipasic activities, as well as the ability of causing hyperalgesia and edema. Moreover, C. medius venom interferes in the activation of the complement system in concentrations that P. nigriventer venom is inactive. Thus, these data show that venoms of spiders from Ctenidae family share important proinflammatory properties and suggest that the C. medius bite may have an important noxious effect in human accidents.

  15. Proinflammatory effects of pancreatic elastase are mediated through TLR4 and NF-kappaB.

    Science.gov (United States)

    Hietaranta, Antti; Mustonen, Harri; Puolakkainen, Pauli; Haapiainen, Reijo; Kemppainen, Esko

    2004-10-01

    Pancreatic elastase has been implicated in the pathophysiology of severe acute pancreatitis, characterized by systemic inflammatory response, distant organ failure, and high mortality. Here we show that pancreatic elastase activates transcription factors NF-kappaB, AP-1, and NFAT in human myeloid cells (U-937 and THP-1) in culture. Pancreatic elastase also induces TNF-alpha secretion and increased expression of CD11b in THP-1 cells which can be inhibited by neutralizing anti-Toll-like receptor 4 (TLR4) antibodies. NF-kappaB blocking agents (MG-132, PGA1) prevented elastase-induced TNF-alpha secretion from THP-1 cells. Our results suggest that pancreatic elastase-induced proinflammatory effects are mediated by TLR4 and NF-kappaB in human myeloid cells.

  16. Cytosolic dsDNA triggers apoptosis and pro-inflammatory cytokine production in normal human melanocytes.

    Science.gov (United States)

    Wang, Suiquan; Liu, Dongyin; Ning, Weixuan; Xu, Aie

    2015-04-01

    Considerable evidence implicates that viral infection might be a participant factor in the pathogenesis of vitiligo. However, it is still unclear how viral infection leads to the melanocyte destruction. To elucidate the effects of viral dsDNA on the viability and cytokine synthesis of normal human melanocytes and to explore the underlying mechanisms, primary cultured normal human melanocytes were transfected with poly(dA:dT). The results demonstrated that poly(dA:dT) triggered apoptosis instead of pyroptosis in melanocytes. Knocking down AIM2 or RIG-I by RNA interference partially reduced the poly(dA:dT)-induced LDH release, suggesting the involvement of both nucleic acid sensors in the process of melanocyte death. Poly(dA:dT) induced the expression of pro-inflammatory cytokine genes including IFN-β, TNF-α, IL-6 and IL-8 as well, whereas the pro-inflammatory cytokine production was suppressed by RIG-I siRNA, but not by AIM2 siRNA. Poly(dA:dT) treatment increased the phosphorylation of p38 and JNK and NFκB. Accordingly, NFκB inhibitor Bay 11-7082 and JNK inhibitor SP600125 blocked the induction of the cytokine genes except IFN-β. The production of IL6 and IL8 was also suppressed by p38 inhibitor SB203580. On the contrary, the Poly(dA:dT)-induced melanocyte death was only decreased by SP600125. This study provides the possible mechanism of melanocyte destruction and immuno-stimulation in vitiligo by innate immune response following viral infection.

  17. Role in proinflammatory response of YghJ, a secreted metalloprotease from neonatal septicemic Escherichia coli.

    Science.gov (United States)

    Tapader, Rima; Bose, Dipro; Basu, Pallabi; Mondal, Moumita; Mondal, Ayan; Chatterjee, Nabendu Sekhar; Dutta, Pujarini; Basu, Sulagna; Bhadra, Rupak K; Pal, Amit

    2016-11-01

    Neonatal sepsis is the invasion of microbial pathogens into blood stream and is associated with a systemic inflammatory response with production and release of a wide range of inflammatory mediators. The increased serum levels of cytokines were found to correlate with the severity and mortality in course of sepsis. There have been no reports on the role of microbial proteases in stimulation of proinflammatory response in neonatal sepsis. We have identified YghJ, a secreted metalloprotease from a neonatal septicemic Escherichia coli (NSEC) isolate. The protease was partially purified from culture supernatant by successive anion and gel filtration chromatography. MS/MS peptide sequencing of the protease showed homology with YghJ. YghJ was cloned, expressed and purified in pBAD TOPO expression vector. YghJ was found to be proteolytically active against Methoxysuccinyl Ala-Ala-Pro-Met-p-nitroanilide oligopeptide substrate, but not against casein and gelatin. YghJ showed optimal activity at pH 7-8 and at temperatures 37-40°C. YghJ showed clear changes in cellular morphologies of Int407, HT-29 and HEK293 cells. YghJ stimulated the secretion of cytokines IL-1α, IL-1β and TNF-α in murine macrophages (RAW 264.7) and IL-8 from human intestinal epithelial cells (HT-29). YghJ also down-regulated the production of anti-inflammatory cytokines such as IL-10. YghJ is present in both septicemic (78%) and fecal E. coli isolates (54%). However, expression and secretion of YghJ is significantly higher among the septicemic (89%) than the fecal isolates (33%). This is the first study to show the role of a microbial protease, YghJ in triggering proinflammatory response in NSEC.

  18. Pro-inflammatory responses of human bronchial epithelial cells to acute nitrogen dioxide exposure.

    Science.gov (United States)

    Ayyagari, Vijayalakshmi N; Januszkiewicz, Adolph; Nath, Jayasree

    2004-04-15

    Nitrogen dioxide (NO2) is an environmental oxidant, known to be associated with lung epithelial injury. In the present study, cellular pro-inflammatory responses following exposure to a brief high concentration of NO2 (45 ppm) were assessed, using normal human bronchial epithelial (NHBE) cells as an in vitro model of inhalation injury. Generation and release of pro-inflammatory mediators such as nitric oxide (NO), IL-8, TNF-alpha, IFN-gamma and IL-1beta were assessed at different time intervals following NO2 exposure. Effects of a pre-existing inflammatory condition was tested by treating the NHBE cells with different inflammatory cytokines such as IFN-gamma, IL-8, TNF-alpha, IL-1beta, either alone or in combination, before exposing them to NO2. Immunofluorescence studies confirmed oxidant-induced formation of 3-nitrotyrosine in the NO2-exposed cells. A marked increase in the levels of nitrite (as an index of NO) and IL-8 were observed in the NO2-exposed cells, which were further enhanced in the presence of the cytokines. Effects of various NO inhibitors combined, with immunofluorescence and Western blotting data, indicated partial contribution of the nitric oxide synthases (NOSs) toward the observed increase in nitrite levels. Furthermore, a significant increase in IL-1beta and TNF-alpha generation was observed in the NO2-exposed cells. Although NO2 exposure alone did induce slight cytotoxicity (<12%), but presence of inflammatory cytokines such as TNF-alpha and IFN-gamma resulted in an increased cell death (28-36%). These results suggest a synergistic role of inflammatory mediators, particularly of NO and IL-8, in NO2-mediated early cellular changes. Our results also demonstrate an increased sensitivity of the cytokine-treated NHBE cells toward NO2, which may have significant functional implications in vivo.

  19. Significance of the determination of proinflammatory cytokines in the serum of polytraumatized patients with sepsis

    Directory of Open Access Journals (Sweden)

    Šurbatović Maja

    2004-01-01

    Full Text Available Severe sepsis and trauma complicated with multiple organ dysfunction syndrome (MODS are among the leading causes of death in intensive therapy units with mortality rate exceeding 50%. The outcome is not determined only by infection or trauma, but also by the intensity of immuno-inflammatory response, which is essential for host defence, but if uncontrolled leads to MODS. Pro-inflammatory cytokines (tumor necrosis factor-a -TNF-a, IL-1 IL-8, IL-12, IFN-g, etc represent a part of this immuno-inflammatory response to an insult. The results of the clinical investigation of correlation between pro-inflammatory cytokines (IL-8, IL-12, TNF-a, IFN-g the outcome (survivors, non-survivors, and the severity (systemic inflammatory response syndrome - SIRS - less severe, and MODS - more severe in polytraumatised patients with sepsis are presented in this paper. Mean values of IL-8 were 1.3-fold higher in non-survivors (p<0.05, and 60-fold higher in MODS group (p<0.01. Mean values of IL-12 were 1.6-fold higher in survivors (p<0.01, while the values between SIRS and MODS group did not differ significantly; mean values of TNF-a were 3-fold higher in survivors (p<0.05, and 46-fold higher in MODS group (p<0.01. Mean values of IFN-g did not differ significantly between the two groups regarding the outcome and severity. The obtained results indicated that IL-8 was a reliable predictor of lethal outcome and MODS (p<0.01, IL-12 a reliable predictor of survival (p<0.05, and TNF-a a reliable predictor of survival (p<0.05 and MODS (p<0.01.

  20. Fatigue in primary Sjögren's syndrome is associated with lower levels of proinflammatory cytokines

    Science.gov (United States)

    Howard Tripp, Nadia; Tarn, Jessica; Natasari, Andini; Gillespie, Colin; Mitchell, Sheryl; Hackett, Katie L; Bowman, Simon J; Price, Elizabeth; Pease, Colin T; Emery, Paul; Lanyon, Peter; Hunter, John; Gupta, Monica; Bombardieri, Michele; Sutcliffe, Nurhan; Pitzalis, Costantino; McLaren, John; Cooper, Annie; Regan, Marian; Giles, Ian; Isenberg, David A; Saravanan, Vadivelu; Coady, David; Dasgupta, Bhaskar; McHugh, Neil; Young-Min, Steven; Moots, Robert; Gendi, Nagui; Akil, Mohammed; Griffiths, Bridget; Lendrem, Dennis W; Ng, Wan-Fai

    2016-01-01

    Objectives This article reports relationships between serum cytokine levels and patient-reported levels of fatigue, in the chronic immunological condition primary Sjögren's syndrome (pSS). Methods Blood levels of 24 cytokines were measured in 159 patients with pSS from the United Kingdom Primary Sjögren's Syndrome Registry and 28 healthy non-fatigued controls. Differences between cytokines in cases and controls were evaluated using Wilcoxon test. Patient-reported scores for fatigue were evaluated, classified according to severity and compared with cytokine levels using analysis of variance. Logistic regression was used to determine the most important predictors of fatigue levels. Results 14 cytokines were significantly higher in patients with pSS (n=159) compared to non-fatigued healthy controls (n=28). While serum levels were elevated in patients with pSS compared to healthy controls, unexpectedly, the levels of 4 proinflammatory cytokines—interferon-γ-induced protein-10 (IP-10) (p=0.019), tumour necrosis factor-α (p=0.046), lymphotoxin-α (p=0.034) and interferon-γ (IFN-γ) (p=0.022)—were inversely related to patient-reported levels of fatigue. A regression model predicting fatigue levels in pSS based on cytokine levels, disease-specific and clinical parameters, as well as anxiety, pain and depression, revealed IP-10, IFN-γ (both inversely), pain and depression (both positively) as the most important predictors of fatigue. This model correctly predicts fatigue levels with reasonable (67%) accuracy. Conclusions Cytokines, pain and depression appear to be the most powerful predictors of fatigue in pSS. Our data challenge the notion that proinflammatory cytokines directly mediate fatigue in chronic immunological conditions. Instead, we hypothesise that mechanisms regulating inflammatory responses may be important. PMID:27493792

  1. Fish and mammalian phagocytes differentially regulate pro-inflammatory and homeostatic responses in vivo.

    Directory of Open Access Journals (Sweden)

    Aja M Rieger

    Full Text Available Phagocytosis is a cellular mechanism that is important to the early induction of antimicrobial responses and the regulation of adaptive immunity. At an inflammatory site, phagocytes serve as central regulators for both pro-inflammatory and homeostatic anti-inflammatory processes. However, it remains unclear if this is a recent evolutionary development or whether the capacity to balance between these two seemingly contradictory processes is a feature already displayed in lower vertebrates. In this study, we used murine (C57BL/6 and teleost fish (C. auratus in vitro and in vivo models to assess the evolutionary conservation of this dichotomy at a site of inflammation. At the level of the macrophage, we found that teleost fish already displayed divergent pro-inflammatory and homeostatic responses following internalization of zymosan or apoptotic bodies, respectively, and that these were consistent with those of mice. However, fish and mice displayed significant differences in vivo with regards to the level of responsiveness to zymosan and apoptotic bodies, the identity of infiltrating leukocytes, their rate of infiltration, and the kinetics and strength of resulting antimicrobial responses. Unlike macrophages, significant differences were identified between teleost and murine neutrophilic responses. We report for the first time that activated murine, but not teleost neutrophils, possess the capacity to internalize apoptotic bodies. This internalization translates into reduction of neutrophil ROS production. This may play an important part in the recently identified anti-inflammatory activity that mammalian neutrophils display during the resolution phase of inflammation. Our observations are consistent with continued honing of inflammatory control mechanisms from fish to mammals, and provide added insights into the evolutionary path that has resulted in the integrated, multilayered responses that are characteristic of higher vertebrates.

  2. Irsogladine maleate suppresses indomethacin-induced elevation of proinflammatory cytokines and gastric injury in rats

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Koyuki Tajima; Kiyoto Kageyama; Takashi Kyoi

    2008-01-01

    AIM: To investigate the mucosal protective effect and the mechanisms of action of the anti-ulcer drug irsogladine maleate in gastric injury induced by indomethacin in rats.METHODS: Gastric mucosal injury was induced in male Hos:Donryu rats by oral administration of indomethacin at a dose of 48 mg/kg.One hour before indomethacin treatment,animals were orally pretreated with irsogladine maleate at doses of 1 mg/kg,3 mg/kg or 10 mg/kg.Four hours after indomethacin administration,the animals were sacrificed and their stomachs were rapidly removed and processed for the evaluation of gastric mucosal damage and the determination of the concentrations of tumor necrosis factor-α (TNF-α),interleukin-1β(IL-1β),IL-8 and myeloperoxidase (MPO) in mucosal tissues.RESULTS: Linear hemorrhagic mucosal lesions were observed primarily in the glandular stomach 4 h after oral administration of indomethacin.Pretreatment with irsogladine maleate markedly reduced the number and severity of these lesions in a dosedependent manner.The mucosal concentrations of proinflammatory cytokines (TNF-β,IL-1β,and IL-8)and MPO,which indicates the degree of mucosal infiltration by neutrophils,increased concomitantly with the occurrence of gastric injury in the indomethacintreated rats.Pretreatment with irsogladine maleate significantly decreased the levels of these inflammatory factors in gastric tissue elicited by indomethacin.CONCLUSION: The mucosal protective effects afforded by irsogladine maleate on gastric injury induced by indomethacin are mediated by inhibition of mucosal proinflammatory cytokine production and neutrophil infiltration,leading to suppression of mucosal inflammation and subsequent tissue destruction.

  3. Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms.

    Science.gov (United States)

    Persson, N; Ghisletta, P; Dahle, C L; Bender, A R; Yang, Y; Yuan, P; Daugherty, A M; Raz, N

    2014-12-01

    We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1β C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan.

  4. Parenteral nutrition in short bowel syndrome patients, regardless of its duration, increases serum proinflammatory cytokines.

    Science.gov (United States)

    Bizari, Letícia; da Silva Santos, Andressa Feijó; Foss, Norma Tiraboschi; Marchini, Júlio Sérgio; Suen, Vivian Marques Miguel

    2016-07-01

    Short bowel syndrome is a severe malabsorption disorder, and prolonged parenteral nutrition is essential for survival in some cases. Among the undesirable effects of long-term parenteral nutrition is an increase in proinflammatory cytokines. The aim of the present study was to measure the serum levels of interleukin-6, interleukin-10, tumor necrosis factor alpha, and transforming growth factor beta, in patients with short bowel syndrome on cyclic parenteral nutrition and patients who had previously received but no longer require parenteral nutrition. The study was cross-sectional and observational. Three groups were studied as follows: Parenteral nutrition group, 9 patients with short bowel syndrome that receive cyclic parenteral nutrition; Oral nutrition group, 10 patients with the same syndrome who had been weaned off parenteral nutrition for at least 1 year prior to the study; Control group, 13 healthy adults, matched for age and sex to parenteral and oral groups. The following data were collected: age, tobacco use, drug therapies, dietary intake, body weight, height, blood collection. All interleukins were significantly higher in the parenteral group compared with the control group as follows: interleukin-6: 22 ± 19 vs 1.5 ± 1.4 pg/mL, P= .0002; transforming growth factor β: 854 ± 204 vs 607 ± 280 pg/mL, P= .04; interleukin-10: 8 ± 37 vs 0.6 ± 4, P= .03; tumor necrosis factor α: 20 ± 8 vs 8 ± 4 pg/mL, Pshort bowel syndrome patients, regardless of its duration, increases serum proinflammatory cytokines.

  5. Deficient beta-mannosylation of Candida albicans phospholipomannan affects the proinflammatory response in macrophages.

    Directory of Open Access Journals (Sweden)

    Audrey Devillers

    Full Text Available Candida albicans produces a complex glycosphingolipid called phospholipomannan (PLM, which is present on the cell-wall surface of yeast and shed upon contact with host cells. The glycan moiety of PLM is composed of β-mannosides with degrees of polymerization up to 19 in C. albicans serotype A. PLM from serotype B strains displays a twofold decrease in the length of the glycan chains. In this study we compared the proinflammatory activities of PLMs purified from C. albicans serotype A and serotype B strains and from a bmt6Δ mutant of C. albicans, whose PLM is composed of short truncated oligomannosidic chain. We found that PLMs activate caspase-1 in murine macrophage cell line J774 independent of the glycan chain length although IL-1β secretion is more intense with long glycan chain. None of the tested PLMs stimulate ROS production, indicating that caspase-1 activation may occur through a ROS-independent pathway. On the other hand, only long-chain oligomannosides present on PLM from serotype A strain (PLM-A are able to induce TNF-α production in macrophages, a property that is not affect by blocking endocytosis through latrunculin A treatment. Finally, we demonstrate that soluble and not cell surface-bound galectin-3, is able to potentiate PLM-A-induced TNF-α production in macrophages. PLMs from C. albicans serotype B and from bmt6∆ mutant are not able to induce TNF-α production and galectin-3 pretreatment does not interfere with this result. In conclusion, we show here that PLMs are able to evoke a proinflammatory state in macrophage, which is in part dependent on their glycosylation status. Long-glycan chains favor interaction with soluble galectin-3 and help amplify inflammatory response.

  6. Manumycin A downregulates release of proinflammatory cytokines from TNF alpha stimulated human monocytes.

    Science.gov (United States)

    Cecrdlova, Eva; Petrickova, Katerina; Kolesar, Libor; Petricek, Miroslav; Sekerkova, Alena; Svachova, Veronika; Striz, Ilja

    2016-01-01

    Macrolide antibiotics such as azithromycin or clarithromycin are known to have potent anti-inflammatory and immunomodulatory effects but these properties cannot be widely used due to a risk of bacterial resistance. We studied another polyketide antibiotic, structurally related manumycin A known as a streptomycete derived farnesyltransferase inhibitor with limited antibacterial effects, with respect to its potential regulation of mRNA expression of several genes associated with proinflammatory responses. Downregulation of mRNA for IL-6, TLR-8, IL-1 beta and IL-10 was found in THP-1 cells after 4h stimulation with TNF alpha in the presence of manumycin A and downregulated TLR-8 and EGR-1 genes were observed after 8h. Among the genes upregulated in response to manumycin were HMOX-1, TNFRSF10A, IL-1R1, TICAM2, NLRP12 after 4h and only IL-1R1 after 8h. Furthermore, manumycin A was found to inhibit IL-1beta, IL-6, and IL-8 production in TNF alpha stimulated THP-1 cells and peripheral blood monocytes in a dose dependent manner (0.25-1 μM of manumycin A) without affecting cell viability. Cell viability of blood monocytes decreased by about 30% at manumycin A doses of 2-5 μM. Manumycin A also inhibited IL-18 release from THP-1 cells, while in cultures of blood monocytes, this cytokine was not detectable. That manumycin A mediated downregulation of proinflammatory genes in human monocytes confirmed by a measurement of cytokine levels in culture supernatants, together with a very limited effect on cell viability, might suggest potential anti-inflammatory properties of this polyketide antibiotic.

  7. Stress-induced glucocorticoids as a neuroendocrine alarm signal of danger.

    Science.gov (United States)

    Frank, Matthew G; Watkins, Linda R; Maier, Steven F

    2013-10-01

    A considerable number of studies demonstrate that acute and chronic stressors prime CNS innate immune responses to subsequent pro-inflammatory challenges and that glucocorticoids mediate, in part, stress-induced sensitization of pro-inflammatory immune responses. Here, we explore the notion that GCs produce a persisting sensitization of CNS innate immune effectors (e.g. microglia) so that they will generate a potentiated pro-inflammatory response after the GC rise has dissipated, thereby enhancing the sickness response to infection or injury and maximizing the animal's ability to neutralize danger. The stress-induced GC response is conceptualized here as an neuroendocrine warning signal or alarmin to the innate immune system, which prepares or sensitizes the innate immune response to potential danger. Thus, a new understanding of the stress response and its function (priming CNS innate immune responses to infection or injury during a fight/flight emergency) would be suggested.

  8. Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation

    Science.gov (United States)

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub–Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-01-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2−/− γC−/− immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy. PMID:23070116

  9. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation.

    Science.gov (United States)

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub-Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-11-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2(-/-) γC(-/-) immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy.

  10. Influence of ulinastatin on pulmonary surfactant protein, anti-inflammatory and pro-inflammatory mediator in patients with severe pneumonia

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Rui Kang; Jia-Li Xie; Ya-Ni Xue

    2016-01-01

    Objective:To observe the influence of ulinastatin on pulmonary surfactant protein and anti-inflammatory and pro-inflammatory mediator in patients with severe pneumonia. Methods:A total of 54 patients with severe pneumonia treated in our hospital from April 2014 to May 2015 were selected as the study object, and they were randomly divided into control group (conventional treatment of severe pneumonia group) and observation group (conventional treatment and ulinastatin group), with 27 cases in each group. Then the serum levels of pulmonary surfactant protein,anti-inflammatory and pro-inflammatory mediators in two groups before and after treatment at 1 day, 3 day and 5 day were compared. Results:The serum level of pulmonary surfactant protein, anti-inflammatory and pro-inflammatory mediators in two groups before treatment had no significant differences, all P>0.05, and those serum indexes in observation group after treatment at 1 day, 3 day and 5 day were all significantly better than those of the control group, all P<0.05. Conclusions:The ulinastatin can effectively improve the pulmonary surfactant protein, anti-inflammatory and pro-inflammatory mediators in patients with severe pneumonia, and its improvement role for various of severe pneumonia are obvious.

  11. The relationship between plasminogen activation inhibitor-1 and proinflammatory and counterinflammatory mediators in children with meningococcal septic shock

    NARCIS (Netherlands)

    Kornelisse, R.F.; Hazalzet, J.A.; Savelkoul, H.F.J.; Hop, W.C.J.; Suur, M.H.; Borsboom, A.N.J.; Risseeuw-Appel, I.M.; Voort, van der E.; Neijens, H.J.; Groot, de R.

    1996-01-01

    Proinflammatory cytokines (tumor necrosis factor [TNF]-alpha and interleukin [IL]-6 and -8), counterinflammatory compounds (IL-10 and soluble TNF receptors p55 and p75 [sTNFR-55 and -75]), and hemostatic parameters were determined in 38 patients with meningococcal septic shock. Eleven patients (29%)

  12. Alarmin S100A9 Induces Proinflammatory and Catabolic Effects Predominantly in the M1 Macrophages of Human Osteoarthritic Synovium

    NARCIS (Netherlands)

    Bosch, M.H.J. van den; Blom, A.B.; Schelbergen, R.F.; Koenders, M.I.; Loo, F.A.J. van de; Berg, W.B. van den; Vogl, T.; Roth, J.; Kraan, P.M. van der; Lent, P.L.E.M. van

    2016-01-01

    OBJECTIVE: The alarmins S100A8 and S100A9 have been shown to regulate synovial activation, cartilage damage, and osteophyte formation in osteoarthritis (OA). Here we investigated the effect of S100A9 on the production of proinflammatory cytokines and matrix metalloprotease (MMP) in OA synovium, gran

  13. Morphogen and proinflammatory cytokine release kinetics from PRGF-Endoret fibrin scaffolds: evaluation of the effect of leukocyte inclusion.

    Science.gov (United States)

    Anitua, E; Zalduendo, M M; Prado, R; Alkhraisat, M H; Orive, G

    2015-03-01

    The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet-rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet-rich plasma (L-PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte-free (PRGF-Endoret) and L-PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte-free fibrin matrices were homogenous while leukocyte-containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)-1β and IL-16 but not in the platelet-derived growth factors release (<1.5-fold). Surprisingly, the availability of vascular endothelial growth factor suffered an important decrease after 3 days of incubation in the case of L-PRP matrices. While the release of proinflammatory cytokines was almost absent or very low from PRGF-Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF-Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines.

  14. Interleukin-6 Infusion Blunts Proinflammatory Cytokine Production Without Causing Systematic Toxicity in a Swine Model of Uncontrolled Hemorrhagic Shock

    Science.gov (United States)

    2004-11-01

    work from your group. I thank the Program Commit- tee for the invitation to discuss this work and the Association for the privilege of the floor . Dr...group because they did undergo the hypo- thermic and dilutional coagulopathy, yet they had nowhere near the proinflammatory cytokine expression observed

  15. Combined effects of proinflammatory cytokines and intermittent cyclic mechanical strain in inhibiting osteogenicity in human periodontal ligament cells.

    Science.gov (United States)

    Sun, Chaofan; Chen, Lijiao; Shi, Xinlian; Cao, Zhensheng; Hu, Bibo; Yu, Wenbin; Ren, Manman; Hu, Rongdang; Deng, Hui

    2016-09-01

    Mechanical strain plays an important role in bone formation and resorption during orthodontic tooth movement. The mechanism has not been fully studied, and the process becomes complex with increased amounts of periodontal patients seeking orthodontic care. Our aims were to elucidate the combined effects of proinflammatory cytokines and intermittent cyclic strain (ICS) on the osteogenic capacity of human periodontal ligament cells. Cultured human periodontal ligament cells were exposed to proinflammatory cytokines (interleukin-1β 5 ng/mL and tumor necrosis factor-α 10 ng/mL) for 1 and 5 days, and ICS (0.5 Hz, 12% elongation) was applied for 4 h per day. The autocrine of inflammatory cytokines was measured by enzyme-linked immunosorbent assay. The expression of osteoblast markers runt-related transcription factor 2 and rabbit collagen type I was determined using real-time polymerase chain reaction and Western blot. The osteogenic capacity was also detected by alkaline phosphatase (ALP) staining, ALP activity, and alizarin red staining. We demonstrated that ICS impaired the osteogenic capacity of human periodontal ligament cells when incubated with proinflammatory cytokines, as evidenced by the low expression of ALP staining, low ALP activity, reduced alizarin red staining, and reduced osteoblast markers. These data, for the first time, suggest that ICS has a negative effect on the inductive inhibition of osteogenicity in human PDL cells mediated by proinflammatory cytokines.

  16. Association of fatigue and depression with circulating levels of proinflammatory cytokines and epidermal growth factor receptor ligands: a correlative study of a placebo-controlled fatigue trial

    Science.gov (United States)

    Rich, Tyvin; Zhao, Fengmin; Cruciani, Ricardo A; Cella, David; Manola, Judith; Fisch, Michael J

    2017-01-01

    Context The biology of fatigue and depression in cancer patients is poorly understood. Hypotheses regarding cytokines and growth factors related to sickness behavior and disruption of circadian signaling have been proposed. Objectives We prospectively examined proinflammatory cytokines (e.g., sickness behavior model) and epidermal growth factor receptor (EGFR) ligands (e.g., circadian disruption model) in the serum of cancer patients enrolled in a clinical trial testing levocarnitine for fatigue. Methods Serum samples were collected at baseline and week 4. Cytokine/growth factor analyses were performed with a Luminex analyzer. The Brief Fatigue Index and the Center for Epidemiologic Studies Depression Index were used to measure fatigue and depression severity. The association between cytokine and symptoms was examined using logistic models. Results Among 101 analyzable patients, all ten cytokines/growth factors examined were highly elevated at baseline and all significantly decreased at week 4 (pfatigue significantly increased for patients with higher level of interleukin-1 receptor antagonist (IL-1Ra), whereas patients with higher levels of IL-1Ra, tumor necrosis factor-α, interleukin (IL)-6, IL-8, interferon-γ, transforming growth factor α, and vascular endothelial growth factor had higher odds of severe depression. At week 4, fatigue (p=0.023) and depression (p=0.007) responders had less decrease in IL-1 level than the corresponding non-responders. Conclusion In this correlative analysis of a fatigue clinical trial, levels of fatigue were significantly associated with levels of IL-1 and IL-1Ra. Circadian-signaling pathways related to EGFR signaling were correlated with depression as were other cytokines. A major placebo effect was associated with a global decrease in cytokine and growth factors. These data provide further basis for testing hypotheses regarding the mechanisms of fatigue and depression in cancer patients.

  17. Endometritis Increases Pro-inflammatory Cytokines in Follicular Fluid and Cervico-vaginal Mucus in the Buffalo Cow.

    Science.gov (United States)

    Boby, Jones; Kumar, Harendra; Gupta, Harihar Prasad; Jan, Mustapha Hussain; Singh, Sanjay Kumar; Patra, Manas Kumar; Nandi, Sukdeb; Abraham, Asha; Krishnaswamy, Narayanan

    2016-11-17

    Emerging evidence shows that some of the pro-inflammatory cytokines are elevated not only in the endometrium but also in the follicular fluid of cows with endometritis. Developing a cervico-vaginal mucus (CVM) based test has the potential for becoming a pen-side test because of the ease of sample collection. The present study describes the results of two different experiments. The first experiment was conducted to investigate the influence of endometritis on the proinflammatory cytokines of follicular fluid based on the reproductive tracts of buffalo collected at a slaughter house Buffalo genitalia were categorized into purulent endometritis (PE), cytological endometritis (CE), and non-endometritis (NE) based on the white-side test and endometrial cytology, respectively (n = 14/group). Each group was subdivided into follicular and mid-luteal stage (n = 7/stage) and the follicular fluid was collected from the largest follicle. Second experiment was done to study the difference in the levels of proinflammatory cytokines in the CVM of repeat breeders with subclinical endometritis presented to the clinic. CVM was collected from the repeaters (n = 10) and non-repeaters (n = 10) through aseptic trans-vaginal aspiration. The pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNFα were quantitated through bovine specific ELISA kits. Significantly higher concentrations of pro-inflammatory cytokines (IL-1β, IL-8, IL-6, and TNFα) along with low intra-follicular estradiol in buffaloes of PE and CE groups suggest that endometritis impedes the follicular steroidogenesis. Significantly higher concentration of IL-1β and TNF-α in the CVM of repeaters indicate their potential as a pen-side diagnostic test for CE.

  18. Roles of proinflammatory cytokines and the Fas/Fas ligand interaction in the pathogenesis of inflammatory myopathies.

    Science.gov (United States)

    Kondo, Masahiro; Murakawa, Yohko; Harashima, Nanae; Kobayashi, Shotai; Yamaguchi, Shuhei; Harada, Mamoru

    2009-09-01

    Within the lesions of inflammatory myopathies, muscle fibres and invading mononuclear cells express Fas and Fas ligand (FasL), respectively. However, the roles of the Fas/FasL interaction in the pathogenesis of inflammatory myopathies are not fully understood. In the present study, we investigated the roles of proinflammatory cytokines and the Fas/FasL system in the pathogenesis of inflammatory myopathies. In vitro culturing of muscle cells with the proinflammatory cytokines interferon-gamma, tumour necrosis factor-alpha, and interleukin (IL)-1beta synergistically increased Fas expression, susceptibility to Fas-mediated apoptosis, and the expression of cytoplasmic caspases 8 and 3. In addition, culturing of muscle cells with activated CD4(+) T cells induced muscle cell apoptosis, which was partially inhibited by anti-FasL antibody. We also tested the possibility that T helper (Th) 17, which is an IL-17-producing helper T-cell subset that plays crucial roles in autoimmune and inflammatory responses, participates in the pathogenesis of inflammatory myopathies. Interestingly, in vitro culturing of dendritic cells with anti-Fas immunoglobulin M (IgM) or activated CD4(+) T cells induced the expression of mRNA for IL-23p19, but not for IL-12p35, in addition to proinflammatory cytokines. Furthermore, IL-23p19 and IL-17 mRNAs were detected in the majority of biopsy samples from patients with inflammatory myopathies. Taken together, these results suggest that proinflammatory cytokines enhance Fas-mediated apoptosis of muscle cells, and that the Fas/FasL interaction between invading dendritic cells and CD4(+) T cells induces local production of IL-23 and proinflammatory cytokines, which can promote the proliferation of Th17 cells and enhance Fas-mediated apoptosis of muscle cells, respectively.

  19. Interleukin-32 production associated with biliary innate immunity and proinflammatory cytokines contributes to the pathogenesis of cholangitis in biliary atresia.

    Science.gov (United States)

    Okamura, A; Harada, K; Nio, M; Nakanuma, Y

    2013-08-01

    Biliary atresia (BA) is thought to be associated with infections by viruses such as Reoviridae and is characterized histologically by fibrosclerosing cholangitis with proinflammatory cytokine-mediated inflammation. Interleukin (IL)-32 affects the continuous inflammation by increasing the production of proinflammatory cytokines. In this study, the role of IL-32 in the cholangitis of BA was examined. Immunohistochemistry for IL-32 and caspase 1 was performed using 21 samples of extrahepatic bile ducts resected from BA patients. Moreover, using cultured human biliary epithelial cells (BECs), the expression of IL-32 and its induction on stimulation with a Toll-like receptor [(TLR)-3 ligand (poly(I:C)] and proinflammatory cytokines was examined. BECs composing extrahepatic bile ducts showing cholangitis expressed IL-32 in BA, but not in controls. Caspase 1 was expressed constantly on BECs of both BA and control subjects. Furthermore, poly(I:C) and proinflammatory cytokines [(IL-1β, interferon (IFN)-γ and tumour necrosis factor (TNF)-α] induced IL-32 expression strongly in cultured BECs, accompanying the constant expression of TLR-3 and caspase 1. Our results imply that the expression of IL-32 in BECs was found in the damaged bile ducts of BA and induced by biliary innate immunity via TLR-3 and proinflammatory cytokines. These findings suggest that IL-32 is involved initially in the pathogenic mechanisms of cholangitis in BA and also plays an important role in the amplification and continuance of periductal inflammatory reactions. It is therefore tempting to speculate that inhibitors of IL-32 could be useful for attenuating cholangitis in BA.

  20. IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation.

    Directory of Open Access Journals (Sweden)

    Murielle Corvaisier

    Full Text Available Interleukin-26 (IL-26, a member of the IL-10 cytokine family, induces the production of proinflammatory cytokines by epithelial cells. IL-26 has been also reported overexpressed in Crohn's disease, suggesting that it may be involved in the physiopathology of chronic inflammatory disorders. Here, we have analyzed the expression and role of IL-26 in rheumatoid arthritis (RA, a chronic inflammatory disorder characterized by joint synovial inflammation. We report that the concentrations of IL-26 are higher in the serums of RA patients than of healthy subjects and dramatically elevated in RA synovial fluids compared to RA serums. Immunohistochemistry reveals that synoviolin(+ fibroblast-like synoviocytes and CD68(+ macrophage-like synoviocytes are the main IL-26-producing cells in RA joints. Fibroblast-like synoviocytes from RA patients constitutively produce IL-26 and this production is upregulated by IL-1-beta and IL-17A. We have therefore investigated the role of IL-26 in the inflammatory process. Results show that IL-26 induces the production of the proinflammatory cytokines IL-1-beta, IL-6, and tumor necrosis factor (TNF-alpha by human monocytes and also upregulates the expression of numerous chemokines (mainly CCL20. Interestingly, IL-26-stimulated monocytes selectively promote the generation of RORgamma t(+ Th17 cells, through IL-1-beta secretion by monocytes. More precisely, IL-26-stimulated monocytes switch non-Th17 committed (IL-23R(- or CCR6(- CD161(- CD4(+ memory T cells into Th17 cells. Finally, synovial fluids from RA patients also induce Th17 cell generation and this effect is reduced after IL-26 depletion. These findings show that IL-26 is constitutively produced by RA synoviocytes, induces proinflammatory cytokine secretion by myeloid cells, and favors Th17 cell generation. IL-26 thereby appears as a novel proinflammatory cytokine, located upstream of the proinflammatory cascade, that may constitute a promising target to treat RA and

  1. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.

    Science.gov (United States)

    Pourgholaminejad, Arash; Aghdami, Nasser; Baharvand, Hossein; Moazzeni, Seyed Mohammad

    2016-09-01

    Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders.

  2. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    Science.gov (United States)

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-03

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations.

  3. Effects of ketamine on proinflammatory cytokines and nuclear factor kappaB in polyrnicrobial sepsis rats

    Institute of Scientific and Technical Information of China (English)

    Xue-Min Song; Jian-Guo Li; Yan-Lin Wang; Qing Zhou; Zhao-Hui Du; Bao-Hui Jia; Jian-Juan Ke

    2006-01-01

    AIM: To explore the effects of ketamine on hemodynamics, plasma proinflammatory cytokine (TNF-α and IL-6) levels and nuclear factor kappa B (NF-κB) activation during polymicrobial sepsis.METHODS: Male Sprague-Dawlay rats were subjected to cecal ligation and puncture (CLP) or sham operation.The rats were randomly assigned into four equal groups:sham CLP group, CLP group, ketamine (KT)I groupand KTⅡ group. Thirty minutes before CLP, ketamine (5my/kg per hour and 10 my/kg per hour, respectively) was infused continuously through the left femoral vein cannula in KT I group or KTⅡgroup. Sham CLP group and CLP group received 0.9% saline only (5 mL/kg per hour). The right femoral artery was cannulated to monitor mean arterial pressure (MAP) and heart rates (HR),and draw blood samples. The proinflammatory cytokine (TNF-α and IL-6) levels of plasma were measured using enzyme-linked immunosorbent assays (ELISA). The hepatic NF-κB activation was determined by Western blot and HPIAS 2000 image analysis system.Twenty hours after CLP, the rats were killed by right femoral artery phlebotomization.RESULTS: CLP produced progressive hypotension,and a first increase followed by a decrease in HR. The hypotension was prevented, and the HR was slightly steady in ketamine treated rats. TNF-α levels of plasma reached a peak value at 2 h after CLP. Ketamine (KT I group or KTⅡgroup) caused a significant decrease compared with CLP group at 2, 5 and 9 h time points after CLP (14.3 ± 1.9 vs 4.3 ± 0.9, 9.7 ± 1.4 vs 4.3 ±0.9; 9.3 ± 1.5 vs 4.3 ± 0.9, 8.7 ± 1.4 vs 4.3 ± 0.9; 6.0± 1.5 vs 5.0 ± 1.7, 5.3 ± 0.8 vs 5.0 ± 1.7; P < 0.01,respectively). The IL-6 levels of plasma firstly ascended and then descended in CLP group, and reached a peak value at 9 h after CLP. Ketamine (KT I group or KTⅡ group) caused a significant decrease compared with CLP group at 5, 9 or 20 h after CLP (135.0 ± 52.6 vs 60.0± 16.3, 112.5 ± 52.6 vs 60.0 ± 16.3; 410.0 ± 68.7 vs62.5 ± 12.5, 250.0

  4. Effect of simvastatin on pro-inflammatory cytokines after myocardial in farction in rats

    Institute of Scientific and Technical Information of China (English)

    Jinying Zhang; Yuhua Liao; Xiang Cheng; Baojun Lu

    2005-01-01

    Objective: To study the effect of simvastatin on mRNA expression of inflammatory cytokines, including TNF-α,IL-1β, IL-6, and IL-10, after myocardial infarction (MI) in rats. Methods: The experimental rats were divided into three groups: Sham operation group (Sham), the rats were performed a left thoracotomy with no ligation of left descending coronary artery (LAD); Myocardial infarction control group (MI-C), the rats were performed a left thoracotomy with ligation of LAD; Simvastatin group (MI-S), the rats were performed a left thoracotomy with ligation of LAD, and given simvastatin 40 mg/kg body weight per day through gavage, while the other two groups were given equal normal saline by gavage. All animals were caged to feed four weeks. After finished, the rats were killed, and the hearts were harvested and cut into two equal parts at the level of the papillary muscle: one was used to determine mRNA expression of myocardial cytokines by RT-PCR, and the other was used to measure cytokines by Western blotting and immunohistochemical staining. Results: All the pro-inflammatory cytokines mentioned above showed few expression in Sham operation group. In the MI groups(including MI-C and MI-S groups), mRNA expression of each of these cytokines markedly increased compared with the Sham operation group ( P < 0.01). Compared with MI-C group, the mRNA expression of TNF-α, IL-1β and IL-6 in the MI-S group significantly reduced( P < 0.01), and mRNA expression of IL-10 obviously increased ( P < 0.01). Cytokines principally located in cardiomyocytes of non-infarcted area and survived cardiomyocytes of infarcted area, simvastatin could decrease TNF-α, IL-1β, and IL-6 and increase IL-10 by confirmation of immunohistochemical staining. Conclusion: Simvastatin markedly lowers pro-inflammatory cytokines, and increases inflammatory protective cytokine. Its mechanism needs to be elucidated.

  5. Pro-inflammatory cytokines and bone fractures in CKD patients. An exploratory single centre study

    Directory of Open Access Journals (Sweden)

    Panuccio Vincenzo

    2012-10-01

    Full Text Available Abstract Background Pro-inflammatory cytokines play a key role in bone remodeling. Inflammation is highly prevalent in CKD-5D patients, but the relationship between pro-inflammatory cytokines and fractures in CKD-5D patients is unclear. We studied the relationship between inflammatory cytokines and incident bone fractures in a cohort of CKD-5D patients. Methods In 100 CKD-5D patients (66 on HD, 34 on CAPD; males:63, females:37; mean age: 61 ± 15; median dialysis vintage: 43 months belonging to a single renal Unit, we measured at enrolment bone metabolic parameters (intact PTH, bone and total alkaline phosphatase, calcium, phosphate and inflammatory cytokines (TNF-α, IL-6, CRP. Patients were followed-up until the first non traumatic fracture. Results During follow-up (median: 74 months; range 0.5 -84.0 18 patients experienced fractures. On categorical analysis these patients compared to those without fractures had significantly higher intact PTH (median: 319 pg/ml IQ range: 95–741 vs 135 pg/ml IQ: 53–346; p = 0.04 and TNF-α levels (median: 12 pg/ml IQ: 6.4-13.4 vs 7.8 pg/ml IQ: 4.6-11; p = 0.02. Both TNF-α (HR for 5 pg/ml increase in TNF-α: 1.62 95% CI: 1.05-2.50; p = 0.03 and intact PTH (HR for 100 pg/ml increase in PTH: 1.15 95% CI: 1.04-1.27; p = 0.005 predicted bone fractures on univariate Cox’s regression analysis. In restricted (bivariate models adjusting for previous fractures, age, sex and other risk factors both PTH and TNF-α maintained an independent association with incident fractures. Conclusions In our bivariate analyses TNF-α was significantly associated with incident fractures. Analyses in larger cohorts and with adequate number of events are needed to firmly establish the TNF α -fracture link emerged in the present study.

  6. Pro-inflammatory Cytokines Impair Vitamin D-induced Host Defense in Cultured Airway Epithelial Cells.

    Science.gov (United States)

    Schrumpf, Jasmijn A; Amatngalim, Gimano D; Veldkamp, Joris B; Verhoosel, Renate M; Ninaber, Dennis K; Ordonez, Soledad R; van der Does, Anne M; Haagsman, Henk P; Hiemstra, Pieter S

    2017-02-23

    Vitamin D is a regulator of host defense against infections and induces expression of the antimicrobial peptide hCAP18/LL-37. Vitamin D deficiency is associated with chronic inflammatory lung diseases and respiratory infections. However, it is incompletely understood if and how (chronic) airway inflammation affects vitamin D metabolism and action. We hypothesized that long-term exposure of primary bronchial epithelial cells (PBEC) to pro-inflammatory cytokines alters their vitamin D metabolism, antibacterial activity and expression of hCAP18/LL-37. To investigate this, PBEC were differentiated at the air-liquid interphase for 14 days in presence of the pro-inflammatory cytokines TNF-α and IL-1β (TNF-α/IL-1β), and subsequently exposed to vitamin D (inactive 25(OH)D3 and active 1,25(OH)2D3). Expression of hCAP18/LL-37, vitamin D receptor (VDR) and enzymes involved in vitamin D metabolism (CYP24A1 and CYP27B1) was determined using qPCR, Western blot and immunofluorescence staining. Furthermore, vitamin D-mediated antibacterial activity was assessed using non-typeable Haemophilus influenzae (NTHi). We found that TNF-α/IL-1β treatment reduced vitamin D-induced expression of hCAP18/LL-37 and killing of NTHi. In addition, CYP24A1 (a vitamin D-degrading enzyme) was increased by TNF-α/IL-1β, whereas CYP27B1 (that converts 25(OH)D3 to its active form) and VDR expression remained unaffected. Furthermore, we demonstrated that the TNF-α/IL-1β-mediated induction of CYP24A1 was at least in part mediated by the transcription factor specific protein 1 (Sp1) and the EGFR-MAPK-pathway. These findings indicate that TNF-α/IL-1β decreases vitamin D-mediated antibacterial activity and hCAP18/LL-37 expression via induction of CYP24A1, and suggests that chronic inflammation impairs protective responses induced by vitamin D.

  7. Pro-Inflammatory Cytokine Levels in HIV Infected and Uninfected Pregnant Women with and without Preeclampsia

    Science.gov (United States)

    Maharaj, Niren Ray; Phulukdaree, Alisa; Nagiah, Savania; Ramkaran, Prithiksha; Tiloke, Charlette; Chuturgoon, Anil Amichund

    2017-01-01

    Introduction Preeclampsia and HIV/AIDS are inflammatory conditions that contribute significantly to adverse maternal and foetal outcomes. The immune reconstitution effects of HAART on inflammatory mediators has not been adequately studied in pregnancy and may impact on the inflammatory cytokine network in women with co-morbid preeclampsia. Our study evaluated changes in pro-inflammatory cytokines IL-2, TNF-α, IFN-γ and IL-6 in HIV infected preeclamptic women on HAART. Methods A prospective experimental study was conducted at Prince Mshiyeni Memorial Hospital between July 2013 and September 2014. One hundred and ninety three pregnant women were recruited into 4 groups: uninfected normotensive (50; 26%), infected normotensive (45; 23%), uninfected preeclamptic (53; 28%) and infected preeclamptic women (45; 23%). Serum levels of cytokines TNF-α, IFN- γ, IL-2 and IL-6 were determined using commercially available kits and a Cytometric Bead Array (CBA). Comparative data was recorded and analysed descriptively. Results In the control groups (normotensive), significantly lower values were found in IL-2 (p = 0.010), TNF-α (p = 0.045), and IL-6 (p = 0.005); and a non-significant decrease was observed in IFN-γ (p = 0.345) in HIV infected women on HAART compared to uninfected controls. In the experimental group (preeclamptic) women, significantly reduced levels were observed in IL-2 and TNF-α (p = 0.001; p = 0.000) and non-significant decreases were observed in IFN-γ and IL-6 (p = 0.023; p = 0.086) in HIV infected women on HAART compared with uninfected preeclamptic women. Non-significant differences were observed between uninfected preeclamptic and normotensive women. Conclusion In uncomplicated/normotensive pregnancies, HIV/HAART is associated with significant decreases in IL-2, TNF-α and IL-6, and in preeclamptic women significant decreases in IL-2 and TNF-α were observed. These findings suggest that HIV/HAART impacts on pro-inflammatory cytokines in women with co

  8. Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Alcendor Donald J

    2012-05-01

    Full Text Available Abstract Background Congenital human cytomegalovirus (HCMV infections can result in CNS abnormalities in newborn babies including vision loss, mental retardation, motor deficits, seizures, and hearing loss. Brain pericytes play an essential role in the development and function of the blood–brain barrier yet their unique role in HCMV dissemination and neuropathlogy has not been reported. Methods Primary human brain vascular pericytes were exposed to a primary clinical isolate of HCMV designated ‘SBCMV’. Infectivity was analyzed by microscopy, immunofluorescence, Western blot, and qRT-PCR. Microarrays were performed to identify proinflammatory cytokines upregulated after SBCMV exposure, and the results validated by real-time quantitative polymerase chain reaction (qPCR methodology. In situ cytokine expression of pericytes after exposure to HCMV was examined by ELISA and in vivo evidence of HCMV infection of brain pericytes was shown by dual-labeled immunohistochemistry. Results HCMV-infected human brain vascular pericytes as evidenced by several markers. Using a clinical isolate of HCMV (SBCMV, microscopy of infected pericytes showed virion production and typical cytomegalic cytopathology. This finding was confirmed by the expression of major immediate early and late virion proteins and by the presence of HCMV mRNA. Brain pericytes were fully permissive for CMV lytic replication after 72 to 96 hours in culture compared to human astrocytes or human brain microvascular endothelial cells (BMVEC. However, temporal transcriptional expression of pp65 virion protein after SBCMV infection was lower than that seen with the HCMV Towne laboratory strain. Using RT-PCR and dual-labeled immunofluorescence, proinflammatory cytokines CXCL8/IL-8, CXCL11/ITAC, and CCL5/Rantes were upregulated in SBCMV-infected cells, as were tumor necrosis factor-alpha (TNF-alpha, interleukin-1 beta (IL-1beta, and interleukin-6 (IL-6. Pericytes exposed to SBCMV elicited

  9. Maternal BCG scar is associated with increased infant proinflammatory immune responses

    Science.gov (United States)

    Mawa, Patrice Akusa; Webb, Emily L.; Filali-Mouhim, Abdelali; Nkurunungi, Gyaviira; Sekaly, Rafick-Pierre; Lule, Swaib Abubaker; Prentice, Sarah; Nash, Stephen; Dockrell, Hazel M.; Elliott, Alison M.; Cose, Stephen

    2017-01-01

    Introduction Prenatal exposures such as infections and immunisation may influence infant responses. We had an opportunity to undertake an analysis of innate responses in infants within the context of a study investigating the effects of maternal mycobacterial exposures and infection on BCG vaccine-induced responses in Ugandan infants. Material and methods Maternal and cord blood samples from 29 mother-infant pairs were stimulated with innate stimuli for 24 h and cytokines and chemokines in supernatants were measured using the Luminex® assay. The associations between maternal latent Mycobacterium tuberculosis infection (LTBI), maternal BCG scar (adjusted for each other’s effect) and infant responses were examined using linear regression. Principal Component Analysis (PCA) was used to assess patterns of cytokine and chemokine responses. Gene expression profiles for pathways associated with maternal LTBI and with maternal BCG scar were examined using samples collected at one (n = 42) and six (n = 51) weeks after BCG immunisation using microarray. Results Maternal LTBI was positively associated with infant IP-10 responses with an adjusted geometric mean ratio (aGMR) [95% confidence interval (CI)] of 5.10 [1.21, 21.48]. Maternal BCG scar showed strong and consistent associations with IFN-γ (aGMR 2.69 [1.15, 6.17]), IL-12p70 (1.95 [1.10, 3.55]), IL-10 (1.82 [1.07, 3.09]), VEGF (3.55 [1.07, 11.48]) and IP-10 (6.76 [1.17, 38.02]). Further assessment of the associations using PCA showed no differences for maternal LTBI, but maternal BCG scar was associated with higher scores for principal component (PC) 1 (median level of scores: 1.44 in scar-positive versus −0.94 in scar-negative, p = 0.020) in the infants. PC1 represented a controlled proinflammatory response. Interferon and inflammation response pathways were up-regulated in infants of mothers with LTBI at six weeks, and in infants of mothers with a BCG scar at one and six weeks after BCG immunisation. Conclusions

  10. Heparin-like polymers modulate proinflammatory cytokine production by lipopolysaccharide-stimulated human monocytes.

    Science.gov (United States)

    Anastase-Ravion, Sylvie; Carreno, Marie-Paule; Blondin, Catherine; Ravion, Olivier; Champion, Jacqueline; Chaubet, Frédéric; Haeffner-Cavaillon, Nicole; Letourneur, Didier

    2002-06-05

    The search for heparin-like materials remains an intensive field of research. In this context, we studied the immunomodulatory properties of semisynthetic dextran derivatives and naturally occurring sulfated polysaccharides present in brown seaweed (fucans). In this study, we investigated the functional potencies of fucan and dextran derivatives by analyzing their effects on the release of proinflammatory cytokines by resting or lipopolysaccharide (LPS)-stimulated human monocytes and their interactions on monocyte surfaces. The results showed that fucan, dextran derivatives, and heparin differentially (1) triggered interleukin-1alpha, tumor necrosis factor alpha, interleukin-6, and interleukin-8 production by monocytes in a dose-dependent manner, (2) modulated cytokine production by LPS-stimulated monocytes, and (3) specifically inhibited the binding of biotinylated LPS to monocyte membranes. Taken together, these data indicated that fucan and dextran derivatives displayed interesting immunomodulatory effects on human blood cells that could be relevant as new drugs or biomaterial coatings. Indeed, such polysaccharides, by regulating monocyte activation, could contribute to the improved biocompatibility of implants.

  11. Age-associated pro-inflammatory adaptations of the mouse thoracic aorta.

    Science.gov (United States)

    Hemmeryckx, Bianca; Hoylaerts, Marc F; Deloose, Eveline; Van Hove, Cor E; Fransen, Paul; Bult, Hidde; Lijnen, H Roger

    2013-10-01

    Arterial ageing may be associated with a reduction in vasodilation due to increased reactive oxygen species (ROS) production, whereas endothelial cell activation induces procoagulant changes. However, little is known on the effect of ageing on expression of anticoagulant endothelial markers such as endothelial protein C receptor (EPCR). To study age-associated alterations in smooth muscle cell (SMC) and endothelial cell (EC) structure and function, the aorta was isolated from 10-week- and 12- and 24-month-old C57BL/6J mice and analysed for its expression of genes involved in senescence, oxidative stress production, coagulation and matrix remodelling. In addition, vasorelaxation experiments were performed using 10-week- and 24-month-old thoracic aortic ring segments in organ chamber baths. The media thickness of the thoracic aorta progressively increased with age, associated with hypertrophy of vascular SMCs. Basal nitric oxide production and sensitivity to acetylcholine-mediated vasodilation in thoracic aorta rings was reduced with age, whereas no significant differences in ROS production could be demonstrated. Gene expression of tissue factor, EPCR and von Willebrand factor was not affected by ageing of the aorta, whereas that of thrombomodulin was mildly reduced and that of xanthine dehydrogenase, NADPH oxidase 4, tumour necrosis factor-α and vascular cell adhesion molecule-1 significantly enhanced. In conclusion, a reduction in endothelial cell-mediated vasodilation in aged thoracic aortas of C57BL/6J mice was accompanied by a shift towards a pro-inflammatory state of the endothelium.

  12. Induction of proinflammatory cytokines and nitric oxide by Trypanosoma cruzi in renal cells.

    Science.gov (United States)

    de Oliveira, Gabriel M; Yoshida, Nobuko; Higa, Elisa M S; Shenkman, Sérgio; Alves, Monique; Staquicini, Daniela; Cascabulho, Cynthia; Schor, Nestor

    2011-08-01

    Chagas disease is typically associated with cardiac involvement. During the acute phase of murine infection with Trypanosoma cruzi, severe acute myocarditis can develop. Prior to cardiac alteration, however, infected mice present with renal inflammatory infiltration causing acute kidney injury due to an ischemia/reperfusion lesion. Thus, the present study was undertaken in order to evaluate whether the parasites or some of their components would directly affect renal cells. As such, this study employed kidney cell lines (mesangial, epithelial, and proximal tubular) that mimic different regions of the renal system. Mesangial cells are more resistant to infection, showing reduced parasite internalization relative to epithelial and proximal tubular cells. Upon infection, mesangial cells produced more nitric oxide, tumor factor necrosis-α, and interferon-γ and showed decreased viability when compared to the other cell lines. These results indicate that the resistance of mesangial cells to infection may be related to the increased expression of nitric oxide and proinflammatory cytokines. Conversely, the high levels of nitric oxide produced by these cells caused impairment of cell integrity and viability. Higher nitric oxide concentrations promote cellular injury and can be involved in the genesis of ischemia/reperfusion lesions in acute kidney injury.

  13. The proinflammatory cytokine network: interactions in the CNS and blood of rhesus monkeys.

    Science.gov (United States)

    Reyes, T M; Coe, C L

    1998-01-01

    Proinflammatory cytokines [interleukin (IL)-1 and -6 and tumor necrosis factor-alpha] function within a complex network, stimulating the release of one another, as well as other cytokine agonists and antagonists. These interactions have not been as widely studied in vivo. Therefore, the following studies measured cytokines in blood and cerebrospinal fluid (CSF) from juvenile rhesus monkeys after intravenous administration of cytokines. IL-1 alpha and IL-1 beta were equally effective in elevating blood levels of IL-6. In contrast, IL-1 beta was the only cytokine that significantly elevated IL-6 levels in the CSF. Interestingly, both IL-1 and IL-6 increased levels of IL-1 receptor antagonist in the blood and comparably stimulated the release of cortisol. A second study confirmed that the IL-1-induced IL-6 in CSF was brain derived and not a result of diffusion from blood. This research extends studies of the cytokine cascade to the central nervous system (CNS), highlighting the brain response to peripheral activation.

  14. Bioactive extract from moringa oleifera inhibits the pro-inflammatory mediators in lipopolysaccharide stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Masoumeh Tangestani Fard

    2015-01-01

    Full Text Available Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E 2 , tumor necrosis factor alpha, interleukin (IL-6, and IL-1b. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders.

  15. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites

    Science.gov (United States)

    Braig, David; Nero, Tracy L.; Koch, Hans-Georg; Kaiser, Benedict; Wang, Xiaowei; Thiele, Jan R.; Morton, Craig J.; Zeller, Johannes; Kiefer, Jurij; Potempa, Lawrence A.; Mellett, Natalie A.; Miles, Luke A.; Du, Xiao-Jun; Meikle, Peter J.; Huber-Lang, Markus; Stark, G. Björn; Parker, Michael W.; Peter, Karlheinz; Eisenhardt, Steffen U.

    2017-01-01

    C-reactive protein (CRP) concentrations rise in response to tissue injury or infection. Circulating pentameric CRP (pCRP) localizes to damaged tissue where it leads to complement activation and further tissue damage. In-depth knowledge of the pCRP activation mechanism is essential to develop therapeutic strategies to minimize tissue injury. Here we demonstrate that pCRP by binding to cell-derived microvesicles undergoes a structural change without disrupting the pentameric symmetry (pCRP*). pCRP* constitutes the major CRP species in human-inflamed tissue and allows binding of complement factor 1q (C1q) and activation of the classical complement pathway. pCRP*–microvesicle complexes lead to enhanced recruitment of leukocytes to inflamed tissue. A small-molecule inhibitor of pCRP (1,6-bis(phosphocholine)-hexane), which blocks the pCRP–microvesicle interactions, abrogates these proinflammatory effects. Reducing inflammation-mediated tissue injury by therapeutic inhibition might improve the outcome of myocardial infarction, stroke and other inflammatory conditions. PMID:28112148

  16. Upregulation of pro-inflammatory cytokines in the intercostal muscles of COPD patients.

    Science.gov (United States)

    Casadevall, C; Coronell, C; Ramírez-Sarmiento, A L; Martínez-Llorens, J; Barreiro, E; Orozco-Levi, M; Gea, J

    2007-10-01

    Muscle dysfunction is a characteristic feature of chronic obstructive pulmonary disease (COPD). Recent studies suggest that cytokines may operate as local regulators of both muscle function and regeneration. The aim of the present study was to characterise the expression of different cytokines in the external intercostal muscle of COPD. Muscle biopsies were obtained from 25 stable COPD patients and eight healthy controls. Local tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, -6 and -10 expressions (real-time PCR and ELISA), sarcolemmal damage (immunohistochemistry), and the transcript levels of CD18 were assessed. Muscle TNF-alpha and IL-6 transcripts were significantly higher in COPD patients compared with controls, and IL-1beta and sarcolemmal damage showed a strong tendency in the same direction. Similar results were observed at protein level. The CD18 panleukocyte marker was similar in COPD and controls. Respiratory muscle function was impaired in COPD patients and it correlated to both the severity of lung function impairment and TNF-alpha muscle expression. Chronic obstructive pulmonary disease is associated with the upregulation of pro-inflammatory cytokines in the intercostal muscles. This phenomenon might be involved in respiratory muscle dysfunction.

  17. Eugenol suppressed the expression of lipopolysaccharide-induced proinflammatory mediators in human macrophages.

    Science.gov (United States)

    Lee, Ya-Yun; Hung, Shan-Ling; Pai, Sheng-Fang; Lee, Yuan-Ho; Yang, Shue-Fen

    2007-06-01

    Eugenol is commonly used as an analgesic agent during acute pulpitis and is a major component of root canal sealers. Despite the frequent applications of eugenol in the practice of dentistry, little is known about the role of eugenol under the status of inflammation. This study was aimed to investigate the influence of eugenol on human macrophages (U937) under the stimulation of lipopolysaccharide (LPS). Eugenol was shown to block the release of the bone resorbing mediators, including interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and prostaglandin E2 from LPS-stimulated macrophages. In contrast, eugenol alone did not alter the expression levels of these proinflammatory mediators in macrophages. Consistent with downregulation of bone-resorbing mediators, eugenol suppressed the messenger RNA expression of LPS-induced IL-1beta, TNF-alpha, and cyclooxygenase-2 in macrophages. The results suggest a potential anti-inflammatory effect of eugenol in the acute inflamed pulps and apical periodontitis.

  18. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    Science.gov (United States)

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.

  19. Melatonin enhances pro-inflammatory cytokine levels and protects against Chagas disease.

    Science.gov (United States)

    Santello, Fabricia Helena; Frare, Eduardo Osório; Caetano, Leony Cristina; AlonsoToldo, Míriam Paula; do Prado, José Clóvis

    2008-08-01

    Pro-inflammatory and modulatory cytokines have an essential role in host defense against human and murine Trypanosoma cruzi infection. Control of T. cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. Melatonin has been proposed to regulate the immune system by affecting cytokine production in immunocompetent cells, enhancing the production of several T helper (Th)1 cytokines. The aims of this work were to evaluate in rats, the influences of exogenous melatonin treatment on T. cruzi-infected host's immune responses. With this in mind, several immunological parameters were analyzed, including tumor necrosis factor-alpha, gamma-interferon, interleukin-12, nitric oxide (NO) and macrophage count. The melatonin therapy was provided in one of two different treatment regimens, that is, either beginning 7 days prior to infection or concomitant with the infection. Both treatments triggered an up-regulation of the immune response, with the concomitant treatment being more effective; in this case all cytokines studied, with exception of NO, displayed enhanced concentrations and there was a higher number of peritoneal macrophages, which displayed reduced concentrations under melatonin therapy. We conclude that melatonin plays a pivotal role in up-regulating the Th1 immune response thus controlling parasite replication.

  20. Histamine mediates the pro-inflammatory effect of latex of Calotropis procera in rats.

    Science.gov (United States)

    Shivkar, Yatin M; Kumar, Vijay L

    2003-01-01

    INTRODUCTiON: Calotropis procera is known to produce contact dermatitis and the latex of this plant produces intense inflammation when injected locally. However, the precise mode of its pro-inflammatory effect is not known. In present study we have pharmacologically characterized the inflammation induced by latex of C. procera in a rat paw edema model and determined the role of histamine in latex-induced inflammation. METHODS: Inflammation was induced in the hind paw of rats by injecting different doses of dried latex (DL) of C. procera. The inhibitory effect of phenylbutazone, dexamethasone, celecoxib, cyproheptadine, chlorpheniramine and compound 48/80 on edema volume was evaluated and compared with that against carrageenan. The histamine content of DL was measured fluorometrically. RESULTS: DL produced dose-dependent inflammation of the rat paw. Cyproheptadine and chlorpheniramine effectively inhibited DL-induced inflammation (90%; p phenylbutazone, dexamethasone and celecoxib were more effective against carrageenan-induced inflammation. Depletion of mast cell histamine by compound 48/80 produced a significant decrease in DL-induced inflammation as compared with carrageenan (500% versus 25%). DL was also found to contain about 6 microg/g of histamine. CONCLUSIONS: Thus, our study shows that the biogenic amines play a significant role in C. procera latex-induced inflammation and antihistaminic drugs could be effectively used to inhibit inflammatory response elicited by exposure to latex. PMID:14760937

  1. Comparative evaluation of pro-inflammatory cytokine levels in pulpotomized primary molars.

    Science.gov (United States)

    Ozdemir, Yasemin; Kutukculer, Necil; Topaloglu-Ak, Asli; Kose, Timur; Eronat, Cemal

    2015-06-01

    The present in vivo study was performed to investigate the levels of the pro-inflammatory cytokines, interleukin (IL)-1α, IL-6, and IL-8, in primary molars for which pulpotomy was clinically indicated, and to evaluate the success rates of three different pulpotomy agents employed for cariously (CExp) or mechanically exposed (MExp) primary molars. Forty-seven primary molars were classified as MExp or CExp according to the type of pulpal exposure. Pulp tissue was harvested and analyzed using enzyme-linked immunosorbent assay (ELISA). Subsequently, three pulpotomy agents-calcium hydroxide (CH), mineral trioxide aggregate (MTA), and formocresol (FC)-were applied randomly, and the outcome was observed radiographically for 18 months. Levels of IL-6 and IL-8 were significantly higher in CExp pulp than in MExp pulp (P pulpotomy group, MExp teeth showed a higher success rate than CExp teeth. There was no significant difference in success rate between MExp and CExp teeth in both the FC and MTA groups. The levels of IL-6 and IL-8 have the potential to become indicators of pulp status and can be monitored by researchers to make the prognosis of vital pulp therapies less uncertain. As MTA and FC yielded higher rates of success than CH in CExp teeth, the choice of pulpotomy agent appears to be important in this context.

  2. Proinflammatory Cytokines Correlate with Depression and Anxiety in Colorectal Cancer Patients

    Directory of Open Access Journals (Sweden)

    Diego Oliveira Miranda

    2014-01-01

    Full Text Available The objective of this study was to investigate whether serum cytokine levels correlate with depression and anxiety in colorectal cancer (CRC patients. Twenty patients hospitalized for surgical resection of CRC were included in the study group and twenty healthy volunteers comprised the control group. Depression and anxiety were analyzed using the Hospital Anxiety and Depression Scale (HADS, and serum levels of IL-1β, IL-6, IL-8, IL-10, IL-12, TNF-α, and TGF-β were measured by Cytometric Bead Array. We found that more than half of CRC patients presented clinically significant levels of anxiety or depression, and 65% of them manifested a combination of severe anxiety and depression. CRC patients had increased serum levels of IL-1β, IL-6, IL-8, and TNF-α but lower IL-10 concentrations. Correlation analysis between HADS score and cytokine levels revealed a positive association of anxiety and/or depression with IL-1β, IL-6, IL-8, and TNF-α and a negative correlation with IL-10. These results indicate that circulating proinflammatory cytokines are involved in the pathophysiology of anxiety and depression in CRC patients. A better understanding of the molecular mechanisms involved in these psychological disorders will allow the design of therapeutic interventions that lead to an improved quality of life and overall survival of CRC patients.

  3. The sterols isolated from Evening Primrose oil modulate the release of proinflammatory mediators.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Fernández-Arche, Angeles; Angel-Martín, María; García-Giménez, María Dolores

    2012-09-15

    Evening Primrose oil is a natural product extracted by cold-pressed from Oenothera biennis L. seeds. The unsaponifiable matter of this oil is an important source of interesting minor compounds, like long-chain fatty alcohols, sterols and tocopherols. In the present study, sterols were isolated from the unsaponifiable matter of Evening Primrose oil, and the composition was identified and quantified by GC and GC-MS. The major components of sterols fraction were β-Sitosterol and campesterol. We investigated the ability of sterols from Evening Primrose oil to inhibit the release of different proinflammatory mediators in vitro by murine peritoneal macrophages stimulated with lipopolysaccharide. Sterols significantly and dose-dependently decreased nitric oxide production. Western blot analysis showed that nitric oxide reduction was a consequence of the inhibition of inducible nitric oxide synthetase expression. Sterols also reduced tumor necrosis factor-α, interleukine 1β and tromboxane B₂. However, sterols did not reduce prostaglandin E₂. The reduction of eicosanoid release was related to the inhibition of cyclooxygenase-2 expression. These results showed that sterols may have a protective effect on some mediators involved in inflammatory damage development, suggesting its potential value as a putative functional component of Evening Primrose oil.

  4. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response.

    Directory of Open Access Journals (Sweden)

    Felix W Santiago

    Full Text Available Mayaro virus (MAYV, an alphavirus similar to chikungunya virus (CHIKV, causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen.

  5. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response.

    Science.gov (United States)

    Santiago, Felix W; Halsey, Eric S; Siles, Crystyan; Vilcarromero, Stalin; Guevara, Carolina; Silvas, Jesus A; Ramal, Cesar; Ampuero, Julia S; Aguilar, Patricia V

    2015-01-01

    Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen.

  6. Hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to pneumococcal coinfection

    Science.gov (United States)

    Duvigneau, Stefanie; Sharma-Chawla, Niharika; Boianelli, Alessandro; Stegemann-Koniszewski, Sabine; Nguyen, Van Kinh; Bruder, Dunja; Hernandez-Vargas, Esteban A.

    2016-11-01

    In the course of influenza A virus (IAV) infections, a secondary bacterial infection frequently leads to serious respiratory conditions provoking high hospitalization and death tolls. Although abundant pro-inflammatory responses have been reported as key contributing factors for these severe dual infections, the relative contributions of cytokines remain largely unclear. In the current study, mathematical modelling based on murine experimental data dissects IFN-γ as a cytokine candidate responsible for impaired bacterial clearance, thereby promoting bacterial growth and systemic dissemination during acute IAV infection. We also found a time-dependent detrimental role of IL-6 in curtailing bacterial outgrowth which was not as distinct as for IFN-γ. Our numerical simulations suggested a detrimental effect of IFN-γ alone and in synergism with IL-6 but no conclusive pathogenic effect of IL-6 and TNF-α alone. This work provides a rationale to understand the potential impact of how to manipulate temporal immune components, facilitating the formulation of hypotheses about potential therapeutic strategies to treat coinfections.

  7. Peripheral blood proinflammatory response in women during menstrual cycle and endometriosis.

    Science.gov (United States)

    Sikora, Justyna; Mielczarek-Palacz, Aleksandra; Kondera-Anasz, Zdzisława; Strzelczyk, Jarosław

    2015-12-01

    The aim of this study was to evaluate differences in levels of serum and monocyte derived interleukin (IL)-1, IL-6 and neopterin (NPT) in women with normal or abnormal menstrual cycles and women with endometriosis. The women participating in this study were divided into 4 groups: 25 women with normal menstrual cycle; 25 women taking oral contraception (OC); 20 postmenopausal women and 25 endometriosis patients. IL-1beta, IL-6 and NPT levels in serum and monocyte culture media were measured with ELISA methods. The data collected showed the lowest serum NPT levels in women with follicular menstrual cycles. The levels of both types of interleukins in serum were the lowest in women using OC. In contrast, the highest concentrations of all cytokines were found in the serum of women with endometriosis. The lowest monocyte activity was observed in women with a follicular menstrual cycle phase and the highest in endometriosis. Monocytes from women using OC secreted similar amounts of cytokines to the cells during the follicular menstrual cycle phase. Changes occurring at the time of contraception, after menopause and during endometriosis, are followed by changed proinflammatory monocyte activity, which is associated with different secretion of cytokines. OC can inhibit inflammatory monocyte properties. Lower serum concentration of cytokines compared to cell secretion may suggest some control mechanisms of monocyte activity.

  8. Comparison of pro-inflammatory cytokines of non-healing and healing cutaneous leishmaniasis.

    Science.gov (United States)

    Moafi, M; Rezvan, H; Sherkat, R; Taleban, R; Asilian, A; Hamid Zarkesh-Esfahani, S; Nilforoushzadeh, M A; Jaffary, F; Mansourian, M; Sokhanvari, F; Ansari, N

    2017-04-01

    Cutaneous leishmaniasis (CL) heals spontaneously within several weeks or months, but, in rare cases, CL-active lesions last for many years. In this study, we assessed cell-mediated immunity in non-healing CL through the measurement of three pro-inflammatory cytokines: Interferon-γ (IFN-γ), IL-17a and CXCL-11. For this, 32 patients afflicted with healing or non-healing CL were recruited in this study. Peripheral blood mononuclear cells (PBMCs) of every patient were treated with three antigens: purified protein derivative (PPD), soluble Leishmania antigen (SLA) and phytohaemagglutinin (PHA). Cytokine quantification was performed using enzyme-linked immunosorbent assay (ELISA) method. Results of our study showed that neither cytokine produced in the presence of a PPD stimulator (as an irrelevant antigen) significantly differed between the healing and non-healing groups (P-value ≥0.05 for all of them). However, IFN-γ, CXCL-11 and IL-17a levels produced in the presence of PHA or SLA were significantly higher within the healing than in the non-healing group (P-value <0.01 for all of them). It seems that appropriate levels of IFN-γ, as well as IL-17a and CXCL-11, contribute to the control of Leishmania infection.

  9. Bacterial virulence, proinflammatory cytokines and host immunity: how to choose the appropriate Salmonella vaccine strain?

    Science.gov (United States)

    Raupach, B; Kaufmann, S H

    2001-01-01

    Salmonella infection in its mammalian host can be dissected into two main components. The co-ordinate expression of bacterial virulence genes which are designed to evade, subvert or circumvent the host response on the one hand, and the host defence mechanisms which are designed to restrict bacterial survival and replication on the other hand. The outcome of infection is determined by the one which succeeds in disturbing this equilibrium more efficiently. This delicate balance between Salmonella virulence and host immunity/inflammation has important implications for vaccine development or therapeutic intervention. Novel Salmonella vaccine candidates and live carriers for heterologous antigens are attenuated strains with defined genetic modifications of metabolic or virulence functions. Although genetic defects of different gene loci can lead to similar degrees of attenuation, effects on the course of infection may vary, thereby altering the quality of the elicited immune response. Studies with gene-deficient animals indicate that Salmonella typhimurium strains with mutations in aroA, phoP/phoQ or ssrA/ssrB invoke different immune responses and that a differential repertoire of pro-inflammatory cytokines is required for clearance. Consequently, Salmonella mutants defective in distinct virulence functions offer the potential to specifically modulate the immune response for defined medical applications.

  10. Changes in pro-inflammatory cytokines in association with exposure to moisture-damaged building microbes.

    Science.gov (United States)

    Purokivi, M K; Hirvonen, M R; Randell, J T; Roponen, M H; Meklin, T M; Nevalainen, A L; Husman, T M; Tukiainen, H O

    2001-12-01

    Several epidemiological studies have described an association between adverse health effects and exposure to mould and microbes present in the indoor air of moisture-damaged buildings. However, the biochemical linkage between microbial exposure and the large variety of reported respiratory symptoms is poorly understood. In the present study, the authors compared the respiratory symptoms, the production of inflammatory mediators interleukin (IL)-1, IL-4, IL-6, tumour necrosis factor-alpha (TNF-alpha) and cell count in nasal lavage fluid and induced sputum samples of subjects working in moisture-damaged and control school buildings. The sampling was performed and the questionnaires were completed at the end of the spring term, at the end of the summer vacation (2.5 months), during the winter term and after a 1-week winter holiday. The authors found a significant elevation of IL-1, TNF-alpha and IL-6 in nasal lavage fluid and IL-6 in induced sputum during the spring term in the subjects from the moisture-damaged school building compared to the subjects from the control building. The exposed workers reported sore throat, phlegm, eye irritation, rhinitis, nasal obstruction and cough in parallel with these findings. The present data suggests an association between microbial exposure, and symptoms as well as changes in pro-inflammatory mediators detected from both the upper and lower airways.

  11. Biomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells

    Directory of Open Access Journals (Sweden)

    Andressa Vilas Boas Nogueira

    2014-01-01

    Full Text Available The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS of low (CTSL and high (CTSH magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2 and prostaglandin E2 (PGE2 was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG and receptor activator of nuclear factor kappa-B ligand (RANKL were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P<0.05 increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.

  12. Pro-inflammatory cytokines and nitric oxide inhibitory constituents from Cassia occidentalis roots.

    Science.gov (United States)

    Patel, Neeraj K; Pulipaka, Sravani; Dubey, Shashi P; Bhutani, Kamlesh K

    2014-05-01

    The anti-inflammatory and cytotoxic activity of thirty-six extracts of nine Indian medicinal plants were determined by measuring the inhibition of production of nitric oxide (NO), interleukin 1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Their cytotoxic activity against macrophages was determined by MTT assay. The ethyl acetate (EtOAc) extract of Cassia occidentalis L. (roots) (IC50 = 21.3 to 43.1 microg/mL) and Mimosa pudica (whole plant) (1C50= 31.7 to 47.2 microg/mL) and the dichloromethane (DCM) extract of Leucas cephalotes (whole plant) (IC50 = 46.8 to 49.3 microg/mL) exhibited significant anti-inflammatory activity by in vitro inhibition of the production of TNF-alpha, IL-1beta and NO in LPS stimulated RAW 264.7 cells. Furthermore, the five compounds isolated from the ethyl acetate extract of Cassia occidentalis roots were found to suppress LPS-induced IL-1beta, TNF-alpha and NO production in a concentration-dependent manner in these cells at 1C50 values ranging from 22.5 to 97.4 microM. Emodin and chrysophanol were also found active in inhibiting pro-inflammatory cytokines in vivo. These findings justify an ethnopharmacological use of C occidentalis roots as an effective herbal remedy for the treatment and prevention of inflammation and associated ailments.

  13. Mycobacterium tuberculosis Prolyl Oligopeptidase Induces In vitro Secretion of Proinflammatory Cytokines by Peritoneal Macrophages

    Science.gov (United States)

    Portugal, Brina; Motta, Flávia N.; Correa, Andre F.; Nolasco, Diego O.; de Almeida, Hugo; Magalhães, Kelly G.; Atta, Ana L. V.; Vieira, Francisco D.; Bastos, Izabela M. D.; Santana, Jaime M.

    2017-01-01

    Tuberculosis (TB) is a disease that leads to death over 1 million people per year worldwide and the biological mediators of this pathology are poorly established, preventing the implementation of effective therapies to improve outcomes in TB. Host–bacterium interaction is a key step to TB establishment and the proteases produced by these microorganisms seem to facilitate bacteria invasion, migration and host immune response evasion. We presented, for the first time, the identification, biochemical characterization, molecular dynamics (MDs) and immunomodulatory properties of a prolyl oligopeptidase (POP) from Mycobacterium tuberculosis (POPMt). POP is a serine protease that hydrolyzes substrates with high specificity for proline residues and has already been characterized as virulence factor in infectious diseases. POPMt reveals catalytic activity upon N-Suc-Gly-Pro-Leu-Gly-Pro-AMC, a recognized POP substrate, with optimal activity at pH 7.5 and 37°C. The enzyme presents KM and Kcat/KM values of 108 μM and 21.838 mM-1 s-1, respectively. MDs showed that POPMt structure is similar to that of others POPs, which consists of a cylindrical architecture divided into an α/β hydrolase catalytic domain and a β-propeller domain. Finally, POPMt was capable of triggering in vitro secretion of proinflammatory cytokines by peritoneal macrophages, an event dependent on POPMt intact structure. Our data suggests that POPMt may contribute to an inflammatory response during M. tuberculosis infection. PMID:28223969

  14. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response to Brugia malayi Wolbachia Surface Protein

    Directory of Open Access Journals (Sweden)

    Chantima Porksakorn

    2007-01-01

    Full Text Available Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to a recombinant form of the major Wolbachia surface protein (rWSP to determine if WSP is capable of innately inducing cytokine transcription. Interleukin (IL-1β, IL-6, and tumor necrosis factor (TNF mRNAs were all upregulated by the rWSP stimulation in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL rWSP in the RAW 264.7 cells were comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of innate immune responses during filarial infections.

  15. Signal Processing

    Science.gov (United States)

    1989-03-01

    34ESPIRIT Estimation of signal parameters via rotational imvariance techin+I,-- 1\\I111;1 Smith. A. Faradani "Local and ( Moba ! tomography" I’ Nitlerer and...Feb 1 - Jul 30 Friedman, Avner IMA Gader, Paul University of Wisconsin Jun 27 - Jul 24 Games , Richard MITRE Corp Jun 27 - Aug 5 Garvan, Francis U. of...Gader, Paul University of Wisconsin Jun 27 - Jul 24 Games , Richard MITRE Corp Jun 27 - Aug 5 Garvan, Francis U. of Wisconsin Jun 26 - Jul 31 Habsieger

  16. In vitro investigation of the roles of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1 in murine osteoclastogenesis.

    Science.gov (United States)

    Jules, Joel; Feng, Xu

    2014-01-01

    Whereas the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of NF-кB ligand (RANKL) are essential and sufficient for osteoclastogenesis, a number of other cytokines including two proinflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1 (IL-1), can exert profound effects on the osteoclastogenic process. However, the precise mode of action of TNF-α and IL-1 in osteoclastogenesis remains controversial. While some groups demonstrated that these two cytokines can promote murine osteoclastogenesis in vitro in the presence of M-CSF only, we and others showed that TNF-α-/IL-1-mediated osteoclastogenesis requires permissive levels of RANKL. This chapter describes the method that we have used to investigate the effects of TNF-α and IL-1 on osteoclast formation in in vitro osteoclastogenesis assays using primary murine bone marrow macrophages (BMMs). Detailed experimental conditions are provided and critical points are discussed to help the reader use the method to independently evaluate the roles of TNF-α and IL-1 in osteoclastogenesis in vitro. Moreover, this method can be used to further elucidate the signaling mechanisms by which these two cytokines act in concert with RANKL or with each other to modulate osteoclastogenesis.

  17. Wear particle-mediated expressions of pro-inflammatory cytokines,NF-κB and RANK were impacted by lanthanum chloride in RAW264.7 cells

    Institute of Scientific and Technical Information of China (English)

    DAI Min; JIANG Chuan; LIU Xiang; LI Zhe; CHENG Xigao; ZOU Yang; NIE Tao

    2013-01-01

    To explore the impact of different concentrations of lanthanum chloride (LaCl3) on critical components of wear particle-mediated signaling pathways in inflammation and osteoclastogenesis,RAW264.7 cells were naturally divided into eight groups and analyzed by CCK-8 assay,flow cytometry,ELISA,RT-PCR and western blot after treatments.The results showed that three concentrations of LaCl3 had no influence on viability of RAW264.7 cells and down-regulated receptor activator of nuclear factor κB (RANK) instead of macrophage colony-stimulating factor receptor (M-CSFR).Additionally,2.5 and 10 μmol/L LaCl3 could signifi-cantly inhibit gene and protein levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-lβ,i.e.,TNF-α and IL-1β) and NF-κB/p65,but 100 μrnol/L LaCl3 did not exert an obvious inflammation-inhibiting effect,and even induced inflammation.In conclusion,these findings demonstrated that LaC13 was able to suppress wear particle-induced inflammation and activation of NF-κB in a certain range of concentrations in vitro and mainly decrease the expression of RANK,but not M-CSFR,all of which were generally recognized to play a pivotal role in osteoclastogenesis.

  18. Detection and localization of Mip-3alpha/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer.

    Science.gov (United States)

    Kleeff, J; Kusama, T; Rossi, D L; Ishiwata, T; Maruyama, H; Friess, H; Büchler, M W; Zlotnik, A; Korc, M

    1999-05-17

    Macrophage Proinflammatory Human Chemokine-3alpha (Mip-3alpha/LARC/Exodus) belongs to a large family of chemotactic cytokines, which participate in directing inflammatory cell migration and in modulating angiogenesis. Mip-3alpha signals through a recently identified G-protein linked 7-transmembrane receptor, CCR6. In this study, we have characterized the expression of Mip-3alpha and CCR6 in 12 normal and 16 cancerous human pancreatic tissues and in 4 cultured pancreatic cancer cell lines, and assessed the effects of Mip-3alpha on growth and invasion of these cell lines. Pancreatic cancer tissues markedly overexpressed Mip-3alpha in comparison with normal pancreatic samples. By in situ hybridization Mip-3alpha and CCR6 mRNA moieties were present in cancer cells within the tumors. In addition, Mip-3alpha was abundant in the macrophages infiltrating the tumor mass. Mip-3alpha and its receptor CCR6 were expressed in all 4 tested pancreatic cancer cell lines. Mip-3alpha stimulated the growth of one cell line, enhanced the migration of another cell line, and was without effect in the other 2 cell lines. Together, our findings suggest that Mip-3alpha has the potential to act via autocrine and paracrine mechanisms to contribute to the pathobiology of human pancreatic cancer.

  19. Inhibiting autophagy promotes endoplasmic reticulum stress and the ROS‑induced nod‑like receptor 3‑dependent proinflammatory response in HepG2 cells.

    Science.gov (United States)

    Yin, Jia-Jing; Xie, Guangying; Zhang, Ning; Li, Yanbo

    2016-10-01

    Inflammation and endoplasmic reticulum (ER) stress are key contributors to insulin resistance and metabolic disease, and interleukin (IL)‑1β is involved in insulin resistance. The present study aimed to investigated the role of autophagy in LPS‑induced ER stress and inflammation, which may provide evidence for controlling metabolic disease associated with inflammation. Lipopolysaccharide (LPS) induced the activation of ER stress and the nod‑like receptor 3‑dependent expression of IL‑1β and caspase‑1, as shown by western blotting, which contributed to HepG2 cell death. This also involved the generation of mitochondrial reactive oxygen species and the autophagy signaling response, which are derived from the ER stress pathway. The percentage of apoptotic cells was measured by flow cytometry with fluorescein isothiocyanate/propidium iodide staining. Reactive oxygen species formation was detected by flow cytometry using the peroxide sensitive fluorescent probe 2',7'‑dichlorofluorescin diacetate. Autophagy activation was measured by western blotting and confirmed using transmission electron microscopy. Furthermore, inhibiting autophagy promoted ER stress and the proinflammatory response in addition to cell death. These findings provide insights into the protective role of autophagy in LPS‑induced cell death and ER stress, and further identified the association of autophagy, ER stress and inflammation in HepG2 cells.

  20. Inhibitory effects of harpagoside on TNF-α-induced pro-inflammatory adipokine expression through PPAR-γ activation in 3T3-L1 adipocytes.

    Science.gov (United States)

    Kim, Tae Kon; Park, Kyoung Sik

    2015-12-01

    Obesity is closely associated with increased production of pro-inflammatory adipokines, including interleukin (IL)-6, plasminogen activator inhibitor (PAI)-1, and adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, which contribute to chronic and low-grade inflammation in adipose tissue. Harpagoside, a major iridoid glycoside present in devil's claw, has been reported to show anti-inflammatory activities by suppression of lipopolysaccharide (LPS)-induced production of inflammatory cytokines in murine macrophages. The present study is aimed to investigate the effects of harpagoside on both tumor necrosis factor (TNF)-α-induced inflammatory adipokine expression and its underlying signaling pathways in differentiated 3T3-L1 cells. Harpagoside significantly inhibited TNF-α-induced mRNA synthesis and protein production of the atherogenic adipokines including IL-6, PAI-1, and MCP-1. Further investigation of the molecular mechanism revealed that pretreatment with harpagoside activated peroxisome proliferator-activated receptor (PPAR)-γ. These findings suggest that the clinical application of medicinal plants which contain harpagoside may lead to a partial prevention of obesity-induced atherosclerosis by attenuating inflammatory responses.

  1. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green

    Directory of Open Access Journals (Sweden)

    Chancerelle Yves

    2004-02-01

    Full Text Available Abstract Background Cytokine mRNA quantification is widely used to investigate cytokine profiles, particularly in small samples. Real-time polymerase chain reaction is currently the most reliable method of quantifying low-level transcripts such as cytokine and cytokine receptor mRNAs. This accurate technique allows the quantification of a larger pattern of cytokines than quantification at the protein level, which is limited to a smaller number of proteins. Results Although fluorogenic probes are considered more sensitive than fluorescent dyes, we have developed SYBR Green real-time RT-PCR protocols to assay pro-inflammatory cytokines (IL1a, IL1b and IL6, TNFa, cytokine receptors (IL1-r1, IL1-r2, IL6-r, TNF-r2 and related molecules (IL1-RA, SOCS3 mRNA in rats. This method enables normalisation against several housekeeping genes (beta-actin, GAPDH, CypA, HPRT dependent on the specific experimental treatments and tissues using either standard curve, or comparative CT quantification method. PCR efficiency and sensitivity allow the assessment of; i basal mRNA levels in many tissues and even decreases in mRNA levels, ii mRNA levels from very small samples. Conclusion Real-time RT-PCR is currently the best way to investigate cytokine networks. The investigations should be completed by the analysis of genes regulated by cytokines or involved in cytokine signalling, providing indirect information on cytokine protein expression.

  2. 2-Phenylnaphthalene Derivatives Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Mediators by Downregulating of MAPK/NF-κB Pathways in RAW 264.7 Macrophage Cells

    Science.gov (United States)

    Chang, Chi-Fen; Liao, Kang-Chun; Chen, Chung-Hwan

    2017-01-01

    The anti-inflammatory pharmacological effect of eight 2-phenylnaphthalenes (PNAP-1−PNAP-8) on lipopolysaccharide (LPS)-induced RAW 264.7 (a mouse cell line) was investigated. Among them, 6,7-dihydroxy-2-(4′-hydroxyphenyl)naphthalene (PNAP-6) and 2-(4′-aminophenyl)-6,7-dimethoxynaphthalene (PNAP-8) exhibited the best anti-inflammatory activity in this study. PNAP-6 and PNAP-8 not only significantly decreased the expression of inducible nitric oxide synthase and cyclooxygenase-II, but also inhibited the production of nitric oxide, interleukin-6, and tumor necrosis factor-α in LPS stimulated cells. Moreover, PNAP-6 and PNAP-8 inhibited nuclear factor (NF)-κB activation by decreasing the degradation of IκB and nuclear translocation of NF-κB subunit (p65). In addition, PNAP-6 and PNAP-8 also attenuated the phosphorylation of ERK, p38, and JNK. These results suggest that PNAP-6 and PNAP-8 exert anti-inflammatory activities by down regulating NF-κB activation and the mitogen-activated protein kinase signaling pathway in LPS-stimulated Raw 264.7 cells. This is the first study demonstrating that PNAPs can inhibit LPS-induced pro-inflammatory mediators in macrophages cells. PMID:28060845

  3. Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells

    Directory of Open Access Journals (Sweden)

    Yuan Shi-Ying

    2011-08-01

    Full Text Available Abstract Background Microglial activation plays an important role in neurodegenerative diseases through production of nitric oxide (NO and several pro-inflammatory cytokines. Lipoxins (LXs and aspirin-triggered LXs (ATLs are considered to act as 'braking signals' in inflammation. In the present study, we investigated the effect of aspirin-triggered LXA4 (ATL on infiammatory responses induced by lipopolysaccharide (LPS in murine microglial BV-2 cells. Methods BV-2 cells were treated with ATL prior to LPS exposure, and the effects of such treatment production of nitric oxide (NO, inducible nitric oxide synthase (iNOS, interleukin-1β (IL-1β and tumour necrosis factor-α (TNF-α were analysed by Griess reaction, ELISA, western blotting and quantitative RT-PCR. Moreover, we investigated the effects of ATL on LPS-induced nuclear factor-κB (NF-κB activation, phosphorylation of mitogen-activated protein kinases (MAPKs and activator protein-1 (AP-1 activation. Results ATL inhibited LPS-induced production of NO, IL-1β and TNF-α in a concentration-dependent manner. mRNA expressions for iNOS, IL-1β and TNF-α in response to LPS were also decreased by ATL. These effects were inhibited by Boc-2 (a LXA4 receptor antagonist. ATL significantly reduced nuclear translocation of NF-κB p65, degradation of the inhibitor IκB-α, and phosphorylation of extracellular signal-regulated kinase (ERK and p38 MAPK in BV-2 cells activated with LPS. Furthermore, the DNA binding activity of NF-κB and AP-1 was blocked by ATL. Conclusions This study indicates that ATL inhibits NO and pro-inflammatory cytokine production at least in part via NF-κB, ERK, p38 MAPK and AP-1 signaling pathways in LPS-activated microglia. Therefore, ATL may have therapeutic potential for various neurodegenerative diseases.

  4. Inflammatory and protein metabolism signaling responses in human skeletal muscle after burn injury.

    Science.gov (United States)

    Merritt, Edward K; Cross, James M; Bamman, Marcas M

    2012-01-01

    Severe burn injuries lead to a prolonged hypercatabolic state resulting in dramatic loss of skeletal muscle mass. Postburn muscle loss is well documented but the molecular signaling cascade preceding atrophy is not. The purpose of this study is to determine the response to burn injury of signaling pathways driving muscle inflammation and protein metabolism. Muscle biopsies were collected in the early flow phase after burn injury from the vastus lateralis of a noninjured leg in patients with 20 to 60% TBSA burns and compared with uninjured, matched controls. Circulating levels of proinflammatory cytokines were also compared. Immunoblotting was performed to determine the protein levels of key signaling components for translation initiation, proteolysis, and tumor necrosis factor/nuclear factor kappa B (NFκB)and interleukin (IL)-6/STAT3 signaling. Burn subjects had significantly higher levels of circulating proinflammatory cytokines, with no difference in muscle STAT3 activity and lower NFκB activity. No differences were found in any translational signaling components. Regarding proteolytic signaling in burn, calpain-2 was 47% higher, calpastatin tended to be lower, and total ubiquitination was substantially higher. Surprisingly, a systemic proinflammatory response 3 to 10 days postburn did not lead to elevated muscle STAT3 or NFκB signaling. Signaling molecules governing translation initiation were unaffected, whereas indices of calcium-mediated proteolysis and ubiquitin-proteasome activity were upregulated. These novel findings are the first in humans to suggest that the net catabolic effect of burn injury in skeletal muscle (ie, atrophy) may be mediated, at least during the early flow phase, almost entirely by an increased proteolytic activity in the absence of suppressed protein synthesis signaling.

  5. [Elevation of proinflammatory cytokines level at early age as the risk factor of neurological and mental pathology development].

    Science.gov (United States)

    Zubarev, O E; Klimenko, V M

    2011-10-01

    Proinflammatory cytokines Interleukin-1, Interleukin-6 (IL-1, IL-6) and tumour necrosis factor alpha (TNFalpha), the key mediators of neuroimmune interactions, are the common pathogenic part of various kinds of the perinatal pathology leading to severe neurological and mental diseases. In the review, features of expression of the proinflammatory cytokines and their receptors in the brain at early age under normal and pathological conditions, their influence on processes of maturing of the CNS cells are described, the data of experimental and clinical researches of disturbances of the mental functions arising in adults owing to elevation of the IL-1, IL-6 levels and TNFalpha in early ontogenesis are cited. The role of the cytokines in pathogenesis of schizophrenia, a syndrome of attention deficiency, autism and a Parkinsonism is discussed.

  6. Effects of short-chain fatty acid-supplemented total parenteral nutrition on intestinal pro-inflammatory cytokine abundance.

    Science.gov (United States)

    Milo, L A; Reardon, K A; Tappenden, K A

    2002-09-01

    We examined the effect of short-chain fatty acid-supplemented total parenteral nutrition on proinflammatory cytokine levels in piglets. Piglets (N = 22) received either standard total parenteral nutrition or total parenteral nutrition supplemented with short-chain fatty acids. After seven days of continuous nutrient infusion, proinflammatory cytokine (TNF-alpha, IL-1beta, IL-6) abundance in plasma, jejunal, and ileal samples and small intestinal myeloperoxidase was determined using western blotting. No differences were seen in TNF-alpha small intestinal abundance. IL-1beta was higher in the small intestine of the short-chain fatty acid group (P short-chain fatty acids beneficially increase small intestinal abundance of IL-1beta and IL-6 during total parenteral nutrition administration, while not affecting systemic production of these cytokines or intestinal inflammation.

  7. A role for autoantibodies in enhancement of pro-inflammatory cytokine responses to a self-antigen, thyroid peroxidase

    DEFF Research Database (Denmark)

    Nielsen, Claus H; Brix, Thomas H; Leslie, R Graham Q

    2009-01-01

    individuals with no familiar disposition to AITD, and mixed each serum with normal mononuclear cells (MNCs). Following challenge with TPO, the MNCs' production of the pro-inflammatory cytokines TNF-alpha, IL-6 and IFN-gamma, and the anti-inflammatory cytokine IL-10, correlated with the TPOAb content...... that TPO-induced release of pro-inflammatory cytokines from phagocytic cells and T-cell responses to TPO are promoted by TPOAbs....... of the serum present in the culture (p=0.0002-0.05). Enrichment of foetal calf serum-containing media with IgG with a high content of TPOAbs enhanced the TPO-elicited production of TNF-alpha, IL-6 and IFN-gamma by normal MNCs in a dose- and Fcgamma-receptor dependent manner (p

  8. Florigen signaling.

    Science.gov (United States)

    Tsuji, Hiroyuki; Taoka, Ken-Ichiro

    2014-01-01

    Florigen is a systemic signal that promotes flowering. Its molecular nature is a conserved FLOWERING LOCUS T (FT) protein that belongs to the PEBP family. FT is expressed in the leaf phloem and transported to the shoot apical meristem where it initiates floral transition. In the cells of the meristem, FT binds 14-3-3 proteins and bZIP transcription factor FD to form the florigen activation complex, FAC, which activates floral meristem identity genes such as AP1. The FAC model provides molecular basis for multiple functions of FT beyond flowering through changes of its partners and transcriptional targets. The surface of FT protein includes several regions essential for transport and functions, suggesting the binding of additional components that support its function. FT expression is under photoperiodic control, involving a conserved GIGANTEA-CONSTANS-FT regulatory module with species-specific modifications that contribute variations of flowering time in natural populations.

  9. Role of Proinflammatory Cytokines in Thermal Activation of Lymphocyte Recruitment in Breast Tumor Microvessels

    Science.gov (United States)

    2005-03-01

    interactionsI IL-6 trans-signaling mechanism J__ MEK/ERK Inside-out signaling Cancer Immunology , Immunotherapy (in press) DYNAMIC CONTROL OF LYMPHOCYTE...venules, tumor microvessels, fever Cancer Immunology , Immunotherapy (in press) ABSTRACT Migration of blood-borne lymphocytes into tissues involves a...the basis for novel approaches to improve recruitment of immune effector cells to tumor sites. 2 Cancer Immunology , Immunotherapy (in press) High

  10. Oxygen Radicals Elicit Paralysis and Collapse of Spinal Cord Neuron Growth Cones upon Exposure to Proinflammatory Cytokines

    OpenAIRE

    Kuhn, Thomas B.

    2014-01-01

    A persistent inflammatory and oxidative stress is a hallmark of most chronic CNS pathologies (Alzheimer’s (ALS)) as well as the aging CNS orchestrated by the proinflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β). Loss of the integrity and plasticity of neuronal morphology and connectivity comprises an early step in neuronal degeneration and ultimate decline of cognitive function. We examined in vitro whether TNFα or IL-1β impaired morphology and motility ...

  11. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    Science.gov (United States)

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health.

  12. Chemokines: proinflammatory and cell traffic regulator cytokines Las quimioquinas: citoquinas proinflamatorias y reguladoras del tráfico celular

    OpenAIRE

    2001-01-01

    Chemokines are a large group of proinflammatory cytokines; currently, there are about 40 different chemokines produced by different cellular sources and with pleiotropic actions. Interest in chemokines’ research is growing due to their selectivity to activate and to direct the traffic of different leukocyte populations, in contrast with other chemotactic factors that attract neutrophils and monocytes similarly. Furthermore, it has been observed that chemokines are involved in hematopoiesis, a...

  13. Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition.

    Science.gov (United States)

    Osornio-Vargas, Alvaro R; Bonner, James C; Alfaro-Moreno, Ernesto; Martínez, Leticia; García-Cuellar, Claudia; Ponce-de-León Rosales, Sergio; Miranda, Javier; Rosas, Irma

    2003-08-01

    Exposure to urban airborne particulate matter (PM) is associated with adverse health effects. We previously reported that the cytotoxic and proinflammatory effects of Mexico City PM10 (less than or equal to 10 micro m mean aerodynamic diameter) are determined by transition metals and endotoxins associated with these particles. However, PM2.5 (less than or equal to 2.5 micro m mean aerodynamic diameter) could be more important as a human health risk because this smaller PM has the potential to reach the distal lung after inhalation. In this study, we compared the cytotoxic and proinflammatory effects of Mexico City PM10 with those of PM2.5 using the murine monocytic J774A.1 cell line in vitro. PMs were collected from the northern zone or the southeastern zone of Mexico City. Elemental composition and bacterial endotoxin on PMs were measured. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) production by J774A.1 cells was measured in the presence or absence of recombinant endotoxin-neutralizing protein (rENP). Both northern and southeastern PMs contained endotoxin and a variety of transition metals. Southeastern PM10 contained the highest endotoxin levels, 2-fold higher than that in northern PM10. Northern and southeastern PM2.5 contained the lowest endotoxin levels. Accordingly, southeastern PM10 was the most potent in causing secretion of the proinflammatory cytokines TNF-alpha and IL-6. All PM2.5 and PM10 samples caused cytotoxicity, but northern PMs were the most toxic. Cytokine secretion induced by southeastern PM10 was reduced 50-75% by rENP. These results indicate major differences in PM10 and PM2.5. PM2.5 induces cytotoxicity in vitro through an endotoxin-independent mechanism that is likely mediated by transition metals. In contrast, PM10 with relatively high levels of endotoxin induces proinflammatory cytokine release via an endotoxin-dependent mechanism.

  14. Role of pro-inflammatory cytokines of pancreatic islets and prospects of elaboration of new methods for the diabetes treatment.

    Science.gov (United States)

    Cieślak, Marek; Wojtczak, Andrzej; Cieślak, Michał

    2015-01-01

    Several relations between cytokines and pathogenesis of diabetes are reviewed. In type 1 and type 2 diabetes an increased synthesis is observed and as well as the release of pro-inflammatory cytokines, which cause the damage of pancreatic islet cells and, in type 2 diabetes, the development of the insulin resistance. That process results in the disturbed balance between pro-inflammatory and protective cytokines. Pro-inflammatory cytokines such as interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), as well as recently discovered pancreatic derived factor PANDER are involved in the apoptosis of pancreatic β-cells. Inside β-cells, cytokines activate different metabolic pathways leading to the cell death. IL-1β activates the mitogen-activated protein kinases (MAPK), affects the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activates the inducible nitric oxide synthase (iNOS). TNF-α and IFN-γ in a synergic way activate calcium channels, what leads to the mitochondrial dysfunction and activation of caspases. Neutralization of pro-inflammatory cytokines, especially interleukin 1β with the IL-1 receptor antagonist (IL-1Ra) and/or IL-1β antibodies might cause the extinction of the inflammatory process of pancreatic islets, and consequently normalize concentration of glucose in blood and decrease the insulin resistance. In type 1 diabetes interleukin-6 participates in regulation of balance between Th17 and regulatory T cells. In type 2 diabetes and obesity, the long-duration increase of IL-6 concentration in blood above 5 pg/ml leads to the chronic and permanent increase in expression of SOCS3, contributing to the increase in the insulin resistance in cells of the skeletal muscles, liver and adipose tissue.

  15. Inhibition of Pro-inflammatory mediators and cytokines by Chlorella Vulgaris extracts

    Directory of Open Access Journals (Sweden)

    G Sibi

    2016-01-01

    Full Text Available Objective: The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methods: Methanolic extracts (80% of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay, and the concentrations inducing cell growth inhibition by about 50% (IC50 were chosen for further studies. Lipopolysaccharide (LPS stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO production by Griess assay. The release of prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α, and interleukin 6 (IL-6 were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. Results: MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01, PGE2 (P < 0.05, TNF-α, and IL-6 (P < 0.001 release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05 and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. Conclusion: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs.

  16. Brucella canis Is an Intracellular Pathogen That Induces a Lower Proinflammatory Response than Smooth Zoonotic Counterparts

    Science.gov (United States)

    Chacón-Díaz, Carlos; Altamirano-Silva, Pamela; González-Espinoza, Gabriela; Medina, María-Concepción; Alfaro-Alarcón, Alejandro; Bouza-Mora, Laura; Jiménez-Rojas, César; Wong, Melissa; Barquero-Calvo, Elías; Rojas, Norman; Guzmán-Verri, Caterina

    2015-01-01

    Canine brucellosis caused by Brucella canis is a disease of dogs and a zoonotic risk. B. canis harbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies of B. canis outbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulent B. canis strain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore, B. canis induced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than did B. abortus. When the interaction of B. canis with cells was studied ex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicative B. canis followed an intracellular trafficking route undistinguishable from that of B. abortus. Although B. canis induces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly. PMID:26438796

  17. Proinflammatory and Prothrombotic State in Subjects with Different Glucose Tolerance Status before Cardiovascular Disease

    Science.gov (United States)

    Isordia-Salas, Irma; Galván-Plata, María Eugenia; Leaños-Miranda, Alfredo; Aguilar-Sosa, Eberth; Anaya-Gómez, Francisco; Majluf-Cruz, Abraham; Santiago-Germán, David

    2014-01-01

    Background. Inflammation has been associated with insulin resistance, type 2 diabetes mellitus (T2DM), and atherothrombosis. Aim. To determine differences in levels of proinflammatory and prothrombotic markers such as high sensitivity C-reactive protein (hs-CRP) and fibrinogen in subjects with normal glucose tolerance (NGT), prediabetes, and T2DM and to establish their relationship with other cardiovascular risk factors before clinical manifestations of cardiovascular disease. Methods. We conducted a nonrandomized, cross-sectional assay in a hospital at México City. The levels of hs-CRP and fibrinogen were measured and compared according to glucose tolerance status. Results. We enrolled 1047 individuals and they were distributed into NGT n = 473, pre-DM n = 250, and T2DM n = 216. There was a statistical difference between NGT and T2DM groups for fibrinogen (P = 0.01) and hs-CRP (P = 0.05). Fibrinogen and hs-CRP showed a significant positive correlation coefficient (r = 0.53, P<0.0001). In a multiple stepwise regression analysis, the variability in fibrinogen levels was explained by age, HbA1c, and hs-CRP (adjusted R2 = 0.31, P<0.0001), and for hs-CRP it was explained by BMI and fibrinogen (adjusted R2 = 0.33, P<0.0001). Conclusion. Inflammation and prothrombotic state are present in people with T2DM lacking cardiovascular disease. Fibrinogen and Hs-CRP are positively correlated. Fibrinogen and hs-CRP concentrations are predominantly determined by BMI rather than glucose levels. PMID:24772446

  18. Proinflammatory and Prothrombotic State in Subjects with Different Glucose Tolerance Status before Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Irma Isordia-Salas

    2014-01-01

    Full Text Available Background. Inflammation has been associated with insulin resistance, type 2 diabetes mellitus (T2DM, and atherothrombosis. Aim. To determine differences in levels of proinflammatory and prothrombotic markers such as high sensitivity C-reactive protein (hs-CRP and fibrinogen in subjects with normal glucose tolerance (NGT, prediabetes, and T2DM and to establish their relationship with other cardiovascular risk factors before clinical manifestations of cardiovascular disease. Methods. We conducted a nonrandomized, cross-sectional assay in a hospital at México City. The levels of hs-CRP and fibrinogen were measured and compared according to glucose tolerance status. Results. We enrolled 1047 individuals and they were distributed into NGT n=473, pre-DM n=250, and T2DM n=216. There was a statistical difference between NGT and T2DM groups for fibrinogen (P=0.01 and hs-CRP (P=0.05. Fibrinogen and hs-CRP showed a significant positive correlation coefficient (r=0.53, P<0.0001. In a multiple stepwise regression analysis, the variability in fibrinogen levels was explained by age, HbA1c, and hs-CRP (adjusted R2=0.31, P<0.0001, and for hs-CRP it was explained by BMI and fibrinogen (adjusted R2=0.33, P<0.0001. Conclusion. Inflammation and prothrombotic state are present in people with T2DM lacking cardiovascular disease. Fibrinogen and Hs-CRP are positively correlated. Fibrinogen and hs-CRP concentrations are predominantly determined by BMI rather than glucose levels.

  19. The pro-inflammatory profile of depressed patients is (partly) related to obesity.

    Science.gov (United States)

    Shelton, Richard C; Falola, Michael; Li, Li; Zajecka, John; Fava, Maurizio; Papakostas, George I

    2015-11-01

    Many people with major depressive disorder (MDD) show evidence of systemic inflammation, including elevations in inflammatory factors, but the cause is unclear. The purpose of this analysis was to determine if obesity might contribute to the pro-inflammatory state in MDD patients. Blood was obtained from 135 MDD patients and 50 controls. Serum was extracted and assayed for interleukin (IL) -1β, IL-2, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, interferon-γ (IFNγ), tumor necrosis factor α (TNFα), C-reactive protein (CRP), leptin, and adiponectin using single- or multi-plex human immunoassay kits. The primary analysis contrasted IL-6, TNFα, and CRP between MDD and control groups with body mass index (BMI) as a covariate. The other analytes were compared in an exploratory fashion. IL-6 (but not TNFα or CRP) showed significant differences between MDD and controls even after covarying for BMI. Obese controls and obese MDD groups were significantly higher in IL-6 than both lean groups, but the two obese groups did not differ from each other. In the exploratory analyses, the IL-2 level showed robust and significant differences between MDD and controls even after covarying for BMI. Both lean and obese MDD were higher than lean and obese controls. Adiponectin levels were also lower in the MDD sample than controls. Prior findings of higher IL-6, and CRP in MDD patients may be explained, at least in part, based on obesity. High IL-2, however, was associated with depression and not obesity. The results have significant implications for the understanding of pathophysiology and, potentially treatment of MDD.

  20. Pro-inflammatory cytokine profile in dairy cows: consequences for new lactation

    Directory of Open Access Journals (Sweden)

    Erminio Trevisi

    2015-07-01

    Full Text Available To verify the potential relevance of proinflammatory cytokine (PIC with periparturient health problems and performances, the changes of plasma interleukin-1beta (IL-1β and interleukin-6 (IL-6 have been investigated in 21 Holstein-Friesian cows from 35 d before to 28 d after parturition. The overall PIC concentration was higher during late pregnancy compared to the first month of lactation, but showed a high variability among the cows. Therefore, cows were retrospectively divided in 3 groups according to the values of area under the concentration curve of IL- 1β concentrations from -35 d before to the day of parturition and designated as up (UPIL1, intermediate (INIL1 and low (LOIL1 IL-1β group. The concentrations of IL-6 and to some extent the concentrations of albumin and reactive oxygen metabolites (ROMs were well related to the grouping based on IL-1β concentrations. After calving the UPIL1 cows showed a more severe acute phase reaction (APR, based on the marked increase of haptoglobin and the lower plasma albumin concentrations during the first week of lactation, and the highest oxidative stress, based on the higher concentrations of ROMs. Moreover, the UPIL1 group showed higher number of mastitis, lower feed intake and milk yield compared with INIL1 and LOIL1. Our results demonstrated that cows with the highest PIC concentrations in the last month of pregnancy showed the worse health status in early lactation (clinical and subclinical problems and a lower milk yield. Thus, these data support the utility of PIC measurement in late pregnancy as prognostic markers for a risky transition period.

  1. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    Science.gov (United States)

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  2. Insights antifibrotic mechanism of methyl palmitate: Impact on nuclear factor kappa B and proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Mantawy, Eman M.; Tadros, Mariane G. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); Awad, Azza S. [Department of Pharmacology and Toxicology, Faulty of Pharmacy, Al-Azhar University, Cairo (Egypt); Hassan, Dina A.A. [Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo (Egypt); El-Demerdash, Ebtehal, E-mail: ebtehal_dm@yahoo.com [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-01-01

    Fibrosis accompanies most chronic liver disorders and is a major factor contributing to hepatic failure. Therefore, the need for an effective treatment is evident. The present study was designed to assess the potential antifibrotic effect of MP and whether MP can attenuate the severity of oxidative stress and inflammatory response in chronic liver injury. Male albino rats were treated with either CCl{sub 4} (1 ml/kg, twice a week) and/or MP (300 mg/kg, three times a week) for six weeks. CCl{sub 4}-intoxication significantly increased liver weight, serum aminotransferases, total cholesterol and triglycerides while decreased albumin level and these effects were prevented by co-treatment with MP. As indicators of oxidative stress, CCl{sub 4}-intoxication caused significant glutathione depletion and lipid peroxidation while MP co-treatment preserved them within normal values. As markers of fibrosis, hydroxyproline content and α-SMA expression increased markedly in the CCl{sub 4} group and MP prevented these alterations. Histopathological examination by both light and electron microscope further confirmed the protective efficacy of MP. To elucidate the antifibrotic mechanisms of MP, the expression of NF-κB, iNOS and COX-2 and the tissue levels of TNF-α and nitric oxide were assessed; CCl{sub 4} increased the expression of NF-κB and all downstream inflammatory cascade while MP co-treatment inhibited them. Collectively these findings indicate that MP possesses a potent antifibrotic effect which may be partly a consequence of its antioxidant and anti-inflammatory properties. -- Highlights: ► Methyl palmitate is free fatty acid methyl ester. ► It possesses a strong antifibrotic effect. ► It inhibits NF-κB and the consequent proinflammatory and oxidative stress response.

  3. Ketamine suppresses intestinal NF-kappa B activation and proinflammatory cytokine in endotoxic rats

    Institute of Scientific and Technical Information of China (English)

    Jie Sun; Xiao-Dong Wang; Hong Liu; Jian-Guo Xu

    2004-01-01

    AIM: To investigate the protective effect of ketamine on the endotoxin-induced proinfiammatory cytokines and NFkappa B activation in the intestine.METHODS: Adult male Wistar rats were randomly divided into 6 groups: (a) normal saline control, (b) challenged with endotoxin (5 mg/kg) and treated by saline, (c) challenged with endotoxin (5 mg/kg) and treated by ketamine (0.5 mg/kg),(d) challenged with endotoxin (5 mg/kg) and treated by ketamine (5 mg/kg), (e) challenged with endotoxin (5 mg/kg) and treated by ketamine (50 mg/kg), and (f) saline injected and treated by ketamine (50 mg/kg). After 1, 4 or 6 h, TNF-α and IL-6 mRNA were investigated in the tissues of the intestine (jejunum) by RT-PCR. TNF-α and IL-6 were measured by ELISA. We used electrophoretic mobility shift assay (EMSA) to investigate NF-kappa B activity in the intestine.RESULTS: NF-kappa B activity, the expression of TNF-α and IL-6 were enhanced in the intestine by endotoxin.Ketamine at a dose of 0.5 mg/kg could suppress endotoxininduced TNF-α mRNA and protein elevation and inhibit NFkappa B activation in the intestine. However the least dosage of ketamine to inhibit IL-6 was 5 mg/kg in our experiment.CONCLUSION: Ketamine can suppress endotoxin-induced production of proinflammatory cytokines such as TNF-α and IL-6 production in the intestine. This suppressive effect may act through inhibiting NF-kappa B.

  4. Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD

    Directory of Open Access Journals (Sweden)

    Postma Dirkje S

    2011-08-01

    Full Text Available Abstract Background Cigarette smoke, the major risk factor for COPD, is known to activate matrix metalloproteinases in airway epithelium. We investigated whether metalloproteinases, particularly A Disintegrin and Metalloproteinase (ADAM17, contribute to increased pro-inflammatory epithelial responses with respect to the release of IL-8 and TGF-α, cytokines implicated in COPD pathogenesis. Methods We studied the effects of cigarette smoke extract (CSE and metalloproteinase inhibitors on TGF-α and IL-8 release in primary bronchial epithelial cells (PBECs from COPD patients, healthy smokers and non-smokers. Results We observed that TGF-α was mainly shed by ADAM17 in PBECs from all groups. Interestingly, IL-8 production occurred independently from ADAM17 and TGF-α shedding, but was significantly inhibited by broad-spectrum metalloproteinase inhibitor TAPI-2. CSE did not induce ADAM17-dependent TGF-α shedding, while it slightly augmented the production of IL-8. This was accompanied by reduced endogenous inhibitor of metalloproteinase (TIMP-3 levels, suggesting that CSE does not directly but rather indirectly alter activity of ADAM17 through the regulation of its endogenous inhibitor. Furthermore, whereas baseline TGF-α shedding was lower in COPD PBECs, the early release of IL-8 (likely due to its shedding was higher in PBECs from COPD than healthy smokers. Importantly, this was accompanied by lower TIMP-2 levels in COPD PBECs, while baseline TIMP-3 levels were similar between groups. Conclusions Our data indicate that IL-8 secretion is regulated independently from ADAM17 activity and TGF-α shedding and that particularly its early release is differentially regulated in PBECs from COPD and healthy smokers. Since TIMP-2-sensitive metalloproteinases could potentially contribute to IL-8 release, these may be interesting targets to further investigate novel therapeutic strategies in COPD.

  5. Proinflammatory responses driven by non-gluten factors are masked when they appear associated to gliadins.

    Science.gov (United States)

    Kaliszewska, A; Martinez, V; Laparra, J M

    2016-09-01

    Cereal proteins are of clinical interest because of their cytotoxic and immunogenic features being associated to allergic processes and intestinal disorders. In addition to gliadins, there has been suggested an important role for non-gluten modulating factors (nGMF) on the onset of intestinal inflammatory processes. In this study, the amino acid sequences generated after a simulated human gastrointestinal (sGI) digestion of a commercial extract of gliadins (GEF) and the nGMF-enriched fraction (nGEF) obtained from them were characterized (nanoESI-qQTOF). These fractions were fed (20 days) to Wistar rats, sensitized with interferon (IFN)-γ (1000 IU/rat) and further treated with indomethacin (2 mg/kg). The production of inflammatory mediators (ELISAs) and the expression (rt-qPCR) of innate biomarkers was monitored in duodenal tissue sections. There were also evaluated changes in defined leukocyte (flow cytometry) populations quantified in peripheral blood samples. Expected nGMF components, CM3 and 0.19, as well as toxic gliadin-derived peptides were generated after sGI digestion. Rats fed with the nGEF showed higher concentrations of IFNγ, as well as expression levels of TLR-4 and the peroxisome proliferator activated receptor-α in duodenal samples than those animals fed with GEF. Rats fed with GEF showed higher expression levels of the endocannabinoid receptor-1 and an increased CD4(+)CD3(+)Foxp3(+) cell population. The data points out significant different cytotoxic and immunogenic potential of the nGEF when administered independently of the GEF to which are commonly associated. However, proinflammatory responses to nGMF are masked when present associated to gliadins.

  6. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response

    Energy Technology Data Exchange (ETDEWEB)

    Kruidenier, Laurens; Chung, Chun-wa; Cheng, Zhongjun; Liddle, John; Che, KaHing; Joberty, Gerard; Bantscheff, Marcus; Bountra, Chas; Bridges, Angela; Diallo, Hawa; Eberhard, Dirk; Hutchinson, Sue; Jones, Emma; Katso, Roy; Leveridge, Melanie; Mander, Palwinder K.; Mosley, Julie; Ramirez-Molina, Cesar; Rowland, Paul; Schofield, Christopher J.; Sheppard, Robert J.; Smith, Julia E.; Swales, Catherine; Tanner, Robert; Thomas, Pamela; Tumber, Anthony; Drewes, Gerard; Oppermann, Udo; Patel, Dinshaw J.; Lee, Kevin; Wilson, David M. (Cellzome AG); (MSKCC); (GSK); (Oxford)

    2012-10-11

    The jumonji (JMJ) family of histone demethylases are Fe{sup 2+}- and {alpha}-ketoglutarate-dependent oxygenases that are essential components of regulatory transcriptional chromatin complexes. These enzymes demethylate lysine residues in histones in a methylation-state and sequence-specific context. Considerable effort has been devoted to gaining a mechanistic understanding of the roles of histone lysine demethylases in eukaryotic transcription, genome integrity and epigenetic inheritance, as well as in development, physiology and disease. However, because of the absence of any selective inhibitors, the relevance of the demethylase activity of JMJ enzymes in regulating cellular responses remains poorly understood. Here we present a structure-guided small-molecule and chemoproteomics approach to elucidating the functional role of the H3K27me3-specific demethylase subfamily (KDM6 subfamily members JMJD3 and UTX). The liganded structures of human and mouse JMJD3 provide novel insight into the specificity determinants for cofactor, substrate and inhibitor recognition by the KDM6 subfamily of demethylases. We exploited these structural features to generate the first small-molecule catalytic site inhibitor that is selective for the H3K27me3-specific JMJ subfamily. We demonstrate that this inhibitor binds in a novel manner and reduces lipopolysaccharide-induced proinflammatory cytokine production by human primary macrophages, a process that depends on both JMJD3 and UTX. Our results resolve the ambiguity associated with the catalytic function of H3K27-specific JMJs in regulating disease-relevant inflammatory responses and provide encouragement for designing small-molecule inhibitors to allow selective pharmacological intervention across the JMJ family.

  7. Pro-inflammatory cytokines profiles in Nigerian pregnant women infected withPlasmodium falciparum malaria

    Institute of Scientific and Technical Information of China (English)

    Nmorsi OPG; Isaac C; Ohaneme BA; Obiazi HAK

    2010-01-01

    Objective:To investigate the pro-inflammatory cytokines profiles in in Nigerian pregnant women infected withPlasmodium falciparum (P. falciparum) malaria.Methods: Peripheral, and placental blood samples were collected from96 consenting volunteers comprising76 P. falciparium infected pregnant women and 20 healthy uninfected pregnant women in Ekpoma, Nigeria, and subjected to ELISA for cytokines evaluation.Results: Increased serum concentrations of interferon-gamma(IFN-γ) was observed in infected pregnant women than their uninfected counterparts[(31.2±20.9)pg/mL vs (1.8±0.9) pg/mL] and these differences were statistically significant(″2= 26.18,P0.05). The interleukin-6 (IL-6) was significantly elevated in infected pregnant women (81.0±26.1 pg/mL) than in the uninfected pregnant women [(25.0±5.0) pg/mL](″2 = 29.58,P<0.05). In all, mean cytokines concentration of IL-6, IL-12 andIFN-γ in the placental blood from infected pregnant women were (53.5±23.4) pg/mL, (8.7±6.9) pg/mL and(16.4±4.0) pg/mL, respectively. The multigravidae had a higher haemoglobin level of 10.2 g/dL and birth weight of3 000 g than the primigrivadae with lower haemoglobin level of7.5g/dL and birth weight of2 430 g. Conclusions: The elevatedIFN-γamong the malarous pregnant women implicates it as the major cytokine mediator in the host responses to systematicP. falciparummalaria in our locality.

  8. Apoptosis and pro-inflammatory cytokine response of mast cells induced by influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available The pathogenesis of the influenza A virus has been investigated heavily, and both the inflammatory response and apoptosis have been found to have a definitive role in this process. The results of studies performed by the present and other groups have indicated that mast cells may play a role in the severity of the disease. To further investigate cellular responses to influenza A virus infection, apoptosis and inflammatory response were studied in mouse mastocytoma cell line P815. This is the first study to demonstrate that H1N1 (A/WSN/33, H5N1 (A/Chicken/Henan/1/04, and H7N2 (A/Chicken/Hebei/2/02 influenza viruses can induce mast cell apoptosis. They were found to do this mainly through the mitochondria/cytochrome c-mediated intrinsic pathway, and the activation of caspase 8-mediated extrinsic pathway was here found to be weak. Two pro-apoptotic Bcl-2 homology domain 3 (BH3 -only molecules Bim and Puma appeared to be involved in the apoptotic pathways. When virus-induced apoptosis was inhibited in P815 cells using pan-caspase (Z-VAD-fmk and caspase-9 (Z-LEHD-fmk inhibitors, the replication of these three subtypes of viruses was suppressed and the secretions of pro-inflammatory cytokines and chemokines, including IL-6, IL-18, TNF-α, and MCP-1, decreased. The results of this study may further understanding of the role of mast cells in host defense and pathogenesis of influenza virus. They may also facilitate the development of novel therapeutic aids against influenza virus infection.

  9. Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state.

    Science.gov (United States)

    Aslan, İbrahim; Özcan, Filiz; Karaarslan, Taner; Kıraç, Ebru; Aslan, Mutay

    2017-01-01

    This study aimed to determine circulating levels of polyunsaturated fatty acids (PUFAs), secretory phospholipase A2 (sPLA2), lipoprotein lipase (LPL) and measure circulating protein levels of angiopoietin-like protein 3 (ANGPTL3), ANGPTL4, cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in patients with acne vulgaris. Serum from 21 control subjects and 31 acne vulgaris patients were evaluated for levels of arachidonic acid (AA, C20:4n- 6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). PUFA levels were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Lipid profile, routine biochemical and hormone parameters were assayed by standard kit methods Serum EPA levels were significantly decreased while AA/EPA and DGLA/EPA ratio were significantly increased in acne vulgaris patients compared to controls. Serum levels of AA, DGLA and DHA showed no significant difference while activity of sPLA2 and LPL were significantly increased in acne vulgaris compared to controls. Results of this study reveal the presence of a proinflammatory state in acne vulgaris as shown by significantly decreased serum EPA levels and increased activity of sPLA2, AA/EPA and DGLA/EPA ratio. Increased LPL activity in the serum of acne vulgaris patients can be protective through its anti-dyslipidemic actions. This is the first study reporting altered EPA levels and increased sPLA2 activity in acne vulgaris and supports the use of omega-3 fatty acids as adjuvant treatment for acne patients.

  10. Proinflammatory Response of Human Trophoblastic Cells to Brucella abortus Infection and upon Interactions with Infected Phagocytes.

    Science.gov (United States)

    Fernández, Andrea G; Ferrero, Mariana C; Hielpos, M Soledad; Fossati, Carlos A; Baldi, Pablo C

    2016-02-01

    Trophoblasts are targets of infection by Brucella spp. but their role in the pathophysiology of pregnancy complications of brucellosis is unknown. Here we show that Brucella abortus invades and replicates in the human trophoblastic cell line Swan-71 and that the intracellular survival of the bacterium depends on a functional virB operon. The infection elicited significant increments of interleukin 8 (IL8), monocyte chemotactic protein 1 (MCP-1), and IL6 secretion, but levels of IL1beta and tumor necrosis factor-alpha (TNF-alpha) did not vary significantly. Such proinflammatory response was not modified by the absence of the Brucella TIR domain-containing proteins BtpA and BtpB. The stimulation of Swan-71 cells with conditioned medium (CM) from B. abortus-infected human monocytes (THP-1 cells) or macrophages induced a significant increase of IL8, MCP-1 and IL6 as compared to stimulation with CM from non-infected cells. Similar results were obtained when stimulation was performed with CM from infected neutrophils. Neutralization studies showed that IL1beta and/or TNF-alpha mediated the stimulating effects of CM from infected phagocytes. Reciprocally, stimulation of monocytes and neutrophils with CM from Brucella-infected trophoblasts increased IL8 and/or IL6 secretion. These results suggest that human trophoblasts may provide a local inflammatory environment during B. abortus infections either through a direct response to the pathogen or through interactions with monocytes/macrophages or neutrophils, potentially contributing to the pregnancy complications of brucellosis.

  11. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    Science.gov (United States)

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  12. Naegleria fowleri Lysate Induces Strong Cytopathic Effects and Pro-inflammatory Cytokine Release in Rat Microglial Cells

    Science.gov (United States)

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul

    2011-01-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A 51Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response. PMID:22072830

  13. Progesterone Prevents Traumatic Brain Injury-Induced Intestinal Nuclear Factor kappa B Activation and Proinflammatory Cytokines Expression in Male Rats

    Directory of Open Access Journals (Sweden)

    Chunhua Hang

    2007-08-01

    Full Text Available We have previously shown that traumatic brain injury (TBI can induce an upregulation of nuclear factor kappa B (NF-κB and proinflammatory cytokines in the gut, which play an important role in the pathogenesis of acute gut mucosal injury mediated by inflammation. In this work, we investigated whether progesterone administration modulated intestinal NF-κB activity and proinflammatory cytokines expression after TBI in male rats. As a result, we found that administration of progesterone following TBI could decrease NF-κB binding activity, NF-κB p65 protein expression, and concentrations of interleukin-1β (IL-1β, and tumor necrosis factor-α (TNF-α in the gut. TBI-induced damages of gut structure were ameliorated after progesterone injections. The results of the present study suggest that the therapeutic benefit of post-TBI progesterone injections might be due to its inhibitory effects on intestinal NF-κB activation and proinflammatory cytokines expression.

  14. Acute-phase proteins, oxidative stress biomarkers, proinflammatory cytokines, and cardiac troponin in Arabian mares affected with pyometra.

    Science.gov (United States)

    El-Bahr, S M; El-Deeb, W M

    2016-09-01

    New biomarkers are essential for diagnosis of pyometra in mares. In this context, 12 subfertile Arabian mares suffered from pyometra were admitted to the Veterinary Teaching Hospital. The basis for diagnosis of pyometra was positive findings of clinical examination and rectal palpation. Blood samples were collected from diseased animals and from five Arabian healthy mares, which were considered as control group. Acute-phase proteins (APP), oxidative stress biomarkers, proinflammatory cytokines, and cardiac troponin I were estimated in the harvested sera of both groups. Clinical examination revealed purulent yellowish fluid discharged from vagina of affected animals and rectal palpation of the reproductive tract revealed uterine distention. The biochemical analysis of the serum revealed significant increase in cardiac troponin I, creatin kinase, alkaline phosphatase, malondialdehyde, tumor necrosis factor α, interleukins 6, prostaglandin F2α, haptoglobin, and serum amyloid A and significant decrease in reduced glutathione, superoxide dismutase (SOD), total antioxidant capacity, and nitric oxide (NO) of mares affected with pyometra compare to control. Cardiac troponin I was positively correlated with aspartate aminotransferase, creatin kinase, malondialdehyde, alkaline phosphatase, tumor necrosis factor α, interleukins 6, prostaglandin F2α, haptoglobin and serum amyloid A and negatively correlated with glutathione, superoxide dismutase, total antioxidant capacity and nitric oxide in serum of mares affected with pyometra. Moreover, there was high positive correlation between proinflammatory cytokines and APP in serum of mares affected with pyometra. The present study suggests cardiac troponin I together with APP, proinflammatory cytokines, and oxidative stress parameters as biomarkers for pyometra in Arabian mares.

  15. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes.

    Science.gov (United States)

    Nagy, István; Pivarcsi, Andor; Kis, Kornélia; Koreck, Andrea; Bodai, László; McDowell, Andrew; Seltmann, Holger; Patrick, Sheila; Zouboulis, Christos C; Kemény, Lajos

    2006-07-01

    Acne is a common skin disorder of the pilosebaceous unit. In addition to genetic, hormonal and environmental factors, abnormal colonization by Propionibacterium acnes has been implicated in the occurrence of acne via the induction of inflammatory mediators. To gain more insight into the role that sebocytes play in the innate immune response of the skin, particularly in acne, we compared the antimicrobial peptide and proinflammatory cytokine/chemokine expression at mRNA and protein levels, as well as the viability and differentiation of SZ95 sebocytes in response to co-culture with representative isolates of P. acnes type IA and type IB as well as Escherichia coli-derived lipopolysaccharide (LPS). We found that, in vitro, P. acnes type IA and IB isolates and LPS induced human beta-defensin-2 and proinflammatory cytokine/chemokine expression, and influenced sebocyte viability and differentiation. Our results provide evidence that sebocytes are capable of producing proinflammatory cytokines/chemokines and antimicrobial peptides, which may have a role in acne pathogenesis. Furthermore, since P. acnes types IA and IB differentially affect both the differentiation and viability of sebocytes, our data demonstrate that different strains of P. acnes vary in their capacity to stimulate an inflammatory response within the pilosebaceous follicle.

  16. Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury.

    Science.gov (United States)

    Papa, Simonetta; Caron, Ilaria; Erba, Eugenio; Panini, Nicolò; De Paola, Massimiliano; Mariani, Alessandro; Colombo, Claudio; Ferrari, Raffaele; Pozzer, Diego; Zanier, Elisa R; Pischiutta, Francesca; Lucchetti, Jacopo; Bassi, Andrea; Valentini, Gianluca; Simonutti, Giulio; Rossi, Filippo; Moscatelli, Davide; Forloni, Gianluigi; Veglianese, Pietro

    2016-01-01

    Many efforts have been performed in order to understand the role of recruited macrophages in the progression of spinal cord injury (SCI). Different studies revealed a pleiotropic effect played by these cells associated to distinct phenotypes (M1 and M2), showing a predictable spatial and temporal distribution in the injured site after SCI. Differently, the role of activated microglia in injury progression has been poorly investigated, mainly because of the challenges to target and selectively modulate them in situ. A delivery nanovector tool (poly-ε-caprolactone-based nanoparticles) able to selectively treat/target microglia has been developed and used here to clarify the temporal and spatial involvement of the pro-inflammatory response associated to microglial cells in SCI. We show that a treatment with nanoparticles loaded with minocycline, the latter a well-known anti-inflammatory drug, when administered acutely in a SCI mouse model is able to efficiently modulate the resident microglial cells reducing the pro-inflammatory response, maintaining a pro-regenerative milieu and ameliorating the behavioral outcome up to 63 days post injury. Furthermore, by using this selective delivery tool we demonstrate a mechanistic link between early microglia activation and M1 macrophages recruitment to the injured site via CCL2 chemokine, revealing a detrimental contribution of pro-inflammatory macrophages to injury progression after SCI.

  17. Minocycline attenuates Aβ oligomers-induced pro-inflammatory phenotype in primary microglia while enhancing Aβ fibrils phagocytosis.

    Science.gov (United States)

    El-Shimy, Ismail Amr; Heikal, Ola Ahmed; Hamdi, Nabila

    2015-11-16

    Microglia, the brain innate immune cells, are activated in response to amyloid beta (Aβ) resulting in neuroinflammation in AD brains. Recently, two phenotypes have been described for microglia: the pro-inflammatory classical and the anti-inflammatory alternative. Changes in microglia phenotype that control their phagocytic function are yet to be determined. The highly neurotoxic Aβ oligomers (oAβ) formed at an early disease stage induce pro-inflammatory microglia activation releasing neurotoxic mediators and contributing to neurodegeneration. A novel strategy for AD treatment is to attenuate microglia-induced inflammation while maintaining efficient Aβ clearance. Minocycline effectively crosses the blood-brain barrier and has widely reported neuroprotective effects. Yet, its exact mechanism of neuroprotection and its effects on microglia are still unknown. The aim of this study is to investigate the effect of minocycline on the phagocytic uptake of fAβ by primary microglia in relation to their activation state in an inflammatory milieu generated by oAβ or LPS. The study shows that minocycline is able to attenuate oAβ-induced neuroinflammatory response of microglia by inhibiting their pro-inflammatory phenotype activation. In addition, a significant enhancement of fAβ phagocytosis by minocycline- treated microglia is reported for the first time, providing novel insight into its neuroprotective role in AD.

  18. Functional analysis of Pro-inflammatory properties within the cerebrospinal fluid after subarachnoid hemorrhage in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Schneider Ulf C

    2012-02-01

    Full Text Available Abstract Background To functionally characterize pro-inflammatory and vasoconstrictive properties of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage (SAH in vivo and in vitro. Methods The cerebrospinal fluid (CSF of 10 patients suffering from SAH was applied to the transparent skinfold chamber model in male NMRI mice which allows for in vivo analysis of the microcirculatory response to a superfusat. Microvascular diameter changes were quantified and the numbers of rolling and sticking leukocytes were documented using intravital multifluorescence imaging techniques. Furthermore, the pro-inflammatory properties of CSF were assessed in vitro using a monocyte transendothelial migration assay. Results CSF superfusion started to induce significant vasoconstriction on days 4 and 6 after SAH. In parallel, CSF superfusion induced a microvascular leukocyte recruitment, with a significant number of leukocytes rolling (day 6 and sticking (days 2-4 to the endothelium. CSF of patients presenting with cerebral edema induced breakdown of blood vessel integrity in our assay as evidenced by fluorescent marker extravasation. In accordance with leukocyte activation in vivo, significantly higher in vitro monocyte migration rates were found after SAH. Conclusion We functionally characterized inflammatory and vasoactive properties of patients' CSF after SAH in vivo and in vitro. This pro-inflammatory milieu in the subarachnoid space might play a pivotal role in the pathophysiology of early and delayed brain injury as well as vasospasm development following SAH.

  19. Lipid-associated membrane proteins of Mycoplasma penetrans induce production of proinflammatory cytokines in human monocytic cells

    Institute of Scientific and Technical Information of China (English)

    YAN HUA ZENG; YI MOU WU; MIN JUN YU; LI ZHI TAN; ZHONG LIANG DENG; XIAO XING YOU

    2006-01-01

    The aim of this study is to explore potential pathogenicity of Mycoplasma penetrans, and to investigate whether M. penetrans lipid-associated membrane proteins (LAMPs) could induce human monocytic cell line (THP-1) to produce some proinflammatory cytokines in vitro, including interleukin-1β (IL1β), tumor necrosis factor alpha (TNF-α), and IL-8. THP-1 was stimulated with different concentrations of M. penetrans LAMPs and at different time to analyze the production of human IL-1β, TNF-α and IL-8.The protein levels of human IL-1β, TNF-α and IL-8 were measured by enzyme-linked immunoadsorbent assay (ELISA) and the mRNA levels of these proinflammatory cytokines were detected by reverse transcriptase-PCR (RT-PCR). It was demonstrated in the present study that the production of IL-1β, TNF-αand IL-8 increased in dose- and time-dependent manner after stimulation with M. penetrans LAMPs in THP-1 cells. M.penetrans LAMPs also induced the expression of IL-1β, TNF-α and IL-8 mRNA. The production of IL-1β, TNF-α and IL-8 and the expression of mRNA were down-regulated by pyrrolidine dithiocarbamate (PDTC). This study demonstrated that M. penetrans LAMPs can induce the production of proinflammatory cytokines in human monocytic cells in vitro, thus suggesting that it may be an important etiological factor.

  20. FUCOIDIN INHIBITS OXIDIZED LOW DENSITY LIPOPROTEIN FROM INDUCING HUMAN PERIPHERAL BLOOD MONOCYTE EXPRESSION OF PROINFLAMMATORY CYTOKINES mRNA

    Institute of Scientific and Technical Information of China (English)

    雷新军; 马爱群; 任冰稳; 耿涛; 张葳; 白玲

    2003-01-01

    Objective To study the significance of scavenger receptor class A(SR-A)in mediating human peripheral blood monocyte to uptake oxidized low density lipoprotein(OxLDL) and promoting the atherosclerotic immuno-pathological lesion in the local blood vessel. Methods With the Digoxenin-labeled Oligonucleotide-probes In situ Hybridization, this research investigated the effects of OxLDL on the mRNA expression of proinflammatory cytokines including MCP-1, bFGF, PDGF and IL-10 in the human peripheral blood monocyte and whether fucoidin, a peculiarly inhibitory ligand for SR-A, would influence this process. Results Monocyte was significantly increased the mRNA expression of MCP-1, bFGF, PDGF and IL-10 in a dose-dependent manner after incubating with OxLDL (10,15,20,25,30·mg·L-1, respectively)for 24 hours(P<0.001). Fucoidin(50,100,150,200,250·mg·mL-1, respectively)completely inhibited OxLDL(20·mg·L-1)from inducing monocyte the mRNA expression of above proinflammatory cytokines(P<0.001). Conclusion OxLDL can stimulate human peripheral blood monocyte to give expression to proinflammatory cytokines mRNA in a dose-dependent manner, while a peculiarly inhibitory ligand for SR-A-fucoidin has an obviously opposed role.

  1. Peripheral Injection of SB203580 Inhibits the Inflammatory-Dependent Synthesis of Proinflammatory Cytokines in the Hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrzej P. Herman

    2014-01-01

    Full Text Available The study was designed to determine the effects of peripheral injection of SB203580 on the synthesis of interleukin- (IL- 1β, IL-6, and tumor necrosis factor (TNF α in the hypothalamus of ewes during prolonged inflammation. Inflammation was induced by the administration of lipopolysaccharide (LPS (400 ng/kg over 7 days. SB203580 is a selective ATP-competitive inhibitor of the p38 mitogen-activated protein kinase (MAPK, which is involved in the regulation of proinflammatory cytokines IL-1β, IL-6 and TNFα synthesis. Intravenous injection of SB203580 successfully inhibited (P<0.01 synthesis of IL-1β and reduced (P<0.01 the production of IL-6 in the hypothalamus. The p38 MAPK inhibitor decreased (P<0.01 gene expression of TNFα but its effect was not observed at the level of TNFα protein synthesis. SB203580 also reduced (P<0.01 LPS-stimulated IL-1 receptor type 1 gene expression. The conclusion that inhibition of p38 MAPK blocks LPS-induced proinflammatory cytokine synthesis seems to initiate new perspectives in the treatment of chronic inflammatory diseases also within the central nervous system. However, potential proinflammatory effects of SB203580 treatment suggest that all therapies using p38 MAPK inhibitors should be introduced very carefully with analysis of all expected and unexpected consequences of treatment.

  2. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells.

    Science.gov (United States)

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon

    2011-09-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.

  3. Neonates with sickle cell disease are vulnerable to blue light phototherapy-induced oxidative stress and proinflammatory cytokine elevations.

    Science.gov (United States)

    Chaudhari, Hemakshi; Goyal, Sameer; Patil, Chandragouda

    2016-11-01

    Sickle cell disease is a frequent genetic anomaly characterized by altered molecular structure of hemoglobin resulting into crescent-like deformation of the red blood corpuscles. Neonatal jaundice is a frequent co-morbidity in sickle cell disease. Phototherapy induces isomerization of bilirubin rendering it extractable through urine and hence it is used as a routine treatment of neonatal jaundice. An exposure to light phototherapy as a treatment of neonatal jaundice induces oxidative stress. It is hypothesized that such exposure of neonates with sickle cell disease to the blue light phototherapy as a treatment of neonatal jaundice induces severe oxidative stress and increases the levels of proinflammatory cytokines. This hypothesis is supported with two case studies of sickle cell disease suffering neonates who were exposed to blue light phototherapy to treat jaundice. In both these cases, exposure to phototherapy induced oxidative stress (increased lipid peroxidation and superoxide dismutase, slight change in activity of catalase and GSH) and elevated the levels of proinflammatory cytokine (TNFα, IL-1, and IL-6) in the sickle cell disease suffering neonates. These observations warrant further investigations to determine the consequences and clinical significance of the blue phototherapy-induced oxidative and proinflammatory stress in Sickle cell disease suffering neonates exposed to phototherapy as a treatment of jaundice.

  4. Effect of alprostadil on early proinflammatory cytokines and its therapeutic effect in patients with severe acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Min-li LI

    2017-04-01

    Full Text Available Objective  To investigate the effects of alprostadil on expression of proinflammatory cytokines in patients with severe acute pancreatitis (SAP and evaluate the clinical efficacy. Methods  Seventy-three SAP patients were collected from January 2014 to May 2016, and then were randomly divided into control group (n=37 and experimental group (n=36. On the basis of routine treatment, the experimental group patient was given alprostadil at a dose of 15µg/d. The expression of C-reactive protein (CRP, white blood cell (WBC count, amylase, alanine aminotransferase (ALT, aspartate aminotransferase (AST, creatinine, serum proinflammatory cytokine tumor necrosis factor alpha (TNF-α, interleukin -1 beta (IL-1β, interleukin -6 (IL-6 were detected in serum on the 1st, 3rd and 7th day. Results  The biochemical indexes and expression of proinflammatory cytokines were significantly increased in the two groups on the 1st day, and decreased gradually, with a significant difference between the time points (P0.05. These indexes were decreased significantly with the passage of time and there were significant differences between the two groups at the 3rd and 7th day (P<0.05. Conclusion  Alprostadil can effectively reduce the severity of early inflammatory reaction in SAP patients, and has important significance for improving the prognosis. DOI: 10.11855/j.issn.0577-7402.2017.02.09

  5. Expression Levels of Proinflammatory Cytokines and NLRP3 Inflammasome in an Experimental Model of Oxazolone-induced Colitis.

    Science.gov (United States)

    Zherebiatiev, Aleksandr; Kamyshnyi, Aleksandr

    2016-02-01

    IL-1β and IL-17A are two cytokines with strong proinflammatory activities and are now known to be involved in a number of chronic inflammatory disorders. High-mobility group box 1 (HMGB1) is a nuclear protein regulating the expression of these proinflammatory cytokines. The NLRP3 inflammasome promotes the maturation of the IL-1β and its activation has been shown as a critical mechanism in the pathogenesis of inflammatory bowel disease (IBD). However, underlying mechanisms to modulate their production in IBD are still unclear. The aim of this study was to investigate the expression levels of mRNA for the NLRP3 inflammasome, HMGB1 and proinflammatory cytokines, IL-1β, IL-17A in the inflamed colon of rats with experimental oxazolone-induced colitis. Experiments were carried out on male wistar rats. IL-1β, IL-17A, HMGB1 and NLRP3 inflammasome mRNA expression were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our results indicated that the expression levels of IL-1β, IL-17A, NLRP3 and HMGB1 were elevated in the inflamed colon of rats with oxazolone-induced colitis.

  6. Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans

    Directory of Open Access Journals (Sweden)

    Fischer Alexandra

    2012-10-01

    Full Text Available Abstract Background Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. Findings Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif ligand 2 gene (CXCL2 more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD without changing the methylation pattern of the respective gene. Conclusion In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.

  7. Lovastatin dose-dependently potentiates the pro-inflammatory activity of lipopolysaccharide both in vitro and in vivo.

    Science.gov (United States)

    Zanin, Valentina; Marcuzzi, Annalisa; Kleiner, Giulio; Piscianz, Elisa; Monasta, Lorenzo; Zacchigna, Serena; Crovella, Sergio; Zauli, Giorgio

    2013-12-01

    Since contradictory findings have been reported on potential effects of statins in modulating the inflammatory response, we have analysed the biological activity of lovastatin both in vitro using the Raw 264.7 murine macrophagic cell line and in vivo using BALB/c mice. When added to Raw 264.7 cells in combination with lipopolysaccharide, lovastatin significantly potentiated the release of interleukin-1β, interleukin-6 and interleukin-12 with respect to lipopolysaccharide alone and showed an additive effect on the release of nitric oxide. Similarly, when lovastatin was intraperitoneally administrated to BALB/c mice, it did not induce any pro-inflammatory effect when used alone, but it significantly potentiated the pro-inflammatory activity of lipopolysaccharide, in terms of number of intraperitoneal cells and serum levels of serum amyloid A, interleukin-1β, interleukin-6 and interleukin-12. A potential clinical implication of our study is that lovastatin might exert a pro-inflammatory activity in subjects affected by inflammatory processes, with clinically evident or subclinical infections.

  8. Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner.

    Science.gov (United States)

    Munhoz, Carolina Demarchi; Sorrells, Shawn F; Caso, Javier R; Scavone, Cristoforo; Sapolsky, Robert M

    2010-10-13

    Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-κB (nuclear factor κB), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/SAPK (c-Jun N-terminal protein kinase/stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-κB, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/2, p38, SAPK/JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.

  9. Oxidized galectin-1 reduces lipopolysaccharide-induced increase of proinflammatory cytokine mRNA in cultured macrophages

    Directory of Open Access Journals (Sweden)

    Yukie Kogawa

    2011-01-01

    Full Text Available Yukie Kogawa1, Kou Nakajima1, Kenichi Sasaguri1, Nobushiro Hamada2, Haruhisa Kawasaki3, Sadao Sato1, Toshihiko Kadoya4, Hidenori Horie51Department of Orthodontics, 2Department of Oral Microbiology, Kanagawa Dental College, Yokosuka; 3Keio University, Kanagawa; 4Maebashi Institute of Technology, Maebashi; 5Research Center of Brain and Oral Science, Kanagawa Dental College, Yokosuka, JapanBackground: Periodontitis is prevalent in older humans. Limiting the inflammation associated with periodontitis may provide a therapy for this condition, because Gram-negative bacteria expressing lipopolysaccharide (LPS have a key role in initiation of inflammation by activating macrophage functions. Because oxidized galectin-1 regulates macrophage functions in other systems, we sought to establish whether this galectin-1 mRNA is expressed in the oral cavity, and whether it could dampen LPS-induced macrophage activation in vitro.Methods: Using the reverse transcriptase polymerase chain reaction (RT-PCR, we measured galectin-1 mRNA expression to clarify its localization to rat gingival tissues and studied the effect of Porphyromonas gingivalis challenge on galectin-1 expression. Next, we tested the effects of adding oxidized galectin-1 to cultured LPS-activated peritoneal macrophages on mRNA expression of proinflammatory factors by RT-PCR and real-time RT-PCR.Results: We established that galectin-1 mRNA is expressed in gingival tissues and also showed that galectin-1 mRNA was significantly increased by challenge with P. gingivalis, indicating that galectin-1 may regulate oral inflammation. On the other hand, LPS 100 ng/mL in serum-containing medium induced macrophages to upregulate mRNA associated with a proinflammatory response, ie, interleukins 1β and 6, and inducible nitric oxide synthase. We showed that application of 0.1–10 ng/mL of oxidized galectin-1 to LPS-treated macrophages reduced the intense LPS-induced increase by serum in proinflammatory m

  10. Hyperglycemic myocardial damage is mediated by proinflammatory cytokine: macrophage migration inhibitory factor.

    Directory of Open Access Journals (Sweden)

    Xi-Yong Yu

    Full Text Available BACKGROUND: Diabetes has been regarded as an inflammatory condition which is associated with left ventricular diastolic dysfunction (LVDD. The purpose of this study was to examine the expression levels of macrophage migration inhibitory factor (MIF and G protein-coupled receptor kinase 2 (GRK2 in patients with early diabetic cardiomyopathy, and to investigate the mechanisms involved in MIF expression and GRK2 activation. METHODS: 83 patients in the age range of 30-64 years with type 2 diabetes and 30 matched healthy men were recruited. Left ventricular diastolic function was evaluated by cardiac Doppler echocardiography. Plasma MIF levels were determined by ELISA. To confirm the clinical observation, we also studied MIF expression in prediabetic rats with impaired glucose tolerance (IGT and relationship between MIF and GRK2 expression in H9C2 cardiomyoblasts exposed to high glucose. RESULTS: Compared with healthy subjects, patients with diabetes have significantly increased levels of plasma MIF which was further increased in diabetic patients with Left ventricular diastolic dysfunction (LVDD. The increased plasma MIF levels in diabetic patients correlated with plasma glucose, glycosylated hemoglobin and urine albumin levels. We observed a significant number of TUNEL-positive cells in the myocardium of IGT-rats but not in the control rats. Moreover, we found higher MIF expression in the heart of IGT with cardiac dysfunction compared to that of the controls. In H9C2 cardiomyoblast cells, MIF and GRK2 expression was significantly increased in a glucose concentration-dependant manner. Furthermore, GRK2 expression was abolished by siRNA knockdown of MIF and by the inhibition of CXCR4 in H9C2 cells. CONCLUSIONS: Our findings indicate that hyperglycemia is a causal factor for increased levels of pro-inflammatory cytokine MIF which plays a role in the development of cardiomyopathy occurring in patients with type 2 diabetes. The elevated levels of MIF

  11. Jeju seaweeds suppress lipopolysaccharide-stimulated proinflammatory response in RAW 264.7 murine macrophages

    Institute of Scientific and Technical Information of China (English)

    Eun-Jin Yang; Ji-Young Moon; Sang Suk Kim; Kyong-Wol Yang; Wook Jae Lee; Nam Ho Lee; Chang-Gu Hyun

    2014-01-01

    Objective: To investigate the anti-inflammatory effects of Jeju seaweeds on macrophage RAW 264.7 cells under lipopolysaccharide (LPS) stimulation.Methods:Ethyl acetate fractions were prepared from five different types of Jeju seaweeds, Dictyopteris divaricata (D. divaricata), Dictyopteris prolifera (D. prolifera), Prionitis cornea (P. cornea), Grateloupia lanceolata (G. lanceolata), and Grateloupia filicina (G. filicina). They were screened for inhibitory effects on proinflammatory mediators and cytokines such as nitric oxide (NO), prostaglandin E2, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6).Results:Our results revealed that D. divaricata, D. prolifera, P. cornea, G. lanceolata, and G. filicina potently inhibited LPS-stimulated NO production (IC50 values were 18.0, 38.36, 38.43, 32.81 and 37.14 µg/mL, respectively). Consistent with these findings, D. divaricata, D. prolifera, P. cornea, and G. filicina also reduced the LPS-induced and prostaglandin E2 production in a concentration-dependent manner. Expectedly, they suppressed the expression of inducible NO synthase and cyclooxygenase-2 at the protein level in a dose-dependent manner in the RAW 264.7 cells, as determined by western blotting. In addition, the levels of TNF-α and IL-6, released into the medium, were also reduced by D. divaricata, D. prolifera, P. cornea, G. lanceolata, andG. filicina in a dose-dependent manner (IC 50 values for TNF-α were 16.11, 28.21, 84.27, 45.52 and 74.75 µg/mL, respectively; IC50 values for IL-6 were 37.35, 80.08, 103.28, 62.53 and 84.28 µg/mL, respectively). The total phlorotannin content was measured by the Folin-Ciocalteu method and expressed as phloroglucinol equivalents. The content was 92.0 µg/mg for D. divaricata, 151.8 µg/mg for D. prolifera, 57.2 µg/mg for P. cornea, 53.0 µg/mg for G. lanceolata, and 40.2 µg/mg for G.filicina. Conclusions: Thus, these findings suggest that Jeju seaweed extracts have potential therapeutic applications for

  12. Acute cadmium administration to rats exerts both immunosuppressive and proinflammatory effects in spleen.

    Science.gov (United States)

    Demenesku, Jelena; Mirkov, Ivana; Ninkov, Marina; Popov Aleksandrov, Aleksandra; Zolotarevski, Lidija; Kataranovski, Dragan; Kataranovski, Milena

    2014-12-04

    Conflicting data (both suppression and augmentation as well as lack of the effect) exist in respect to cadmium (Cd) and splenic T cell-based immune cell activity. Spleen is also the site of innate immune responses but impact of Cd on this type of immunity has been less explored. In the present study the effects of acute Cd administration on basic aspects of both T cell-based and innate immune spleen cell activity were examined in rats. Intraperitoneal injection of 1mg of Cd/kg resulted in decrease in concanavalin A (ConA) induced proliferation which seems to be more related to altered spleen cells responsiveness to IL-2 than to apoptosis. Differential effects on proinflammatory T cell derived cytokines were observed (decreases of IFN-γ gene expression and ConA-stimulated production, but increases in IL-17 mRNA levels with no effect on concentrations of protein product). Reduction of IFN-γ production seemed not to rely on IL-4 and IL-10, but at least partly on nitric oxide (NO). Increased activity relevant for innate immunity (granulocyte and CD11b(+) cell accumulation in the spleen, inducible nitric oxide synthase/iNOS expression and NO production by spleen cells) was observed, but there was a decrease in respiratory burst (dihydrorhodamine/DHR oxidation and nitroblue tetrazolium/NBT reduction). Increases of TNF-α and IL-1β gene expression and IL-1β protein product were noted as well. Administration of 0.5mg Cd/kg resulted in less pronounced (ConA-induced proliferation) or lack of the effect (IFN-γ production) on spleen T cell activities and on innate activities (granulocyte accumulation, NO production) as well. However, increases of spleen cell respiratory burst activity and IL-1β production were observed. Effects of lower cadmium doses (5ppm and 50ppm) on several aspects of spleen cell immune activity were observed in intermediate period of exposure (30 days, oral intake) as well. Differential effects of Cd on immune activities of spleen cells might

  13. Jeju seaweeds suppress lipopolysaccharide-stimulated proinflammatory response in RAW 264.7 murine macrophages

    Institute of Scientific and Technical Information of China (English)

    Eun-Jin; Yang; Ji-Young; Moon; Sang; Suk; Kim; Kyong—Wol; Yang; Wook; Jae; Lee; Nam; Ho; Lee; Chang-Gu; Hyun

    2014-01-01

    Objective:To investigate the anti-inflammatory effects of Jeju seaweeds on macrophage RAW264.7 cells under lipopolysaccharide(LPS)stimulation.Methods:Ethyl acetate fractions were prepared from five different types of Jeju seaweeds,Dictyopteris divaricata(D.divaricata),Dictyopteris prolifera(D.prolifefa),Prioutis cornea(P.comea,Grateloupia laceolata(G,lanceolate,and Cralcloupia filicina(G.filicina)They were screened for inhibitory effects on proinflammatory mediators and cytokines such as nitric oxide(NO),prostaglandin E,,tumor necrosis factor-a(TNF-a),and interleukin-6(11.-6).Results:Our results revealed that D.divaricata,D.prolifera,P.cornea,G.lanceolata,and G.filicina potently inhibited I.PS-stimulaled NO production(IC50,values were 18.0,38.36,38.43,32.81 and 37.14μg/mL,respectively).Consistent with these findings,D.divtricata,D.prolifera,P.cornea,and G.fdicina also reduced the IPS-induced and prostaglandin E,production in a concentration-dependent manner.Expectedly,they suppressed the expression of inducible NO synthase and cyclooxygenase-2 at the protein level in a dose-dependent manner in the RAW264.7 cells,as detennined by western blotting.In addition,the levels of TNF-a and IL-6,released into the medium,were also reduced by D.divaricata,D.prolifera,P.cornea,G,lanceolata,and G.fdicina in a dose-dependent manner(IC50values for TNF-a were 16.11,28.21,84.27,45.52 and74.75μg/mL,respectively;IC50,values for IL-6 were 37.35,80.08,103.28,62.53 and 84.28μg/mL,respectively).The total phlorotannin content was measured by the Folin-Ciocalteu method and expressed as phloroglucinol equivalents.The content was 92.0μg/mg for D.divaricata,151.8μg/mg for D.prolifera,57.2μg/mg for P.cornea,53.0 pg/mg for G.lanceolata,and 40.2μg/mg for G.fdicina.Conclusions:Thus,these findings suggest that Jeju seaweed extracts have potential therapeutic applications for inflammatory responses.

  14. Mindfulness-Based Stress Reduction Training Reduces Loneliness and Pro-Inflammatory Gene Expression in Older Adults: A Small Randomized Controlled Trial

    OpenAIRE

    Creswell, J. David; Irwin, Michael R.; Burklund, Lisa J.; Lieberman, Matthew D.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W.

    2012-01-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults ...

  15. Identification of 34 novel proinflammatory proteins in a genome-wide macrophage functional screen.

    Directory of Open Access Journals (Sweden)

    David H Wyllie

    Full Text Available Signal transduction pathways activated by Toll-like Receptors and the IL-1 family of cytokines are fundamental to mounting an innate immune response and thus to clearing pathogens and promoting wound healing. Whilst mechanistic understanding of the regulation of innate signalling pathways has advanced considerably in recent years, there are still a number of critical controllers to be discovered. In order to characterise novel regulators of macrophage inflammation, we have carried out an extensive, cDNA-based forward genetic screen and identified 34 novel activators, based on their ability to induce the expression of cxcl2. Many are physiologically expressed in macrophages, although the majority of genes uncovered in our screen have not previously been linked to innate immunity. We show that expression of particular activators has profound but distinct impacts on LPS-induced inflammatory gene expression, including switch-type, amplifier and sensitiser behaviours. Furthermore, the novel genes identified here interact with the canonical inflammatory signalling network via specific mechanisms, as demonstrated by the use of dominant negative forms of IL1/TLR signalling mediators.

  16. A pro-inflammatory glycoprotein biomarker is associated with lower bilirubin in metabolic syndrome

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; Gruppen, Eke G.; Connelly, Margery A.; Lefrandt, Joop D.

    2015-01-01

    Objectives: Bilirubin exerts anti-oxidative and anti-inflammatory properties which may beneficially influence the development of cardio-metabolic disorders. A nuclear magnetic resonance (NMR) spectroscopy-based glycoprotein biomarker, designated GlycA, whose signal originates from several glycosylat

  17. Changes in DNA Methylation and Chromatin Structure of Pro-inflammatory Cytokines Stimulated by LPS in Broiler Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Shen, Jing; Liu, Yanli; Ren, Xiaochun; Gao, Kang; Li, Yulong; Li, Shizhao; Yao, Junhu; Yang, Xiaojun

    2016-07-01

    The pro-inflammatory cytokines IL-1β, IL-6, and tumor necrosis factor (TNF)-α mediate inflammation, which is a protective response by body to ensure removal of detrimental stimuli, as well as a healing process for repairing damaged tissue. The overproduction of pro-inflammatory cytokines can induce autoimmune diseases and can be fatal. The aim of this study was to investigate epigenetic mechanisms in the regulation of pro-inflammatory cytokines expression after lipopolysaccharide (LPS) stimulation of broiler peripheral blood mononuclear cells (PBMC). Gene expression, promoter DNA methylation, and chromatin accessibility of pro-inflammatory cytokines in untreated and LPS-treated PBMC were compared. The expression of epigenetic enzymes DNA methyltransferase (DNMT) 1, histone deacetylase (HDAC), and histone acetylase (HAT) were measured after LPS stimulation. The results showed the activated gene expression of pro-inflammatory cytokines in broiler PBMC stimulated 3 h by LPS. The demethylation of IL-6 gene - 302 and -264 cytosine-guanine (CpG) sites, as well as TNF-α gene -371 CpG site, occurred after LPS treatment (P pro-inflammatory cytokines.

  18. Suppressor of cytokine signalling-3 expression inhibits cytokine-mediated destruction of primary mouse and rat pancreatic islets and delays allograft rejection

    DEFF Research Database (Denmark)

    Rønn, S G; Börjesson, A; Bruun, C;

    2008-01-01

    The pro-inflammatory cytokines IL-1 and IFNgamma are critical molecules in immune-mediated beta cell destruction leading to type 1 diabetes mellitus. Suppressor of cytokine signalling (SOCS)-3 inhibits the cytokine-mediated destruction of insulinoma-1 cells. Here we investigate the effect of SOCS3...... in primary rodent beta cells and diabetic animal models....

  19. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE).

    Science.gov (United States)

    Penkowa, M; Hidalgo, J

    2001-07-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human autoimmune disease multiple sclerosis (MS). Proinflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are considered important for induction and pathogenesis of EAE/MS disease, which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE. However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce apoptotic cell death of neurons and oligodendrocytes during EAE, as judged by using TUNEL and immunoreactivity for cytochrome c and caspases 1 and 3. In contrast, the number of apoptotic lymphocytes and macrophages was less affected by Zn-MT-II treatment. The Zn-MT-II-induced decrease in proinflammatory cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE in vivo and that MT-II might be a potentially useful factor for treatment of EAE/MS.

  20. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    Science.gov (United States)

    Chakravarthy, Harshini; Beli, Eleni; Navitskaya, Svetlana; O'Reilly, Sandra; Wang, Qi; Kady, Nermin; Huang, Chao; Grant, Maria B; Busik, Julia V

    2016-01-01

    Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM) pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs). We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  1. Imbalances in Mobilization and Activation of Pro-Inflammatory and Vascular Reparative Bone Marrow-Derived Cells in Diabetic Retinopathy.

    Directory of Open Access Journals (Sweden)

    Harshini Chakravarthy

    Full Text Available Diabetic retinopathy is a sight-threatening complication of diabetes, affecting 65% of patients after 10 years of the disease. Diabetic metabolic insult leads to chronic low-grade inflammation, retinal endothelial cell loss and inadequate vascular repair. This is partly due to bone marrow (BM pathology leading to increased activity of BM-derived pro-inflammatory monocytes and impaired function of BM-derived reparative circulating angiogenic cells (CACs. We propose that diabetes has a significant long-term effect on the nature and proportion of BM-derived cells that circulate in the blood, localize to the retina and home back to their BM niche. Using a streptozotocin mouse model of diabetic retinopathy with GFP BM-transplantation, we have demonstrated that BM-derived circulating pro-inflammatory monocytes are increased in diabetes while reparative CACs are trapped in the BM and spleen, with impaired release into circulation. Diabetes also alters activation of splenocytes and BM-derived dendritic cells in response to LPS stimulation. A majority of the BM-derived GFP cells that migrate to the retina express microglial markers, while others express endothelial, pericyte and Müller cell markers. Diabetes significantly increases infiltration of BM-derived microglia in an activated state, while reducing infiltration of BM-derived endothelial progenitor cells in the retina. Further, control CACs injected into the vitreous are very efficient at migrating back to their BM niche, whereas diabetic CACs have lost this ability, indicating that the in vivo homing efficiency of diabetic CACs is dramatically decreased. Moreover, diabetes causes a significant reduction in expression of specific integrins regulating CAC migration. Collectively, these findings indicate that BM pathology in diabetes could play a role in both increased pro-inflammatory state and inadequate vascular repair contributing to diabetic retinopathy.

  2. Better cognitive control of emotional information is associated with reduced pro-inflammatory cytokine reactivity to emotional stress.

    Science.gov (United States)

    Shields, Grant S; Kuchenbecker, Shari Young; Pressman, Sarah D; Sumida, Ken D; Slavich, George M

    2016-01-01

    Stress is strongly associated with several mental and physical health problems that involve inflammation, including asthma, cardiovascular disease, certain types of cancer, and depression. It has been hypothesized that better cognitive control of emotional information may lead to reduced inflammatory reactivity to stress and thus better health, but to date no studies have examined whether differences in cognitive control predict pro-inflammatory cytokine responses to stress. To address this issue, we conducted a laboratory-based experimental study in which we randomly assigned healthy young-adult females to either an acute emotional stress (emotionally evocative video) or no-stress (control video) condition. Salivary levels of the key pro-inflammatory cytokines IL-1β, IL-6, and IL-8 were measured before and after the experimental manipulation, and following the last cytokine sample, we assessed participants' cognitive control of emotional information using an emotional Stroop task. We also assessed participants' cortisol levels before and after the manipulation to verify that documented effects were specific to cytokines and not simply due to increased nonwater salivary output. As hypothesized, the emotional stressor triggered significant increases in IL-1β, IL-6, and IL-8. Moreover, even in fully adjusted models, better cognitive control following the emotional (but not control) video predicted less pronounced cytokine responses to that stressor. In contrast, no effects were observed for cortisol. These data thus indicate that better cognitive control specifically following an emotional stressor is uniquely associated with less pronounced pro-inflammatory cytokine reactivity to such stress. These findings may therefore help explain why superior cognitive control portends better health over the lifespan.

  3. Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: a translational study

    Directory of Open Access Journals (Sweden)

    Puchau Blanca

    2010-05-01

    Full Text Available Abstract Background Fruits and vegetables are important sources of fiber and nutrients with a recognized antioxidant capacity, which could have beneficial effects on the proinflammatory status as well as some metabolic syndrome and cardiovascular disease features. The current study assessed the potential relationships of fruit and vegetable consumption with the plasma concentrations and mRNA expression values of some proinflammatory markers in young adults. Methods One-hundred and twenty healthy subjects (50 men/70 women; 20.8 ± 2.6 y; 22.3 ± 2.8 kg/m2 were enrolled. Experimental determinations included anthropometry, blood pressure and lifestyle features as well as blood biochemical and inflammatory measurements. The mRNA was isolated from peripheral blood mononuclear cells (PBMC and the gene expression concerning selected inflammatory markers was assessed by quantitative real-time PCR. Nutritional intakes were estimated by a validated semi-quantitative food-frequency questionnaire. Results The highest tertile of energy-adjusted fruit and vegetable consumption (>660 g/d was associated with lower plasma concentrations of C-reactive protein (CRP and homocysteine and with lower ICAM1, IL1R1, IL6, TNFα and NFκB1 gene expression in PBMC (P for trend ICAM1, TNFα and NFκB1 gene expression in PBMC showed a descending trend as increased fiber intake (>19.5 g/d from fruits and vegetables (P for trend 11.8 mmol/d of dietary total antioxidant capacity showed lower plasma CRP and mRNA values of ICAM1, IL1R1, IL6, TNFα and NFκB1 genes (P for trend Conclusion A higher fruit and vegetable consumption was independently associated not only with reduced CRP and homocysteine concentrations but also with a lower mRNA expression in PBMC of some relevant proinflammatory markers in healthy young adults.

  4. Maintenance of a positive outlook during acute stress protects against pro-inflammatory reactivity and future depressive symptoms

    Science.gov (United States)

    Aschbacher, K.; Epel, E.; Wolkowitz, O.M.; Prather, A.A.; Puterman, E.; Dhabhar, F.S.

    2014-01-01

    Cognitive and affective responses to acute stress influence pro-inflammatory cytokine reactivity, and peripheral cytokines (particularly lnterleukin-1 beta (IL-1β)), can act on the brain to promote depressive symptoms. It is unknown whether acute stress-induced changes in positive affect and cognitions (POS) and pro-inflammatory reactivity predict future depressive symptoms. We examined acute stress responses among women, to determine prospective predictors of depressive symptoms. Hypotheses: 1) Stress-induced decreases in POS will be associated with stress-related increases in circulating IL-1β. 2) Acute stress-induced decreases in POS and increases in IL-1β reactivity will predict increases in depressive symptoms one year later. Thirty-five post-menopausal women were exposed to acute stress with the Trier Social Stress Task (TSST) and provided blood samples under resting conditions and 30 minutes after the conclusion of the TSST, which were assayed for IL-1β. IL-1β reactivity was quantified as post minus pre-TSST. Failure to maintain POS was quantified as the decrease in POS during the TSST. Change in depressive symptoms from the study baseline to the following year was determined. Greater acute stress-induced declines in POS were significantly associated with increased IL-1β reactivity (p≤.02), which significantly predicted increases in depressive symptoms over the following year (p<.01), controlling for age, body mass index, chronic stress, antidepressant use and baseline depressive symptoms. IL-1β reactivity was a significant mediator of the relationship between POS decline and future increases in depressive symptoms (p=.04). Difficulty maintaining positivity under stress and heightened pro-inflammatory reactivity may be markers and/or mechanisms of risk for future increases in depressive symptoms. PMID:22119400

  5. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    Science.gov (United States)

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  6. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids.

    Science.gov (United States)

    Ramesh, Radha; Kozhaya, Lina; McKevitt, Kelly; Djuretic, Ivana M; Carlson, Thaddeus J; Quintero, Maria A; McCauley, Jacob L; Abreu, Maria T; Unutmaz, Derya; Sundrud, Mark S

    2014-01-13

    IL-17A-expressing CD4(+) T cells (Th17 cells) are generally regarded as key effectors of autoimmune inflammation. However, not all Th17 cells are pro-inflammatory. Pathogenic Th17 cells that induce autoimmunity in mice are distinguished from nonpathogenic Th17 cells by a unique transcriptional signature, including high Il23r expression, and these cells require Il23r for their inflammatory function. In contrast, defining features of human pro-inflammatory Th17 cells are unknown. We show that pro-inflammatory human Th17 cells are restricted to a subset of CCR6(+)CXCR3(hi)CCR4(lo)CCR10(-)CD161(+) cells that transiently express c-Kit and stably express P-glycoprotein (P-gp)/multi-drug resistance type 1 (MDR1). In contrast to MDR1(-) Th1 or Th17 cells, MDR1(+) Th17 cells produce both Th17 (IL-17A, IL-17F, and IL-22) and Th1 (IFN-γ) cytokines upon TCR stimulation and do not express IL-10 or other anti-inflammatory molecules. These cells also display a transcriptional signature akin to pathogenic mouse Th17 cells and show heightened functional responses to IL-23 stimulation. In vivo, MDR1(+) Th17 cells are enriched and activated in the gut of Crohn's disease patients. Furthermore, MDR1(+) Th17 cells are refractory to several glucocorticoids used to treat clinical autoimmune disease. Thus, MDR1(+) Th17 cells may be important mediators of chronic inflammation, particularly in clinical settings of steroid resistant inflammatory disease.

  7. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Wang, Fu-Xin [Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154002 (China); Ren, Jun [Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071 (United States); Li, Hong-Bao; Zhang, Meng; Yang, Qing; Miao, Yu-Wang; Yu, Xiao-Jing; Qi, Jie [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Zhiming [Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, The Third Military Medical University, Chongqing Institute of Hypertension, Chongqing 400042 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-04-15

    Aims: To explore whether reactive oxygen species (ROS) scavenger (tempol) in the hypothalamic paraventricular nucleus (PVN) attenuates renin–angiotensin system (RAS) and proinflammatory cytokines (PICs), and decreases the blood pressure and sympathetic activity in angiotensin II (ANG II)-induced hypertension. Methods and results: Male Sprague–Dawley rats were infused intravenously with ANG II (10 ng/kg per min) or normal saline (NS) for 4 weeks. These rats were treated with bilateral PVN infusion of oxygen free radical scavenger tempol (TEMP, 20 μg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for 4 weeks. ANG II infusion resulted in increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These ANG II-infused rats also had higher levels of gp91{sup phox} (a subunit of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), and interleukin-1beta (IL-1β) in the PVN than the control animals. Treatment with PVN infusion of TEMP attenuated the overexpression of gp91{sup phox}, ACE and IL-1β within the PVN, and decreased sympathetic activity and MAP in ANG II-infused rats. Conclusion: These findings suggest that ANG II infusion induces elevated PICs and oxidative stress in the PVN, which contribute to the sympathoexcitation in hypertension. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system, proinflammatory cytokines and oxidative stress in ANG II-induced hypertension. - Highlights: • The effect of chronic inhibiting PVN superoxide on hypertension was investigated. • ANG II infusion induced increased proinflammatory cytokines and superoxide in PVN. • ANG II infusion resulted in oxidative stress, sympathoexcitation and hypertension. • Chronic inhibiting PVN superoxide attenuates RAS and cytokines in hypertension.

  8. Suppression of Proinflammatory and Prosurvival Biomarkers in Oral Cancer Patients Consuming a Black Raspberry Phytochemical-Rich Troche.

    Science.gov (United States)

    Knobloch, Thomas J; Uhrig, Lana K; Pearl, Dennis K; Casto, Bruce C; Warner, Blake M; Clinton, Steven K; Sardo-Molmenti, Christine L; Ferguson, Jeanette M; Daly, Brett T; Riedl, Kenneth; Schwartz, Steven J; Vodovotz, Yael; Buchta, Anthony J; Schuller, David E; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M

    2016-02-01

    Black raspberries (BRB) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce proinflammatory and antiapoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCC) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and noninvolved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of prosurvival genes (AURKA, BIRC5, EGFR) and proinflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated grade 3-4 toxicities or adverse events, and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark antiapoptotic and proinflammatory molecular biomarkers were overexpressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. As these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention.

  9. Production of proinflammatory cytokines in the human THP-1 monocyte cell line following induction by Tp0751,a recombinant protein of Treponema pallidum

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The tissue destruction characteristic of syphilis infection may be caused by inflammation due to Treponema pallidum and the ensuing immune responses to the pathogen.T.pallidum membrane proteins are thought to be potent inducers of inflammation during the early stages of infection.However,the actual membrane proteins that induce inflammatory cytokine production are not known,nor are the molecular mechanisms responsible for triggering and sustaining the inflammatory cascades.In the present study,Tp0751 recombinant protein from T.pallidum was found to induce the production of proinflammatory cytokines,including TNF-α,IL-1βand IL-6,in a THP-1 human monocyte cell line.The signal transduction pathways involved in the production of these cytokines were then further investigated.No inhibition of TNF-a,IL-1β,or IL-6 production was observed following treatment with the SAPK/JNK specific inhibitor SP600125 or with an ERK inhibitor PD98059.By contrast,anti-TLR2 mAb,anti-CD14 mAb,and the p38 inhibitor SB203580 significantly inhibited the production of all three cytokines.In addition,pyrrolidine dithiocarbamate (PDTC),a specific inhibitor of NF-κB,profoundly inhibited the production of these cytokines.Tp0751 treatment strongly activated NF-κB,as revealed by Western blotting.However,NF-κB translocation was significantly inhibited by treatment with PDTC.These results indicated that TLR2,CD14,MAPKs/p38,and NF-κB might be implicated in the inflammatory reaction caused by T.pallidum infection.

  10. The proinflammatory RAGE/NF-κB pathway is involved in neuronal damage and reactive gliosis in a model of sleep apnea by intermittent hypoxia.

    Science.gov (United States)

    Angelo, Maria Florencia; Aguirre, Alejandra; Avilés Reyes, Rolando X; Villarreal, Alejandro; Lukin, Jerónimo; Melendez, Matías; Vanasco, Virginia; Barker, Phil; Alvarez, Silvia; Epstein, Alberto; Jerusalinsky, Diana; Ramos, Alberto Javier

    2014-01-01

    Sleep apnea (SA) causes long-lasting changes in neuronal circuitry, which persist even in patients successfully treated for the acute effects of the disease. Evidence obtained from the intermittent hypoxia (IH) experimental model of SA has shown neuronal death, impairment in learning and memory and reactive gliosis that may account for cognitive and structural alterations observed in human patients. However, little is known about the mechanism controlling these deleterious effects that may be useful as therapeutic targets in SA. The Receptor for Advanced Glycation End products (RAGE) and its downstream effector Nuclear Factor Kappa B (NF-κB) have been related to neuronal death and astroglial conversion to the pro-inflammatory neurodegenerative phenotype. RAGE expression and its ligand S100B were shown to be increased in experimental models of SA. We here used dissociated mixed hippocampal cell cultures and male Wistar rats exposed to IH cycles and observed that NF-κB is activated in glial cells and neurons after IH. To disclose the relative contribution of the S100B/RAGE/NF-κB pathway to neuronal damage and reactive gliosis after IH we performed sequential loss of function studies using RAGE or S100B neutralizing antibodies, a herpes simplex virus (HSV)-derived amplicon vector that induces the expression of RAGEΔcyto (dominant negative RAGE) and a chemical blocker of NF-κB. Our results show that NF-κB activation peaks 3 days after IH exposure, and that RAGE or NF-κB blockage during this critical period significantly improves neuronal survival and reduces reactive gliosis. Both in vitro and in vivo, S100B blockage altered reactive gliosis but did not have significant effects on neuronal survival. We conclude that both RAGE and downstream NF-κB signaling are centrally involved in the neuronal alterations found in SA models, and that blockage of these pathways is a tempting strategy for preventing neuronal degeneration and reactive gliosis in SA.

  11. Perillyl alcohol protects against ethanol induced acute liver injury in Wistar rats by inhibiting oxidative stress, NFκ-B activation and proinflammatory cytokine production.

    Science.gov (United States)

    Khan, Abdul Quaiyoom; Nafees, Sana; Sultana, Sarwat

    2011-01-11

    Oxidative stress and inflammation are two major etiological factors that are suggested to play key roles in the development of ethanol induced liver injury. Release of proinflammatory cytokine like tumor necrosis factor alpha (TNF-α) and activation of nuclear factor kappa-B (NFκ-B) may strongly intensify inflammation and cell damage. Additionally, reactive oxygen species (ROS) also exerts significant effect in this whole cell signaling machinery. The present study was designed to investigate the protective effects of perillyl alcohol (POH) on ethanol-induced acute liver injury in Wistar rats and its probable mechanism. We have successfully demonstrated that pre-treatment with POH, besides exerting antioxidant activity might be able to modulate TNF-α release and NFκ-B activation. Rats were divided into five groups and treated with ethanol or POH via an intragastric tube for one week. Control group was treated with vehicle, and ethanol treated group was given ethanol (5 g/kg body wt). Animal of treatment groups were pretreated with POH (50 & 100 mg/kg body wt) and have been given ethanol. Serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase and hepatic malondialdehyde were increased significantly by ethanol treatment. Ethanol administration decreased hepatic reduced glutathione content and various antioxidant enzymes activity. TNF-α production and NFκ-B activation was also found to be increased after ethanol administration. POH pre-treatment significantly ameliorates ethanol induced acute liver injury possibly by inhibition of lipid peroxidation, replenishment of endogenous enzymatic and non-enzymatic defense system, downregulation of TNF-α as well as NFκ-B.

  12. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy

    OpenAIRE

    Hamadi, Naserddine; Sheikh, Azimullah; Madjid, Nather; Lubbad, Loai; Amir, Naheed; Shehab, Safa Al-Deen Saudi; Khelifi-Touhami, Fatima; Adem, Abdu

    2016-01-01

    Background Bilateral adrenalectomy has been shown to damage the hippocampal neurons. Although the effects of long-term adrenalectomy have been studied extensively there are few publications on the effects of short-term adrenalectomy. In the present study we aimed to investigate the effects of short-term bilateral adrenalectomy on the levels of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; the response of microglia and astrocytes to neuronal cell death as well as oxidative stress markers G...

  13. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE)

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2001-01-01

    , which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE...... apoptotic cell death of neurons and oligodendrocytes during EAE, as judged by using TUNEL and immunoreactivity for cytochrome c and caspases 1 and 3. In contrast, the number of apoptotic lymphocytes and macrophages was less affected by Zn-MT-II treatment. The Zn-MT-II-induced decrease in proinflammatory...

  14. Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition.

    OpenAIRE

    2003-01-01

    Exposure to urban airborne particulate matter (PM) is associated with adverse health effects. We previously reported that the cytotoxic and proinflammatory effects of Mexico City PM10 (less than or equal to 10 micro m mean aerodynamic diameter) are determined by transition metals and endotoxins associated with these particles. However, PM2.5 (less than or equal to 2.5 micro m mean aerodynamic diameter) could be more important as a human health risk because this smaller PM has the potential to...

  15. The influence of genetic variability and proinflammatory status on the development of bone disease in patients with Gaucher disease.

    Science.gov (United States)

    Gervas-Arruga, Javier; Cebolla, Jorge Javier; de Blas, Ignacio; Roca, Mercedes; Pocovi, Miguel; Giraldo, Pilar

    2015-01-01

    Gaucher disease, the most common lysosomal storage disorder, is caused by β-glucocerebrosidase deficiency. Bone complications are the major cause of morbidity in patients with type 1 Gaucher disease (GD1). Genetic components strongly influence bone remodelling. In addition, chronic inflammation produced by Gaucher cells induces the production of several cytokines, which leads to direct changes in the bone remodelling process and can also affect the process indirectly through other immune cells. In this study, we analysed the association between bone mineral density (BMD), bone marrow burden score, and relevant genetic polymorphisms related to bone metabolism, as well as profiles of proinflammatory cytokines in a GD1 cohort. This study included 83 patients distributed according to bone status. BMD was measured with DXA and broadband ultrasound attenuation; bone marrow involvement was evaluated using MRI. We also analysed 26 SNPs located in 14 genes related to bone metabolism. To assess proinflammatory status, we analysed IL-4, IL-6, IL-7, IL-10, IL-13, MIP-1α, MIP-1β, and TNFα in plasma samples from 71 control participants and GD1 patients. SNP genotype proportions and BMD differed significantly between ESRI c.453-397T>C and VDR c.1024+283G>A variants. We also observed significant associations between GD1 genotypes and bone affectation. When patients were stratified by spleen status, we observed significant correlations between non-/splenectomized groups and Spanish MRI (S-MRI) score. Across genotype proportions of non-/splenectomized patients and S-MRI, we observed significant differences in ESRI c.453-397T>C, VDR c.-83-25988G>A, and TNFRSF11B c.9C>G polymorphisms. We observed different significant proinflammatory profiles between control participants, treatment-naïve patients, and patients on enzyme replacement therapy (ERT); between non-/splenectomized patients (between untreated and ERT-treated patients) and among those with differing GBA genotypes. The

  16. The influence of genetic variability and proinflammatory status on the development of bone disease in patients with Gaucher disease.

    Directory of Open Access Journals (Sweden)

    Javier Gervas-Arruga

    Full Text Available Gaucher disease, the most common lysosomal storage disorder, is caused by β-glucocerebrosidase deficiency. Bone complications are the major cause of morbidity in patients with type 1 Gaucher disease (GD1. Genetic components strongly influence bone remodelling. In addition, chronic inflammation produced by Gaucher cells induces the production of several cytokines, which leads to direct changes in the bone remodelling process and can also affect the process indirectly through other immune cells. In this study, we analysed the association between bone mineral density (BMD, bone marrow burden score, and relevant genetic polymorphisms related to bone metabolism, as well as profiles of proinflammatory cytokines in a GD1 cohort. This study included 83 patients distributed according to bone status. BMD was measured with DXA and broadband ultrasound attenuation; bone marrow involvement was evaluated using MRI. We also analysed 26 SNPs located in 14 genes related to bone metabolism. To assess proinflammatory status, we analysed IL-4, IL-6, IL-7, IL-10, IL-13, MIP-1α, MIP-1β, and TNFα in plasma samples from 71 control participants and GD1 patients. SNP genotype proportions and BMD differed significantly between ESRI c.453-397T>C and VDR c.1024+283G>A variants. We also observed significant associations between GD1 genotypes and bone affectation. When patients were stratified by spleen status, we observed significant correlations between non-/splenectomized groups and Spanish MRI (S-MRI score. Across genotype proportions of non-/splenectomized patients and S-MRI, we observed significant differences in ESRI c.453-397T>C, VDR c.-83-25988G>A, and TNFRSF11B c.9C>G polymorphisms. We observed different significant proinflammatory profiles between control participants, treatment-naïve patients, and patients on enzyme replacement therapy (ERT; between non-/splenectomized patients (between untreated and ERT-treated patients and among those with differing GBA

  17. Hormonal regulation of pro-inflammatory and lipid peroxidation processes in liver of old ovariectomized female rats.

    Science.gov (United States)

    Kireev, R A; Tresguerres, A C F; Garcia, C; Borras, C; Ariznavarreta, C; Vara, E; Vina, J; Tresguerres, J A F

    2010-04-01

    There is now a large body of evidence suggesting that the decline in ovarian function with menopause is associated with spontaneous increases in pro-inflammatory cytokines. On the other hand, oxidative stress has been implicated in the pathogenesis of several alterations due to menopause, and can arise through the increased production of lipid peroxides (LPO) and/or a deficiency of antioxidant defense. The aim of the present study was to investigate the effect of aging and ovariectomy on various physiological parameters related to inflammation and oxidative stress in livers obtained from old female rats and the influence of chronic exogenous administration of estrogens, phytoestrogens and growth hormone on these. Thirty-six female Wistar rats of 22 months of age were used in the present study. Twelve of them remained intact, and the other 24 had been ovariectomized at 12 months of age. Intact animals were divided into two groups and treated for 10 weeks with GH or saline, and ovariectomized animals were divided into four groups and treated for the same time with GH, estrogens, phytoestrogens or saline. A group of 2 month old intact female rats was used as young control. Protein expression of iNOS, HO-1, IL-6, TNFalpha, and IL-1beta were determined by Western blot analysis. The levels of NO( x ), LPO, TNFalpha, IL-1beta, IL-6 and IL-10 were determined in different fractions of the liver. Levels of LPO in the liver homogenates as well as iNOS protein expression and NO( x ) levels were increased in old rats as compared to young animals; this effect was more evident in ovariectomized animals. Pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6 were significantly increased and anti-inflammatory IL-10 decreased during ageing and after ovariectomy. Aging also significantly increased expression of HO-1 protein and ovariectomized rats showed an additional increase. Hormonal administration to the ovariectomized groups decreased NO( x ), LPO levels and pro-inflammatory

  18. Bacterial fimbriae stimulate proinflammatory activation in the endothelium through distinct TLRs.

    Science.gov (United States)

    Davey, Michael; Liu, Xinyan; Ukai, Takashi; Jain, Vishal; Gudino, Cynthia; Gibson, Frank C; Golenbock, Douglas; Visintin, Alberto; Genco, Caroline A

    2008-02-15

    The major and minor fimbriae proteins produced by the human pathogen Porphyromonas gingivalis are required for invasion of human aortic endothelial cells and for the stimulation of potent inflammatory responses. In this study, we report that native forms of both the major and minor fimbriae proteins bind to and signal through TLR2 for this response. Major and minor fimbriae bound to a human TLR2:Fc chimeric protein with an observed K(d) of 28.9 nM and 61.7 nM, respectively. Direct binding of the major and minor fimbriae to a human chimeric CD14-Fc protein also established specific binding of the major and minor fimbriae to CD14 with classic saturation kinetics. Using a P. gingivalis major and minor fimbriae mutant, we confirmed that TLR2 binding in whole cells is dependent on the expression of the major and minor fimbriae. Although we did not observe binding with the major or minor fimbriae to the TLR4-Fc chimeric protein, signaling through TLR4 for both proteins was demonstrated in human embryonic kidney 293 cells transfected with TLR4 and only in the presence MD-2. Transient transfection of dominant-negative forms of TLR2 or TLR4 reduced IL-8 production by human aortic endothelial cells following stimulation with major or minor fimbriae. The ability of two well-defined microbe-associated molecular patterns to select for innate immune recognition receptors based on accessory proteins may provide a novel way for a pathogen to sense and signal in appropriate host environments.

  19. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α.

    LENUS (Irish Health Repository)

    Afonina, Inna S

    2011-10-21

    Granzyme B is a cytotoxic lymphocyte-derived protease that plays a central role in promoting apoptosis of virus-infected target cells, through direct proteolysis and activation of constituents of the cell death machinery. However, previous studies have also implicated granzymes A and B in the production of proinflammatory cytokines, via a mechanism that remains undefined. Here we show that IL-1α is a substrate for granzyme B and that proteolysis potently enhanced the biological activity of this cytokine in vitro as well as in vivo. Consistent with this, compared with full-length IL-1α, granzyme B-processed IL-1α exhibited more potent activity as an immunoadjuvant in vivo. Furthermore, proteolysis of IL-1α within the same region, by proteases such as calpain and elastase, was also found to enhance its biological potency. Thus, IL-1α processing by multiple immune-related proteases, including granzyme B, acts as a switch to enhance the proinflammatory properties of this cytokine.

  20. Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons.

    Science.gov (United States)

    Spisni, Enzo; Valerii, Maria Chiara; Manerba, Marcella; Strillacci, Antonio; Polazzi, Elisabetta; Mattia, Toni; Griffoni, Cristiana; Tomasi, Vittorio

    2009-07-01

    Copper dyshomeostasis is responsible for the neurological symptoms observed in the genetically inherited copper-dependent disorders (e.g., Menkes' and Wilson's diseases), but it has been also shown to have an important role in neurodegenerative diseases such as Alzheimer disease, prion diseases, Parkinson's disease and amyotrophic lateral sclerosis. It is widely accepted that increased extracellular copper levels contribute to neuronal pathogenic process by increasing the production of dangerous radical oxygen species, but the existence of other molecular mechanisms explaining copper neurotoxicity has not been investigated yet. By using a cellular model based on hypothalamic GN11 cultured neurons exposed to copper supplementation and by analysing the cell conditioned media, we try here to identify new molecular events explaining the association between extracellular copper accumulation and neuronal damages. We show here that increased extracellular copper levels produce a wide complex of alterations in the neuronal extracellular environment. In particular, copper affects the secretion of molecules involved in the protection of neurons against oxidative stress, such as cyclophilin A (CypA), or of molecules capable of shifting neuronal cells towards a pro-inflammatory state, such as IL-1alpha, IL-12, Rantes, neutrophil gelatinase-associated lipocalin (NGAL) and secreted protein acidic and rich in cysteine (SPARC). Copper pro-inflammatory properties have been confirmed by using primary neurons.

  1. Atypical antipsychotics suppress production of proinflammatory cytokines and up-regulate interleukin-10 in lipopolysaccharide-treated mice.

    Science.gov (United States)

    Sugino, Haruhiko; Futamura, Takashi; Mitsumoto, Yasuhide; Maeda, Kenji; Marunaka, Yoshinori

    2009-03-17

    There is considerable evidence that schizophrenia is associated with immune system dysregulation. For example, blood and cerebrospinal fluid (CSF) levels of proinflammatory cytokines are significantly increased in schizophrenic patients, and their normalization correlates with improvement in psychotic symptoms. In fact, typical and atypical antipsychotics are reported to modulate immune function in in vitro and in vivo studies. In the present study, we examined the anti-inflammatory effect of antipsychotics, clozapine, olanzapine, risperidone and haloperidol, on serum cytokine levels in lipopolysaccharide (LPS)-treated mice. Atypical antipsychotics, such as clozapine, olanzapine and risperidone, but not haloperidol, suppressed tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and up-regulated IL-10. Moreover, only clozapine, robustly increased the serum levels of IL-10. Clozapine reproduced its anti-inflammatory feature in polyinsinic-polycytidylic acid sodium salt (Poly[I:C])-induced inflammation. Thus, the anti-inflammatory effect of clozapine would adapt to inflammation induced by some varieties of antigens. Several receptor ligands, such as 8-OH-DPAT, ketanserin, prazosin and scopolamine, were also examined as to their anti-inflammatory effects on serum cytokine levels in LPS-treated mice. Ketanserin and prazosin, but not 8-OH-DPAT nor scopolamine, behaved similarly to atypical antipsychotics. However, the remarkable increase of serum IL-10 level observed in clozapine was not detected in ketanserin and prazosin. These results suggest the unique efficacy of atypical antipsychotics in the suppression of proinflammatory cytokines, and the increase of anti-inflammatory cytokine, IL-10.

  2. Melanoma tumors alter proinflammatory cytokine production and monoamine brain function, and induce depressive-like behavior in male mice.

    Science.gov (United States)

    Lebeña, Andrea; Vegas, Oscar; Gómez-Lázaro, Eneritz; Arregi, Amaia; Garmendia, Larraitz; Beitia, Garikoitz; Azpiroz, Arantza

    2014-10-01

    Depression is a commonly observed disorder among cancer patients; however, the mechanisms underlying the relationship between these disorders are not well known. We used an animal model to study the effects of tumor development on depressive-like behavior manifestation, proinflammatory cytokine expression, and central monoaminergic activity. Male OF1 mice were inoculated with B16F10 melanoma tumor cells and subjected to a 21-day behavioral evaluation comprising the novel palatable food (NPF) test and tail suspension test (TST). The mRNA expression levels of proinflammatory cytokines, interleukin (IL)-1β and IL-6, and tumor necrosis factor-alpha (TNF-α), were measured in the hypothalamus and hippocampus and the levels of IL-6 and TNF-α were measured in the blood plasma. We similarly determined the monoamine turnover in various brain areas. The tumors resulted in increasing the immobility in TST and the expression level of IL-6 in the hippocampus. These increases corresponded with a decrease in dopaminergic activity in the striatum and a decrease in serotonin turnover in the prefrontal cortex. Similarly, a high level of tumor development produced increases in the brain expression levels of IL-6 and TNF-α and plasma levels of IL-6. Our findings suggest that these alterations in inflammatory cytokines and monoaminergic system function might be responsible for the manifestation of depressive-like behaviors in tumor-bearing mice.

  3. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Directory of Open Access Journals (Sweden)

    Tapas K. Nayak

    2017-01-01

    Full Text Available Chikungunya virus (CHIKV infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6 MHC-I/II and B7.2 (CD86 were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  4. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Science.gov (United States)

    Nayak, Tapas K.; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K.; Sahoo, Subhransu S.; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-01

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology. PMID:28067803

  5. Ghrelin’s Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on β-Cell Functionality

    Directory of Open Access Journals (Sweden)

    Antonia Diaz-Ganete

    2015-01-01

    Full Text Available Ghrelin is a peptidic hormone, which stimulates cell proliferation and inhibits apoptosis in several tissues, including pancreas. In preclinical stage of type 1 diabetes, proinflammatory cytokines generate a destructive environment for β-cells known as insulitis, which results in loss of β-cell mass and impaired insulin secretion, leading to diabetes. Our aim was to demonstrate that ghrelin could preserve β-cell viability, turnover rate, and insulin secretion acting as a counter balance of cytokines. In the present work we reproduced proinflammatory milieu found in insulitis stage by treating murine cell line INS-1E and rat islets with a cytokine cocktail including IL-1β, IFNγ, and TNFα and/or ghrelin. Several proteins involved in survival pathways (ERK 1/2 and Akt/PKB and apoptosis (caspases and Bcl-2 protein family and endoplasmic reticulum stress markers as well as insulin secretion were analyzed. Our results show that ghrelin alone has no remarkable effects on β-cells in basal conditions, but interestingly it activates cell survival pathways, downregulates apoptotic mediators and endoplasmic reticulum stress, and restores insulin secretion in response to glucose when beta-cells are cytokine-exposed. These data suggest a potential role of ghrelin in preventing or slowing down the transition from a preclinical to clinically established diabetes by ameliorating the effects of insulitis on β-cells.

  6. Pro-inflammatory role of Anti-Ro/SSA autoantibodies through the activation of Furin-TACE-amphiregulin axis.

    Science.gov (United States)

    Lisi, Sabrina; Sisto, Margherita; Lofrumento, Dario Domenico; Cucci, Liana; Frassanito, Maria Antonia; Mitolo, Vincenzo; D'Amore, Massimo

    2010-09-01

    Prolonged inflammation can be detrimental because it may cause host toxicity and tissue damage. Indeed, excessive production of inflammatory cytokines is often associated with many autoimmune diseases. In this study we demonstrate that the anti-Ro/SSA autoantibodies (Abs) stimulate the production of pro-inflammatory cytokines IL-6 and IL-8 by human healthy salivary gland epithelial cells (healthy SGEC). The secretion of these cytokines is due to amphiregulin (AREG) that is overexpressed in healthy SGEC treated with anti-Ro/SSA Abs and in Sjögren's syndrome. We have discovered that the up-regulation of AREG occurs through TNF-alpha produced following anti-Ro/SSA Abs treatment. The gene silencing technique was used to study the AREG-TNF-alpha-IL-6/IL-8 secretion pathway, demonstrating that: (i) TNF-alpha gene silencing provokes a significant decrease of proinflammatory cytokines production and AREG expression in anti-Ro/SSA Abs-treated healthy SGEC; (ii) AREG gene silencing has a potent inhibitory effect on TNF-alpha-induced IL-6 and IL-8 secretion in healthy SGEC treated with anti-Ro/SSA Abs. These findings indicate that TACE-mediated AREG shedding plays a critical role in TNF-alpha-induced IL-6 and IL-8 secretion by the human healthy salivary gland epithelial cells, suggesting that this may be one of the possible intracellular mechanisms involved in the salivary glands inflammatory response in Sjögren's syndrome.

  7. Protein inhibitor of activated STAT 4 (PIAS4) regulates pro-inflammatory transcription in hepatocytes by repressing SIRT1.

    Science.gov (United States)

    Sun, Lina; Fan, Zhiwen; Chen, Junliang; Tian, Wenfang; Li, Min; Xu, Huihui; Wu, Xiaoyan; Fang, Mingming; Xia, Jun; Xu, Yong

    2016-07-12

    Excessive nutrition promotes the pathogenesis of non-alcoholic steatohepatitis (NASH), characterized by the accumulation of pro-inflammation mediators in the liver. In the present study we investigated the regulation of pro-inflammatory transcription in hepatocytes by protein inhibitor of activated STAT 4 (PIAS4) in this process and the underlying mechanisms. We report that expression of the class III deacetylase SIRT1 was down-regulated in the livers of NASH mice accompanied by a simultaneous increase in the expression and binding activity of PIAS4. Exposure to high glucose stimulated the expression PIAS4 in cultured hepatocytes paralleling SIRT1 repression. Estrogen, a known NASH-protective hormone, ameliorated SIRT1 trans-repression by targeting PIAS4. Over-expression of PIAS4 enhanced, while PIAS4 knockdown alleviated, repression of SIRT1 transcription by high glucose. Lentiviral delivery of short hairpin RNA (shRNA) targeting PIAS4 attenuated hepatic inflammation in NASH mice by restoring SIRT1 expression. Mechanistically, PIAS4 promoted NF-κB-mediated pro-inflammatory transcription in a SIRT1 dependent manner. In conclusion, our study indicates that PIAS4 mediated SIRT1 repression in response to nutrient surplus contributes to the pathogenesis of NASH. Therefore, targeting PIAS4 might provide novel therapeutic strategies in the intervention of NASH.

  8. Apoptotic neutrophils containing Staphylococcus epidermidis stimulate macrophages to release the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6.

    Science.gov (United States)

    Wilsson, Asa; Lind, Sara; Ohman, Lena; Nilsdotter-Augustinsson, Asa; Lundqvist-Setterud, Helen

    2008-06-01

    Staphylococcus epidermidis infections are usually nosocomial and involve colonization of biomaterials. The immune defense system cannot efficiently control the bacteria during these infections, which often results in protracted chronic inflammation, in which a key event is disturbed removal of neutrophils by tissue macrophages. While ingesting uninfected apoptotic neutrophils, macrophages release anti-inflammatory cytokines that lead to resolution of inflammation. In clinical studies, we have previously found elevated levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 in synovial fluid from prostheses infected with coagulase negative staphylococci. We show that macrophages phagocytosing apoptotic neutrophils containing S. epidermidis released TNF-alpha and interleukin-6, whereas macrophages phagocytosing spontaneously apoptotic neutrophils did not. This difference was not due to dissimilar phagocytic capacities, because macrophages ingested both types of neutrophils to the same extent. The activation was induced mainly by the apoptotic neutrophils themselves, not by the few remaining extracellular bacteria. Macrophages were not activated by apoptotic neutrophils that contained paraformaldehyde-killed S. epidermidis. Proinflammatory reactions induced by clearance of apoptotic neutrophils containing S. epidermidis might represent an important mechanism to combat the infective agent. This activation of macrophages may contribute to the development of chronic inflammation instead of inflammation resolution.

  9. A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II.

    Science.gov (United States)

    Zakaryan, Hovakim; Cholakyans, Victorya; Simonyan, Lusine; Misakyan, Alla; Karalova, Elena; Chavushyan, Andranik; Karalyan, Zaven

    2015-06-01

    African swine fever virus (ASFV), the causative agent of one of the most important viral diseases of domestic pigs for which no vaccine is available, causes immune system disorders in infected animals. In this study, the serum levels of proinflammatory cytokines, as well as the histological and cellular constitution of lymphoid organs of pigs infected with ASFV genotype II were investigated. The results showed a high degree of lymphocyte depletion in the lymphoid organs, particularly in the spleen and lymph nodes, where ASFV infection led to a twofold decrease in the number of lymphocytes on the final day of infection. Additionally, ASFV-infected pigs had atypical forms of lymphocytes found in all lymphoid organs. In contrast to lymphocytes, the number of immature immune cells, particularly myelocytes, increased dramatically and reached a maximum on day 7 postinfection. The serum levels of TNF-α, IL-1β, IL-6, and IL-8 were evaluated. Proinflammatory cytokines showed increased levels after ASFV infection, with peak values at 7 days postinfection, and this highlights their role in the pathogenesis of ASFV. In conclusion, this study showed that ASFV genotype II, like other highly virulent strains, causes severe pathological changes in the immune system of pigs.

  10. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells.

    Science.gov (United States)

    Gualtieri, Maurizio; Øvrevik, Johan; Holme, Jørn A; Perrone, M Grazia; Bolzacchini, Ezio; Schwarze, Per E; Camatini, Marina

    2010-02-01

    Air pollution in Milan causes health concern due to the high concentrations of particulate matter (PM10 and PM2.5). The aim of this study was to investigate possible seasonal differences in PM10 and PM2.5 chemical composition and their biological effects on pro-inflammatory cytokine release and cytotoxicity. The PM was sampled during winter and summer seasons. The winter PMs had higher levels of PAHs than the summer samples which contained a greater amount of mineral dust elements. The PM toxicity was tested in the human pulmonary epithelial cell lines BEAS-2B and A549. The winter PMs were more cytotoxic than summer samples, whereas the summer PM10 exhibited a higher pro-inflammatory potential, as measured by ELISA. This inflammatory potential seemed partly due to biological components such as bacterial lipopolysaccharides (LPS), as evaluated by the use of Polymixin B. Interestingly, in the BEAS-2B cells the winter PM2.5 reduced proliferation due to a mitotic delay/arrest, while no such effects were observed in the A549 cells. These results underline that the in vitro responsiveness to PM may be cell line dependent and suggest that the PM different properties may trigger different endpoints such as inflammation, perturbation of cell cycle and cell death.

  11. An anti-inflammatory oligopeptide produced by Entamoeba histolytica down-regulates the expression of pro-inflammatory chemokines.

    Science.gov (United States)

    Utrera-Barillas, Dolores; Velazquez, Juan R; Enciso, Antonio; Cruz, Samira Muñoz; Rico, Guadalupe; Curiel-Quesada, Everardo; Teran, Luis M; Kretschmer, Roberto R

    2003-10-01

    Axenically grown Entamoeba histolytica produces a pentapeptide (Met-Gln-Cys-Asn-Ser) with anti-inflammatory properties that, among others, inhibits the in vitro and in vivo locomotion of human monocytes, sparing polymorphonuclear leucocytes from this effect [hence the name originally given. Monocyte Locomotion Inhibitory Factor (MLIF)]. A synthetic construct of this peptide displays the same effects as the native material. We now added MLIF to resting and PMA-stimulated cells of a human monocyte cell line and measured the effect upon mRNA and protein expression of pro-inflammatory chemokines (RANTES, IP-10, MIP-1alpha, MIP-1beta, MCP-1, IL-8, I-309 and lymphotactin) and the shared CC receptor repertoire. The constitutive expression of these chemokines and the CC receptors was unaffected, whereas induced expression of MIP-1alpha, MIP-1beta, and I-309, and that of the CCR1 receptor--all involved in monocyte chemotaxis--was significantly inhibited by MLIF. This suggests that the inhibition of monocyte functions by MLIF may not only be exerted directly on these cells, but also--and perhaps foremost--through a conglomerate down-regulation of endogenous pro-inflammatory chemokines.

  12. Brucella invasion of human intestinal epithelial cells elicits a weak proinflammatory response but a significant CCL20 secretion.

    Science.gov (United States)

    Ferrero, Mariana C; Fossati, Carlos A; Rumbo, Martín; Baldi, Pablo C

    2012-10-01

    In spite of the frequent acquisition of Brucella infection by the oral route in humans, the interaction of the bacterium with cells of the intestinal mucosa has been poorly studied. Here, we show that different Brucella species can invade human colonic epithelial cell lines (Caco-2 and HT-29), in which only smooth species can replicate efficiently. Infection with smooth strains did not produce a significant cytotoxicity, while the rough strain RB51 was more cytotoxic. Infection of Caco-2 cells or HT-29 cells with either smooth or rough strains of Brucella did not result in an increased secretion of TNF-α, IL-1β, MCP-1, IL-10 or TGF-β as compared with uninfected controls, whereas all the infections induced the secretion of IL-8 and CCL20 by both cell types. The MCP-1 response to flagellin from Salmonella typhimurium was similar in Brucella-infected or uninfected cells, ruling out a bacterial inhibitory mechanism as a reason for the weak proinflammatory response. Infection did not modify ICAM-1 expression levels in Caco-2 cells, but increased them in HT-29 cells. These results suggest that Brucella induces only a weak proinflammatory response in gut epithelial cells, but produces a significant CCL20 secretion. The latter may be important for bacterial dissemination given the known ability of Brucella to survive in dendritic cells.

  13. Fasciola hepatica infection reduces Mycobacterium bovis burden and mycobacterial uptake and suppresses the pro-inflammatory response.

    Science.gov (United States)

    Garza-Cuartero, L; O'Sullivan, J; Blanco, A; McNair, J; Welsh, M; Flynn, R J; Williams, D; Diggle, P; Cassidy, J; Mulcahy, G

    2016-07-01

    Bovine tuberculosis (BTB), caused by Mycobacterium bovis, has an annual incidence in cattle of 0.5% in the Republic of Ireland and 4.7% in the UK, despite long-standing eradication programmes being in place. Failure to achieve complete eradication is multifactorial, but the limitations of diagnostic tests are significant complicating factors. Previously, we have demonstrated that Fasciola hepatica infection, highly prevalent in these areas, induced reduced sensitivity of the standard diagnostic tests for BTB in animals co-infected with F. hepatica and M. bovis. This was accompanied by a reduced M. bovis-specific Th1 immune response. We hypothesized that these changes in co-infected animals would be accompanied by enhanced growth of M. bovis. However, we show here that mycobacterial burden in cattle is reduced in animals co-infected with F. hepatica. Furthermore, we demonstrate a lower mycobacterial recovery and uptake in blood monocyte-derived macrophages (MDM) from F. hepatica-infected cattle which is associated with suppression of pro-inflammatory cytokines and a switch to alternative activation of macrophages. However, the cell surface expression of TLR2 and CD14 in MDM from F. hepatica-infected cattle is increased. These findings reflecting the bystander effect of helminth-induced downregulation of pro-inflammatory responses provide insights to understand host-pathogen interactions in co-infection.

  14. Two novel functions of hyaluronidase from Streptococcus agalactiae are enhanced intracellular survival and inhibition of proinflammatory cytokine expression.

    Science.gov (United States)

    Wang, Zhaofei; Guo, Changming; Xu, Yannan; Liu, Guangjin; Lu, Chengping; Liu, Yongjie

    2014-06-01

    Streptococcus agalactiae is the causative agent of septicemia and meningitis in fish. Previous studies have shown that hyaluronidase (Hyl) is an important virulence factor in many Gram-positive bacteria. To investigate the role of S. agalactiae Hyl during interaction with macrophages, we inactivated the gene encoding extracellular hyaluronidase, hylB, in a clinical Hyl(+) isolate. The isogenic hylb mutant (Δhylb) displayed reduced survival in macrophages compared to the wild type and stimulated a significantly higher release of proinflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor al