WorldWideScience

Sample records for app transgenic mice

  1. Reduction of choline acetyltransferase activities in APP770 transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice overexpressing the 770-amino acid isoform of human Alzheimer amyloid precursor protein exhibit extracellular b -amyloid deposits in brain regions including cerebral cortex and hippocampus, which are severely affected in Alzheimer's disease patients. Significant reduction in choline acetyltransferase (ChAT) activities has been observed in both cortical and hippocampal brain regions in the transgenic mice at the age of 10 months compared with the age-matched non-transgenic mice, but such changes have not been observed in any brain regions of the transgenic mice under the age of 5 months. These results suggest that deposition of b -amyloid can induce changes in the brain cholinergic system of the transgenic mice.

  2. APP transgenic mice for modelling behavioral and psychological symptoms of dementia (BPSD)

    OpenAIRE

    Lalonde, R.; Fukuchi, K; Strazielle, C.

    2012-01-01

    The discovery of gene mutations responsible for autosomal dominant Alzheimer's disease has enabled researchers to reproduce in transgenic mice several hallmarks of this disorder, notably Aβ accumulation, though in most cases without neurofibrillary tangles. Mice expressing mutated and wild-type APP as well as C-terminal fragments of APP exhibit variations in exploratory activity reminiscent of behavioral and psychological symptoms of Alzeimer dementia (BPSD). In particular, open-field, sponta...

  3. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice

    OpenAIRE

    Bayer, Thomas A; Schäfer, Stephanie; Simons, Andreas; Kemmling, André; Kamer, Thomas; Tepests, Ralf; Eckert, Anne; Schüssel, Katrin; Eikenberg, Oliver; Sturchler-Pierrat, Christine; Abramowski, Dorothee; Staufenbiel, Matthias; Multhaup, Gerd

    2003-01-01

    The Cu-binding β-amyloid precursor protein (APP), and the amyloid Aβ peptide have been proposed to play a role in physiological metal regulation. There is accumulating evidence of an unbalanced Cu homeostasis with a causative or diagnostic link to Alzheimer's disease. Whereas elevated Cu levels are observed in APP knockout mice, APP overexpression results in reduced Cu in transgenic mouse brain. Moreover, Cu induces a decrease in Aβ levels in APP-transfected cells in vitro. To investigate the...

  4. Deposition of BACE-1 Protein in the Brains of APP/PS1 Double Transgenic Mice

    Science.gov (United States)

    Luo, Gang; Xu, Hongxia; Huang, Yinuo; Mo, Dapeng; Song, Ligang; Jia, Baixue; Wang, Bo; Jin, Zhanqiang; Miao, Zhongrong

    2016-01-01

    The main causes of Alzheimer's disease remain elusive. Previous data have implicated the BACE-1 protein as a central player in the pathogenesis of Alzheimer's disease. However, many inhibitors of BACE-1 have failed during preclinical and clinical trials for AD treatment. Therefore, uncovering the exact role of BACE-1 in AD may have significant impact on the future development of therapeutic agents. Three- and six-month-old female APP/PS1 double transgenic mice were used to study abnormal accumulation of BACE-1 protein in brains of mice here. Immunofluorescence, immunohistochemistry, and western blot were performed to measure the distributing pattern and expression level of BACE-1. We found obvious BACE-1 protein accumulation in 3-month-old APP/PS1 mice, which had increased by the time of 6 months. Coimmunostaining results showed BACE-1 surrounded amyloid plaques in brain sections. The abnormal protein expression might not be attributable to the upregulation of BACE-1 protein, as no significant difference of protein expression was observed between wild-type and APP/PS1 mice. With antibodies against BACE-1 and CD31, we found a high immunoreactive density of BACE-1 protein on the outer layer of brain blood vessels. The aberrant distribution of BACE-1 in APP/PS1 mice suggests BACE-1 may be involved in the microvascular abnormality of AD. PMID:27294139

  5. Activities of cholinergic proteins in APP/PS1 double transgenic mice

    Czech Academy of Sciences Publication Activity Database

    Málková, Barbora; Machová, Eva; Jakubík, Jan; Doležal, Vladimír

    Fyziologický ústav AV ČR, v. v. i.. Roč. 54, č. 3 (2005), 31P-31P ISSN 0862-8408. [Physiological Days /81./. 02.02.2005-04.02.2005, Košice] R&D Projects: GA AV ČR(CZ) IAA5011306; GA ČR(CZ) IAA5011206 Institutional research plan: CEZ:AV0Z5011922 Keywords : cholinergic neuron * APP/PS1 transgenic mice * cholinergic markers * Alzheimer ´s disease Subject RIV: ED - Physiology

  6. Expression of complement system components during aging and amyloid deposition in APP transgenic mice

    Directory of Open Access Journals (Sweden)

    Wiederhold Karl-Heinz

    2009-11-01

    Full Text Available Abstract Background A causal role of the complement system in Alzheimer's disease pathogenesis has been postulated based on the identification of different activated components up to the membrane attack complex at amyloid plaques in brain. However, histological studies of amyloid plaque bearing APP transgenic mice provided only evidence for an activation of the early parts of the complement cascade. To better understand the contribution of normal aging and amyloid deposition to the increase in complement activation we performed a detailed characterization of the expression of the major mouse complement components. Methods APP23 mice expressing human APP751 with the Swedish double mutation as well as C57BL/6 mice were used at different ages. mRNA was quantified by Realtime PCR and the age- as well as amyloid induced changes determined. The protein levels of complement C1q and C3 were analysed by Western blotting. Histology was done to test for amyloid plaque association and activation of the complement cascade. Results High mRNA levels were detected for C1q and some inhibitory complement components. The expression of most activating components starting at C3 was low. Expression of C1q, C3, C4, C5 and factor B mRNA increased with age in control C57BL/6 mice. C1q and C3 mRNA showed a substantial additional elevation during amyloid formation in APP23 mice. This increase was confirmed on the protein level using Western blotting, whereas immunohistology indicated a recruitment of complement to amyloid plaques up to the C3 convertase. Conclusion Early but not late components of the mouse complement system show an age-dependent increase in expression. The response to amyloid deposition is comparatively smaller. The low expression of C3 and C5 and failure to upregulate C5 and downstream components differs from human AD brain and likely contributes to the lack of full complement activation in APP transgenic mice.

  7. Vitamin C deficiency increases basal exploratory activity but decreases scopolamine-induced activity in APP/PSEN1 transgenic mice

    OpenAIRE

    Harrison, F.E.; May, J. M.; McDonald, M. P.

    2009-01-01

    Vitamin C is a powerful antioxidant and its levels are decreased in Alzheimer's patients. Even sub-clinical vitamin C deficiency could impact disease development. To investigate this principle we crossed APP/PSEN1 transgenic mice with Gulo knockout mice unable to synthesize their own vitamin C. Experimental mice were maintained from 6 weeks of age on standard (0.33 g/L) or reduced (0.099 g/L) levels of vitamin C and then assessed for changes in behavior and neuropathology. APP/PSEN1 mice show...

  8. Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin

    OpenAIRE

    Ubhi, Kiren; Rockenstein, Edward; Doppler, Edith; Mante, Michael; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Crews, Leslie; Paulino, Amy; Moessler, Herbert; Masliah, Eliezer

    2009-01-01

    Alzheimer’s disease (AD) continues to be the most common cause of cognitive and motor alterations in the aging population. Accumulation of amyloid β (Aβ)-protein oligomers and the microtubule associated protein-TAU might be responsible for the neurological damage. We have previously shown that Cerebrolysin (CBL) reduces the synaptic and behavioral deficits in amyloid precursor protein (APP) transgenic (tg) mice by decreasing APP phosphorylation via modulation of glycogen synthase kinase-3β (G...

  9. Effects of Blueberry Extract on Antioxidant Capacity in APP/PS1 Transgenic Mice

    Institute of Scientific and Technical Information of China (English)

    Long TAN; Hai-qiang LI; Hong-peng YANG; Wei PANG; Wei LIU; Shou-dan SUN; Yu-gang JIANG

    2014-01-01

    ObjectiveTo investigate the effects of blueberry extract on antioxidant capacity in mice with Alzheimer’s disease (AD). Methods APP/PS1 double transgenic mice were adopted as the AD model and groups AD, AD+BB and control (CT) were set with ten mice in each group. The mice were given blueberry extract(BB) or saline for 16 weeks. The body weight gain and the food consumption were recorded weekly. The morphological changes in cortex were detected, and the activities of SOD, GSH-Px and the levels of GSH and MDA in the brain, liver, kidney and serum were determined.Results The food consumption did not show any significant difference among the three groups, and the AD mice treated with BB obtained a remarkable body weight gain during the experimental period. The morphological examination showed that an obvious neuronal loss appeared in the cortex of AD mice and improvement was noted in mice treated with BB. The biochemical detection showed that the activities of SOD and GSH-Px, and levels of GSH in the brain, liver and serum were significantly declined while the levels of MDA in these tissues and serum were increased in AD mice. After BB administration, the activity of SOD in brain was elevated significantly and the activities of GSH-Px and the levels of GSH in liver and serum were also recovered to some extent. Meanwhile, the levels of MDA in the brain, liver and serum were decreased obviously. However, the activities of antioxidant enzymes and the level of MDA did not show significant change in kidney. Conclusion Brain is susceptive to oxidative stress in AD mice. Blueberry extract is effective in alleviating the oxidative damage in AD mice.

  10. Effects of (-epicatechin on the pathology of APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Yueqin eZeng

    2014-05-01

    Full Text Available Background: Alzheimer’s disease is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The clearance of Aβ from the brain and anti-inflammation are potential important strategies to prevent and treat disease. In a previous study, we demonstrated the grape seed extract (GSE could reduce brain Aβ burden and microglia activation,but which polyphenol plays a major role in these events is not known. Here we tested pharmacological effects of (-epicatechin, one principle polyphenol compound in GSE, on transgenic AD mice.Methods: APP/PS1 transgenic mice were fed with (-epicatechin diet(40mg/kg/d and curcumin diet (47mg/kg/d at 3 months of age for 9 months, the function of liver, Aβ levels in the brain and serum, AD-type neuropathology, plasma levels of inflammatory cytokines were measured.Results: Towards the end of the experiment we found long-term feeding of (- epicatechin diet was well tolerated without fatality, changes in food consumption, body weight or liver function. (-Epicatechin significantly reduced total Aβ in brain and serum by 39% and 40%, respectively, compared with control diet. Microgliosis and astrocytosis in the brain of Alzheimer’s mice were also reduced by 38% and 35%, respectively. The (-epicatechin diet did not alter learning and memory behaviors in AD mice.Conclusions: This study has provided evidence on the beneficial role of (-epicatechin in ameliorating amyloid-induced AD-like pathology in AD mice, but the impact of (-epicatechin on tau pathology is not clear, also the mechanism needs further research.

  11. Atorvastatin ameliorates cognitive impairment, Aβ1-42 production and Tau hyperphosphorylation in APP/PS1 transgenic mice.

    Science.gov (United States)

    Zhou, Dongsheng; Liu, Huaxia; Li, Chenli; Wang, Fangyan; Shi, Yaosheng; Liu, Lingjiang; Zhao, Xin; Liu, Aiming; Zhang, Junfang; Wang, Chuang; Chen, Zhongming

    2016-06-01

    Amyloid-beta (Aβ) interacts with the serine/threonine protein kinase AKT (also known as protein kinase B)/glycogen synthase kinase 3β (GSK3β) pathway and deactivates GSK3β signaling, which result in microtubule protein tau phosphorylation. Atorvastatin, a HMG-CoA reductase inhibitor, has been proven to improve learning and memory performance, reduce Aβ and phosphorylated tau levels in mouse model of Alzheimer's disease (AD). However, it still remains unclear whether atorvastatin is responsible for regulation of AKT/GSK3β signaling and contributes to subsequent down-regulation of Aβ1-42 and phosphorylated tau in APP/PS1 transgenic (Tg APP/PS1) mice. Herein, we aimed to investigate the possible impacts of atorvastatin (10 mg/kg, p.o.) on the memory deficit by behavioral tests and changes of AKT/GSK3β signaling in hippocampus and prefrontal cortex by western blot test in Tg APP/PS1 mice. The results showed that treatment with atorvastatin significantly reversed the memory deficit in the Tg APP/PS1 mice in a novel object recognition and the Morris water maze tests. Moreover, atorvastatin significantly attenuated Aβ1-42 accumulation and phosphorylation of tau (Ser396) in the hippocampus and prefrontal cortex of Tg APP/PS1 mice. In addition, atorvastatin treatment also increased phosphorylation of AKT, inhibited GSK3β activity by increasing phosphorylation of GSK3β (Ser9) and decreasing the beta-site APP cleaving enzyme 1 (BACE1) expression. These results indicated that the memory ameliorating effect of atorvastatin may be, in part, by regulation the AKT/GSK3β signaling which may contribute to down-regulation of Aβ1-42 and tau hyperphosphorylation. PMID:26883430

  12. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  13. Running Exercise Reduces Myelinated Fiber Loss in the Dentate Gyrus of the Hippocampus in APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Chao, Fenglei; Zhang, Lei; Luo, Yanmin; Xiao, Qian; Lv, Fulin; He, Qi; Zhou, Chunni; Zhang, Yi; Jiang, Lin; Jiang, Rong; Gu, Hengwei; Tang, Yong

    2015-01-01

    To investigate the effect of running exercise on myelinated fibers in the dentate gyrus (DG) of the hippocampus during Alzheimer's disease (AD), 6-month-old male APP/PS1 transgenic mice were randomly assigned to control or running groups. The running group mice were subjected to a running protocol for four months. The behaviors of the mice from both group mice were then assessed using the Morris water maze, and the total volume of the DG and the related quantitative parameters with characteristics of the myelinated nerve fiber and the myelin sheath in the DG were investigated using unbiased stereological techniques and electron microscopy. Learning and spatial memory performances were both significantly increased in the running group compared with the control group. There was no significant difference in the gratio of the myelinated axons between the two groups. However, the DG volume, the myelinated fiber length and volume in the DG, and the myelin sheath volume and thickness in the DG were all significantly increased in the running group mice compared with the control group mice. These results indicated that running exercise was able to prevent DG atrophy and delay the progression of the myelinated fiber loss and the demyelination of the myelin sheaths in the DG in an AD mouse model, which may underlie the running-induced improvement in learning and spatial memory. Taken together, these results demonstrated that running exercise could delay the progression of AD. PMID:25817255

  14. The Establishment of Double-Transgenic Mice that Co-Express the appA and MxA Genes Mediated by Type A Spermatogonia In vivo

    Institute of Scientific and Technical Information of China (English)

    BAI Li-jing; JU Hui-ming; MU Yu-lian; YANG Shu-lin; REN Hong-yan; AO Hong; WANG Chu-duan; LI Kui

    2014-01-01

    Type A spermatogonial stem cells are the only immortal diploid cells in the postnatal animal that undergo self-renewal through the lifetime of an animal and transmit genes to subsequent generations. In this paper, the generation and characterization of double-transgenic mice co-expressing the Escherichia coli appA gene and human MxA gene generated via the in vivo transfection of type A spermatogonial cells were reported for the ifrst time. The dicistronic expression vector pcDNA-appA-MxA(AMP) and ExGen500 transfection reagent were injected into the testicular tissue of 7-d-old male ICR mice. The mice that underwent testis-mediated gene transfer were mated with wild-type female mice, and the integration and expression of the foreign genes in the offspring were evaluated. Transgenic mice that co-expressed appA and MxA showed a gene integration rate of 8.89%(16/180). The transgenic mice were environmentally friendly, as the amount of phosphorous remaining in the manure was reduced by as much as 11.1%by the appA gene (P<0.05);these animals also exhibited a strong anti-viral phenotype.

  15. Gender differences of peripheral plasma and liver metabolic profiling in APP/PS1 transgenic AD mice.

    Science.gov (United States)

    Wu, Junfang; Fu, Bin; Lei, Hehua; Tang, Huiru; Wang, Yulan

    2016-09-22

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment. Currently, there is less knowledge of the involvement of the peripheral biofluid/organ in AD, compared with the central nervous system. In addition, with reported high morbidity in women in particular, it has become very important to explore whether gender difference in the peripheral metabolome is associated with AD. Here, we investigated metabolic responses of both plasma and liver tissues using an APP/PS1 double mutant transgenic mouse model with NMR spectroscopy, as well as analysis from serum biochemistry and histological staining. Fatty acid composition from plasma and liver extracts was analyzed using GC-FID/MS. We found clear gender differences in AD transgenic mice when compared with their wild-type counterparts. Female AD mice displayed more intensive responses, which were highlighted by higher levels of lipids, 3-hydroxybutyrate and nucleotide-related metabolites, together with lower levels of glucose. These observations indicate that AD induces oxidative stress and impairs cellular energy metabolism in peripheral organs. Disturbances in AD male mice were milder with depletion of monounsaturated fatty acids. We also observed a higher activity of delta-6-desaturate and suppressed activity of delta-5-desaturate in female mice, whereas inhibited stearoyl-CoA-desaturase in male mice suggested that AD induced by the double mutant genes results in different fatty acids catabolism depending on gender. Our results provide metabolic clues into the peripheral biofluid/organs involved in AD, and we propose that a gender-specific scheme for AD treatment in men and women may be required. PMID:27393253

  16. A novel phosphodiesterase-5 Inhibitor: Yonkenafil modulates neurogenesis, gliosis to improve cognitive function and ameliorates amyloid burden in an APP/PS1 transgenic mice model.

    Science.gov (United States)

    Zhu, Lei; Yang, Jing-yu; Xue, Xue; Dong, Ying-xu; Liu, Yang; Miao, Feng-rong; Wang, Yong-feng; Xue, Hong; Wu, Chun-fu

    2015-09-01

    In Alzheimer's disease (AD), activated microglia invade and surround β-amyloid plaques, possibly contributing to the aggregation of amyloid β (Aβ), which affect the survival of neurons and lead to memory loss. Phosphodiesterase-5 (PDE-5) inhibitors have recently been shown a potential therapeutic effect on AD. In this study, the effects of yonkenafil (yonk), a novel PDE-5 inhibitor, on cognitive behaviors as well as the pathological features in transgenic AD mice were investigated. Seven-month-old APP/PS1 transgenic mice were treated with yonk (2, 6, or 18 mg/kg, intraperitoneal injection (i.p.)) or sildenafil (sild) (6 mg/kg, i.p.) daily for 3 months and then behavioral tests were performed. The results demonstrated that yonk improved nesting-building ability, ameliorated working memory deficits in the Y-maze tasks, and significantly improved learning and memory function in the Morris water maze (MWM) tasks. In addition, yonk reduced the area of Aβ plaques, and inhibited over-activation of microglia and astrocytes. Furthermore, yonk increased neurogenesis in the dentate granule brain region of APP/PS1 mice, indicated by increased BrdU(+)/NeuN(+) and BrdU(+)/DCX(+) cells compared to vehicle-treated transgenic mice. These results suggest that yonk could rescue cognitive deficits by ameliorated amyloid burden through regulating APP processing, inhibited the over-activation of microglia and astrocytes as well as restored neurogenesis. PMID:26200391

  17. Disrupted-in-Schizophrenia-1 Attenuates Amyloid-β Generation and Cognitive Deficits in APP/PS1 Transgenic Mice by Reduction of β-Site APP-Cleaving Enzyme 1 Levels.

    Science.gov (United States)

    Deng, Qing-Shan; Dong, Xing-Yu; Wu, Hao; Wang, Wang; Wang, Zhao-Tao; Zhu, Jian-Wei; Liu, Chun-Feng; Jia, Wei-Qiang; Zhang, Yan; Schachner, Melitta; Ma, Quan-Hong; Xu, Ru-Xiang

    2016-01-01

    Disrupted-in-Schizophrenia-1 (DISC1) is a genetic risk factor for a wide range of major mental disorders, including schizophrenia, major depression, and bipolar disorders. Recent reports suggest a potential role of DISC1 in the pathogenesis of Alzheimer's disease (AD), by referring to an interaction between DISC1 and amyloid precursor protein (APP), and to an association of a single-nucleotide polymorphism in a DISC1 intron and late onset of AD. However, the function of DISC1 in AD remains unknown. In this study, decreased levels of DISC1 were observed in the cortex and hippocampus of 8-month-old APP/PS1 transgenic mice, an animal model of AD. Overexpression of DISC1 reduced, whereas knockdown of DISC1 increased protein levels, but not mRNA levels of β-site APP-Cleaving Enzyme 1 (BACE1), a key enzyme in amyloid-β (Aβ) generation. Reduction of BACE1 protein levels by overexpression of DISC1 was accompanied by an accelerating decline rate of BACE1, and was blocked by the lysosomal inhibitor chloroquine, rather than proteasome inhibitor MG-132. Moreover, overexpression of DISC1 in the hippocampus with an adeno-associated virus reduced the levels of BACE1, soluble Aβ40/42, amyloid plaque density, and rescued cognitive deficits of APP/PS1 transgenic mice. These results indicate that DISC1 attenuates Aβ generation and cognitive deficits of APP/PS1 transgenic mice through promoting lysosomal degradation of BACE1. Our findings provide new insights into the role of DISC1 in AD pathogenesis and link a potential function of DISC1 to the psychiatric symptoms of AD. PMID:26062786

  18. Immunocytochemical Characterization of Alzheimer Disease Hallmarks in APP/PS1 Transgenic Mice Treated with a New Anti-Amyloid-β Vaccine

    Directory of Open Access Journals (Sweden)

    Iván Carrera

    2013-01-01

    Full Text Available APP/PS1 double-transgenic mouse models of Alzheimer’s disease (AD, which overexpress mutated forms of the gene for human amyloid precursor protein (APP and presenilin 1 (PS1, have provided robust neuropathological hallmarks of AD-like pattern at early ages. This study characterizes immunocytochemical patterns of AD mouse brain as a model for human AD treated with the EB101 vaccine. In this novel vaccine, a new approach has been taken to circumvent past failures by judiciously selecting an adjuvant consisting of a physiological matrix embedded in liposomes, composed of naturally occurring phospholipids (phosphatidylcholine, phosphatidylglycerol, and cholesterol. Our findings showed that administration of amyloid-β1−42 (Aβ and sphingosine-1-phosphate emulsified in liposome complex (EB101 to APP/PS1 mice before onset of Aβ deposition (7 weeks of age and/or at an older age (35 weeks of age is effective in halting the progression and clearing the AD-like neuropathological hallmarks. Passive immunization with EB101 did not activate inflammatory responses from the immune system and astrocytes. Consistent with a decreased inflammatory background, the basal immunological interaction between the T cells and the affected areas (hippocampus in the brain of treated mice was notably reduced. These results demonstrate that immunization with EB101 vaccine prevents and attenuates AD neuropathology in this type of double-transgenic mice.

  19. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice.

    Science.gov (United States)

    He, Dandan; Wu, Hui; Wei, Yue; Liu, Wei; Huang, Fei; Shi, Hailian; Zhang, Beibei; Wu, Xiaojun; Wang, Changhong

    2015-12-01

    Harmine, a β-carboline alkaloid present in Peganum harmala with a wide spectrum of pharmacological activities, has been shown to exert strong inhibition against acetylcholinesterase in vitro. However, whether it can rescue the impaired cognition has not been elucidated yet. In current study, we examined its effects on scopolamine-induced memory impairment mice and APP/PS1 transgenic mice, one of the models for Alzheimer's disease, using Morris Water Maze test. In addition, whether harmine could penetrate blood brain barrier, interact with and inhibit acetylcholinesterase, and activate downstream signaling network was also investigated. Our results showed that harmine (20mg/kg) administered by oral gavage for 2 weeks could effectively enhance the spatial cognition of C57BL/6 mice impaired by intraperitoneal injection of scopolamine (1mg/kg). Meanwhile, long-term consumption of harmine (20mg/kg) for 10 weeks also slightly benefited the impaired memory of APP/PS1 mice. Furthermore, harmine could pass through blood brain barrier, penetrate into the brain parenchyma shortly after oral administration, and modulate the expression of Egr-1, c-Jun and c-Fos. Molecular docking assay disclosed that harmine molecule could directly dock into the catalytic active site of acetylcholinesterase, which was partially confirmed by its in vivo inhibitory activity on acetylcholinesterase. Taken together, all these results suggested that harmine could ameliorate impaired memory by enhancement of cholinergic neurotransmission via inhibiting the activity of acetylcholinesterase, which may contribute to its clinical use in the therapy of neurological diseases characterized with acetylcholinesterase deficiency. PMID:26526348

  20. Effects of an amyloid-beta 1-42 oligomers antibody screened from a phage display library in APP/PS1 transgenic mice

    Science.gov (United States)

    Wang, Jianping; Li, Nan; Ma, Jun; Gu, Zhiqiang; Yu, Lie; Fu, Xiaojie; Liu, Xi; Wang, Jian

    2016-01-01

    We screened anti-Aβ1-42 antibodies from a human Alzheimer’s disease (AD) specific single chain variable fragment (scFv) phage display library and assessed their effects in APP/PS1 transgenic mice. Reverse transcription-PCR was used to construct the scFv phage display library, and screening identified 11A5 as an anti-Aβ1-42 antibody. We mixed 11A5 and the monoclonal antibody 6E10 with Aβ1-42 and administered the mixture to Sprague-Dawley rats via intracerebroventricular injection. After 30 days, rats injected with the antibody/ Aβ1-42 mixture and those injected with Aβ1-42 alone were tested on the Morris water maze. We also injected 11A5 and 6E10 into APP/PS1 transgenic mice and assessed the concentrations of Aβ in brain and peripheral blood by ELISA at 1-month intervals for 3 months. Finally we evaluated behavior changes in the Morris water maze. Rats injected with Aβ1-42 and mixed antibodies showed better performance in the Morris water maze than did rats injected with Aβ1-42 alone. In APP/PS1 transgenic mice, Aβ concentration was lower in the brains of the antibody-treated group than in the control group, but higher in the peripheral blood. The antibody-treated mice also exhibited improved behavioral performance in the Morris water maze. In conclusion, anti-Aβ1-42 antibodies (11A5) screened from the human scFv antibody phage display library promoted the efflux or clearance of Aβ1-42 and effectively decreased the cerebral Aβ burden in an AD mouse model. PMID:26820640

  1. Exercise-Induced Neuroprotection of Hippocampus in APP/PS1 Transgenic Mice via Upregulation of Mitochondrial 8-Oxoguanine DNA Glycosylase

    Directory of Open Access Journals (Sweden)

    Hai Bo

    2014-01-01

    Full Text Available Improving mitochondrial function has been proposed as a reasonable therapeutic strategy to reduce amyloid-β (Aβ load and to modify the progression of Alzheimer’s disease (AD. However, the relationship between mitochondrial adaptation and brain neuroprotection caused by physical exercise in AD is poorly understood. This study was undertaken to investigate the effects of long-term treadmill exercise on mitochondrial 8-oxoguanine DNA glycosylase-1 (OGG1 level, mtDNA oxidative damage, and mitochondrial function in the hippocampus of APP/PS1 transgenic mouse model of AD. In the present study, twenty weeks of treadmill training significantly improved the cognitive function and reduced the expression of Aβ-42 in APP/PS1 transgenic (Tg mice. Training also ameliorated mitochondrial respiratory function by increasing the complexes I, and IV and ATP synthase activities, whereas it attenuated ROS generation and mtDNA oxidative damage in Tg mice. Furthermore, the impaired mitochondrial antioxidant enzymes and mitochondrial OGG1 activities seen in Tg mice were restored with training. Acetylation level of mitochondrial OGG1 and MnSOD was markedly suppressed in Tg mice after exercise training, in parallel with increased level of SIRT3. These findings suggest that exercise training could increase mtDNA repair capacity in the mouse hippocampus, which in turn would result in protection against AD-related mitochondrial dysfunction and phenotypic deterioration.

  2. Intracranial Injection of AAV Expressing NEP but Not IDE Reduces Amyloid Pathology in APP+PS1 Transgenic Mice

    OpenAIRE

    Carty, Nikisha; Nash, Kevin R.; Brownlow, Milene; Cruite, Dana; Wilcock, Donna; Selenica, Maj-Linda B; Daniel C. Lee; Gordon, Marcia N.; Morgan, Dave

    2013-01-01

    The accumulation of β-amyloid peptides in the brain has been recognized as an essential factor in Alzheimer’s disease pathology. Several proteases, including Neprilysin (NEP), endothelin converting enzyme (ECE), and insulin degrading enzyme (IDE), have been shown to cleave β-amyloid peptides (Aβ). We have previously reported reductions in amyloid in APP+PS1 mice with increased expression of ECE. In this study we compared the vector-induced increased expression of NEP and IDE. We used recombin...

  3. Immunocytochemical Characterization of Alzheimer’s Disease Hallmarks in APP/PS1 Transgenic Mice Treated with a New Anti-Amyloid-β Vaccine

    Directory of Open Access Journals (Sweden)

    Ivan Carrera

    2014-03-01

    Full Text Available Introduction: APP/PS1 double-transgenic mouse models of Alzheimer’s disease (AD, which overexpress mutated forms of the gene for the human amyloid precursor protein (APP and presenilin 1 (PS1, have provided robust neuropathological hallmarks of an AD-like pattern at early ages. This study aimed to characterize immunocytochemical patterns of the AD mouse brain, which is treated with the EB101 vaccine, as a model for human AD. Material and methods: In this novel vaccine, a new approach has been taken to circumvent past failures with Aβ vaccines by judiciously selecting an adjuvant consisting of a physiological matrix embedded in liposomes, composed of naturally occurring phospholipids (phosphatidylcholine, phosphatidylglycerol, and cholesterol. Results: Our findings showed that the administration of amyloid-β1−42 (Aβ and sphingosine-1-phosphate emulsified in liposome complex (EB101 to APP/PS1 mice before the onset of Aβ brain deposition (at 7 weeks of age and/or at an older age (35 weeks of age can be effective in both halting the progression and clearing the AD-like neuropathological hallmarks. In addition, passive immunization with EB101 did not activate inflammatory responses from the immune system and astrocytes. Consistent with a decreased inflammatory background, the basal immunological interaction between the T cells and the affected areas (hippocampus in the brain of treated mice was notably reduced. Conclusion: These results provide strong evidence that immunization with the EB101 vaccine prevents and attenuates AD neuropathology in this type of double-transgenic mice.

  4. Antagonist of peroxisome proliferator-activated receptor γ induces cerebellar amyloid-β levels and motor dysfunction in APP/PS1 transgenic mice

    International Nuclear Information System (INIS)

    Recent evidences show that peroxisome proliferator-activated receptor γ (PPARγ) is involved in the modulation of the amyloid-β (Aβ) cascade causing Alzheimer's disease (AD) and treatment with PPARγ agonists protects against AD pathology. However, the function of PPARγ steady-state activity in Aβ cascade and AD pathology remains unclear. In this study, an antagonist of PPARγ, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPARγ activity in cerebellum. The results show that inhibition of PPARγ significantly induced Aβ levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of Aβ. Since cerebellum is spared from significant Aβ accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPARγ steady-state activity in protection of cerebellum against AD pathology.

  5. Generation of Transgenic Mice

    OpenAIRE

    Cho, Andrew; Haruyama, Naoto; Kulkarni, Ashok B.

    2009-01-01

    This unit describes detailed step-by-step protocols, reagents, and equipment required for successful generation of transgenic mice using pronuclear injection. The experimental methods and practical tips given here will help guide beginners in understanding what is required and what to avoid in these standard protocols for efficiently generating transgenic mice.

  6. Hippocampal network oscillations in APP/APLP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.

  7. The Coumarin Derivative Osthole Stimulates Adult Neural Stem Cells, Promotes Neurogenesis in the Hippocampus, and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Kong, Liang; Hu, Yu; Yao, Yingjia; Jiao, Yanan; Li, Shaoheng; Yang, Jingxian

    2015-01-01

    It is believed that neuronal death caused by abnormal deposition of amyloid-beta peptide is the major cause of the cognitive decline in Alzheimer's disease. Adult neurogenesis plays a key role in the rescue of impaired neurons and amelioration of cognitive impairment. In the present study, we demonstrated that osthole, a natural coumarin derivative, was capable of promoting neuronal stem cell (NSC) survival and inducing NSC proliferation in vitro. In osthole-treated APP/PS1 transgenic mice, a significant improvement in learning and memory function was seen, which was associated with a significant increase in the number of new neurons (Ki67(+)/NF-M(+)) and a decrease in apoptotic cells in the hippocampal region of the brain. These observations suggested that osthole promoted NSC proliferation, supported neurogenesis, and thus efficiently rescued impaired neurons in the hippocampus and ameliorated cognitive impairment. We also found that osthole treatment activated the Notch pathway and upregulated the expression of self-renewal genes Notch 1 and Hes 1 mRNA in NSCs. However, when Notch activity was blocked by the γ-secretase inhibitor DAPT, the augmentation of Notch 1 and Hes 1 protein was ameliorated, and the proliferation-inducing effect of osthole was abolished, suggesting that the effects of osthole are at least in part mediated by activation of the Notch pathway. PMID:26328484

  8. Transgenic mice: beyond the knockout

    OpenAIRE

    Miller, R. Lance

    2010-01-01

    Transgenic mice have had a tremendous impact on biomedical research. Most researchers are familiar with transgenic mice that carry Cre recombinase (Cre) and how they are used to create conditional knockouts. However, some researchers are less familiar with many of the other types of transgenic mice and their applications. For example, transgenic mice can be used to study biochemical and molecular pathways in primary cultures and cell suspensions derived from transgenic mice, cell-cell interac...

  9. Vitamin C reduces spatial learning deficits in middle-aged and very old APP/PSEN1 transgenic and wild-type mice

    OpenAIRE

    Harrison, F.E.; Hosseini, A. H.; McDonald, M. P.; May, J. M.

    2009-01-01

    Alzheimer's disease is a progressive and fatal neurodegenerative disease characterized by a build up of amyloid β (Aβ) deposits, elevated oxidative stress, and deterioration of the cholinergic system. The present study investigated short-term cognitive-enhancing effects of acute intraperitoneal (i.p.) Vitamin C (ascorbate) treatment in APP/PSEN1 mice, a mouse model of Alzheimer's disease. Middle-aged (12 months) and Very old (24 months) APP/PSEN1 bigenic and wild-type mice were treated with a...

  10. Transgenic mice susceptible to poliovirus.

    OpenAIRE

    S. Koike; Taya, C; Kurata, T; Abe, S.; Ise, I; Yonekawa, H; Nomoto, A

    1991-01-01

    Poliovirus-sensitive transgenic mice were produced by introducing the human gene encoding cellular receptors for poliovirus into the mouse genome. Expression of the receptor mRNAs in tissues of the transgenic mice was analyzed by using RNA blot hybridization and the polymerase chain reaction. The human gene is expressed in many tissues of the transgenic mice just as in tissues of humans. The transgenic mice are susceptible to all three poliovirus serotypes, and the mice inoculated with poliov...

  11. Retinoblastoma in transgenic mice

    OpenAIRE

    Windle, J J; Albert, D. M.; O'Brien, J. M.; Marcus, D. M.; Disteche, Ch.M.; Bernards, R.A.; Mellon, P L

    1990-01-01

    Retinoblastoma, a malignancy of the eye occurring in young children, has been widely studied as a model for genetic predisposition to cancer. This disease is caused by mutations in both alleles of an anti-oncogene (the retinoblastoma gene, Rb) that inactivate or eliminate the Rb encoded protein, pl05rb. Here we report that expression of a viral oncogene, the simian virus 40 T antigen, in the retina of transgenic mice produces heritable ocular tumours with histological, ultrastructural and imm...

  12. 转基因阿尔茨海默病小鼠tau蛋白的病理变化%The study on pathological changes of tau protein in the APP/tau/PS1 triple transgenic Alzheimer's disease mice

    Institute of Scientific and Technical Information of China (English)

    张中豪; 石庆学; 温蕾; 应明; 王奥; 宋国丽

    2014-01-01

    Objective To identify the genotype of the APP/tau/PS1 triple transgenic Alzheimer's disease (AD) mice,and investigate the pathological changes of tau protein in the pathogenic process.Methods Using specific primers of PS1,APP,tau gene,the genotypes of the triple transgenic AD mice were identified.Expression of tau protein in hippocampal tissue of mouse model aged 2,4,8 month was detected by immunohistochemistry.The expression of tau and its hyperphosphorylation in different sites in the hippocampal tissue and different month old mice was detected by Western blotting.Results PCR amplification fragment of 960 bp,530 bp and 400 bp of transgenic mouse genome were the expected size of APP,PS1,tau,respectively.Expression of tau in hippocampal CA3 region was increased obviously in the 8 month old mice.Compared with the normal wild-type mice,the expressions of tau and phosphorylation of pS262,pS404 and pS202 were increased significantly in hippocampus tissue of the transgenic mice (P<0.01).Expression of tau were significantly higher in 8-and 12-monthsold mice than in 2 months-old mice (P < 0.01).Phosphorylation level of pS404 and Ps202 was significantly increased since 2-months-old in transgenic mouse compared to the wild type mouse (P<0.01),and in 8-monthold mice,there was also a significant increase as compared to that in 2 month-old mice (P<0.01).As to the phosphorylation level of pSs262,the significant increase did not appear until 12 months old in transgenic mouse as compared to the wild type mouse (P<0.01).Conclusions The triple transgenic mice can stably express the APP/tau/PS1 gene.The transgenic animals can be a useful model with the pathological features of tau of AD.The phosphorylation level of tau in different site increases in different time,which will provide useful research reference in Alzheimer's disease pathology and medication research.%目的 对APP /tau/ PS1阿尔茨海默病(AD)转基因小鼠基因型进行鉴定,并研究在其病程

  13. In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods

    International Nuclear Information System (INIS)

    Diffusion tensor imaging (DTI) has been applied to characterize the pathological features of Alzheimer's disease (AD) in a mouse model, although little is known about whether these features are structure specific. Voxel-based analysis (VBA) and atlas-based analysis (ABA) are good complementary tools for whole-brain DTI analysis. The purpose of this study was to identify the spatial localization of disease-related pathology in an AD mouse model. VBA and ABA quantification were used for the whole-brain DTI analysis of nine APP/PS1 mice and wild-type (WT) controls. Multiple scalar measurements, including fractional anisotropy (FA), trace, axial diffusivity (DA), and radial diffusivity (DR), were investigated to capture the various types of pathology. The accuracy of the image transformation applied for VBA and ABA was evaluated by comparing manual and atlas-based structure delineation using kappa statistics. Following the MR examination, the brains of the animals were analyzed for microscopy. Extensive anatomical alterations were identified in APP/PS1 mice, in both the gray matter areas (neocortex, hippocampus, caudate putamen, thalamus, hypothalamus, claustrum, amygdala, and piriform cortex) and the white matter areas (corpus callosum/external capsule, cingulum, septum, internal capsule, fimbria, and optic tract), evidenced by an increase in FA or DA, or both, compared to WT mice (p 0.05). The histopathological changes in the gray matter areas were confirmed by microscopy studies. DTI did, however, demonstrate significant changes in white matter areas, where the difference was not apparent by qualitative observation of a single-slice histological specimen. This study demonstrated the structure-specific nature of pathological changes in APP/PS1 mouse, and also showed the feasibility of applying whole-brain analysis methods to the investigation of an AD mouse model. (orig.)

  14. In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuan-Yuan [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Tongji Medical College, Wuhan (China); The Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Li, Mu-Wei; Oishi, Kenichi [The Johns Hopkins University School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Zhang, Shun; Zhang, Yan; Zhao, Ling-Yun; Zhu, Wen-Zhen [Huazhong University of Science and Technology, Department of Radiology, Tongji Hospital, Tongji Medical College, Wuhan (China); Lei, Hao [Chinese Academy of Sciences, Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China)

    2013-08-15

    Diffusion tensor imaging (DTI) has been applied to characterize the pathological features of Alzheimer's disease (AD) in a mouse model, although little is known about whether these features are structure specific. Voxel-based analysis (VBA) and atlas-based analysis (ABA) are good complementary tools for whole-brain DTI analysis. The purpose of this study was to identify the spatial localization of disease-related pathology in an AD mouse model. VBA and ABA quantification were used for the whole-brain DTI analysis of nine APP/PS1 mice and wild-type (WT) controls. Multiple scalar measurements, including fractional anisotropy (FA), trace, axial diffusivity (DA), and radial diffusivity (DR), were investigated to capture the various types of pathology. The accuracy of the image transformation applied for VBA and ABA was evaluated by comparing manual and atlas-based structure delineation using kappa statistics. Following the MR examination, the brains of the animals were analyzed for microscopy. Extensive anatomical alterations were identified in APP/PS1 mice, in both the gray matter areas (neocortex, hippocampus, caudate putamen, thalamus, hypothalamus, claustrum, amygdala, and piriform cortex) and the white matter areas (corpus callosum/external capsule, cingulum, septum, internal capsule, fimbria, and optic tract), evidenced by an increase in FA or DA, or both, compared to WT mice (p < 0.05, corrected). The average kappa value between manual and atlas-based structure delineation was approximately 0.8, and there was no significant difference between APP/PS1 and WT mice (p > 0.05). The histopathological changes in the gray matter areas were confirmed by microscopy studies. DTI did, however, demonstrate significant changes in white matter areas, where the difference was not apparent by qualitative observation of a single-slice histological specimen. This study demonstrated the structure-specific nature of pathological changes in APP/PS1 mouse, and also showed the

  15. Differential proteomic and behavioral effects of long-term voluntary exercise in wild-type and APP-overexpressing transgenics.

    Science.gov (United States)

    Rao, Shailaja Kishan; Ross, Jordan M; Harrison, Fiona E; Bernardo, Alexandra; Reiserer, Randall S; Reiserer, Ronald S; Mobley, James A; McDonald, Michael P

    2015-06-01

    Physical exercise may provide protection against the cognitive decline and neuropathology associated with Alzheimer's disease, although the mechanisms are not clear. In the present study, APP/PSEN1 double-transgenic and wild-type mice were allowed unlimited voluntary exercise for 7months. Consistent with previous reports, wheel-running improved cognition in the double-transgenic mice. Interestingly, the average daily distance run was strongly correlated with spatial memory in the water maze in wild-type mice (r(2)=.959), but uncorrelated in transgenics (r(2)=.013). Proteomics analysis showed that sedentary transgenic mice differed significantly from sedentary wild-types with respect to proteins involved in synaptic transmission, cytoskeletal regulation, and neurogenesis. When given an opportunity to exercise, the transgenics' deficiencies in cytoskeletal regulation and neurogenesis largely normalized, but abnormal synaptic proteins did not change. In contrast, exercise enhanced proteins associated with cytoskeletal regulation, oxidative phosphorylation, and synaptic transmission in wild-type mice. Soluble and insoluble Aβ40 and Aβ42 levels were significantly decreased in both cortex and hippocampus of active transgenics, suggesting that this may have played a role in the cognitive improvement in APP/PSEN1 mice. β-secretase was significantly reduced in active APP/PSEN1 mice compared to sedentary controls, suggesting a mechanism for reduced Aβ. Taken together, these data illustrate that exercise improves memory in wild-type and APP-overexpressing mice in fundamentally different ways. PMID:25818006

  16. 常压高氧处理对APP/PS1转基因小鼠空间学习记忆能力的影响%The effect of normobaric hyperoxia on the spatial learning and memory of APP/PS1 double transgenic mice

    Institute of Scientific and Technical Information of China (English)

    高宝兵; 龙志敏; 贺桂琼; 孙善全

    2009-01-01

    Objective To investigate whether normobaric hyperoxia exert neuroproteetive effect on APP/ PS1 double transgenic AD mouse model. Methods 20 APP/PS1 transgenic mice were randomly divided into 2 groups(A, B). Mice in group A were treated with 40% oxygen for 8 h per day, and lasted 8 weeks. Mice in group B were treated with normal air, as control. ELISA assay as well as behavioral test were used in the present study. Results Compared with normoxia-treated control, hyperoxia-treated mice had a significant lesser (P 0.05 ). EL1SA showed that Aβ40(783.64±97.21)pg/ml and Aβ42(175.30 ± 17.09) pg/ml were significantly decreased in hyperoxia-treated mice, compared with control[Aβ40 (1251.59 ± 42.29 ) pg/ml and Aβ42 (286.83 ± 12.96) pg/ml] (P0.05);(2)隐蔽平台下,高氧处理组小鼠找到平台的时间及搜索的平均路程较对照组明显缩短(P<0.01);(3)空间探索实验中,高氧处理组小鼠经过平台的次数[(6.31±2.55)次]显著高丁对照组[(3.13±1.59)7欠](P<0.01).ELISA结果显示,高氧处理组小鼠大脑皮质及海马内Aβ40[(783.64±97.21)pg/ml和Aβ42(175.30±17.09)pg/ml]水平显著低于对照组[Aβ40(1251.59±42.29)pg/ml、Aβ42(286.83±12.96)pg/ml](P<0.01).结论 常压高氧处理能显著改善AD模型小鼠空间学习记忆障碍;常压高氧可能通过减少Aβ生成或/和促进血管内皮细胞清除Aβ而发挥作用.

  17. The Ames dwarf mutation attenuates Alzheimer's disease phenotype of APP/PS1 mice.

    Science.gov (United States)

    Puig, Kendra L; Kulas, Joshua A; Franklin, Whitney; Rakoczy, Sharlene G; Taglialatela, Giulio; Brown-Borg, Holly M; Combs, Colin K

    2016-04-01

    APP/PS1 double transgenic mice expressing human mutant amyloid precursor protein (APP) and presenilin-1 (PS1) demonstrate robust brain amyloid beta (Aβ) peptide containing plaque deposition, increased markers of oxidative stress, behavioral dysfunction, and proinflammatory gliosis. On the other hand, lack of growth hormone, prolactin, and thyroid-stimulating hormone due to a recessive mutation in the Prop 1 gene (Prop1df) in Ames dwarf mice results in a phenotype characterized by potentiated antioxidant mechanisms, improved learning and memory, and significantly increased longevity in homozygous mice. Based on this, we hypothesized that a similar hormone deficiency might attenuate disease changes in the brains of APP/PS1 mice. To test this idea, APP/PS1 mice were crossed to the Ames dwarf mouse line. APP/PS1, wild-type, df/+, df/df, df/+/APP/PS1, and df/df/APP/PS1 mice were compared at 6 months of age through behavioral testing and assessing amyloid burden, reactive gliosis, and brain cytokine levels. df/df mice demonstrated lower brain growth hormone and insulin-like growth factor 1 concentrations. This correlated with decreased astrogliosis and microgliosis in the df/df/APP/PS1 mice and, surprisingly, reduced Aβ plaque deposition and Aβ 1-40 and Aβ 1-42 concentrations. The df/df/APP/PS1 mice also demonstrated significantly elevated brain levels of multiple cytokines in spite of the attenuated gliosis. These data indicate that the df/df/APP/PS1 line is a unique resource in which to study aging and resistance to disease and suggest that the affected pituitary hormones may have a role in regulating disease progression. PMID:26973101

  18. 还脑益聪方提取物对APP转基因小鼠脑组织Aβ生成相关因子和学习记忆行为的影响%Effects of Huannao Yicong Recipe Extract on the Learning and Memory and Related Factors of Aβ Generation in the Brain of APP Transgenic Mice

    Institute of Scientific and Technical Information of China (English)

    李浩; 刘明芳; 刘剑刚; 刘龙涛; 官杰; 蔡琳琳; 胡佳; 魏芸

    2013-01-01

    ) , presenilin-1 ( PS-1), and beta amyloid protein (Ap) in hippocampus CA1 area of APP transgenic mice, and to explore its mechanisms for treating Alzheimer's disease (AD). Methods Totally 3-month-old APP695V717I transgenic mice were used to establish the AD model in this research. They were randomly divided into the model group, the Donepezil group, the large dose HNYCR extract group, the small dose HNYCR extract group, and the normal control group (C57BL/6J mice), 15 in each group. These animals were gavaged for 4 continuous months. Relevant indicators were detected: Morris water maze test was used to measure the spatial learning and memory ability. The immunohistochemical assay was used to detect the expressions of APP, BACE1 , PS-1 , and Ap. Results The times of crossing the original platform and the swimming time and distance in the fourth quadrant of the 7-month-old APP transgenic mice were significantly reduced in Morris water maze test, when compared with the normal control group (P<0.01).The times of crossing original platform and the swimming time and distance in the fourth quadrant of all treatment groups significantly increased in Morris water maze test, when compared with the model group (P <0. 05). The expressions of APP, BACE1, PS-1, and A(3 in hippocampus CA1 area of 7-month-old model mice increased significantly (P<0.01), when compared with the normal control group. The expressions of APP, BACE1 , PS-1 , and A(3 in each 7-month-old intervention groups were significantly reduced, when compared with the model group ( P <0. 01). Conclusion Early application of HNYCR extract can obviously improve the learning and memory ability of APP transgenic mice that has declined, reduce the expressions of APP, BACE1, PS-1 , and Aβ in the hippocampal CA1 area, reduce the production of Aβ, and slow down the pathological process of brains in APP transgenic mice.

  19. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    OpenAIRE

    Mar Matarin; Dervis A. Salih; Marina Yasvoina; Damian M. Cummings; Sebastian Guelfi; Wenfei Liu; Muzammil A. Nahaboo Solim; Thomas G. Moens; Rocio Moreno Paublete; Shabinah S. Ali; Marina Perona; Roshni Desai; Kenneth J. Smith; Judy Latcham; Michael Fulleylove

    2015-01-01

    We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1) and “TAU” transgenic mice (mutant human MAPT gene). Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS) hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. N...

  20. A Genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology

    OpenAIRE

    Matarin, M.; Perona, M.; D.A. Salih; Yasvoina, M.; Cummings, D. M.; Liu, W.; NahabooSolim, M. A.; Moens, T. G.; Paublete, R. M.; Ali, S. S.; Edwards, F. A.; Guelfi, S.; Hardy, J.; Latcham, J.; Fulleylove, M.

    2015-01-01

    We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of "amyloid" transgenic mice (mutant human APP, PSEN1, or APP/PSEN1) and "TAU" transgenic mice (mutant human MAPT gene). Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS) hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. N...

  1. Eosinophilia in transgenic mice expressing interleukin 5

    OpenAIRE

    1990-01-01

    Experiments in vitro suggest that although interleukin 5 (IL-5) stimulates the late stages of eosinophil differentiation, other cytokines are required for the generation of eosinophil progenitor cells. In this study transgenic mice constitutively expressing the IL-5 gene were established using a genomic fragment of the IL-5 gene coupled to the dominant control region from the gene encoding human CD2. Four independent eosinophilic transgenic lines have thus far been established, two of which w...

  2. Effect of catalpol on senile plaques and spatial learning and memory ability in amyloid-β protein precursor/presenilin 1 double transgenic mice

    Institute of Scientific and Technical Information of China (English)

    宋冲

    2013-01-01

    Objective To investigate whether catalpol affects senile plaque formation and spatial learning and memory ability in the amyloid-βprotein precursor/presenilin 1(APP/PS1)double transgenic mice.Methods

  3. An Antidepressant Decreases CSF Aβ Production in Healthy Individuals and in Transgenic AD Mice

    OpenAIRE

    Sheline, Yvette I.; West, Tim; Yarasheski, Kevin; Swarm, Robert; Jasielec, Mateusz S.; Fisher, Jonathan R.; Ficker, Whitney D.; Yan, Ping; Xiong, Chengjie; Frederiksen, Christine; Grzelak, Monica V.; Chott, Robert; Bateman, Randall J.; Morris, John C.; Mark A. Mintun

    2014-01-01

    Serotonin signaling suppresses generation of amyloid-β (Aβ) in vitro and in animal models of Alzheimer’s disease (AD). We show that in an aged transgenic AD mouse model (APP/PS1 plaque-bearing mice), the antidepressant citalopram, a selective serotonin reuptake inhibitor (SSRI), decreased Aβ in brain interstitial fluid (ISF) in a dose-dependent manner. Growth of individual amyloid plaques was assessed in plaque-bearing mice that were chronically administered citalopram. Citalopram arrested th...

  4. Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model.

    Science.gov (United States)

    Liao, Fan; Zhang, Tony J; Mahan, Thomas E; Jiang, Hong; Holtzman, David M

    2015-07-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by impairment of cognitive function, extracellular amyloid plaques, intracellular neurofibrillary tangles, and synaptic and neuronal loss. There is substantial evidence that the aggregation of amyloid β (Aβ) in the brain plays a key role in the pathogenesis of AD and that Aβ aggregation is a concentration dependent process. Recently, it was found that Aβ levels in the brain interstitial fluid (ISF) are regulated by the sleep-wake cycle in both humans and mice; ISF Aβ is higher during wakefulness and lower during sleep. Intracerebroventricular infusion of orexin increased wakefulness and ISF Aβ levels, and chronic sleep deprivation significantly increased Aβ plaque formation in amyloid precursor protein transgenic (APP) mice. Growth hormone-releasing hormone (GHRH) is a well-documented sleep regulatory substance which promotes non-rapid eye movement sleep. GHRHR(lit/lit) mice that lack functional GHRH receptor have shorter sleep duration and longer wakefulness during light periods. The current study was undertaken to determine whether manipulating sleep by interfering with GHRH signaling affects brain ISF Aβ levels in APPswe/PS1ΔE9 (PS1APP) transgenic mice that overexpress mutant forms of APP and PSEN1 that cause autosomal dominant AD. We found that intraperitoneal injection of GHRH at dark onset increased sleep and decreased ISF Aβ and that delivery of a GHRH antagonist via reverse-microdialysis suppressed sleep and increased ISF Aβ. The diurnal fluctuation of ISF Aβ in PS1APP/GHRHR(lit/lit) mice was significantly smaller than that in PS1APP/GHRHR(lit/+) mice. However despite decreased sleep in GHRHR deficient mice, this was not associated with an increase in Aβ accumulation later in life. One of several possibilities for the finding is the fact that GHRHR deficient mice have GHRH-dependent but sleep-independent factors which protect against Aβ deposition. PMID:25218899

  5. Three-dimensional analysis of abnormal ultrastructural alteration in mitochondria of hippocampus of APP/PSEN1 transgenic mouse

    Indian Academy of Sciences (India)

    Ki Ju Choi; Mi Jeong Kim; A Reum Je; Sangmi Jun; Chulhyun Lee; Eunji Lee; Mijung Jo; Yang Hoon Huh; Hee-Seok Kweon

    2014-03-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. The deterioration of subcellular organelles, including the mitochondria, is another major ultrastructural characteristic of AD pathogenesis, in addition to amyloid plaque deposition. However, the three-dimensional (3-D) study of mitochondrial structural alteration in AD remains poorly understood. Therefore, ultrastructural analysis, 3-D electron tomography, and immunogold electron microscopy were performed in the present study to clarify the abnormal structural alterations in mitochondria caused by the progression of AD in APP/PSEN1 transgenic mice, expressing human amyloid precursor protein, as a model for AD. Amyloid (A) plaques accumulated and dystrophic neurites (DN) developed in the hippocampus of transgenic AD mouse brains. We also identified the loss of peroxiredoxin 3, an endogenous cytoprotective antioxidant enzyme and the accumulation of A in the hippocampal mitochondria of transgenic mice, which differs from those in age-matched wild-type mice. The mitochondria in A plaque-detected regions were severely disrupted, and the patterns of ultrastructural abnormalities were classified into three groups: disappearance of cristae, swelling of cristae, and bulging of the outer membrane. These results demonstrated that morpho-functional alterations of mitochondria and AD progression are closely associated and may be beneficial in investigating the function of mitochondria in AD pathogenesis.

  6. Augmented Senile Plaque Load in Aged Female β-Amyloid Precursor Protein-Transgenic Mice

    OpenAIRE

    Callahan, Michael J.; Lipinski, William J.; Bian, Feng; Durham, Robert A.; Pack, Amy; Walker, Lary C.

    2001-01-01

    Transgenic mice (Tg2576) overexpressing human β-amyloid precursor protein with the Swedish mutation (APP695SWE) develop Alzheimer’s disease-like amyloid β protein (Aβ) deposits by 8 to 10 months of age. These mice show elevated levels of Aβ40 and Aβ42, as well as an age-related increase in diffuse and compact senile plaques in the brain. Senile plaque load was quantitated in the hippocampus and neocortex of 8- to 19-month-old male and female Tg2576 mice. In all mice, plaque burden increased m...

  7. APP/PS1双转基因小鼠认知功能和实时步态行为的相关性%To explore the relationship between the gait behavior changes and cognitive function in APP/PS1 transgenic mice

    Institute of Scientific and Technical Information of China (English)

    张胜威; 董世芬; 武汀; 靳洪涛; 孙建宁

    2014-01-01

    目的:初步探讨APP/PS1双转基因小鼠认知功能和实时步态行为学的改变的相关性。方法3月龄APP/PS1转基因小鼠16只随机分成模型组和石杉碱甲片组,正常对照组选用同龄C57/BL6J小鼠14只。连续治疗150 d,Morris水迷宫(MWM)检测学习记忆能力,大小鼠步态分析仪(GAS-2)检测实时步态行为,并比较两种行为学的相关性。结果与正常对照相比,模型组小鼠有学习记忆能力的显著降低,逃避潜伏期均显著延长(P <0.05),在目标象限停留时间、游泳路程显著降低(P <0.05),第一次穿越平台的时间显著延长(P <0.05),穿台次数显著减少(P <0.05);在步态行为实验中,模型组小鼠平均步行速度显著降低(P <0.05),平均步行周期、绝对值平均体转角和侧向移动均显著升高(P <0.05),在一个步行周期中左后足(left foot,LF)、右后足(right foot, RF)支撑时相显著延长(P <0.05),摆动时相显著缩短(P <0.05),左前足(left hand,LH)、右前足(right hand, RH)、右后足推进指数均显著增加( P <0.05),制动指数显著降低( P <0.05)。石杉碱甲片能显著改善认知功能,并能在一定程度上纠正步态行为的变化。比较两种行为学的相关性,得出学习记忆能力与双前足的制动指数相关性较高(相关系数分别为-0.433、-0.379,P值分别为0.039、0.079),其他方面的相关性不大。结论 APP/PS1转基因小鼠在8月龄时有显著的学习记忆能力障碍和步态行为的改变,并且两种行为学存在一定的相关性。%Objective To explore the relationship between the gait behavior changes and cognitive function in APP/PS1 transgenic mice .Methods 16 APP/PS1 transgenic mice were divided into model group and Huperzine A group, C57/BL6J mice with the same age were chosed as control group .After a 150 days consecutive

  8. Antioxidants and cognitive training interact to affect oxidative stress and memory in APP/PSEN1 mice

    OpenAIRE

    Harrison, F.E.; Allard, J.; Bixler, R.; Usoh, C.; Li, L.; May, J. M.; McDonald, M. P.

    2009-01-01

    The present study investigated the relationships among oxidative stress, β-amyloid and cognitive abilities in the APP/PSEN1 double-transgenic mouse model of Alzheimer’s disease. In two experiments, long-term dietary supplements were given to aged APP/PSEN1 mice containing vitamin C alone (1g/kg diet, Expt. 1) or in combination with a high (750 IU/kg diet, Expts. 1 and 2) or lower (400 IU/kg diet, Expt. 2) dose of vitamin E. Oxidative stress, measured by F4-neuroprostanes or malondialdehyde, w...

  9. Isolation Housing Exacerbates Alzheimer’s Disease-Like Pathophysiology in Aged APP/PS1 Mice

    OpenAIRE

    Huang, Huang; Wang, Linmei; Cao, Min; Marshall, Charles; Gao, Junying; XIAO, NA; Hu, Gang; Xiao, Ming

    2015-01-01

    Background: Alzheimer’s disease is a neurodegenerative disease characterized by gradual declines in social, cognitive, and emotional functions, leading to a loss of expected social behavior. Social isolation has been shown to have adverse effects on individual development and growth as well as health and aging. Previous experiments have shown that social isolation causes an early onset of Alzheimer’s disease-like phenotypes in young APP695/PS1-dE9 transgenic mice. However, the interactions be...

  10. Melanosis and associated tumors in transgenic mice.

    OpenAIRE

    Klein-Szanto, A.; Bradl, M; Porter, S; Mintz, B

    1991-01-01

    Melanosis was found to various extents in a wide array of tissues of all 23 autopsied mice whose transgene consisted of the tyrosinase promoter fused to the simian virus 40 early-region oncogenic sequences. Pigmentation in a given animal was attributable to any or all of the following; an increase in numbers of some normally pigmented cells of neural crest origin (a result compatible with early stages of transformation); elicitation of melanin synthesis in some cells that normally have little...

  11. Magnetic biomineralisation in Huntington's disease transgenic mice

    International Nuclear Information System (INIS)

    The concentration levels of biogenic magnetite nanoparticles in transgenic R6/2 Huntington's disease (HD) mice have been investigated, using seven control and seven HD mice each from an 8 week-old litter and from a 12 week-old litter. Hysteresis and isothermal remnant magnetisation data were collected on a SQUID magnetometer, and analysed using a model comprising dia/paramagnetic, ferrimagnetic and superparamagnetic contributions, to extract the magnetite and ferritin concentrations present. It was found that magnetite was present in both superparamagnetic and blocked states. A larger spread and higher concentration of magnetite levels was found in the diseased mice for both the 8 week-old and 12 week-old batches, compared to the controls

  12. Tau Protein Mediates APP Intracellular Domain (AICD-Induced Alzheimer's-Like Pathological Features in Mice.

    Directory of Open Access Journals (Sweden)

    Kaushik Ghosal

    Full Text Available Amyloid precursor protein (APP is cleaved by gamma-secretase to simultaneously generate amyloid beta (Aβ and APP Intracellular Domain (AICD peptides. Aβ plays a pivotal role in Alzheimer's disease (AD pathogenesis but recent studies suggest that amyloid-independent mechanisms also contribute to the disease. We previously showed that AICD transgenic mice (AICD-Tg exhibit AD-like features such as tau pathology, aberrant neuronal activity, memory deficits and neurodegeneration in an age-dependent manner. Since AD is a tauopathy and tau has been shown to mediate Aβ-induced toxicity, we examined the role of tau in AICD-induced pathological features. We report that ablating endogenous tau protects AICD-Tg mice from deficits in adult neurogenesis, seizure severity, short-term memory deficits and neurodegeneration. Deletion of tau restored abnormal phosphorylation of NMDA receptors, which is likely to underlie hyperexcitability and associated excitotoxicity in AICD-Tg mice. Conversely, overexpression of wild-type human tau aggravated receptor phosphorylation, impaired adult neurogenesis, memory deficits and neurodegeneration. Our findings show that tau is essential for mediating the deleterious effects of AICD. Since tau also mediates Aβ-induced toxic effects, our findings suggest that tau is a common downstream factor in both amyloid-dependent and-independent pathogenic mechanisms and therefore could be a more effective drug target for therapeutic intervention in AD.

  13. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease.

    Science.gov (United States)

    Rockenstein, Edward; Desplats, Paula; Ubhi, Kiren; Mante, Michael; Florio, Jazmin; Adame, Anthony; Winter, Stefan; Brandstaetter, Hemma; Meier, Dieter; Masliah, Eliezer

    2015-07-01

    Neural stem cells (NSCs) have been considered as potential therapy in Alzheimer's disease (AD) but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL), a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg) model of AD. We grafted murine NSCs into the hippocampus of non-tg and APP tg that were treated systemically with CBL and analyzed after 1, 3, 6 and 9months post grafting. Compared to vehicle-treated non-tg mice, in the vehicle-treated APP tg mice there was considerable reduction in the survival of the grafted NSCs. Whereas, CBL treatment enhanced the survival of NSCs in both non-tg and APP tg with the majority of the surviving NSCs remaining as neuroblasts. The NSCs of the CBL treated mice displayed reduced numbers of caspase-3 and TUNEL positive cells and increased brain derived neurotrophic factor (BDNF) and furin immunoreactivity. These results suggest that CBL might protect grafted NSCs and as such be a potential adjuvant therapy when combined with grafting. PMID:26209890

  14. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease

    Directory of Open Access Journals (Sweden)

    Edward Rockenstein

    2015-07-01

    Full Text Available Neural stem cells (NSCs have been considered as potential therapy in Alzheimer's disease (AD but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL, a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg model of AD. We grafted murine NSCs into the hippocampus of non-tg and APP tg that were treated systemically with CBL and analyzed after 1, 3, 6 and 9 months post grafting. Compared to vehicle-treated non-tg mice, in the vehicle-treated APP tg mice there was considerable reduction in the survival of the grafted NSCs. Whereas, CBL treatment enhanced the survival of NSCs in both non-tg and APP tg with the majority of the surviving NSCs remaining as neuroblasts. The NSCs of the CBL treated mice displayed reduced numbers of caspase-3 and TUNEL positive cells and increased brain derived neurotrophic factor (BDNF and furin immunoreactivity. These results suggest that CBL might protect grafted NSCs and as such be a potential adjuvant therapy when combined with grafting.

  15. APP heterozygosity averts memory deficit in knockin mice expressing the Danish dementia BRI2 mutant

    OpenAIRE

    Tamayev, Robert; Matsuda, Shuji; Giliberto, Luca; Arancio, Ottavio; D'Adamio, Luciano

    2011-01-01

    A dominant mutation in BRI2 causes familial Danish dementia (FDD). A transgenic mouse model supports the hypothesis that FDD pathogenesis is mediated, like familial Alzheimer disease, via toxic APP products.

  16. Generation of bigenic transgenic mice carrying human ApoEε4 and mutant APP gene%转人载脂蛋白Eε4和突变淀粉前体蛋白基因小鼠的建立

    Institute of Scientific and Technical Information of China (English)

    杨鹏; 薛越强; 廖峥嵘; 屠亚军; 琦祖和

    2005-01-01

    将人载脂蛋白(ApoEε4) 转基因鼠和突变前体蛋白(APP)转基因小鼠交配,以建立h-ApoEε4/突变APP双转基因小鼠.共产出仔鼠23 只,经PCR初步筛选,并用Southern杂交对阳性小鼠基因组DNA作进一步鉴定,得到3只双转基因小鼠.该双转基因鼠的建立为进一步阐明ApoEε4的致病作用以及对AD的研究提供了理想的研究模型.

  17. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    International Nuclear Information System (INIS)

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway

  18. Transcription-dependent silencing of inducible convergent transgenes in transgenic mice

    Directory of Open Access Journals (Sweden)

    Calero-Nieto Fernando J

    2010-01-01

    Full Text Available Abstract Background Silencing of transgenes in mice is a common phenomenon typically associated with short multi-copy transgenes. We have investigated the regulation of the highly inducible human granulocyte-macrophage colony-stimulating-factor gene (Csf2 in transgenic mice. Results In the absence of any previous history of transcriptional activation, this transgene was expressed in T lineage cells at the correct inducible level in all lines of mice tested. In contrast, the transgene was silenced in a specific subset of lines in T cells that had encountered a previous episode of activation. Transgene silencing appeared to be both transcription-dependent and mediated by epigenetic mechanisms. Silencing was accompanied by loss of DNase I hypersensitive sites and inability to recruit RNA polymerase II upon stimulation. This pattern of silencing was reflected by increased methylation and decreased acetylation of histone H3 K9 in the transgene. We found that silenced lines were specifically associated with a single pair of tail-to-tail inverted repeated copies of the transgene embedded within a multi-copy array. Conclusions Our study suggests that epigenetic transgene silencing can result from convergent transcription of inverted repeats which can lead to silencing of an entire multi-copy transgene array. This mechanism may account for a significant proportion of the reported cases of transgene inactivation in mice.

  19. Effect of transgene number of spontaneous and radiation-induced micronuclei in lacl transgenic mice

    International Nuclear Information System (INIS)

    Lacl transgenic mice are widely used for the measurement of mutations in specific target issues. The lacl transgene is present in mice as 40 tandem repeats; this sequence is homozygous (contained in both copies of chromosome 5) in C57Bl/6 mice, and is hemizygous in B6C3F1 mice. Previous reports have indicated that tandem repeats can produce chromosome instability, fragile sites, and other effects. To determine whether the presence of the transgene effects micronucleus induction we compared the response of nontransgenic (NTR) to hemizygous (HEMI) transgenic B6C3F1 mice and to hemizygous and homozygous (HOMO) transgenic C57Bl/6 mice. Five mice/group were irradiated with 500 cGy from a 137Cs source. Bone marrow was harvested 24 hr after treatment and 2000 polychromatic erythrocytes (PCE) were analyzed per animal. The presence or absence of the lacl transgene had no effect in unirradiated mice on the percent of micronucleated PCE (MN) or on the ratio of PCE to total red blood cells for either strain: B6C3F1 mice had MN frequencies of 0.26% and 0.20% for NTR and HEMI mice, respectively; C57Bl/6 mice had MN frequencies of 0.34%, 0.32%, and 0.38% for NTR, HEMI, and HOMO mice, respectively. Radiation-induced micronucleus frequencies were significantly higher in HEMI lacl B6C3F1 mice (2.85%) than in NTR litter mates (1.59%); the converse was true in C57Bl/6 mice: NTR were 2.45%, HEMI were 1.25%, HOMO were 1.65%. These data suggest that the lacl transgene does not cause chromosome instability as measured by spontaneous micronucleus levels. However, the response of these transgenic mice to a variety of clastogenic agents needs to be investigated before they are integrated into standard in vivo assays for chromosome damage

  20. Effects of curcumin on expression of hippocampal glucose transporter of APP/PS1 double transgenic mice%姜黄素对APP/PS1双转基因小鼠脑葡萄糖转运子表达的影响

    Institute of Scientific and Technical Information of China (English)

    党惠子; 王虹; 李瑞晟; 任映; 杨金铎; 王蓬文

    2014-01-01

    目的 采用Morris水迷宫检测小鼠空间学习记忆和记忆保持能力,评价姜黄素对APP/PS1双转基因小鼠认知功能的影响,并观察姜黄素对APP/PS1双转基因小鼠以及海马葡萄糖转运子1(GLUT1)和GLUT3表达的影响,从脑能量代谢的角度探讨姜黄素神经保护作用的机制. 方法 将3月龄APP/PS1双转基因小鼠随机分为模型(APP/PS1+ VEH)组,罗格列酮(APP/PS1+ RSG)组,姜黄素大(APP/PS1+curcumin-H)、中(APP/PS1+ curcumin-M)、小剂量(APP/PS1+ curcumin-L)组.灌胃3个月后,应用免疫组织化学和Western blot方法进行检测. 结果 Morris水迷宫撤台实验中,与正常对照(NC)组比较,APP/PS1+VEH组穿越平台次数减少,且目标象限停留时间缩短(P<0.01);与APP/PS1+ VEH组相比,APP/PS1+curcumin-M组穿越平台次数增加(P<0.01).免疫组织化学染色,与APP/PS1+ VEH组相比,APP/PS1+ curcumin-H、APP/PS1+ curcumin-M组海马CA1区GLUT1阳性细胞增加(P<0.05);APP/PS1+ curcumin-M组GLUT3阳性细胞计数明显增加(P<0.01),APP/PS1+curcumin-H组GLUT3阳性细胞增加(P<0.05).Western blot结果与免疫组织化学结果基本一致.结论 姜黄素可改善APP/PS1双转基因小鼠的空间学习记忆和记忆保持能力,影响脑葡萄糖代谢有关的GLUT1和GLUT3蛋白的表达而发挥神经保护作用.

  1. Development of Cerebral Microbleeds in the APP23-Transgenic Mouse Model of Cerebral Amyloid Angiopathy—A 9.4 Tesla MRI Study

    Science.gov (United States)

    Reuter, Björn; Venus, Alexander; Heiler, Patrick; Schad, Lothar; Ebert, Anne; Hennerici, Michael G.; Grudzenski, Saskia; Fatar, Marc

    2016-01-01

    Background: Cerebral amyloid angiopathy (CAA) is characterized by extracellular deposition of amyloid β (Aβ) around cerebral arteries and capillaries and leads to an increased risk for vascular dementia, spontaneous lobar hemorrhage, convexal subarachnoid hemorrhage, and transient focal neurological episodes, which might be an indicator of imminent spontaneous intracerebral hemorrhage. In CAA cerebral microbleeds (cMBs) with a cortical/juxtacortical distribution are frequently observed in standard magnetic resonance imaging (MRI). In vivo MRI of transgenic mouse models of CAA may serve as a useful tool to investigate translational aspects of the disease. Materials and Methods: APP23-transgenic mice demonstrate cerebrovascular Aβ deposition with subsequent neuropathological changes characteristic for CAA. We performed a 9.4 Tesla high field MRI study using T2, T2* and time of flight-magnetic resonance angiograpy (TOF-MRA) sequences in APP23-transgenic mice and wildtype (wt) littermates at the age of 8, 12, 16, 20 and 24 months, respectively. Numbers, size, and location of cMBs are reported. Results: T2* imaging demonstrated cMBs (diameter 50–300 μm) located in the neocortex and, to a lesser degree, in the thalamus. cMBs were detected at the earliest at 16 months of age. Numbers increased exponentially with age, with 2.5 ± 2 (median ± interquartilrange) at 16 months, 15 ± 6 at 20 months, and 31.5 ± 17 at 24 months of age, respectively. Conclusion: We report the temporal and spatial development of cMBs in the aging APP23-transgenic mouse model which develops characteristic pathological patterns known from human CAA. We expect this mouse model to serve as a useful tool to non-invasively monitor mid- and longterm translational aspects of CAA and to investigate experimental therapeutic strategies in longitudinal studies. PMID:27458375

  2. Overcoming antigen masking of anti-amyloidbeta antibodies reveals breaking of B cell tolerance by virus-like particles in amyloidbeta immunized amyloid precursor protein transgenic mice

    Directory of Open Access Journals (Sweden)

    Ugen Kenneth E

    2004-06-01

    Full Text Available Abstract Background In prior work we detected reduced anti-Aβ antibody titers in Aβ-vaccinated transgenic mice expressing the human amyloid precursor protein (APP compared to nontransgenic littermates. We investigated this observation further by vaccinating APP and nontransgenic mice with either the wild-type human Aβ peptide, an Aβ peptide containing the "Dutch Mutation", E22Q, or a wild-type Aβ peptide conjugated to papillomavirus virus-like particles (VLPs. Results Anti-Aβ antibody titers were lower in vaccinated APP than nontransgenic mice even when vaccinated with the highly immunogenic Aβ E22Q. One concern was that human Aβ derived from the APP transgene might mask anti-Aβ antibodies in APP mice. To test this possibility, we dissociated antigen-antibody complexes by incubation at low pH. The low pH incubation increased the anti-Aβ antibody titers 20–40 fold in APP mice but had no effect in sera from nontransgenic mice. However, even after dissociation, the anti-Aβ titers were still lower in transgenic mice vaccinated with wild-type Aβ or E22Q Aβ relative to non-transgenic mice. Importantly, the dissociated anti-Aβ titers were equivalent in nontransgenic and APP mice after VLP-based vaccination. Control experiments demonstrated that after acid-dissociation, the increased antibody titer did not cross react with bovine serum albumin nor alpha-synuclein, and addition of Aβ back to the dissociated serum blocked the increase in antibody titers. Conclusions Circulating human Aβ can interfere with ELISA assay measurements of anti-Aβ titers. The E22Q Aβ peptide vaccine is more immunogenic than the wild-type peptide. Unlike peptide vaccines, VLP-based vaccines against Aβ abrogate the effects of Aβ self-tolerance.

  3. Establishment and detection of HBV transgenic mice with YMDD mutation

    OpenAIRE

    Yu-qin YOU; Yang-shu CHEN; Guang-ze LIU; Fu-qiang YANG; Chen, Mei-Juan; Xiu-mei LI; Zhou, Jun-Hui; Kong, Xiang-Ping

    2011-01-01

    Objective To establish the hepatitis B virus(HBV) transgenic mice with YMDD mutation,and provide an animal model for research of HBV prevention and therapeutic approach.Methods 1.3 copies HBV genome containing YMDD mutation associated with lamivudine resistance was injected into the zygote of FVB/N female mice by microinjection.Integration and passage of exogenous gene in transgenic mice was confirmed by PCR.The expression of HBsAg in liver and kidney tissues in transgenic mice was identified...

  4. Hippocampal neurogenesis in the APP/PS1/nestin-GFP triple transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Zeng, Q; Zheng, M; Zhang, T; He, G

    2016-02-01

    Alzheimer's disease (AD) is one of the most common causes of dementia. Although the exact mechanisms of AD are not entirely clear, the impairment in adult hippocampal neurogenesis has been reported to play a role in AD. To assess the relationship between AD and neurogenesis, we studied APP/PS1/nestin-green fluorescent protein (GFP) triple transgenic mice, a well-characterized mouse model of AD, which express GFP under the control of the nestin promoter. Different ages of AD mice and their wild-type littermates (WT) were used in our study. Immunofluorescent staining showed that neurogenesis occurred mainly in the subgranular zone (SGZ) of the dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles (LVs). The expression of neural stem cells (NSCs) (nestin) and neural precursors such as doublecortin (DCX) and GFAP in AD mice were decreased with age, as well as there being a reduction in 5-bromo-2-deoxyuridine (BrdU)-positive cells, when compared to WT. However, the number of maturate neurons (NeuN) was not significantly different between AD mice and wild-type controls, and NeuN changed only slightly with age. By Golgi-Cox staining, the morphologies of dendrites were observed, and significant differences existed between AD mice and wild-type controls. These results suggest that AD has a far-reaching influence on the regulation of adult hippocampal neurogenesis, leading to a gradual decrease in the generation of neural progenitors (NPCs), and inhibition of the differentiation and maturation of neurons. PMID:26639620

  5. Chronic stress induced cognitive impairment in APP/PS-1 double transgenic mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Bing HAN

    2015-08-01

    Full Text Available Objective  To observe the effect of chronic unpredictable mild stress (CUMS on the cognitive function and brain morphological changes in APP/PS-1 mice, one of the genetic mouse models of Alzheimer's disease (AD, and to investigate the possible role of environmental factors in genetic mouse model of AD. Methods  There were 22-week-old wild-type C57BL/6 male mice (control group, N = 15 and APP/PS-1 double transgenic male mice [N = 27: AD group (N = 13 and AD + CUMS group (N = 14] tested in this study. Morris water maze test was used to evaluate spatial learning and memory of the mice. Amyloid deposition in the hippocampus was determined by Congo red staining. The ultrastructure of neurons in hippocampal CA1 region was observed by transmission electron microscope (TEM.  Results  Compared with control group, AD + CUMS group had significantly longer fifth-day escape latency [(33.14 ± 14.37 s vs (21.22 ± 12.16 s; t = -2.701, P = 0.045], and significantly shortened time spent in platform quadrant [(9.74±1.35 s vs (15.02 ± 1.33 s; t = 2.639, P = 0.012] in Morris water maze test. Compared with AD group, the percentage of amyloid plaque area in hippocampal area was increased in AD + CUMS group [(0.59 ± 0.03% vs (0.04 ± 0.03%; t = -2.900, P = 0.005]. The ultrastructure of hippocampal neurons in AD group was slightly damaged: cellular membrane was intact; cell matrix was uniform; intracelluar lipofuscin could be seen; the structure of nucleus and nuclear membrane had no obvious changes; mild fusion of cristae and membrane was seen in mitochondria; Golgi apparatus was partially indistinct; endoplasmic reticulum was mildly expanded. The ultrastructure of hippocampal neurons in AD + CUMS group was obviously damaged, including blurred cell membrane, reduced low-density and high-density granules in cytoplasm, uneven cell matrix, reduced number of organelles, lipofuscin and autophagosome deposition, obvious condensation of chromatin distributing over

  6. Efficient Generation of Mice with Consistent Transgene Expression by FEEST.

    Science.gov (United States)

    Gao, Lei; Jiang, Yonghua; Mu, Libing; Liu, Yanbin; Wang, Fengchao; Wang, Peng; Zhang, Aiqun; Tang, Nan; Chen, Ting; Luo, Minmin; Yu, Lei; Gao, Shaorong; Chen, Liang

    2015-01-01

    Transgenic mouse models are widely used in biomedical research; however, current techniques for producing transgenic mice are limited due to the unpredictable nature of transgene expression. Here, we report a novel, highly efficient technique for the generation of transgenic mice with single-copy integration of the transgene and guaranteed expression of the gene-of-interest (GOI). We refer to this technique as functionally enriched ES cell transgenics, or FEEST. ES cells harboring an inducible Cre gene enabled the efficient selection of transgenic ES cell clones using hygromycin before Cre-mediated recombination. Expression of the GOI was confirmed by assaying for the GFP after Cre recombination. As a proof-of-principle, we produced a transgenic mouse line containing Cre-activatable tTA (cl-tTA6). This tTA mouse model was able to induce tumor formation when crossed with a transgenic mouse line containing a doxycycline-inducible oncogene. We also showed that the cl-tTA6 mouse is a valuable tool for faithfully recapitulating the clinical course of tumor development. We showed that FEEST can be easily adapted for other genes by preparing a transgenic mouse model of conditionally activatable EGFR L858R. Thus, FEEST is a technique with the potential to generate transgenic mouse models at a genome-wide scale. PMID:26573149

  7. Relevance of BAC transgene copy number in mice: transgene copy number variation across multiple transgenic lines and correlations with transgene integrity and expression

    OpenAIRE

    Chandler, Kelly J.; Chandler, Ronald L.; Broeckelmann, Eva M.; HOU, YUE; Southard-Smith, E. Michelle; Mortlock, Douglas P.

    2007-01-01

    Bacterial artificial chromosomes (BACs) are excellent tools for manipulating large DNA fragments and, as a result, are increasingly utilized to engineer transgenic mice by pronuclear injection. The demand for BAC transgenic mice underscores the need for careful inspection of BAC integrity and fidelity following transgenesis, which may be crucial for interpreting transgene function. Thus, it is imperative that reliable methods for assessing these parameters are available. However, there are li...

  8. A generic intron increases gene expression in transgenic mice.

    OpenAIRE

    Choi, T; Huang, M; Gorman, C; Jaenisch, R

    1991-01-01

    To investigate the role of splicing in the regulation of gene expression, we have generated transgenic mice carrying the human histone H4 promoter linked to the bacterial gene for chloramphenicol acetyltransferase (CAT), with or without a heterologous intron in the transcription unit. We found that CAT activity is 5- to 300-fold higher when the transgene incorporates a hybrid intron than with an analogous transgene precisely deleted for the intervening sequences. This hybrid intron, consistin...

  9. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice

    Directory of Open Access Journals (Sweden)

    Martín-Moreno Ana María

    2012-01-01

    Full Text Available Abstract Background Alzheimer's disease (AD brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential. Methods We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein (APP mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the drinking water during 4 months on inflammatory and cognitive parameters, and on 18F-fluoro-deoxyglucose (18FDG uptake by positron emission tomography (PET. Results Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased 18FDG uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-α mRNA expression found in the AD model. Increased cortical β-amyloid (Aβ levels were significantly reduced in the mouse model by both cannabinoids. Noteworthy both cannabinoids enhanced Aβ transport across choroid plexus cells in vitro. Conclusions In summary we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aβ clearance.

  10. Synapse-protective effect of flavonoids extracted from the leaves of Diospyros kaki in APP/PS1 transgenic mice%柿叶黄酮类化合物对 APP/PS1转基因小鼠脑组织突触的保护作用

    Institute of Scientific and Technical Information of China (English)

    尚玉莹; 马莹娟; 吴小凡; 侯训尧; 罗鼎真; 陈健; 洪燕; 申超; 刘雪平

    2016-01-01

    目的:探讨柿叶黄酮类提取物(FLDK)对 APP/PS1小鼠认知水平、突触结构及突触相关蛋白表达的影响。方法20只4月龄 APP/PS1小鼠,随机分为阿尔茨海默病(AD)模型组(AD 组)及治疗组(AD +FLDK 组),每组10只;10只4月龄 C57BL/6小鼠为正常对照组(NC 组)。AD +FLDK 组给予 FLDK 80 mg /(kg·d)灌胃干预60 d,AD 组与 NC 组同样方法给予等量生理盐水60 d。分别采用 Morris 水迷宫测试小鼠逃避潜伏期(EL)及穿越平台次数,电镜观察突触超微结构,并用免疫组织化学方法检测皮层及海马区突触素(SYP)和大脑发育调节蛋白(drebrin)的含量。结果与 NC 组相比,AD 组小鼠 EL 明显延长,穿越平台次数显著减少,突触结构模糊,SYP 及drebrin 表达明显减少。与 AD 组相比,AD +FLDK 组 EL 减少,穿越平台次数明显增多,突触结构更完整且 SYP、drebrin 表达显著增加。结论FLDK 可显著改善 APP/PS1小鼠学习记忆水平,增强突触结构完整性,提高突触相关蛋白含量,具有认知及突触保护作用。%Objective To investigate the effect of flavonoids extracted from the leaves of Diospyros kaki (FLDK)on cognition levels,synapse structure and the expression of synapse-related proteins in APP/PS1 transgenic mouse. Methods Twenty APP/PS1 mice of four-month old were randomly divided into Alzheimer’s disease (AD)model group (AD group)and treatment group (AD +FLDK group),ten in each group;ten C57BL/6 mice of four-month old were regarded as normal control group (NC group).AD +FLDK group was treated intragastrically with 80 mg/(kg·d) FLDK,while AD and NC groups were fed intragastrically with the same volume of normal saline.Morris water maze was used to test the escape latency (EL)and number of crossing,transmission electron microscope was used to observe the ultrastructure of synapse,and immunohistochemistry was used to detect the

  11. CCK Response Deficiency in Synphilin-1 Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Wanli W Smith

    Full Text Available Previously, we have identified a novel role for the cytoplasmic protein, synphilin-1(SP1, in the controls of food intake and body weight in both mice and Drosophila. Ubiquitous overexpression of human SP1 in brain neurons in transgenic mice results in hyperphagia expressed as an increase in meal size. However, the mechanisms underlying this action of SP1 remain to be determined. Here we investigate a potential role for altered gut feedback signaling in the effects of SP1 on food intake. We examined responses to peripheral administration of cholecytokinin (CCK, amylin, and the glucagon like peptide-1 (GLP-1 receptor agonist, exendin-4. Intraperitoneal administration of CCK at doses ranging from 1-10 nmol/kg significantly reduced glucose intake in wild type (WT mice, but failed to affect intake in SP1 transgenic mice. Moreover, there was a significant attenuation of CCK-induced c-Fos expression in the dorsal vagal complex in SP1 transgenic mice. In contrast, WT and SP1 transgenic mice were similarly responsive to both amylin and exendin-4 treatment. These studies demonstrate that SP1 results in a CCK response deficiency that may contribute to the increased meal size and overall hyperphagia in synphillin-1 transgenic mice.

  12. Selected mice models based on APP, MAPT and presenilin gene mutations in research on the pathogenesis of Alzheimer’s disease

    OpenAIRE

    Magdalena Więdłocha; Bartłomiej Stańczykiewicz; Marta Jakubik; Joanna Rymaszewska

    2012-01-01

     The research conducted on animal models of Alzheimer’s disease (AD) has provided valuable information about the pathogenesis of this disease and associated behavioral and cognitive deficits as well as the disease-associated anatomical and histopathological lesions of the brain. Transgenic technologies have enabled the creation of animal models based on mutations in APP, MAPT, presenilin genes, tau protein and apoE. Due to economic reasons studies are mainly conducted on mice. Their brain tis...

  13. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  14. Hematological and biochemical indexes in blood of HBV transgenic mice

    OpenAIRE

    Feng-jiao ZHENG; Fu, Yong-Hang; Guang-ze LIU; Zhang, Jian; Xiu-mei LI; Chen, Mei-Juan; Kong, Xiang-Ping

    2011-01-01

    Objective To study the effects of gene integration of HBV on the biochemical and hematological indices in blood of transgenic mice.Methods The venous blood was collected from orbital venous plexus of 28 normal mice born in the same brood(HBsAg negative) and 50 HBV transgenic mice(HBsAg positive),6-8 weeks in age.The blood routine examination was performed,including white blood cells(WBC),red blood cells(RBC),hemoglobin(Hb),platelets(PLT),lymphocyte percentage(L%),intermediate cell percentage(...

  15. APP695K595N/M596L突变转基因小鼠的建立和病理表型动态分析%Establishment of APP695swedishTransgenic Mouse Model and Analysis of the Development of Pathological Phenotypes

    Institute of Scientific and Technical Information of China (English)

    王冬梅; 李万波; 袁树民; 全雄志; 张海涛; 马春梅; 曹兴水; 张连峰

    2011-01-01

    目的 建立APP695 K595 N/M596L(Swedish突变)转基因小鼠和评价痴呆表型的发生和发展过程.方法 将APP695K595N/M596L突变基因插入到小鼠朊蛋白(mouse prion protein)启动子下游,构建转基因表达载体,通过显微注射法建立APP695K595N/M596L突变转基因C57BL/6J小鼠.PCR鉴定转基因小鼠的基因表型,Western blotting检测APP突变基因表达.Thioflavin-S染色检测不同年龄转基因小鼠大脑病理改变.Morris水迷宫动态观察小鼠行为学改变.结果 建立了人APP695 K595 N/M596L转基因小鼠,Thioflavin-S染色显示转基因小鼠9月龄时在脑海马区可检测到老年斑形成,并且在11、12月龄时明显增多.Morris水迷宫结果发现与同月龄野生型小鼠相比,该转基因小鼠5月龄开始出现学习记忆能力缺陷,7、9、11月行为学结果证实转基因小鼠的学习记忆能力缺陷随年龄增加而日趋严重(P<0.05).结论 建立了人APP695 K595 N/M596L转基因小鼠,并能再现人类阿尔茨海默症的行为学及神经病理学特征,为阿尔茨海默病发病机制研究和药物研发提供了有价值的动物模型.%Objective To generate a transgenic mouse line expressing human APP695 ' ( Swedish mutation) and establish a transgenic Alzheimer disease model. Methods The transgenic plasmid was constructed by inserting the mutated APP695 ' gene into the downstream of mouse prion protein promoter. The transgenic mice were produced by microinjection and the genotype was detected by PCR. The gene expression levels were determined by Western blotting. The senile plaques were detected by thioflavin-S staining and visualized directly by fluorescence microscopy. The behavioral changes was examined by Morris water maze test. Results Transgenic C57BL/6J mice were generated with the expression of the APP695 k595N/M596L in the brain tissue. The transgenic mice showed significant learning and memory impairments in the Morris water maze at 5 months of age and

  16. Polycythemia in transgenic mice expressing the human erythropoietin gene

    International Nuclear Information System (INIS)

    Erythropoietin is a glycoprotein hormone that regulates mammalian erythropoiesis. To study the expression of the human erythropoietin gene, EPO, 4 kilobases of DNA encompassing the gene with 0.4 kilobase of 5' flanking sequence and 0.7 kilobase of 3' flanking sequence was microinjected into fertilized mouse eggs. Transgenic mice were generated that are polycythemic, with increased erythrocytic indices in peripheral blood, increased numbers of erythroid precursors in hematopoietic tissue, and increased serum erythropoietin levels. Transgenic homozygotes show a greater degree of polycythemia than do heterozygotes as well as striking extramedullary erythropoiesis. Human erythropoietin RNA was found not only in fetal liver, adult liver, and kidney but also in all other transgenic tissues analyzed. Anemia induced increased human erythropoietin RNA levels in liver but not kidney. These transgenic mice represent a unique model of polycythemia due to increased erythropoietin levels

  17. Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus

    Directory of Open Access Journals (Sweden)

    Torres Manuel

    2012-11-01

    Full Text Available Abstract Background Axonal pathology might constitute one of the earliest manifestations of Alzheimer disease. Axonal dystrophies were observed in Alzheimer’s patients and transgenic models at early ages. These axonal dystrophies could reflect the disruption of axonal transport and the accumulation of multiple vesicles at local points. It has been also proposed that dystrophies might interfere with normal intracellular proteolysis. In this work, we have investigated the progression of the hippocampal pathology and the possible implication in Abeta production in young (6 months and aged (18 months PS1(M146L/APP(751sl transgenic mice. Results Our data demonstrated the existence of a progressive, age-dependent, formation of axonal dystrophies, mainly located in contact with congophilic Abeta deposition, which exhibited tau and neurofilament hyperphosphorylation. This progressive pathology was paralleled with decreased expression of the motor proteins kinesin and dynein. Furthermore, we also observed an early decrease in the activity of cathepsins B and D, progressing to a deep inhibition of these lysosomal proteases at late ages. This lysosomal impairment could be responsible for the accumulation of LC3-II and ubiquitinated proteins within axonal dystrophies. We have also investigated the repercussion of these deficiencies on the APP metabolism. Our data demonstrated the existence of an increase in the amyloidogenic pathway, which was reflected by the accumulation of hAPPfl, C99 fragment, intracellular Abeta in parallel with an increase in BACE and gamma-secretase activities. In vitro experiments, using APPswe transfected N2a cells, demonstrated that any imbalance on the proteolytic systems reproduced the in vivo alterations in APP metabolism. Finally, our data also demonstrated that Abeta peptides were preferentially accumulated in isolated synaptosomes. Conclusion A progressive age-dependent cytoskeletal pathology along with a reduction of

  18. Pancreatic expression of human insulin gene in transgenic mice.

    OpenAIRE

    Bucchini, D; Ripoche, M A; Stinnakre, M G; Desbois, P; Lorès, P; Monthioux, E; Absil, J; Lepesant, J A; Pictet, R; Jami, J

    1986-01-01

    We have investigated the possibility of obtaining integration and expression of a native human gene in transgenic mice. An 11-kilobase (kb) human chromosomal DNA fragment including the insulin gene (1430 base pairs) was microinjected into fertilized mouse eggs. This fragment was present in the genomic DNA of several developing animals. One transgenic mouse and its progeny were analyzed for expression of the foreign gene. Synthesis and release of human insulin was revealed by detection of the ...

  19. Tau Protein Mediates APP Intracellular Domain (AICD)-Induced Alzheimer’s-Like Pathological Features in Mice

    Science.gov (United States)

    Dawson, Hana N.; Pimplikar, Sanjay W.

    2016-01-01

    Amyloid precursor protein (APP) is cleaved by gamma-secretase to simultaneously generate amyloid beta (Aβ) and APP Intracellular Domain (AICD) peptides. Aβ plays a pivotal role in Alzheimer’s disease (AD) pathogenesis but recent studies suggest that amyloid-independent mechanisms also contribute to the disease. We previously showed that AICD transgenic mice (AICD-Tg) exhibit AD-like features such as tau pathology, aberrant neuronal activity, memory deficits and neurodegeneration in an age-dependent manner. Since AD is a tauopathy and tau has been shown to mediate Aβ–induced toxicity, we examined the role of tau in AICD-induced pathological features. We report that ablating endogenous tau protects AICD-Tg mice from deficits in adult neurogenesis, seizure severity, short-term memory deficits and neurodegeneration. Deletion of tau restored abnormal phosphorylation of NMDA receptors, which is likely to underlie hyperexcitability and associated excitotoxicity in AICD-Tg mice. Conversely, overexpression of wild-type human tau aggravated receptor phosphorylation, impaired adult neurogenesis, memory deficits and neurodegeneration. Our findings show that tau is essential for mediating the deleterious effects of AICD. Since tau also mediates Aβ-induced toxic effects, our findings suggest that tau is a common downstream factor in both amyloid-dependent and–independent pathogenic mechanisms and therefore could be a more effective drug target for therapeutic intervention in AD. PMID:27459671

  20. High-fat-diet-induced weight gain ameliorates bone loss without exacerbating AβPP processing and cognition in female APP/PS1 mice

    Directory of Open Access Journals (Sweden)

    Yunhua ePeng

    2014-08-01

    Full Text Available Osteoporosis is negatively correlated with body mass, whereas both osteoporosis and weight loss occur at higher incidence during the progression of Alzheimer’s disease (AD than the age-matched non-dementia individuals. Given that there is no evidence that overweight associated with AD-type cognitive dysfunction, we hypothesized that moderate weight gain might have a protective effect on the bone loss in AD without exacerbating cognitive dysfunction. In the present study, feeding a high-fat-diet (HFD, 45% calorie from fat to female APP/PS1 transgenic mice, an AD animal model, induced weight gain. The bone mineral density, microarchitecture, and biomechanical properties of the femurs were then evaluated. The results showed that the middle-aged female APP/PS1 transgenic mice were susceptible to osteoporosis of the femoral bones and that weight gain significantly enhanced bone mass and mechanical properties. Notably, HFD was not detrimental to brain insulin signaling and AβPP processing, as well as to exploration ability and working, learning and memory performance of the transgenic mice measured by T maze and water maze, compared with the mice fed a normal fat diet (10% calorie from fat. In addition, the circulating levels of leptin but not estradiol were remarkably elevated in HFD-treated mice. These results suggest that a body weight gain induced by the HFD feeding regimen significantly improved bone mass in female APP/PS1 mice with no detriments to exploration ability and spatial memory, most likely via the action of elevated circulating leptin.

  1. Chimeric elk/mouse prion proteins in transgenic mice

    OpenAIRE

    Tamguney, G; Giles, K; Oehler, A.; Johnson, NL; DeArmond, SJ; Prusiner, SB

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). ...

  2. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  3. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin.

    Science.gov (United States)

    Nicolas, Gaël; Bennoun, Myriam; Porteu, Arlette; Mativet, Sandrine; Beaumont, Carole; Grandchamp, Bernard; Sirito, Mario; Sawadogo, Michèle; Kahn, Axel; Vaulont, Sophie

    2002-04-01

    We recently reported the hemochromatosis-like phenotype observed in our Usf2 knockout mice. In these mice, as in murine models of hemochromatosis and patients with hereditary hemochromatosis, iron accumulates in parenchymal cells (in particular, liver and pancreas), whereas the reticuloendothelial system is spared from this iron loading. We suggested that this phenotypic trait could be attributed to the absence, in the Usf2 knockout mice, of a secreted liver-specific peptide, hepcidin. We conjectured that the reverse situation, namely overexpression of hepcidin, might result in phenotypic traits of iron deficiency. This question was addressed by generating transgenic mice expressing hepcidin under the control of the liver-specific transthyretin promoter. We found that the majority of the transgenic mice were born with a pale skin and died within a few hours after birth. These transgenic animals had decreased body iron levels and presented severe microcytic hypochromic anemia. So far, three mosaic transgenic animals have survived. They were unequivocally identified by physical features, including reduced body size, pallor, hairless and crumpled skin. These pleiotropic effects were found to be associated with erythrocyte abnormalities, with marked anisocytosis, poikylocytosis and hypochromia, which are features characteristic of iron-deficiency anemia. These results strongly support the proposed role of hepcidin as a putative iron-regulatory hormone. The animal models devoid of hepcidin (the Usf2 knockout mice) or overexpressing the peptide (the transgenic mice presented in this paper) represent valuable tools for investigating iron homeostasis in vivo and for deciphering the molecular mechanisms of hepcidin action. PMID:11930010

  4. Neurofilament light gene deletion exacerbates amyloid, dystrophic neurite, and synaptic pathology in the APP/PS1 transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Fernandez-Martos, Carmen M; King, Anna E; Atkinson, Rachel A K; Woodhouse, Adele; Vickers, James C

    2015-10-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with the loss of cognitive function. Neurofilament (NF) triplet proteins, the major structural (intermediate filament) proteins of neurons, are expressed in a subset of pyramidal cells that show a high degree of vulnerability to degeneration in AD. Alterations in the NF triplet proteins in amyloid-beta (Aβ) plaque-associated dystrophic neurites (DNs) represent the first cytoskeletal aberration to occur in the neocortex in the earliest stages of AD. We generated transgenic APP/PS1 (APPswe/PSEN1dE9) mice on the neurofilament light knockout (NFL KO) background to explore the role of NFL deletion in the context of DN formation, synaptic changes, and other neuropathologic features. Our analysis demonstrated that NFL deficiency significantly increased neocortical DN pathology, Aβ deposition, synapse vulnerability, and microgliosis in APP/PS1 mice. Thus, NFs may have a role in protecting neurites from dystrophy and in regulating cellular pathways related to the generation of Aβ plaques. PMID:26344875

  5. Tolerance induced by physiological levels of secreted proteins in transgenic mice expressing human insulin.

    OpenAIRE

    Whiteley, P J; Lake, J P; Selden, R F; Kapp, J A

    1989-01-01

    We have used transgenic mice to study immune tolerance to autologous, non-MHC encoded proteins that are expressed at physiological levels in the circulation. The transgenic mice used in these studies express the human preproinsulin gene and synthesize human proinsulin. Human and mouse insulin are secreted from the pancreatic islets of transgenic mice in response to normal physiological stimuli, such as glucose. Our data demonstrate that the transgenic mice have acquired tolerance to human ins...

  6. Generation of the regulatory protein rtTA transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Kang Xu; Xin-Yan Deng; Ying Yue; Zhong-Min Guo; Bing Huang; Xun Hong; Dong Xiao; Xi-Gu Chen

    2005-01-01

    AIM: To translate Tet-on system into a conditional mouse model, in which hepatitis B or C virus (HBV or HCV) gene could be spatiotemporally expressed to overcome "immune tolerance" formed during the embryonic development and "immune escape" against hepatitis virus antigen(s), an effector mouse, carrying the reverse tetracycline-responsive transcriptional activator (rtTA) gene under the tight control of liver-specific human apoE promoter, is required to be generated. METHODS: To address this end, rtTA fragment amplified by PCR was effectively inserted into the vector of pLiv.7 containing apoE promoter to create the rtTA expressing vector, I.e., pApoE-rtTA. ApoE-rtTA transgenic fragment (-6.9 kb) released from pApoE-rtTA was transferred into mice by pronucleus injection, followed by obtaining one transgene (+) founder animal from microinjection through PCR and Southern blot analysis.RESULTS: rtTA transgene which could be transmitted to subsequent generation (F1) derived from founder was expressed in a liver-specific fashion. CONCLUSION: Taken together, these findings demonstrate that rtTA transgenic mice, in which rtTA expression is appropriately targeted to the murine liver, are successfully produced, which lays a solid foundation to 'off-on-off' regulate expression of target gene (s) (e.g., HBV and/or HCV) in transgenic mice mediated by Tet-on system.

  7. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice.

    OpenAIRE

    Messing, A; Head, M.W.; Galles, K.; Galbreath, E. J.; Goldman, J. E.; Brenner, M.

    1998-01-01

    Increased expression of glial fibrillary acidic protein (GFAP) is a hallmark of gliosis, the astrocytic hypertrophy that occurs during a wide variety of diseases of the central nervous system. To determine whether this increase in GFAP expression per se alters astrocyte function, we generated transgenic mice that carry copies of the human GFAP gene driven by its own promoter. Astrocytes of these mice are hypertrophic, up-regulate small heat-shock proteins, and contain inclusion bodies identic...

  8. GFAP expression and social deficits in transgenic mice overexpressing human sAPPα

    Science.gov (United States)

    Bailey, Antoinette R; Hou, Huayan; Song, Min; Obregon, Demian F; Portis, Samantha; Barger, Steven; Shytle, Doug; Stock, Saundra; Mori, Takashi; Sanberg, Paul G; Murphy, Tanya; Tan, Jun

    2013-01-01

    Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein-alpha (sAPPα), the product of α-secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL-6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPPα and mice generated to mimic this observation would display markers suggestive of gliosis and autism-like behavior. Elevations in sAPPα levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPPα (TgsAPPα mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL-6 levels. NSCs isolated from TgsAPPα mice, and those derived from wild-type mice treated with sAPPα, displayed suppressed β-tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPPα levels are observed in subsets of individuals with autism and TgsAPPα mice display signs suggestive of gliosis and behavioral impairment. PMID:23840007

  9. GFAP expression and social deficits in transgenic mice overexpressing human sAPPα.

    Science.gov (United States)

    Bailey, Antoinette R; Hou, Huayan; Song, Min; Obregon, Demian F; Portis, Samantha; Barger, Steven; Shytle, Doug; Stock, Saundra; Mori, Takashi; Sanberg, Paul G; Murphy, Tanya; Tan, Jun

    2013-09-01

    Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein-alpha (sAPPα), the product of α-secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL-6 pathway. Considering evidence of gliosis in postmortem autistic brains, we hypothesized that subsets of patients with autism would exhibit elevations in CNS sAPPα and mice generated to mimic this observation would display markers suggestive of gliosis and autism-like behavior. Elevations in sAPPα levels were observed in brains of autistic patients compared to controls. Transgenic mice engineered to overexpress human sAPPα (TgsAPPα mice) displayed hypoactivity, impaired sociability, increased brain glial fibrillary acidic protein (GFAP) expression, and altered Notch1 and IL-6 levels. NSCs isolated from TgsAPPα mice, and those derived from wild-type mice treated with sAPPα, displayed suppressed β-tubulin III and elevated GFAP expression. These results suggest that elevations in brain sAPPα levels are observed in subsets of individuals with autism and TgsAPPα mice display signs suggestive of gliosis and behavioral impairment. PMID:23840007

  10. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    Science.gov (United States)

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  11. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1 Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Henrik H Hansen

    Full Text Available One of the major histopathological hallmarks of Alzheimer's disease (AD is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1 receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP and presenilin-1 (PS1 are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9 of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c., or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.. In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD.

  12. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer’s Disease

    Science.gov (United States)

    Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer’s disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer’s disease carrying different clinical APP/PS1 mutations, i.e. the ‘London’ (hAPPLon/PS1A246E) and ‘Swedish’ mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  13. Bacopaside I ameliorates cognitive impairment in APP/PS1 mice via immune-mediated clearance of β-amyloid

    Science.gov (United States)

    Li, Yuanyuan; Yuan, Xing; Shen, Yunheng; Zhao, Jing; Yue, Rongcai; Liu, Fang; He, Weiwei; Wang, Rui; Shan, Lei; Zhang, Weidong

    2016-01-01

    Standardized extracts of Bacopa monniera (BME) have been shown to exert a neuroprotective effect against mental diseases, such as depression, anxiety and Alzheimer's disease (AD), in chronic administration studies. However, its mechanism of action has remained unclear. In this study, we evaluated the therapeutic effect of Bacopaside I (BS-I), a major triterpenoid saponin of BME, on the cognitive impairment and neuropathology in APP/PS1 transgenic mice and explored the possible mechanism from a biological systems perspective. We found that BS-I treatment significantly ameliorated learning deficits, improved long-term spatial memory, and reduced plaque load in APP/PS1 mice. We constructed BS-I's therapeutic effect network by mapping the nodes onto the protein-protein interaction (PPI) network constructed according to their functional categories based on genomic and proteomic data. Because many of the top enrichment categories related to the processes of the immune system and phagocytosis were detected, we proposed that BS-I promotes amyloid clearance via the induction of a suitable degree of innate immune stimulation and phagocytosis. Our research may help to clarify the neuroprotective effect of BME and indicated that natural saponins target the immune system, which may offer new research avenues to discover novel treatments for AD. PMID:26946062

  14. Application of a nuclear localization signal gene in transgene mice

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Efficient gene transfer by cytoplasm co-injec- tion will offer a powerful means for transgenic animals. Using co-injection in cytoplasm, two independent gene constructs, including bovine (?-s1-casein-hG-CSF and a mammal expression vector expressing a nuclear localization signal (mNLS), were introduced into fertilized mouse eggs. The target gene construct was docked into host nucleus probably by the nuclear localization signal. Transgene mice have been obtained at 58% (29/50) of integration ratio. Expression level of the positive transgene mice was detected by Western blotting. Maximal expression of human G-CSF was estimated about 540 mg/L of milk. The expression ratio was up to 75% (9/12). The results here have important practical implications for the generation of mammary gland bioreactors and other transgene studies. Co-injection of a target gene with an expression vector of a mammal nuclear localization signal by cytoplasm appears to be a useful, efficient and easy strategy for generating transgenic animals, which may be able to substitute the routine method of pronucleus-injection of fertilized eggs.

  15. Overexpression of apolipoprotein AII in transgenic mice converts high density lipoproteins to proinflammatory particles.

    OpenAIRE

    Castellani, L W; Navab, M; Van Lenten, B J; Hedrick, C. C.; Hama, S Y; Goto, A M; Fogelman, A M; Lusis, A J

    1997-01-01

    Previous studies showed that transgenic mice overexpressing either apolipoprotein AI (apoAI) or apolipoprotein AII (apoAII), the major proteins of HDL, exhibited elevated levels of HDL cholesterol, but, whereas the apoAI-transgenic mice were protected against atherosclerosis, the apoAII-transgenic mice had increased lesion development. We now examine the basis for this striking functional heterogeneity. HDL from apoAI transgenics exhibited an enhanced ability to promote cholesterol efflux fro...

  16. New findings in gene knockout, mutant and transgenic mice.

    Science.gov (United States)

    Bartke, Andrzej

    2008-01-01

    During the past year, some novel genetic modifications were shown to alter the lifespan of mice, thus expanding the list of genes and physiological processes that influence mammalian aging. Considerable progress was also made in identifying putative mechanisms of extended longevity in previously described gene knockouts, mutants and transgenics. In addition, new leads concerning mechanisms of aging were derived from studies of gene knockout mice in which aging is accelerated. Among the important findings from the period July 2006 to July 2007: Core body temperature was shown to influence longevity in homeothermic animals; a Surf1 gene knockout extended lifespan in mice; separate studies using Little and Snell dwarf mice found stress resistance enhancements correlated with longevity gains; and mice heterozygous for deletion of insulin receptor substrate 2 (IRS-2) lived longer than normal animals, while animals with homozygous or heterozygous deletion of IRS-2 selectively in the brain exhibited comparable extension of lifespan and various symptoms of delayed aging. PMID:18053667

  17. Evaluation of Neuropathological Effects of a High-Fat Diet in a Presymptomatic Alzheimer's Disease Stage in APP/PS1 Mice.

    Science.gov (United States)

    Ettcheto, Miren; Petrov, Dmitry; Pedrós, Ignacio; Alva, Norma; Carbonell, Teresa; Beas-Zarate, Carlos; Pallas, Merce; Auladell, Carme; Folch, Jaume; Camins, Antoni

    2016-07-14

    Alzheimer's disease (AD) is currently an incurable aging-related neurodegenerative disorder. Recent studies give support to the hypotheses that AD should be considered as a metabolic disease. The present study aimed to explore the relationship between hippocampal neuropathological amyloid-β (Aβ) plaque formation and obesity at an early presymptomatic disease stage (3 months of age). For this purpose, we used APPswe/PS1dE9 (APP/PS1) transgenic mice, fed with a high-fat diet (HFD) in order to investigate the potential molecular mechanisms involved in both disorders. The results showed that the hippocampus from APP/PS1 mice fed with a HFD had an early significant decrease in Aβ signaling pathway specifically in the insulin degrading enzyme protein levels, an enzyme involved in (Aβ) metabolism, and α-secretase. These changes were accompanied by a significant increase in the occurrence of plaques in the hippocampus of these mice. Furthermore, APP/PS1 mice showed a significant hippocampal decrease in PGC-1α levels, a cofactor involved in mitochondrial biogenesis. However, HFD does not provoke changes in neither insulin receptors gene expression nor enzymes involved in the signaling pathway. Moreover, there are no changes in any enzymes (kinases) involved in tau phosphorylation, such as CDK5, and neither in brain oxidative stress production. These results suggest that early changes in brains of APP/PS1 mice fed with a HFD are mediated by an increase in Aβ1 ‒ 42, which induces a decrease in PKA levels and alterations in the p-CREB/ NMDA2B /PGC1-α pathway, favoring early AD neuropathology in mice. PMID:27567882

  18. Establishment and use of HBV-replication transgenic mice

    Directory of Open Access Journals (Sweden)

    Xiang-ping KONG

    2011-09-01

    Full Text Available Despite the existence of a preventive vaccine,hepatitis B virus(HBV infection is still a major worldwide health problem,especially in China.As HBV naturally Despite of the existence of a preventive vaccine,hepatitis B virus(HBV infection is still a major worldwide healthy problem,especially in China.As HBV naturally infects only human and chimpanzees,many issues pertaining to the biology and the therapeutic of HBV infection remain unresolved due to the limitation of the establishment of a HBV model.However,the establishment of HBV-replication transgenic mice has greatly improved our understanding of life cycle,immunobiology and pathogensis of HBV.The establishment of HBV transgenic mice and its use in assessing the antiviral potential of pharmacological agents and HBV immunopathogenesis are herewith briefly described in the present paper.

  19. Evaluating cerebellar functions using optogenetic transgenic mice

    Science.gov (United States)

    Welsh, John P.; Turecek, Josef; Turner, Eric E.

    2013-03-01

    We employed a transgenic mouse having conditional expression of ChR2(H134R) in neurons of the inferior olive to facilitate understanding of the role of electrical coupling and oscillation in central nervous system function. Two-photon excitation of ChR2-expressing neurons using 64 laser beams restricted to single inferior olive cell bodies depolarized neurons and evoked voltage deflections in neighboring neurons demonstrating electrical coupling. Broader illumination of neuronal ensembles using blue light induced an optical clamp of endogenous electrical rhythms in the inferior olive of acutely-prepared brain slices, which when applied in vivo directly modulated the local field potential activity and induced tremor. The experiments demonstrate novel methods to optically manipulate electrically coupled potentials and rhythmogenesis within a neuronal ensemble. From a functional perspective, the experiments shed light on the cellular and circuitry mechanisms of essential tremor, a prevalent neurological condition, by indicating time- and frequencydependence of tremor upon varying rhythms of inferior olive stimulation. The experiments indicate analog control of a brain rhythm that may be used to enhance our understanding of the functional consequences of central rhythmogenesis.

  20. Efficient production of human immunodeficiency virus proteins in transgenic mice.

    OpenAIRE

    Jolicoeur, P.; Laperrière, A; Beaulieu, N.

    1992-01-01

    Transgenic mice containing the complete human immunodeficiency virus (HIV) coding sequences fused to the mouse mammary tumor virus long terminal repeat were generated. They were found to produce high levels of authentic gag and env HIV proteins in several tissues known to support mouse mammary tumor virus-driven transcription. HIV proteins were also detected in serum and in body fluids (milk and epididymal secretions) known to be natural sites of retrovirus, and specifically of HIV, productio...

  1. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP{sub swe}/PS1{sub {Delta}E9} transgenic mouse model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China); Department of Physiology, Third Military Medical University, Chongqing 400038 (China); Song, Min; Wang, Yanyan [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China); Fan, Xiaotang [Department of Histology and Embryology, Third Military Medical University, Chongqing 400038 (China); Xu, Haiwei, E-mail: haiweixu2001@yahoo.com.cn [Department of Physiology, Third Military Medical University, Chongqing 400038 (China); Bai, Yun, E-mail: baiyungene@gmail.com [Department of Medical Genetics, Third Military Medical University, Chongqing 400038 (China)

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP{sub swe}/PS1{sub {Delta}E9} mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP{sub swe}/PS1{sub {Delta}E9} transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  2. Building of hFⅨ transgenic mice by spermatogenic cells

    Institute of Scientific and Technical Information of China (English)

    WANG Ning; CHEN Xiaoguang; CHEN Li; YAO Jihua; CHEN Haoming; SHEN Qi; XUE Jinglun

    2003-01-01

    Human FⅨ expression vector pCMVⅨ was packaged by EffecteneTM reagent and injected into mice seminiferous tubules with glass pipettes. The expressional frame of pCMVⅨ was examined by PCR and Southern blotting among 41 progenies. There were 2 (4%) mice being integrated with hFⅨ gene into chromosomes. 4.6 ng/mL of hFⅨ protein was expressed in plasma of one mouse, which was tested by ELISA. We demonstrated that building of transgenic animals by spermatogonial stem cells is an efficient method. Meanwhile, it has also been proved to be an alternative choice for mammary gland bioreactor.

  3. Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Directory of Open Access Journals (Sweden)

    Yun Seong-Jo

    2012-01-01

    Full Text Available Abstract Background Dimeric human erythropoietin (dHuEPO peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg mice expressing dHuEPO and to investigate the characteristics of these mice. Methods A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile, was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice. Results A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47 of tg mice expressing the dHuEPO gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11. We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764. Reverse transcriptase-polymerase chain reaction (RT-PCR and quantitative real-time PCR (qRT-PCR were used for validating the results of the microarray

  4. Functional screening of an asthma QTL in YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Symula, Derek J.; Frazer, Kelly A.; Ueda, Yukihiko; Denefle, Patrice; Stevens, Mary E.; Wang, Zhi-En; Locksley, Richard; Rubin, Edward M.

    1999-07-02

    While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. While large numbers of quantitative trait loci (QTLs) contributing to genetically complex conditions have been discovered, few causative genes have been identified. This is mainly due to the large size of QTLs and the subtle connection between genotype and quantitative phenotype associated with these conditions. To screen for genes contributing to an asthma QTL mapped to human chromosome 5q33, the authors characterized a panel of large-insert 5q31 transgenics based on studies demonstrating that altering gene dosage frequently affects quantitative phenotypes normally influenced by that gene. This panel of human YAC transgenics, propagating a one megabase interva2048 chromosome 5q31 containing 23 genes, was screened for quantitative changes in several asthma-associated phenotypes. Multiple independent transgenic lines with altered IgE response to antigen treatment shared a 180 kb region containing 5 genes, including human interleukin 4 (IL4) and interleukin 13 (IL13), which induce IgE class switching in B cells5. Further analysis of these mice and mice transgenic for only murine Il4 and Il13 demonstrated that moderate changes in murine Il4 and Il13 expression affect asthma-associated phenotypes in vivo. This functional screen of large-insert transgenics enabled them to sift through multiple genes in the 5q3 asthma QTL without prior consideration of assumed individual gene function and identify genes that influence the QTL phenotype in vivo.

  5. Evaluation of tyrosinase minigene co-injection as a marker for genetic manipulations in transgenic mice.

    OpenAIRE

    Methot, D; Reudelhuber, T L; Silversides, D W

    1995-01-01

    The utility of tyrosinase minigene co-injection was evaluated as a visual marker for the generation and breeding of transgenic mice. In an evaluation of 39 transgenic founder animals and 44 transgenic lines five phenotypic patterns of pigmentation were consistently observed, including albino, dark, light, mottled and himalayan. In these studies co-injection of the tyrosinase minigene along with the transgene of interest (TOI) resulted in genomic integration of the two transgenes in 95% of the...

  6. Generating Transgenic Mice from Bacterial Artificial Chromosomes: Transgenesis Efficiency, Integration and Expression Outcomes

    OpenAIRE

    Van Keuren, Margaret L.; Gavrilina, Galina B.; Filipiak, Wanda E.; Zeidler, Michael G.; Saunders, Thomas L.

    2009-01-01

    Transgenic mice are widely used in biomedical research to study gene expression, developmental biology, and gene therapy models. Bacterial artificial chromosome (BAC) transgenes direct gene expression at physiological levels with the same developmental timing and expression patterns as endogenous genes in transgenic animal models. We generated 707 transgenic founders from 86 BAC transgenes purified by three different methods. Transgenesis efficiency was the same for all BAC DNA purification m...

  7. Magnetic biomineralisation in Huntington's disease transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Beyhum, W [London Centre for Nanotechnology, University College London, London, WC1E 7HN (United Kingdom); Hautot, D [London Centre for Nanotechnology, University College London, London, WC1E 7HN (United Kingdom); Dobson, J [Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB (United Kingdom); Pankhurst, Q A [London Centre for Nanotechnology, University College London, London, WC1E 7HN (United Kingdom)

    2005-01-01

    The concentration levels of biogenic magnetite nanoparticles in transgenic R6/2 Huntington's disease (HD) mice have been investigated, using seven control and seven HD mice each from an 8 week-old litter and from a 12 week-old litter. Hysteresis and isothermal remnant magnetisation data were collected on a SQUID magnetometer, and analysed using a model comprising dia/paramagnetic, ferrimagnetic and superparamagnetic contributions, to extract the magnetite and ferritin concentrations present. It was found that magnetite was present in both superparamagnetic and blocked states. A larger spread and higher concentration of magnetite levels was found in the diseased mice for both the 8 week-old and 12 week-old batches, compared to the controls.

  8. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  9. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  10. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Ilkjær, Laura; Clausen, Bettina H;

    2015-01-01

    latter cytokines was generally increased in APP/PS1 Tg mice. Microglia that phagocytosed endogenously-produced Aβ were only observed in APP/PS1 Tg mice. Differences in phagocytic index and total Aβ load were observed in microglia with specific cytokine profiles. Both phagocytic index and total Aβ load...... mice, we confirmed that the majority of neocortical CD11b(+)(CD45(+)) microglia were resident cells (GFP(-)) in APP/PS1 Tg mice, even after selectively analysing CD11b(+)CD45(high) cells, which are typically considered to be infiltrating cells. Together, our data demonstrate that cytokine expression is...... selectively correlated with age and Aβ pathology, and is associated with an altered Aβ load in phagocytic microglia from APP/PS1 Tg mice. These findings have implications for understanding the regulation of microglial cytokine production and phagocytosis of Aβ in Alzheimer's disease....

  11. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation

    DEFF Research Database (Denmark)

    Folkesson, Ronnie; Malkiewicz, Katarzyna; Kloskowska, Ewa;

    2007-01-01

    protein (APP) containing the Swedish AD mutation. The highest level of expression in the brain is found in the cortex, hippocampus, and cerebellum. Starting after the age of 15 months, the rats show increased tau phosphorylation and extracellular Abeta staining. The Abeta is found predominantly in...

  12. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice

    Science.gov (United States)

    Rhein, Virginie; Song, Xiaomin; Wiesner, Andreas; Ittner, Lars M.; Baysang, Ginette; Meier, Fides; Ozmen, Laurence; Bluethmann, Horst; Dröse, Stefan; Brandt, Ulrich; Savaskan, Egemen; Czech, Christian; Götz, Jürgen; Eckert, Anne

    2009-01-01

    Alzheimer's disease (AD) is characterized by amyloid-beta (Aβ)-containing plaques, neurofibrillary tangles, and neuron and synapse loss. Tangle formation has been reproduced in P301L tau transgenic pR5 mice, whereas APPswPS2N141I double-transgenic APP152 mice develop Aβ plaques. Cross-breeding generates triple transgenic (tripleAD) mice that combine both pathologies in one model. To determine functional consequences of the combined Aβ and tau pathologies, we performed a proteomic analysis followed by functional validation. Specifically, we obtained vesicular preparations from tripleAD mice, the parental strains, and nontransgenic mice, followed by the quantitative mass-tag labeling proteomic technique iTRAQ and mass spectrometry. Within 1,275 quantified proteins, we found a massive deregulation of 24 proteins, of which one-third were mitochondrial proteins mainly related to complexes I and IV of the oxidative phosphorylation system (OXPHOS). Notably, deregulation of complex I was tau dependent, whereas deregulation of complex IV was Aβ dependent, both at the protein and activity levels. Synergistic effects of Aβ and tau were evident in 8-month-old tripleAD mice as only they showed a reduction of the mitochondrial membrane potential at this early age. At the age of 12 months, the strongest defects on OXPHOS, synthesis of ATP, and reactive oxygen species were exhibited in the tripleAD mice, again emphasizing synergistic, age-associated effects of Aβ and tau in perishing mitochondria. Our study establishes a molecular link between Aβ and tau protein in AD pathology in vivo, illustrating the potential of quantitative proteomics. PMID:19897719

  13. WIF1 causes dysfunction of heart in transgenic mice

    OpenAIRE

    Lu, Dan; Dong, Wei; Zhang, Xu; Quan, Xiongzhi; Bao, Dan; Lu, Yingdong; Zhang, Lianfeng

    2013-01-01

    Wnt activity is a key regulator of cardiac progenitor cell self-renewal, differentiation and morphogenesis. However, Wnt inhibitory factor 1 (WIF1), a antagonists of Wnt signaling activity, its potential effects on heart development has not yet been approached by either in vivo or in vitro studies. Here, the expression of WIF1 was regulated in a different way in the dilated and hypertrophic cardiomyopathy heart from transgenic mice by mutations in cardiac troponin T, cTnTR141W and cTnTR92Q. T...

  14. ADAM 12 Protease Induces Adipogenesis in Transgenic Mice

    OpenAIRE

    Kawaguchi, Nobuko; Xu, Xiufeng; Tajima, Rie; Kronqvist, Pauliina; Sundberg, Christina; Loechel, Frosty; Albrechtsen, Reidar; Wewer, Ulla M.

    2002-01-01

    ADAM 12 (meltrin-α) is a member of the ADAM (a disintegrin and metalloprotease) family. ADAM 12 functions as an active metalloprotease, supports cell adhesion, and has been implicated in myoblast differentiation and fusion. Human ADAM 12 exists in two forms: the prototype membrane-anchored protein, ADAM 12-L, and a shorter secreted form, ADAM 12-S. Here we report the occurrence of adipocytes in the skeletal muscle of transgenic mice in which overexpression of either form is driven by the musc...

  15. Multistage epidermal carcinogenesis in transgenic mice: cooperativity and paradox.

    Science.gov (United States)

    Greenhalgh, D A; Wang, X J; Roop, D R

    1996-04-01

    Skin cancer is one of the most prevalent forms of human neoplasia with a frequency approaching that of all other neoplasms combined. Given this alarming statistic, which may be further exacerbated by increased ultraviolet B irradiation from ozone depletion, it is vital that realistic, relevant model systems are developed to increase our understanding of the underlying molecular mechanisms of carcinogenesis that result in or evaluate new treatment modalities. Toward this goal, the ability to stably introduce genes into the germline of mice has greatly enhanced prospects for generation of transgenic animal models of multistage molecular carcinogenesis. Moreover, when genes are combined with regulatory sequences that target their expression to specific tissues, investigators are able to study neoplasia both in the context of living organisms and in the tissues suspected of being the targets of these genes. The epidermis is an attractive tissue for targeted gene expression; not only is it a model for epithelial diseases in general, but the accessibility of the epidermis allows easy detection of progressive pathological changes that result from transgene expression and facilitates assessment of the potential role played by environmental factors. We have developed a targeting vector based on the human keratin gene (HK1), which is expressed exclusively in the epidermis of transgenic mice, at a late stage in development and in both basal and differentiated cells. Through the use of this targeting ability, rasHa, fos, and TGF alpha transgenic mice have been developed that exhibit preneoplastic epidermal hyperplasia and hyperkeratosis, and later benign, regression prone papillomas. Together, coexpression of two oncogenes cooperated to give autonomous papillomas, which possessed the phenotypic stability to allow assessment of a third genetic event, namely loss of the p53 tumor suppressor gene, via mating with p53 knockout mice. Loss of p53 expression, however, identified a

  16. Transgenic mice with overexpression of mutated human optineurin(E50K) in the retina.

    Science.gov (United States)

    Meng, Qingfeng; Xiao, Zheng; Yuan, Huiping; Xue, Fei; Zhu, Yuanmao; Zhou, Xinrong; Yang, Binbin; Sun, Jingbo; Meng, Bo; Sun, Xian; Cheng, Fang

    2012-02-01

    In the present work, Site-directed mutagenesis to insert the Glu50Lys amino acid substitution was achieved by PCR using plasmid pBluescript-OPTN. Mutated human OPTN(E50K) gene-driven mouse c-kit promoter was constructed and confirmed by endonuclease digestion and sequence analysis. Transgenic mice were generated via the microinjection method. PCR and DNA dot blot were used to screen the positive transgenic mice. RT-PCR analyzed the RNA level and location of mutated human OPTN(E50K) mRNA expression in transgenic mice. Western blot and immunohistochemistry were used to detect the level and location of mutated human OPTN(E50K) expression in transgenic mice. A transgenic mouse model with overexpression of mutated human OPTN(E50K) in retina was successfully established. The transgene was integrated and transmitted into the chromosome of transgenic mice. Mutated human OPTN(E50K) gene was controlled by c-kit promoter and expressed in the retina in mice. Mutated human OPTN(E50K) in transgenic mice was higher than that of wild type C57BL/6J mice. Our studies had provided a new transgenic model for investigating the molecular properties of mutated human OPTN(E50K). PMID:21681420

  17. A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takako Niikura

    Full Text Available Humanin (HN, a 24-residue peptide, was identified as a novel neuroprotective factor and shows anti-cell death activity against a wide spectrum of Alzheimer's disease (AD-related cytotoxicities, including exposure to amyloid beta (Abeta, in vitro. We previously demonstrated that the injection of S14G-HN, a highly potent HN derivative, into brain ameliorated memory loss in an Abeta-injection mouse model. To fully understand HN's functions under AD-associated pathological conditions, we examined the effect of S14G-HN on triple transgenic mice harboring APP(swe, tau(P310L, and PS-1(M146V that show the age-dependent development of multiple pathologies relating to AD. After 3 months of intranasal treatment, behavioral analyses showed that S14G-HN ameliorated cognitive impairment in male mice. Moreover, ELISA and immunohistochemical analyses showed that Abeta levels in brains were markedly lower in S14G-HN-treated male and female mice than in vehicle control mice. We also found the expression level of neprilysin, an Abeta degrading enzyme, in the outer molecular layer of hippocampal formation was increased in S14G-HN-treated mouse brains. NEP activity was also elevated by S14G-HN treatment in vitro. These findings suggest that decreased Abeta level in these mice is at least partly attributed to S14G-HN-induced increase of neprilysin level. Although HN was identified as an anti-neuronal death factor, these results indicate that HN may also have a therapeutic effect on amyloid accumulation in AD.

  18. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available BACKGROUND: The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. CONCLUSION/SIGNIFICANCE: We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  19. Lymphopoiesis in transgenic mice over-expressing Artemis.

    Science.gov (United States)

    Rivera-Munoz, P; Abramowski, V; Jacquot, S; André, P; Charrier, S; Lipson-Ruffert, K; Fischer, A; Galy, A; Cavazzana, M; de Villartay, J-P

    2016-02-01

    Artemis is a factor of the non-homologous end joining pathway involved in DNA double-strand break repair that has a critical role in V(D)J recombination. Mutations in DCLRE1C/ARTEMIS gene result in radiosensitive severe combined immunodeficiency in humans owing to a lack of mature T and B cells. Given the known drawbacks of allogeneic hematopoietic stem cell transplantation (HSCT), gene therapy appears as a promising alternative for these patients. However, the safety of an unregulated expression of Artemis has to be established. We developed a transgenic mouse model expressing human Artemis under the control of the strong CMV early enhancer/chicken beta actin promoter through knock-in at the ROSA26 locus to analyze this issue. Transgenic mice present a normal development, maturation and function of T and B cells with no signs of lymphopoietic malignancies for up to 15 months. These results suggest that the over-expression of Artemis in mice (up to 40 times) has no deleterious effects in early and mature lymphoid cells and support the safety of gene therapy as a possible curative treatment for Artemis-deficient patients. PMID:26361272

  20. Next-generation transgenic mice for optogenetic analysis of neural circuits

    Directory of Open Access Journals (Sweden)

    Brent eAsrican

    2013-11-01

    Full Text Available Here we characterize several new lines of transgenic mice useful for optogenetic analysis of brain circuit function. These mice express optogenetic probes, such as enhanced halorhodopsin or several different versions of channelrhodopsins, behind various neuron-specific promoters. These mice permit photoinhibition or photostimulation both in vitro and in vivo. Our results also reveal the important influence of fluorescent tags on optogenetic probe expression and function in transgenic mice.

  1. Tau/APP/PS1三转基因小鼠模型的建立及生物学特征%Generation of Tau/APP/PS1 triple-transgenic mouse model and the study of its biological characteristics

    Institute of Scientific and Technical Information of China (English)

    王利利; 纳鑫; 朱小南; 陈汝筑; 汪海; 汪雪兰

    2012-01-01

    Objective: To establish the triple-transgenic mouse model and study their biological characteristics by molecular biology, behavior and pathology. Methods: Hybrid the Tau and amyluid precuaor proleui(APP)/presenuins(PSl) transgenic mouse, the genotype of offspring mice were identified by PCR. Transcribed target genes were detected by RT-PCR. The protein expression of exogenous genes was detected by Western-blot. The pathological change of neurofibrillary tangles and senile plaque were observed by Bielschowsky silver staining and ABC nnmunohistocheinical method. The changes time of learning and memory were observed by Morris water maze. Results: AFP, PS1 and Tau genes were transcripted in Tau/APP/PSl mice. In 6 to 8 months old Tau/APP/PSl mice, the neurofibrillary tangks and senile plaque could be found in cortex and hippocampus. In 6 months old Tau/APP/PSl mice, the learning and memory abilities were worse. Condusioo: With the behavior change and pathological changes in Tau and βamyloid protein( Aβ), the Tau/APP/PSl triple-transgenjc mice can be used as a further study animal model of AD's pathogenesis and die target of drug treatment.%目的:建立Tau/APP/PS1三转基因小鼠模型,从分子生物学、行为学及病理学角度研究其生物学特征.方法:将自行建立的Tau转基因小鼠与Jackson实验室引种的APP/PS1双转基因小鼠杂交、传代;PCR鉴定小鼠基因型;RT-PCR检测外源基因的转录;Western blot测定外源基因的蛋白表达;Bielschowsky氏染色法和ABC免疫组化法观察大脑神经纤维缠结和老年斑等病理改变;Morris水迷宫观测学习记忆的改变.结果:Tau/APP/PS1三转基因小鼠的大脑可转录和表达Tau、APP和PS1三种外源基因,6~8月龄时大脑皮层和海马可见神经元纤维缠结和老年斑,其学习记忆获得能力在6月龄开始受损.结论:建立的Tau/APP/PS1三转基因小鼠具有Tau和Aβ两种病理改变和学习记忆障碍,为深入探究Tau与Aβ

  2. Characterization of atherosclerotic lesions in apo E3-leiden transgenic mice

    NARCIS (Netherlands)

    Leppänen, P.; Luoma, J.S.; Hofker, M.H.; Havekes, L.M.; Ylä-Herttuala, S.

    1998-01-01

    Apo E3-leiden transgenic mice express human dysfunctional apo E variant and develop hyperlipidemia and atherosclerosis on a high fat/high cholesterol diet. We characterized diet-induced atherosclerotic lesions in apo E3-leiden transgenic mice using immunocytochemical methods in order to examine foam

  3. Utilization of APPswe/PS1dE9 Transgenic Mice in Research of Alzheimer's Disease: Focus on Gene Therapy and Cell-Based Therapy Applications

    OpenAIRE

    Tarja Malm; Jari Koistinaho; Katja Kanninen

    2011-01-01

    One of the most extensively used transgenic mouse model of Alzheimer's disease (AD) is APPswe/PS1dE9 mice, which over express the Swedish mutation of APP together with PS1 deleted in exon 9. These mice show increase in parenchymal A β load with A β plaques starting from the age of four months, glial activation, and deficits in cognitive functions at the age of 6 months demonstrated by radial arm water maze and 12-13 months seen with Morris Water Maze test. As gene transfer technology allows t...

  4. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  5. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    International Nuclear Information System (INIS)

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway

  6. Establishment and identification of GFP transgenic mice model mediated by lentiviral vector

    OpenAIRE

    Xiu-mei LI; Yu-qin YOU; Guang-ze LIU; Jing-wei LI; Chen, Mei-Juan; Wen-yin CHE; Zhou, Jun-Hui; Kong, Xiang-Ping

    2011-01-01

    Objective To establish a technology platform of transgenic animals mediated by lentiviral vector through a practice of preparing the transgenic mice by lentiviral vector carrying green fluorescent protein(GFP).Methods 293FT cells were transfected by a mixture of leniviral vector FUGW and viraPowerTM lentiviral packaging mix(1∶2) using LipofectamineTM 2000.After undergoing concentration,the titer of packaged lentivirus was tested in 293T cells.The transgenic mice were reproduced by injecting t...

  7. Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity

    DEFF Research Database (Denmark)

    Rusu, Patricia; Jansen, Anna; Soba, Peter;

    2007-01-01

    Alzheimer's disease (AD) is characterized by neurofibrillary tangles and extracellular plaques, which consist mainly of beta-amyloid derived from the beta-amyloid precursor protein (APP). An additional feature of AD is axonopathy, which might contribute to impairment of cognitive functions....... Specifically, axonal transport defects have been reported in AD animal models, including mice and flies that overexpress APP and tau. Here we demonstrate that the APP-induced traffic jam of vesicles in peripheral nerves of Drosophila melanogaster larvae depends on the four residues NPTY motif in the APP...... intracellular domain. Furthermore, heterologous expression of Fe65 and JIP1b, scaffolding proteins interacting with the NPTY motif, also perturb axonal transport. Together, these data indicate that JIP1b or Fe65 may be involved in the APP-induced axonal transport defect. Moreover, we have characterized...

  8. Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene.

    OpenAIRE

    Strasser, A.; Harris, A W; von Boehmer, H; Cory, S

    1994-01-01

    To explore the role of bcl-2 in T-cell development, a bcl-2 transgene was introduced into mice expressing a T-cell receptor (TCR) transgene encoding reactivity for the mouse male antigen HY presented by the H-2Db class I antigen of the major histocompatibility complex (MHC). Normal thymic development is contingent on the ability of immature thymocytes to interact with self-MHC molecules presented by thymic stroma (positive selection). Thus, thymocyte numbers are low in femal...

  9. Transmissibility of caprine scrapie in ovine transgenic mice

    Directory of Open Access Journals (Sweden)

    O’Rourke Katherine I

    2012-04-01

    Full Text Available Abstract Background The United States control program for classical ovine scrapie is based in part on the finding that infection is typically spread through exposure to shed placentas from infected ewes. Transmission from goats to sheep is less well described. A suitable rodent model for examining the effect of caprine scrapie isolates in the ovine host will be useful in the ovine scrapie eradication effort. In this study, we describe the incubation time, brain lesion profile, glycoform pattern and PrPSc distribution patterns in a well characterized transgenic mouse line (Tg338 expressing the ovine VRQ prion allele, following inoculation with brain from scrapie infected goats. Results First passage incubation times of caprine tissue in Tg338 ovinized mice varied widely but second passage intervals were shorter and consistent. Vacuolation profiles, glycoform patterns and paraffin-embedded tissue blots from terminally ill second passage mice derived from sheep or goat inocula were similar. Proteinase K digestion products of murine tissue were slightly smaller than the original ruminant inocula, a finding consistent with passage of several ovine strains in previous reports. Conclusions These findings demonstrate that Tg338 mice propagate prions of caprine origin and provide a suitable baseline for examination of samples identified in the expanded US caprine scrapie surveillance program.

  10. The human apoE7 and apoE4 transgenic mice models

    Institute of Scientific and Technical Information of China (English)

    孙明增; 琦祖和

    2001-01-01

    To scrutinize the disorders caused by human mutant apoE7/apoE4, human apoE4 and E7 transgenic mice were established with microinjection technique to examine molecular genetic phenomena in vivo. The integration and expression of h-apoE mutant genes in transgenic mice were determined with Southern blot, Northern blot and ELISA. The current studies indicated that the transgenes and the phenotypes regarding expression of transgenes could be transmitted stably in transgenic lines. The levels of serum lipid in transgenic mice showed the characteristics of hyperlipidemia. Besides, behavior tests demonstrated the degeneration of learning and memory in transgenic mice. Short life span was observed in 2 transgenic lines. After fed with high lipid food high serum lipid was found both in normal and transgenic mice, but their mechanism regulating lipid metabolism was different. It was also verified that the human apoE mutants located at either N-terminal or C-terminal had the same pathogenesis regarding disorders of lipid metabolism in murine.

  11. MR Microimaging of amyloid plaques in Alzheimer's disease transgenic mice

    International Nuclear Information System (INIS)

    Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas. (orig.)

  12. Distinct temporal and anatomical distributions of amyloid-β and tau abnormalities following controlled cortical impact in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Hien T Tran

    Full Text Available Traumatic brain injury (TBI is a major environmental risk factor for Alzheimer's disease. Intracellular accumulations of amyloid-β and tau proteins have been observed within hours following severe TBI in humans. Similar abnormalities have been recapitulated in young 3xTg-AD mice subjected to the controlled cortical impact model (CCI of TBI and sacrificed at 24 h and 7 days post injury. This study investigated the temporal and anatomical distributions of amyloid-β and tau abnormalities from 1 h to 24 h post injury in the same model. Intra-axonal amyloid-β accumulation in the fimbria was detected as early as 1 hour and increased monotonically over 24 hours following injury. Tau immunoreactivity in the fimbria and amygdala had a biphasic time course with peaks at 1 hour and 24 hours, while tau immunoreactivity in the contralateral CA1 rose in a delayed fashion starting at 12 hours after injury. Furthermore, rapid intra-axonal amyloid-β accumulation was similarly observed post controlled cortical injury in APP/PS1 mice, another transgenic Alzheimer's disease mouse model. Acute increases in total and phospho-tau immunoreactivity were also evident in single transgenic Tau(P301L mice subjected to controlled cortical injury. These data provide further evidence for the causal effects of moderately severe contusional TBI on acceleration of acute Alzheimer-related abnormalities and the independent relationship between amyloid-β and tau in this setting.

  13. Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Transgenic mice ubiquitously overexpressing murine γaminobutyric acid transporter subtype I were created. Unexpectedly, these mice markedly exhibited heritable obesity,which features significantly increased body weight and fat deposition. Behavioral examination revealed that transgenic mice have slightly reduced spontaneous locomotive capacity and altered feeding pattern. This preliminary finding indicates that the inappropriate level of γ-aminobutyric acid transporters may be directly or indirectly involved in the pathogenic mechanism underlying certain types of obesity.

  14. Transgenic mice overexpressing γ—aminobutyric acid transporter subtype I develop obesity

    Institute of Scientific and Technical Information of China (English)

    MAYINGHUA; ZHENTONGMEI; 等

    2000-01-01

    Transgenic mice ubiquitously overexpressing murine γ-aminobutyric acid transporter subtype I were created.Unexpectedly,these mice markedly exhibited heritable obesity,which features significantly increased body weight and fat deposition.Behavioral examination revealed that transgenic mice have slightly reduced spontaneous locomotive capacity and altered feeding pattern.This preliminary finding indicates that the inappropriate level of γ-aminobutyric acid transporters may be directly or indirectly involved in the pathogenic mechanism underlying certain types of obesity.

  15. Expression of hepatitis B virus X protein in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Jun Xiong; Yi-Ping Hu; Yu-Cheng Yao; Xiao-Yuan Zi; Jian-Xiu Li; Xin-Min Wang; Xu-Ting Ye; Shu-Min Zhao; Yong-Bi Yan; Hong-Yu Yu

    2003-01-01

    AIM: To establish a mice model harboring hepatitis B virusx gene (adr subtype) for studying the function of hepatitis Bvirus X protein, a transactivator of viral and cellular promoter/enhancer elements.METHODS: Expression vector pcDNA3-HBx, containing CMVpromoter and hepatitis B virus x gene open reading fragment,was constructed by recombination DNA technique. Hela cellswere cultured in DMEM and transfected with pcDNA3-HBxor control pcDNA3 plasmids using FuGENE6 TransfectionReagent. Expression of pcDNA3-HBx vectors in thetransfected Hela cells was confirmed by Western blotting.After restriction endonudease digestion, the coding elementswere microinjected into male pronuclei of mice zygotes. Thepups were evaluated by multiplex polymerase chain reaction(PCR) at genomic DNA level. The x gene transgenic micefounders were confirmed at protein level by Western blotting,immunohistochemistry and immunogold transmissionelectron microscopy.RESULTS: Expression vector pcDNA3-HBxwas constructedby recombination DNA technique and identified right byrestriction endonuclease digestion and DNA directsequencing. With Western blotting, hepatitis X protein wasdetected in Hela cells transfected with pcDNA3-HBxplasmids,suggesting pcDNA3-HBxplasmids could express in eukaryoticcells. Following microinjection of coding sequence ofpcDNA3-HBx, the embryos were transferred to oviducts ofpsedopregnant females. Four pups were born and survived.Two of them were verified to have the HBxgene integratedin their genomic DNA by multiplex PCR assay, and namedC57-TgN(HBx)SMMU1 and C57-TgN(HBx)SMMU3respectively. They expressed 17KD X protein in liver tissueby Western blotting assay. With the immunohistochemistry,X protein was detected mainly in hepatocytes cytoplasm oftransgenic mice, which was furthermore confirmed byimmunogold transmission electon microscopy.CONCLUSION: We have constructed the expression vectorpcDNA3-HBxthat can be used to study the function of HBxgene in eukaryotic cellsin vitro. We

  16. RNAi-mediated knockdown of IKK1 in transgenic mice using a transgenic construct containing the human H1 promoter.

    Science.gov (United States)

    Moreno-Maldonado, Rodolfo; Murillas, Rodolfo; Navarro, Manuel; Page, Angustias; Suarez-Cabrera, Cristian; Alameda, Josefa P; Bravo, Ana; Casanova, M Llanos; Ramirez, Angel

    2014-01-01

    Inhibition of gene expression through siRNAs is a tool increasingly used for the study of gene function in model systems, including transgenic mice. To achieve perdurable effects, the stable expression of siRNAs by an integrated transgenic construct is necessary. For transgenic siRNA expression, promoters transcribed by either RNApol II or III (such as U6 or H1 promoters) can be used. Relatively large amounts of small RNAs synthesis are achieved when using RNApol III promoters, which can be advantageous in knockdown experiments. To study the feasibility of H1 promoter-driven RNAi-expressing constructs for protein knockdown in transgenic mice, we chose IKK1 as the target gene. Our results indicate that constructs containing the H1 promoter are sensitive to the presence of prokaryotic sequences and to transgene position effects, similar to RNApol II promoters-driven constructs. We observed variable expression levels of transgenic siRNA among different tissues and animals and a reduction of up to 80% in IKK1 expression. Furthermore, IKK1 knockdown led to hair follicle alterations. In summary, we show that constructs directed by the H1 promoter can be used for knockdown of genes of interest in different organs and for the generation of animal models complementary to knockout and overexpression models. PMID:24523631

  17. Improved method to raise polyclonal antibody using enhanced green fluorescent protein transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Jianke Ren; Long Wang; Guoxiang Liu; Wen Zhang; Zhejin Sheng; Zhugang Wang; Jian Fei

    2008-01-01

    Recombinant fusion protein is widely used as an antigen to raise antibodies against the epitope of a target protein. However, the concomitant anticarrier antibody in resulting antiserum reduces the production of the desired antibody and brings about unwanted non-specific immune reactions. It is proposed that the carrier protein transgenic animal could be used to solve this problem. To validate this hypothesis, enhanced green fluorescent protein (EGFP) transgenic mice were produced. By immunizing the mice with fusion protein His6HAtag-EGFP, we showed that the antiserum from the transgenic mice had higher titer antibody against His6HA tag and lower titer antibody against EGFP compared with that from wild-type mice. Therefore, this report describes an improved method to raise high titer antipeptide polyclonal antibody using EGFP transgenic mice that could have application potential in antibodypreparation.

  18. Preparation and identification of 1.3 copies C-type HBV transgenic mice

    OpenAIRE

    Chen, Mei-Juan; Yu-qin YOU; Guang-ze LIU; Tong, Ming-Hua; Jing-wei LI; Xiu-mei LI; Kong, Xiang-Ping

    2011-01-01

    Objective To prepare 1.3 copies C-type HBV transgenic mice for providing a better model for the prevention and treatment of hepatitis B.Methods The HBV transgenic mice were generated by microinjection of 1.3 copies C-type HBV genome into the pronucleus of FVB /N zygotes.PCR,ELISA,RT-PCR and immunohistochemistry were used to detect the integration,replication and expression of HBV gene in the transgenic mice.Results Tow thousand two hundred and eighty-two fertilized eggs were injected and a to...

  19. Deletion of the App-Runx1 region in mice models human partial monosomy 21

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2015-06-01

    Full Text Available Partial monosomy 21 (PM21 is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21. The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf. Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21.

  20. Transgenic mouse model for estrogen-regulated lipoprotein metabolism: studies on apoVLDL-II expression in transgenic mice.

    Science.gov (United States)

    Zsigmond, E; Nakanishi, M K; Ghiselli, F E; Chan, L

    1995-07-01

    We have produced transgenic mice that express an estrogen-responsive avian apolipoprotein, apoVLDL-II. An apoVLDL-II natural gene construct containing 4.7 kb of 5' flanking and 19 bp of 3' flanking sequences together with the 4 exon/3 intron structural gene was expressed in a liver-specific manner in transgenic mice. A single injection of estrogen caused a 5.9- to 7.5-fold stimulation of apoVLDL-II mRNA in the liver. The transgene mRNA had the same initiation sites of transcription as the native mRNA isolated from laying hen liver, and the same sites were used before and after estrogen treatment. The number of hepatocytes that stain positive for immunoreactive apoVLDL-II increased from trangenic mice as in the cockerel, hepatocytes are biochemically heterogeneous and induction of apoVLDL-II synthesis occurs by recruitment of hepatocytes. In the plamsa compartment, compared to controls, transgenic mice have a 3- to 5-fold higher basal total plasma triglyceride which was accounted for by a 5.4-fold high basal VLDL triglyceride. Estrogen treatment results in a approximately 2-fold increase in the VLDL triglycerides over basal levels and 8.5-fold increase over nontransgenic mice, which did not show any change in VLDL in response to estrogen. Transgenic mice with the integrated apoVLDL-II gene provide a useful model for the study of the regulation of lipoprotein metabolism by estrogen. PMID:7595069

  1. Enhanced spontaneous locomotor activity in bovine GH transgenic mice involves peripheral mechanisms.

    Science.gov (United States)

    Bohlooly-Y, M; Olsson, B; Gritli-Linde, A; Brusehed, O; Isaksson, O G; Ohlsson, C; Söderpalm, B; Törnell, J; Ola, B

    2001-10-01

    Clinical and experimental studies indicate a role for GH in mechanisms related to anhedonia/hedonia, psychic energy, and reward. Recently we showed that transgenic mice with general overexpression of bovine GH display increased spontaneous locomotor activity. In the present study, we investigated whether this behavioral change is owing to a direct action of GH in the central nervous system or to peripheral GH actions. A transgenic construct, containing the glial fibrillary acidic protein promoter directing specific expression of bovine GH to the central nervous system, was designed. The central nervous system-specific expression of bovine GH in the glial fibrillary acidic protein-bovine GH transgenic mice was confirmed, but no effect on spontaneous locomotor activity was observed. Serum bovine GH levels were increased in glial fibrillary acidic protein-bovine GH transgenic mice but clearly lower than in transgenic mice with general overexpression of bovine GH. In contrast to the transgenic mice with general overexpression of bovine GH, glial fibrillary acidic protein-bovine GH mice did not display any difference in serum IGF-I levels. The levels of free T(3) and the conversion of the free T(4) to free T(3) were only increased in transgenic mice with general overexpression of bovine GH, but serum corticosterone levels were similarly increased in both transgenic models. These results suggest that free T(3) and/or IGF-I, affecting dopamine and serotonin systems in the central nervous system, may mediate the enhanced locomotor activity observed in transgenic mice with general overexpression of bovine GH. PMID:11564723

  2. IFN-gamma transgenic mice: clues to the pathogenesis of systemic lupus erythematosus?

    OpenAIRE

    Seery, John P.

    2000-01-01

    Transgenic mice overexpressing IFN-γ in the epidermis develop an inflammatory skin disease resembling cutaneous lupus erythematosus shortly after birth. By 3 months of age, most female transgenics develop a lupus-like syndrome characterised by production of IgG anti-dsDNA, antihistone and antinucleosome autoantibodies. The autoantibodies are nephritogenic, with one-third of females developing a severe immune complex mediated glomerulonephritis. Analysis of these transgenics suggests that path...

  3. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L;

    1990-01-01

    It has been shown that mice transgenic for human growth hormone-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs and mammosomatotrophs, cells capable of producing both growth hormone and prolactin, by 8 months of age. We now report for the first time that old GRH-transgenic m...

  4. C9ORF72-ALS/FTD: Transgenic Mice Make a Come-BAC.

    Science.gov (United States)

    Hayes, Lindsey R; Rothstein, Jeffrey D

    2016-05-01

    For five years, since the landmark discovery of the C9ORF72 hexanucleotide repeat expansion in ALS/FTD, a transgenic mouse model has remained elusive. Now, two laboratories (Liu et al., 2016; Jiang et al., 2016) report the development of BAC transgenic mice that recapitulate features of the human disease. PMID:27151634

  5. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice.

    Directory of Open Access Journals (Sweden)

    Anna Fiorentini

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular β-amyloid (Aβ plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD. METHODOLOGY/PRINCIPAL FINDINGS: The double transgenic (Tg CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein, aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3β and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium's ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines as brain Aβ deposition and pathology increases. CONCLUSIONS: Lithium, when given on time, stimulates neurogenesis and counteracts AD-like pathology.

  6. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin βE subunit

    International Nuclear Information System (INIS)

    Activins, TGF-β superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin β subunit genes, βC and βE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin βE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells

  7. Increased Spontaneous Central Bleeding and Cognition Impairment in APP/PS1 Mice with Poorly Controlled Diabetes Mellitus.

    Science.gov (United States)

    Ramos-Rodriguez, Juan José; Infante-Garcia, Carmen; Galindo-Gonzalez, Lucia; Garcia-Molina, Yaiza; Lechuga-Sancho, Alfonso; Garcia-Alloza, Mónica

    2016-05-01

    Alzheimer's disease (AD) and vascular dementia (VaD) are the most common causes of dementia, and borderlines are blurred in many cases. Aging remains the main risk factor to suffer dementia; however, epidemiological studies reveal that diabetes may also predispose to suffer AD. In order to further study this relationship, we have induced hypoinsulinemic diabetes to APPswe/PS1dE9 (APP/PS1) mice, a classical model of AD. APP/PS1 mice received streptozotocin (STZ) ip at 18 weeks of age, when AD pathology is not yet established in this animal model. Cognition was evaluated at 26 weeks of age in the Morris water maze and the new object discrimination tests. We observed that STZ-induced episodic and working memory impairment was significantly worsened in APP/PS1 mice. Postmortem assessment included brain atrophy, amyloid-beta and tau pathology, spontaneous bleeding, and increased central inflammation. Interestingly, in APP/PS1-STZ diabetic mice, we detected a shift in Aβ soluble/insoluble levels, towards more toxic soluble species. Phospho-tau levels were also increased in APP/PS1-STZ mice, accompanied by an exacerbated inflammatory process, both in the close proximity to senile plaque (SP) and in SP-free areas. The presence of hemorrhages was significantly higher in APP/PS1-STZ mice, and although pericytes and endothelium were only partially affected, it remains possible that blood-brain barrier alterations underlie observed pathological features. Our data support the implication of the diabetic process in AD and VaD, and it is feasible that improving metabolic control could delay observed central pathology. PMID:26156287

  8. Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype

    Directory of Open Access Journals (Sweden)

    Li Yi

    2004-06-01

    Full Text Available Abstract Background MMTV-Wnt1 transgenic mice develop mammary hyperplasia early in development, followed by the appearance of solitary mammary tumors with a high proportion of cells expressing early lineage markers and many myoepithelial cells. The occurrence of tumors is accelerated in experiments that activate FGF proto-oncogenes or remove the tumor suppressor genes Pten or P53, implying that secondary oncogenic events are required for progression from mammary hyperplasia to carcinoma. It is not known, however, which oncogenic pathways contribute to Wnt1-induced tumorigenesis – further experimental manipulation of these mice is needed. Secondary events also appear to be required for mammary tumorigenesis in MMTV-Neu transgenic mice because the transgene in the tumors usually contains an acquired mutation that activates the Neu protein-tyrosine kinase. Methods cDNA or DNA from the mammary glands and mammary tumors from MMTV-Wnt1, MMTV-Wnt1/p53-/-, MMTV-Neu transgenic mice, and newly generated MMTV-Wnt1/MMTV-Neu bitransgenic mice, was sequenced to seek activating mutations in H-Ras, K-Ras, and N-Ras genes, or in the MMTV-Neu transgene. In addition, tumors from bitransgenic animals were examined to determine the cellular phenotype. Results We found activating mutations at codons 12, 13, and 61 of H-Ras in just over half of the mammary tumors in MMTV-Wnt1 transgenic mice, and we confirmed the high frequency of activating mutations of Neu in tumors in MMTV-Neu transgenic mice. Tumors appeared earlier in bitransgenic MMTV-Wnt1/MMTV-Neu mice, but no Ras or MMTV-Neu mutations were found in these tumors, which were phenotypically similar to those arising in MMTV-Wnt1 mice. In addition, no Ras mutations were found in the mammary tumors that arise in MMTV-Wnt1 transgenic mice lacking an intact P53 gene. Conclusions Tumorigenic properties of cells undergoing functionally significant secondary mutations in H-Ras or the MMTV-Neu transgene allow selection

  9. Effects of Anabolic Steroids and High-Intensity Aerobic Exercise on Skeletal Muscle of Transgenic Mice

    OpenAIRE

    Fontana, Karina; Campos, Gerson E. R.; Staron, Robert S.; da Cruz-Höfling, Maria Alice

    2013-01-01

    In an attempt to shorten recovery time and improve performance, strength and endurance athletes occasionally turn to the illicit use of anabolic-androgenic steroids (AAS). This study evaluated the effects of AAS treatment on the muscle mass and phenotypic characteristics of transgenic mice subjected to a high-intensity, aerobic training program (5d/wk for 6 weeks). The transgenic mice (CETP+/-LDLr-/+) were engineered to exhibit a lipid profile closer to humans. Animals were divided into group...

  10. A protocol for generation of transgenic mice by manipulating spermatogonial stem cells in vivo.

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Lalit Sehgal, Rahul Thorat, Nileema Khapare, Amitabha Mukhopadhaya, Mugdha Sawant & Sorab Dalal ### Abstract This protocol describes a technique for the generation of transgenic mice by in-vivo manipulation of spermatogonial stem cells (SSCs) with a high rate of success. In this study SSCs in pre-pubescent animals were infected in vivo with recombinant lentiviruses expressing EGFP-f and mated with normal females. All male pre-founder mice produced transgenic pups with an ...

  11. Loss of GABAergic inputs in APP/PS1 mouse model of Alzheimer's disease

    OpenAIRE

    Tutu Oyelami; Ilse Dewachter

    2014-01-01

    Alzheimer's disease (AD) is characterized by symptoms which include seizures, sleep disruption, loss of memory as well as anxiety in patients. Of particular importance is the possibility of preventing the progressive loss of neuronal projections in the disease. Transgenic mice overexpressing EOFAD mutant PS1 (L166P) and mutant APP (APP KM670/671NL Swedish) (APP/PS1) develop a very early and robust Amyloid pathology and display synaptic plasticity impairments and cognitive dysfunction. He...

  12. Establishment and identification of OVA-HBsAg transgenic mice regulated by Cre recombinase

    OpenAIRE

    Xiu-mei LI; Guang-ze LIU; Mei-juan CHEN; Xie, Yong; Kong, Xiang-Ping

    2015-01-01

    Objective To breed OVA-HBsAg transgenic mice regulated by Cre recombinase in order to provide a better animal model for the study of HBV prevention and therapy. Methods The OVA-HBsAg transgenic mice were generated by microinjection of OVA-HBsAg gene with LoxP sites into the pronucleus of C57BL/6J×DBA zygotes. Pups of F1 OVA-HBsAg female mice cross-fertilized with Alb-Cre male mice were assayed for the expression of HBsAg induced by Cre recombinase. PCR, ELISA and immunohistochemical methods w...

  13. Enhancement of germ cell apoptosis induced by ethanol in transgenic mice overexpressing Fas Ligand

    Institute of Scientific and Technical Information of China (English)

    HENG CHUAN XIA; FENG LI; ZHEN LI; ZU CHUAN ZHANG

    2003-01-01

    It was suggested that chronic ethanol exposure could result in testicular germ cell apoptosis, but the mechanism is still unclear. In the present study, we use a model of transgenic mice ubiquitously overexpressing human FasL to investigate whether Fas ligand plays a role in ethanol-induced testicular germ cell apoptosis. Both wild-type (WT)mice and transgenic (TG) mice were treated with acute ethanol (20% v/v) by introperitoneal injection for five times.After ethanol injection, WT mice displayed up-regulation of Fas ligand in the testes, which was shown by FITCconjugated flow cytometry and western blotting. Moreover, TG mice exhibited significantly more apoptotic germ cells than WT mice did after ethanol injection, which was demonstrated by DNA fragmentation, PI staining flow cytometry and TUNEL staining. In addition, histopathological examination revealed that degenerative changes of epithelial component of the tubules occurred in FasL overexpressing transgenic mice while testicular morphology was normal in wild-type mice after acute ethanol exposure, suggesting FasL expression determines the sensitivity of testes to ethanol in mice. In summary, we provide the direct evidences that Fas ligand mediates the apoptosis of testicular germ cells induced by acute ethanol using FasL transgenic mice.

  14. Generating Transgenic Mice by Lentiviral Transduction of Spermatozoa Followed by In Vitro Fertilization and Embryo Transfer.

    Science.gov (United States)

    Chandrashekran, Anil; Casimir, Colin; Dibb, Nick; Readhead, Carol; Winston, Robert

    2016-01-01

    Most transgenic technologies rely on the oocyte as a substrate for genetic modification. Transgenics animals are usually generated by the injection of the gene constructs (including lentiviruses encoding gene constructs or modified embryonic stem cells) into the pronucleus of a fertilized egg followed by the transfer of the injected embryos into the uterus of a foster mother. Male germ cells also have potential as templates for transgenic development. We have previously shown that mature sperm can be utilized as template for lentiviral transduction and as such used to generate transgenic mice efficiently with germ line capabilities. We provide here a detailed protocol that is relatively simple, to establish transgenic mice using lentivirally transduced spermatozoa. This protocol employs a well-established lentiviral gene delivery system (usual for somatic cells) delivering a variety of transgenes to be directly used with sperm, and the subsequent use of these modified sperm in in vitro fertilization studies and embryo transfer into foster female mice, for the establishment of transgenic mice. PMID:27317176

  15. In vivo detection of Alzheimer senile plaques by MR microscopy in transgenic mice

    International Nuclear Information System (INIS)

    Objective: MR microscopy technique was used to study the visualization of senile plaque deposition in brains of the Alzheimer disease (AD) transgenic mice. Methods: Two transgenic mice and 2 wild type mice at the age of 17 months were scanned in vivo using T2 weighted image. After MR imaging, the brains were cut serially and immunostained according to the orthogonal pilot images. MR T2 weighted images and immunohistological images of the senile plaque were observed and matched. Results: The MR images showed that some black spots were visible in the hippocampus and cerebral cortex of the AD transgenic mice and some spots were consistent with the senile plaques on immunohistological sections. There were no spots in the MR images and the immunohistological sections of the wild type mice. Conclusion: It is possible that MR microscopy can be used to detect the deposition of the senile plaque and diagnose AD specifically. (authors)

  16. CMV-hFasL transgenic mice prevent from experimental autoimmune thyroiditis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhen-lin; LIN Bo; YU Lu-yang; GUO Li-he

    2005-01-01

    Background Previous studies showed that the role of Fas ligand (FasL) is not consistent in the pathogenesis of autoimmune thyroiditis. This study was designed to investigate the effects of FasL on the pathogenesis of experimental autoimmune thyroiditis (EAT) using CMV-human FasL (hFasL) transgenic mice. Methods Transgenic mice ubiquitously expressing hFasL were used as an animal model of EAT by injection of porcine thyroglobulin (pTg). Expression of hFasL was detected by RT-PCR and Western blot. The activity of hFasL transgenic thyrocytes killing Jurket cells was determined. CMV-hFasL transgenic mice and wild type (WT) mice were immunized with pTg and killed 28 days later to evaluate the lymphocytic infiltration of their thyroids. The number of CD4+ and CD8+ lymphocytes from the spleen was detected using FACS. The serum interferon-γ (IFN-γ) concentration was measured by ELISA. Results hFasL expression in the thyroid of CMV-hFasL transgenic mice was confirmed. After co-incubation of Jurket thymocytes with thyroid tissues of CMV-hFasL transgenic mice, the percentage of apoptotic cells in the CMV-hFasL transgenic thyroid group was significantly higher than that of the control WT thyroid group [(23.4±4.3)% vs (6.6±2.5)%, P<0.01]. On day 28 after immunization with pTg, the infiltration index of lymphocytes in thyroids of the CMV-hFasL transgenic mice was significantly lower than that of the WT mice [(1.0±0.5) vs (2.1±0.7), P<0.001]. Moreover, the number of CD4+ and CD8+ lymphocytes of the spleen and serum IFN-γ concentration were significantly decreased in the CMV-hFasL transgenic mice. Conclusions FasL plays an important role in the pathogenesis of autoimmune thyroiditis. Transgenic mice ubiquitously expressing hFasL may strongly inhibit lymphocytic infiltration of the thyroid of EAT and ameliorate the course of this disease.

  17. Caspase 6 has a protective role in SOD1(G93A) transgenic mice.

    Science.gov (United States)

    Hogg, Marion C; Mitchem, Mollie R; König, Hans-Georg; Prehn, Jochen H M

    2016-06-01

    In amyotrophic lateral sclerosis (ALS), it has been suggested that the process of neurodegeneration starts at the neuromuscular junction and is propagated back along axons towards motor neurons. Caspase-dependent pathways are well established as a cause of motor neuron death, and recent work in other disease models indicated a role for caspase 6 in axonal degeneration. Therefore we hypothesised that caspase 6 may be involved in motor neuron death in ALS. To investigate the role of caspase 6 in ALS we profiled protein levels of caspase-6 throughout disease progression in the ALS mouse model SOD1(G93A); this did not reveal differences in caspase 6 levels during disease. To investigate the role of caspase 6 further we generated a colony with SOD1(G93A) transgenic mice lacking caspase 6. Analysis of the transgenic SOD1(G93A); Casp6(-/-) revealed an exacerbated phenotype with motor dysfunction occurring earlier and a significantly shortened lifespan when compared to transgenic SOD1(G93A); Casp6(+/+) mice. Immunofluorescence analysis of the neuromuscular junction revealed no obvious difference between caspase 6(+/+) and caspase 6(-/-) in non-transgenic mice, while the SOD1(G93A) transgenic mice showed severe degeneration compared to non-transgenic mice in both genotypes. Our data indicate that caspase-6 does not exacerbate ALS pathogenesis, but may have a protective role. PMID:26976329

  18. Increased liver pathology in hepatitis C virus transgenic mice expressing the hepatitis B virus X protein

    International Nuclear Information System (INIS)

    Transgenic mice expressing the full-length HCV coding sequence were crossed with mice that express the HBV X gene-encoded regulatory protein HBx (ATX mice) to test the hypothesis that HBx expression accelerates HCV-induced liver pathogenesis. At 16 months (mo) of age, hepatocellular carcinoma was identified in 21% of HCV/ATX mice, but in none of the single transgenic animals. Analysis of 8-mo animals revealed that, relative to HCV/WT mice, HCV/ATX mice had more severe steatosis, greater liver-to-body weight ratios, and a significant increase in the percentage of hepatocytes staining for proliferating cell nuclear antigen. Furthermore, primary hepatocytes from HCV, ATX, and HCV/ATX transgenic mice were more resistant to fas-mediated apoptosis than hepatocytes from nontransgenic littermates. These results indicate that HBx expression contributes to increased liver pathogenesis in HCV transgenic mice by a mechanism that involves an imbalance in hepatocyte death and regeneration within the context of severe steatosis

  19. Adaptation to supraphysiologic levels of insulin gene expression in transgenic mice: evidence for the importance of posttranscriptional regulation.

    OpenAIRE

    Schnetzler, B; Murakawa, G; Abalos, D.; Halban, P.; Selden, R.

    1993-01-01

    Insulin production was studied in transgenic mice expressing the human insulin gene under the control of its own promoter. Glucose homeostasis during a 48-h fast was similar in control and transgenic mice, with comparable levels of serum immunoreactive insulin. Northern blot and primer extension analyses indicated that more than twice as much insulin mRNA is present in pancreata from transgenic mice. Primer extension analysis using oligonucleotides specific for mouse insulins I and II or for ...

  20. A repertoire of monoclonal antibodies with human heavy chains from transgenic mice

    International Nuclear Information System (INIS)

    The introduction of human immunoglobulin gene segments in their unrearranged configuration into the germ line of mice might allow the production of a repertoire of human antibodies. Such transgenic mice could be used for the production of human monoclonal antibodies against human antigens. To test the feasibility of this approach, mice were created that carry a human heavy-chain minilocus comprising unrearranged immunoglobulin variable, diversity, and joining elements linked to a human μ-chain gene. The gene segments of this minilocus are rearranged in a large proportion of cells in thymus and spleen but not in nonlymphoid tissue. Some 4% of the B lymphocytes synthesize human μ chains resulting in a serum titer of about 50 μg of transgenic IgM antibody per ml. Hybridomas were established from the transgenic mice that stably secreted several micrograms of antibodies containing human μ heavy chains per milliliter

  1. Effect of HS2 and HS3 elements on erythroid-specific expression in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    JIA Chunping; YAN Jingbin; XIAO Yanping; FANG Yudan; HUANG Shuzheng; ZENG Yitao

    2003-01-01

    The expression plasmids CMV/GFP, HS2ALL, HS3ALL and HS23ALL were selected to investigate the effect of HS2 and HS3 element on erythroid-specific expression in transgenic mice. These plasmids were digested with restriction enzymes and purified. And five DNA fragments, CMV/GFP, HS2/GFP, CMV/HS2/GFP, HS23/GFP and HS3/GFP were obtained. After purification, the above DNA fragments were microinjected into the pre-nuclei of the mice fertilized eggs and transgenic mice were generated, with an integration rate of 10.89%. The green fluorescence protein(GFP) expression in many transgenic mouse tissues was determined by FACS analysis. The results showed that the HS2 and 1.7 kb of β-globin gene promoter were sufficient for the erythroid-specific expression of β-globin gene. The GFP expression of different recombinant constructs was also analyzed in blood of all the transgenic mice with FACS. The results indicated that HS2 and HS3 had the same enhancement activity on the regulation of β-globin gene expression. Moreover, these two elements showed a significant synergistic effect on gene expression at the transgenic mouse level, although the GFP expression varied largely among different transgenic mouse litters.

  2. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease

    OpenAIRE

    Edward Rockenstein; Paula Desplats; Kiren Ubhi; Michael Mante; Jazmin Florio; Anthony Adame; Stefan Winter; Hemma Brandstaetter; Dieter Meier; Eliezer Masliah

    2015-01-01

    Neural stem cells (NSCs) have been considered as potential therapy in Alzheimer's disease (AD) but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL), a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg) model of AD. We grafted murine NS...

  3. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Padmesh S Rajput

    Full Text Available BACKGROUND: Selective degeneration of medium spiny neurons and preservation of medium sized aspiny interneurons in striatum has been implicated in excitotoxicity and pathophysiology of Huntington's disease (HD. However, the molecular mechanism for the selective sparing of medium sized aspiny neurons and vulnerability of projection neurons is still elusive. The pathological characteristic of HD is an extensive reduction of the striatal mass, affecting caudate putamen. Somatostatin (SST positive neurons are selectively spared in HD and Quinolinic acid/N-methyl-D-aspartic acid induced excitotoxicity, mimic the model of HD. SST plays neuroprotective role in excitotoxicity and the biological effects of SST are mediated by five somatostatin receptor subtypes (SSTR1-5. METHODS AND FINDINGS: To delineate subtype selective biological responses we have here investigated changes in SSTR1 and 5 double knockout mice brain and compared with HD transgenic mouse model (R6/2. Our study revealed significant loss of dopamine and cAMP regulated phosphoprotein of 32 kDa (DARPP-32 and comparable changes in SST, N-methyl-D-aspartic acid receptors subtypes, calbindin and brain nitric oxide synthase expression as well as in key signaling proteins including calpain, phospho-extracellular-signal-regulated kinases1/2, synapsin-IIa, protein kinase C-α and calcineurin in SSTR1/5(-/- and R6/2 mice. Conversely, the expression of somatostatin receptor subtypes, enkephalin and phosphatidylinositol 3-kinases were strain specific. SSTR1/5 appears to be important in regulating NMDARs, DARPP-32 and signaling molecules in similar fashion as seen in HD transgenic mice. CONCLUSIONS: This is the first comprehensive description of disease related changes upon ablation of G- protein coupled receptor gene. Our results indicate that SST and SSTRs might play an important role in regulation of neurodegeneration and targeting this pathway can provide a novel insight in understanding the

  4. Effect of radiation on transgenic mice carrying a variety of oncogenes

    International Nuclear Information System (INIS)

    We have been trying to see a rule of regulation in proliferation and differentiation of the hemopoietic stem cells, specifically at an in vivo-level of mice that had been transferred a variety of oncogenes into the stem cells. Among the various methods available for transgenes, transgenic mice used in the present purposes are, at this moment, the most efficient way to observe function of gene of interests in hemopoietic stem cells, to which genes are introduced rarely because of two reasons, i.e., their extremely lower frequency in the bone marrow, and their prominent quiescence in cellular kinetics. To use such transgenic mice, we also applied transplantation assay, in which mice, repopulated with bone marrow cells carrying the gene of interests, consisted the gene solely in the hemopoietic system. This system permitted to avoid a possible competitive risk between the leukemogenesis and the carcinogenesis in other organs. In the present article, we introduced first the transplantation assay in which the recipient mice were repopulated with bone marrow cells carrying human c-myc gene; second kinetics of the hemopoietic stem cells in the myc-mice; furthermore, radiation effects on leukemogenesis of the h-c-myc marrow followed by discussion of the results. We also introduced our experimental model for the myelodysplastic syndrome, i.e., a multi-lineage abnormal growth of hemopoietic elements, appeared in the SV40-large T transgenic mice, for the future research studying a mechanism of radiation leukemogenesis. (author)

  5. Inhibitory effect of oxymatrine on serum hepatitis B virus DNA in HBV transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Lun-Gen Lu; Min-De Zeng; Yi-Min Mao; Jing-Yuan Fang; Yu-Lin Song; Zhao-Hui Shen; Ai-Ping Cao

    2004-01-01

    AIM: To study the inhibitory effect of oxymatrine on serum hepatitis B virus (HBV) DNA in HBV transgenic mice.METHODS: HBV transgenic mice model was established by microinjection, and identified by HBV DNA integration and replication. Transgenic mice with replicating HBV were divided into 3 groups, and injected with normal saline (group A, n=9), 50 mg/kg (group B, n=8) and 100 mg/kg (group C, n=9) oxymatrine intraperitoneally once a day for 30 d, respectively. Quantitation of serum HBV DNA in HBV transgenic mice was performed by competitive polymerase chain reaction (PCR) in combination with DNA hybridization quantitative detection technique before and after treatment.RESULTS: Compared with pre-treatment, the serum HBV DNA in group A (F=1.04, P=0.9612) and group B (F=1.13,P=0.8739) had no changes after treatment. However, in group C serum HBV DNA was significantly decreased (F=13.97,P=0.0012). The serum HBV DNA after treatment was lower in group C than in groups B and A (F=8.65, P=0.0068;F=12.35, P=0.0018; respectively). The serum HBV DNA after treatment was lower in group B than in group A, but there was no statistical significance (F=1.43, P=0.652).CONCLUSION: Oxymatrine has inhibitory effects on serum HBV DNA in HBV transgenic mice.

  6. Transgenic knockout mice with exclusively human sickle hemoglobinand sickle cell disease

    Energy Technology Data Exchange (ETDEWEB)

    Paszty, C.; Brion, C.; Manci, E.; Witkowska, E.; Stevens, M.; Narla, M.; Rubin, E.

    1997-06-13

    To create mice expressing exclusively human sicklehemoglobin (HbS), transgenic mice expressing human alpha-, gamma-, andbeta[S]-globin were generated and bred with knockout mice that haddeletions of the murine alpha- and beta-globin genes. These sickle cellmice have the major features (irreversibly sickled red cells, anemia,multiorgan pathology) found in humans with sickle cell disease and, assuch, represent a useful in vivo system to accelerate the development ofimproved therapies for this common genetic disease.

  7. Radiation-induced point mutations, deletions and micronuclei in lacI transgenic mice

    International Nuclear Information System (INIS)

    The development of transgenic mutagenesis systems has now made it possible to study the effects of ionizing radiation at both the molecular and chromosomal levels in the same animal. In this report we present preliminary data on the response of Big BlueTM lacI transgenic mice to ionizing radiation as measured by lacI mutations and micronuclei. C57Bl/6 transgenic mice were irradiated with 137Cs γ-rays at doses ranging from 0.1 to 14 Gy, and expression times ranging from 2 to 14 days. Dose-related increases in the mutant frequency were observed after irradiations with longer expression times. Mutant plaques were analyzed by restriction enzyme digestion to detect large structural changes in the target sequence. Of 34 γ-ray- induced mutations analyzed, 4 were large-scale rearrangements. Three of these rearrangements were deletions within the lacI gene characterized by the presence of short regions of homology at the breakpoint junctions. The fourth rearrangement was a deletion that extended from within the αlacZ gene into downstream sequences and that had 43 bp of homology at the junction. These data indicate that the Big BlueTM lacI transgenic mouse system is sensitive to the types of mutations induced by ionizing radiation. To determine whether the presence of the transgene affects micronucleus induction we compared the response of nontransgenic to hemizygous transgenic B6C3F1 mice and the response of nontransgenic to hemizygous and homozygous transgenic C57Bl/6 mice. The presence or absence of the lacI transgene had no effect on spontaneous micronucleus frequencies for either strain. However, radiation-induced micronucleus frequencies were significantly higher in hemizygous lacI B6C3F1 mice than in nontransgenic litter mates; the converse was true in C57Bl/6 mice. These data suggest that the lacI transgene does not cause chromosome instability as measured by spontaneous micronucleus levels. However, the response of these transgenic mice to a variety of

  8. 丙戊酸钠对雌雄APP/PS1双重转基因小鼠行为学及老年斑的影响%The effect of valproic acid on behavior and senile plaques in the male and female APP/PS1 double transgenic mouse model

    Institute of Scientific and Technical Information of China (English)

    龙志敏; 赵蕾; 姜蓉; 贺桂琼

    2011-01-01

    目的 探讨丙戊酸钠(VPA)对不同性别APP/PS1双重转基因阿尔茨海默病(AD)模型小鼠的空间学习记忆能力及脑内老年斑(SP)的沉积的影响.方法 3月龄APP/PS1双重转基因AD模型小鼠20只,雌雄各半,随机分为VPA治疗组和生理盐水对照组(每组10只).VPA(30mg·kg-1·d-1)腹腔注射4周后进行Morris水迷宫实验,以检测各组小鼠的空间学习记忆能力;行为学实验结束后,取脑组织进行免疫组化染色以观察老年斑的沉积.结果 行为学实验结果显示:可视平台下,两组小鼠找到平台的时间、搜索的平均路程以及雌雄小鼠的游泳速度均差异无显著性(P>0.05);隐蔽平台下,VPA治疗组小鼠找到平台的时间及搜索的平均路程较对照组明显缩短(P<0.01),雄性AD模型鼠无论是治疗组还是对照组找到平台时间和路径均短于雌鼠(P<0.05);免疫组化结果显示,VPA治疗组雄性小鼠大脑皮质及海马区域的老年斑数量[(11.23±3.78)个]较同性别对照组[(28.17±3.46)个]明显减少(t=14.67,P<0.01),且比雌性VPA治疗组老年斑[(20.36±4.21)个]也有明显减少(P<0.05).结论 VPA能显著改善雌性和雄性AD模型小鼠空间学习记忆障碍,减少脑内老年斑的沉积,该改变具有性别差异.%Objective To investigate whether valproic acid (VPA) affect spatial learning memory and senile plaques in the APP/PS1 double transgenic AD mouse model of different gender. Methods Twenty 3-month old APP/PS1 double transgenic AD mice,male and female mouse evenly,were randomly divided into VPA-treated and saline-treated groups ( 10 for each group). 30 mg· kg-1 · d-1 of VPA and the same amount of saline were peritoneally injected into mice for 4 weeks. Morris water maze was conducted to check the effect of VPA on the capability of spatial learning and memory of AD mouse model. Immunohistochemical staining was used to examine the effect of VPA on the morphological changes in the brains of mice

  9. Degeneration of oxidative muscle fibers in HTLV-1 tax transgenic mice.

    OpenAIRE

    Nerenberg, M I; Wiley, C A

    1989-01-01

    The HTLV-1 tax gene under control of the HTLV-1 long terminal repeat (LTR) was introduced into transgenic mice. Previously tax protein expression in the muscle and peripheral nerves of three independent mouse lines was reported. Here the localization of this transgenic protein at a cellular and subcellular level is described. Tax protein was expressed in oxidative muscle fibers that developed severe progressive atrophy. It localized to the cytoplasma where it was associated with structures re...

  10. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  11. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    International Nuclear Information System (INIS)

    Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. A new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques

  12. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  13. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K;

    2001-01-01

    germline chimeras. The in vivo efficiency and specificity of the transgenic Cre was analysed by intercrossing the tie-1-Cre line with the ROSA26R reporter mice. At initial stages of vascular formation (E8-9), LacZ staining was detected in almost all cells of the forming vasculature. Between E10 and birth....... These results show that the tie-1-Cre transgenic strain can efficiently direct deletion of floxed genes in endothelial cells in vivo....

  14. Dynamics of oligodendrocyte responses to anterograde axonal (Wallerian) and terminal degeneration in normal and TNF-transgenic mice

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Fenger, Christina; Nielsen, Helle H;

    2004-01-01

    larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed a...

  15. Production of recombinant human proinsulin in the milk of transgenic mice

    OpenAIRE

    Qian, Xi; Kraft, Jana; Ni, Yingdong; Zhao, Feng-Qi

    2014-01-01

    There is a steady increasing demand for insulin worldwide. Current insulin manufacturing capacities can barely meet this increasing demand. The purpose of this study was to test the feasibility of producing human proinsulin in the milk of transgenic animals. Four lines of transgenic mice harboring a human insulin cDNA with expression driven by the goat β-casein gene promoter were generated. The expression level of human proinsulin in milk was as high as 8.1 g/L. The expression of the transgen...

  16. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Fatty acid desaturase-2 (FAD2) introduces a double bond in position 12 in oleic acid (18:1) to form linoleic acid (18:2 n-6) in higher plants and microbes. A new transgenic expression cassette, containing CMV promoter/fad2 cDNA/SV40 polyA, was constructedto produce transgenic mice. Among 63 healthy offspring, 10 founders (15.9%) integrated the cotton fad2 transgene into their genomes, as demonstrated by PCR and Southern blotting analysis. All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography. One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05) in transgenic muscles compared to their nontransgenic littermates. Moreover, it exhibited an 87% and a 9% increase (P<0.05) in arachidonic acid (20:4 n-6) in muscles and liver, compared to their nontransgenic littermates. The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  17. Generation of fad2 transgenic mice that produce omega-6 fatty acids

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing; LIU Qing; WU ZhiFang; WANG ZongYi; GOU KeMian

    2009-01-01

    Fatty acid desaturase-2 (FAD2)introduces a double bond in position △12 in oleic acid (18:1)to form linoleic acid (18:2 n-6)in higher plants and microbes.A new transgenic expression cassette,containing CMV promoter/fad2 cDNA/SV40 polyA,was constructedto produce transgenic mice.Among 63 healthy offspring,10 founders (15.9%)integrated the cotton fad2 transgene into their genomes,as demonstrated by PCR and Southern blotting analysis.All founder mice were fertile and heterozygous fad2 female and nontransgenic littermates were used for fatty acid analysis using gas chromatography.One fad2 transgenic line showed substantial differences in the fatty acid profiles and the level of linoleic acid was increased 19% (P<0.05)in transgenic muscles compared to their nontransgenic littermates.Moreover,it exhibited an 87% and a 9% increase (P<0.05)in arachidonic acid (20:4 n-6)in muscles and liver,compared to their nontransgenic littermates.The results indicate that the plant fad2 gene can be functionally expressed in transgenic mice and may playan active role in conversion of oleic acid into linoleic acid.

  18. Tumor prevention in HPV8 transgenic mice by HPV8-E6 DNA vaccination.

    Science.gov (United States)

    Marcuzzi, Gian Paolo; Awerkiew, Sabine; Hufbauer, Martin; Schädlich, Lysann; Gissmann, Lutz; Eming, Sabine; Pfister, Herbert

    2014-06-01

    The genus beta human papillomavirus 8 (HPV8) is involved in the development of cutaneous squamous cell carcinomas (SCCs) in individuals with epidermodysplasia verruciformis. Immunosuppressed transplant recipients are prone to harbor particularly high betapapillomavirus DNA loads, which may contribute to their highly increased risk of SCC. Tumor induction in HPV8 transgenic mice correlates with increased expression of viral oncogenes E6 and E2. In an attempt to prevent skin tumor development, we evaluated an HPV8-E6-DNA vaccine, which was able to stimulate a detectable HPV8-E6-specific cell-mediated immune response in 8/15 immunized mice. When skin of HPV8 transgenic mice was grafted onto non-transgenic littermates, the grafted HPV8 transgenic tissue was not rejected and papillomas started to grow within 14 days all over the transplant of 9/9 non-vaccinated and 7/15 not successfully vaccinated mice. In contrast, no papillomas developed in 6/8 successfully vaccinated mice. In the other two of these eight mice, a large ulcerative lesion developed within the initial papilloma growth or papilloma development was highly delayed. As the vaccine completely or partially prevented papilloma development without rejecting the transplanted HPV8 positive skin, the immune system appears to attack only keratinocytes with increased levels of E6 protein, which would give rise to papillomas. PMID:24446083

  19. Global view of transcriptome in the brains of aged NR2B transgenic mice*****

    Institute of Scientific and Technical Information of China (English)

    Chunxia Li; Men Su; Huimin Wang; Yinghe Hu

    2013-01-01

    NR2B subunits are involved in regulating aging, in particular, age-related learning and memory deficits. We examined 19-month-old NR2B transgenic mice and their littermate controls. First, we detected expression of the NR2B subunit gene, Grin2b, in the neocortex of transgenic mice using real-time PCR. Next, we used microarrays to examine differences in neocortical gene expression. Pathway and signal-net analyses identified multiple pathways altered in the transgenic mice, in-cluding the P53, Jak-STAT, Wnt, and Notch pathways, as wel as regulation of the actin cytoskeleton and neuroactive ligand-receptor interactions. Further signal-net analysis highlighted the P53 and insulin-like growth factor pathways as key regulatory pathways. Our results provide new insight into understanding the molecular mechanisms of NR2B regulated age-related memory storage, normal organismal aging and age-related disease.

  20. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  1. Establishment and identification of OVA-HBsAg transgenic mice regulated by Cre recombinase

    Directory of Open Access Journals (Sweden)

    Xiu-mei LI

    2015-06-01

    Full Text Available Objective To breed OVA-HBsAg transgenic mice regulated by Cre recombinase in order to provide a better animal model for the study of HBV prevention and therapy. Methods The OVA-HBsAg transgenic mice were generated by microinjection of OVA-HBsAg gene with LoxP sites into the pronucleus of C57BL/6J×DBA zygotes. Pups of F1 OVA-HBsAg female mice cross-fertilized with Alb-Cre male mice were assayed for the expression of HBsAg induced by Cre recombinase. PCR, ELISA and immunohistochemical methods were used to detect the integration and expression of HBsAg gene and Cre gene in the transgenic mice. Results 491 fertilized eggs were injected and a total of 337 survived. The survival rate of injection was 68.6%. 29 F0 pups were produced with 4 PCR-positive mice, and the positive rate was 13.8%. Up to now, F4 pups were obtained. The positive rates from F1 to F4 were 27.5%, 32.0%, 22.9% and 25.0%, respectively. No HBsAg-positive mice were found among these pups. Furthermore, among 16 pups of F1 OVA-HBsAg female mice crossed with Alb-Cre male mice, 6 were positive for both HBsAg and Cre as detected by PCR. There were 2 pups showed positive HBsAg by ELISA assay. The expression rate of HBsAg after Cre recombinase induction was 33.3%. Conclusion OVA-HBsAg transgenic mice has been reproduced successfully, and it can be stably passaged. Cre recombinase can induce the expression of HBsAg in vivo. DOI: 10.11855/j.issn.0577-7402.2015.05.08

  2. Preparation and identification of 1.3 copies C-type HBV transgenic mice

    Directory of Open Access Journals (Sweden)

    Mei-juan CHEN

    2011-09-01

    Full Text Available Objective To prepare 1.3 copies C-type HBV transgenic mice for providing a better model for the prevention and treatment of hepatitis B.Methods The HBV transgenic mice were generated by microinjection of 1.3 copies C-type HBV genome into the pronucleus of FVB /N zygotes.PCR,ELISA,RT-PCR and immunohistochemistry were used to detect the integration,replication and expression of HBV gene in the transgenic mice.Results Tow thousand two hundred and eighty-two fertilized eggs were injected and a total of 2024 survived.The survival rate of injection was 88.7%.The injected eggs were transplanted into 72 pseudo pregnant female mice,among which 59 became pregnant.The pregnancy rate was 81.9%.One hundred and eighty-five F0 offsprings were produced with 19 positive mice as detected by PCR,and the positive rate was 10.3%.RT-PCR revealed that HBV DNA replication of 102-103 copies/ml existed in serum of 6 mice.Ninety-six F1 offsprings were produced,of which 33 were positive for HBV DNA replication as detected by PCR,the positive rate was 34.4%.RT-PCR showed that HBV DNA replication was observed in 10 mice with 102-103 copies/ml.Three mice were randomly chosen from each of F0 and F1 generations to detect the HBsAg expression in livers and kidneys by immunohistochemistry.The results showed that HBsAg expressed in both livers and kidneys,and it was stronger in kidneys than in livers.Conclusion The 1.3 copies C-type HBV gene can not only replicate and express in the transgenic mice produced,but it also can be transmitted to the next generation of these mice.

  3. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen; Nielsen, Boye Schnack; Danø, Keld; Nielsen, John Rømer; Johnsen, Morten

    2005-01-01

    A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis...... >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume was...

  4. Expression pattern of mouse mammary tumor virus in transgenic mice carrying exogenous proviruses of different origins.

    OpenAIRE

    Rollini, P; Billotte, J; Kolb, E.; Diggelmann, H.

    1992-01-01

    To study the tissue specificity of mouse mammary tumor virus (MMTV) gene expression, we developed two series of transgenic mice, containing the MMTV proviral DNA of mammary (GR) and kidney (C3H-K) origin. The expression pattern in the MMTV(GR) transgenic mice is very similar to that observed in infected animals, e.g., a strong preference for viral expression in the lactating mammary glands and lower levels of expression in salivary glands, lymphoid tissues, and male reproductive organs. One l...

  5. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene

    OpenAIRE

    Kojima, Nobuhiko; Wang, Jian; Mansuy, Isabelle M.; Grant, Seth G.N.; Mayford, Mark; Kandel, Eric R.

    1997-01-01

    To examine the physiological role of the Fyn tyrosine kinase in neurons, we generated transgenic mice that expressed a fyn cDNA under the control of the calcium/calmodulin-dependent protein kinase IIα promoter. With this promoter, we detected only low expression of Fyn in the neonatal brain. In contrast, there was strong expression of the fyn-transgene in neurons of the adult forebrain. To determine whether the impairment of long-term potentiation (LTP) observed in adult fyn-deficient mice wa...

  6. Oral mucosal cell response to Candida albicans in transgenic mice expressing HIV-1.

    Science.gov (United States)

    de Repentigny, Louis; Lewandowski, Daniel; Aumont, Francine; Hanna, Zaher; Jolicoeur, Paul

    2009-01-01

    Controlled studies on the immunopathogenesis of mucosal candidiasis in HIV infection have been hampered by the lack of a relevant animal model. We have previously reported that oral Candida infection in CD4C/HIV transgenic mice expressing gene products of HIV-1 in immune cells and developing an AIDS-like disease closely mimics oropharyngeal candidiasis in human HIV infection. The role of defective dendritic cells and CD4+ T cells in impaired induction of protective immunity and in the phenotype of chronic oral carriage of C. albicans can now be investigated under controlled conditions in these transgenic mice. PMID:19089395

  7. Tissue-specific expression of the rat beta-casein gene in transgenic mice.

    OpenAIRE

    Lee, K. F.; DeMayo, F J; Atiee, S H; Rosen, J. M.

    1988-01-01

    The rat beta-casein gene is a member of a small gene family, encoding the principal milk proteins. In order to understand the mechanisms by which its stage- and tissue-specific expression are regulated, initially, a 14 kb genomic clone containing the entire 7.5 kb rat beta-casein gene with 3.5 kb of 5' and 3.0 kb of 3' flanking DNA was microinjected into the germline of mice. Eight F0 transgenic mice were generated with copy numbers ranging from 1-10; five transmitted the transgene to their o...

  8. Differential regulation of rat beta-casein-chloramphenicol acetyltransferase fusion gene expression in transgenic mice.

    OpenAIRE

    Lee, K. F.; Atiee, S H; Rosen, J. M.

    1989-01-01

    Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of tr...

  9. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available BACKGROUND: Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models. OBJECTIVE: Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms. METHODOLOGY: We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls. CONCLUSIONS: LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  10. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice.

    Science.gov (United States)

    Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H Henry

    2016-07-01

    Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. PMID:27226540

  11. Use of the viral 2A peptide for bicistronic expression in transgenic mice

    Directory of Open Access Journals (Sweden)

    Trichas Georgios

    2008-09-01

    Full Text Available Abstract Background Transgenic animals are widely used in biomedical research and biotechnology. Multicistronic constructs, in which several proteins are encoded by a single messenger RNA, are commonly used in genetically engineered animals. This is currently done by using an internal ribosomal entry site to separate the different coding regions. 2A peptides result in the co-translational 'cleavage' of proteins and are an attractive alternative to the internal ribosomal entry site. They are more reliable than the internal ribosomal entry site and lead to expression of multiple cistrons at equimolar levels. They work in a wide variety of eukaryotic cells, but to date have not been demonstrated to function in transgenic mice in an inheritable manner. Results To test 2A function in transgenic mice and uncover any possible toxicity of widespread expression of the 2A peptide, we made a bicistronic reporter construct containing the coding sequence for a membrane localised red fluorescent protein (Myr-TdTomato and a nuclear localised green fluorescent protein (H2B-GFP, separated by a 2A sequence. When this reporter is transfected into HeLa cells, the two fluorescent proteins correctly localise to mutually exclusive cellular compartments, demonstrating that the bicistronic construct is a reliable readout of 2A function. The two fluorescent proteins also correctly localise when the reporter is electroporated into chick neural tube cells. We made two independent transgenic mouse lines that express the bicistronic reporter ubiquitously. For both lines, transgenic mice are born in Mendelian frequencies and are found to be healthy and fertile. Myr-TdTomato and H2B-GFP segregate to mutually exclusive cellular compartments in all tissues examined from a broad range of developmental stages, ranging from embryo to adult. One transgenic line shows X-linked inheritance of the transgene and mosaic expression in females but uniform expression in males, indicating

  12. Tiam1 transgenic mice display increased tumor invasive and metastatic potential of colorectal cancer after 1,2-dimethylhydrazine treatment.

    Directory of Open Access Journals (Sweden)

    Li-Na Yu

    Full Text Available BACKGROUND: T lymphoma invasion and metastasis 1 (Tiam1 is a potential modifier of tumor development and progression. Our previous study in vitro and in nude mice suggested a promotion role of Tiam1 on invasion and metastasis of colorectal cancer (CRC. In the present study, we generated Tiam1/C1199-CopGFP transgenic mice to investigate the tumorigenetic, invasive and metastatic alterations in the colon and rectum of wild-type and Tiam1 transgenic mice under 1,2-dimethylhydrazine (DMH treatment. METHODS: Transgenic mice were produced by the method of pronuclear microinlectlon. Whole-body fluorescence imaging (Lighttools, Edmonton, Alberta, Canada, PCR, and immunohistochemical techniques (IHC were applied sequentially to identify the transgenic mice. The carcinogen DMH (20 mg/kg was used to induce colorectal tumors though intraperitoneal (i.p. injections once a week for 24 weeks from the age of 4 weeks on Tiam1 transgenic or non-transgenic mice. RESULTS: We successfully generated Tiam1/C1199-CopGFP transgenic mice and induced primary tumors in the intestine of both wild type and Tiam1 transgenic mice by DMH treatment. In addition, Tiam1 transgenic mice developed larger and more aggressive neoplasm than wild-type mice. Moreover, immunohistochemical staining revealed that upregulation of Tiam1 was correlated with increased expression of β-Catenin and Vimentin, and downregulation of E-Cadherin in these mice. CONCLUSIONS: Our study has provided in vivo evidence supporting that Tiam1 promotes invasion and metastasis of CRC, most probably through activation of Wnt/β-catenin signaling pathway, in a Tiam1 transgenic mouse model.

  13. Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice

    International Nuclear Information System (INIS)

    6-Hydroxydopamine is a neurotoxin that produces degeneration of the nigrostriatal dopaminergic pathway in rodents. Its toxicity is thought to involve the generation of superoxide anion secondary to its autoxidation. To examine the effects of the overexpression of Cu,Zn-superoxide dismutase activity on 6-hydroxydopamine-induced dopaminergic neuronal damage, we have measured the effects of 6-hydroxydopamine on striatal and nigral dopamine transporters and nigral tyrosine hydroxylase-immunoreactive neurons in Cu,Zn-superoxide dismutase transgenic mice. Intracerebroventricular injection of 6-hydroxydopamine (50 μg) in non-transgenic mice produced reductions in the size of striatal area and an enlargement of the cerebral ventricle on both sides of the brains of mice killed two weeks after the injection. In addition, 6-hydroxydopamine caused marked decreases in striatal and nigral [125I]RTI-121-labelled dopamine transporters not only on the injected side but also on the non-injected side of non-transgenic mice; this was associated with decreased cell number and size of tyrosine hydroxylase-immunoreactive dopamine neurons in the substantia nigra pars compacta on both sides in these mice. In contrast, superoxide dismutase transgenic mice were protected against these neurotoxic effects of 6-hydroxydopamine, with the homozygous transgenic mice showing almost complete protection.These results provide further support for a role of superoxide anion in the toxic effects of 6-hydroxydopamine. They also provide further evidence that reactive oxygen species may be the main determining factors in the neurodegenerative effects of catecholamines. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Immunoglobulin gene expression and regulation of rearrangement in kappa transgenic mice

    International Nuclear Information System (INIS)

    Transgenic mice were produced by microinjection of the functionally rearranged immunoglobulin kappa gene from the myeloma MOPC-21 into the male pronucleus of fertilized mouse eggs, and implantation of the microinjected embryos into foster mothers. Mice that integrated the injected gene were detected by hybridizing tail DNA dots with radioactively labelled pBR322 plasmid DNA, which detects pBR322 sequences left as a tag on the microinjected DNA. Mice that integrated the injected gene (six males) were mated and the DNA, RNA and serum kappa chains of their offspring were analyzed. A rabbit anti-mouse kappa chain antiserum was also produced for use in detection of mouse kappa chains on protein blots. Hybridomas were produced from the spleen cells of these kappa transgenic mice to immortalize representative B cells and to investigate expression of the transgenic kappa gene, its effect on allelic exclusion, and its effect on the control of light chain gene rearrangement and expression. The results show that the microinjected DNA is integrated as concatamers in unique single or, rarely, two separate sites in the genome. The concatamers are composed of several copies (16 to 64) of injected DNA arranged in a head to tail fashion. The transgene is expressed into protein normally and in a tissue specific fashion. For the first time in these transgenic mice, all tissues contain a functionally rearranged and potentially expressible immunoglobulin gene. The transgene is expressed only in B cells and not in hepatocytes, for example. This indicates that rearrangement of immunoglobulin genes is necessary but not sufficient for the tissue specific expression of these genes by B cells

  15. Transmission barriers for bovine ovine, and human prions in transgenic mice

    OpenAIRE

    Van Scott, Michael R.; Peretz, David; Nguyen, Hoang-Oanh B.; Stephen J DeArmond; Prusiner, Stanley B.

    2005-01-01

    Transgenic (Tg) mice expressing full-length bovine prion protein (BoPrP) serially propagate bovine spongiform encephalopathy (BSE) prions without posing a transmission barrier. These mice also posed no transmission barrier for Suffolk sheep scrapie prions, suggesting that cattle may be highly susceptible to some sheep scrapie strains. Tg(BoPrP) mice were also found to be susceptible to prions from humans with variant Creutzfeldt-Jakob disease (CJD); on second passage in Tg(BoPrP) mice, the in...

  16. Chronic Wasting Disease of Deer and Elk in Transgenic Mice: Oral Transmission and Pathobiology

    OpenAIRE

    Trifilo, Matthew J.; Ying, Ge; Teng, Chao; Oldstone, Michael B. A.

    2007-01-01

    To study the pathogenesis of chronic wasting disease (CWD) in deer and elk, transgenic (tg) mice were generated that expressed the prion protein (PrP) of deer containing a glycine at amino acid (aa) 96 and a serine at aa 225 under transcriptional control of the murine PrP promoter. This construct was introduced into murine PrP-deficient mice. As anticipated, neither non-tg mice nor PrP ko mice were susceptible when inoculated intracerebrally (i.c.) or orally with CWD brain material (scrapie p...

  17. Antioxidants have a rapid and long-lasting effect on neuritic abnormalities in APP:PS1 mice

    OpenAIRE

    Garcia-Alloza, Monica; Borrelli, Laura A.; Hyman, Bradley T; Bacskai, Brian J.

    2009-01-01

    Senile plaques are a major pathological hallmark of Alzheimer’s Disease (AD). Compelling evidence suggests that senile plaques lead to structural alterations of neuronal processes and that local toxicity may be mediated by increased oxidative stress. Anti-oxidant therapy can alleviate the neuronal abnormalities in APP mice, but the time-course of this beneficial effect is unknown. We used multiphoton microscopy to assess in vivo the characteristics of antioxidant treatment on senile plaques a...

  18. The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice

    Science.gov (United States)

    Linkous, D.H.; Adlard, P.A.; Wanschura, P.B.; Conko, K.M.; Flinn, J.M.

    2009-01-01

    There is considerable evidence suggesting that metals play a central role in the pathogenesis of Alzheimer's disease. Reports suggest that elevated dietary metals may both precipitate and potentiate an Alzheimer's disease phenotype. Despite this, there remain few studies that have examined the behavioral consequences of elevated dietary metals in wild type and Alzheimer's disease animals. To further investigate this in the current study, two separate transgenic models of AD (Tg2576 and TgCRND8), together with wild type littermates were administered 10 ppm (0.153 mM) Zn. Tg2576 animals were maintained on a zinc-enriched diet both pre- and postnatally until 11 months of age, while TgCRND8 animals were treated for five months following weaning. Behavioral testing, consisting of "Atlantis" and "moving" platform versions of the Morris water maze, were conducted at the end of the study, and tissues were collected for immunohistochemical analysis of amyloid-β burden. Our data demonstrate that the provision of a zinc-enriched diet potentiated Alzheimer-like spatial memory impairments in the transgenic animals and was associated with reduced hippocampal amyloid-β plaque deposits. Zinc-related behavioral deficits were also demonstrated in wild type mice, which were sometimes as great as those present in the transgenic animals. However, zinc-related cognitive impairments in transgenic mice were greater than the summation of zinc effects in the wild type mice and the transgene effects.

  19. Production of transgenic mice carrying green fluorescence protein gene by a lentiviral vector-mediated approach

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jingzhi; GUO Xinbing; XIE Shuyang; ZHU Yiwen; HUANG Ying; WANG Shu; REN Zhaorui

    2006-01-01

    A pseudo-lentivirus, which carries green fluorescence protein (GFP) expressing cassette, was injected into the perivitelline space of murine fertilized oocytes before transplanting into the oviducts of the foster mothers. The GFP transgenic pups were then obtained. By PCR amplification, fluorescent microscopy and flow assisted cytometry sorting analysis, we found that the integration rate of the transgene was estimated at above 40%. Real-time PCR analysis indicated that the copy number of the integrated GFP cassette was around 40. Fluorescent in situ hybridization analysis demonstrated that the integration pattern was random but inheritable. The transgenic mice with multi-integration sites and various expression levels possessed a great value in practice as well as research. The approach reported herein provides an efficient way to generate and screen the transgenic mouse strains.

  20. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Directory of Open Access Journals (Sweden)

    Shih Ping Yao

    2002-04-01

    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  1. Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice

    OpenAIRE

    David, D C; Hauptmann, S.; Scherping, I; Schuessel, K; U. Keil; Rizzu, P.; Ravid, R; Dröse, S; Brandt, U.; Müller, W E; Eckert, A; Götz, J.

    2005-01-01

    Transgenic mice overexpressing the P301L mutant human tau protein exhibit an accumulation of hyperphosphorylated tau and develop neurofibrillary tangles. The consequences of tau pathology were investigated here by proteomics followed by functional analysis. Mainly metabolism-related proteins including mitochondrial respiratory chain complex components, antioxidant enzymes, and synaptic proteins were identified as modified in the proteome pattern of P301L tau mice. Significantly, the reduction...

  2. Increased Abscess Formation and Defective Chemokine Regulation in CREB Transgenic Mice

    OpenAIRE

    Andy Y Wen; Landaw, Elliot M.; Ochoa, Rachel; Cho, Michelle; Chao, Alex; Lawson, Gregory; Sakamoto, Kathleen M.

    2013-01-01

    Cyclic AMP-response element-binding protein (CREB) is a transcription factor implicated in growth factor-dependent cell proliferation and survival, glucose homeostasis, spermatogenesis, circadian rhythms, and synaptic plasticity associated with memory. To study the phenotype of CREB overexpression in vivo, we generated CREB transgenic (TG) mice in which a myeloid specific hMRP8 promoter drives CREB expression. CREB TG mice developed spontaneous skin abscesses more frequently than wild type (W...

  3. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin

    OpenAIRE

    Nicolas, Gaël; Bennoun, Myriam; Porteu, Arlette; Mativet, Sandrine; Beaumont, Carole; Grandchamp, Bernard; Sirito, Mario; Sawadogo, Michèle; Kahn, Axel; Vaulont, Sophie

    2002-01-01

    We recently reported the hemochromatosis-like phenotype observed in our Usf2 knockout mice. In these mice, as in murine models of hemochromatosis and patients with hereditary hemochromatosis, iron accumulates in parenchymal cells (in particular, liver and pancreas), whereas the reticuloendothelial system is spared from this iron loading. We suggested that this phenotypic trait could be attributed to the absence, in the Usf2 knockout mice, of a secreted liver-specific peptide, hepcidin. We con...

  4. bcl-xl over-expression in transgenic mice reduces cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Furong Wang; Yongsheng Jiang; Yan Liu; Wenwu Xiao; Suming Zhang

    2008-01-01

    BACKGROUND: Basal cell lymphoma-extra large (bcl-xl) can inhibit neuronal apoptosis by stabilizing the mitochondrial membrane and suppressing cytochrome C release into the cytoplasm. OBJECTIVE: This study aimed to further investigate the cascade reaction pathway of cellular apoptosis. We established an ischemia/dreperfusion model by middle cerebral artery occlusion (MCAO) in transgenic and wild-type mice, and observed changes in the number and distribution of apoptotic neural cells, differences in cerebral infarct volume, in neurological function score, and in cytochrome C expression in the ischemic cerebral cortex, at different time points, DESIGN AND SETTING: The present gene engineering and cell biology experiment was performed at the Laboratory of Biology, Hubei Academy of Agricultural Sciences and at the Laboratory of Immunology, Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Male bcl-xl over-expression Kunming mice aged 8 weeks and age-matched male wild-type mice were used for this study. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) kits were purchased from Boliman, France. Cytochrome C antibody and Bcl-x immunohistochemical kit were purchased from PharMingen, USA and Santa Cruz Biotechnology, USA, respectively. METHODS: Following MCAO and reperfusion, apoptosis in the ischemic cerebral cortex was detected by the TUNEL assay. Prior to MCAO and 3 hours after reperfusion, the Bcl-xl protein level in the ischemic cerebral cortex was measured by immunohistochemistry. At 3, 6, 12 and 24 hours after reperfusion, the level of cytochrome C in the ischemic cerebral cortex was examined by western blot analysis. Subsequent to MCAO, cerebral infarct volume measurement and neurological examination were performed. MAIN OUTCOME MEASURES: Neural cell apoptosis and cytochrome C expression in the ischemic cerebral cortex; cerebral infarct volume and neurological function score. RESULTS: Twenty-four hours after

  5. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice

    OpenAIRE

    Kennard, John A.; Harrison, Fiona E.

    2014-01-01

    The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (−/−) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 & SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and...

  6. Generation and characterization of mice transgenic for human IL-18-binding protein isoform a.

    Science.gov (United States)

    Fantuzzi, Giamila; Banda, Nirmal K; Guthridge, Carla; Vondracek, Andrea; Kim, Soo-Hyun; Siegmund, Britta; Azam, Tania; Sennello, Joseph A; Dinarello, Charles A; Arend, William P

    2003-11-01

    Interleukin (IL)-18 binding protein (IL-18BP) is a natural inhibitor of the pleiotropic cytokine IL-18. To study the role of IL-18BP in modulating inflammatory responses in vivo, mice transgenic for human IL-18BP isoform a (IL-18BP-Tg) were generated. The transgene was expressed at high levels in each organ examined. High levels of bioactive human IL-18BPa were detectable in the circulation of IL-18BP-Tg mice, which were viable, fertile, and had no tissue or organ abnormality. The high levels of IL-18BP in the transgenic mice were able to completely neutralize the interferon-gamma (IFN-gamma)-inducing activity of exogenously administered IL-18. Following administration of endotoxin, with or without prior sensitization with heat-inactivated Propionibacterium acnes, IL-18BP-Tg mice produced significantly lower serum levels of IFN-gamma and macrophage-inflammatory protein-2 compared with nontransgenic littermates. Significantly reduced production of IFN-gamma in response to endotoxin was also observed in cultures of IL-18BP-Tg splenocytes. Finally, IL-18BP-Tg mice were completely protected in a model of hepatotoxicity induced by administration of concanavalin A. These results indicate that high endogenous levels of IL-18BP in trangenic mice effectively neutralize IL-18 and are protective in response to different inflammatory stimuli. PMID:12960225

  7. Impaired reproduction in transgenic mice overexpressing γ-aminobutyric acid transporter I (GAT1)

    Institute of Scientific and Technical Information of China (English)

    Jia Hua HU; Jin Fu ZHANG; Ying Hua MA; Jie JIANG; Na YANG; Xin Bo LI; Zhi Guang YU CHI; Jian FEI; Li He GUO

    2004-01-01

    It is well documented that γ-aminobutyric acid (GABA) system existed in reproductive organs. Recent researches showed that GABAA and GABAB receptors were present in testis and sperm,and might mediate the acrosome reaction induced by GABA and progesterone. GABA transporter I (GAT1) also existed in testis and sperm,but its physiological function was unknown. In the present study,we used GAT1 overexpressing mice to explore GAT1 function in male reproductive system. We found that the expression level of GAT1 continuously increased in wild-type mouse testis from 1 month to 2 months after birth. GAT1 overexpression in mouse affected testis development,which embodied reduced testis mass and slowed spermatogenesis in transgenic mice. Moreover,transgenic mice showed increase of the percentage of broken sperm. The further study revealed that the reproductive capacity was impaired in GAT1 overexpressing mice. In addition,testosterone level was significantly low in transgenic mice compared with that in wild-type mice. Our findings provided the first evidence that abnormal expression of GAT1 could result in dysgenesis,and indicated that GAT1 might be therapeutically targeted for contraception or dysgenesis treatment.

  8. Progranulin reduction is associated with increased tau phosphorylation in P301L tau transgenic mice.

    Science.gov (United States)

    Hosokawa, Masato; Arai, Tetsuaki; Masuda-Suzukake, Masami; Kondo, Hiromi; Matsuwaki, Takashi; Nishihara, Masugi; Hasegawa, Masato; Akiyama, Haruhiko

    2015-02-01

    Granulin (GRN) mutations have been identified in familial frontotemporal lobar degeneration patients with ubiquitin pathology. GRN transcript haploinsufficiency is proposed as a disease mechanism that leads to the loss of functional progranulin (PGRN) protein. Thus, these mutations are strongly involved in frontotemporal lobar degeneration pathogenesis. Moreover, recent findings indicate that GRN mutations are associated with other neurodegenerative disorders with tau pathology, including Alzheimer disease and corticobasal degeneration. To investigate the potential influence of a decline in PGRN protein on tau accumulation, P301L tau transgenic mice were interbred with GRN-deficient mice, producing P301L tau transgenic mice harboring the GRN hemizygote. Brains were collected from 13- and 19-month-old mice, and sequential extraction of proteins, immunoblotting, and immunohistochemical analyses were performed. Immunoblotting analysis revealed that tau phosphorylation was accelerated in the Tris-saline soluble fraction of 13-month-old and in the sarkosyl-insoluble fraction of 19-month-old P301L tau/GRN hemizygotes compared with those in fractions from P301L tau transgenic mice. Activity of cyclin-dependent kinases was also upregulated in the brains of P301L tau/GRN hemizygote mice. Although the mechanisms involved in these findings remain unknown, our data suggest that a reduction in PGRN protein might contribute to phosphorylation and intraneuronal accumulation of tau. PMID:25575133

  9. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans;

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...

  10. Experimental study of treatment for radiation-damaged mice by transgenic VEGF

    International Nuclear Information System (INIS)

    Objective: To study the effect of VEGF gene expression in the treatment of radiation damage, and to explore its molecular mechanism by transferring eukaryotic expression plasmid containing VEGF gene into irradiated mice cells. Methods: Normally Kunming mice were divided randomly into three groups as control group, irradiated group and transferred VEGF gene group. The mice were administered with 8 Gy X-ray exposure after intramuscular injection of VEGF recombinant plasmid in the transgenic group. The animals were killed at different times after X-ray exposure. Their clinical manifestation, mortality rate, pathology of tissues and in situ apoptosis in thymus and splenic cells were observed. Results: VEGF165 gene fragments were amplified from pSP73/HVEGF165 plasmid by PCR method, and then linked with pcDNA3.1 vector after incision by double enzyme. The recombinant plasmid pcDNA3.1/VEGF165 was constructed. Electrophoresis and sequencing showed that the recombinant plasmid sequence was exactly the same with the data in GenBank. The mortality of irradiated group and transgenic group 14 d post-irradiation was 64% and 36%, respectively, with the statistical difference (t=3.92, P165 was successfully constructed. Transgenic treatment with recombinant plasmid can remarkably decrease the mortality and apoptosis rate of thymus and spleen cells in mice suffering from severe radiation damage, and improve the pathologic change of immune organs. VEGF transgenic technique is one of the effective methods for treating severe radiation injury. (authors)

  11. Transgenic mice overexpressing renin exhibit glucose intolerance and diet-genotype interactions

    Directory of Open Access Journals (Sweden)

    Sarah J. Fletcher

    2013-01-01

    Full Text Available Numerous animal and clinical investigations have pointed to a potential role of the renin-angiotensin system (RAS in the development of insulin resistance and diabetes in conditions of expanded fat mass. However, the mechanisms underlying this association remain unclear. We used a transgenic mouse model overexpressing renin in the liver (RenTgMK to examine the effects of chronic activation of RAS on adiposity and insulin sensitivity. Hepatic overexpression of renin resulted in constitutively elevated plasma angiotensin II (4-6-fold increase vs. wild type. Surprisingly, RenTgMK mice developed glucose intolerance despite low levels of adiposity and insulinemia. The transgenics also had lower plasma triglyceride levels. Glucose intolerance in transgenic mice fed a low-fat diet was comparable to that observed in high fat-fed wild type mice. Glucose intolerance was exacerbated by high-fat feeding, only in female transgenic mice. These studies demonstrate that overexpression of renin and associated hyperangiotensinemia impair glucose tolerance in a diet-dependent manner and further support a consistent role of RAS in the pathogenesis of diabetes and insulin resistance, independent of changes in fat mass.

  12. E2F-1-Induced p53-independent apoptosis in transgenic mice

    DEFF Research Database (Denmark)

    Holmberg, Christian Henrik; Helin, K.; Sehested, M.;

    1998-01-01

    The E2F transcription factors are key targets for the retinoblastoma protein, pRB. By inactivation of E2Fs, pRB prevents progression to the S phase. To test proliferative functions of E2F, we generated transgenic mice expressing human E2F-1 and/or human DP-1. When the hydroxymethyl glutaryl...

  13. Reversal of startle gating deficits in transgenic mice overexpressing corticotropin-releasing factor by antipsychotic drugs.

    NARCIS (Netherlands)

    Dirks, A.; Groenink, L.; Westphal, K.G.; Olivier, J.D.A.; Verdouw, P.M.; Gugten, J. van der; Geyer, M.A.; Olivier, B.

    2003-01-01

    Chronically elevated levels of corticotropin-releasing factor (CRF) in transgenic mice overexpressing CRF in the brain (CRF-OE) appear to be associated with alterations commonly associated with major depressive disorder, as well as with sensorimotor gating deficits commonly associated with schizophr

  14. Reversal of startle gating deficits in transgenic mice overexpressing corticotropin-releasing factor by antipsychotic drugs

    NARCIS (Netherlands)

    Dirks, Anneloes; Groenink, Lucianne; Westphal, Koen G C; Olivier, Jocelien D A; Verdouw, P Monika; van der Gugten, Jan; Geyer, Mark A; Olivier, Berend

    2003-01-01

    Chronically elevated levels of corticotropin-releasing factor (CRF) in transgenic mice overexpressing CRF in the brain (CRF-OE) appear to be associated with alterations commonly associated with major depressive disorder, as well as with sensorimotor gating deficits commonly associated with schizophr

  15. Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71.

    Directory of Open Access Journals (Sweden)

    Yi-Wen Lin

    Full Text Available Enterovirus 71 (EV71 and coxsackievirus (CVA are the most common causative factors for hand, foot, and mouth disease (HFMD and neurological disorders in children. Lack of a reliable animal model is an issue in investigating EV71-induced disease manifestation in humans, and the current clinical therapies are symptomatic. We generated a novel EV71-infectious model with hSCARB2-transgenic mice expressing the discovered receptor human SCARB2 (hSCARB2. The challenge of hSCARB2-transgenic mice with clinical isolates of EV71 and CVA16 resulted in HFMD-like and neurological syndromes caused by E59 (B4 and N2838 (B5 strains, and lethal paralysis caused by 5746 (C2, N3340 (C4, and CVA16. EV71 viral loads were evident in the tissues and CNS accompanied the upregulated pro-inflammatory mediators (CXCL10, CCL3, TNF-α, and IL-6, correlating to recruitment of the infiltrated T lymphocytes that result in severe diseases. Transgenic mice pre-immunized with live E59 or the FI-E59 vaccine was able to resist the subsequent lethal challenge with EV71. These results indicate that hSCARB2-transgenic mice are a useful model for assessing anti-EV71 medications and for studying the pathogenesis induced by EV71.

  16. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Directory of Open Access Journals (Sweden)

    Liu Zhihui

    2008-08-01

    Full Text Available Abstract Background Interleukin 1 beta (IL-1β plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.

  17. Transgenic mice expressing constitutive active MAPKAPK5 display gender-dependent differences in exploration and activity

    Directory of Open Access Journals (Sweden)

    Moens Ugo

    2007-11-01

    Full Text Available Abstract Background The mitogen-activated protein kinases, MAPKs for short, constitute cascades of signalling pathways involved in the regulation of several cellular processes that include cell proliferation, differentiation and motility. They also intervene in neurological processes like fear conditioning and memory. Since little remains known about the MAPK-Activated Protein Kinase, MAPKAPK5, we constructed the first MAPKAPK knockin mouse model, using a constitutive active variant of MAPKAPK5 and analyzed the resulting mice for changes in anxiety-related behaviour. Methods We performed primary SHIRPA observations during background breeding into the C57BL/6 background and assessed the behaviour of the background-bred animals on the elevated plus maze and in the light-dark test. Our results were analyzed using Chi-square tests and homo- and heteroscedatic T-tests. Results Female transgenic mice displayed increased amounts of head dips and open arm time on the maze, compared to littermate controls. In addition, they also explored further into the open arm on the elevated plus maze and were less active in the closed arm compared to littermate controls. Male transgenic mice displayed no differences in anxiety, but their locomotor activity increased compared to non-transgenic littermates. Conclusion Our results revealed anxiety-related traits and locomotor differences between transgenic mice expressing constitutive active MAPKAPK5 and control littermates.

  18. α-Lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice

    International Nuclear Information System (INIS)

    α-Lipoic acid (α-LA) mimics the hypothalamic actions of leptin on food intake, energy expenditure, and activation of AMP-activated protein kinase (AMPK). To determine if, like leptin, α-LA protects against cardiac lipotoxicity, α-LA was fed to transgenic mice with cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene. Untreated ACS-transgenic mice died prematurely with increased triacylglycerol content and dilated cardiomyopathy, impaired systolic function and myofiber disorganization, apoptosis, and interstitial fibrosis on microscopy. In α-LA-treated ACS-transgenic mice heart size, echocardiogram and TG content were normal. Plasma TG fell 50%, hepatic-activated phospho-AMPK rose 6-fold, sterol regulatory element-binding protein-1c declined 50%, and peroxisome proliferator-activated receptor-γ cofactor-1α mRNA rose 4-fold. Since food restriction did not prevent lipotoxicity, we conclude that α-LA treatment, like hyperleptinemia, protects the heart of ACS-transgenic mice from lipotoxicity

  19. Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice

    OpenAIRE

    Balic, Anamaria; Mina, Mina

    2010-01-01

    Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studie...

  20. Establishment of La-tPA/G-CSF dual transgenic mice and expression in their mammary gland

    Institute of Scientific and Technical Information of China (English)

    卢一凡; 田靫; 邓继先; 程萱; 黄培堂

    1999-01-01

    Expression vectors of human granulocyte colony stimulating factor (G-CSG) and long acting tissue plasminogen activator (La-tPA) in mammary gland were constructed using promoters of mouse whey acid protein gene (WAP) and sheep β-lactoglobulin gene (BLG) with sizes of 2.6 and 5 kb respectively. Two kinds of transgenic mice of G-CSF and La-tPA were produced with microinjection. The expression of G-CSF and La-tPA was achieved in mammary glands of transgenic mice, respectively. In order to establish dual transgenic mice of La-tPA/G-CSF, transgenic mice carrying G-CSF and La-tPA gene characterized with specific expression in mammary gland were mated. La-tPA/G-CSF dual transgenic mice were screened out from the hybrid offspring by Once-PCR. The co-expression of La-tPA and G-CSF in mammary gland of the dual transgenic mice was confirmed by the milk assayed and Northern blot analysis. Some parameters about the dual transgenic mice indicated that there were fewer litters than that of normal mice. The ratio of du

  1. Bovine growth hormone transgenic mice display alterations in locomotor activity and brain monoamine neurochemistry.

    Science.gov (United States)

    Söderpalm, B; Ericson, M; Bohlooly, M; Engel, J A; Törnell, J

    1999-12-01

    Recent clinical and experimental data indicate a role for GH in mechanisms related to anhedonia/hedonia, psychic energy, and reward. In the present study we have investigated whether bovine GH (bGH) transgenic mice and nontransgenic controls differ in spontaneous locomotor activity, a behavioral response related to brain dopamine (DA) and reward mechanisms, as well as in locomotor activity response to drugs of abuse known to interfere with brain DA systems. The animals were tested for locomotor activity once a week for 4 weeks. When first exposed to the test apparatus, bGH transgenic animals displayed significantly more locomotor activity than controls during the entire registration period (1 h). One week later, after acute pretreatment with saline, the two groups did not differ in locomotor activity, whereas at the third test occasion, bGH mice were significantly more stimulated by d-amphetamine (1 mg/kg, ip) than controls. At the fourth test, a tendency for a larger locomotor stimulatory effect of ethanol (2.5 g/kg, ip) was observed in bGH transgenic mice. bGH mice displayed increased tissue levels of serotonin and 5-hydroxyindoleacetic acid in several brain regions, decreased DA levels in the brain stem, and decreased levels of the DA metabolite 3,4-dihydroxyphenylacetic acid in the mesencephalon and diencephalon, compared with controls. In conclusion, bGH mice display more spontaneous locomotor activity than nontransgenic controls in a novel environment and possibly also a disturbed habituation process. The finding that bGH mice were also more sensitive to d-amphetamine-induced locomotor activity may suggest that the behavioral differences observed are related to differences in brain DA systems, indicating a hyperresponsiveness of these systems in bGH transgenic mice. These findings may constitute a neurochemical basis for the reported psychic effects of GH in humans. PMID:10579325

  2. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus

    DEFF Research Database (Denmark)

    Ghiasi, Seyed Mojtaba; Salmanian, A H; Chinikar, S;

    2011-01-01

    glycoprotein when expressed in the root and leaf of transgenic plants via hairy roots and stable transformation of tobacco plants, respectively. After confirmatory analyses of transgenic plant lines and quantification of the expressed glycoprotein, mice were either fed with the transgenic leaves or roots, fed......A antibodies in their serum and feces, respectively. The mice in the fed/boosted group showed a significant rise in specific IgG antibodies after a single boost. Our results imply that oral immunization of animals with edible materials from transgenic plants is feasible, and further assessments are under way...

  3. Memory Impairment in Transgenic Alzheimer Mice Requires Cellular Prion Protein

    OpenAIRE

    Gimbel, David A.; Nygaard, Haakon B.; Coffey, Erin E.; Gunther, Erik C.; Laurén, Juha; Gimbel, Zachary A.; Strittmatter, Stephen M.

    2010-01-01

    Soluble oligomers of the amyloid-β (Aβ) peptide are thought to play a key role in the pathophysiology of Alzheimer’s disease (AD). Recently, we reported that synthetic Aβ oligomers bind to cellular prion protein (PrPC) and that this interaction is required for suppression of synaptic plasticity in hippocampal slices by oligomeric Aβ peptide. We hypothesized that PrPC is essential for the ability of brain-derived Aβ to suppress cognitive function. Here, we crossed familial AD transgenes encodi...

  4. Aspects of achondroplasia in the skulls of dwarf transgenic mice: a cephalometric study.

    Science.gov (United States)

    Bloom, Melissa Wadler; Murakami, Shunichi; Cody, Dianna; Montufar-Solis, Dina; Duke, Pauline Jackie

    2006-03-01

    Achondroplasia, the most common short-limbed dwarfism in humans, results from a single nucleotide substitution in the gene for fibroblast growth factor receptor 3 (FGFR3). FGFR3 regulates bone growth in part via the mitogen-activated protein kinase pathway (MAPK). To examine the role of this pathway in chondrocyte differentiation, a transgenic mouse was generated that expresses a constitutively active mutant of MEK1 in chondrocytes and exhibits dwarfing characteristics typical of human achondroplasia, i.e., shortened axial and appendicular skeletons, mid-facial hypoplasia, and dome-shaped cranium. In this study, cephalometrics of the MEK1 mutant skulls were assessed to determine if the MEK1 mice are a good model of achondroplasia. Skull length, arc of the cranial vault, and area, maximum and minimum diameters of the brain case were measured on digitized radiographs of skulls of MEK1 and control mice. Cranial base and nasal bone length and foramen magnum diameter were measured on midsagittal micro-CT sections. Data were normalized by dividing by the cube root of each animal's weight. Transgenic mice exhibited a domed skull, deficient midface, and (relatively) prognathic mandible and had a shorter cranial base and nasal bone than the wild-type. Skull length was significantly less in transgenic mice, but cranial arc was significantly greater. The brain case was larger and more circular and minimum diameter of the brain case was significantly greater in transgenic mice. The foramen magnum was displaced anteriorly but not narrowed. MEK1 mouse cephalometrics confirm these mice as a model for achondroplasia, demonstrating that the MAP kinase signaling pathway is involved in FGF signaling in skeletal development. PMID:16463380

  5. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  6. Transgenic mice for a tamoxifen-induced, conditional expression of the Cre recombinase in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Maria Arantzazu Sanchez-Fernandez

    Full Text Available BACKGROUND: Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood. METHODOLOGY/PRINCIPAL FINDING: We report here on the generation of transgenic mice which specifically express a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK, a gene highly expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of CtsKCreERT2+/-LacZ+/- adult mice show a Cre-dependent β-galactosidase activity after tamoxifen stimulation. CONCLUSIONS/SIGNIFICANCE: We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function in bone physiology during different developmental stages and adulthood of mice.

  7. Apolipoprotein E*3-Leiden transgenic mice mode for hypolipidaemic drugs

    OpenAIRE

    Vlijmen, B.J.M. van; Pearce, N.J.; Bergö, M.; Staels, B.; Yates, J.W.; Gribble, A.D.; Bond, B.C.; Hofker, M H; Havekes, L. M.; Groot, P H E

    1998-01-01

    Apolipoprotein (APO) E*3-Leiden mice with impaired chylomicron and VLDL (very low density lipoprotein) remnant metabolism display hyperlipidaemia and atherosclerosis. In the present study, these mice were used for testing the hypolipidaemic effect of two marketed agents, lovastatin (CAS 75330-75-5) and gemfibrozil (CAS 25812-30-0) as well as a novel compound, SB 204990 (the 5- ring lactone of ±(3R*,5S*) 3-carboxy-11-(2,4-dichlorophenyl)-3,5- dihydroxyundecanoic acid, CAS 154566-12-8), a poten...

  8. Function of chymase in the heart angiotensin Ⅱ forma- tion in transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The myosin light chain 2 promoter-human heart chymase (MLC2-hChymase) transgenic mice founded by our laboratory were used as the model to study the function of chymase in the heart angiotension Ⅱ (Ang Ⅱ) formation and heart remodeling. Tissue-specific expression of human heart chymase gene and transcriptional expression of typeⅠ and type Ⅲ collagens genes were analyzed by RT-PCR. Activities of chymase, ACE and the levels of AngⅡ in heart and plasma were determined with radioimmunoassay (RIA) kit. Activity of heart matrix metalloproteinase-9 (MMP-9) was detected using gelatin zymography. The cardiac hypertrophic phenotypes were also observed with the physiological and morphological methods. The results in the MLC2-hChymase transgenic mice indicated: (ⅰ) human heart chymase gene was expressed specially in the heart; (ⅱ) heart chymase activity increased markedly in the transgenic mice vs non-transgenic mice (control) (0.27±0.07 U/mg vs. 0.15±0.02 U/mg, P<0.05) with no significant difference in ACE activity (0.17±0.03 U/mg vs. 0.18±0.02 U/mg); (ⅲ) heart AngⅡ content increased 3-fold (1984±184 vs. 568±88 pg/g protein, P<0.05) but was unchanged in plasma (218±106 vs. 234±66 pg/mL); (ⅳ) both MMP-9 activity and collagen Ⅰ mRNA level increased significantly in the heart (P<0.05) but there was neither significant increase in colla-gen Ⅲ mRNA nor in the ratio of Ⅰ/ Ⅲ collagen mRNA levels; (ⅴ) the MLC2-hChymase transgenic mice showed no significant changes in blood pressure, heart-rate, ratio of heart/body weight and cardiomyocyte diameter compared to the control. This suggests that heart AngⅡ formation cata-lyzed through overexpression of human heart chymase gene in the heart of transgenic mice might activate MMP-9 to influence collagen metabolism in cardiac interstitial and to be involved in the process of heart remodeling.

  9. Glucose homeostasis and insulin sensitivity in growth hormone-transgenic mice: a cross-sectional analysis.

    Science.gov (United States)

    Boparai, Ravneet K; Arum, Oge; Khardori, Romesh; Bartke, Andrzej

    2010-10-01

    In contrast to its stimulatory effects on musculature, bone, and organ development, and its lipolytic effects, growth hormone (GH) opposes insulin effects on glucose metabolism. Chronic GH overexposure is thought to result in insulin insensitivity and decreased blood glucose homeostatic control. Yet, despite the importance of this concept for basic biology, as well as human conditions of GH excess or deficiency, no systematic assessment of the impact of GH over- expression on glucose homeostasis and insulin sensitivity has been conducted. We report that male and female adult GH transgenic mice have enhanced glucose tolerance compared to littermate controls and this effect is not dependent on age or on the particular heterologous GH transgene used. Furthermore, increased glucose-stimulated insulin secretion, augmented insulin sensitivity, and muted gluconeogenesis were also observed in bovine GH overexpressing mice. These results show that markedly increased systemic GH concentration in GH-transgenic mice exerts unexpected beneficial effects on glucose homeostasis, presumably via a compensatory increase in insulin release. The counterintuitive nature of these results challenges previously held presumptions of the physiology of these mice and other states of GH overexpression or suppression. In addition, they pose intriguing queries about the relationships between GH, endocrine control of metabolism, and aging. PMID:20707609

  10. Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Crane Allison

    2001-01-01

    Full Text Available Abstract Background Germline mutations in the tumor suppressor PTEN predispose human beings to breast cancer, and genetic and epigenetic alterations of PTEN are also detected in sporadic human breast cancer. Germline Pten mutations in mice lead to the development of a variety of tumors, but mammary carcinomas are infrequently found, especially in mice under the age of six months. Results To better understand the role of PTEN in breast tumor development, we have crossed Pten heterozygous mice to MMTV-Wnt-1 transgenic mice that routinely develop ductal carcinomas in the mammary gland. Female Wnt-1 transgenics heterozygous for Pten developed mammary tumors earlier than Wnt-1 transgenics that were wild type for Pten. In most tumors arising in Pten heterozygotes, the Pten wild-type allele was lost, suggesting that cells lacking Pten function have a growth advantage over cells retaining a wild type allele. Tumors with LOH contained high levels of activated AKT/PKB, a downstream target of the PTEN/PI3K pathway. Conclusions An animal model has been developed in which the absence of Pten collaborates with Wnt-1 to induce ductal carcinoma in the mammary gland. This animal model may be useful for testing therapies specific for tumors deregulated in the PTEN/PI3K/AKT pathway.

  11. Expression of human erythropoietin directed by mWAP promoter in mammary gland of transgenic mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The present work has generated transgenic mice with a hybrid gene construct consisting of genomic sequences encoding human erythropoietin (hEPO) and governed by regulatory sequences of mouse whey acidic protein (mWAP). The construct proved effective by transient expression in lactating animal. After introducing hybrid gene construct into single-cell embryo via pronuclear microinjection, surviving embryo are reimplanted into pseudopregnant foster mother mouse. 58 mice of 86 generation zero mice obtained were identified to be positive by PCR-Southern blot and genomic DNA Southern blot methods. The integration rate is 67%. hEPO was expressed in the milk of 16 mice of 39 mice measured by hEPO ELISA kit .The expression level gets over 15 m g/mL.

  12. FTY720 Attenuates Acute Pancreatitis in Hypertriglyceridemic Apolipoprotein CIII Transgenic Mice.

    Science.gov (United States)

    Liu, Jinjiao; Xu, Pengfei; Zhang, Ling; Kayoumu, Abudurexiti; Wang, Yunan; Wang, Mengyu; Gao, Mingming; Zhang, Xiaohong; Wang, Yuhui; Liu, George

    2015-09-01

    Hypertriglyceridemic pancreatitis (HTGP) is often encountered clinically as a common form of recurrent acute pancreatitis (AP). It is important to evaluate the management of severe hypertriglyceridemia (HTG) or anti-inflammation in the prophylaxis of HTGP in the clinic. FTY720 (2-amino-2[2-(4-octylphenyl) ethyl]-1, 3-propanediol) is a new anti-inflammatory agent with low toxicity and reported to ameliorate lung injury with pancreatitis in rat. We evaluated its protective affection on AP induced by seven hourly intraperitoneal injection of cerulein in apolipoprotein CIII transgenic mice with severe HTG. FTY720 at 1.5 mg/kg was administered by gastric lavage daily for 3 days before induction of AP. The effects of FTY720 to protect against HTGP were assessed by serum amylase, pancreatic pathological scores, immunostaining, and the expression of inflammatory cytokine genes. As a result, injection of cerulein resulted in more severe pathological changes of AP and higher monocyte chemoattractant protein 1 expression in the pancreas in transgenic than in nontransgenic mice. FTY720 pretreatment improved the pathological severity of AP and decreased the expression of monocyte chemoattractant protein 1 in the pancreas significantly, especially near fourfold reduction in transgenic mice. However, FTY720 did not affect plasma triglyceride levels, and other inflammatory factors and plasma amylase were not correlated with the extent of pancreatic damage in AP with or without FTY720 administration. In summary, our study in a new model, apolipoprotein CIII transgenic mice, demonstrated that HTG mice are susceptible to induction of AP. Prophylactic treatment of FTY720 can significantly attenuate cerulein-induced AP and hence warrant further investigation of sphingosine-1-phosphate receptors agonist for potential clinical application in recurrent attacks of HTGP. PMID:25944794

  13. Production of transgenic mice by random recombination of targeted genes in female germline stem cells

    Institute of Scientific and Technical Information of China (English)

    Yong Zhang; Ji Xiong; Jie Xiang; Ji Wu; Zhaojuan Yang; Yunze Yang; Shuzeng Wang; Lingjun Shi; Wenhai Xie; Kejing Sun; Kang Zou; Lei Wang

    2011-01-01

    Oocyte production in most mammalian species is believed to cease before birth. However, this idea has been challenged with the finding that postnatal mouse ovaries possess mitotically active germ cells. A recent study showed that female germline stem cells (FGSCs) from adult mice were isolated, cultured long term and produced oocytes and progeny after transplantation into infertile mice. Here, we demonstrate the successful generation of transgenic or gene knock-down mice using FGSCs. The FGSCs from ovaries of 5-day-old and adult mice were isolated and either infected with recombinant viruses carrying green fluorescent protein, Oocyte-G1 or the mouse dynein axonemal intermediate chain 2 gene, or transfected with the Oocyte-G1 specific shRNA expression vector (pRS shOocyte-G1 vector), and then transplanted into infertile mice. Transplanted cells in the ovaries underwent oogenesis and produced heterozygous offspring after mating with wild-type male mice. The offspring were genetically characterized and the biological functions of the transferred or knock-down genes were investigated. Efficiency of genetransfer or gene knock-down was 29%-37% and it took 2 months to produce transgenic offspring. Gene manipulation of FGSCs is a rapid and efficient method of animal transgenesis and may serve as a powerful tool for biomedical science and biotechnology.

  14. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sebastian R Schreglmann

    Full Text Available Adult neurogenesis mirrors the brain´s endogenous capacity to generate new neurons throughout life. In the subventricular zone/ olfactory bulb system adult neurogenesis is linked to physiological olfactory function and has been shown to be impaired in murine models of neuronal alpha-Synuclein overexpression. We analyzed the degree and temporo-spatial dynamics of adult olfactory bulb neurogenesis in transgenic mice expressing human wild-type alpha-Synuclein (WTS under the murine Thy1 (mThy1 promoter, a model known to have a particularly high tg expression associated with impaired olfaction.Survival of newly generated neurons (NeuN-positive in the olfactory bulb was unchanged in mThy1 transgenic animals. Due to decreased dopaminergic differentiation a reduction in new dopaminergic neurons within the olfactory bulb glomerular layer was present. This is in contrast to our previously published data on transgenic animals that express WTS under the control of the human platelet-derived growth factor β (PDGF promoter, that display a widespread decrease in survival of newly generated neurons in regions of adult neurogenesis, resulting in a much more pronounced neurogenesis deficit. Temporal and quantitative expression analysis using immunofluorescence co-localization analysis and Western blots revealed that in comparison to PDGF transgenic animals, in mThy1 transgenic animals WTS is expressed from later stages of neuronal maturation only but at significantly higher levels both in the olfactory bulb and cortex.The dissociation between higher absolute expression levels of alpha-Synuclein but less severe impact on adult olfactory neurogenesis in mThy1 transgenic mice highlights the importance of temporal expression characteristics of alpha-Synuclein on the maturation of newborn neurons.

  15. HDL from apoA1 transgenic mice expressing the 4WF isoform is resistant to oxidative loss of function.

    Science.gov (United States)

    Berisha, Stela Z; Brubaker, Greg; Kasumov, Takhar; Hung, Kimberly T; DiBello, Patricia M; Huang, Ying; Li, Ling; Willard, Belinda; Pollard, Katherine A; Nagy, Laura E; Hazen, Stanley L; Smith, Jonathan D

    2015-03-01

    HDL functions are impaired by myeloperoxidase (MPO), which selectively targets and oxidizes human apoA1. We previously found that the 4WF isoform of human apoA1, in which the four tryptophan residues are substituted with phenylalanine, is resistant to MPO-mediated loss of function. The purpose of this study was to generate 4WF apoA1 transgenic mice and compare functional properties of the 4WF and wild-type human apoA1 isoforms in vivo. Male mice had significantly higher plasma apoA1 levels than females for both isoforms of human apoA1, attributed to different production rates. With matched plasma apoA1 levels, 4WF transgenics had a trend for slightly less HDL-cholesterol versus human apoA1 transgenics. While 4WF transgenics had 31% less reverse cholesterol transport (RCT) to the plasma compartment, equivalent RCT to the liver and feces was observed. Plasma from both strains had similar ability to accept cholesterol and facilitate ex vivo cholesterol efflux from macrophages. Furthermore, we observed that 4WF transgenic HDL was partially (∼50%) protected from MPO-mediated loss of function while human apoA1 transgenic HDL lost all ABCA1-dependent cholesterol acceptor activity. In conclusion, the structure and function of HDL from 4WF transgenic mice was not different than HDL derived from human apoA1 transgenic mice. PMID:25561462

  16. Urinary Bladder Dysfunction in Transgenic Sickle Cell Disease Mice.

    Directory of Open Access Journals (Sweden)

    Mário Angelo Claudino

    Full Text Available Urological complications associated with sickle cell disease (SCD, include nocturia, enuresis, urinary infections and urinary incontinence. However, scientific evidence to ascertain the underlying cause of the lower urinary tract symptoms in SCD is lacking.Thus, the aim of this study was to evaluate urinary function, in vivo and ex vivo, in the Berkeley SCD murine model (SS.Urine output was measured in metabolic cage for both wild type and SS mice (25-30 g. Bladder strips and urethra rings were dissected free and mounted in organ baths. In isolated detrusor smooth muscle (DSM, relaxant response to mirabegron and isoproterenol (1nM-10μM and contractile response to (carbachol (CCh; 1 nM-100μM, KCl (1 mM-300mM, CaCl2 (1μM-100mM, α,β-methylene ATP (1, 3 and 10 μM and electrical field stimulation (EFS; 1-32 Hz were measured. Phenylephrine (Phe; 10nM-100μM was used to evaluate the contraction mechanism in the urethra rings. Cystometry and histomorphometry were also performed in the urinary bladder.SS mice present a reduced urine output and incapacity to produce typical bladder contractions and bladder emptying (ex vivo, compared to control animals. In DSM, relaxation in response to a selective β3-adrenergic agonist (mirabegron and to a non-selective β-adrenergic (isoproterenol agonist were lower in SS mice. Additionally, carbachol, α, β-methylene ATP, KCl, extracellular Ca2+ and electrical-field stimulation promoted smaller bladder contractions in SS group. Urethra contraction induced by phenylephrine was markedly reduced in SS mice. Histological analyses of SS mice bladder revealed severe structural abnormalities, such as reductions in detrusor thickness and bladder volume, and cell infiltration.Taken together, our data demonstrate, for the first time, that SS mice display features of urinary bladder dysfunction, leading to impairment in urinary continence, which may have an important role in the pathogenesis of the enuresis and infections

  17. Pressure overload-induced hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes.

    Science.gov (United States)

    Yan, Xinhua; Schuldt, Adam J T; Price, Robert L; Amende, Ivo; Liu, Fen-Fen; Okoshi, Katashi; Ho, Kalon K L; Pope, Adèle J; Borg, Thomas K; Lorell, Beverly H; Morgan, James P

    2008-03-01

    The role of the angiotensin II type 2 (AT2) receptor in cardiac hypertrophy remains controversial. We studied the effects of AT2 receptors on chronic pressure overload-induced cardiac hypertrophy in transgenic mice selectively overexpressing AT2 receptors in ventricular myocytes. Left ventricular (LV) hypertrophy was induced by ascending aorta banding (AS). Transgenic mice overexpressing AT2 (AT2TG-AS) and nontransgenic mice (NTG-AS) were studied after 70 days of aortic banding. Nonbanded NTG mice were used as controls. LV function was determined by catheterization via LV puncture and cardiac magnetic resonance imaging. LV myocyte diameter and interstitial collagen were determined by confocal microscopy. Atrial natriuretic polypeptide (ANP) and brain natriuretic peptide (BNP) were analyzed by Northern blot. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2, inducible nitric oxide synthase (iNOS), endothelial NOS, ERK1/2, p70S6K, Src-homology 2 domain-containing protein tyrosine phosphatase-1, and protein serine/threonine phosphatase 2A were analyzed by Western blot. LV myocyte diameter and collagen were significantly reduced in AT2TG-AS compared with NTG-AS mice. LV anterior and posterior wall thickness were not different between AT2TG-AS and NTG-AS mice. LV systolic and diastolic dimensions were significantly higher in AT2TG-AS than in NTG-AS mice. LV systolic pressure and end-diastolic pressure were lower in AT2TG-AS than in NTG-AS mice. ANP, BNP, and SERCA2 were not different between AT2TG-AS and NTG-AS mice. Phospholamban (PLB) and the PLB-to-SERCA2 ratio were significantly higher in AT2TG-AS than in NTG-AS mice. iNOS was higher in AT2TG-AS than in NTG-AS mice but not significantly different. Our results indicate that AT2 receptor overexpression modified the pathological hypertrophic response to aortic banding in transgenic mice. PMID:18178728

  18. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    International Nuclear Information System (INIS)

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  19. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice

    International Nuclear Information System (INIS)

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, the authors have expressed a mouse methallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itself with respect to reactivity with anti-growth hormone monoclonal antibodies, behavior during column chromatography, and isoelectric point. Transgenic mice expressing the growth hormone variant protein are 1.4- to 1.9-fold larger than nontransgenic controls, suggesting that the protein has growth-promoting properties

  20. Activity of peroxisomal enzymes, and levels of polyamines in LPA-transgenic mice on two different diets

    Directory of Open Access Journals (Sweden)

    Rønning Helle

    2005-10-01

    Full Text Available Abstract Background In man, elevated levels of plasma lipoprotein (a(Lp(a is a cardiovascular risk factor, and oxidized phospholipids are believed to play a role as modulators of inflammatory processes such as atherosclerosis. Polyamines are potent antioxidants and anti-inflammatory agents. It was therefore of interest to examine polyamines and their metabolism in LPA transgenic mice. Concentration of the polyamines putrescine, spermidine and spermine as well as the activity of peroxisomal polyamine oxidase and two other peroxisomal enzymes, acyl-CoA oxidase and catalase were measured. The mice were fed either a standard diet or a diet high in fat and cholesterol (HFHC. Some of the mice in each feeding group were in addition given aminoguanidine (AG, a specific inhibitor of diamine oxidase, which catalyses degradation of putrescine, and also inhibits non-enzymatic glycosylation of protein which is implicated in the aetiology of atherosclerosis in diabetic patients. Non-transgenic mice were used as controls. Results Intestinal peroxisomal polyamine oxidase activity was significantly higher in LPA transgenic mice than in the non-transgenic mice, while intestinal peroxisomal catalase activity was significantly lower. Hepatic β-oxidation increased in Lp(a transgenic mice fed the HFHC diet, but not in those on standard diet. Hepatic spermidine concentration was increased in all mice fed the HFHC diet compared to those fed a standard diet, while spermine concentration was decreased. With exception of the group fed only standard diet, transgenic mice showed a lower degree of hepatic steatosis than non-transgenic mice. AG had no significant effect on hepatic steatosis. Conclusion The present results indicate a connection between peroxisomal enzyme activity and the presence of the human LPA gene in the murine genome. The effect may be a result of changes in oxidative processes in lipid metabolism rather than resulting from a direct effect of the LPA

  1. Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands

    OpenAIRE

    G Shyamala; Yang, X.; Silberstein, G.; Barcellos-Hoff, M. H.; Dale, E

    1998-01-01

    In this report we document the creation of transgenic mice in which the native ratio of A and B forms of progesterone receptor (PR) has been altered by the introduction of additional A form as transgene. We also show that in these mice there is an aberration in mammary development. In ovariectomized prepubertal PR-A transgenic mice, end buds with unusual morphology persist after ovariectomy, and in young adult nonovariectomized mice, mammary glands have extensive lateral branching. The glands...

  2. Bronchial hyperreactivity, increased endotoxin lethality and melanocytic tumorigenesis in transgenic mice overexpressing platelet-activating factor receptor.

    OpenAIRE

    Ishii, S.; Nagase, T; Tashiro, F; Ikuta, K. (Koichi); Sato, S.; Waga, I.; Kume, K.; Miyazaki, J; Shimizu, T

    1997-01-01

    Although platelet-activating factor (PAF) has been shown to exert pleiotropic effects on isolated cells or tissues, controversy still exists as to whether it plays significant pathophysiological roles in vivo. To answer this question, we established transgenic mice over-expressing a guinea-pig PAF receptor (PAFR). The transgenic mice showed a bronchial hyperreactivity to methacholine and an increased mortality when exposed to bacterial endotoxin. An aberrant melanogenesis and proliferative ab...

  3. Extravasation and transcytosis of liposomes in Kaposi's sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene.

    OpenAIRE

    Huang, S K; F. J. Martin; Jay, G; Vogel, J.; Papahadjopoulos, D; Friend, D S

    1993-01-01

    Transgenic mice bearing the HIV tat gene develop dermal lesions resembling a common malignant tumor in AIDS, Kaposi's sarcoma (KS). To evaluate the permeability characteristics of these lesions and the therapeutic potential of drug-carrying liposomes, we have studied the localization of sterically stabilized liposomes, which show long circulation time in blood and increased accumulation in tumors. Liposomes encapsulating colloidal gold were injected intravenously into transgenic mice bearing ...

  4. Expression of the c-myc oncogene under control of an immunoglobulin enhancer in E mu-myc transgenic mice.

    OpenAIRE

    Alexander, W S; Schrader, J W; Adams, J. M.

    1987-01-01

    Transgenic mice bearing a cellular myc oncogene coupled to the immunoglobulin heavy-chain enhancer (E mu) exhibit perturbed B-lymphocyte development and succumb to B lymphoid tumors. To investigate how the enhancer has affected myc expression, we analyzed the structure and abundance of myc transcripts in tissues of prelymphomatous mice and in the lymphomas. Expression of the E mu-myc transgene appeared to be confined largely to B lymphoid cells, being dominant in bone marrow, spleen, and lymp...

  5. Combined Micro-PET/Micro-CT Imaging of Lung Tumours in SPC-raf and SPC-myc Transgenic Mice

    OpenAIRE

    Thomas Rodt; Matthias Luepke; Claudia Boehm; Katja Hueper; Roman Halter; Silke Glage; Ludwig Hoy; Frank Wacker; Juergen Borlak; Christian von Falck

    2012-01-01

    INTRODUCTION: SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. MATERIAL AND METHODS: 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transg...

  6. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  7. Atypical Scrapie Prions from Sheep and Lack of Disease in Transgenic Mice Overexpressing Human Prion Protein

    OpenAIRE

    Wadsworth, Jonathan D. F.; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Martin H Groschup; Hope, James; Brandner, Sebastian; Asante, Emmanuel A.; Collinge, John

    2013-01-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue...

  8. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    International Nuclear Information System (INIS)

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors

  9. Expression of the human growth hormone variant gene in cultured fibroblasts and transgenic mice.

    OpenAIRE

    Selden, R F; Wagner, T E; Blethen, S; Yun, J S; Rowe, M E; Goodman, H M

    1988-01-01

    The nucleotide sequence of the human growth hormone variant gene, one of the five members of the growth hormone gene family, predicts that it encodes a growth hormone-like protein. As a first step in determining whether this gene is functional in humans, we have expressed a mouse metallothionein I/human growth hormone variant fusion gene in mouse L cells and in transgenic mice. The growth hormone variant protein expressed in transiently transfected L cells is distinct from growth hormone itse...

  10. Conditional and targeted overexpression of vascular chymase causes hypertension in transgenic mice

    OpenAIRE

    Ju, Haisong; Gros, Robert; You, Xiaomang; Tsang, Sarah; Husain, Mansoor; Rabinovitch, Marlene

    2001-01-01

    We cloned a rat vascular chymase (RVCH) from smooth muscle cells (SMCs) that converts angiotensin I to II and is up-regulated in SMC from spontaneously hypertensive vs. normotensive rats. To determine whether increased activity of RVCH is sufficient to cause hypertension, transgenic mice were generated with targeted conditional expression of RVCH to SMC, with the use of the tetracycline-controlled transactivator (tTA). We confirmed conditional expression of RVCH by mRNA, protein, and chymase ...

  11. Accumulation of Filamentous Tau in the Cerebral Cortex of Human Tau R406W Transgenic Mice

    OpenAIRE

    Ikeda, Masaki; Shoji†, Mikio; Kawarai, Toshitaka; Kawarabayashi, Takeshi; Matsubara, Etsuro; Murakami, Tetsuro; Sasaki, Atsushi; Tomidokoro, Yasushi; Ikarashi, Yasushi; Kuribara, Hisashi; Ishiguro, Koichi; Hasegawa, Masato; Yen, Shu-Hui; Chishti, M. Azhar; Harigaya, Yasuo

    2005-01-01

    Missense mutations of the tau gene cause autosomal dominant frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), an illness characterized by progressive personality changes, dementia, and parkinsonism. There is prominent frontotemporal lobe atrophy of the brain accompanied by abundant tau accumulation with neurofibrillary tangles and neuronal cell loss. Using a hamster prion protein gene expression vector, we generated several independent lines of transgenic (Tg) mice e...

  12. Characterization of Fam20C expression in odontogenesis and osteogenesis using transgenic mice

    OpenAIRE

    Du, Er-Xia; Wang, Xiao-fang; Yang, Wu-Chen; Kaback, Deborah; Yee, Siu-Pok; Qin, Chun-Lin; George, Anne; Hao, Jian-Jun

    2014-01-01

    Our previous studies have demonstrated that Fam20C promotes differentiation and mineralization of odontoblasts, ameloblasts, osteoblasts and osteocytes during tooth and bone development. Ablation of the Fam20C gene inhibits bone and tooth growth by increasing fibroblast growth factor 23 in serum and causing hypophosphatemia in conditional knockout mice. However, control and regulation of the expression of Fam20C are still unknown. In this study, we generated a transgenic reporter model which ...

  13. FHL1 Reduces Dystrophy in Transgenic Mice Overexpressing FSHD Muscular Dystrophy Region Gene 1 (FRG1)

    OpenAIRE

    Feeney, Sandra J.; McGrath, Meagan J.; Absorn Sriratana; Stefan M Gehrig; Gordon S Lynch; Colleen E D'Arcy; John T Price; McLean, Catriona A.; Rossella Tupler; Mitchell, Christina A.

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phe...

  14. Immune responses of IL-5 transgenic mice to parasites and aeroallergens

    OpenAIRE

    1997-01-01

    Eosinophils have long been thought to be effectors of immunity to helminths but have also been implicated in the pathogenesis of asthma. Patterns of cytokine production in the host may influence the pathogenesis of these diseases by regulating the activities of eosinophils and other components of the immune response. Mice which constitutively over-express IL-5 have profound and life-long eosinophilia in a restricted number of tissues. Although eosinophils from IL-5 transgenics are functionall...

  15. Postnatal lung function and morphology in transgenic mice expressing transforming growth factor-alpha.

    OpenAIRE

    Hardie, W. D.; Bruno, M D; Huelsman, K. M.; Iwamoto, H S; Carrigan, P. E.; Leikauf, G D; Whitsett, J A; Korfhagen, T R

    1997-01-01

    Developmental changes in lung morphology and physiology during postnatal alveolarization were assessed in transgenic mice expressing transforming growth factor-alpha (TGF-alpha) in pulmonary type II cells under control of the surfactant protein C gene promoter. TGF-alpha transcripts were identified in respiratory epithelial cells at 1 day of age to adulthood. Enlargement of alveolar airspaces and fibrosis were detected as early as 1 week of age, and the increased airspace progressed with adva...

  16. Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice.

    OpenAIRE

    Arbeit, J M; Howley, P M; Hanahan, D

    1996-01-01

    High-risk human papillomaviruses (HPVs), including type 16, have been identified as factors in cervical carcinogenesis. However, the presence and expression of the virus per se appear to be insufficient for carcinogenesis. Rather, cofactors most likely are necessary in addition to viral gene expression to initiate neoplasia. One candidate cofactor is prolonged exposure to sex hormones. To examine the possible effects of estrogen on HPV-associated neoplasia, we treated transgenic mice expressi...

  17. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  18. Using targeted transgenic reporter mice to study promoter-specific p53 transcriptional activity

    OpenAIRE

    Goh, Amanda M.; Lim, Chin Yan; Chiam, Poh Cheang; LI, LING; Mann, Michael B.; Mann, Karen M.; Menendez, Sergio; Lane, David P

    2012-01-01

    The p53 transcription factor modulates gene expression programs that induce cell cycle arrest, senescence, or apoptosis, thereby preventing tumorigenesis. However, the mechanisms by which these fates are selected are unclear. Our objective is to understand p53 target gene selection and, thus, enable its optimal manipulation for cancer therapy. We have generated targeted transgenic reporter mice in which EGFP expression is driven by p53 transcriptional activity at a response element from eithe...

  19. Intact memory in TGF-β1 transgenic mice featuring chronic cerebrovascular deficit: recovery with pioglitazone

    OpenAIRE

    Nicolakakis, Nektaria; Aboulkassim, Tahar; Aliaga, Antonio; Tong, Xin-Kang; Rosa-Neto, Pedro; Hamel, Edith

    2010-01-01

    The roles of chronic brain hypoperfusion and transforming growth factor-beta 1 (TGF-β1) in Alzheimer's disease (AD) are unresolved. We investigated the interplay between TGF-β1, cerebrovascular function, and cognition using transgenic TGF mice featuring astrocytic TGF-β1 overexpression. We further assessed the impact of short, late therapy in elderly animals with the antioxidant N-acetyl--cysteine (NAC) or the peroxisome proliferator-activated receptor-γ agonist pioglitazone. The latter was a...

  20. Expression of biologically active heterodimeric bovine follicle-stimulating hormone in milk of transgenic mice.

    OpenAIRE

    Greenberg, N M; Anderson, J.W.; Hsueh, A J; Nishimori, K; Reeves, J. J.; deAvila, D M; Ward, D N; Rosen, J. M.

    1991-01-01

    Follicle-stimulating hormone (FSH; follitropin) is a pituitary glycoprotein composed of two post-translationally modified subunits, which must properly assemble to be biologically active. FSH has been difficult to purify and to obtain in quantities sufficient for detailed biochemical studies. We have targeted FSH expression to the mammary gland of transgenic mice by using cDNAs encoding the bovine alpha and FSH beta subunits and a modified rat beta-casein gene-based expression system. Lines o...

  1. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    International Nuclear Information System (INIS)

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  2. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  3. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor

    DEFF Research Database (Denmark)

    Stefaneanu, L; Kovacs, K; Horvath, E;

    1989-01-01

    The effect of protracted GH-releasing factor (GRF) stimulation on adenohypophysial morphology was investigated in six mice transgenic for human GRF (hGRF). All animals had significantly higher plasma levels of GH and GRF and greater body weights than controls. Eight-month-old mice were killed, and...... PRL, were demonstrated by light microscopy and ultrastructural immunocytochemistry. Electron microscopy revealed the presence of cells with characteristics of GH cells in three pituitaries and cells resembling human adenomatous mammosomatotrophs in the other three glands. All of these cells...

  4. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M;

    2007-01-01

    ADAM12 could be a candidate for nonreplacement gene therapy of Duchenne muscular dystrophy. We therefore evaluated the long-term effect of ADAM12 overexpression in muscle. Surprisingly, we observed loss of skeletal muscle and accelerated fibrosis and adipogenesis in 1-year-old mdx mice transgenically......Muscular dystrophies are characterized by insufficient restoration and gradual replacement of the skeletal muscle by fat and connective tissue. ADAM12 has previously been shown to alleviate the pathology of young dystrophin-deficient mdx mice, a model for Duchenne muscular dystrophy. The observed...... regeneration as a possible factor in development of muscular dystrophy....

  5. Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm

    DEFF Research Database (Denmark)

    Waeckel, L.; Badier-Commander, C.; Damery, T.;

    2015-01-01

    Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing....... Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not......, does not appear to involve oxidative stress....

  6. Aβ42 gene vaccine prevents Aβ42 deposition in brain of double transgenic mice

    OpenAIRE

    Qu, Bao-Xi; Xiang, Qun; Li, Liping; Johnston, Stephen Albert; Hynan, Linda S.; Rosenberg, Roger N

    2007-01-01

    Aβ42 peptide aggregation and deposition is an important component of the neuropathology of Alzheimer’s disease (AD). Gene-gun mediated gene vaccination targeting Aβ42 is a potential method to prevent and treat AD. APPswe/PS1ΔE9 transgenic (Tg) mice were immunized with an Aβ42 gene construct delivered by the gene gun. The vaccinated mice developed Th2 antibodies (IgG1) against Aβ42. The Aβ42 levels in brain were decreased by 41% and increased in plasma 43% in the vaccinated compared with contr...

  7. Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice.

    Science.gov (United States)

    Wilkinson, Lorine; Gilbert, Thierry; Sipos, Arnold; Toma, Ildiko; Pennisi, David J; Peti-Peterdi, Janos; Little, Melissa H

    2009-12-01

    Crim1 is a cell-surface, transmembrane protein that binds to a variety of cystine knot-containing growth factors, including vascular endothelial growth factor A. In the developing renal glomerulus, Crim1 acts to tether vascular endothelial growth factor A to the podocyte cell surface, thus regulating its release to glomerular endothelial cells. The hypomorphic transgenic mouse (Crim1(KST264/KST264)) has glomerular cysts and severe glomerular vascular defects because of the lack of functional Crim1 in the glomerulus. Adult transgenic mice have a reduced glomerular filtration rate and glomerular capillary defects. We now show that, in these adult transgenic mice, renal vascular defects are not confined to the glomerulus but also extend to the peritubular microvasculature, as live imaging revealed leakiness of both glomerular and peritubular capillaries. An ultrastructural analysis of the microvasculature showed an abnormal endothelium and collagen deposition between the endothelium and the tubular basement membrane, present even in juvenile mice. Overt renal disease, including fibrosis and renin recruitment, was not evident until adulthood. Our study suggests that Crim1 is involved in endothelial maintenance and integrity and its loss contributes to a primary defect in the extraglomerular vasculature. PMID:19776720

  8. Antiviral effects of Stichopus japonicus acid mucopolysaccharide on hepatitis B virus transgenic mice

    Science.gov (United States)

    Xin, Yongning; Li, Wei; Lu, Linlin; Zhou, Li; Victor, David W.; Xuan, Shiying

    2016-08-01

    Hepatitis B virus (HBV) is a significant global pathogen and efficient cure for HBV patients is still a challenging goal. We previously reported that acidic mucopolysaccharide from stichopus japonicus selenka (SJAMP) could inhibit HBsAg and HBeAg expression in vitro. However, the potential anti-HBV effects of SJAMP in vivo have not yet been explored. In this study, we show that SJAMP exhibits potent anti-HBV activity in HBV transgenic mice in a dose-dependent manner. Specifically, sixty HBV transgenic male BALB/c mice were randomly selected to receive the treatment of PBS, low dose SJAMP (30 mg kg-1), middle dose SJAMP (40 mg kg-1), high dose SJAMP (50 mg kg-1) and IFN (45 IU kg-1) for 30 d. SJAMP treatment suppressed serum HBV-DNA, and liver HBsAg and HBcAg levels in HBV-transgenic mice. The present study highlights the potential application of SJAMP in HBV therapy.

  9. Life without mitochondrial DNA : studies of transgenic mice

    OpenAIRE

    Wang, Jianming

    2000-01-01

    Mitochondrial DNA (mtDNA) is a closed circular DNA genome that resides in the mitochondrial network. Mutations of mtDNA cause spontaneous and hereditary disorders known as mitochondrial diseases. Mitochondrial transcription factor A (Tfam) is a key factor for transcription of mtDNA in vitro. We disrupted the mouse Tfam gene by using the cre-loxP recombination system to study the in vivo roles of Tfam. This thesis focuses on the analyses of germline knockout mice and the c...

  10. Focal glomerulosclerosis in proviral and c-fms transgenic mice links Vpr expression to HIV-associated nephropathy

    International Nuclear Information System (INIS)

    Clinical and morphologic features of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN), such as proteinuria, sclerosing glomerulopathy, tubular degeneration, and interstitial disease, have been modeled in mice bearing an HIV proviral transgene rendered noninfectious through a deletion in gag/pol. Exploring the genetic basis of HIVAN, HIV transgenic mice bearing mutations in either or both of the accessory genes nef and vpr were created. Proteinuria and focal glomerulosclerosis (FGS) only developed in mice with an intact vpr gene. Transgenic mice bearing a simplified proviral DNA (encoding only Tat and Vpr) developed renal disease characterized by FGS in which Vpr protein was localized to glomerular and tubular epithelia by immunohistochemistry. The dual transgenic progeny of HIV[Tat/Vpr] mice bred to HIV[ΔVpr] proviral transgenic mice displayed a more severe nephropathy with no apparent increase in Vpr expression, implying that multiple viral genes contribute to HIVAN. However, the unique contribution of macrophage-specific Vpr expression in the development of glomerular disease was underscored by the induction of FGS in multiple murine lines bearing a c-fms/vpr transgene

  11. Overexpression of Human Cripto-1 in Transgenic Mice Delays Mammary Gland Development and Differentiation and Induces Mammary Tumorigenesis

    OpenAIRE

    Sun, Youping; Strizzi, Luigi; Raafat, Ahmed; Hirota, Morihisa; Bianco, Caterina; Feigenbaum, Lionel; Kenney, Nicholas; Wechselberger, Christian; Callahan, Robert; Salomon, David S.

    2005-01-01

    Overexpression of Cripto-1 has been reported in several types of human cancers including breast cancer. To investigate the role of human Cripto-1 (CR-1) in mammary gland development and tumorigenesis, we developed transgenic mice that express the human CR-1 transgene under the regulation of the whey acidic protein (WAP) promoter in the FVB/N mouse background. The CR-1 transgene was detected in the mammary gland of 15-week-old virgin WAP-CR-1 female mice that eventually developed hyperplastic ...

  12. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    OpenAIRE

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Shyamala, Gopalan

    2009-01-01

    Introduction Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. Methods We subjected PR-A mice to h...

  13. In vivo bioluminescent monitoring of chemical toxicity using heme oxygenase-luciferase transgenic mice

    International Nuclear Information System (INIS)

    Transgenic mice expressing the luciferase (luc) gene under the control of the heme oxygenase-1 promoter (Ho1) were used to measure the induction of heme oxygenase in response to known toxicants. Transgenic Ho1-luc expression was visualized in vivo using a low-light imaging system (IVIS). Ho1-luc activation was compared to Ho1-luc expression, HO1 protein levels, standard markers of toxicity, and histology. Male and female Ho1-luc transgenic mice were exposed to acute doses of cadmium chloride (CdCl2, 3.7 mg/kg), doxorubicin (15 mg/kg), and thioacetamide (300 mg/kg). These agents induced the expression of Ho1-luc in the liver and other tissues to varying degrees. The greatest increase in Ho1-luc activity was observed in the liver in response to CdCl2; intermediate responses were observed for doxorubicin and thioacetamide. Induction of the Ho1-luc transgene by these agents was similar to endogenous protein levels of heme oxygenase as assessed by Western blotting, and generally correlated with plasma levels of circulating enzymes reflecting hepatic or general tissue damage. Histopathology confirmed the toxic effects of CdCl2 on liver and kidney; doxorubicin on kidney, liver, and intestine; and thioacetamide on the liver. Tissue damage was much more pronounced than the luciferase expression following thioacetamide treatment when compared with tissue damage and bioluminescence of the other toxicants. Nevertheless, the induction of Ho1-luc expression following exposure to these agents suggests that the Ho1-luc transgenic mouse may prove useful as a model for in vivo screening of compounds that induce luciferase expression as a marker of toxicity

  14. Immune responses of IL-5 transgenic mice to parasites and aeroallergens

    Directory of Open Access Journals (Sweden)

    LA Dent

    1997-12-01

    Full Text Available Eosinophils have long been thought to be effectors of immunity to helminths but have also been implicated in the pathogenesis of asthma. Patterns of cytokine production in the host may influence the pathogenesis of these diseases by regulating the activities of eosinophils and other components of the immune response. Mice which constitutively over-express IL-5 have profound and life-long eosinophilia in a restricted number of tissues. Although eosinophils from IL-5 transgenics are functionally competent for a number of parameters considered to be important in inflammation, untreated animals are overtly normal and free of disease. In addition, the responses of these animals when exposed to aeroallergens and helminths present a number of apparent paradoxes. Eosinophil accumulation in tissues adjacent to major airways is rapid and extensive in transgenics exposed to the aeroallergen, but even after treatment with antigen over many months these mice show no evidence of respiratory distress or pathology. Helminth-infected IL-5 transgenics and their non-transgenic littermates develop similar inflammatory responses at mucosal sites and are comparable for a number of T cell and antibody responses, but they differ considerably in their ability to clear some parasite species. The life-cycle of Nippostrongylus brasiliensis is significantly inhibited in IL-5 transgenics, but that of Toxocara canis is not. Our results also suggest that eosinophilia and/or over-expression of IL-5 may actually impair host resistance to Schistosoma mansoni and Trichinella spiralis. The pathogenesis of diseases in which eosinophils are involved may therefore be more complex than previously thought.

  15. Genetic biomarkers for ALS disease in transgenic SOD1(G93A mice.

    Directory of Open Access Journals (Sweden)

    Ana C Calvo

    Full Text Available The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10 could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.

  16. Human COL2A1-directed SV40 T antigen expression in transgenic and chimeric mice results in abnormal skeletal development

    OpenAIRE

    1995-01-01

    The ability of SV40 T antigen to cause abnormalities in cartilage development in transgenic mice and chimeras has been tested. The cis- regulatory elements of the COL2A1 gene were used to target expression of SV40 T antigen to differentiating chondrocytes in transgenic mice and chimeras derived from embryonal stem (ES) cells bearing the same transgene. The major phenotypic consequences of transgenic (pAL21) expression are malformed skeleton, disproportionate dwarfism, and perinatal/neonatal d...

  17. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  18. Ultrastructural morphometry of capillary basement membrane thickness in normal and transgenic diabetic mice.

    Science.gov (United States)

    Carlson, Edward C; Audette, Janice L; Veitenheimer, Nicole J; Risan, Jessica A; Laturnus, Donna I; Epstein, Paul N

    2003-04-01

    Capillary basement membrane (CBM) thickening is an ultrastructural hallmark in diabetic patients and in animal models of diabetes. However, the wide variety of tissues sampled and diverse methods employed have made the interpretation of thickness data difficult. We showed previously that acellular glomerular BMs in OVE26 transgenic diabetic mice were thickened beyond normal age-related thickening, and in the current study we hypothesized that other microvascular BMs likewise would show increased widths relative to age-matched controls. Accordingly, a series of tissues, including skeletal and cardiac muscle, ocular retina and choriod, peripheral nerve, lung, pancreas, and renal glomerulus was collected from 300-350-day-old normal and transgenic mice. Transmission electron micrographs of cross sections through capillary walls were prepared, and CBM thickness (CBMT) was determined by the "orthogonal intercept" method. Morphometric analyses showed highly variable transgene-related BMT increases in the sampled tissues, with glomerular BM showing by far the greatest increase (+87%). Significant thickness increases were also seen in the retina, pulmonary alveolus, and thoracoabdominal diaphragm. BMT increases were not universal; however, most were modestly widened, and those that were thickest in controls generally showed the greatest increase. Although the pathogenesis of diabetes-related increases in CBM is poorly understood, data in the current study showed that in OVE26 transgenic mice increased BMT was a frequent concomitant of hyperglycemia. Accordingly, it seems likely that hyperglycemia-induced microvascular damage may be a contributing factor in diabetic BM disease, and that microvessel cellular and extracellular heterogeneity may limit the extent of CBM thickening in diverse tissues. PMID:12629676

  19. Characterization of gastric adenocarcinoma cell lines established from CEA424/SV40 T antigen-transgenic mice with or without a human CEA transgene

    International Nuclear Information System (INIS)

    Gastric carcinoma is one of the most frequent cancers worldwide. Patients with gastric cancer at an advanced disease stage have a poor prognosis, due to the limited efficacy of available therapies. Therefore, the development of new therapies, like immunotherapy for the treatment of gastric cancer is of utmost importance. Since the usability of existing preclinical models for the evaluation of immunotherapies for gastric adenocarcinomas is limited, the goal of the present study was to establish murine in vivo models which allow the stepwise improvement of immunotherapies for gastric cancer. Since no murine gastric adenocarcinoma cell lines are available we established four cell lines (424GC, mGC3, mGC5, mGC8) from spontaneously developing tumors of CEA424/SV40 T antigen (CEA424/Tag) mice and three cell lines derived from double-transgenic offsprings of CEA424/Tag mice mated with human carcinoembryonic antigen (CEA)-transgenic (CEA424/Tag-CEA) mice (mGC2CEA, mGC4CEA, mGC11CEA). CEA424/Tag is a transgenic C57BL/6 mouse strain harboring the Tag under the control of a -424/-8 bp CEA gene promoter which leads to the development of invasive adenocarcinoma in the glandular stomach. Tumor cell lines established from CEA424/Tag-CEA mice express the well defined tumor antigen CEA under the control of its natural regulatory elements. The epithelial origin of the tumor cells was proven by morphological criteria including the presence of mucin within the cells and the expression of the cell adhesion molecules EpCAM and CEACAM1. All cell lines consistently express the transgenes CEA and/or Tag and MHC class I molecules leading to their susceptibility to lysis by Tag-specific CTL in vitro. Despite the presentation of CTL-epitopes derived from the transgene products the tumor cell lines were tumorigenic when grafted into C57BL/6, CEA424/Tag or CEA424/Tag-CEA-transgenic hosts and no significant differences in tumor take and tumor growth were observed in the different hosts. Although

  20. Lymphoma induction by heterocyclic amines in Eu-pim-1 transgenic mice

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Kristiansen, E.; Mortensen, Alicja;

    1997-01-01

    The usefulness of transgenic E mu-pim-1 mice bearing in their genome the pim-1 oncogene supplemented with an upstream immunoglobulin enhancer and a downstream murine leukaemia virus long terminal repeat, as sensitive test organisms was studied in two short-term carcinogenicity studies. The mice...... were fed standard diet Altromin 1314 supplemented either with 0.03% 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) for 7 months or with 0.03% 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) for 6 months. PhIP and IQ are heterocyclic amines formed during cooking of meat and fish and are mutagenic...... to bacteria and cultured mammalian cells. PhIP is a potent mouse lymphomagen, while IQ is a liver, lung and forestomach carcinogen in mice. We found that transgenic E mu-pim-1 mice are highly susceptible to PhIP induced lymphomagenesis but do not respond to IQ treatment. PhIP feeding of E mu-pim-1...

  1. Transgenic Mice Harboring SV40 T-Antigen Genes Develop Characteristic Brain Tumors

    Science.gov (United States)

    Brinster, Ralph L.; Chen, Howard Y.; Messing, Albee; van Dyke, Terry; Levine, Arnold J.; Palmiter, Richard D.

    2016-01-01

    Summary A high percentage of transgenic mice developing from eggs microinjected with plasmids containing the SV40 early region genes and a metallothionein fusion gene develop tumors within the choroid plexus. A line of mice has been established in which nearly every affected animal succumbs to this brain tumor. Thymic hypertrophy and kidney pathology are also observed in some mice. SV40 T-antigen mRNA and protein are readily detected in affected tissues; however, SV40 T-antigen gene expression is barely detectable in unaffected tissues or in susceptible tissues prior to overt pathology, suggesting that tumorigenesis depends upon activation of the SV40 genes. Comparison of DNA from tumor tissue (or cell lines derived from tumors) with DNA from unaffected tissues reveals structural rearrangements as well as changes in DNA methylation of the foreign DNA. The SV40 genes are frequently amplified in tumor tissue, which further indicates that their expression is intimately involved in tumorigenesis in transgenic mice. PMID:6327063

  2. Utilization of myoblasts from transgenic mice to evaluate the efficacy of myoblast transplantation.

    Science.gov (United States)

    Kinoshita, I; Huard, J; Tremblay, J P

    1994-09-01

    A possible treatment for Duchenne muscular dystrophy is the injection of normal myoblasts into dystrophic muscles to induce the formation of new, healthy, and dystrophin-positive muscle fibers. To develop this therapy, it is important to identify the muscle fibers formed by the injected myoblasts in the host muscles. In this study, we used myoblasts from transgenic mice which have a gene expressing beta-galactosidase under the control of the promoter of quail fast skeletal muscle troponin I. This transgene is expressed in myotubes and muscle fibers, but not in myoblasts. Twenty-eight days after myoblast transplantation in nude and in mdx mice, muscle fibers containing of beta-galactosidase were identified by x-gal staining. In mdx mice, most of the beta-galactosidase-positive muscle fibers resulting from the myoblast transplantation were also dystrophin positive. This technique could make it possible to follow the success of myoblast transplantation even in mice that are not depleted of dystrophin. PMID:8065399

  3. Protective Effects of Overexpression of bcl-xl Gene on Local Cerebral Infarction in Transgenic Mice Undergoing Permanent Occlusion of Middle Cerebral Artery

    Institute of Scientific and Technical Information of China (English)

    Furong WANG; Yongsheng JIANG; Suming ZHANG; Wenwu XIAO; Suiqiang ZHU

    2008-01-01

    In order to investigate the protective effects of the overexpression of bcl-xl gene on local cerebral infarction in the transgenic mice subject to permanent occlusion of middle cerebral artery, the models of bcl-xl transgenic mice were established and subjected to cerebral infarction by intralu- minal occlusion of the middle cerebral artery. The infarct volume and the neurological scores were observed and comparison between the wild type mice and the transgenic mice was made. It was found that the infarct volume and the neurological scores in the transgenic mice were significantly decreased as compared with those in the wild type mice. It was suggested that the overexpression of bcl-xl gene in transgenic mice could reduce the infarct volume and improve the neurological function of the mice.

  4. Regulation of an Autoimmune Model for Multiple Sclerosis in Th2-Biased GATA3 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Viromi Fernando

    2014-01-01

    Full Text Available T helper (Th2 cells have been proposed to play a neuroprotective role in multiple sclerosis (MS. This is mainly based on “loss-of-function” studies in an animal model for MS, experimental autoimmune encephalomyelitis (EAE, using blocking antibodies against Th2 related cytokines, and knockout mice lacking Th2-related molecules. We tested whether an increase of Th2 responses (“gain-of-function” approach could alter EAE, the approach of novel GATA binding protein 3 (GATA3-transgenic (tg mice that overexpress GATA3, a transcription factor required for Th2 differentiation. In EAE induced with myelin oligodendrocyte glycoprotein (MOG35−55 peptide, GATA3-tg mice had a significantly delayed onset of disease and a less severe maximum clinical score, compared with wild-type C57BL/6 mice. Histologically, GATA3-tg mice had decreased levels of meningitis and demyelination in the spinal cord, and anti-inflammatory cytokine profiles immunologically, however both groups developed similar levels of MOG-specific lymphoproliferative responses. During the early stage, we detected higher levels of interleukin (IL-4 and IL-10, with MOG and mitogen stimulation of regional lymph node cells in GATA3-tg mice. During the late stage, only mitogen stimulation induced higher IL-4 and lower interferon-γ and IL-17 production in GATA3-tg mice. These results suggest that a preexisting bias toward a Th2 immune response may reduce the severity of inflammatory demyelinating diseases, including MS.

  5. Green Tea Polyphenols Control Dysregulated Glutamate Dehydrogenase in Transgenic Mice by Hijacking the ADP Activation Site

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changhong; Li, Ming; Chen, Pan; Narayan, Srinivas; Matschinsky, Franz M.; Bennett, Michael J.; Stanley, Charles A.; Smith, Thomas J. (CH-PA); (UPENN); (Danforth)

    2012-05-09

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the same site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.

  6. Utrophin up-regulation by an artificial transcription factor in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Elisabetta Mattei

    Full Text Available Duchenne Muscular Dystrophy (DMD is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter "A". Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics.

  7. Transgenic mice overexpressing the beta 1-adrenergic receptor in adipose tissue are resistant to obesity.

    Science.gov (United States)

    Soloveva, V; Graves, R A; Rasenick, M M; Spiegelman, B M; Ross, S R

    1997-01-01

    The ratio of alpha- to beta-receptors is thought to regulate the lipolytic index of adipose depots. To determine whether increasing the activity of the beta 1-adrenergic receptor (AR) in adipose tissue would affect the lipolytic rate or the development of this tissue, we used the enhancer-promoter region of the adipocyte lipid-binding protein (aP2) gene to direct expression of the human beta 1 AR cDNA to adipose tissue. Expression of the transgene was seen only in brown and white adipose tissue. Adipocytes from transgenic mice were more responsive to beta AR agonists than were adipocytes from nontransgenic mice, both in terms of cAMP production and lipolytic rates. Transgenic animals were partially resistant to diet-induced obesity. They had smaller adipose tissue depots than their nontransgenic littermates, reflecting decreased lipid accumulation in their adipocytes. In addition to increasing the lipolytic rate, overexpression of the beta 1 AR induced the abundant appearance of brown fat cells in subcutaneous white adipose tissue. These results demonstrate that the beta 1 AR is involved in both stimulation of lipolysis and the proliferation of brown fat cells in the context of the whole organism. Moreover, it appears that it is the overall beta AR activity, rather than the particular subtype, that controls these phenomena. PMID:8994185

  8. 1H-MR spectroscopy in evaluating the effect of neural stem cell transplantation on Alzheimer's disease in an APP-PS1 transgenic mouse model

    International Nuclear Information System (INIS)

    Objective: To explore the value of 1H-MRS on the evaluation of Alzheimer's disease (AD) with neural stem cells (NSCs) transplantation in an APP-PS1 double transgenic (tg) AD mouse model. Methods: NSCs from C57BL/6 mice were cultured and amplified.APP-PS1 tg mice (n =30) aged 12 months were used as the study group, and mild-type mice (n=15) were used as the control group. Animals in the study group were randomized into two subgroups, the AD mice in one subgroup received NSCs transplantation (NSCs group) and in another subgroup received phosphate buffer saline (PBS, PBS group)in bilateral hippocampal CA1. Animals in the control group were not treated. Using a 7.0 T high-field strength MR imager, 1H-MRS was performed before and 6 weeks after transplantation to measure the area under the peak of n-acetyl aspartate (NAA),glutamate (Glu), myo-inositol (mI), choline (Cho) and creatine (Cr) in the hippocampal area, NAA/Cr, Glu/Cr, mI/Cr and Cho/Cr ratio were calculated and compared with histopathological results (including Nissl's staining and electron microscope examination). Comparisons among NSCs, PBS and control groups were conducted by one-way ANOVA. Results: NSCs from C57BL/6 mice were cultured successfully. Before transplantation,the mean NAA/Cr, Glu/Cr and mI/Cr in NSCs, PBS and control groups were 0.89 ± 0.05, 0.88 ± 0.04 and 1.15 ± 0.05, 0.40 ± 0.03, 0.39 ± 0.03 and 0.45 ± 0.05, 0.67 ± 0.05, 0.67 ± 0.05 and 0.52 ± 0.04, respectively, and differences were statistically significant (F =148.918,7.529,59.468,P<0.01). There were no significant differences in NAA/Cr,mI/Cr and Glu/Cr ratios between NSCs and PBS groups before transplantation (t=0.147, 0.096, 0.207, P>0.05), but the differences were significant compared with the control group (t=0.255, 0.467, 0.171 and t=0.269, 0.527, 0.151, P<0.05). Six weeks after transplantation,the mean NAA/Cr, Glu/Cr and mI/Cr in three groups were 1.13 ±0.07, 0.86 ±0.05 and 1.14 ±0.05, 0.45 ± 0.04, 0.38 ± 0

  9. Generation and characterization of transgenic mice expressing tamoxifen-inducible cre-fusion protein specifically in mouse liver

    Institute of Scientific and Technical Information of China (English)

    Huan-Zhang Zhu; Jian-Quan Chen; Guo-Xiang Cheng; Jing-Lun Xue

    2003-01-01

    AIM: To establish transgenic mice expressing tamoxifeninducible Cre-ERt recombinase specifically in the liver and to provide an efficient animal model for studying gene function in the liver and creating various mouse models mimicking human diseases.METHODS: Alb-Cre-ERt transgenic mice were produced by microinjecting the construct with Cre-ERt fusion gene of DNA fragments into fertilized eggs derived from inbred C57BL/6strain. Transgenic mice were identified by using PCR and Southern blotting. Expression of Cre-ERt fusion gene was analyzed in the liver, kidney, brain and lung from F1generation transgenic mice at 8 weeks of age by reverse transcription (RT)-PCR.RESULTS: Four hundred and fourteen fertilized eggs of C57 BL/6 mice were microinjected with recombinant AlbCre-ERt DNA fragments, and 312 survival eggs injected were transferred to the oviducts of 12 pseudopregnant recipient mice, 6 of 12 recipient mice became pregnant and gave birth to 44 offsprings. Of the 44 offsprings, two males and one female carried the hybrid Cre-ERt fusion gene. Three mice were determined as founders, and were back crossed to set up F1 generations with other inbred C57BL/6 mice.Transmission of Cre-ERt fusion gene in F1 offspring followed Mendelian rules. The expression of Cre-ERt mRNA was detected only in the liver of F1 offspring from two of three founder mice.CONCLUSION: Transgenic mice expressing tamoxifeninducible Cre-ERt recombinase under control of the liverspecific promoter are preliminary established.

  10. Lack of promoting effects of phenobarbital at low dose on diethylnitrosamine-induced hepatocarcinogenesis in TGF-alpha transgenic mice.

    OpenAIRE

    Puatanachokchai, Rawiwan; Kakuni, Masakazu; Wanibuchi, Hideki; KINOSHITA, ANNA; Kang, Jin Seok; Salim, Elsayed I.; Morimura, Keiichirou; Tamano, Seiko; Merlino, Glenn T.; FUKUSHIMA, SHOJI

    2009-01-01

    KEYWORDS-CLASSIFICATION: administration & dosage;Animals;Anticonvulsants;Carcinogenicity Tests;Carcinogens;chemically induced;Diethylnitrosamine;Dose-Response Relationship,Drug;genetics;Japan;Liver Neoplasms;mechanisms of carcinogenesis;metabolism;Mice;Mice,Transgenic;pathology;Phenobarbital;Research;toxicity;Transforming Growth Factor alpha;

  11. Animal models of human disease. Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes.

    OpenAIRE

    Pattengale, P K; Stewart, T A; Leder, A; Sinn, E; Muller, W.; Tepler, I; Schmidt, E.; Leder, P

    1989-01-01

    This present review focuses on spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes. The historical development of transgenic mice as in vivo disease models is briefly traced, followed by a brief description of the actual technology in such systems. Additional emphasis is placed on the concept of targeting activated cellular oncogenes to specific tissues in transgenic mice. Cumulative experience with activated (Vmyc, ras, and neu (erb-B2] onc...

  12. Utilization of APPswe/PS1dE9 Transgenic Mice in Research of Alzheimer's Disease: Focus on Gene Therapy and Cell-Based Therapy Applications

    Directory of Open Access Journals (Sweden)

    Tarja Malm

    2011-01-01

    Full Text Available One of the most extensively used transgenic mouse model of Alzheimer’s disease (AD is APPswe/PS1dE9 mice, which over express the Swedish mutation of APP together with PS1 deleted in exon 9. These mice show increase in parenchymal Aβ load with Aβ plaques starting from the age of four months, glial activation, and deficits in cognitive functions at the age of 6 months demonstrated by radial arm water maze and 12-13 months seen with Morris Water Maze test. As gene transfer technology allows the delivery of DNA into target cells to achieve the expression of a protective or therapeutic protein, and stem cell transplantation may create an environment supporting neuronal functions and clearing Aβ plaques, these therapeutic approaches alone or in combination represent potential therapeutic strategies that need to be tested in relevant animal models before testing in clinics. Here we review the current utilization of APPswe/PS1dE9 mice in testing gene transfer and cell transplantation aimed at improving the protection of the neurons against Aβ toxicity and also reducing the brain levels of Aβ. Both gene therapy and cell based therapy may be feasible therapeutic approaches for human AD.

  13. Transgenic mice overexpressing insulin-like growth factor-II in β cells develop type 2 diabetes

    OpenAIRE

    Devedjian, Jean-Christophe; George, Monica; Casellas, Alba; Pujol, Anna; Visa, Joana; Pelegrín, Mireia; Gros, Laurent; Bosch, Fatima

    2000-01-01

    During embryonic development, insulin-like growth factor-II (IGF-II) participates in the regulation of islet growth and differentiation. We generated transgenic mice (C57BL6/SJL) expressing IGF-II in β cells under control of the rat Insulin I promoter in order to study the role of islet hyperplasia and hyperinsulinemia in the development of type 2 diabetes. In contrast to islets from control mice, islets from transgenic mice displayed high levels of IGF-II mRNA and protein. Pancreases from tr...

  14. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice.

    Science.gov (United States)

    Permyakova, Natalia V; Zagorskaya, Alla A; Belavin, Pavel A; Uvarova, Elena A; Nosareva, Olesya V; Nesterov, Andrey E; Novikovskaya, Anna A; Zav'yalov, Evgeniy L; Moshkin, Mikhail P; Deineko, Elena V

    2015-01-01

    Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells. PMID:25949997

  15. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth; Brunner, Nils; Danø, Keld; Johnsen, M.

    2003-01-01

    The plasminogen activator inhibitor-1 (PAI-1) blocks the activation of plasmin(ogen), an extracellular protease vital to cancer invasion. PAI-1 is like the corresponding plasminogen activator uPA (urokinase-type plasminogen activator) consistently expressed in human breast cancer. Paradoxically......, high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model of...... metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth and...

  16. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice

    Directory of Open Access Journals (Sweden)

    Natalia V. Permyakova

    2015-01-01

    Full Text Available Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L. genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.

  17. Stromelysin-1 (MMP-3) expression driven by a macrophage-specific promoter results in reduced viability in transgenic mice.

    Science.gov (United States)

    Fabunmi, R P; Moore, K J; Libby, P; Freeman, M W

    2000-02-01

    Macrophage expression of matrix degrading metalloproteinases (MMPs) in human atheroma has been found to occur in rupture-prone areas of plaques. To investigate the effect of metalloproteinase activity on plaque stability, we attempted to generate mice that expressed a stromelysin-1 (MMP-3) transgene specifically in macrophages. Promoter sequences taken from a macrophage-tropic lentivirus (visna) were used to drive transgene expression. The transgene construct was expressed in macrophages in vitro and its autoactivation was established by casein zymography. Transgenic mice generated with this construct died at or before birth. No gross anatomical changes were observed in these mice. Embryos arising from a second round of oocyte injections with the transgene were examined at day 16 of gestation. Of the products of conception, approximately 40% resulted in vacant conceptuses. Only one animal of 38 examined carried the transgene and its expression of MMP-3 mRNA at E16 was faintly detected by RT-PCR. When a non-toxic reporter gene, luciferase, was substituted for the MMP-3 cDNA, healthy transgenic mice were produced that expressed the reporter gene in a wide variety of tissue macrophages, including those located in the brain, testis, lung, and thymus. These studies suggest that constitutive expression of MMP-3 in diverse populations of tissue macrophages leads to prenatal or neonatal death in the mouse. It appears likely that more sophisticated transcriptional control of MMP-3 expression will be required in order to generate stromelysin-1 transgenic mice that could be useful models for studying overexpression of this metalloproteinase's activity in the lesional macrophages of atherosclerotic plaques. PMID:10657574

  18. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig

    Directory of Open Access Journals (Sweden)

    Vanessa J. Hall

    2015-10-01

    Full Text Available Animal models of familial juvenile onset of Alzheimer's disease (AD often fail to produce diverse pathological features of the disease by modification of single gene mutations that are responsible for the disease. They can hence be poor models for testing and development of novel drugs. Here, we analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw. We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model of the disease. Finally, it might be possible to use large mammal models to model familial AD by insertion of only a single mutation.

  19. Effects of chronic stress on the onset and progression of Huntington's disease in transgenic mice.

    Science.gov (United States)

    Mo, Christina; Renoir, Thibault; Hannan, Anthony J

    2014-11-01

    Huntington's disease (HD) is a neurodegenerative disease caused by a tandem repeat mutation encoding an expanded polyglutamine tract. Our previous work showed that memory deficits in HD transgenic mice could be accelerated by increased levels of stress hormone, while memory in WT mice remained unaffected. HD patients experience higher levels of stress compared to the general population and symptoms of HD also include motor, cognitive, psychiatric, sexual and olfactory abnormalities, and an associated decline in activities of daily living. Therefore we investigated the impact of a robust stressor (i.e. restraint) on the onset and progression of a range of behavioral phenotypes in R6/1 transgenic HD mice. Restraint was administered for 1h daily from 6weeks of age and continued until R6/1 mice were clearly motor symptomatic at 14weeks of age. Serum corticosterone levels in both R6/1 and WT littermates were elevated immediately after the last restraint session and weight gain was suppressed in restrained animals throughout the treatment period. Motor coordination and locomotor activity were enhanced by chronic restraint in males, regardless of genotype. However, there was no effect of restraint on motor performances in female animals. At 8weeks of age, olfactory sensitivity was impaired by restraint in R6/1 HD female mice, but not in WT mice. In male R6/1 mice, the olfactory deficit was exacerbated by restraint and olfaction was also impaired in male WT mice. The development of deficits in saccharin preference, Y-maze memory, nest-building and sexually-motivated vocalizations was unaffected by chronic restraint in R6/1 and had little impact on such behavioral performances in WT animals. We provide evidence that chronic stress can negatively modulate specific endophenotypes in HD mice, while the same functions were affected to a lesser extent in WT mice. This vulnerability in HD animals seems to be sex-specific depending on the stress paradigm used. It is hoped that our

  20. Stable expression of calpain 3 from a muscle transgene in vivo: Immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation

    OpenAIRE

    Spencer, M.J.; Guyon, J. R.; Sorimachi, H.; Potts, A; Richard, I.; Herasse, M; Chamberlain, J.; Dalkilic, I.; Kunkel, L. M.; Beckmann, J S

    2002-01-01

    Limb-girdle muscular dystrophy, type 2A (LGMD 2A), is an autosomal recessive disorder that causes late-onset muscle-wasting, and is due to mutations in the muscle-specific protease calpain 3 (C3). Although LGMD 2A would be a feasible candidate for gene therapy, the reported instability of C3 in vitro raised questions about the potential of obtaining a stable, high-level expression of C3 from a transgene in vivo. We have generated transgenic (Tg) mice with muscle-specific overexpression of ful...

  1. Activation of Akt1 accelerates carcinogen-induced tumorigenesis in mammary gland of virgin and post-lactating transgenic mice

    International Nuclear Information System (INIS)

    Data from in vivo and in vitro studies suggest that activation of Akt regulates cell survival signaling and plays a key role in tumorigenesis. Hence, transgenic mice were created to explore the oncogenic role of Akt1 in the development of mammary tumors. The transgenic mice were generated by expressing myristoylated-Akt1 (myr-Akt1) under the control of the MMTV-LTR promoter. The carcinogen 7, 12 dimethyl-1,2-benzanthracene (DMBA) was used to induce tumor formation. The MMTV driven myr-Akt1 transgene expression was detected primarily in the mammary glands, uterus, and ovaries. The expression level increased significantly in lactating mice, suggesting that the response was hormone dependent. The total Akt expression level in the mammary gland was also higher in the lactating mice. Interestingly, the expression of MMTVmyr-Akt1 in the ovaries of the transgenic mice caused significant increase in circulating estrogen levels, even at the post-lactation stage. Expression of myr-Akt1 in mammary glands alone did not increase the frequency of tumor formation. However, there was an increased susceptibility of forming mammary tumors induced by DMBA in the transgenic mice, especially in mice post-lactation. Within 34 weeks, DMBA induced mammary tumors in 42.9% of transgenic mice post-lactation, but not in wild-type mice post-lactation. The myr-Akt1 mammary tumors induced by DMBA had increased phosphorylated-Akt1 and showed strong expression of estrogen receptor (ERα) and epidermal growth factor receptor (EGFR). In addition, Cyclin D1 was more frequently up-regulated in mammary tumors from transgenic mice compared to tumors from wild-type mice. Overexpression of Cyclin D1, however, was not completely dependent on activated Akt1. Interestingly, mammary tumors that had metastasized to secondary sites had increased expression of Twist and Slug, but low expression of Cyclin D1. In summary, the MMTVmyr-Akt1 transgenic mouse model could be useful to study mechanisms of ER

  2. Sex dimorphisms of crossbridge cycling kinetics in transgenic hypertrophic cardiomyopathy mice.

    Science.gov (United States)

    Birch, Camille L; Behunin, Samantha M; Lopez-Pier, Marissa A; Danilo, Christiane; Lipovka, Yulia; Saripalli, Chandra; Granzier, Henk; Konhilas, John P

    2016-07-01

    Familial hypertrophic cardiomyopathy (HCM) is a disease of the sarcomere and may lead to hypertrophic, dilated, restrictive, and/or arrhythmogenic cardiomyopathy, congestive heart failure, or sudden cardiac death. We hypothesized that hearts from transgenic HCM mice harboring a mutant myosin heavy chain increase the energetic cost of contraction in a sex-specific manner. To do this, we assessed Ca(2+) sensitivity of tension and crossbridge kinetics in demembranated cardiac trabeculas from male and female wild-type (WT) and HCM hearts at an early time point (2 mo of age). We found a significant effect of sex on Ca(2+) sensitivity such that male, but not female, HCM mice displayed a decrease in Ca(2+) sensitivity compared with WT counterparts. The HCM transgene and sex significantly impacted the rate of force redevelopment by a rapid release-restretch protocol and tension cost by the ATPase-tension relationship. In each of these measures, HCM male trabeculas displayed a gain-of-function when compared with WT counterparts. In addition, cardiac remodeling measured by echocardiography, histology, morphometry, and posttranslational modifications demonstrated sex- and HCM-specific effects. In conclusion, female and male HCM mice display sex dimorphic crossbridge kinetics accompanied by sex- and HCM-dependent cardiac remodeling at the morphometric, histological, and cellular level. PMID:27199124

  3. Chronic wasting disease of deer and elk in transgenic mice: oral transmission and pathobiology.

    Science.gov (United States)

    Trifilo, Matthew J; Ying, Ge; Teng, Chao; Oldstone, Michael B A

    2007-08-15

    To study the pathogenesis of chronic wasting disease (CWD) in deer and elk, transgenic (tg) mice were generated that expressed the prion protein (PrP) of deer containing a glycine at amino acid (aa) 96 and a serine at aa 225 under transcriptional control of the murine PrP promoter. This construct was introduced into murine PrP-deficient mice. As anticipated, neither non-tg mice nor PrP ko mice were susceptible when inoculated intracerebrally (i.c.) or orally with CWD brain material (scrapie pool from six mule deer) and followed for 600+ days (dpi). Deer PrP tg mice were not susceptible to i.c. inoculation with murine scrapie. In contrast, a fatal neurologic disease occurred accompanied by conversion of deer PrPsen to PrPres by western blot and immunohistochemistry after either i.c. inoculation with CWD brain into two lines of tg mice studied (312+32 dpi [mean+2 standard errors] for the heterozygous tg line 33, 275+46 dpi for the heterozygous tg line 39 and 210 dpi for the homozygous tg line 33) or after oral inoculation (381+55 dpi for the homozygous tg line 33 and 370+26 dpi for the homozygous tg line 39). Kinetically, following oral inoculation of CWD brain, PrPres was observed by day 200 when mice were clinically healthy in the posterior surface of the dorsum of the tongue primarily in serous and mucous glands, in the intestines, in large cells at the splenic marginal zone that anatomically resembled follicular dendritic cells and macrophages and in the olfactory bulb and brain stem but did not occur in the cerebellum, cerebral cortex or hippocampus or in hearts, lungs and livers of infected mice. After 350 days when mice become clinically ill the cerebellum, cerebral cortex and hippocampus became positive for PrPres and displayed massive spongiosis, neuronal drop out, gliosis and florid plaques. PMID:17451773

  4. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Yukiko, E-mail: ytomi@muses.tottori-u.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Morimatsu, Masami, E-mail: mmorimat@vetmed.hokudai.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Nishijima, Ken-ichi, E-mail: nishijma@nubio.nagoya-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Usui, Tatsufumi, E-mail: usutatsu@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Yamamoto, Sayo, E-mail: ysayo@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Suyama, Haruka, E-mail: sharuka@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ozaki, Kinuyo, E-mail: k-ozaki@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ito, Toshihiro, E-mail: toshiito@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); and others

    2014-07-18

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation.

  5. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    International Nuclear Information System (INIS)

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation

  6. APP/PS1KI bigenic mice develop early synaptic deficits and hippocampus atrophy

    OpenAIRE

    Breyhan, Henning; Wirths, Oliver; Duan, Kailai; Marcello, Andrea; Rettig, Jens; Bayer, Thomas

    2009-01-01

    Abeta accumulation has an important function in the etiology of Alzheimer’s disease (AD) with its typical clinical symptoms, like memory impairment and changes in personality. However, the mode of this toxic activity is still a matter of scientific debate. We used the APP/PS1KI mouse model for AD, because it is the only model so far which develops 50% hippocampal CA1 neuron loss at the age of 1 year. Previously, we have shown that this model develops severe learning deficits occurring much ea...

  7. Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase beta subunit.

    OpenAIRE

    Lem, J.; Flannery, J. G.; Li, T; Applebury, M L; Farber, D B; Simon, M. I.

    1992-01-01

    The beta subunit of the cGMP phosphodiesterase (PDE) gene has been identified as the candidate gene for retinal degeneration in the rd mouse. To study the molecular mechanisms underlying degeneration and the potential for gene repair, we have expressed a functional bovine cGMP PDE beta subunit in transgenic rd mice. One transgenic mouse line showed complete photoreceptor rescue across the entire span of the retina. A second independently derived line showed partial rescue in which photorecept...

  8. Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase ß subunit

    OpenAIRE

    Lem, Janis; Flannery, John G.; Li, Tiansen; Applebury, Meredithe L.; Farber, Debora B.; Simon, Melvin I.

    1992-01-01

    The ß subunit of the cGMP phosphodiesterase (PDE) gene has been identified as the candidate gene for retinal degeneration in the rd mouse. To study the molecular mechanisms underlying degeneration and the potential for gene repair, we have expressed a functional bovine cGMP PDE ß subunit in transgenic rd mice. One transgenic mouse line showed complete photoreceptor rescue across the entire span of the retina. A second independently derived line showed partial rescue in which photoreceptors in...

  9. Expression of stabilized β-catenin in differentiated neurons of transgenic mice does not result in tumor formation

    International Nuclear Information System (INIS)

    Medulloblastomas, embryonal tumors arising in the cerebellum, commonly contain mutations that activate Wnt signaling. To determine whether increased Wnt signaling in the adult CNS is sufficient to induce tumor formation, we created transgenic mice expressing either wild-type or activated β-catenin in the brain. Wild-type and mutant human β-catenin transgenes were expressed under the control of a murine PrP promoter fragment that drives high level postnatal expression in the CNS. Mutant β-catenin was stabilized by a serine to phenylalanine alteration in codon 37. Expression of the mutant transgene resulted in an approximately two-fold increase in β-catenin protein levels in the cortex and cerebellum of adult animals. Immunohistochemical analysis revealed nuclear β-catenin in hippocampal, cortical and cerebellar neurons of transgenic animals but not in non-transgenic controls. Tail kinking was observed in some transgenic animals, but no CNS malformations or tumors were detected. No tumors or morphologic alterations were detected in the brains of transgenic mice expressing stabilized β-catenin, suggesting that postnatal Wnt signaling in differentiated neurons may not be sufficient to induce CNS tumorigenesis

  10. Administration of NaHS attenuates footshock-induced pathologies and emotional and cognitive dysfunction in triple transgenic Alzheimer’s mice

    Directory of Open Access Journals (Sweden)

    Hei-Jen eHuang

    2015-11-01

    Full Text Available Alzheimer's disease (AD is characterized by progressive cognitive decline and neuropsychiatric symptoms. Increasing evidence indicates that environmental risk factors in young adults may accelerate cognitive loss in AD and that hydrogen sulfide (H2S may represent an innovative treatment to slow the progression of AD. Therefore, the aim of this study was to evaluate the effects of NaHS, an H2S donor, in a triple transgenic AD mouse model (3×Tg-AD under footshock with situational reminders (SRs. Inescapable footshock with SRs induced anxiety and cognitive dysfunction as well as a decrease in the levels of plasma H2S and GSH and an increase in IL-6 levels in 3×Tg-AD mice. Under footshock with SR stimulus, amyloid deposition, tau protein hyperphosphorylation, and microgliosis were highly increased in the stress-responsive brain structures, including the hippocampus and amygdala, of the AD mice. Oxidative stress, inflammatory response, and β-site APP cleaving enzyme 1 (BACE1 levels were also increased, and the level of inactivated glycogen synthase kinase-3β (GSK3β (pSer9 was decreased in the hippocampi of AD mice subjected to footshock with SRs. Furthermore, the numbers of cholinergic neurons in the medial septum/diagonal band of Broca (MS/DB and noradrenergic neurons in the locus coeruleus (LC were also decreased in the 3×Tg-AD mice under footshock with SRs. These biochemical hallmarks and pathological presentations were all alleviated by the semi-acute administration of NaHS in the AD mice. Together, these findings suggest that footshock with SRs induces the impairment of spatial cognition and emotion, which involve pathological changes in the peripheral and central systems, including the hippocampus, MS/DB, LC, and BLA, and that the administration of NaHS may be a candidate strategy to ameliorate the progression of neurodegeneration.

  11. APP/PS1双转基因小鼠早期记忆功能障碍与胆碱能系统的关系研究%Relationship between early memory impairment and acetylcholine in a transgenic mouse model of Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    叶芸; 张文均; 刘柳; 毛妮; 郝键; 李柱一; 张巍; 苗建亭

    2012-01-01

    Objective To investigate the relationship between the spatial cognitive ability and the changes of cholinergic system, and elucidate the mechanism of cognitive deficits in the early stage of a transgenic APP/PS1 mouse model of Alzheimer' s disease (APP/PS1 mice). Methods The spatial learning and memory ability were assessed by Morris water maze test. In the APP/PS1 and wild type (WT) mice, the beta-amyloid (Ap) plaques were detected by immunohistochemistry and histochemistry, and the content of Ach and the activity of ChAT and AChE in brain tissues were measured by ELISA. The relationship between Ach content in mice brain tissue and the spatial memory ability, and the relationship between Ach content and ChAT activity were analyzed by linear regression and correlation analysis method. Results No significant difference in the escape latency was observed between two groups (P>0. 05), but the time [ (29. 02±4. 27)%] and distance [ (28. 85±3. 77)%] spent in the target quadrant significantly declined in the APP/PS1 mice comparing with the WT mice (P0. 05). Further analysis revealed that the spatial memory ability of the mice was positively correlated with the Ach content (r=0. 861, r=0. 874, P<0. 05). The content of Ach was positively correlated with activity of ChAT (r= 0.926. P<0. 05). Conclusions The spatial memory impairment, declined Ach content and ChAT activity appeared before A|3 plaque deposition in 3-month APP/PS1 mice, and the declined Ach content and ChAT activity in brain tissue were greatly correlated with memory impairment, suggesting that impaired cholinergic system in brain tissue caused by soluble A|3 might play an important role in the development of memory deficits in the early stage of Alzheimer' s disease (AD), and reducing content of soluble Af) and improving the damage of cholinergic system might be potential strategies for prevention and treatment of AD.%目的 观察转APP/PS1基因阿尔茨海默病小鼠(APP/PS1小鼠)早期空间学习记

  12. Cerebroprotective effect of Huanglian Jiedu decoction on amyloid protein precursor/presenilin-1 double transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Xin Qiu; Guohua Chen; Gui Mei; Yuegu Wang; Kaixin Wang; Tao Wang; Pei Feng

    2011-01-01

    Huanglian Jiedu decoction (HLJDD) has been shown to improve cerebral blood flow, and reduce lipid peroxidation damage to the brain and its energy metabolism. The present study was designed to observe the cerebroprotective effect of HLJDD on an Alzheimer's disease rodent model,presenilin-1/amyloid protein precursor double transgenic mice. HLJDD reduced serum interleukin-6 and interleukin-1β levels, decreased β-amyloid precursor protein gene and senile plaque expression, resisted oxidation, and reduced free radical-induced injury, thereby improving the learning and memory of these mice. Moreover, HLJDD at 433 mg/kg per day exhibited better effects compared with that at 865 or 216 mg/kg per day, and donepezil hydrochloride at 30 mg/kg per day.Thus, these results suggest that HLJDD may have protective effects against Alzheimer's disease.

  13. Increased abscess formation and defective chemokine regulation in CREB transgenic mice.

    Directory of Open Access Journals (Sweden)

    Andy Y Wen

    Full Text Available Cyclic AMP-response element-binding protein (CREB is a transcription factor implicated in growth factor-dependent cell proliferation and survival, glucose homeostasis, spermatogenesis, circadian rhythms, and synaptic plasticity associated with memory. To study the phenotype of CREB overexpression in vivo, we generated CREB transgenic (TG mice in which a myeloid specific hMRP8 promoter drives CREB expression. CREB TG mice developed spontaneous skin abscesses more frequently than wild type (WT mice. To understand the role of CREB in myeloid function and innate immunity, chemokine expression in bone marrow derived macrophages (BMDMs from CREB TG mice were compared with BMDMs from WT mice. Our results demonstrated decreased Keratinocyte-derived cytokine (KC in CREB TG BMDMs but not TNFα protein production in response to lipid A (LPA. In addition, mRNA expression of KC and IL-1β (Interleukin-1β was decreased in CREB TG BMDMs; however, there was no difference in the mRNA expression of TNFα, MCP-1, IL-6 and IL-12p40. The mRNA expression of IL-1RA and IL-10 was decreased in response to LPA. Nuclear factor kappa B (NFκB expression and a subset of its target genes were upregulated in CREB TG mouse BMDMs. Although neutrophil migration was the same in both CREB TG and WT mice, Nicotinamide adenine dinucleotide phosphate (NADPH oxidase activity was significantly increased in neutrophils from CREB TG mice. Taken together, CREB overexpression in myeloid cells results in increased abscess formation in vivo and aberrant cytokine and chemokine response, and neutrophil function in vitro.

  14. Gene modulation associated with inhibition of liver regeneration in hepatitis B virus X transgenic mice

    Institute of Scientific and Technical Information of China (English)

    Malgorzata Sidorkiewicz; Jean-Philippe Jais; Guilherme Tralhao; Serban Morosan; Carlo Giannini; Nicolas Brezillon; Patrick Soussan; Oona Delpuech; Dina Kremsdorf

    2008-01-01

    AIM: To analyze the modulation of gene expression profile associated with inhibition of liver regeneration in hepatitis B X (HBx)-expressing transgenic mice.METHODS: Microarray technology was performed on liver tissue obtained from 4 control (LacZ) and 4 transgenic mice (HBx-LacZ), 48 h after partial hepatectomy. The significance of the normalized log-ratios was assessed for each gene, using robust Mests under an empirical Bayes approach. Microarray hybridization data was verified on selected genes by quantitative PCR.RESULTS: The comparison of gene expression patterns showed a consistent modulation of the expression of 26 genes, most of which are implicated in liver regeneration. Up-regulated genes included DNA repair proteins (Rad-52, MSH6) and transmembrane proteins (syndecan 4, tetraspanin), while down-regulated genes were connected to the regulation of transcription (histone deacetylase, Zfp90, MyoDl) and were involved in the cholesterol metabolic pathway and isoprenoidbiosynthesis (farnesyl diphosphate synthase, Cyp7b1, geranylgeranyl diphosphate synthase, SAA3).CONCLUSION: Our results provide a novel insight into the biological activities of HBx, implicated in the inhibition of liver regeneration.

  15. Morpholino treatment improves muscle function and pathology of Pitx1 transgenic mice.

    Science.gov (United States)

    Pandey, Sachchida Nand; Lee, Yi-Chien; Yokota, Toshifumi; Chen, Yi-Wen

    2014-02-01

    Paired-like homeodomain transcription factor 1 (PITX1) was proposed to be part of the disease mechanisms of facioscapulohumeral muscular dystrophy (FSHD). We generated a tet-repressible muscle-specific Pitx1 transgenic mouse model which develops phenotypes of muscular dystrophy after the PITX1 expression is induced. In this study, we attempted to block the translation of PITX1 protein using morpholinos. Three groups of the transgenic mice received intravenous injections of phosphorodiamidate morpholino oligomers (PMO) (100 mg/kg), octaguanidinium dendrimer-conjugated morpholino (vivo-morpholino) (10 mg/kg), or phosphate-buffered saline (PBS) after the PITX1 expression was induced. Immunoblotting data showed that PITX1 expression in the triceps and quadriceps was significantly reduced 70% and 63% by the vivo-morpholino treatment, respectively. Muscle pathology of the mice treated with the vivo-morpholino was improved by showing 44% fewer angular-shaped atrophic myofibers. Muscle function determined by grip strength was significantly improved by the vivo-morpholino treatment. The study showed that systemic delivery of the vivo-morpholino reduced the PITX1 expression and improved the muscle phenotypes. Aberrant expression of DUX4 from the last unit of the D4Z4 array has been proposed to be the cause of FSHD. The findings of this study suggest that the same principle may be applied to suppress the aberrantly expressed DUX4 in FSHD. PMID:24232919

  16. T cell mediated cerebral hemorrhages and microhemorrhages during passive Aβ immunization in APPPS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    de Calignon Alix

    2011-03-01

    Full Text Available Abstract Background Immunization against amyloid-β (Aβ, the peptide that accumulates in the form of senile plaques and in the cerebrovasculature in Alzheimer's disease (AD, causes a dramatic immune response that prevents plaque formation and clears accumulated Aβ in transgenic mice. In a clinical trial of Aβ immunization, some patients developed meningoencephalitis and hemorrhages. Neuropathological investigations of patients who died after the trial showed clearance of amyloid pathology, but also a powerful immune response involving activated T cells probably underlying the negative effects of the immunization. Results To define the impact of T cells on this inflammatory response we used passive immunization and adoptive transfer to separate the effect of IgG and T cell mediated effects on microhemorrhage in APPPS1 transgenic mice. Neither anti Aβ IgG nor adoptively transferred T cells, alone, led to increased cerebrovascular damage. However, the combination of adoptively transferred T cells and passive immunization led to massive cerebrovascular bleeding that ranged from multiple microhemorrhages in the parenchyma to large hematomas. Conclusions Our results indicate that vaccination can lead to Aβ and T cell induced cerebral micro-hemorrhages and acute hematomas, which are greatly exacerbated by T cell mediated activity.

  17. Gene expression analysis of pancreatic cystic neoplasm in SV40Tag transgenic mice model

    Institute of Scientific and Technical Information of China (English)

    Jie Feng; Qiang Sun; Cheng Gao; Juan Dong; Xiao-Luan Wei; Hua Xing; Hou-Da Li

    2007-01-01

    AIM: To study the gene expression changes in pancreatic cystic neoplasm in SV40Tag transgenic mice model and to provide information about the prevention,clinical diagnosis and therapy of pancreatic cancer.METHODS: Using the pBC-SV40Tag transgenic mice model of pancreatic cystic neoplasm, we studied the gene expression changes by applying high-density microarrays. Validation of part gene expression profiling data was performed using real-time PCR.RESULTS: By using high-density oligonucleotide microarray, of 14113 genes, 453 were increased and 760 decreased in pancreatic cystic neoplasm, including oncogenes, cell-cycle-related genes, signal transduction-related genes, skeleton-related genes and metabolism-related genes. Among these, we confirmed the changes in Igf, Shh and Wnt signal pathways with real-time PCR.The results of real-time PCR showed similar expression changes in gene chip.CONCLUSION: all the altered expression genes are associated with cell cycle, DNA damage and repair, signal pathway, and metabolism. SV40Tag may cooperate with several proteins in promoting tumorigenesis.

  18. SHP2E76K mutant promotes lung tumorigenesis in transgenic mice.

    Science.gov (United States)

    Schneeberger, Valentina E; Luetteke, Noreen; Ren, Yuan; Berns, Hartmut; Chen, Liwei; Foroutan, Parastou; Martinez, Gary V; Haura, Eric B; Chen, Jiandong; Coppola, Domenico; Wu, Jie

    2014-08-01

    Lung cancer is a major disease carrying heterogeneous molecular lesions and many of them remain to be analyzed functionally in vivo. Gain-of-function (GOF) SHP2 (PTPN11) mutations have been found in various types of human cancer, including lung cancer. However, the role of activating SHP2 mutants in lung cancer has not been established. We generated transgenic mice containing a doxycycline (Dox)-inducible activating SHP2 mutant (tetO-SHP2(E76K)) and analyzed the role of SHP2(E76K) in lung tumorigenesis in the Clara cell secretory protein (CCSP)-reverse tetracycline transactivator (rtTA)/tetO-SHP2(E76K) bitransgenic mice. SHP2(E76K) activated Erk1/Erk2 (Erk1/2) and Src, and upregulated c-Myc and Mdm2 in the lungs of bitransgenic mice. Atypical adenomatous hyperplasia and small adenomas were observed in CCSP-rtTA/tetO-SHP2(E76K) bitransgenic mice induced with Dox for 2-6 months and progressed to larger adenoma and adenocarcinoma by 9 months. Dox withdrawal from bitransgenic mice bearing magnetic resonance imaging-detectable lung tumors resulted in tumor regression. These results show that the activating SHP2 mutant promotes lung tumorigenesis and that the SHP2 mutant is required for tumor maintenance in this mouse model of non-small cell lung cancer. SHP2(E76K) was associated with Gab1 in the lung of transgenic mice. Elevated pGab1 was observed in the lung of Dox-induced CCSP-rtTA/tetO-SHP2(E76K) mice and in cell lines expressing SHP2(E76K), indicating that the activating SHP2 mutant autoregulates tyrosine phosphorylation of its own docking protein. Gab1 tyrosine phosphorylation is sensitive to inhibition by the Src inhibitor dasatinib in GOF SHP2-mutant-expressing cells, suggesting that Src family kinases are involved in SHP2 mutant-induced Gab1 tyrosine phosphorylation. PMID:24480804

  19. Gene expression profile of cervical and skin tissues from human papillomavirus type 16 E6 transgenic mice

    International Nuclear Information System (INIS)

    Although K14E6 transgenic mice develop spontaneous tumors of the skin epithelium, no spontaneous reproductive tract malignancies arise, unless the transgenic mice were treated chronically with 17β-estradiol. These findings suggest that E6 performs critical functions in normal adult cervix and skin, highlighting the need to define E6-controlled transcriptional programs in these tissues. We evaluated the expression profile of 14,000 genes in skin or cervix from young K14E6 transgenic mice compared with nontransgenic. To identify differentially expressed genes a linear model was implemented using R and the LIMMA package. Two criteria were used to select the set of relevant genes. First a set of genes with a Log-odds ≥ 3 were selected. Then, a hierarchical search of genes was based on Log Fold Changes. Microarray analysis identified a total of 676 and 1154 genes that were significantly up and down-regulated, respectively, in skin from K14E6 transgenic mice. On the other hand, in the cervix from K14E6 transgenic mice we found that only 97 and 252 genes were significantly up and down-regulated, respectively. One of the most affected processes in the skin from K14E6 transgenic mice was the cell cycle. We also found that skin from transgenic mice showed down-regulation of pro-apoptotic genes and genes related to the immune response. In the cervix of K14E6 transgenic mice, we could not find affected any gene related to the cell cycle and apoptosis pathways but did observe alterations in the expression of immune response genes. Pathways such as angiogenesis, cell junction and epidermis development, also were altered in their gene expression profiles in both tissues. Expression of the HPV16 E6 oncoprotein in our model alters expression of genes that fell into several functional groups providing insights into pathways by which E6 deregulate cell cycle progression, apoptosis, the host resistance to infection and immune function, providing new opportunities for early

  20. Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits

    OpenAIRE

    Tong, XiaoYong; Porter, Lisa M.; Liu, GongXin; Dhar-Chowdhury, Piyali; Srivastava, Shekhar; Pountney, David J.; Yoshida, Hidetada; Artman, Michael; Fishman, Glenn I.; Yu, Cindy; Iyer, Ramesh; Morley, Gregory E.; Gutstein, David E.; Coetzee, William A.

    2006-01-01

    Consequences of cardiac myocyte-specific ablation of KATP channels in transgenic mice expressing dominant negative Kir6 subunits. Am J Physiol Heart Circ Physiol 291: H543–H551, 2006. First published February 24, 2006; doi:10.1152/ajpheart.00051.2006.—Cardiac ATP-sensitive K+ (KATP) channels are formed by Kir6.2 and SUR2A subunits. We produced transgenic mice that express dominant negative Kir6.x pore-forming subunits (Kir6.1-AAA or Kir6.2-AAA) in cardiac myocytes by driving their expression ...

  1. App Inventor

    CERN Document Server

    Wolber, David; Spertus, Ellen; Looney, Liz

    2011-01-01

    Yes, you can create your own apps for Android phones-and it's easy to do. This extraordinary book introduces App Inventor for Android, a powerful visual tool that lets anyone build apps for Android-based devices. Learn the basics of App Inventor with step-by-step instructions for more than a dozen fun projects, such as creating location-aware apps, data storage, and apps that include decision-making logic. The second half of the book features an Inventor's manual to help you understand the fundamentals of app building and computer science. App Inventor makes an excellent textbook for beginne

  2. Extraneural manifestations of prion infection in GPI-anchorless transgenic mice

    International Nuclear Information System (INIS)

    Earlier studies indicated that transgenic (tg) mice engineered to express prion protein (PrP) lacking the glycophosphatidylinositol (GPI-/-) membrane anchor formed abnormal proteinase-resistant prion (PrPsc) amyloid deposits in their brains and hearts when infected with the RML strain of murine scrapie. In contrast, RML scrapie infection of normal mice with a GPI-anchored PrP did not deposit amyloid with PrPsc in the brain or the heart. Here we report that scrapie-infected GPI-/- PrP tg mice also deposit PrP and transmissible infectious material in the gut, kidneys, and islets of Langerhans. Similar to previously reported amyloid deposits in the brain and heart, amyloid deposits were found in the gut; however, no amyloid deposited in the islets. By high-resolution electron microscopy, we show PrP is located primarily in α cells and also β cells. Islets contain abundant insulin and there is no abnormality in glucose metabolism in infected GPI-/- PrP tg mice.

  3. Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm.

    Science.gov (United States)

    Brzózka, M M; Rossner, M J; de Hoz, L

    2016-09-01

    Schizophrenia (SZ) is a severe mental disorder affecting about 1 % of the human population. Patients show severe deficits in cognitive processing often characterized by an improper filtering of environmental stimuli. Independent genome-wide association studies confirmed a number of risk variants for SZ including several associated with the gene encoding the transcription factor 4 (TCF4). TCF4 is widely expressed in the central nervous system of mice and humans and seems to be important for brain development. Transgenic mice overexpressing murine Tcf4 (Tcf4tg) in the adult brain display cognitive impairments and sensorimotor gating disturbances. To address the question of whether increased Tcf4 gene dosage may affect cognitive flexibility in an auditory associative task, we tested latent inhibition (LI) in female Tcf4tg mice. LI is a widely accepted translational endophenotype of SZ and results from a maladaptive delay in switching a response to a previously unconditioned stimulus when this becomes conditioned. Using an Audiobox, we pre-exposed Tcf4tg mice and their wild-type littermates to either a 3- or a 12-kHz tone before conditioning them to a 12-kHz tone. Tcf4tg animals pre-exposed to a 12-kHz tone showed significantly delayed conditioning when the previously unconditioned tone became associated with an air puff. These results support findings that associate TCF4 dysfunction with cognitive inflexibility and improper filtering of sensory stimuli observed in SZ patients. PMID:26404636

  4. Organ-targeted mutagenicity of nitrofurantoin in Big Blue transgenic mice.

    Science.gov (United States)

    Quillardet, Philippe; Arrault, Xavier; Michel, Valérie; Touati, Eliette

    2006-09-01

    Nitrofurans are widely used in human medicine, as nitrofurantoin and nifuroxazide, still prescribed for long-term antimicrobial prophylaxis of urinary tract and gastrointestinal infection in humans respectively. Recent experiments in mammals, as well as reports mentioning toxic effects in humans associated with a long-term use, specially in the case of nitrofurantoin, raised the need for reevaluating their genotoxicity. The objective of this study was to determine whether these two compounds induce a mutagenic effect in the Big Blue transgenic mouse mutation assay. Mice were orally treated either with nitrofurantoin or nifuroxazide for five consecutive days and sacrificed 3 weeks later. In order to optimize the genotoxic response, the doses used for each compound were 25-fold higher as the posology in humans. They corresponded to 50% of the highest doses tolerated by mice. The mutant frequency was determined from kidney, lung, bladder, caecum, colon, small intestine, spleen and stomach. A weak mutagenic response of nitrofurantoin-treated mice specifically in the kidney was observed. As in the case of other nitrofuran compounds, the mutation spectra determined from treated samples exhibited slightly more GC-->TA transversions as compared with untreated conditions. These data are relevant to the targeted action of nitrofurantoin as a urinary antimicrobial agent. No significant increase of mutants was detected in the case of nifuroxazide-treated mice whatever the organs analysed. PMID:16895946

  5. C9orf72 BAC Transgenic Mice Display Typical Pathologic Features of ALS/FTD.

    Science.gov (United States)

    O'Rourke, Jacqueline G; Bogdanik, Laurent; Muhammad, A K M G; Gendron, Tania F; Kim, Kevin J; Austin, Andrew; Cady, Janet; Liu, Elaine Y; Zarrow, Jonah; Grant, Sharday; Ho, Ritchie; Bell, Shaughn; Carmona, Sharon; Simpkinson, Megan; Lall, Deepti; Wu, Kathryn; Daughrity, Lillian; Dickson, Dennis W; Harms, Matthew B; Petrucelli, Leonard; Lee, Edward B; Lutz, Cathleen M; Baloh, Robert H

    2015-12-01

    Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients. PMID:26637796

  6. A deregulated immune response to gliadin causes a decreased villus height in DQ8 transgenic mice.

    Science.gov (United States)

    D'Arienzo, Rossana; Stefanile, Rosita; Maurano, Francesco; Luongo, Diomira; Bergamo, Paolo; Mazzarella, Giuseppe; Troncone, Riccardo; Auricchio, Salvatore; David, Chella; Rossi, Mauro

    2009-12-01

    Celiac disease (CD) is an enteropathy triggered by gluten and mediated by CD4+ T cells. A complete understanding of CD immunopathogenesis has been hindered due to the lack of adequate in vivo models. Here, we explored the effect of the inhibition of COX by indomethacin in wheat gliadin-sensitized transgenic mice expressing the HLA-DQ8 heterodimer, a molecule associated with CD. Treated mice showed a gliadin-specific immune response with a significant reduction of villus height, not linked to crypt hyperplasia and to expansion of intraepithelial T cells. Notably, treated mice showed increased numbers of CD25+ and apoptotic cells in the lamina propria, whereas high basal levels of IFN-gamma secretion, along with a reduced gliadin-specific IL-2 expression were detected in MLN. Biochemical assessment of the lesion revealed increased mRNA of Lamb3 and Adamts2, encoding for ECM proteins, and enhanced activities of metalloproteinases MMP1, 2 and 7. We conclude that an intestinal sensitivity to gliadin, in connection with COX inhibition, caused a decreased villus height in DQ8 tg mice. The lesion was induced by a deregulated mucosal cell immunity to gliadin, thus triggering activation of a specific ECM protein pathway responsible for lamina propria remodeling. PMID:19795413

  7. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  8. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gülay Bulut

    Full Text Available Human papilloma virus (HPV is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed to HPV. Our earlier work using an in vitro model indicated that activation of the canonical Wnt pathway in HPV-positive epithelial cells was sufficient to induce anchorage independent growth. We therefore hypothesized that constitutive activation of this pathway might function as the "second hit." To address this possibility, we developed two double-transgenic (DT mouse models, K14-E7/ΔN87βcat and K14-HPV16/ΔN87βcat that express either the proteins encoded by the E7 oncogene or the HPV16 early region along with constitutively active β-catenin, which was expressed by linking it to the keratin-14 (K14 promoter. We initiated tumor formation by treating all groups with estrogen for six months. Invasive cervical cancer was observed in 11% of the K14-ΔN87βcat mice, expressing activated β-catenin and in 50% of the animals expressing the HPV16 E7 oncogene. In double-transgenic mice, coexpression of β-catenin and HPV16 E7 induced invasive cervical cancer at about 7 months in 94% of the cases. We did not observe cervical cancer in any group unless the mice were treated with estrogen. In the second model, K14-HPV16 mice suffered cervical dysplasias, but this phenotype was not augmented in HPV16/ΔN87βcat mice. In summary, the phenotypes of the K14-E7/ΔN87βcat mice support the hypothesis that activation of the Wnt/β-catenin pathway in HPV-associated premalignant lesions plays a functional role in accelerating cervical carcinogenesis.

  9. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  10. Chemoprevention of HBV-related hepatocellular carcinoma by the combined product of resveratrol and silymarin in transgenic mice

    Directory of Open Access Journals (Sweden)

    Wen-Chuan Hsieh

    2013-09-01

    Full Text Available ABSTRACTBackground: Patients with chronic hepatitis B virus (HBV infection are at a high risk to develop hepatocellular carcinoma (HCC. Recently, metabolic syndrome has been found to carry a risk for HCC development. Considering the limitation of chemotherapeutic drugs for HCCs, the development of chemopreventive agents for high risk chronic HBV carriers is urgently demanded. In this study, we used combined silymarin and resveratrol extract which have been shown to exhibit biologic effects on activating peroxisome proliferator activated receptors (PPAR and inhibiting mTOR signaling in a transgenic mice model harboring HBV viral oncoproteins.Methods: The transgenic mice model harboring HBx and pre-S2 mutant constructs which develop HCC was adopted. First, we in vitro tested the ideal combination dosages of the silymarin and resveratrol product, and then we fed the natural product to the transgenic mice.The chemopreventive effects on preventing the development of HCC were evaluated.Results: MTT assay showed an enhanced effect of the combined silymarin and resveratrol product on the reduction of cell proliferation in two hepatoma cell lines, Huh-7 and Hep G2. In vitro reporter assay and Western blot analyses revealed that the combined product couldactivate PPAR/PGC-1 signaling and inhibit mTOR expression. In vivo, the combined products could significantly ameliorate fatty liver and reduce HCCs in transgenic miceharboring HBV oncoproteins.Conclusions: The combined silymarin and resveratrol product exhibits a synergistic effect on the reduction of HCC development in transgenic mice model and may represent a potential agent for the prevention of HCC in high risk chronic HBV carriers.Key words: HBV, HCC, Transgenic mice, Chemoprevention

  11. Resistance to organophosphorus agent toxicity in transgenic mice expressing the G117H mutant of human butyrylcholinesterase

    International Nuclear Information System (INIS)

    Organophosphorus toxicants (OP) include chemical nerve agents and pesticides. The goal of this work was to find out whether an animal could be made resistant to OP toxicity by genetic engineering. The human butyrylcholinesterase (BChE) mutant G117H was chosen for study because it has the unusual ability to hydrolyze OP as well as acetylcholine, and it is resistant to inhibition by OP. Human G117H BChE, under the control of the ROSA26 promoter, was expressed in all tissues of transgenic mice. A stable transgenic mouse line expressed 0.5 μg/ml of human G117H BChE in plasma as well as 2 μg/ml of wild-type mouse BChE. Intestine, kidneys, stomach, lungs, heart, spleen, liver, brain, and muscle expressed 0.6-0.15 μg/g of G117H BChE. Transgenic mice were normal in behavior and fertility. The LD50 dose of echothiophate for wild-type mice was 0.1 mg/kg sc. This dose caused severe cholinergic signs of toxicity and lethality in wild-type mice, but caused no deaths and only mild toxicity in transgenic animals. The mechanism of protection was investigated by measuring acetylcholinesterase (AChE) and BChE activity. It was found that AChE and endogenous BChE were inhibited to the same extent in echothiophate-treated wild type and transgenic mice. This led to the hypothesis that protection against echothiophate toxicity was not explained by hydrolysis of echothiophate. In conclusion, the transgenic G117H BChE mouse demonstrates the factors required to achieve protection from OP toxicity in a vertebrate animal

  12. Characterization of Fam20C expression in odontogenesis and osteogenesis using transgenic mice.

    Science.gov (United States)

    Du, Er-Xia; Wang, Xiao-Fang; Yang, Wu-Chen; Kaback, Deborah; Yee, Siu-Pok; Qin, Chun-Lin; George, Anne; Hao, Jian-Jun

    2015-06-01

    Our previous studies have demonstrated that Fam20C promotes differentiation and mineralization of odontoblasts, ameloblasts, osteoblasts and osteocytes during tooth and bone development. Ablation of the Fam20C gene inhibits bone and tooth growth by increasing fibroblast growth factor 23 in serum and causing hypophosphatemia in conditional knockout mice. However, control and regulation of the expression of Fam20C are still unknown. In this study, we generated a transgenic reporter model which expresses green fluorescence protein (GFP) driven by the Fam20C promoter. Recombineering was used to insert a 16 kb fragment of the mouse Fam20C gene (containing the 15 kb promoter and 1.1 kb of exon 1) into a pBluescript SK vector with the topaz variant of GFP and a bovine growth hormone polyadenylation sequence. GFP expression was subsequently evaluated by histomorphometry on cryosections from E14 to adult mice. Fluorescence was evident in the bone and teeth as early as E17.5. The GFP signal was maintained stably in odontoblasts and osteoblasts until 4 weeks after birth. The expression of GFP was significantly reduced in teeth, alveolar bone and muscle by 8 weeks of age. We also observed colocalization of the GFP signal with the Fam20C antibody in postnatal 1- and 7-day-old animals. Successful generation of Fam20C-GFP transgenic mice will provide a unique model for studying Fam20C gene expression and the biological function of this gene during odontogenesis and osteogenesis. PMID:25537657

  13. Mangifera indica L. extract (Vimang improves the aversive memory in spinocerebellar ataxia type 2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Natasha Maurmann

    2014-06-01

    Full Text Available Context: The spinocerebellar ataxia type 2 (SCA-2 is a progressive neurodegenerative disorder without specific therapy identified, and it is related to the loss of function in the cerebellum, mitochondrial dysfunction, oxidative stress and neurotoxic processes. Scientific evidence indicates that Mangifera indica L. aqueous extract (MiE and its major constituent (mangiferin display antioxidant, anti-inflammatory and neuroprotective actions. Aims: To investigate the MiE and mangiferin effects on behavioral outcomes of neurological function in SCA-2 transgenic mice. Methods: The SCA-2 transgenic mice were daily and orally administered during 12 months with MiE (10, 50, and 100 mg/kg, mangiferin (10 mg/kg or vehicle. It was evaluated locomotion (open-field, aversive memory (inhibitory avoidance and declarative memory (object recognition. To explore possible cellular mechanisms underlying the in vivo effects was also evaluated their effects on nerve grow factor (NGF and tumor necrosis factor-α (TNF-α levels in the human glioblastoma cell line U138-MG supernatant. Results: MiE administration did not affect the object recognition memory, but mangiferin did. The natural extract improved selectively the aversive memory in SCA-2 mice, indicating that MiE can affect behavioral parameters regarding fear-related memory. MiE also induced a significant increase in supernatant levels of NGF and TNF-α in vitro in human U138-MG glioblastoma cells. Conclusions: The results suggest that MiE enhances the aversive memory through a mechanism that might involve an increase in neurotrophin and cytokine levels. These findings constitute the basis for the use of the natural extract in the prevention/treatment of memory deficits in SCA-2.

  14. Lethal cutaneous disease in transgenic mice conditionally expressing type I human T cell leukemia virus Tax.

    Science.gov (United States)

    Kwon, Hakju; Ogle, Louise; Benitez, Bobby; Bohuslav, Jan; Montano, Mauricio; Felsher, Dean W; Greene, Warner C

    2005-10-21

    Type I human T cell leukemia virus (HTLV-I) is etiologically linked with adult T cell leukemia, an aggressive and usually fatal expansion of activated CD4+ T lymphocytes that frequently traffic to skin. T cell transformation induced by HTLV-I involves the action of the 40-kDa viral Tax transactivator protein. Tax both stimulates the HTLV-I long terminal repeat and deregulates the expression of select cellular genes by altering the activity of specific host transcription factors, including cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor, NF-kappaB/Rel, and serum response factor. To study initiating events involved in HTLV-I Tax-induced T cell transformation, we generated "Tet-off" transgenic mice conditionally expressing in a lymphocyte-restricted manner (EmuSR alpha promoter-enhancer) either wild-type Tax or mutant forms of Tax that selectively compromise the NF-kappaB (M22) or CREB/activating transcription factor (M47) activation pathways. Wild-type Tax and M47 Tax-expressing mice, but not M22-Tax expressing mice, developed progressive alopecia, hyperkeratosis, and skin lesions containing profuse activated CD4 T cell infiltrates with evidence of deregulated inflammatory cytokine production. In addition, these animals displayed systemic lymphadenopathy and splenomegaly. These findings suggest that Tax-mediated activation of NF-kappaB plays a key role in the development of this aggressive skin disease that shares several features in common with the skin disease occurring during the preleukemic stage in HTLV-I-infected patients. Of note, this skin disease completely resolved when Tax transgene expression was suppressed by administration of doxycycline, emphasizing the key role played by this viral oncoprotein in the observed pathology. PMID:16105841

  15. Studies on the correlation with olfactory dysfunction in a transgenic mice model of Alzheimer's disease

    Science.gov (United States)

    Rasheed, Ameer; Lee, Ji Hye; Suh, Yoo-Hun; Moon, Cheil

    2013-05-01

    Alzheimer's disease (AD) is a progressively debilitating neurodegenerative disorder characterized by the presence of proteinaceous deposits in the brain. AD often results in olfactory dysfunction and impaired olfactory perceptual acuity may be a potential biomarker for early diagnosis of AD. Until recently, there is no Alzheimer's nanoscope or any other high-end microscope developed to be capable of seeing buried feature of AD clearly. Modern neuroimaging techniques are more effective only after the occurrence of cognitive impairment. Therefore, early detection of Alzheimer's disease is critical in developing effective treatment of AD. H and E (Haematoxyline and Eosin) staining is performed for examining gross morphological changes, while TUNEL (transferase (TdT)-mediated dUTP nick end labeling) staining for monitoring neuronal death in the olfactory epithelium (OE). Furthermore, immunohistochemistry and western blot are performed to examine β-amyloid protein expression. AD model animals were Tg2576 (transgenic mice that overexpress a mutated form of the Aβ precursor protein), and 6 month (before onset of AD symptoms) and 14 month (after onset of AD symptoms) old WT (wild type) and transgenic mice were compared in their olfactory system. We found that in OE of Tg2576 mice, thickness and total number of cells were decreased, while the numbers of TUNEL-positive neurons, caspase-3 activation were significantly increased compared with age-matched WT. Our results demonstrate that the olfactory system may get deteriorated before onset of AD symptoms. Our findings imply that an olfactory biopsy could be served as an early and relatively simple diagnostic tool for potential AD patients.

  16. Tumorigenic potential of pituitary tumor transforming gene (PTTG in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/− transgenic mice

    Directory of Open Access Journals (Sweden)

    Fong Miranda Y

    2012-11-01

    Full Text Available Abstract Background Pituitary tumor-transforming gene (PTTG is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Methods Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. Results PTTG transgenic offspring (TgPTTG were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells

  17. Tumorigenic potential of pituitary tumor transforming gene (PTTG) in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/−) transgenic mice

    International Nuclear Information System (INIS)

    Pituitary tumor-transforming gene (PTTG) is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. PTTG transgenic offspring (TgPTTG) were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells. Tumorigenesis is a multi-step process, often requiring

  18. N-acetyl Cysteine Treatment Rescues Cognitive Deficits Induced by Mitochondrial Dysfunction in G72/G30 Transgenic Mice

    OpenAIRE

    Otte, David Marian; Sommersberg, Britta; Kudin, Alexei; Guerrero, Catalina; Albeiram, Önder; Filiou, Michaela; Frisch, Pamela; Yilmaz, Öznur; Drews, Eva; Turck, C W; Bilkei-Gorzo, Andras; Kunz, Wolfram; Beck, Heinz; Zimmer, Andreas

    2011-01-01

    Abstract Genetic studies have implicated the evolutionary novel, anthropoid primate-specific gene locus G72/G30 in psychiatric diseases. This gene encodes the protein LG72 that has been discussed to function as a putative activator of the peroxisomal enzyme D-amino-acid-oxidase (DAO) and as a mitochondrial protein. We recently generated "humanized" BAC transgenic mice (G72Tg) expressing G72 transcripts in cells throughout the brain. These mice exhibit several behavioral phenotypes ...

  19. Changes in gene expression during the development of mammary tumors in MMTV-Wnt-1 transgenic mice

    OpenAIRE

    Huang, Shixia; Li, Yi; Chen, Yidong; Podsypanina, Katrina; Chamorro, Mario; Olshen, Adam B.; Desai, Kartiki V.; Tann, Anne; Petersen, David; Green, Jeffrey E; Varmus, Harold E.

    2005-01-01

    Background In human breast cancer normal mammary cells typically develop into hyperplasia, ductal carcinoma in situ, invasive cancer, and metastasis. The changes in gene expression associated with this stepwise progression are unclear. Mice transgenic for mouse mammary tumor virus (MMTV)-Wnt-1 exhibit discrete steps of mammary tumorigenesis, including hyperplasia, invasive ductal carcinoma, and distant metastasis. These mice might therefore be useful models for discovering changes in gene exp...

  20. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice.

    OpenAIRE

    Guo, L.; Yu, Q C; E. Fuchs

    1993-01-01

    Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. Synthesized by cells of the dermal component of skin, KGF's potent mitogenic activity is on the epidermal component, which harbors the receptors for this factor. To explore the possible role of KGF in mesenchymal-epithelial interactions in skin, we used a human keratin 14 promoter to target expression of human KGF cDNA to the stratified squamous epithelia of transgenic mice. Mice expressing KGF in their...

  1. Unexpected thymic hyperplasia in transgenic mice harboring a neuronal promoter fused with simian virus 40 large T antigen.

    OpenAIRE

    Botteri, F M; Van Putten, H.; Wong, D. F.; Sauvage, C A; Evans, R. M.

    1987-01-01

    The hypothalamic peptide growth hormone-releasing factor (GRF) regulates the secretion and production of growth hormone from the anterior pituitary (M. C. Gelato and G. R. Merriam, Annu. Rev. Physiol. 48:569-591). To study GRF gene regulation, transgenic mice were generated that harbor the human GRF promoter fused to the coding sequences from the simian virus 40 early region. These mice had normal hypothalamic functions but unexpectedly suffered from severe thymic hyperplasia. Immunohistochem...

  2. Conditional E2F1 activation in transgenic mice causes testicular atrophy and dysplasia mimicking human CIS

    DEFF Research Database (Denmark)

    Agger, Karl; Santoni-Rugiu, Eric; Holmberg, Christian;

    2005-01-01

    E2F1 is a crucial downstream effector of the retinoblastoma protein (pRB) pathway. To address the consequences of short-term increase in E2F1 activity in adult tissues, we generated transgenic mice expressing the human E2F1 protein fused to the oestrogen receptor (ER) ligand-binding domain. The...

  3. IGF-II transgenic mice display increased aberrant colon crypt multiplicity and tumor volume after 1,2-dimethylhydrazine treatment

    Directory of Open Access Journals (Sweden)

    Oesterle Doris

    2006-01-01

    Full Text Available Abstract In colorectal cancer insulin-like growth factor II (IGF-II is frequently overexpressed. To evaluate, whether IGF-II affects different stages of tumorigenesis, we induced neoplastic alterations in the colon of wild-type and IGF-II transgenic mice using 1,2-dimethylhydrazine (DMH. Aberrant crypt foci (ACF served as markers of early lesions in the colonic mucosa, whereas adenomas and carcinomas characterized the endpoints of tumor development. DMH-treatment led initially to significantly more ACF in IGF-II transgenic than in wild-type mice. This increase in ACF was especially prominent for those consisting of ≥three aberrant crypts (AC. Nevertheless, adenomas and adenocarcinomas of the colon, present after 34 weeks in both genetic groups, were not found at different frequency. Tumor volumes, however, were significantly higher in IGF-II transgenic mice and correlated with serum IGF-II levels. Immunohistochemical staining for markers of proliferation and apoptosis revealed increased cell proliferation rates in tumors of IGF-II transgenic mice without significant affection of apoptosis. Increased proliferation was accompanied by elevated localization of β-catenin in the cytosol and cell nuclei and reduced appearance at the inner plasma membrane. In conclusion, we provide evidence that IGF-II, via activation of the β-catenin signaling cascade, promotes growth of ACF and tumors without affecting tumor numbers.

  4. Calcium imaging of vomeronasal organ response using slice preparations from transgenic mice expressing G-CaMP2

    OpenAIRE

    Yu, C. Ron

    2013-01-01

    The vomeronasal organ (VNO) in vertebrate animals detects pheromones and interspecies chemical signals. We describe in this chapter a Ca2+ imaging approach using transgenic mice that express the genetically encoded Ca2+ sensor G-CaMP2 in VNO tissue. This approach allows us to analyze the complex patterns of the vomeronasal neuron response to large numbers of chemosensory stimuli.

  5. Parkinson-like phenotype in insulin-resistant PED/PEA-15 transgenic mice

    Science.gov (United States)

    Perruolo, Giuseppe; Viggiano, Davide; Fiory, Francesca; Cassese, Angela; Nigro, Cecilia; Liotti, Antonietta; Miele, Claudia; Beguinot, Francesco; Formisano, Pietro

    2016-01-01

    Neurological abnormalities, such as Parkinson-like disorders (PlD), are often co-morbidities of Type 2 Diabetic (T2D) patients, although the epidemiological link between these two disorders remains controversial. The PED/PEA-15 protein represents a possible candidate linking T2D and PD, because it is increased in subjects with T2D and is highly expressed in the brain. To test this hypothesis, we have analyzed the neurological and neurochemical phenotype of transgenic mice overexpressing PED/PEA-15 (tgPED). These mice develop impaired glucose tolerance and insulin resistance, accompanied by neurological features resembling PlD: feet clasping, slow and delayed locomotor movements in different behavioral tests in absence of clear cognitive deficits, ataxia or anxiety. Morphological analysis of the brains showed selective modifications of metabolic activity in the striatal region. In the same region, we have observed 26% decrease of dopamine fibers, confirmed by immunohistochemistry and Western Blot for tyrosine hydroxylase. Moreover, they also showed 48% reduction of dopamine levels in the striatum. Thus the tgPED mice may represent a genetic animal model of neurological disease linked to T2D. PMID:27426254

  6. Transgenic mice expressing yellow fluorescent protein under control of the human tyrosine hydroxylase promoter.

    Science.gov (United States)

    Choi, Eun Yang; Yang, Jae Won; Park, Myung Sun; Sun, Woong; Kim, Hyun; Kim, Seung U; Lee, Myung Ae

    2012-10-01

    Pathogenesis of Parkinson's disease and related catecholaminergic neurological disorders is closely associated with changes in the levels of tyrosine hydroxylase (TH). Therefore, investigation of the regulation of the TH gene system should assist in understanding the pathomechanisms involved in these neurological disorders. To identify regulatory domains that direct human TH expression in the central nervous system (CNS), we generated two transgenic mouse lines in which enhanced yellow fluorescent protein (EYFP) is expressed under the control of either 3.2-kb (hTHP-EYFP construct) human TH promoter or 3.2-kb promoter with 2-kb 3'-flanking regions (hTHP-ex3-EYFP construct) of the TH gene. In the adult transgenic mouse brain, the hTHP-EYFP construct directs neuron-specific EYFP expression in various CNS areas, such as olfactory bulb, striatum, interpeduncular nucleus, cerebral cortex, hippocampus, and particularly dentate gyrus. Although these EYFP-positive cells were identified as mature neurons, few EYFP-positive cells were TH-positive neurons. On the other hand, we could detect the EYFP mRNA expression in a subset of neurons in the olfactory bulb, midbrain, and cerebellum, in which expression of endogenous TH is enriched, with hTHP-ex3-EYFP transgenic mice. These results indicate that the 3.2-kb sequence upstream of the TH gene is not sufficient for proper expression and that the 2-kb sequence from the translation start site to exon 3 is necessary for expression of EYFP in a subset of catecholaminergic neurons. PMID:22714400

  7. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.

    Science.gov (United States)

    Salmon, A M; Bruand, C; Cardona, A; Changeux, J P; Berrih-Aknin, S

    1998-06-01

    Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subunit AChR gene. In addition to expression in muscle cells, thymic expression was observed in both mouse lines (mainly in myoid cells in Tg1 and myoid cells and epithelial cells in Tg2). After challenge with beta-gal, Tg1 mice produced Th2-dependent anti-beta-gal antibodies, while Tg2 mice were almost unresponsive. By contrast, in a proliferation assay both Tg lines were unresponsive to beta-gal. Cells from Tg1 mice produce Th2-dependent cytokine whereas cells from Tg2 mice were nonproducing in response to beta-gal. These data indicate that the level of expression in Tg1 mice could be sufficient to induce tolerance of Th1 cells but not of Th2 cells, while both populations are tolerated in Tg2 mice. These findings are compatible with the hypothesis that AChR expression is not sufficiently abundant in MG thymus to induce a full tolerance. PMID:9616205

  8. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Palm Kaia

    2009-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression. Results In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein (EGFP. The human BDNF-BAC construct containing all BDNF 5' exons preceded by different promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts were expressed from the transgenic human BDNF-BAC construct, resembling the expression of endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA. Conclusion Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar to BDNF gene expression in mouse and human. This is the first study to show that human BDNF gene is regulated by neural activity.

  9. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice

    OpenAIRE

    Beglopoulos, V.; Tulloch, J; Roe, A D; Daumas, S.; Ferrington, L; Watson, R; Fan, Z.; Hyman, B. T.; Kelly, P. A. T.; Bard, F; Morris, R G M

    2016-01-01

    International audience Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite ...

  10. Pathogenesis of dilated cardiomyopathy: molecular, structural, and population analyses in tropomodulin-overexpressing transgenic mice.

    Science.gov (United States)

    Sussman, M A; Welch, S; Gude, N; Khoury, P R; Daniels, S R; Kirkpatrick, D; Walsh, R A; Price, R L; Lim, H W; Molkentin, J D

    1999-12-01

    Dilated cardiomyopathy is characterized by decreased contractile function and loss of myofibril organization. Previously unexplored structural and molecular events that precede and initiate dilation can now be studied in tropomodulin-overexpressing transgenic (TOT) mice exhibiting progressive dilated cardiomyopathy. Onset of dilation did not correspond to a change in transgene expression levels, which were more than threefold above normal at birth and remained elevated throughout postnatal life. Similarly, mitogen-activated protein kinase activation (p38, ERK1/ERK2, JNK1/JNK2) was not associated with dilation. In contrast, calcineurin was activated before dilation, presumably due to doubling of intracellular diastolic calcium levels in TOT cardiomyocytes. Amplitude of systolic calcium transients was greatly increased as well, demonstrating the novel and unique calcium handling profile of TOT cardiomyocytes. Loss of myofibril organization was not apparent by confocal microscopy until over 1 week after birth, although neonatal sarcomeric abnormalities were revealed by ultrastructural analysis. Rapid postnatal increases in heart:body weight ratio at 1.5 weeks were followed by two waves of mortality between 2 and 3 weeks after birth coincident with maturational stress. Ultimately, TOT pathogenesis is a compensatory response to altered sarcomeric structure driven by calcineurin activation within days after birth, making TOTs an excellent paradigm for studying the role of calcium overload in dilated cardiomyopathy. PMID:10595939

  11. TRANSGENIC STRATEGY FOR IDENTIFYING SYNAPTIC CONNECTIONS IN MICE BY FLUORESCENCE COMPLEMENTATION (GRASP

    Directory of Open Access Journals (Sweden)

    Masahito eYamagata

    2012-02-01

    Full Text Available In the "GFP reconstitution across synaptic partners" (GRASP method, non-fluorescent fragments of GFP are expressed in two different neurons; the fragments self-assemble at synapses between the two to form a fluorophore. GRASP has proven useful for light microscopic identification of synapses in two invertebrate species, Caenorhabditis elegans and Drosophila melanogaster, but has not yet been applied to vertebrates. Here, we describe GRASP constructs that function in mammalian cells and implement a transgenic strategy in which a Cre-dependent gene switch leads to expression of the two fragments in mutually exclusive neuronal subsets in mice. Using a transgenic line that expresses Cre selectively in rod photoreceptors, we demonstrate labeling of synapses in the outer plexiform layer of the retina. Labeling is specific, in that synapses made by rods remain labeled for at least 6 months whereas nearby synapses made by intercalated cone photoreceptors on many of the same interneurons remain unlabeled. We also generated antisera that label reconstituted GFP but neither fragment in order to amplify the GRASP signal and thereby increase the sensitivity of the method.

  12. Diverse hematological malignancies including hodgkin-like lymphomas develop in chimeric MHC class II transgenic mice.

    Directory of Open Access Journals (Sweden)

    Silke H Raffegerst

    Full Text Available A chimeric HLA-DR4-H2-E (DR4 homozygous transgenic mouse line spontaneously develops diverse hematological malignancies with high frequency (70%. The majority of malignancies were distributed equally between T and B cell neoplasms and included lymphoblastic T cell lymphoma (LTCL, lymphoblastic B cell lymphoma (LBCL, diffuse large B cell lymphoma (DLBCL, the histiocyte/T cell rich variant of DLBCL (DLBCL-HA/T cell rich DLBCL, splenic marginal zone lymphoma (SMZL, follicular B cell lymphoma (FBL and plasmacytoma (PCT. Most of these neoplasms were highly similar to human diseases. Also, some non-lymphoid malignancies such as acute myeloid leukemia (AML and histiocytic sarcoma were found. Interestingly, composite lymphomas, including Hodgkin-like lymphomas, were also detected that had CD30(+ Hodgkin/Reed-Sternberg (H/RS-like cells, representing a tumor type not previously described in mice. Analysis of microdissected H/RS-like cells revealed their origin as germinal center B cells bearing somatic hypermutations and, in some instances, crippled mutations, as described for human Hodgkin lymphoma (HL. Transgene integration in an oncogene was excluded as an exclusive driving force of tumorigenesis and age-related lymphoma development suggests a multi-step process. Thus, this DR4 line is a useful model to investigate common molecular mechanisms that may contribute to important neoplastic diseases in man.

  13. Generation of NSE-MerCreMer transgenic mice with tamoxifen inducible Cre activity in neurons.

    Directory of Open Access Journals (Sweden)

    Mandy Ka Man Kam

    Full Text Available To establish a genetic tool for conditional deletion or expression of gene in neurons in a temporally controlled manner, we generated a transgenic mouse (NSE-MerCreMer, which expressed a tamoxifen inducible type of Cre recombinase specifically in neurons. The tamoxifen inducible Cre recombinase (MerCreMer is a fusion protein containing Cre recombinase with two modified estrogen receptor ligand binding domains at both ends, and is driven by the neural-specific rat neural specific enolase (NSE promoter. A total of two transgenic lines were established, and expression of MerCreMer in neurons of the central and enteric nervous systems was confirmed. Transcript of MerCreMer was detected in several non-neural tissues such as heart, liver, and kidney in these lines. In the background of the Cre reporter mouse strain Rosa26R, Cre recombinase activity was inducible in neurons of adult NSE-MerCreMer mice treated with tamoxifen by intragastric gavage, but not in those fed with corn oil only. We conclude that NSE-MerCreMer lines will be useful for studying gene functions in neurons for the conditions that Cre-mediated recombination resulting in embryonic lethality, which precludes investigation of gene functions in neurons through later stages of development and in adult.

  14. Expression of plant sweet protein brazzein in the milk of transgenic mice.

    Directory of Open Access Journals (Sweden)

    Sen Yan

    Full Text Available Sugar, the most popular sweetener, is essential in daily food. However, excessive sugar intake has been associated with several lifestyle-related diseases. Finding healthier and more economical alternatives to sugars and artificial sweeteners has received increasing attention to fulfill the growing demand. Brazzein, which comes from the pulp of the edible fruit of the African plant Pentadiplandra brazzeana Baill, is a protein that is 2,000 times sweeter than sucrose by weight. Here we report the production of transgenic mice that carry the optimized brazzein gene driven by the goat Beta-casein promoter, which specifically directs gene expression in the mammary glands. Using western blot analysis and immunohistochemistry, we confirmed that brazzein could be efficiently expressed in mammalian milk, while retaining its sweetness. This study presents the possibility of producing plant protein-sweetened milk from large animals such as cattle and goats.

  15. Transgenic mice designed to express human α-1,2-fucosyltransferase in combination of human DAF and CD59 to avoid xenograft rejection

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The expression of human α-1,2-fucosyltransferase (HT) or complement regulatory proteins has been proved as an strategy to overcome hypercute rejection in discordant xenogeneic organ transplantation. In this study, we examined whether peripheral blood mononuclear cells (PBMCs) from polytransgenic mice expressing the human HT, and complement regulatory proteins (DAF and CD59), can provide more effective protection against xenograft rejection. Transgenic mice were produced by co-injection of gene constructs for human HT, DAF and/or CD59. Flow Cytometry (FCM) was used to screen the positive transgenic mice. PBMCs from transgenic mice were incubated with 15% human serum to evaluate natural antibody binding, complement activation and expression of adhesion molecules. Three transgenes were strongly expressed in PBMCs of transgenic mice, and HT expression signifi- cantly reduced expression of the major xenoepitope galactose-α-1,3-galactose (α-Gal). Functional studies with PBMCs showed that co-expression of HT and DAF or CD59 markedly increased their re- sistance to human serum-mediated cytolysis when compared with single transgenic PBMCs. Moreover, the combined expression of triple transgenes in PBMCs led to the greatest protection against human serum-mediated cytolysis, avoided hyperacute rejection and reduced expression of adhesion mole- cules. Strong co-expression of triple transgenes was completely protected from xenograft hyperacute rejection and partially inhibited acute vascular rejection. The studies suggest that engineering mice to express triple molecules represents an critical step toward prolonging xenograft survival and might be more suitable for xenotransplantation.

  16. Higher Seizure Susceptibility and Enhanced Tyrosine Phosphorylation of N-Methyl-d-Aspartate Receptor Subunit 2B in fyn Transgenic Mice

    OpenAIRE

    Kojima, Nobuhiko; Ishibashi, Hidetoshi; Obata, Kunihiko; Kandel, Eric R.

    1998-01-01

    Earlier work has suggested that Fyn tyrosine kinase plays an important role in synaptic plasticity. To understand the downstream targets of Fyn signaling cascade in neurons, we generated transgenic mice expressing either a constitutively activated form of Fyn or native Fyn in neurons of the forebrain. Transgenic mice expressing mutant Fyn exhibited higher seizure activity and were prone to sudden death. Mice overexpressing native Fyn did not show such an obvious epileptic phenotype, but they ...

  17. Targeting surface nucleolin with a multivalent pseudopeptide delays development of spontaneous melanoma in RET transgenic mice

    International Nuclear Information System (INIS)

    The importance of cell-surface nucleolin in cancer biology was recently highlighted by studies showing that ligands of nucleolin play critical role in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, we recently reported that HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in the athymic nude mice without apparent toxicity. The in vivo antitumoral action of HB-19 treatment was assessed on the spontaneous development of melanoma in the RET transgenic mouse model. Ten days old RET mice were treated with HB-19 in a prophylactic setting that extended 300 days. In parallel, the molecular basis for the action of HB-19 was investigated on a melanoma cell line (called TIII) derived from a cutaneous nodule of a RET mouse. HB-19 treatment of RET mice caused a significant delay in the onset of cutaneous tumors, several-months delay in the incidence of large tumors, a lower frequency of cutaneous nodules, and a reduction of visceral metastatic nodules while displaying no toxicity to normal tissue. Moreover, microvessel density was significantly reduced in tumors recovered from HB-19 treated mice compared to corresponding controls. Studies on the melanoma-derived tumor cells demonstrated that HB-19 treatment of TIII cells could restore contact inhibition, impair anchorage-independent growth, and reduce their tumorigenic potential in mice. Moreover, HB-19 treatment caused selective down regulation of transcripts coding matrix metalloproteinase 2 and 9, and tumor necrosis factor-α in the TIII cells and in melanoma tumors of RET mice. Although HB-19 treatment failed to prevent the development of spontaneous melanoma in the RET mice, it delayed for several months the onset and frequency of cutaneous tumors, and exerted a significant inhibitory effect on visceral metastasis. Consequently, HB-19 could provide a novel therapeutic agent by itself or

  18. Targeting surface nucleolin with a multivalent pseudopeptide delays development of spontaneous melanoma in RET transgenic mice

    Directory of Open Access Journals (Sweden)

    Briand Jean-Paul

    2010-06-01

    Full Text Available Abstract Background The importance of cell-surface nucleolin in cancer biology was recently highlighted by studies showing that ligands of nucleolin play critical role in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, we recently reported that HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in the athymic nude mice without apparent toxicity. Methods The in vivo antitumoral action of HB-19 treatment was assessed on the spontaneous development of melanoma in the RET transgenic mouse model. Ten days old RET mice were treated with HB-19 in a prophylactic setting that extended 300 days. In parallel, the molecular basis for the action of HB-19 was investigated on a melanoma cell line (called TIII derived from a cutaneous nodule of a RET mouse. Results HB-19 treatment of RET mice caused a significant delay in the onset of cutaneous tumors, several-months delay in the incidence of large tumors, a lower frequency of cutaneous nodules, and a reduction of visceral metastatic nodules while displaying no toxicity to normal tissue. Moreover, microvessel density was significantly reduced in tumors recovered from HB-19 treated mice compared to corresponding controls. Studies on the melanoma-derived tumor cells demonstrated that HB-19 treatment of TIII cells could restore contact inhibition, impair anchorage-independent growth, and reduce their tumorigenic potential in mice. Moreover, HB-19 treatment caused selective down regulation of transcripts coding matrix metalloproteinase 2 and 9, and tumor necrosis factor-α in the TIII cells and in melanoma tumors of RET mice. Conclusions Although HB-19 treatment failed to prevent the development of spontaneous melanoma in the RET mice, it delayed for several months the onset and frequency of cutaneous tumors, and exerted a significant inhibitory effect on visceral metastasis

  19. Connexin26 expression in brain parenchymal cells demonstrated by targeted connexin ablation in transgenic mice.

    Science.gov (United States)

    Nagy, J I; Lynn, B D; Tress, O; Willecke, K; Rash, J E

    2011-07-01

    Astrocytes are known to express the gap junction forming proteins connexin30 (Cx30) and connexin43 (Cx43), but it has remained controversial whether these cells also express connexin26 (Cx26). To investigate this issue further, we examined immunofluorescence labelling of glial connexins in wild-type vs. transgenic mice with targeted deletion of Cx26 in neuronal and glial cells (Cx26fl/fl:Nestin-Cre mice). The Cx26 antibodies utilized specifically recognized Cx26 and lacked cross reaction with highly homologous Cx30, as demonstrated by immunoblotting and immunofluorescence in Cx26-transfected and Cx30-transfected C6 glioma cells. Punctate immunolabelling of Cx26 with these antibodies was observed in leptomeninges and subcortical brain regions. This labelling was absent in subcortical areas of Cx26fl/fl:Nestin-Cre mice, but persisted in leptomeningeal tissues of these mice, thereby distinguishing localization of Cx26 between parenchymal and non-parenchymal tissue. In subcortical brain parenchyma, Cx26-positive puncta were often co-localized with astrocytic Cx43, and some were localized along astrocyte cell bodies and processes immunolabelled for glial fibrillary acidic protein. Cx26-positive puncta were also co-localized with punctate labelling of Cx47 around oligodendrocyte somata. Comparisons of Cx26 labelling in rodent species revealed a lower density of Cx26-positive puncta and a more restricted distribution in subcortical regions of mouse compared with rat brain, perhaps partly explaining reported difficulties in detection of Cx26 in mouse brain parenchyma using antibodies or Cx26 gene reporters. These results support our earlier observations of Cx26 expression in astrocytes and its ultrastructural localization in individual gap junction plaques formed between astrocytes as well as in heterotypic gap junctions between astrocytes and oligodendrocytes. PMID:21714813

  20. Regulation of pulmonary and systemic bacterial lipopolysaccharide responses in transgenic mice expressing human elafin.

    Science.gov (United States)

    Sallenave, J-M; Cunningham, G A; James, R M; McLachlan, G; Haslett, C

    2003-07-01

    The control of lung inflammation is of paramount importance in a variety of acute pathologies, such as pneumonia, the acute respiratory distress syndrome, and sepsis. It is becoming increasingly apparent that local innate immune responses in the lung are negatively influenced by systemic inflammation. This is thought to be due to a local deficit in cytokine responses by alveolar macrophages and neutrophils following systemic bacterial infection and the development of a septic response. Recently, using an adenovirus-based strategy which overexpresses the human elastase inhibitor elafin locally in the lung, we showed that elafin is able to prime lung innate immune responses. In this study, we generated a novel transgenic mouse strain expressing human elafin and studied its response to bacterial lipopolysaccharide (LPS) when the LPS was administered locally in the lungs and systemically. When LPS was delivered to the lungs, we found that mice expressing elafin had lower serum-to-bronchoalveolar lavage ratios of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), macrophage inflammatory protein 2, and monocyte chemoattractant protein 1, than wild-type mice. There was a concomitant increase in inflammatory cell influx, showing that there was potential priming of innate responses in the lungs. When LPS was given systemically, the mice expressing elafin had reduced levels of serum TNF-alpha compared to the levels in wild-type mice. These results indicate that elafin may have a dual function, promoting up-regulation of local lung innate immunity while simultaneously down-regulating potentially unwanted systemic inflammatory responses in the circulation. PMID:12819058

  1. Behavioural and molecular consequences of chronic cannabinoid treatment in Huntington's disease transgenic mice.

    Science.gov (United States)

    Dowie, M J; Howard, M L; Nicholson, L F B; Faull, R L M; Hannan, A J; Glass, M

    2010-09-29

    Early loss of CB1 receptors is a hallmark of human Huntington's disease. Data from rodent studies suggest that preservation and activation of CB1 receptors may be protective against disease progression. R6/1 transgenic mice are considered to be a model of early pathogenic changes in Huntington's disease. We have shown previously that levels of CB1 in R6/1 mice prior to the onset of motor symptoms (12 weeks of age) remain high enough to justify commencement of cannabinoid drug treatment. Eight weeks of daily treatment with the cannabinoid agonists HU210 (0.01 mg/kg) and Delta(9)-tetrahydrocannabinol (THC, 10.00 mg/kg), or the inhibitor of endocannabinoid metabolism URB597 (0.30 mg/kg), did not alter the progressive deterioration of performance observed in motor behavioural testing. HU210-treated R6/1 mice experienced a significant increase in seizure events suggesting that this therapy may lower the seizure threshold and cautioning against highly efficacious agonists as potential therapy in this disease. Molecular characterisation of brains at the end of the study showed that there were no significant effects of HU210 or THC treatment on the ligand binding of cannabinoid CB1, dopamine D1, D2, serotonin 5HT2A or GABA(A) receptors, nor CB1 or fatty acid amide hydrolase (FAAH) mRNA expression in R6/1 mice. Intriguingly, a significant increase in the number of ubiquitinated aggregates was observed in the striatum with HU210 treatment, indicating an influence of CB1 on the disease process. Chronic URB597 treatment preserved CB1 receptors in the R6/1 striatum, suggesting that the manipulation of endocannabinoid levels warrants further exploration. PMID:20600638

  2. Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: The importance of assessing the amount of running in transgenic mice studies

    Science.gov (United States)

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; de Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo; Santín, Luis J.

    2014-01-01

    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. PMID:24055600

  3. Combined micro-PET/micro-CT imaging of lung tumours in SPC-raf and SPC-myc transgenic mice.

    Directory of Open Access Journals (Sweden)

    Thomas Rodt

    Full Text Available INTRODUCTION: SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. MATERIAL AND METHODS: 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic were examined using micro-CT and (18F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. RESULTS: Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. CONCLUSIONS: Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours.

  4. Combined Micro-PET/Micro-CT Imaging of Lung Tumours in SPC-raf and SPC-myc Transgenic Mice

    Science.gov (United States)

    Rodt, Thomas; Luepke, Matthias; Boehm, Claudia; Hueper, Katja; Halter, Roman; Glage, Silke; Hoy, Ludwig; Wacker, Frank; Borlak, Juergen; von Falck, Christian

    2012-01-01

    Introduction SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. Material and Methods 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic) were examined using micro-CT and 18F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. Results Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. Conclusions Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours. PMID:23028537

  5. Targeted expression of SV40 T antigen in the hair follicle of transgenic mice produces an aberrant hair phenotype.

    Science.gov (United States)

    Keough, R; Powell, B; Rogers, G

    1995-03-01

    Directed expression of SV40 large T antigen (TAg) in transgenic mice can induce tissue-specific tumorigenesis and useful cell lines exhibiting differentiated characteristics can be established from resultant tumor cells. In an attempt to produce an immortalised mouse hair follicle cortical cell line for the study of hair keratin gene control, SV40 TAg expression was targeted to the hair follicles of transgenic mice using a sheep hair gene promoter. Expression of SV40 TAg in the follicle cortex disrupted normal fiber ultrastructure, producing a marked phenotypic effect. Affected hairs were wavy or severely kinked (depending on the severity of the phenotype) producing an appearance ranging from a ruffled coat to a stubble covering the back of the mouse. The transgenic hairs appeared to be weakened at the base of the fibers, leading to premature hair-loss and a thinner pelage, or regions of temporary nudity. No follicle tumors or neoplasia were apparent and immortalisation of cortical cells could not be established in culture. In situ hybridisation studies in the hair follicle using histone H3 as a cell proliferation marker suggested that cell proliferation had ceased prior to commencement of K2.10-TAg expression and was not re-established in the differentiating cortical cells. Hence, TAg was unable to induce cell immortalisation at that stage of cortical cell differentiation. However, transgenic mice developed various other abnormalities including vertebral abnormalities and bladder, liver and intestinal tumors, which resulted in reduced life expectancy. PMID:7542671

  6. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice.

    Science.gov (United States)

    Beglopoulos, V; Tulloch, J; Roe, A D; Daumas, S; Ferrington, L; Watson, R; Fan, Z; Hyman, B T; Kelly, P A T; Bard, F; Morris, R G M

    2016-01-01

    Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities. PMID:27249364

  7. Amyloid β accumulation and inner retinal degenerative changes in Alzheimer's disease transgenic mouse.

    Science.gov (United States)

    Gupta, Vivek K; Chitranshi, Nitin; Gupta, Veer B; Golzan, Mojtaba; Dheer, Yogita; Wall, Roshana Vander; Georgevsky, Dana; King, Anna E; Vickers, James C; Chung, Roger; Graham, Stuart

    2016-06-01

    The APP-PS1ΔE9 mouse model of Alzheimer's disease (AD) exhibits age dependent amyloid β (Aβ) plaque formation in their central nervous system due to high expression of mutated human APP and PSEN1 transgenes. Here we evaluated Aβ deposition and changes in soluble Aβ accumulation in the retinas of aged APP-PS1 mice using a combination of immunofluorescence, retinal flat mounts and western blotting techniques. Aβ accumulation in the retina has previously been shown to be associated with retinal ganglion cell apoptosis in animal models of glaucoma. This study investigated changes in the inner retinal function and structure in APP-PS1 mice using electrophysiology and histological approaches respectively. We report for the first time a significant decline in scotopic threshold response (STR) amplitudes which represents inner retinal function in transgenic animals compared to the wild type counterparts (p<0.0001). Thinning of the retina particularly involving inner retinal layers and reduction in axonal density in the optic nerve was also observed. TUNEL staining was performed to examine neuronal apoptosis in the inner retina. Intraocular pressure (IOP) measurements showed that APP-PS1ΔE9 mice had a slightly elevated IOP, but the significance of this finding is not yet known. Together, these results substantiate previous observations and highlight that APP-PS1ΔE9 mice show evidence of molecular, functional and morphological degenerative changes in the inner retina. PMID:27133194

  8. Abbreviated incubation times for human prions in mice expressing a chimeric mouse–human prion protein transgene

    OpenAIRE

    Korth, Carsten; Kaneko, Kiyotoshi; Groth, Darlene; Heye, Norbert; Telling, Glenn; Mastrianni, James; Parchi, Piero; Gambetti, Pierluigi; Will, Robert; Ironside, James; Heinrich, Cornelia; Tremblay, Patrick; Stephen J DeArmond; Prusiner, Stanley B.

    2003-01-01

    Transgenic (Tg) mouse lines that express chimeric mouse–human prion protein (PrP), designated MHu2M, are susceptible to prions from patients with sporadic Creutzfeldt–Jakob disease (sCJD). With the aim of decreasing the incubation time to fewer than 200 days, we constructed transgenes in which one or more of the nine human residues in MHu2M were changed to mouse. The construct with murine residues at positions 165 and 167 was expressed in Tg(MHu2M,M165V,E167Q) mice and resulted in shortening ...

  9. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies

    OpenAIRE

    1995-01-01

    Human class I major histocompatibility complex allele HLA-B27 is associated with a group of human diseases called "spondyloarthropathies." Studies on transgenic rats expressing HLA-B27 and human beta 2-microglobulin have confirmed the role of HLA-B27 in disease pathogenesis. Here we report spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin (B27+ beta 2m-/- ). In the absence of beta 2-microglobulin, B27+ beta 2m-/- animals do not express the HLA-B27 tran...

  10. Transgenic mice that overexpress the human trefoil peptide pS2 have an increased resistance to intestinal damage.

    OpenAIRE

    Playford, R J; Marchbank, T; Goodlad, R A; Chinery, R A; Poulsom, R.; Hanby, A M

    1996-01-01

    pS2 is a member of the trefoil peptide family, all of which are overexpressed at sites of gastrointestinal injury. We hypothesized that they are important in stimulating mucosal repair. To test this idea, we have produced a transgenic mice strain that expresses human pS2 (hpS2) specifically within the jejunum and examined the effect of this overexpression on proliferation and susceptibility to indomethacin-induced damage. A transgenic mouse was produced by microinjecting fertilized oocytes wi...

  11. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    International Nuclear Information System (INIS)

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH3-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acute gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity

  12. Using targeted transgenic reporter mice to study promoter-specific p53 transcriptional activity

    Science.gov (United States)

    Goh, Amanda M.; Lim, Chin Yan; Chiam, Poh Cheang; Mann, Michael B.; Mann, Karen M.; Menendez, Sergio; Lane, David P.

    2012-01-01

    The p53 transcription factor modulates gene expression programs that induce cell cycle arrest, senescence, or apoptosis, thereby preventing tumorigenesis. However, the mechanisms by which these fates are selected are unclear. Our objective is to understand p53 target gene selection and, thus, enable its optimal manipulation for cancer therapy. We have generated targeted transgenic reporter mice in which EGFP expression is driven by p53 transcriptional activity at a response element from either the p21 or Puma promoter, which induces cell cycle arrest/senescence and apoptosis, respectively. We demonstrate that we could monitor p53 activity in vitro and in vivo and detect variations in p53 activity depending on the response element, tissue type, and stimulus, thereby validating our reporter system and illustrating its utility for preclinical drug studies. Our results also show that the sequence of the p53 response element itself is sufficient to strongly influence p53 target gene selection. Finally, we use our reporter system to provide evidence for p53 transcriptional activity during early embryogenesis, showing that p53 is active as early as embryonic day 3.5 and that p53 activity becomes restricted to embryonic tissue by embryonic day 6.5. The data from this study demonstrate that these reporter mice could serve as powerful tools to answer questions related to basic biology of the p53 pathway, as well as cancer therapy and drug discovery. PMID:22307631

  13. An acetylcholine receptor alpha subunit promoter confers intrathymic expression in transgenic mice. Implications for tolerance of a transgenic self-antigen and for autoreactivity in myasthenia gravis.

    OpenAIRE

    Salmon, A M; Bruand, C; Cardona, A; Changeux, J P; Berrih-Aknin, S.

    1998-01-01

    Myasthenia gravis (MG) is an autoimmune disease targeting the skeletal muscle acetylcholine receptor (AChR). Although the autoantigen is present in the thymus, it is not tolerated in MG patients. In addition, the nature of the cell bearing the autoantigen is controversial. To approach these questions, we used two lineages of transgenic mice in which the beta-galactosidase (beta-gal) gene is under the control of a 842-bp (Tg1) or a 3300-bp promoter fragment (Tg2) of the chick muscle alpha subu...

  14. Effects of anabolic steroids and high-intensity aerobic exercise on skeletal muscle of transgenic mice.

    Directory of Open Access Journals (Sweden)

    Karina Fontana

    Full Text Available In an attempt to shorten recovery time and improve performance, strength and endurance athletes occasionally turn to the illicit use of anabolic-androgenic steroids (AAS. This study evaluated the effects of AAS treatment on the muscle mass and phenotypic characteristics of transgenic mice subjected to a high-intensity, aerobic training program (5d/wk for 6 weeks. The transgenic mice (CETP(+/-LDLr(-/+ were engineered to exhibit a lipid profile closer to humans. Animals were divided into groups of sedentary (Sed and/or training (Ex mice (each treated orally with AAS or gum arabic/vehicle: Sed-C, Sed-M, ex-C, ex-M. The effects of AAS (mesterolone: M on specific phenotypic adaptations (muscle wet weight, cross-sectional area, and fiber type composition in three hindlimb muscles (soleus:SOL, tibialis anterior:TA and gastrocnemius:GAS were assessed. In order to detect subtle changes in fiber type profile, the entire range of fiber types (I, IC, IIAC, IIA, IIAD, IID, IIDB, IIB was delineated using mATPase histochemistry. Body weight gain occurred throughout the study for all groups. However, the body weight gain was significantly minimized with exercise. This effect was blunted with mesterolone treatment. Both AAS treatment (Sed-M and high-intensity, aerobic training (ex-C increased the wet weights of all three muscles and induced differential hypertrophy of pure and hybrid fibers. Combination of AAS and training (ex-M resulted in enhanced hypertrophy. In the SOL, mesterolone treatment (Sed-M and ex-M caused dramatic increases in the percentages of fiber types IC, IIAC, IIAD, IID, with concomitant decrease in IIA, but had minimal impact on fiber type percentages in the predominantly fast muscles. Overall, the AAS-induced differential adaptive changes amounted to significant fiber type transformations in the fast-to-slow direction in SOL. AAS treatment had a significant effect on muscle weights and fiber type composition in SOL, TA and GAS which was

  15. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Shyamala, Gopalan

    2009-05-11

    Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levels of latency-associated peptide and transforming growth factor beta 1 (TGF{beta}1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGF{beta}1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice. These data

  16. Deletion of Mint proteins decreases amyloid production in transgenic mouse models of Alzheimer’s disease

    OpenAIRE

    Ho, Angela; Liu, Xinran; Südhof, Thomas C.

    2008-01-01

    Mints/X11s are neuronal adaptor proteins that bind to amyloid-β precursor protein (APP). Previous studies suggested that Mint/X11 proteins influence APP cleavage, and affect production of pathogenic Aβ-peptides in Alzheimer’s disease; however, the biological significance of Mint/X11-binding to APP and their possible role in Aβ-production remain unclear. Here, we crossed conditional and constitutive Mint1, Mint2, and Mint3 knockout mice with transgenic mouse models of Alzheimer’s disease overp...

  17. Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis.

    Science.gov (United States)

    Lucas, Stéphanie; Tavernier, Geneviève; Tiraby, Claire; Mairal, Aline; Langin, Dominique

    2003-01-01

    Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis. PMID:12518034

  18. Prediabetes linked to excess glucagon in transgenic mice with pancreatic active AKT1.

    Science.gov (United States)

    Albury-Warren, Toya M; Pandey, Veethika; Spinel, Lina P; Masternak, Michal M; Altomare, Deborah A

    2016-01-01

    Protein kinase B/AKT has three isoforms (AKT1-3) and is renowned for its central role in the regulation of cell growth and proliferation, due to its constitutive activation in various cancers. AKT2, which is highly expressed in insulin-responsive tissues, has been identified as a primary regulator of glucose metabolism as Akt2 knockout mice (Akt2(-/-)) are glucose-intolerant and insulin-resistant. However, the role of AKT1 in glucose metabolism is not as clearly defined. We previously showed that mice with myristoylated Akt1 (AKT1(Myr)) expressed through a bicistronic Pdx1-TetA and TetO-MyrAkt1 system were susceptible to islet cell carcinomas, and in this study we characterized an early onset, prediabetic phenotype. Beginning at weaning (3 weeks of age), the glucose-intolerant AKT1(Myr) mice exhibited non-fasted hyperglycemia, which progressed to fasted hyperglycemia by 5 months of age. The glucose intolerance was attributed to a fasted hyperglucagonemia, and hepatic insulin resistance detectable by reduced phosphorylation of the insulin receptor following insulin injection into the inferior vena cava. In contrast, treatment with doxycycline diet to turn off the transgene caused attenuation of the non-fasted and fasted hyperglycemia, thus affirming AKT1 hyperactivation as the trigger. Collectively, this model highlights a novel glucagon-mediated mechanism by which AKT1 hyperactivation affects glucose homeostasis and provides an avenue to better delineate the molecular mechanisms responsible for diabetes mellitus and the potential association with pancreatic cancer. PMID:26487674

  19. Decreased glial and synaptic glutamate uptake in the striatum of HIV-1 gp120 transgenic mice.

    Science.gov (United States)

    Melendez, Roberto I; Roman, Cristina; Capo-Velez, Coral M; Lasalde-Dominicci, Jose A

    2016-06-01

    The mechanisms leading to the neurocognitive deficits in humans with immunodeficiency virus type 1 (HIV-1) are not well resolved. A number of cell culture models have demonstrated that the HIV-envelope glycoprotein 120 (gp120) decreases the reuptake of glutamate, which is necessary for learning, memory, and synaptic plasticity. However, the impact of brain HIV-1 gp120 on glutamate uptake systems in vivo remains unknown. Notably, alterations in brain glutamate uptake systems are implicated in a number of neurodegenerative and neurocognitive disorders. We characterized the kinetic properties of system XAG (sodium-dependent) and systems xc- (sodium-independent) [3H]-L-glutamate uptake in the striatum and hippocampus of HIV-1 gp120 transgenic mice, an established model of HIV neuropathology. We determined the kinetic constant Vmax (maximal velocity) and Km (affinity) of both systems XAG and xc- using subcellular preparations derived from neurons and glial cells. We show significant (30-35 %) reductions in the Vmax of systems XAG and xc- in both neuronal and glial preparations derived from the striatum, but not from the hippocampus of gp120 mice relative to wild-type (WT) controls. Moreover, immunoblot analysis showed that the protein expression of glutamate transporter subtype-1 (GLT-1), the predominant brain glutamate transporter, was significantly reduced in the striatum but not in the hippocampus of gp120 mice. These extensive and region-specific deficits of glutamate uptake likely contribute to the development and/or severity of HIV-associated neurocognitive disorders. Understanding the role of striatal glutamate uptake systems in HIV-1 gp120 may advance the development of new therapeutic strategies to prevent neuronal damage and improve cognitive function in HIV patients. PMID:26567011

  20. Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer?

    International Nuclear Information System (INIS)

    The human p53 tumor suppressor gene TP53 is mutated at a high frequency in sporadic breast cancer, and Li-Fraumeni syndrome patients who carry germline mutations in one TP53 allele have a high incidence of breast cancer. In the 10 years since the first knockout of the mouse p53 tumor suppressor gene (designated Trp53) was published, much has been learned about the contribution of p53 to biology and tumor suppression in the breast through the use of p53 transgenic and knockout mice. The original mice deficient in p53 showed no mammary gland phenotype. However, studies using BALB/c-Trp53-deficient mice have demonstrated a delayed involution phenotype and a mammary tumor phenotype. Together with other studies of mutant p53 transgenes and p53 bitransgenics, a greater understanding has been gained of the role of p53 in involution, of the regulation of p53 activity by hormones, of the effect of mouse strain and modifier genes on tumor phenotype, and of the cooperation between p53 and other oncogenic pathways, chemical carcinogens and hormonal stimulation in mammary tumorigenesis. Both p53 transgenic and knockout mice are important in vivo tools for understanding breast cancer, and are yet to be exploited for developing therapeutic strategies in breast cancer

  1. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

    Directory of Open Access Journals (Sweden)

    David Ramonet

    Full Text Available Mutations in the leucine-rich repeat kinase 2 (LRRK2 gene cause late-onset, autosomal dominant familial Parkinson's disease (PD and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s through which familial mutations precipitate neuronal degeneration and PD.

  2. Expression of HLA-B27 in transgenic mice is dependent on the mouse H-2D genes

    OpenAIRE

    1990-01-01

    HLA-B27 transgenic mice in the context of various H-2 haplotypes were produced. A high expression of the HLA-B27 antigen was observed in mice homozygous for H-2b, H-2f, H-2s, H-2p, H-2r, and H-2k haplotypes. Mice of the H-2v haplotype expressed HLA-B27 at an intermediate level. Expression of HLA-B27 was minimal in mice of the H-2q and H-2d haplotypes. This was observed both on the B10 background and in DBA/2 or BALB/c mice. Only minimal expression of HLA-B27 could be detected in B10.PL (KuDd)...

  3. Breaking Tolerance in Transgenic Mice Expressing the Human TSH Receptor A-Subunit: Thyroiditis, Epitope Spreading and Adjuvant as a ‘Double Edged Sword’

    OpenAIRE

    McLachlan, Sandra M.; Aliesky, Holly A.; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-express...

  4. Transgenic expression of an expanded (GCG)13 repeat PABPN1 leads to weakness and coordination defects in mice.

    Science.gov (United States)

    Dion, Patrick; Shanmugam, Vijayalakshmi; Gaspar, Claudia; Messaed, Christiane; Meijer, Inge; Toulouse, André; Laganiere, Janet; Roussel, Julie; Rochefort, Daniel; Laganiere, Simon; Allen, Carol; Karpati, George; Bouchard, Jean-Pierre; Brais, Bernard; Rouleau, Guy A

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder caused by a (GCG)n trinucleotide repeat expansion in the poly(A) binding protein nuclear-1 (PABPN1) gene, which in turn leads to an expanded polyalanine tract in the protein. We generated transgenic mice expressing either the wild type or the expanded form of human PABPN1, and transgenic animals with the expanded form showed clear signs of abnormal limb clasping, muscle weakness, coordination deficits, and peripheral nerves alterations. Analysis of mitotic and postmitotic tissues in those transgenic animals revealed ubiquitinated PABPN1-positive intranuclear inclusions (INIs) in neuronal cells. This latter observation led us to test and confirm the presence of similar INIs in postmortem brain sections from an OPMD patient. Our results indicate that expanded PABPN1, presumably via the toxic effects of its polyalanine tract, can lead to inclusion formation and neurodegeneration in both the mouse and the human. PMID:15755680

  5. Motor deficits associated with Huntington's disease occur in the absence of striatal degeneration in BACHD transgenic mice.

    Science.gov (United States)

    Mantovani, Susanna; Gordon, Richard; Li, Rui; Christie, Daniel C; Kumar, Vinod; Woodruff, Trent M

    2016-05-01

    Huntington's disease (HD) is an incurable neurodegenerative condition characterized by progressive motor and cognitive dysfunction, and depletion of neurons in the striatum. Recently, BACHD transgenic mice expressing the full-length human huntingtin gene have been generated, which recapitulate some of the motor and cognitive deficits seen in HD. In this study, we carried out a series of extensive behavioural and neuropathological tests on BACHD mice, to validate this mouse for preclinical research. Transgenic C57BL/6J BACHD and litter-matched wild-type mice were examined in a battery of motor and cognitive function tests at regular intervals up to 12 months of age. Brains from these mice were also analysed for signs of neurodegeneration and striatal and cortical volume sizes compared using anatomic 16.4T magnetic resonance imaging (MRI) brain scans. BACHD mice showed progressive motor impairments on rotarod and balance beam tests starting from 3 months of age, were hypoactive in the open field tests starting from 6 months of age, however, showed no alterations in gait and grip strength at any age. Surprisingly, despite these distinct motor deficits, no signs of neuronal loss, gliosis or blood-brain barrier degeneration were observed in the striatum of 12-month-old mice. MRI brain scans confirmed no reduction in striatal or cortical volumes at 12 months of age, and BACHD mice had a normal lifespan. These results demonstrate that classical Huntington's-like motor impairments seen in this transgenic model, do not occur due to degeneration of the striatum, and thus caution against the use of this model for preclinical studies into HD. PMID:26908618

  6. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    OpenAIRE

    Shih Ping Yao; Ho Pei-Yu; Huang Hsiao-I; Bolen James; Brown Lucy; Hsiao Chin-Ton; Lo Hsin-Lung; Lai Chao-Kuen; Chen Chi-Dar; Wu Ming-Che; Liu Yi-Hsin; Jiang MeiSheng; Qian Jin; Chang Keejong; Yao Chen-Wen

    2002-01-01

    Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT) that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal ...

  7. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice.

    Science.gov (United States)

    Robert, Jérôme; Stukas, Sophie; Button, Emily; Cheng, Wai Hang; Lee, Michael; Fan, Jianjia; Wilkinson, Anna; Kulic, Iva; Wright, Samuel D; Wellington, Cheryl L

    2016-05-01

    Many lines of evidence suggest a protective role for high-density lipoprotein (HDL) and its major apolipoprotein (apo)A-I in Alzheimer's Disease (AD). HDL/apoA-I particles are produced by the liver and intestine and, in addition to removing excess cholesterol from the body, are increasingly recognized to have vasoprotective functions. Here we tested the ability of reconstituted HDL (rHDL) consisting of human apoA-I reconstituted with soy phosphatidylcholine for its ability to lower amyloid beta (Aβ) levels in symptomatic APP/PS1 mice, a well-characterized preclinical model of amyloidosis. Animals were treated intravenously either with four weekly doses (chronic study) or a single dose of 60mg/kg of rHDL (acute study). The major finding of our acute study is that soluble brain Aβ40 and Aβ42 levels were significantly reduced within 24h of a single dose of rHDL. By contrast, no changes were observed in our chronic study with respect to soluble or deposited Aβ levels in animals assessed 7days after the final weekly dose of rHDL, suggesting that beneficial effects diminish as rHDL is cleared from the body. Further, rHDL-treated animals showed no change in amyloid burden, cerebrospinal fluid (CSF) Aβ levels, neuroinflammation, or endothelial activation in the chronic study, suggesting that the pathology-modifying effects of rHDL may indeed be acute and may be specific to the soluble Aβ pool. That systemic administration of rHDL can acutely modify brain Aβ levels provides support for further investigation of the therapeutic potential of apoA-I-based agents for AD. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26454209

  8. HDL from apoA1 transgenic mice expressing the 4WF isoform is resistant to oxidative loss of function[S

    Science.gov (United States)

    Berisha, Stela Z.; Brubaker, Greg; Kasumov, Takhar; Hung, Kimberly T.; DiBello, Patricia M.; Huang, Ying; Li, Ling; Willard, Belinda; Pollard, Katherine A.; Nagy, Laura E.; Hazen, Stanley L.; Smith, Jonathan D.

    2015-01-01

    HDL functions are impaired by myeloperoxidase (MPO), which selectively targets and oxidizes human apoA1. We previously found that the 4WF isoform of human apoA1, in which the four tryptophan residues are substituted with phenylalanine, is resistant to MPO-mediated loss of function. The purpose of this study was to generate 4WF apoA1 transgenic mice and compare functional properties of the 4WF and wild-type human apoA1 isoforms in vivo. Male mice had significantly higher plasma apoA1 levels than females for both isoforms of human apoA1, attributed to different production rates. With matched plasma apoA1 levels, 4WF transgenics had a trend for slightly less HDL-cholesterol versus human apoA1 transgenics. While 4WF transgenics had 31% less reverse cholesterol transport (RCT) to the plasma compartment, equivalent RCT to the liver and feces was observed. Plasma from both strains had similar ability to accept cholesterol and facilitate ex vivo cholesterol efflux from macrophages. Furthermore, we observed that 4WF transgenic HDL was partially (∼50%) protected from MPO-mediated loss of function while human apoA1 transgenic HDL lost all ABCA1-dependent cholesterol acceptor activity. In conclusion, the structure and function of HDL from 4WF transgenic mice was not different than HDL derived from human apoA1 transgenic mice. PMID:25561462

  9. Erythropoietin and the use of a transgenic model of erythropoietin-deficient mice

    Directory of Open Access Journals (Sweden)

    Pichon A

    2016-04-01

    Full Text Available Aurélien Pichon,1–3 Florine Jeton,1,2 Raja El Hasnaoui-Saadani,4 Luciana Hagström,5 Thierry Launay,6 Michèle Beaudry,1 Dominique Marchant,1 Patricia Quidu,1 Jose-Luis Macarlupu,7 Fabrice Favret,8 Jean-Paul Richalet,1,2 Nicolas Voituron1,2 1Laboratory “Hypoxia and Lung” EA 2363, University Paris 13, Sorbonne Paris Cité, Bobigny Cedex, 2Laboratory of Excellence GR-Ex, Paris, 3Laboratory MOVE EA 6314, FSS, Poitiers University, Poitiers, France; 4Research Unit, College of Medicine, Princess Noura University, Riyadh, Saudi Arabia; 5Laboratório Interdisciplinar de Biociências, Universidade de Brasília, Brasília, Brazil; 6Unité de Biologie Intégrative des Adaptations à l'Exercice, University Paris Saclay and Genopole®, University Sorbonne-Paris-Cité, Paris, France; 7High Altitude Unit, Laboratories for Research and Development, Universidad Peruana Cayetano Heredia, Lima, Peru; 8Laboratory “Mitochondrie, Stress Oxydant et Protection Musculaire” EA 3072, University of Strasbourg, Strasbourg, France Abstract: Despite its well-known role in red blood cell production, it is now accepted that erythropoietin (Epo has other physiological functions. Epo and its receptors are expressed in many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs suggests other roles than those usually assigned to this protein. Thus, the aim of this review is to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments and to suggest a key role of Epo on main physiological adaptive functions. Our original model of Epo-deficient (Epo-TAgh mice allowed us to improve our knowledge of the possible role of Epo in O2 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hematocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and response to

  10. A mouse mammary tumor virus mammary gland enhancer confers tissue-specific but not lactation-dependent expression in transgenic mice.

    OpenAIRE

    Mok, E; Golovkina, T V; Ross, S R

    1992-01-01

    The long terminal repeat (LTR) of mouse mammary tumor virus (MMTV) is known to contain a number of transcriptional regulatory elements, including glucocorticoid response elements. In this study, we showed that a mammary gland/salivary gland enhancer found in the LTR of this virus directs expression of a heterologous promoter to both virgin and lactating mammary glands in transgenic mice. Using transgenic mice containing hybrid gene constructs with various deletions of the LTR sequences linked...

  11. Brain-Derived Neurotrophic Factor Transgenic Mice Exhibit Passive Avoidance Deficits, Increased Seizure Severity and In Vitro Hyperexcitability in the Hippocampus and Entorhinal Cortex

    OpenAIRE

    Croll, S. D.; Suri, C; Compton, D. L.; Simmons, M. V.; Yancopoulos, G D; Lindsay, R M; Wiegand, S. J.; RUDGE, J. S.; Scharfman, H. E.

    1999-01-01

    Transgenic mice overexpressing brain-derived neurotrophic factor from the β-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a si...

  12. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice - including relationship of sex differences

    International Nuclear Information System (INIS)

    We have previously demonstrated that adipose-derived stromal cells (ASCs) as well as bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. Both types are considered to include mesenchymal stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have also previously reported the plasticity of BSCs and ASCs. In this study, we focused on adipogenic differentiation in vitro by ASCs harvested from GFP transgenic mice. Moreover, preadipocytes and mature adipocytes were harvested at the same time, and the cells were cultured to compare them with ASCs. Inguinal fat pads from GFP transgenic mice were used for the isolation of ASCs, preadipocytes, and mature adipocytes. After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks. Adipogenic differentiation of ASCs was assessed by Oil Red O staining and the expression of the adipocyte specific peroxisome proliferative activated receptor γ2 (PPAR-γ2) gene. These ASCs stained positively, and expression of PPAR-γ2 was detected. Moreover, we also tried to characterize the influence of sex differences on the adipogenic differentiation of ASCs harvested from both male and female mice. This was assessed by the expression levels of the PPAR-γ2 gene using real-time PCR. The results showed that the expression levels of ASCs harvested from female mice were a maximum of 2.89 times greater than those harvested from male mice. This suggests that the adipogenic differentiation of ASCs is closely related to sex differences

  13. Enhanced water and salt intake in transgenic mice with brain-restricted overexpression of angiotensin (AT1) receptors

    OpenAIRE

    Lazartigues, Eric; Sinnayah, Puspha; Augoyard, Ginette; Gharib, Claude; Johnson, Alan Kim; Davisson, Robin L.

    2008-01-01

    To address the relative contribution of central and peripheral angiotensin II (ANG II) type 1A receptors (AT1A) to blood pressure and volume homeostasis, we generated a transgenic mouse model [neuron-specific enolase (NSE)-AT1A] with brain-restricted overexpression of AT1A receptors. These mice are normotensive at baseline but have dramatically enhanced pressor and bradycardic responses to intracerebroventricular ANG II or activation of endogenous ANG II production. Here our goal was to exami...

  14. Mutant LRRK2R1441G BAC transgenic mice recapitulate cardinal features of Parkinson’s disease

    OpenAIRE

    Li, Yanping; Liu, Wencheng; Oo, Tinmarla F.; Wang, Lei; Tang, Yi; Jackson-Lewis, Vernice; Zhou, Chun; Geghman, Kindiya; Bogdanov, Mikhail; Przedborski, Serge; Beal, M. Flint; Burke, Robert E.; Li, Chenjian

    2009-01-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease. We created a LRRK2 transgenic mouse model that recapitulates cardinal features of the disease: an age-dependent and levodopa-responsive slowness of movement associated with diminished dopamine release and axonal pathology of nigrostriatal dopaminergic projection. These mice provide a valid model of Parkinson’s disease and are a resource for the investigation of pathogenesis and therapeu...

  15. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice.

    OpenAIRE

    Semenza, G L; Koury, S. T.; Nejfelt, M K; Gearhart, J D; Antonarakis, S E

    1991-01-01

    Synthesis of erythropoietin, the primary humoral regulator of erythropoiesis, in liver and kidney is inducible by anemia or hypoxia. Analysis of human erythropoietin gene expression in transgenic mice revealed that sequences located 6-14 kilobases 5' to the gene direct expression to the kidney, whereas sequences within the immediate 3'-flanking region control hepatocyte-specific expression. Human erythropoietin transcription initiation sites were differentially utilized in liver and kidney. I...

  16. Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice

    OpenAIRE

    Zala, Diana; Bensadoun, Jean-Charles; Pereira de Almeida, Luis; Leavitt, Blair R.; Gutekunst, Claire-Anne; Aebischer, Patrick; Hayden, Michael R; Déglon, Nicole

    2004-01-01

    Ciliary neurotrophic factor (CNTF) has been shown to prevent behavioral deficits and striatal degeneration in neurotoxic models of Huntington's disease (HD), but its effect in a genetic model has not been evaluated. Lentiviral vectors expressing the human CNTF or LacZ reporter gene were therefore injected in the striatum of wild-type (WT) and transgenic mice expressing full-length huntingtin with 72 CAG repeats (YAC72). Behavioral analysis showed increased locomotor activity in 5- to 6-month-...

  17. Lentiviral vector encoding ubiquitinated hepatitis B core antigen induces potent cellular immune responses and therapeutic immunity in HBV transgenic mice.

    Science.gov (United States)

    Dai, Shenglan; Zhuo, Meng; Song, Linlin; Chen, Xiaohua; Yu, Yongsheng; Zang, Guoqing; Tang, Zhenghao

    2016-07-01

    Predominant T helper cell type 1 (Th1) immune responses accompanied by boosted HBV-specific cytotoxic T lymphocyte (CTL) activity are essential for the clearance of hepatitis B virus (HBV) in chronic hepatitis B (CHB) patients. Ubiquitin (Ub) serves as a signal for the target protein to be recognized and degraded through the ubiquitin-proteasome system (UPS). Ubiquitinated hepatitis B core antigen (Ub-HBcAg) has been proved to be efficiently degraded into the peptides, which can be presented by major histocompatibility complex (MHC) class I resulting in stimulating cell-mediated responses. In the present study, lentiviral vectors encoding Ub-HBcAg (LV-Ub-HBcAg) were designed and constructed as a therapeutic vaccine for immunotherapy. HBcAg-specific cellular immune responses and anti-viral effects induced by LV-Ub-HBcAg were evaluated in HBV transgenic mice. We demonstrated that immunization with LV-Ub-HBcAg promoted the secretion of cytokines interleukin-2 (IL-2), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), generated remarkably high percentages of IFN-γ-secreting CD8(+) T cells and CD4(+) T cells, and enhanced HBcAg-specific CTL activity in HBV transgenic mice. More importantly, vaccination with LV-Ub-HBcAg could efficiently decreased the levels of serum hepatitis B surface antigen (HBsAg), HBV DNA and the expression of HBsAg and HBcAg in liver tissues of HBV transgenic mice. In addition, LV-Ub-HBcAg could upregulate the expression of T cell-specific T-box transcription factor (T-bet) and downregulate the expression of GATA-binding protein 3 (GATA-3) in spleen T lymphocytes. The therapeutic vaccine LV-Ub-HBcAg could break immune tolerance, and induce potent HBcAg specific cellular immune responses and therapeutic effects in HBV transgenic mice. PMID:26874581

  18. Alteration of Methamphetamine-Induced Stereotypic Behaviour in Transgenic Mice Expressing HIV-1 Envelope Protein gp120

    OpenAIRE

    Roberts, Amanda J.; Maung, Ricky; Sejbuk, Natalia E.; Ake, Christopher; Kaul, Marcus

    2009-01-01

    The use of drugs for recreational purposes, in particular Methamphetamine, is associated with an increased risk of infection with human immunodeficiency virus (HIV)-1. HIV-1 infection in turn can lead to HIV-associated neurological disorders (HAND) that range from mild cognitive and motor impairment to HIV-associated dementia (HAD). Interestingly, post mortem brain specimens from HAD patients and transgenic (tg) mice expressing the viral envelope protein gp120 in the central nervous system di...

  19. Unusual cerebral vascular prion protein amyloid distribution in scrapie-infected transgenic mice expressing anchorless prion protein

    OpenAIRE

    Rangel, Alejandra; Race, Brent; Klingeborn, Mikael; Striebel, James; Chesebro, Bruce

    2013-01-01

    Background In some prion diseases, misfolded aggregated protease-resistant prion protein (PrPres) is found in brain as amyloid, which can cause cerebral amyloid angiopathy. Small diffusible precursors of PrPres amyloid might flow with brain interstitial fluid (ISF), possibly accounting for the perivascular and intravascular distribution of PrPres amyloid. We previously reported that PrPres amyloid in scrapie-infected transgenic mice appeared to delay clearance of microinjected brain ISF trace...

  20. Delayed activation of caspase-independent apoptosis during heart failure in transgenic mice overexpressing caspase inhibitor CrmA

    OpenAIRE

    Bae, Soochan; Siu, Parco M.; Choudhury, Sangita; Ke, Qingen; Choi, Jun H.; Koh, Young Y.; Kang, Peter M.

    2010-01-01

    Although caspase activation is generally thought to be necessary to induce apoptosis, recent evidence suggests that apoptosis can be activated in the setting of caspase inhibition. In this study, we tested the hypothesis that caspase-independent apoptotic pathways contribute to the development of heart failure in the absence of caspase activation. Acute cardiomyopathy was induced using a single dose of doxorubicin (Dox, 20 mg/kg) injected into male wild-type (WT) and transgenic (Tg) mice with...

  1. Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas

    Directory of Open Access Journals (Sweden)

    Refaeli Yosef

    2008-05-01

    Full Text Available Abstract Background We have used a mouse model based on overexpression of c-Myc in B cells genetically engineered to be self-reactive to test the hypothesis that farnesyl transferase inhibitors (FTIs can effectively treat mature B cell lymphomas. FTIs are undergoing clinical trials to treat both lymphoid and non-lymphoid malignancies and we wished to obtain evidence to support the inclusion of B cell lymphomas in future trials. Results We report that two FTIs, L-744,832 and SCH66336, blocked the growth of mature B cell lymphoma cells in vitro and in vivo. The FTI treatment affected the proliferation and survival of the transformed B cells to a greater extent than naïve B cells stimulated with antigen. In syngeneic mice transplanted with the transgenic lymphoma cells, L-744,832 treatment prevented the growth of the tumor cells and the morbidity associated with the resulting lymphoma progression. Tumors that arose from transplantation of the lymphoma cells regressed with as little as three days of treatment with L-744,832 or SCH66336. Treatment of these established lymphomas with L-744,832 for seven days led to long-term remission of the disease in approximately 25% of animals. Conclusion FTI treatment can block the proliferation and survival of self-reactive transformed B cells that overexpress Myc. In mice transplanted with mature B cell lymphomas, we found that FTI treatment led to regression of disease. FTIs warrant further consideration as therapeutic agents for mature B cell lymphomas and other lymphoid tumors.

  2. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans

    OpenAIRE

    Hikida, Takatoshi; Jaaro-Peled, Hanna; Seshadri, Saurav; Oishi, Kenichi; Hookway, Caroline; Kong, Stephanie; Wu, Di; Xue, Rong; Andradé, Manuella; Tankou, Stephanie; Mori, Susumu; Gallagher, Michela; Ishizuka, Koko; Pletnikov, Mikhail; Kida, Satoshi

    2007-01-01

    Here, we report generation and characterization of Disrupted-In-Schizophrenia-1 (DISC1) genetically engineered mice as a potential model for major mental illnesses, such as schizophrenia. DISC1 is a promising genetic risk factor for major mental illnesses. In this transgenic model, a dominant-negative form of DISC1 (DN-DISC1) is expressed under the αCaMKII promoter. In vivo MRI of the DN-DISC1 mice detected enlarged lateral ventricles particularly on the left side, suggesting a link to the as...

  3. Overexpression of human low density lipoprotein receptors leads to accelerated catabolism of Lp(a) lipoprotein in transgenic mice.

    OpenAIRE

    Hofmann, S L; Eaton, D L; Brown, M. S.; McConathy, W J; Goldstein, J L; Hammer, R. E.

    1990-01-01

    Lp(a) lipoprotein purified from human plasma bound with high affinity to isolated bovine LDL receptors on nitrocellulose blots and in a solid-phase assay. Lp(a) also competed with 125I-LDL for binding to human LDL receptors in intact fibroblasts. Binding led to cellular uptake of Lp(a) with subsequent stimulation of cholesterol esterification. After intravenous injection, human Lp(a) was cleared slowly from the plasma of normal mice. The clearance was markedly accelerated in transgenic mice t...

  4. A liposome-based therapeutic vaccine against β-amyloid plaques on the pancreas of transgenic NORBA mice

    OpenAIRE

    Nicolau, Claude; Greferath, Ruth; Balaban, Teodor Silviu; Lazarte, Jaime E.; Hopkins, Robert J.

    2002-01-01

    Immune tolerance to β-amyloid (Aβ) was broken in NORBA transgenic mice presenting Aβ plaques on their pancreases. Vaccination of Black C57, BALB/c, and NORBA mice with the synthetic Aβ1–16 sequence modified by covalently attaching two palmitoyl residues at each end of the peptide, subsequently reconstituted in liposomes–Lipid A elicited titers of 1:5,000 of anti-Aβ1–16 antibodies within 10 weeks after the first inoculation. On direct interaction, sera with antibody titers of 1:5,000 solubiliz...

  5. Human β-globin locus control region: Analysis of the 5' DNase I hypersensitive site HS 2 in transgenic mice

    International Nuclear Information System (INIS)

    The human β-globin locus control region (LCR) is essential for high-level expression of human var-epsilon-, γ-, and β-globin genes. Developmentally stable DNase I hypersensitive sites (designated HS) mark sequences within this region that are important for LCR activity. A 1.9-kilobase (kb) fragment containing the 5' HS 2 site enhances human β-globin gene expression 100-fold in transgenic mice and also confers position-independent expression. To further define important sequences within this region, deletion mutations of the 1.9-kb fragment were introduced upstream of the human β-globin gene, and the constructs were tested for activity in transgenic mice. Although enhancer activity was gradually lost with deletion of both 5' and 3' sequences, a 373-base-pair (BP) fragment retained the ability to confer relative position-independent expression. Three prominent DNase I footprints were observed in this region with extracts from the human erythroleukemia cell line K-562, one of which contained duplicated binding sites for transcription factor AP-1 (activator protein 1). When the 1.9-kb fragment containing an 19-bp deletion of the AP-1 binding sites was tested in transgenic mice, enhancer activity decreased 20-fold but position-independent expression was retained

  6. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Simone Thomas

    2015-07-01

    Full Text Available Reactivation of human cytomegalovirus (HCMV can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease.

  7. Gata3 Hypomorphic Mutant Mice Rescued with a Yeast Artificial Chromosome Transgene Suffer a Glomerular Mesangial Cell Defect.

    Science.gov (United States)

    Moriguchi, Takashi; Yu, Lei; Otsuki, Akihito; Ainoya, Keiko; Lim, Kim-Chew; Yamamoto, Masayuki; Engel, James Douglas

    2016-09-01

    GATA3 is a zinc finger transcription factor that plays a crucial role in embryonic kidney development, while its precise functions in the adult kidney remain largely unexplored. Here, we demonstrate that GATA3 is specifically expressed in glomerular mesangial cells and plays a critical role in the maintenance of renal glomerular function. Newly generated Gata3 hypomorphic mutant mice exhibited neonatal lethality associated with severe renal hypoplasia. Normal kidney size was restored by breeding the hypomorphic mutant with a rescuing transgenic mouse line bearing a 662-kb Gata3 yeast artificial chromosome (YAC), and these animals (termed G3YR mice) survived to adulthood. However, most of the G3YR mice showed degenerative changes in glomerular mesangial cells, which deteriorated progressively during postnatal development. Consequently, the G3YR adult mice suffered severe renal failure. We found that the 662-kb Gata3 YAC transgene recapitulated Gata3 expression in the renal tubules but failed to direct sufficient GATA3 activity to mesangial cells. Renal glomeruli of the G3YR mice had significantly reduced amounts of platelet-derived growth factor receptor (PDGFR), which is known to participate in the development and maintenance of glomerular mesangial cells. These results demonstrate a critical role for GATA3 in the maintenance of mesangial cells and its absolute requirement for prevention of glomerular disease. PMID:27296697

  8. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6

    DEFF Research Database (Denmark)

    Molinero, Amalia; Penkowa, Milena; Hernández, Joaquín;

    2003-01-01

    such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression......Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) causes significant damage and alters the expression of many genes, including a dramatic upregulation of metallothionein-I (MT-I). The findings in...... this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines...

  9. The MRI marker gene MagA attenuates the oxidative damage induced by iron overload in transgenic mice.

    Science.gov (United States)

    Guan, Xiaoying; Jiang, Xinhua; Yang, Chuan; Tian, Xiumei; Li, Li

    2016-06-01

    We aimed to create transgenic (Tg) mice engineered for magnetic resonance imaging (MRI). To ascertain if MagA expression contributes to oxidative stress and iron metabolism, we report the generation of Tg mice in which ubiquitous expression of MagA can be detected by MRI in vivo. Expression of MagA in diverse tissues of Tg mice was assessed, and iron accumulation and deposition of nanoparticles in tissues were analyzed. Levels of antioxidant enzymes, lipid peroxidation and cytokine production were determined, and iron metabolism-related proteins were also detected. MagA Tg showed no apparent pathologic symptoms and no histologic changes compared with wild-type (WT) mice. Overexpression of MagA resulted in specific alterations of the transverse relaxation rate (R2) of water. Transgene-dependent changes in R2 were detectable by MRI in iron-overloaded mice. We also evaluated antioxidant abilities between WT and Tg groups or two iron-overloaded groups. Together with the data of cytokines and iron metabolism-related proteins, we inferred that MagA could regulate nanoparticle production and thus attenuate the oxidative damage induced by iron overload. The novel MagA Tg mouse, which expresses an MRI reporter in many tissues, would be a valuable model of MagA molecular imaging in which to study diseases related to iron metabolism. PMID:26488480

  10. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice

    Directory of Open Access Journals (Sweden)

    Dezun Ma

    2015-08-01

    Full Text Available Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y. This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS, C313Y, and wild-type porcine myostatin propeptide (ppMS, respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  11. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    Science.gov (United States)

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-01-01

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity. PMID:26305245

  12. 双拷贝APP/BACE/DPsn转基因果蝇模型的建立及基因功能的研究%Construction and functional study of a transgenic Drosophila model with two copies of APP/BACE/DPsn genes

    Institute of Scientific and Technical Information of China (English)

    刘宁; 张儒

    2011-01-01

    阿尔茨海默症( Alzheimer′s disease,AD),是一种以脑中β-淀粉样蛋白(β-amyloid peptide,Aβ)沉积为主要病理改变的神经退行性疾病.在果蝇Drosophila模型中建立淀粉样蛋白前体蛋白(amyloid precursor protein,APP)的剪切通路模拟Aβ的产生过程,有望建立一种快速筛选治疗AD药物的动物模型.我们利用经典的Gal4/UAS系统,将现有的APP/BACE/DPsn果蝇品系连续杂交,通过同源重组的方法构建表达两个拷贝的APP/BACE/DPsn稳定可遗传的转基因果蝇新品系.进一步的实验结果表明:与不表达APP/BACE/DPsn的对照果蝇w/y;APP/Cyo; BACE-D Psn/ TM6 BTb相比,表达两拷贝APP/BACE/DPsn的w/y; elav-APP;BACE-DPsn果蝇的最长寿命为52 d,比对照组(69 d)缩短了17 d,为对照组果蝇的75%;中位生存时间为39 d,比对照组(49 d)缩短了10 d,为对照组的80%;平均寿命为37 d,比对照组(47 d)缩短了10 d,为对照组的79%.同时,表达两个拷贝APP/BACE/DPsn的果蝇所产卵的羽化时间比对照果蝇延长了3d;其羽化成虫的理论值为1∶9(11%),而实际羽化率仅为5.2%.结果提示,由elav-Gal驱动在果蝇泛神经元内过表达APP/BA CE/DPsn,可以缩短果蝇寿命、干扰果蝇胚胎正常发育.该果蝇有可能作为初步筛选AD治疗药物的动物模型,为AD治疗新药的发现提供工具.%Alzheimer s disease (AD) is a kind of cognitive dystunction disease and β-amyloid ( Aβ) generation is crucial for AD pathogenesis and plays a key role in disease progression. A transgenic fly expressing two copies of APP/BACE/DPsn to mimic the pathologic changes of AD might be useful for AD therapeutic drug screening. Using the classic Gal4/UAS system, we constructed the stable transgenic flies expressing two copies of APP/BACE/DPsn genes by consecutive crosses and homologus recombination. Further tests revealed that the lifespan and the medium survival time of flies expressing two copies of APP/ BACE/DPsn genes

  13. Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet.

    OpenAIRE

    Purcell-Huynh, D A; Farese, R V; Johnson, D F; Flynn, L M; Pierotti, V; Newland, D. L.; Linton, M F; Sanan, D A; Young, S G

    1995-01-01

    We previously generated transgenic mice expressing human apolipoprotein (apo-) B and demonstrated that the plasma of chow-fed transgenic animals contained markedly increased amounts of LDL (Linton, M. F., R. V. Farese, Jr., G. Chiesa, D. S. Grass, P. Chin, R. E. Hammer, H. H. Hobbs, and S. G. Young 1992. J. Clin. Invest. 92:3029-3037). In this study, we fed groups of transgenic and nontransgenic mice either a chow diet or a diet high in fat (16%) and cholesterol (1.25%). Lipid and lipoprotein...

  14. Feed-forward regulation of bile acid detoxification by CYP3A4: studies in humanized transgenic mice.

    Science.gov (United States)

    Stedman, Catherine; Robertson, Graham; Coulter, Sally; Liddle, Christopher

    2004-03-19

    Bile acids are potentially toxic end products of cholesterol metabolism and their concentrations must be tightly regulated. Homeostasis is maintained by both feed-forward regulation and feedback regulation. We used humanized transgenic mice incorporating 13 kb of the 5' regulatory flanking sequence of CYP3A4 linked to a lacZ reporter gene to explore the in vivo relationship between bile acids and physiological adaptive CYP3A gene regulation in acute cholestasis after bile duct ligation (BDL). Male transgenic mice were subjected to BDL or sham surgery prior to sacrifice on days 3, 6, and 10, and others were injected with intraperitoneal lithocholic acid (LCA) or vehicle alone. BDL resulted in marked hepatic activation of the CYP3A4/lacZ transgene in pericentral hepatocytes, with an 80-fold increase in transgene activation by day 10. Individual bile acids were quantified by liquid chromatography/mass spectrometry. Serum 6beta-hydroxylated bile acids were increased following BDL, confirming the physiological relevance of endogenous Cyp3a induction to bile acid detoxification. Although concentrations of conjugated primary bile acids increased after BDL, there was no increase in LCA, a putative PXR ligand, indicating that this cannot be the only endogenous bile acid mediating this protective response. Moreover, in LCA-treated animals, 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside staining showed hepatic activation of the CYP3A4 transgene only on the liver capsular surface, and minimal parenchymal induction, despite significant liver injury. This study demonstrates that CYP3A up-regulation is a significant in vivo adaptive response to cholestasis. However, this up-regulation is not dependent on increases in circulating LCA and the role of other bile acids as regulatory molecules requires further exploration. PMID:14681232

  15. Adeno-associated viral vectors engineered for macrolide-adjustable transgene expression In mammalian cells and mice

    Directory of Open Access Journals (Sweden)

    Fussenegger Martin

    2007-11-01

    Full Text Available Abstract Background Adjustable gene expression is crucial in a number of applications such as de- or transdifferentiation of cell phenotypes, tissue engineering, various production processes as well as gene-therapy initiatives. Viral vectors, based on the Adeno-Associated Virus (AAV type 2, have emerged as one of the most promising types of vectors for therapeutic applications due to excellent transduction efficiencies of a broad variety of dividing and mitotically inert cell types and due to their unique safety features. Results We designed recombinant adeno-associated virus (rAAV vectors for the regulated expression of transgenes in different configurations. We integrated the macrolide-responsive E.REX systems (EON and EOFF into rAAV backbones and investigated the delivery and expression of intracellular as well as secreted transgenes for binary set-ups and for self- and auto-regulated one-vector configurations. Extensive quantitative analysis of an array of vectors revealed a high level of adjustability as well as tight transgene regulation with low levels of leaky expression, both crucial for therapeutical applications. We tested the performance of the different vectors in selected biotechnologically and therapeutically relevant cell types (CHO-K1, HT-1080, NHDF, MCF-7. Moreover, we investigated key characteristics of the systems, such as reversibility and adjustability to the regulating agent, to determine promising candidates for in vivo studies. To validate the functionality of delivery and regulation we performed in vivo studies by injecting particles, coding for compact self-regulated expression units, into mice and adjusting transgene expression. Conclusion Capitalizing on established safety features and a track record of high transduction efficiencies of mammalian cells, adeno- associated virus type 2 were successfully engineered to provide new powerful tools for macrolide-adjustable transgene expression in mammalian cells as well as

  16. Characterization of IMPY as a potential imaging agent for β-amyloid plaques in double transgenic PSAPP mice

    International Nuclear Information System (INIS)

    Deposition of β-amyloid (Aβ) plaques in the brain is likely linked to the pathogenesis of Alzheimer's disease (AD). Developing specific Aβ aggregate-binding ligands as in vivo imaging agents may be useful for diagnosis and monitoring the progression of AD. We have prepared a thioflavin derivative, 6-iodo-2-(4'-dimethylamino-)phenyl-imidazo[1,2-a]pyridine, IMPY, which is readily radiolabeled with 125I/123I for binding or single-photon emission computerized tomography (SPECT) imaging studies. Characterization of [125I]IMPY binding to plaque-like structures was evaluated in double transgenic PSAPP mice. [125I]IMPY labeled Aβ plaques in transgenic mouse brain sections, and the labeling was consistent with fluorescent staining and Aβ-specific antibody labeling. Significant amounts of Aβ plaques present in the cortical, hippocampal, and entorhinal regions of the transgenic mouse brain were clearly detected with [125I]IMPY via ex vivo autoradiography. In contrast, [125I]IMPY showed little labeling in the age-matched control mouse brain. Tissue homogenate binding further corroborated the Aβ plaque-specific distribution in various brain regions of transgenic mouse, and correlated well with the known density of Aβ deposition. Using a tissue dissection technique, [125I]IMPY showed a moderate increase in the cortical region of transgenic mice as compared to the age-matched controls. In vitro blocking of [125I]IMPY by ''carrier'' observed via autoradiography in mouse brain sections was not replicated by an in vivo blocking experiment in living TT mouse brain. The failure was most likely due to a significant carrier effect, which slows down the tracer in vivo metabolism, leading to an increased brain uptake. Taken together, these data indicate that [123I]IMPY is a potentially useful SPECT imaging agent for in vivo labeling of Aβ plaques in the living brain. (orig.)

  17. Prolonged ethanol administration depletes mitochondrial DNA in MnSOD-overexpressing transgenic mice, but not in their wild type littermates

    International Nuclear Information System (INIS)

    Alcohol consumption increases reactive oxygen species formation and lipid peroxidation, whose products can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. A possible role of manganese superoxide dismutase (MnSOD) on these effects has not been investigated. To test whether MnSOD overexpression modulates alcohol-induced mitochondrial alterations, we added ethanol to the drinking water of transgenic MnSOD-overexpressing (TgMnSOD) mice and their wild type (WT) littermates for 7 weeks. In TgMnSOD mice, alcohol administration further increased the activity of MnSOD, but decreased cytosolic glutathione as well as cytosolic glutathione peroxidase activity and peroxisomal catalase activity. Whereas ethanol increased cytochrome P-450 2E1 and mitochondrial ROS generation in both WT and TgMnSOD mice, hepatic iron, lipid peroxidation products and respiratory complex I protein carbonyls were only increased in ethanol-treated TgMnSOD mice but not in WT mice. In ethanol-fed TgMnSOD mice, but not ethanol-fed WT mice, mtDNA was depleted, and mtDNA lesions blocked the progress of polymerases. The iron chelator, DFO prevented hepatic iron accumulation, lipid peroxidation, protein carbonyl formation and mtDNA depletion in alcohol-treated TgMnSOD mice. Alcohol markedly decreased the activities of complexes I, IV and V of the respiratory chain in TgMnSOD, with absent or lesser effects in WT mice. There was no inflammation, apoptosis or necrosis, and steatosis was similar in ethanol-treated WT and TgMnSOD mice. In conclusion, prolonged alcohol administration selectively triggers iron accumulation, lipid peroxidation, respiratory complex I protein carbonylation, mtDNA lesions blocking the progress of polymerases, mtDNA depletion and respiratory complex dysfunction in TgMnSOD mice but not in WT mice

  18. Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice

    Directory of Open Access Journals (Sweden)

    Dickson Dennis W

    2011-10-01

    Full Text Available Abstract Background Abnormal distribution, modification and aggregation of transactivation response DNA-binding protein 43 (TDP-43 are the hallmarks of multiple neurodegenerative diseases, especially frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U and amyotrophic lateral sclerosis (ALS. Researchers have identified 44 mutations in the TARDBP gene that encode TDP-43 as causative for cases of sporadic and familial ALS http://www.molgen.ua.ac.be/FTDMutations/. Certain mutant forms of TDP-43, such as M337V, are associated with increased low molecular weight (LMW fragments compared to wild-type (WT TDP-43 and cause neuronal apoptosis and developmental delay in chick embryos. Such findings support a direct link between altered TDP-43 function and neurodegeneration. Results To explore the pathogenic properties of the M337V mutation, we generated and characterized two mouse lines expressing human TDP-43 (hTDP-43M337V carrying this mutation. hTDP-43M337V was expressed primarily in the nuclei of neurons in the brain and spinal cord, and intranuclear and cytoplasmic phosphorylated TDP-43 aggregates were frequently detected. The levels of TDP-43 LMW products of ~25 kDa and ~35 kDa species were also increased in the transgenic mice. Moreover, overexpression of hTDP-43M337V dramatically down regulated the levels of mouse TDP-43 (mTDP-43 protein and RNA, indicating TDP-43 levels are tightly controlled in mammalian systems. TDP-43M337V mice displayed reactive gliosis, widespread ubiquitination, chromatolysis, gait abnormalities, and early lethality. Abnormal cytoplasmic mitochondrial aggregates and abnormal phosphorylated tau were also detected in the mice. Conclusion Our novel TDP-43M337V mouse model indicates that overexpression of hTDP-43M337V alone is toxic in vivo. Because overexpression of hTDP-43 in wild-type TDP-43 and TDP-43M337V mouse models produces similar phenotypes, the mechanisms causing pathogenesis in the mutant

  19. Intravenous Delivery of Targeted Liposomes to Amyloid-β Pathology in APP/PSEN1 Transgenic Mice

    OpenAIRE

    Tanifum, Eric A.; Dasgupta, Indrani; Srivastava, Mayank; Bhavane, Rohan C.; Sun, Li; Berridge, John; Pourgarzham, Hoda; Kamath, Rashmi; Espinosa, Gabriela; Cook, Stephen C; Eriksen, Jason L.; ANNAPRAGADA, ANANTH

    2012-01-01

    Extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles constitute the major neuropathological hallmarks of Alzheimer’s disease (AD). It is now apparent that parenchymal Aβ plaque deposition precedes behavioral signs of disease by several years. The development of agents that can target these plaques may be useful as diagnostic or therapeutic tools. In this study, we synthesized an Aβ-targeted lipid conjugate, incorporated it in stealth liposomal nanoparticles and teste...

  20. Changes in extracellular space size and geometry in APP23 transgenic mice - a model of Alzheimer’s disease

    Czech Academy of Sciences Publication Activity Database

    Syková, Eva; Voříšek, Ivan; Antonova, Tatiana; Mazel, Tomáš; Meyer-Luehmann, M.; Jucker, M.; Hájek, M.; Ort, Michael; Bureš, Jan

    2005-01-01

    Roč. 102, č. 2 (2005), s. 479-484. ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LN00A065 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z5039906; CEZ:AV0Z50110509 Keywords : aging * cortex Subject RIV: FH - Neurology Impact factor: 10.231, year: 2005

  1. Lipid-Based Diets Improve Muscarinic Neurotransmission in the Hippocampus of Transgenic APPswe/PS1dE9 Mice.

    Science.gov (United States)

    Janickova, Helena; Rudajev, Vladimir; Dolejsi, Eva; Koivisto, Hennariikka; Jakubik, Jan; Tanila, Heikki; El-Fakahany, Esam E; Dolezal, Vladimir

    2015-01-01

    Transgenic APPswe/PS1dE9 mice modeling Alzheimer's disease demonstrate ongoing accumulation of β-amyloid fragments resulting in formation of amyloid plaques that starts at the age of 4-5 months. Buildup of β-amyloid fragments is accompanied by impairment of muscarinic transmission that becomes detectable at this age, well before the appearance of cognitive deficits that manifest around the age of 12 months. We have recently demonstrated that long-term feeding of trangenic mice with specific isocaloric fish oil-based diets improves specific behavioral parameters. Now we report on the influence of short-term feeding (3 weeks) of three isocaloric diets supplemented with Fortasyn (containing fish oil and ingredients supporting membrane renewal), the plant sterol stigmasterol together with fish oil, and stigmasterol alone on markers of cholinergic neurotransmission in the hippocampus of 5-month-old transgenic mice and their wild-type littermates. Transgenic mice fed normal diet demostrated increase in ChAT activity and attenuation of carbachol-stimulated GTP-γ(35)S binding compared to wild-type mice. None of the tested diets compared to control diet influenced the activities of ChAT, AChE, BuChE, muscarinic receptor density or carbachol-stimulated GTP-γ(35)S binding in wild-type mice. In contrast, all experimental diets increased the potency of carbachol in stimulating GTP-γ(35)S binding in trangenic mice to the level found in wild-type animals. Only the Fortasyn diet increased markers of cholinergic synapses in transgenic mice. Our data demonstrate that even short-term feeding of transgenic mice with chow containing specific lipid-based dietary supplements can influence markers of cholinergic synapses and rectify impaired muscarinic signal transduction that develops in transgenic mice. PMID:26502816

  2. Redox Proteomic Profiling of Specifically Carbonylated Proteins in the Serum of Triple Transgenic Alzheimer’s Disease Mice

    Directory of Open Access Journals (Sweden)

    Liming Shen

    2016-04-01

    Full Text Available Oxidative stress is a key event in the onset and progression of neurodegenerative diseases, including Alzheimer’s disease (AD. To investigate the role of oxidative stress in AD and to search for potential biomarkers in peripheral blood, serums were collected in this study from the 3-, 6-, and 12-month-old triple transgenic AD mice (3×Tg-AD mice and the age- and sex-matched non-transgenic (non-Tg littermates. The serum oxidized proteins were quantified by slot-blot analysis and enzyme-linked immunosorbent assay (ELISA to investigate the total levels of serum protein carbonyl groups. Western blotting, in conjunction with two-dimensional gel electrophoresis (2D-Oxyblot, was employed to identify and quantify the specifically-carbonylated proteins in the serum of 3×Tg-AD mice. The results showed that the levels of serum protein carbonyls were increased in the three month old 3×Tg-AD mice compared with the non-Tg control mice, whereas no significant differences were observed in the six and 12 months old AD mice, suggesting that oxidative stress is an early event in AD progression. With the application of 2D-Oxyblot analysis, (immunoglobin Ig gamma-2B chain C region (IGH-3, Ig lambda-2 chain C region (IGLC2, Ig kappa chain C region (IGKC, and Ig kappa chain V-V region HP R16.7 were identified as significantly oxidized proteins compared with the control. Among them IGH-3 and IGKC were validated via immunoprecipitation and Western blot analysis. Identification of oxidized proteins in the serums of 3×Tg-AD mice can not only reveal potential roles of those proteins in the pathogenesis of AD but also provide potential biomarkers of AD at the early stage.

  3. Targeting the cannabinoid CB2 receptor to attenuate the progression of motor deficits in LRRK2-transgenic mice.

    Science.gov (United States)

    Palomo-Garo, Cristina; Gómez-Gálvez, Yolanda; García, Concepción; Fernández-Ruiz, Javier

    2016-08-01

    Most of cases of Parkinson's disease (PD) have a sporadic origin, with their causes mostly unknown, although overexposure to some environmental factors has been found to occur in some cases. Other forms of parkinsonism are the consequence of dominant or recessive mutations in specific genes, e.g. α-synuclein, parkin and, more recently, leucine-rich repeat kinase 2 (LRRK2), whose G2019S mutation represents the most prevalent form of late-onset, autosomal dominant familial PD. A transgenic mouse model expressing the G2019S mutation of LRRK2 is already available and apparently may represent a valuable experimental model for investigating PD pathogenesis and novel treatments. We designed a long-term study with these animals aimed at: (i) elucidating the changes experienced by the endocannabinoid signaling system in the basal ganglia during the progression of the disease in these mice, paying emphasis in the CB2 receptor, which has emerged as a promising target in PD, and (ii) evaluating the potential of compounds selectively activating this CB2 receptor, as disease-modifying agents in these mice. Our results unequivocally demonstrate that LRRK2 transgenic mice develop motor impairment consisting of small anomalies in rotarod performance (presumably reflecting a deficit in motor coordination and dystonia) and a strong deficiency in the hanging-wire test (reflecting muscle weakness), rather than hypokinesia which was difficult to be demonstrated in the actimeter. These behavioral responses occurred in absence of any evidence of reactive gliosis and neuronal losses, as well as synaptic deterioration in the basal ganglia, except an apparent impairment in autophagy reflected by elevated LAMP-1 immunolabelling in the striatum and substantia nigra. Furthermore, there were no changes in the status of the CB2 receptor, as well as in other elements of the endocannabinoid signaling, in the basal ganglia, but, paradoxically, the selective activation of this receptor partially

  4. SNX15 Regulates Cell Surface Recycling of APP and Aβ Generation.

    Science.gov (United States)

    Feng, Tuancheng; Niu, Mengmeng; Ji, Chengxiang; Gao, Yuehong; Wen, Jing; Bu, Guojun; Xu, Huaxi; Zhang, Yun-Wu

    2016-08-01

    Amyloid-β (Aβ) peptide plays an essential role in the pathogenesis of Alzheimer's disease (AD) and is generated from amyloid-β precursor protein (APP) through sequential proteolytic cleavages by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Trafficking dysregulation of APP, BACE1, and γ-secretase may affect Aβ generation and disease pathogenesis. Sorting nexin 15 (SNX15) is known to regulate protein trafficking. Here, we report that SNX15 is abundantly expressed in mouse neurons and astrocytes. In addition, we show that although not affecting the protein levels of APP, BACE1, and γ-secretase components and the activity of BACE1 and γ-secretase, overexpression and downregulation of SNX15 reduce and promote Aβ production, respectively. Furthermore, we find that overexpression of SNX15 increases APP protein levels in cell surface through accelerating APP recycling, whereas downregulation of SNX15 has an opposite effect. Finally, we show that exogenous expression of human SNX15 in the hippocampal dentate gyrus by adeno-associated virus (AAV) infection can significantly reduce Aβ pathology in the hippocampus and improve short-term working memory in the APPswe/PSEN1dE9 double transgenic AD model mice. Together, our results suggest that SNX15 regulates the recycling of APP to cell surface and, thus, its processing for Aβ generation. PMID:26115702

  5. Testis hormone-sensitive lipase expression in spermatids is governed by a short promoter in transgenic mice.

    Science.gov (United States)

    Blaise, R; Guillaudeux, T; Tavernier, G; Daegelen, D; Evrard, B; Mairal, A; Holm, C; Jégou, B; Langin, D

    2001-02-16

    A testicular form of hormone-sensitive lipase (HSL(tes)), a triacylglycerol lipase, and cholesterol esterase, is expressed in male germ cells. Northern blot analysis showed HSL(tes) mRNA expression in early spermatids. Immunolocalization of the protein in human and rodent seminiferous tubules indicated that the highest level of expression occurred in elongated spermatids. We have previously shown that 0.5 kilobase pairs of the human HSL(tes) promoter directs testis-specific expression of a chloramphenicol acetyltransferase reporter gene in transgenic mice and determined regions binding nuclear proteins expressed in testis but not in liver (Blaise, R., Grober, J., Rouet, P., Tavernier, G., Daegelen, D., and Langin, D. (1999) J. Biol. Chem. 274, 9327-9334). Mutation of a SRY/Sox-binding site in one of the regions did not impair in vivo testis-specific expression of the reporter gene. Further transgenic analyses established that 95 base pairs upstream of the transcription start site were sufficient for correct testis expression. In gel retardation assays using early spermatid nuclear extracts, a germ cell-specific DNA-protein interaction was mapped between -46 and -29 base pairs. The DNA binding nuclear protein showed properties of zinc finger transcription factors. Mutation of the region abolished reporter gene activity in transgenic mice, showing that it is necessary for testis expression of HSL(tes). PMID:11076952

  6. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    Science.gov (United States)

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation. PMID:17914196

  7. Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110.

    Science.gov (United States)

    Nagy, Maria; Fenton, Wayne A; Li, Di; Furtak, Krystyna; Horwich, Arthur L

    2016-05-10

    Recent studies have indicated that mammalian cells contain a cytosolic protein disaggregation machinery comprised of Hsc70, DnaJ homologs, and Hsp110 proteins, the last of which acts to accelerate a rate-limiting step of nucleotide exchange of Hsc70. We tested the ability of transgenic overexpression of a Thy1 promoter-driven human Hsp110 protein, HspA4L (Apg1), in neuronal cells of a transgenic G85R SOD1YFP ALS mouse strain to improve survival. Notably, G85R is a mutant version of Cu/Zn superoxide dismutase 1 (SOD1) that is unable to reach native form and that is prone to aggregation, with prominent YFP-fluorescent aggregates observed in the motor neurons of the transgenic mice as early as 1 mo of age. The several-fold overexpression of Hsp110 in motor neurons of these mice was associated with an increased median survival from ∼5.5 to 7.5 mo and increased maximum survival from 6.5 to 12 mo. Improvement of survival was also observed for a G93A mutant SOD1 ALS strain. We conclude that neurodegeneration associated with cytosolic misfolding and aggregation can be ameliorated by overexpression of Hsp110, likely enhancing the function of a cytosolic disaggregation machinery. PMID:27114530

  8. Transgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice.

    Science.gov (United States)

    Nuber, Silke; Franck, Thomas; Wolburg, Hartwig; Schumann, Ulrike; Casadei, Nicolas; Fischer, Kristina; Calaminus, Carsten; Pichler, Bernd J; Chanarat, Sittinan; Teismann, Peter; Schulz, Jörg B; Luft, Andreas R; Tomiuk, Jürgen; Wilbertz, Johannes; Bornemann, Antje; Krüger, Rejko; Riess, Olaf

    2010-02-01

    Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also been shown to be an intrinsic component of Lewy bodies in sporadic PD. In order to elucidate the role of synphilin-1 in the pathogenesis of PD, we generated transgenic mice overexpressing wild-type and mutant (R621C) synphilin-1 driven by a mouse prion protein promoter. Transgenic expression of both wild-type and the R621C variant synphilin-1 resulted in increased dopamine levels of the nigrostriatal system in 3-month-old mice. Furthermore, we found pathological ubiquitin-positive inclusions in cerebellar sections and dark-cell degeneration of Purkinje cells. Both transgenic mouse lines showed significant reduction of motor skill learning and motor performance. These findings suggest a pathological role of overexpressed synphilin-1 in vivo and will help to further elucidate the mechanisms of protein aggregation and neuronal cell death. PMID:19760259

  9. Behavioral phenotype and BDNF differences related to apoE isoforms and sex in young transgenic mice

    DEFF Research Database (Denmark)

    Reverte, Ingrid; Klein, Anders Bue; Ratner, Cecilia;

    2012-01-01

    , very little information is available on apoE2 genotype. In the present study, we have characterized behavioral and learning phenotypes in young transgenic mice apoE2, apoE3 and apoE4 of both sexes. We have also determined the levels of brain-derived neurotrophic factor (BDNF) and its receptor TrkB in...... exploration of an open-field, which is compatible with a hyperactive behavior, was found in apoE2 females, while a decreased activity was observed in apoE4 mice. Increased BDNF levels in the frontal cortex were observed in apoE2 mice compared to apoE3. These results underscore behavioral differences between...

  10. Transgenic Knockdown of Cardiac Sodium/Glucose Cotransporter 1 (SGLT1) Attenuates PRKAG2 Cardiomyopathy, Whereas Transgenic Overexpression of Cardiac SGLT1 Causes Pathologic Hypertrophy and Dysfunction in Mice

    OpenAIRE

    Ramratnam, Mohun; Sharma, Ravi K.; D'Auria, Stephen; Lee, So Jung; Wang, David; Huang, Xue Yin N.; Ahmad, Ferhaan

    2014-01-01

    Background The expression of a novel cardiac glucose transporter, SGLT1, is increased in glycogen storage cardiomyopathy secondary to mutations in PRKAG2. We sought to determine the role of SGLT1 in the pathogenesis of PRKAG2 cardiomyopathy and its role in cardiac structure and function. Methods and Results Transgenic mice with cardiomyocyte‐specific overexpression of human T400N mutant PRKAG2 cDNA (TGT400N) and transgenic mice with cardiomyocyte‐specific RNA interference knockdown of SGLT1 (...

  11. Nicorandil prevents Gαq-induced progressive heart failure and ventricular arrhythmias in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Masamichi Hirose

    Full Text Available BACKGROUND: Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gα(q -coupled receptor (GPCR signaling still remains unknown. We investigated these inhibitory effects of nicorandil in transgenic mice with transient cardiac expression of activated Gα(q (Gα(q-TG. METHODOLOGY/PRINCIPAL FINDINGS: Nicorandil (6 mg/kg/day or vehicle was chronically administered to Gα(q-TG from 8 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic nicorandil administration prevented the severe reduction of left ventricular fractional shortening and inhibited ventricular interstitial fibrosis in Gα(q-TG. SUR-2B and SERCA2 gene expression was decreased in vehicle-treated Gα(q-TG but not in nicorandil-treated Gα(q-TG. eNOS gene expression was also increased in nicorandil-treated Gα(q-TG compared with vehicle-treated Gα(q-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC was frequently (more than 20 beats/min observed in 7 of 10 vehicle-treated Gα(q-TG but in none of 10 nicorandil-treated Gα(q-TG. The QT interval was significantly shorter in nicorandil-treated Gα(q-TG than vehicle-treated Gα(q-TG. Acute nicorandil administration shortened ventricular monophasic action potential duration and reduced the number of PVCs in Langendorff-perfused Gα(q-TG mouse hearts. Moreover, HMR1098, a blocker of cardiac sarcolemmal K(ATP channels, significantly attenuated the shortening of MAP duration induced by nicorandil in the Gα(q-TG heart. CONCLUSIONS/SIGNIFICANCE: These findings suggest that nicorandil can prevent the development of HF and ventricular arrhythmia caused by the activation of GPCR signaling through the shortening of the QT interval, action potential duration, the normalization

  12. Differential susceptibity of transgenic mice lacking one or both apolipoprotein alleles to folate and vitamin E deprivation.

    Science.gov (United States)

    Shea, Thomas B; Ortiz, Daniela; Rogers, Eugene

    2004-06-01

    The E4 allele of apolipoprotein E (ApoE) is associated with neurodegeneration in part due to increased oxidative stress. Transgenic mice lacking ApoE (-/-) represent a model for the consequences of deficiencies in ApoE function. Dietary deficiency in folate and vitamin E has previously been shown to potentiate the impact of ApoE deficiency; ApoE-/- mice deprived of folate and vitamin E for 1 month demonstrated increased oxidative damage in brain tissue and impaired cognitive performance as compared to ApoE+/+ mice. Since individuals homozygous for E4 can demonstrate more increased risk for neurodegeneration and an earlier age of onset than individuals heterozygous for E4, we tested the impact of folate and vitamin E deprivation on ApoE+/- mice. Thiobarbituric acid-reactive substances in brain tissue of ApoE+/- were significantly increased compared to ApoE+/+ mice, but this increase was less than that observed in ApoE-/- mice. By contrast, livers of ApoE+/- and -/- mice displayed an identical increase over that of +/+ mice. ApoE-/- mice, but not +/- or +/+ mice, exhibited impaired cognitive performance in maze trials when deprived of folate and vitamin E. These findings support the notion that homozygous deficiency of ApoE function can be more severe than heterozygous deficiency. They further suggest that the impact of partial deficiency in ApoE function may present a latent risk that may manifest only when compounded by other factors such as dietary deficiency. PMID:15201481

  13. Differential susceptibility of transgenic mice expressing human surfactant protein B genetic variants to Pseudomonas aeruginosa induced pneumonia.

    Science.gov (United States)

    Ge, Lin; Liu, Xinyu; Chen, Rimei; Xu, Yongan; Zuo, Yi Y; Cooney, Robert N; Wang, Guirong

    2016-01-01

    Surfactant protein B (SP-B) is essential for lung function. Previous studies have indicated that a SP-B 1580C/T polymorphism (SNP rs1130866) was associated with lung diseases including pneumonia. The SNP causes an altered N-linked glycosylation modification at Asn129 of proSP-B, e.g. the C allele with this glycosylation site but not in the T allele. This study aimed to generate humanized SP-B transgenic mice carrying either SP-B C or T allele without a mouse SP-B background and then examine functional susceptibility to bacterial pneumonia in vivo. A total of 18 transgenic mouse founders were generated by the DNA microinjection method. These founders were back-crossed with SP-B KO mice to eliminate mouse SP-B background. Four founder lines expressing similar SP-B levels to human lung were chosen for further investigation. After intratracheal infection with 50 μl of Pseudomonas aeruginosa solution (1 × 10(6) CFU/mouse) or saline in SP-B-C, SP-B-T mice the mice were sacrificed 24 h post-infection and tissues were harvested. Analysis of surfactant activity revealed differential susceptibility between SP-B-C and SP-B-T mice to bacterial infection, e.g. higher minimum surface tension in infected SP-B-C versus infected SP-B-T mice. These results demonstrate for the first time that human SP-B C allele is more susceptible to bacterial pneumonia than SP-B T allele in vivo. PMID:26620227

  14. Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters.

    Science.gov (United States)

    Khairalla, Ahmed S; Omer, Sherko A; Mahdavi, Jafar; Aslam, Akhmed; Dufailu, Osman A; Self, Tim; Jonsson, Ann-Beth; Geörg, Miriam; Sjölinder, Hong; Royer, Pierre-Joseph; Martinez-Pomares, Luisa; Ghaemmaghami, Amir M; Wooldridge, Karl G; Oldfield, Neil J; Ala'Aldeen, Dlawer A A

    2015-07-01

    Neisseria meningitidis, a major cause of bacterial meningitis and septicaemia, secretes multiple virulence factors, including the adhesion and penetration protein (App) and meningococcal serine protease A (MspA). Both are conserved, immunogenic, type Va autotransporters harbouring S6-family serine endopeptidase domains. Previous work suggested that both could mediate adherence to human cells, but their precise contribution to meningococcal pathogenesis was unclear. Here, we confirm that App and MspA are in vivo virulence factors since human CD46-expressing transgenic mice infected with meningococcal mutants lacking App, MspA or both had improved survival rates compared with mice infected with wild type. Confocal imaging showed that App and MspA were internalized by human cells and trafficked to the nucleus. Cross-linking and enzyme-linked immuno assay (ELISA) confirmed that mannose receptor (MR), transferrin receptor 1 (TfR1) and histones interact with MspA and App. Dendritic cell (DC) uptake could be blocked using mannan and transferrin, the specific physiological ligands for MR and TfR1, whereas in vitro clipping assays confirmed the ability of both proteins to proteolytically cleave the core histone H3. Finally, we show that App and MspA induce a dose-dependent increase in DC death via caspase-dependent apoptosis. Our data provide novel insights into the roles of App and MspA in meningococcal infection. PMID:25600171

  15. Generation of an ABCG2GFPn-puro transgenic line - A tool to study ABCG2 expression in mice

    International Nuclear Information System (INIS)

    The ATP-binding cassette (ABC) transporter 2 (ABCG2) is expressed by stem cells in many organs and in stem cells of solid tumors. These cells are isolated based on the side population (SP) phenotype, a Hoechst 3342 dye efflux property believed to be conferred by ABCG2. Because of the limitations of this approach we generated transgenic mice that express Nuclear GFP (GFPn) coupled to the Puromycin-resistance gene, under the control of ABCG2 promoter/enhancer sequences. We show that ABCG2 is expressed in neural progenitors of the developing forebrain and spinal cord and in embryonic and adult endothelial cells of the brain. Using the neurosphere assay, we isolated tripotent ABCG2-expressing neural stem cells from embryonic mouse brain. This transgenic line is a powerful tool for studying the expression of ABCG2 in many tissues and for performing functional studies in different experimental settings.

  16. Expression of Autoactivated Stromelysin-1 in Mammary Glands of Transgenic Mice Leads to a Reactive Stroma During Early Development

    Energy Technology Data Exchange (ETDEWEB)

    Thomasset, N.; Lochter, A.; Sympson, C.J.; Lund, L.R.; Williams, D.R.; Behrendtsen, O.; Werb, Z.; Bissell, M.J.

    1998-04-24

    Extracellular matrix and extracellular matrix-degrading matrix metalloproteinases play a key role in interactions between the epithelium and the mesenchyme during mammary gland development and disease. In patients with breast cancer, the mammary mesenchyme undergoes a stromal reaction, the etiology of which is unknown. We previously showed that targeting of an autoactivating mutant of the matrix metalloproteinase stromelysin-1 to mammary epithelia of transgenic mice resulted in reduced mammary function during pregnancy and development of preneoplastic and neoplastic lesions. Here we examine the cascade of alterations before breast tumor formation in the mammary gland stroma once the expression of the stromelysin-1 transgene commences. Beginning in postpubertal virgin animals, low levels of transgene expression in mammary epithelia led to increased expression of endogenous stromelysin-1 in stromal fibroblasts and up-regulation of other matrix metalloproteinases, without basement membrane disruption. These changes were accompanied by the progressive development of a compensatory reactive stroma, characterized by increased collagen content and vascularization in glands from virgin mice. This remodeling of the gland affected epithelial-mesenchymal communication as indicated by inappropriate expression of tenascin-C starting by day 6 of pregnancy. This, together with increased transgene expression, led to basement membrane disruption starting by day 15 of pregnancy. We propose that the highly reactive stroma provides a prelude to breast epithelial tumors observed in these animals. Epithelial development depends on an exquisite series of inductive and instructive interactions between the differentiating epithelium and the mesenchymal (stromal) compartment. The epithelium, which consists of luminal and myoepithelial cells, is separated from the stroma by a basement membrane (BM), which plays a central role in mammary gland homeostasis and gene expression. In vivo, stromal

  17. In Vivo Determination of Vitamin D Function Using Transgenic Mice Carrying a Human Osteocalcin Luciferase Reporter Gene

    Directory of Open Access Journals (Sweden)

    Tomoko Nakanishi

    2013-01-01

    Full Text Available Vitamin D is an essential factor for ossification, and its deficiency causes rickets. Osteocalcin, which is a noncollagenous protein found in bone matrix and involved in mineralization and calcium ion homeostasis, is one of the major bone morphogenetic markers and is used in the evaluation of osteoblast maturation and osteogenic activation. We established transgenic mouse line expressing luciferase under the control of a 10-kb osteocalcin enhancer/promoter sequence. Using these transgenic mice, we evaluated the active forms of vitamins D2 and D3 for their bone morphogenetic function by in vivo bioluminescence. As the result, strong activity for ossification was observed with 1α,25-hydroxyvitamin D3. Our mouse system can offer a feasible detection method for assessment of osteogenic activity in the development of functional foods and medicines by noninvasive screening.

  18. Enhanced resistance to herpes simplex virus type 1 infection in transgenic mice expressing a soluble form of herpesvirus entry mediator

    International Nuclear Information System (INIS)

    Herpesvirus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor family used as a cellular receptor by virion glycoprotein D (gD) of herpes simplex virus (HSV). Both human and mouse forms of HVEM can mediate entry of HSV-1 but have no entry activity for pseudorabies virus (PRV). To assess the antiviral potential of HVEM in vivo, three transgenic mouse lines expressing a soluble form of HVEM (HVEMIg) consisting of an extracellular domain of murine HVEM and the Fc portion of human IgG1 were generated. All of the transgenic mouse lines showed marked resistance to HSV-1 infection when the mice were challenged intraperitoneally with HSV-1, but not to PRV infection. The present results demonstrate that HVEMIg is able to exert a significant antiviral effect against HSV-1 infection in vivo

  19. Progressive paralysis associated with diffuse astrocyte anaplasia in delta 202 mice homozygous for a transgene encoding the SV40 T antigen.

    Science.gov (United States)

    López-Revilla, Rubén; Soto-Zárate, Carlos; Ridaura, Cecilia; Chávez-Dueñas, Lucía; Paul, Dieter

    2004-03-01

    A convenient transgenic astrocytoma model in delta202 mice, homozygous for a construct encoding the early region of the SV40 virus genome, is described. In the offspring of crosses between delta202 mice heterozygous for the transgene nearly 60% were transgenic; one third of these developed progressive paralysis starting in the hindlimbs at approximately 35 days of age and died at 90 +/- 30 days of age. In affected mice proliferating-non-neuronal cells immunostained with antibodies to the GFAP, an astrocyte marker, whose number increased with age were found in the white matter of the brain, cerebellum and spinal cord, and progressive degeneration and necrosis of spinal motoneurons was observed that-may explain the paralysis. The early onset and reproducible time course of the neurological disease suggest that homozygous delta202 mice, whose proliferating astrocytes appear to damage spinal motoneurons, are a useful model to study astrocyte differentiation, function and tumorigenesis. PMID:15068170

  20. Sex differences between APPswePS1dE9 mice in A-beta accumulation and pancreatic islet function during the development of Alzheimer's disease.

    Science.gov (United States)

    Li, Xin; Feng, Ying; Wu, Wei; Zhao, Jia; Fu, Chunmei; Li, Yang; Ding, Yangnan; Wu, Binghuo; Gong, Yanju; Yang, Guizhi; Zhou, Xue

    2016-08-01

    The pathogenesis of Alzheimer's disease (AD), a type of neurodegenerative disease characterized by learning and memory impairment, is often associated with pathological features, such as amyloid-beta (Aβ) accumulation and insulin resistance. The transgenic mouse, APPswePS1dE9 (APP/PS1), is one of the most commonly used animal models in pathogenesis studies of AD. The purpose of this study is to investigate the sex differences between APP/PS1 mice in the pathogenesis of AD. The impairment of glucose and insulin tolerance was found to develop earlier in male APP/PS1 mice than in females. Plasma insulin levels were significantly decreased in male APP/PS1 mice, while total cholesterol levels in male APP/PS1 mice were higher than those in females. Triglyceride levels in male mice in both the wild-type (WT) and APP/PS1 groups were higher than in their female littermates. Soluble and insoluble Aβ levels in female APP/PS1 mouse brains were higher than those in males. And the learning and memorizing abilities of female APP/PS1 mice were poorer than those of males. Our results concluded that there were sex differences in Aβ formation, pancreatic islet function and insulin sensitivity between male and female APP/PS1 mice during the pathogenesis of AD. PMID:26519428

  1. Metallothionein-1+2 deficiency increases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin 6

    DEFF Research Database (Denmark)

    Giralt, Mercedes; Penkowa, Milena; Hernández, Joaquín;

    2002-01-01

    of cytokines such as IL-6, IL-1alpha,beta, and TNFalpha and recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. Clear symptoms of increased oxidative stress and apoptotic cell death caused by MT-1+2 deficiency were observed in the GFAP-IL6xMTKO mice......Transgenic expression of IL-6 under the control of the GFAP gene promoter (GFAP-IL6 mice) in the CNS causes significant damage and alters the expression of many genes, including the metallothionein (MT) family, especially in the cerebellum. The crossing of GFAP-IL6 mice with MT-1+2 knock out (MTKO......) mice provided evidence that the increased MT-1+2 expression normally observed in the GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, the GFAP-IL6xMTKO mice showed a decreased body weight gain and an impaired performance in the rota-rod test, as well as a higher upregulation...

  2. Body composition and grip strength are improved in transgenic sickle mice fed a high-protein diet.

    Science.gov (United States)

    Capers, Patrice L; Hyacinth, Hyacinth I; Cue, Shayla; Chappa, Prasanthi; Vikulina, Tatyana; Roser-Page, Susanne; Weitzmann, M Neale; Archer, David R; Newman, Gale W; Quarshie, Alexander; Stiles, Jonathan K; Hibbert, Jacqueline M

    2015-01-01

    Key pathophysiology of sickle cell anaemia includes compensatory erythropoiesis, vascular injury and chronic inflammation, which divert amino acids from tissue deposition for growth/weight gain and muscle formation. We hypothesised that sickle mice maintained on an isoenergetic diet with a high percentage of energy derived from protein (35 %), as opposed to a standard diet with 20 % of energy derived from protein, would improve body composition, bone mass and grip strength. Male Berkeley transgenic sickle mice (S; n 8-12) were fed either 20 % (S20) or 35 % (S35) diets for 3 months. Grip strength (BIOSEB meter) and body composition (dual-energy X-ray absorptiometry scan) were measured. After 3 months, control mice had the highest bone mineral density (BMD) and bone mineral content (BMC) (P gain, BMD, BMC and lean body mass compared with other groups. TS3.2 mice showed significantly more improvement in grip strength than TS0·8 and TS1.6 mice (P < 0·05). In conclusion, the high-protein diet improved body composition and grip strength. Outcomes observed with TS1.6 and TS3.2 mice, respectively, confirm the hypothesis and reveal l-Arg as part of the mechanism. PMID:26090102

  3. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    OpenAIRE

    Wahnschaffe U; Bitsch A; Kielhorn J; Mangelsdorf I

    2005-01-01

    Abstract As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse system...

  4. Phenotypic Characterization of MIP-CreERT1Lphi Mice With Transgene-Driven Islet Expression of Human Growth Hormone.

    Science.gov (United States)

    Oropeza, Daniel; Jouvet, Nathalie; Budry, Lionel; Campbell, Jonathan E; Bouyakdan, Khalil; Lacombe, Julie; Perron, Gabrielle; Bergeron, Valerie; Neuman, Joshua C; Brar, Harpreet K; Fenske, Rachel J; Meunier, Clemence; Sczelecki, Sarah; Kimple, Michelle E; Drucker, Daniel J; Screaton, Robert A; Poitout, Vincent; Ferron, Mathieu; Alquier, Thierry; Estall, Jennifer L

    2015-11-01

    There is growing concern over confounding artifacts associated with β-cell-specific Cre-recombinase transgenic models, raising questions about their general usefulness in research. The inducible β-cell-specific transgenic (MIP-CreERT(1Lphi)) mouse was designed to circumvent many of these issues, and we investigated whether this tool effectively addressed concerns of ectopic expression and disruption of glucose metabolism. Recombinase activity was absent from the central nervous system using a reporter line and high-resolution microscopy. Despite increased pancreatic insulin content, MIP-CreERT mice on a chow diet exhibited normal ambient glycemia, glucose tolerance and insulin sensitivity, and appropriate insulin secretion in response to glucose in vivo and in vitro. However, MIP-CreERT mice on different genetic backgrounds were protected from high-fat/ streptozotocin (STZ)-induced hyperglycemia that was accompanied by increased insulin content and islet density. Ectopic human growth hormone (hGH) was highly expressed in MIP-CreERT islets independent of tamoxifen administration. Circulating insulin levels remained similar to wild-type controls, whereas STZ-associated increases in α-cell number and serum glucagon were significantly blunted in MIP-CreERT(1Lphi) mice, possibly due to paracrine effects of hGH-induced serotonin expression. These studies reveal important new insight into the strengths and limitations of the MIP-CreERT mouse line for β-cell research. PMID:26153246

  5. Biomarkers of aging, life span and spontaneous carcinogenesis in the wild type and HER-2 transgenic FVB/N female mice.

    Science.gov (United States)

    Panchenko, Andrey V; Popovich, Irina G; Trashkov, Alexandr P; Egormin, Peter A; Yurova, Maria N; Tyndyk, Margarita L; Gubareva, Ekaterina A; Artyukin, Ilia N; Vasiliev, Andrey G; Khaitsev, Nikolai V; Zabezhinski, Mark A; Anisimov, Vladimir N

    2016-04-01

    FVB/N wild type and transgenic HER-2/neu FVB/N female mice breed at N.N. Petrov Research Institute of Oncology were under observation until natural death without any special treatment. Age-related dynamics of body weight, food consumption and parameters of carbohydrate and lipid metabolism, level of nitric oxide, malonic dialdehyde, catalase, Cu, Zn-superoxide dismutase, vascular endothelial growth factor were studied in both mice strains. The parameters of life span and tumor pathology were studied as well. Cancer-prone transgenic HER-2/neu mice developed in 100 % multiple mammary adenocarcinomas and died before the age of 1 year. Forty tree percent of long-lived wild type mice survived the age of 2 years and 19 %-800 days. The total tumor incidence in wild type mice was 34 %. The age-associated changes in the level of serum IGF-1, glucose and insulin started much earlier in transgene HER-2/neu mice as compared with wild type FVB/N mice. It was suggested that transgenic HER-2/neu involves in initiation of malignization of mammary epithelial cells but also in acceleration of age-related hormonal and metabolic changes in turn promoting mammary carcinogenesis. PMID:26423570

  6. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Anson, E-mail: piercea2@uthscsa.edu [Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); The Department of Veteran' s Affairs, South Texas Veterans Health Care System, San Antonio, Texas, 78284 (United States); Wei, Rochelle; Halade, Dipti [Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Yoo, Si-Eun [Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Ran, Qitao; Richardson, Arlan [Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229 (United States); The Department of Veteran' s Affairs, South Texas Veterans Health Care System, San Antonio, Texas, 78284 (United States)

    2010-11-05

    Research highlights: {yields} Development of mouse overexpressing native human HSF1 in all tissues including CNS. {yields} HSF1 overexpression enhances heat shock response at whole-animal and cellular level. {yields} HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. {yields} HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1{sup +/0}) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1{sup +/0} mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1{sup +/0} cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1{sup +/0} cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  7. Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice

    Directory of Open Access Journals (Sweden)

    Mosinger Bedrich

    2008-10-01

    Full Text Available Abstract Background Anatomical tracing of neural circuits originating from specific subsets of taste receptor cells may shed light on interactions between taste cells within the taste bud and taste cell-to nerve interactions. It is unclear for example, if activation of type II cells leads to direct activation of the gustatory nerves, or whether the information is relayed through type III cells. To determine how WGA produced in T1r3-expressing taste cells is transported into gustatory neurons, transgenic mice expressing WGA-IRES-GFP driven by the T1r3 promoter were generated. Results Immunohistochemistry showed co-expression of WGA, GFP and endogenous T1r3 in the taste bud cells of transgenic mice: the only taste cells immunoreactive for WGA were the T1r3-expressing cells. The WGA antibody also stained intragemmal nerves. WGA, but not GFP immunoreactivity was found in the geniculate and petrosal ganglia of transgenic mice, indicating that WGA was transported across synapses. WGA immunoreactivity was also found in the trigeminal ganglion, suggesting that T1r3-expressing cells make synapses with trigeminal neurons. In the medulla, WGA was detected in the nucleus of the solitary tract but also in the nucleus ambiguus, the vestibular nucleus, the trigeminal nucleus and in the gigantocellular reticular nucleus. WGA was not detected in the parabrachial nucleus, or the gustatory cortex. Conclusion These results show the usefulness of genetically encoded WGA as a tracer for the first and second order neurons that innervate a subset of taste cells, but not for higher order neurons, and demonstrate that the main route of output from type II taste cells is the gustatory neuron, not the type III cells.

  8. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1+/0) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1+/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1+/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1+/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  9. Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available BACKGROUND: The proteases (secretases that cleave amyloid-beta (Abeta peptide from the amyloid precursor protein (APP have been the focus of considerable investigation in the development of treatments for Alzheimer disease. The prediction has been that reducing Abeta production in the brain, even after the onset of clinical symptoms and the development of associated pathology, will facilitate the repair of damaged tissue and removal of amyloid lesions. However, no long-term studies using animal models of amyloid pathology have yet been performed to test this hypothesis. METHODS AND FINDINGS: We have generated a transgenic mouse model that genetically mimics the arrest of Abeta production expected from treatment with secretase inhibitors. These mice overexpress mutant APP from a vector that can be regulated by doxycycline. Under normal conditions, high-level expression of APP quickly induces fulminant amyloid pathology. We show that doxycycline administration inhibits transgenic APP expression by greater than 95% and reduces Abeta production to levels found in nontransgenic mice. Suppression of transgenic Abeta synthesis in this model abruptly halts the progression of amyloid pathology. However, formation and disaggregation of amyloid deposits appear to be in disequilibrium as the plaques require far longer to disperse than to assemble. Mice in which APP synthesis was suppressed for as long as 6 mo after the formation of Abeta deposits retain a considerable amyloid load, with little sign of active clearance. CONCLUSION: This study demonstrates that amyloid lesions in transgenic mice are highly stable structures in vivo that are slow to disaggregate. Our findings suggest that arresting Abeta production in patients with Alzheimer disease should halt the progression of pathology, but that early treatment may be imperative, as it appears that amyloid deposits, once formed, will require additional intervention to clear.

  10. Protection of Cardiomyocytes from Ischemic/Hypoxic Cell Death via Drbp1 and pMe2GlyDH in Cardio-specific ARC Transgenic Mice*

    Science.gov (United States)

    Pyo, Jong-Ok; Nah, Jihoon; Kim, Hyo-Jin; Chang, Jae-Woong; Song, Young-Wha; Yang, Dong-Kwon; Jo, Dong-Gyu; Kim, Hyung-Ryong; Chae, Han-Jung; Chae, Soo-Wan; Hwang, Seung-Yong; Kim, Seung-Jun; Kim, Hyo-Joon; Cho, Chunghee; Oh, Chang-Gyu; Park, Woo Jin; Jung, Yong-Keun

    2008-01-01

    The ischemic death of cardiomyocytes is associated in heart disease and heart failure. However, the molecular mechanism underlying ischemic cell death is not well defined. To examine the function of apoptosis repressor with a caspase recruitment domain (ARC) in the ischemic/hypoxic damage of cardiomyocytes, we generated cardio-specific ARC transgenic mice using a mouse α-myosin heavy chain promoter. Compared with the control, the hearts of ARC transgenic mice showed a 3-fold overexpression of ARC. Langendoff preparation showed that the hearts isolated from ARC transgenic mice exhibited improved recovery of contractile performance during reperfusion. The cardiomyocytes cultured from neonatal ARC transgenic mice were significantly resistant to hypoxic cell death. Furthermore, the ARC C-terminal calcium-binding domain was as potent to protect cardiomyocytes from hypoxic cell death as ARC. Genome-wide RNA expression profiling uncovered a list of genes whose expression was changed (>2-fold) in ARC transgenic mice. Among them, expressional regulation of developmentally regulated RNA-binding protein 1 (Drbp1) or the dimethylglycine dehydrogenase precursor (pMe2GlyDH) affected hypoxic death of cardiomyocytes. These results suggest that ARC may protect cardiomyocytes from hypoxic cell death by regulating its downstream, Drbp1 and pMe2GlyDH, shedding new insights into the protection of heart from hypoxic damages. PMID:18782777

  11. Altered lymphocyte trafficking and diminished airway reactivity in transgenic mice expressing human MMP-9 in a mouse model of asthma.

    Science.gov (United States)

    Mehra, Divya; Sternberg, David I; Jia, Yuxia; Canfield, Stephen; Lemaitre, Vincent; Nkyimbeng, Takwi; Wilder, Julie; Sonett, Joshua; D'Armiento, Jeanine

    2010-02-01

    Matrix metalloproteinase-9 (MMP-9) is hypothesized to facilitate leukocyte extravasation and extracellular remodeling in asthmatic airways. Careful descriptive studies have shown that MMP-9 levels are higher in the sputum of asthmatics; however, the consequence of increased MMP-9 activity has not been determined in this disease. We induced asthma in transgenic mice that express human MMP-9 in the murine lung tissue macrophage to determine the direct effect of human MMP-9 expression on airway inflammation. Transgenic (TG) and wild-type (WT) mice were immunized and challenged with ovalbumin. Forty-eight hours after the ovalbumin challenge, airway hyperresponsiveness (AHR) was measured, and inflammatory cell infiltration was evaluated in bronchoalveolar lavage fluid (BALF) and lung tissue. Baseline levels of inflammation were similar in the TG and WT groups of mice, and pulmonary eosinophilia was established in both groups by sensitization and challenge with ovalbumin. There was a significant reduction in AHR in sensitized and challenged trangenics compared with WT controls. Although total BALF cell counts were similar in both groups, the lymphocyte number in the lavage of the TG group was significantly diminished compared with the WT group (0.25 +/- 0.08 vs. 0.89 +/- 0.53; P = 0.0032). In addition, the draining lymphocytes were found to be larger in the TG animals compared with the WT mice. Equal numbers of macrophages, eosinophils, and neutrophils were seen in both groups. IL-13 levels were found to be lower in the sensitized TG compared with the WT mice. These results demonstrate an inverse relationship between human MMP-9 and AHR and suggest that MMP-9 expression alters leukocyte extravasation by reducing lymphocyte accumulation in the walls of asthmatic airways. PMID:19940022

  12. Dataset for the role of sustained attention in memory formation of transgenic mice for Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Natalia Mendes Schöwe

    2016-03-01

    Full Text Available Weekly submission of rats to active avoidance apparatus can be considered a neurostimulation strategy, once it can improve memory and can increase the density of receptors from different neurotransmitter systems in brain areas related to memory. These benefits were observed in rats chronically infused with amyloid-β peptide. In the present work it is presented that the same benefit for memory was observed in five months old transgenic mice for Alzheimer’s disease (TG-PDGFB-APPSw,Ind. However, at this age, no change in density of nicotinic receptors was observed.

  13. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice

    OpenAIRE

    Chai, Y.; Calaf, G M; Zhou, H.; Ghandhi, S A; Elliston, C. D.; Wen, G.; Nohmi, T; Amundson, S A; Hei, T K

    2012-01-01

    Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in ...

  14. Breast tumors in PyMT transgenic mice expressing mitochondrial catalase have decreased labeling for macrophages and endothelial cells

    Directory of Open Access Journals (Sweden)

    Sy Fatemie

    2012-05-01

    Full Text Available We show by immunohistochemical labeling that prominent cell types in the tumor microenvironment of PyMT transgenic mice are tumor-associated macrophages (TAMs and endothelial cells, and that both populations are decreased in the presence of mitochondrial targeted catalase (mCAT. This observation suggests that mitochondrial ROS can drive tumor invasiveness in conjunction with the presence of TAMs and increased angiogenesis. Since primary PyMT tumor cells expressing mCAT undergo increased apoptosis, mitochondrial antioxidants might be attractive anti-tumor agents.

  15. Regulatory regions of rat insulin I gene necessary for expression in transgenic mice.

    OpenAIRE

    Dandoy-Dron, F; Monthioux, E; Jami, J; Bucchini, D

    1991-01-01

    Ten transgenic mouse lines harboring the -346/-103 fragment of the rat insulin I enhancer linked to a heterologous promoter and a reporter gene (Eins-Ptk-CAT construct) were produced. Expression of the hybrid transgene was essentially observed in pancreas and to a lesser extent in brain. These results indicate that the rat insulin I promoter is dispensable for pancreatic expression. This insulin gene sequence is the shortest fragment described as conferring tissue-specific expression in trans...

  16. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    Directory of Open Access Journals (Sweden)

    Wahnschaffe U

    2005-01-01

    Full Text Available Abstract As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue® mouse, and the lacZ model; commercially available as the Muta™Mouse, were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects.

  17. Bridging Mice to Men: Using HLA Transgenic Mice to Enhance the Future Prediction and Prevention of Autoimmune Type 1 Diabetes in Humans.

    Science.gov (United States)

    Serreze, David V; Niens, Marijke; Kulik, John; DiLorenzo, Teresa P

    2016-01-01

    Similar to the vast majority of cases in humans, the development of type 1 diabetes (T1D) in the NOD mouse model is due to T-cell mediated autoimmune destruction of insulin producing pancreatic β cells. Particular major histocompatibility complex (MHC) haplotypes (designated HLA in humans; and H2 in mice) provide the primary genetic risk factor for T1D development. It has long been appreciated that within the MHC, particular unusual class II genes contribute to the development of T1D in both humans and NOD mice by allowing for the development and functional activation of β cell autoreactive CD4 T cells. However, studies in NOD mice have revealed that through interactions with other background susceptibility genes, the quite common class I variants (K(d), D(b)) characterizing this strain's H2 (g7) MHC haplotype aberrantly acquire an ability to support the development of β cell autoreactive CD8 T cell responses also essential to T1D development. Similarly, recent studies indicate that in the proper genetic context some quite common HLA class I variants also aberrantly contribute to T1D development in humans. This review focuses on how "humanized" HLA transgenic NOD mice can be created and used to identify class I dependent β cell autoreactive CD8 T cell populations of clinical relevance to T1D development. There is also discussion on how HLA transgenic NOD mice can be used to develop protocols that may ultimately be useful for the prevention of T1D in humans by attenuating autoreactive CD8 T cell responses against pancreatic β cells. PMID:27150089

  18. Transgenic Mice Expressing a Ligand-Inducible Cre Recombinase in Osteoblasts and Odontoblasts : A New Tool to Examine Physiology and Disease of Postnatal Bone and Tooth

    OpenAIRE

    Kim, Jung-Eun; Nakashima, Kazuhisa; de Crombrugghe, Benoit

    2004-01-01

    The skeleton supports body structures in vertebrates and helps maintain calcium homeostasis throughout life. Disruption of genes involved in mammalian bone formation has often led to embryonic lethality, hence preventing study of these genes’ role in adult animals. To develop a usable tool for such study, we generated transgenic mice in which a 2.3-kb mouse Col1a1 proximal promoter, which is active in all osteoblasts, drives a transgene coding for a polypeptide consisting of Cre recombinase f...

  19. A Vesicular Stomatitis Virus-Based Therapeutic Vaccine Generates a Functional CD8 T Cell Response to Hepatitis B Virus in Transgenic Mice

    OpenAIRE

    Cobleigh, Melissa A.; Wei, Xin; Robek, Michael D.

    2013-01-01

    Recombinant vesicular stomatitis virus (VSV) is a promising therapeutic vaccine platform. Using a transgenic mouse model of chronic hepatitis B virus (HBV) infection, we evaluated the therapeutic potential of a VSV vector expressing the HBV middle surface envelope glycoprotein (MS). VSV-MS immunization generated HBV-specific CD8 T cell and antibody responses in transgenic mice that express low HBV antigen levels. These findings support the further development of VSV as a therapeutic vaccine v...

  20. A system for tissue-specific gene targeting: transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors.

    OpenAIRE

    Federspiel, M J; P. Bates; Young, J A; Varmus, H E; Hughes, S. H.

    1994-01-01

    Avian leukosis viruses (ALVs) have been used extensively as genetic vectors in avian systems, but their utility in mammals or mammalian cell lines is compromised by inefficient viral entry. We have overcome this limitation by generating transgenic mice that express the receptor for the subgroup A ALV under the control of the chicken alpha sk-actin promoter. The skeletal muscles of these transgenic animals are susceptible to efficient infection by subgroup A ALV. Because infection is restricte...

  1. The Experimental Study on Treating Transgenic HBV Mice with Recombined IL-2-PreS DNA Vaccine

    Institute of Scientific and Technical Information of China (English)

    李建远; 王海燕; 沈肖方; 王学波; 靳绍华; 刘芙君; 刘运祥

    2004-01-01

    The aim of this study is to investigate the feasibility and mechanism of hIL-2-preS DNA vaccine as prevention and therapeutic approach against Hepatitis B. Eukaryon expression vector involving hIL-2 and preS gene was constructed with recombinant technique and transferred into normal BALB/c mice and HBV transgenic mice (Tg-Mice) respectively. Tnen a series of detection were performed: detection of anti-preS2, HBs antibody and HBsAg in BALB/c mice and Tg-mice with ELISA, quantification of HBV DNA copies in HBV Tg-mice serum with real-time PCR, determination of hepatitis degree with immunopathological HE staining and detection of liver function. Anti-preS1 can be detected at 4th , 6th and 10th week in inoculated BALB/c mice. Injection with gene gun gained an advantage over muscular and subcutaneous injection since it acquired just 1/10 inoculation quantity (10μg/mouse). Highest expression of IgG2a at 4th week suggested Thl-mediated immune response, which facilitated HBV cleaning. Of all inoculated HBV Tg-mice, 80% of them showed anfi-preS2, HBs antibody positive and HBV DNA decreased, and 20% showed negative for HBsAg. HE staining to hepatic tissue showed obvious infiltration of inflammatory cells, swelling and granular degeneration of hepatocytes. In our study, IL-2-preS DNA vaccine which can provoke the humoral and cellular immune response and break the immune tolerance supports the designation and construction of new vaccine against HBV and specific immune remedy for HBV continuous infection.

  2. Salt-sensitive hypertension and cardiac hypertrophy in transgenic mice expressing a corin variant identified in blacks.

    Science.gov (United States)

    Wang, Wei; Cui, Yujie; Shen, Jianzhong; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-11-01

    Blacks represent a high-risk population for salt-sensitive hypertension and heart disease, but the underlying mechanism remains unclear. Corin is a cardiac protease that regulates blood pressure by activating natriuretic peptides. A corin gene variant (T555I/Q568P) was identified in blacks with hypertension and cardiac hypertrophy. In this study, we tested the hypothesis that the corin variant contributes to the hypertensive and cardiac hypertrophic phenotype in vivo. Transgenic mice were generated to express wild-type (WT) or T555I/Q568P variant corin in the heart under the control of α-myosin heavy chain promoter. The mice were crossed into a corin knockout (KO) background to create KO/TgWT and KO/TgV mice that expressed WT or variant corin, respectively, in the heart. Functional studies showed that KO/TgV mice had significantly higher levels of proatrial natriuretic peptide in the heart compared with that in control KO/TgWT mice, indicating that the corin variant was defective in processing natriuretic peptides in vivo. By radiotelemetry, corin KO/TgV mice were found to have hypertension that was sensitive to dietary salt loading. The mice also developed cardiac hypertrophy at 12 to 14 months of age when fed a normal salt diet or at a younger age when fed a high-salt diet. The phenotype of salt-sensitive hypertension and cardiac hypertrophy in KO/TgV mice closely resembles the pathological findings in blacks who carry the corin variant. The results indicate that corin defects may represent an important mechanism in salt-sensitive hypertension and cardiac hypertrophy in blacks. PMID:22987923

  3. Reduction of VLDL secretion decreases cholesterol excretion in niemann-pick C1-like 1 hepatic transgenic mice.

    Directory of Open Access Journals (Sweden)

    Stephanie M Marshall

    Full Text Available An effective way to reduce LDL cholesterol, the primary risk factor of atherosclerotic cardiovascular disease, is to increase cholesterol excretion from the body. Our group and others have recently found that cholesterol excretion can be facilitated by both hepatobiliary and transintestinal pathways. However, the lipoprotein that moves cholesterol through the plasma to the small intestine for transintestinal cholesterol efflux (TICE is unknown. To test the hypothesis that hepatic very low-density lipoproteins (VLDL support TICE, antisense oligonucleotides (ASO were used to knockdown hepatic expression of microsomal triglyceride transfer protein (MTP, which is necessary for VLDL assembly. While maintained on a high cholesterol diet, Niemann-Pick C1-like 1 hepatic transgenic (L1Tg mice, which predominantly excrete cholesterol via TICE, and wild type (WT littermates were treated with control ASO or MTP ASO. In both WT and L1Tg mice, MTP ASO decreased VLDL triglyceride (TG and cholesterol secretion. Regardless of treatment, L1Tg mice had reduced biliary cholesterol compared to WT mice. However, only L1Tg mice treated with MTP ASO had reduced fecal cholesterol excretion. Based upon these findings, we conclude that VLDL or a byproduct such as LDL can move cholesterol from the liver to the small intestine for TICE.

  4. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice.

    Science.gov (United States)

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Hyun Song, Joo; Shim, Insop; Kim, Youn-Sub; Bae, Hyunsu

    2016-01-01

    α-Synuclein (α-Syn) has a critical role in microglia-mediated neuroinflammation, which leads to the development of Parkinson's disease (PD). Recent studies have shown that bee venom (BV) has beneficial effects on PD symptoms in human patients or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-induced PD mice. This study investigated whether treatment with BV-derived phospholipase A2 (bvPLA2) would improve the motor dysfunction and pathological features of PD in human A53T α-Syn mutant transgenic (A53T Tg) mice. The motor dysfunction of A53T Tg mice was assessed using the pole test. The levels of α-Syn, microglia and the M1/M2 phenotype in the spinal cord were evaluated by immunofluorescence. bvPLA2 treatment significantly ameliorated motor dysfunction in A53T Tg mice. In addition, bvPLA2 significantly reduced the expression of α-Syn, the activation and numbers of microglia, and the ratio of M1/M2 in A53T Tg mice. These results suggest that bvPLA2 could be a promising treatment option for PD. PMID:27388550

  5. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome

    International Nuclear Information System (INIS)

    Down syndrome, the phenotypic expression of human trisomy 21, is presumed to result from a 1.5-fold increase in the expression of the genes on human chromosome 21. As an approach to the development of an animal model for Down syndrome, several strains of transgenic mice that carry the human Cu/Zn-superoxide dismutase gene have been prepared. The animals express the transgene in a manner similar to that of humans, with 0.9- and 0.7-kilobase transcripts in a 1:4 ratio, and synthesize the human enzyme in an active form capable of forming human-mouse enzyme heterodimers. Cu/Zn-superoxide dismutase activity is increased from 1.6- to 6.0-fold in the brains of four transgenic strains and to an equal or lesser extent in several other tissues. These animals provide a unique system for studying the consequences of increased dosage of the Cu/Zn-superoxide dismutase gene in Down syndrome and the role of this enzyme in a variety of other pathological processes

  6. Cell-autonomous alteration of dopaminergic transmission by wild type and mutant (DeltaE) TorsinA in transgenic mice.

    Science.gov (United States)

    Page, Michelle E; Bao, Li; Andre, Pierrette; Pelta-Heller, Joshua; Sluzas, Emily; Gonzalez-Alegre, Pedro; Bogush, Alexey; Khan, Loren E; Iacovitti, Lorraine; Rice, Margaret E; Ehrlich, Michelle E

    2010-09-01

    Early onset torsion dystonia is an autosomal dominant movement disorder of variable penetrance caused by a glutamic acid, i.e. DeltaE, deletion in DYT1, encoding the protein TorsinA. Genetic and structural data implicate basal ganglia dysfunction in dystonia. TorsinA, however, is diffusely expressed, and therefore the primary source of dysfunction may be obscured in pan-neuronal transgenic mouse models. We utilized the tyrosine hydroxylase (TH) promoter to direct transgene expression specifically to dopaminergic neurons of the midbrain to identify cell-autonomous abnormalities. Expression of both the human wild type (hTorsinA) and mutant (DeltaE-hTorsinA) protein resulted in alterations of dopamine release as detected by microdialysis and fast cycle voltammetry. Motor abnormalities detected in these mice mimicked those noted in transgenic mice with pan-neuronal transgene expression. The locomotor response to cocaine in both TH-hTorsinA and TH-DeltaE-hTorsinA, in the face of abnormal extracellular DA levels relative to non-transgenic mice, suggests compensatory, post-synaptic alterations in striatal DA transmission. This is the first cell-subtype-specific DYT1 transgenic mouse that can serve to differentiate between primary and secondary changes in dystonia, thereby helping to target disease therapies. PMID:20460154

  7. Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kuklin, Alexander [ORNL; Mynatt, Randall [ORNL; Klebig, Mitch [ORNL; Kiefer, Laura [Glaxo Wellcome, Research Triangle Park, NC; Wilkison, William O [Glaxo Wellcome, Research Triangle Park, NC; Woychik, Richard P [Jackson Laboratory, The, Bar Harbor, ME; Michaud III, Edward J [ORNL

    2004-01-01

    Background: The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals. Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1 receptor (Mc1r) on melanocytes. Lethal yellow (Ay) and viable yellow (Avy) are dominant regulatory mutations in the mouse agouti gene that cause the wild- ype protein to be produced at abnormally high levels throughout the body. Mice harboring these mutations exhibit a pleiotropic syndrome characterized by yellow coat color, obesity, hyperglycemia, hyperinsulinemia, and increased susceptibility to hyperplasia and carcinogenesis in numerous tissues, including the liver. The goal of this research was to determine if ectopic expression of the agouti gene in the liver alone is sufficient to recapitulate any aspect of this syndrome. For this purpose, we generated lines of transgenic mice expressing high levels of agouti in the liver under the regulatory control of the albumin promoter. Expression levels of the agouti transgene in the liver were quantified by Northern blot analysis. Functional agouti protein in the liver of transgenic mice was assayed by its ability to inhibit binding of the -melanocyte stimulating hormone ( MSH) to the Mc1r. Body weight, plasma insulin and blood glucose levels were analyzed in control and transgenic mice. Control and transgenic male mice were given a single intraperitoneal injection (10 mg/kg) of the hepatocellular carcinogen, diethylnitrosamine (DEN), at 15 days of age. Mice were euthanized at 36 or 40 weeks after DEN injection and the number of tumors per liver and total liver weights were recorded. Results: The albumin-agouti transgene was expressed at high levels in the livers of mice and produced a functional agouti protein. Albumin-agouti transgenic mice had normal body weights and normal levels of blood glucose and plasma insulin, but responded to chemical initiation of the liver with an increased number

  8. Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes

    Directory of Open Access Journals (Sweden)

    Kiefer Laura L

    2004-06-01

    Full Text Available Abstract Background The agouti protein is a paracrine factor that is normally present in the skin of many species of mammals. Agouti regulates the switch between black and yellow hair pigmentation by signalling through the melanocortin 1 receptor (Mc1r on melanocytes. Lethal yellow (Ay and viable yellow (Avy are dominant regulatory mutations in the mouse agouti gene that cause the wild-type protein to be produced at abnormally high levels throughout the body. Mice harboring these mutations exhibit a pleiotropic syndrome characterized by yellow coat color, obesity, hyperglycemia, hyperinsulinemia, and increased susceptibility to hyperplasia and carcinogenesis in numerous tissues, including the liver. The goal of this research was to determine if ectopic expression of the agouti gene in the liver alone is sufficient to recapitulate any aspect of this syndrome. For this purpose, we generated lines of transgenic mice expressing high levels of agouti in the liver under the regulatory control of the albumin promoter. Expression levels of the agouti transgene in the liver were quantified by Northern blot analysis. Functional agouti protein in the liver of transgenic mice was assayed by its ability to inhibit binding of the α-melanocyte stimulating hormone (αMSH to the Mc1r. Body weight, plasma insulin and blood glucose levels were analyzed in control and transgenic mice. Control and transgenic male mice were given a single intraperitoneal injection (10 mg/kg of the hepatocellular carcinogen, diethylnitrosamine (DEN, at 15 days of age. Mice were euthanized at 36 or 40 weeks after DEN injection and the number of tumors per liver and total liver weights were recorded. Results The albumin-agouti transgene was expressed at high levels in the livers of mice and produced a functional agouti protein. Albumin-agouti transgenic mice had normal body weights and normal levels of blood glucose and plasma insulin, but responded to chemical initiation of the liver

  9. Imaging the microenvironment of pancreatic cancer patient-derived orthotopic xenografts (PDOX) growing in transgenic nude mice expressing GFP, RFP, or CFP.

    Science.gov (United States)

    Hoffman, Robert M; Bouvet, Michael

    2016-09-28

    We have developed a multi-color, imageable, orthotopic mouse model for individual patients with pancreatic cancer. The tumors are labeled by first passaging them orthotopically through transgenic nude mice expressing green fluorescent protein (GFP), red fluorescent protein (RFP), or cyan fluorescent protein (CFP). Passage of the tumors in these colored transgenic mice labels the stromal cells of the tumor. The cancer cells in the PDOX are labeled in situ with GFP by telomerase-dependent adenovirus OBP-401. The models are termed imageable patient-derived orthotopic xenografts (iPDOX). The tumors acquired brightly-fluorescent stromal cells from the transgenic host mice, which were stably associated with the tumors through multiple passages. The colored fluorescent protein-expressing stromal cells included cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). This model enables powerful color-coded imaging of the interaction of cancer and stromal cells during tumor progression and treatment. PMID:26742463

  10. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB+/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  11. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  12. Human Rhinovirus Presenting 4E10 Epitope of HIV-1 MPER Elicits Neutralizing Antibodies in Human ICAM-1 Transgenic Mice.

    Science.gov (United States)

    Yi, Guohua; Tu, Xiongying; Bharaj, Preeti; Guo, Hua; Zhang, Junli; Shankar, Premlata; Manjunath, N

    2015-10-01

    Attempts at eliciting neutralizing antibodies against human immunodeficiency virus (HIV)-1 have generally failed. Computationally designed epitope-scaffold platforms allow transplantation of structural epitopes to scaffold proteins. Human rhinovirus (HRV) allows such engrafting of HIV-1 epitopes on the surface scaffold proteins. However, since HRV infects only humans and great apes, the efficacy of chimeric HRV-based live viral vaccines is difficult to assess in animal models. Here, we used human ICAM-1 transgenic (hICAM-1 Tg) mice that support productive HRV infection to assess the efficacy of chimeric HRV expressing the HIV-1 membrane proximal external region (MPER) epitope, 4E10. Intranasal immunization with chimeric HRV in transgenic mice effectively induced antibodies that recognized 4E10 peptide as well as HIV-1 Env trimer. Importantly, the immunized mouse sera were able to neutralize HIV strains including those belonging to clades B and C. Moreover, intranasal immunization could bypass pre-existing immunity to HRV. Thus, chimeric HRV appears to provide a viable vaccine vehicle for HIV-1 immunization in humans. PMID:26061648

  13. Extravasation and transcytosis of liposomes in Kaposi's sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene.

    Science.gov (United States)

    Huang, S K; Martin, F J; Jay, G; Vogel, J; Papahadjopoulos, D; Friend, D S

    1993-07-01

    Transgenic mice bearing the HIV tat gene develop dermal lesions resembling a common malignant tumor in AIDS, Kaposi's sarcoma (KS). To evaluate the permeability characteristics of these lesions and the therapeutic potential of drug-carrying liposomes, we have studied the localization of sterically stabilized liposomes, which show long circulation time in blood and increased accumulation in tumors. Liposomes encapsulating colloidal gold were injected intravenously into transgenic mice bearing KS lesions, and tissues were processed 24 hours later for both electron microscopy and for light microscopy with silver enhancement. Liposomes and silver marker were detected predominantly in the dermis surrounding the early and mature KS lesions, which were characterized by a proliferation of fibroblast-like spindle cells and abnormal blood vessels close to the epidermis. The silver-enhanced gold marker often surrounded vascular channels and scattered erythrocytes. As determined by electron microscopy, some spindle cells and macrophages had ingested intact liposomes. Transendothelial transport of liposomes was observed both through open channels between endothelial cells and also through endothelial cells lining intact vessels. Both extravasation and transcytosis of liposomes through irregular endothelium were much higher in KS lesions than in the adjacent normal skin. The high accumulation of sterically stabilized liposomes in KS lesions and their intracellular uptake by some spindle cells enhances their potential as carriers of chemotherapeutic agents against this neoplasm. PMID:8317543

  14. Immunization with adenovirus LIGHT-engineered dendritic cells induces potent T cell responses and therapeutic immunity in HBV transgenic mice.

    Science.gov (United States)

    Jiang, Wenzheng; Chen, Ran; Kong, Xiaobo; Long, Fengying; Shi, Yaru

    2014-07-31

    LIGHT, a TNF superfamily member (TNFSF14), is a type II transmembrane protein expressed on activated T cells and immature dendritic cells (DCs). However, the expression of LIGHT on mature DCs is down-regulated. Recent studies demonstrated that LIGHT provides potent costimulatory activity for T cells, enhancing proliferation and the production of Th1 cytokines independently of the B7-CD28 pathway. Here, we evaluated the effectiveness of peptide-pulsed DC-mediated antiviral immunity in HBV transgenic mice and the immunoadjuvant effect of LIGHT. The bone marrow-derived DCs were modified in vitro with an adenovirus (Ad) vector expressing mouse LIGHT (Ad-LIGHT), the expression of costimulatory molecules was up-regulated and the secretion of cytokines IL-12 and IFN-γ increased. LIGHT-modified DCs enhanced allostimulation for T cells in mixed lymphocyte reaction (MLR). HBV peptide-pulsed DCs elicited HBV specific CD8+ T cell response and reduced the level of HBsAg and HBV DNA in sera of HBV transgenic mice. Importantly, LIGHT-modified DCs could induce stronger antiviral immunity. These results support the concept that genetic modification of DCs with a recombinant LIGHT adenovirus vector may be a useful strategy for antiviral immunotherapy. PMID:24951859

  15. Intranasal vaccination with a helper-dependent adenoviral vector enhances transgene-specific immune responses in BALB/c mice.

    Science.gov (United States)

    Fu, Yuan-hui; He, Jin-sheng; Zheng, Xian-xian; Wang, Xiao-bo; Xie, Can; Shi, Chang-xin; Zhang, Mei; Tang, Qian; Wei, Wei; Qu, Jian-guo; Hong, Tao

    2010-01-01

    Helper-dependent adenoviral (HDAd) vectors were developed primarily for genetic disease therapy by deleting all coding regions for attenuating the host cellular immune response to adenovirus (Ad) and long-lasting gene expression. Recently Harui et al. reported that HDAd vaccine could stimulate superior transgene-specific cytotoxic T lymphocyte (CTL) and antibody responses via the intraperitoneal route, compared to first-generation adenoviral (FGAd) vaccine. This prompted us to explore the potential of HDAd as a vaccine vector administrated intranasally. In this study, we prepared HDAd and FGAd vectors expressing enhanced green fluorescent protein (EGFP), respectively, and compared their efficacy in mice. Mice were immunized intranasally with 5x10(9) vp HDAd or FGAd vector particles. Despite stimulating similar anti-Ad antibody responses with FGAd vaccine in the prime/boost strategy, HDAd vector expressing EGFP displayed superior transgene-specific serum IgG, mucosal IgA and cellular immune response, with the characterization of balanced or mixed Th1/Th2 CD4+ T-cell responses. Meanwhile, a single dose of intranasal (i.n.) vaccine of HDAd-EGFP induced a serum IgG response with more efficacy than FGAd-EGFP. In addition, i.n. boost immunization enhanced transgene-specific humoral and cellular responses, compared to single i.n. HDAd-EGFP immunization. Our results suggest that HDAd has potential for a mucosal vaccine vector via i.n. route, which will be useful for the development of vaccines against respiratory viruses, such as respiratory syncytial virus and influenza virus. PMID:19945423

  16. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  17. Protective Efficacy of VP1-Specific Neutralizing Antibody Associated with a Reduction of Viral Load and Pro-Inflammatory Cytokines in Human SCARB2-Transgenic Mice

    OpenAIRE

    Chang, Hsuen-Wen; Lin, Yi-Wen; Ho, Hui-Min; Lin, Min-Han; Liu, Chia-Chyi; Shao, Hsiao-Yun; Chong, Pele; Sia, Charles; Chow, Yen-Hung

    2013-01-01

    Hand-foot-mouth diseases (HFMD) caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16) in children have now become a severe public health issue in the Asian-Pacific region. Recently we have successfully developed transgenic mice expressing human scavenger receptor class B member 2 (hSCARB2, a receptor of EV71 and CVA16) as an animal model for evaluating the pathogenesis of enterovirus infections. In this study, hSCARB2-transgenic mice were used to investigate the efficacy conferred by ...

  18. Skin Hyperproliferation and Susceptibility to Chemical Carcinogenesis in Transgenic Mice Expressing E6 and E7 of Human Papillomavirus Type 38

    OpenAIRE

    Dong, Wen; Kloz, Ulrich; Accardi, Rosita; Caldeira, Sandra; Tong, Wei-Min; Wang, Zhao-Qi; Jansen, Lars; Dürst, Matthias; Sylla, Bakary S.; Gissmann, Lutz; Tommasino, Massimo

    2005-01-01

    The oncoproteins E6 and E7 of human papillomavirus type 38 (HPV38) display several transforming activities in vitro, including immortalization of primary human keratinocytes. To evaluate the oncogenic activities of the viral proteins in an in vivo model, we generated transgenic mice expressing HPV38 E6 and E7 under the control of the bovine homologue of the human keratin 10 (K10) promoter. Two distinct lines of HPV38 E6/E7-expressing transgenic mice that express the viral genes at different l...

  19. Temporal and spatial patterns of transgene expression in aging adult mice provide insights about the origins, organization, and differentiation of the intestinal epithelium.

    OpenAIRE

    Cohn, S. M.; Roth, K A; Birkenmeier, E H; Gordon, J I

    1991-01-01

    We have used liver fatty acid-binding protein/human growth hormone (L-FABP/hGH) fusion genes to explore the temporal and spatial differentiation of intestinal epithelial cells in 1- to 12-month-old transgenic mice. The intact, endogenous L-FABP gene (Fabpl) was not expressed in the colon at any time. Young adult transgenic mice containing nucleotides -596 to +21 of the rat L-FABP gene linked to the hGH gene (minus its 5' nontranscribed domain) demonstrated inappropriate expression of hGH in e...

  20. Expression of the G72/G30 gene in transgenic mice induces behavioral changes

    OpenAIRE

    Cheng, Lijun; Hattori, Eiji; Nakajima, Akira; Woehrle, Nancy S.; Mark D Opal; Zhang, Chunling; Grennan, Kay; Dulawa, Stephanie C.; Tang, Ya-Ping; Gershon, Elliot S.; Liu, Chunyu

    2013-01-01

    The G72/G30 gene complex is a candidate gene for schizophrenia and bipolar disorder. However, G72 and G30 mRNAs are expressed at very low levels in human brain, with only rare splicing forms observed. We report here G72/G30 expression profiles and behavioral changes in a G72/G30 transgenic mouse model. A human BAC clone containing the G72/G30 genomic region was used to establish the transgenic mouse model, on which gene expression studies, Western blot and behavioral tests were performed. Rel...

  1. Multifunctional Effects of Mangosteen Pericarp on Cognition in C57BL/6J and Triple Transgenic Alzheimer’s Mice

    Directory of Open Access Journals (Sweden)

    Hei-Jen Huang

    2014-01-01

    Full Text Available Mangosteen- (Garcinia mangostana- based nutraceutical compounds have long been reported to possess multiple health-promoting properties. The current study investigated whether mangosteen pericarp (MP could attenuate cognitive dysfunction. First, we found that treatment with MP significantly reduced the cell death and increased the brain-derived neurotrophic factor (BDNF level in an organotypic hippocampal slice culture (OHSC. We then investigated the effects of age and MP diet on the cognitive function of male C57BL/6J (B6 mice. After 8-month dietary supplementation, the MP diet (5000 ppm significantly attenuated the cognitive impairment associated with anti-inflammation, increasing BDNF level and decreasing p-tau (phospho-tau S202 in older B6 mice. We further applied MP dietary supplementation to triple transgenic Alzheimer’s disease (3×Tg-AD mice from 5 to 13 months old. The MP diet exerted neuroprotective, antioxidative, and anti-inflammatory effects and reduced the Aβ deposition and p-tau (S202/S262 levels in the hippocampus of 3×Tg-AD mice, which might further attenuate the deficit in spatial memory retrieval. Thus, these results revealed that the multifunctional properties of MP might offer a promising supplementary diet to attenuate cognitive dysfunction in AD.

  2. Mamu-A*01/Kb transgenic and MHC Class I knockout mice as a tool for HIV vaccine development

    International Nuclear Information System (INIS)

    We have developed a murine model expressing the rhesus macaque (RM) Mamu-A*01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (α1 and α2 Mamu-A*01 domains) and murine (α3, transmembrane, and cytoplasmic H-2Kb domains) MHC Class I molecules were derived by transgenesis of the H-2KbDb double MHC Class I knockout strain. After immunization of Mamu-A*01/Kb Tg mice with rVV-SIVGag-Pol, the mice generated CD8+ T-cell IFN-γ responses to several known Mamu-A*01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A*01/Kb Tg mice provide a model system to study the Mamu-A*01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.

  3. Sequence analysis of laci mutations obtained from lung cells of radon-exposed big blue{trademark} transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Layton, A.D.; Cross, F.T.; Steigler, G.L.; Stillwell, L.S.; Jostes, R.F. [Pacific Northwest Laboratory, Richland, WA (United States); Lutze, L.H. [Univ. of California, San Francisco, CA (United States)

    1994-12-31

    We have exposed Big Blue{trademark} transgenic mice by inhalation to 320, 640 and 960 Working Level Months (WLM) of radon progeny. Mice were sacrificed after 3, 6 and 9 days; the time periods required to obtain the exposures. Control mice were also sacrificed at each time interval. In each case all tissues were excised, flash frozen in liquid nitrogen, and stored at -80{degrees}C for further analysis. Twelve lacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM exposure group; the lacI genes from these mutants have been sequenced. Sequence data indicate that three of the mutants have a C;G deletion at BP 978 and are possibly clonal in origin. Two mutants have multiple events within the gene: one has a an A:T to C:G transversion and a C:G insertion separated by 291 BPs; the second has a G:C to A:T transition as well as an A:T deletion followed by 6 base pairs downstream by a T:A insertion. Other mutations include a single G:C to A:T transition, a two base pair deletion, and a C:G to T:A transition. Mutant plaques are being evaluated from individual mice at other dose levels. Time course experiments are also planned. These studies will help define the molecular fine structure of mutations induced by high-LET radiation exposure.

  4. Sequence analysis of laci mutations obtained from lung cells of radon-exposed big blue trademark transgenic mice

    International Nuclear Information System (INIS)

    We have exposed Big Blue trademark transgenic mice by inhalation to 320, 640 and 960 Working Level Months (WLM) of radon progeny. Mice were sacrificed after 3, 6 and 9 days; the time periods required to obtain the exposures. Control mice were also sacrificed at each time interval. In each case all tissues were excised, flash frozen in liquid nitrogen, and stored at -80 degrees C for further analysis. Twelve lacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM exposure group; the lacI genes from these mutants have been sequenced. Sequence data indicate that three of the mutants have a C;G deletion at BP 978 and are possibly clonal in origin. Two mutants have multiple events within the gene: one has a an A:T to C:G transversion and a C:G insertion separated by 291 BPs; the second has a G:C to A:T transition as well as an A:T deletion followed by 6 base pairs downstream by a T:A insertion. Other mutations include a single G:C to A:T transition, a two base pair deletion, and a C:G to T:A transition. Mutant plaques are being evaluated from individual mice at other dose levels. Time course experiments are also planned. These studies will help define the molecular fine structure of mutations induced by high-LET radiation exposure

  5. Transmission of Atypical Bovine Prions to Mice Transgenic for Human Prion Protein

    OpenAIRE

    Béringue, Vincent; Herzog, Laëtitia; Reine, Fabienne; Le Dur, Annick; Casalone, Cristina; Vilotte, Jean-Luc; Laude, Hubert

    2008-01-01

    To assess risk for cattle-to-human transmission of prions that cause uncommon forms of bovine spongiform encephalopathy (BSE), we inoculated mice expressing human PrP Met129 with field isolates. Unlike classical BSE agent, L-type prions appeared to propagate in these mice with no obvious transmission barrier. H-type prions failed to infect the mice.

  6. GFAP expression and social deficits in transgenic mice overexpressing human sAPPα

    OpenAIRE

    Bailey, Antoinette R.; Hou, Huayan; Song, Min; Obregon, Demian F.; Portis, Samantha; Barger, Steven; Shytle, Doug; Stock, Saundra; Mori, Takashi; Sanberg, Paul G; Murphy, Tanya; Tan, Jun

    2013-01-01

    Autistic individuals display impaired social interactions and language, and restricted, stereotyped behaviors. Elevated levels of secreted amyloid precursor protein-alpha (sAPPα), the product of α-secretase cleavage of APP, are found in the plasma of some individuals with autism. The sAPPα protein is neurotrophic and neuroprotective and recently showed a correlation to glial differentiation in human neural stem cells (NSCs) via the IL-6 pathway. Considering evidence of gliosis in postmortem a...

  7. Generation and characterization of transgenic mice expressing mitochondrial targeted red fluorescent protein selectively in neurons: modeling mitochondriopathy in excitotoxicity and amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2011-11-01

    Full Text Available Abstract Background Mitochondria have roles or appear to have roles in the pathogenesis of several chronic age-related and acute neurological disorders, including Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Parkinson's disease, and cerebral ischemia, and could be critical targets for development of rational mechanism-based, disease