WorldWideScience

Sample records for apotransferrin loaded nanoparticles

  1. Curcumin-loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro.

    Directory of Open Access Journals (Sweden)

    Upendhar Gandapu

    Full Text Available BACKGROUND: Curcumin (diferuloylmethane shows significant activity across a wide spectrum of conditions, but its usefulness is rather limited because of its low bioavailability. Use of nanoparticle formulations to enhance curcumin bioavailability is an emerging area of research. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, curcumin-loaded apotransferrin nanoparticles (nano-curcumin prepared by sol-oil chemistry and were characterized by electron and atomic force microscopy. Confocal studies and fluorimetric analysis revealed that these particles enter T cells through transferrin-mediated endocytosis. Nano-curcumin releases significant quantities of drug gradually over a fairly long period, ∼50% of curcumin still remaining at 6 h of time. In contrast, intracellular soluble curcumin (sol-curcumin reaches a maximum at 2 h followed by its complete elimination by 4 h. While sol-curcumin (GI(50 = 15.6 µM is twice more toxic than nano-curcumin (GI(50 = 32.5 µM, nano-curcumin (IC(50<1.75 µM shows a higher anti-HIV activity compared to sol-curcumin (IC(50 = 5.1 µM. Studies in vitro showed that nano-curcumin prominently inhibited the HIV-1 induced expression of Topo II α, IL-1β and COX-2, an effect not seen with sol-curcumin. Nano-curcumin did not affect the expression of Topoisomerase II β and TNF α. This point out that nano-curcumin affects the HIV-1 induced inflammatory responses through pathways downstream or independent of TNF α. Furthermore, nano-curcumin completely blocks the synthesis of viral cDNA in the gag region suggesting that the nano-curcumin mediated inhibition of HIV-1 replication is targeted to viral cDNA synthesis. CONCLUSION: Curcumin-loaded apotransferrin nanoparticles are highly efficacious inhibitors of HIV-1 replication in vitro and promise a high potential for clinical usefulness.

  2. Interaction of manganese(II) complex with apotransferrin and the apotransferrin enhanced anticancer activities

    Science.gov (United States)

    Yao, Ling; Chen, Qiu-Yun; Xu, Xiao-Lei; Li, Zan; Wang, Xue-Ming

    2013-03-01

    Apotransferrin could bind a number of metal ions besides Fe, which makes it an attractive delivery vehicle for metal-based medicines. In order to evaluate whether anticancer Mn(II) complex of [(Adpa)Mn(Cl)(H2O)] Adpa = bis(2-pyridylmethyl)amino-2-propionic acid) (AdpaMn) could be transported by apotransferrin, we investigated its interaction with human apotransferrin by fluorescence and circular dichroism spectroscopy (CD). The association dynamics show that AdpaMn could bind to apotransferrin spontaneously in Hepes buffer. Synchronous fluorescence spectroscopy and CD spectroscopy show that the conjugation of AdpaMn and apotransferrin by hydrophobic interactions induces the change of the microenvironment and conformation of apotransferrin. The reversible binding and release of AdpaMn was studied with fluorescence titration method. The AdpaMn complex can be released from the AdpaMn-apotransferrin entity in weak acid environments. MTT assay in vitro confirms that apotransferrin can enhance the inhibition rate of AdpaMn on the proliferation of HepG-2 cells, so we deduce that AdpaMn could be transported by apotransferrin in vivo.

  3. Reversal of hemochromatosis by apotransferrin in non-transfused and transfused Hbbth3/+ (heterozygous B1/B2 globin gene deletion) mice.

    Science.gov (United States)

    Gelderman, Monique P; Baek, Jin Hyen; Yalamanoglu, Ayla; Puglia, Michele; Vallelian, Florence; Burla, Bo; Vostal, Jaroslav; Schaer, Dominik J; Buehler, Paul W

    2015-05-01

    Intermediate beta-thalassemia has a broad spectrum of sequelae and affected subjects may require occasional blood transfusions over their lifetime to correct anemia. Iron overload in intermediate beta-thalassemia results from a paradoxical intestinal absorption, iron release from macrophages and hepatocytes, and sporadic transfusions. Pathological iron accumulation in parenchyma is caused by chronic exposure to non-transferrin bound iron in plasma. The iron scavenger and transport protein transferrin is a potential treatment being studied for correction of anemia. However, transferrin may also function to prevent or reduce iron loading of tissues when exposure to non-transferrin bound iron increases. Here we evaluate the effects of apotransferrin administration on tissue iron loading and early tissue pathology in non-transfused and transfused Hbb(th3/+) mice. Mice with the Hbb(th3/+) phenotype have mild to moderate anemia and consistent tissue iron accumulation in the spleen, liver, kidneys and myocardium. Chronic apotransferrin administration resulted in normalization of the anemia. Furthermore, it normalized tissue iron content in the liver, kidney and heart and attenuated early tissue changes in non-transfused Hbb(th3/+) mice. Apotransferrin treatment was also found to attenuate transfusion-mediated increases in plasma non-transferrin bound iron and associated excess tissue iron loading. These therapeutic effects were associated with normalization of transferrin saturation and suppressed plasma non-transferrin bound iron. Apotransferrin treatment modulated a fundamental iron regulatory pathway, as evidenced by decreased erythroid Fam132b gene (erythroferrone) expression, increased liver hepcidin gene expression and plasma hepcidin-25 levels and consequently reduced intestinal ferroportin-1 in apotransferrin-treated thalassemic mice.

  4. Porphyrin-loaded nanoparticles for cancer theranostics

    Science.gov (United States)

    Zhou, Yiming; Liang, Xiaolong; Dai, Zhifei

    2016-06-01

    Porphyrins have been used as pioneering theranostic agents not only for the photodynamic therapy, sonodynamic therapy and radiotherapy of cancer, but also for diagnostic fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. A variety of porphyrins have been developed but very few of them have actually been employed in clinical trials due to their poor selectivity to tumorous tissue and high accumulation rates in the skin. In addition, most porphyrin molecules are hydrophobic and form aggregates in aqueous media. Nevertheless, the use of nanoparticles as porphyrin carriers shows great promise to overcome these shortcomings. Encapsulating or attaching porphyrins to nanoparticles makes them more suitable for tissue delivery because we can create materials with a conveniently specific tissue lifetime, specific targeting, immune tolerance, and hydrophilicity as well as other characteristics through rational design. In addition, various functional components (e.g. for targeting, imaging or therapeutic functions) can be easily introduced into a single nanoparticle platform for cancer theranostics. This review presents the current state of knowledge on porphyrin-loaded nanoparticles for the interwined imaging and therapy of cancer. The future trends and limitations of prophyrin-loaded nanoparticles are also outlined.

  5. Dead Sea Minerals loaded polymeric nanoparticles.

    Science.gov (United States)

    Dessy, Alberto; Kubowicz, Stephan; Alderighi, Michele; Bartoli, Cristina; Piras, Anna Maria; Schmid, Ruth; Chiellini, Federica

    2011-10-15

    Therapeutic properties of Dead Sea Water (DSW) in the treatment of skin diseases such as atopic dermatitis, psoriasis and photo aging UV damaged skin have been well established. DSW is in fact rich in minerals such as calcium, magnesium, sodium, potassium, zinc and strontium which are known to exploit anti-inflammatory effects and to promote skin barrier recovery. In order to develop a Dead Sea Minerals (DSM) based drug delivery system for topical therapy of skin diseases, polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with monomethoxy poly(ethyleneglycol) 2000 MW (PEG) and 95% grafted with 2-methoxyethanol (VAM41-PEG) loaded with DSM were prepared by means of a combined miniemulsion/solvent evaporation process. The resulting nanoparticles were characterized in terms of dimension, morphology, biocompatibility, salt content and release. Cytocompatible spherical nanoparticles possessing an average diameter of about 300 nm, a time controlled drug release profile and a high formulation yield were obtained.

  6. Loading technique for preparing radionuclide containing nanoparticles

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012213698A The present invention relates to a novel composition and method for loading delivery systems such as liposome compositions with radionuclides useful in targeted diagnostic and/or therapy of target site, such as cancerous tissue and, in general, pathological conditions associ...... of positron emission tomography (PET) imaging technique. One specific aspect of the invention is directed to a method of producing nanoparticles with desired targeting properties for diagnostic and/or radio-therapeutic applications....

  7. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles.

    Science.gov (United States)

    Lee, Ga Hyun; Lee, Sung June; Jeong, Sang Won; Kim, Hyun-Chul; Park, Ga Young; Lee, Se Geun; Choi, Jin Hyun

    2016-07-01

    Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials.

  8. Cytotoxicity of liver targeted drug-loaded alginate nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitu-tion degree of GA were analyzed by 1H NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 ± 11 nm. The drug release was shown to last 20 days, and the MTT assay suggested that drug-loaded GA-ALG nanoparticles had a distinct kill-ing effect on 7703 hepatocellular carcinoma cells.

  9. Cytotoxicity of liver targeted drug-loaded aiginate nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG ChuangNian; WANG Wei; WANG ChunHong; TIAN Qin; HUANG Wei; YUAN Zhi; CHEN XueSi

    2009-01-01

    In this study,novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method.Glycyrrhetinic acid (GA,a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system,and the structure of GA-ALG and the substitution degree of GA were analyzed by 1H NMR,FT-IR and elemental analysis.The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro.Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214±11 nm.The drug release was shown to last 20 days,and the MTT assay suggested that drug-loaded GA-ALG nanoparticles had a distinct killing effect on 7703 hepatocellular carcinoma cells.

  10. Biophysical characterization of gold nanoparticles-loaded liposomes.

    Science.gov (United States)

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed

    2012-10-01

    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications.

  11. Preparation and Characterization of Nateglinide Loaded Hydrophobic Biocompatible Polymer Nanoparticles

    Science.gov (United States)

    Naik, Jitendra; Lokhande, Amolkumar; Mishra, Satyendra; Kulkarni, Ravindra

    2016-09-01

    The aim of the present study was to develop sustained release Nateglinide loaded Ethylcellulose nanoparticles and characterize the properties of recovered nanoparticles. The sustained release nanoparticles were prepared by oil in water single emulsion solvent evaporation method. The developed nanoparticles were characterised for their particle size, morphology, encapsulation efficiency, drug polymer compatibility and in vitro drug release. The drug polymer compatibility was investigated by XRPD. Imaging of particles was performed by field emission scanning electron microscopy. The highest particle size and encapsulation efficiency of recovered nanoparticles were 248.37 nm and 91.16 % respectively. The recovered nanoparticles are spherical in nature and uniform in size. Developed nanoparticles have low crystallinity than the pure Nateglinide. The highest drug-polymer ratio formulation showed drug release 61.1 ± 1.76 % up to 24 h.

  12. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2014-01-01

    Full Text Available We have demonstrated the loading of curcumin onto starch maleate (SM under mild conditions by mixing dissolved curcumin and SM nanoparticles separately in absolute ethanol and ethanol/aqueous (40 : 60 v/v, respectively. Curcumin-loaded starch-maleate (CurSM nanoparticles were subsequently precipitated from a homogeneous mixture of these solutions in absolute ethanol based on the solvent exchange method. TEM analysis indicated that the diameters of CurSM nanoparticles were ranged between 30 nm and 110 nm with a mean diameter of 50 nm. The curcumin loading capacity of SM as a function of loading duration was investigated using the UV-visible spectrophotometer. The loading of curcumin onto SM increased rapidly initially with loading duration, and the curcumin loading capacity of 15 mg/g was reached within 12 hours. CurSM nanoparticles exhibited substantially higher water solubility of 6.0 × 10−2 mg/mL which is about 300 times higher than that of pure curcumin. With enhanced water solubility and bioaccessibility of curcumin, the potential utility of CurSM nanoparticles in various biomedical applications is therefore envisaged.

  13. Formulation and evaluation of novel aspirin nanoparticles loaded suppositories

    Institute of Scientific and Technical Information of China (English)

    Ravi Sankar V.; Dhachinamoorthi D.; Chandra Shekar K.B.

    2013-01-01

    The main objective of the present work is to design aspirin nanoparticles loaded suppositories which will reduce the side effects caused by aspirin suppositories.Aspirin nanoparticles were prepared initially based on ionic-gelation mechanism and lyophilized.The prepared nanoparticles were evaluated,and the results confirmed that Fa9 formulation was the best with greater drug entrapment efficiency.Aspirin suppositories were prepared in order to investigate the best base composition.The prepared suppositories were evaluated and FS1,FS3,FS4,FS8,FS11,and FS12 were proved to be the best base compositions based on dissolution performed.The lyophilized aspirin nanoparticles of Fa9 were used to prepare aspirin nanoparticles loaded suppositories.The in vitro results revealed that Fas 11 was the best formulation.

  14. Docetaxel loaded chitosan nanoparticles: formulation, characterization and cytotoxicity studies.

    Science.gov (United States)

    Jain, Ankit; Thakur, Kanika; Kush, Preeti; Jain, Upendra K

    2014-08-01

    The primary objective of the present investigation was to explore biodegradable chitosan as a polymeric material for formulating docetaxel nanoparticles (DTX-NPs) to be used as a delivery system for breast cancer treatment. Docetaxel loaded chitosan nanoparticles were formulated by water-in-oil nanoemulsion system and characterized in terms of particle size, zeta potential, polydispersity index, drug entrapment efficiency (EE), loading capacity (LC), scanning electron microscopy (SEM), in vitro release study and drug release kinetics. Further, to evaluate the potential anticancer efficacy of docetaxel loaded chitosan nanoparticulate system, in vitro cytotoxicity studies on human breast cancer cell line (MDA-MB-231) were carried out. The morphological studies revealed the spherical shape of docetaxel loaded chitosan nanoparticles having an average size of 170.1±5.42-227.6±7.87nm, polydispersity index in the range of 0.215±0.041-0.378±0.059 and zeta potential between 28.3 and 31.4mV. Nanoparticles exhibited 65-76% of drug entrapment and 8-12% loading capacity releasing about 68-83% of the drug within 12h following Higuchi's square-root kinetics. An increase of 20% MDA-MB-231 cell line growth inhibition was determined by docetaxel loaded chitosan nanoparticles with respect to the free drug after 72h incubation.

  15. Formulation and characterization of levofloxacin-loaded biodegradable nanoparticles

    Directory of Open Access Journals (Sweden)

    Hitesh B Gevariya

    2011-01-01

    Full Text Available Effective management of various ocular infective diseases using levofloxacin eye drops remains challenging owing to poor ocular drug bioavailability. Hence, this study aimed to develop and evaluate nanosphere colloidal suspension-containing levofloxacin as potential ophthalmic drug delivery system. The levofloxacin-loaded chitosan nanoparticles were prepared by ionic gelation of chitosan with tripolyphosphate anions. The nanoparticles were characterized by scanning electron microscopy, zeta potential analyzer, differential scanning calorimetry, and fourier transform infrared spectroscopy. All the prepared formulations resulted in nano-range size particles (317-501 nm and displayed spherical smooth morphology with zeta potential (+37.2 to +43.5 mV. The encapsulation efficiency and loading capacity were 65-83% and 15-25%, respectively. The levofloxacin-loaded chitosan nanoparticles displayed more crystallinity than levofloxacin. The in vitro diffusion profile of levofloxacin from the nanoparticles showed a sustained release of the drug over a period of 20 h. Kinetic release profiles of levofloxacin from nanoparticles appeared to fit best with Higuchi model with zero order and the non-Fickian diffusion was superior phenomenon. Thus, the results suggest that levofloxacin-loaded chitosan nanoparticle suspension appears to be promising enough for effective management of ocular infections.

  16. The Cytotoxicity, Characteristics, and Optimization of Insulin-loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yasemin Budama-Kilinc

    2017-04-01

    Full Text Available Controlled release systems for insulin are frequent subjects of research, because it is rapidly degraded by proteolytic enzymes in the gastrointestinal tract and minimally absorbed after oral administration. Controlled release systems also provide significant contribution to its stability.  Different techniques are used for the preparation of drug-loaded nanoparticles, and many novel techniques are being developed. The size and morphology of insulin-loaded nanoparticles may vary according to performed techniques, even if the same polymer is used. The aim of this study was to demonstrate the cytotoxicity of insulin loaded nanoparticles and the effect of various synthesis parameters on the particle size, polydispersity index (PdI, loading efficiency, and particle morphology. In the experiments, poly(lactic-co-glycolic acid (PLGA and insulin-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w method. The characterization of the nanoparticles were performed with a UV spectrometer, the Zeta-sizer system, FTIR spectroscopy, and a scanning probe microscope. Cell toxicity of different concentrations was assayed with MTT methods on L929 fibroblast cells. The optimum size of the insulin-loaded PLGA nanoparticle was obtained with a 96.5% encapsulation efficiency, a 224.5 nm average particle size, and a 0.063 polydispersity index. This study obtained and characterized spherical morphology, determined that the nanoparticles have very low toxicity, and showed the effect of different parameters on particle size and polydispersity. DOI: http://dx.doi.org/10.17807/orbital.v9i1.934 

  17. Preparation of paclitaxel-loaded microspheres with magnetic nanoparticles

    Institute of Scientific and Technical Information of China (English)

    CUI Sheng; SHEN Xiaodong; SHI Ruihua; LIN Benlan; CHEN Ping

    2007-01-01

    The objective of this paper was to prepare paclitaxel-loaded microspheres,a kind of target-orientation anticancer drug.The paclitaxel-loaded microspheres were prepared with magnetic Fe3O4 nanoparticles and taxo1.The morphology was characterized by scanning electron microscopy(SEM),and the average size and the size distribution were determined by a laser-size distributing instrument.High performance liquid chromatography(HPLC)was used to measure the paclitaxel content.Experimental results indicated that the effective drug loading and the entrapment ratio of paclitaxel-loaded microspheres were 1.83% and 92,62%,respectively.

  18. Characterization and Antiproliferative Activity of Nobiletin-Loaded Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ana G. Luque-Alcaraz

    2012-01-01

    Full Text Available Nobiletin is a polymethoxyflavonoid with a remarkable antiproliferative effect. In order to overcome its low aqueous solubility and chemical instability, the use of nanoparticles as carriers has been proposed. This study explores the possibility of binding nobiletin to chitosan nanoparticles, as well as to evaluate their antiproliferative activity. The association and loading efficiencies are 69.1% and 7.0%, respectively. The formation of an imine bond between chitosan amine groups and the carbonyl group of nobiletin, via Schiff-base, is proposed. Nobiletin-loaded chitosan nanoparticles exhibit considerable inhibition (IC50=8 μg/mL of cancerous cells, revealing their great potential for applications in cancer chemotherapy.

  19. FORMULATION DEVELOPMENT AND EVALUATION OF ABACAVIR LOADED POLYMETHACRYLIC ACID NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    S.L. Dheivanai

    2012-03-01

    Full Text Available Nanoparticles render a promising drug delivery system of controlled and targeted drug release. These are specially designed to release the drug in the vicinity of target tissue. The aim of this present study was to develop and evaluate polymethacrylic acid nanoparticles containing nanoparticles abacavir in different drug to polymer ratio by nanoprecipitation method. SEM indicates that nanoparticles have a discrete spherical structure without aggregation. The average particle size was accurately found to be 120 ±9 - 403 ±3 nm. The particle size of the nanoparticles was gradually increased with increase in the proportion of polymethacrylic acid polymer. The drug containing nanoparticles was increasing on increasing polymer concentration up to a particular concentration ratio. No difference was observed in the extent of degradation of product during sixty days in which, nanoparticles were stored at various temperatures. FT-IR studies indicated that there were no chemical interaction between drug and polymer and stability of drug. The in-vitro release character from all the drug loaded batches was found to be zero order and rendered sustained release over a period of 24 h. The prepared formulations overcome and breakup the drawbacks and limitations of abacavir sustained release formulations and could possibility be advantageous in terms of increased bioavailability and efficacy of abacavir.

  20. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Wenqi

    2008-04-01

    Full Text Available Abstract Background It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU loaded block copolymers, with poly(γ-benzyl-L-glutamate (PBLG as the hydrophobic block and poly(ethylene glycol (PEG as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. Methods 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC. To study in vivo effects, LoVo cells (human colon cancer cell line or Tca8113 cells (human oral squamous cell carcinoma cell line were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. Results 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t1/2, 33.3 h vs. 5 min, lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L, and greater distribution volume (VD, 0.114 L vs. 0.069 L. Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p 0.05. Conclusion In our model system, 5-FU/PEG-PBLG nanoparticles

  1. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    Science.gov (United States)

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K

    2012-05-01

    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron.

  2. Defect-induced loading of Pt nanoparticles on carbon nanotubes

    Science.gov (United States)

    Kim, Sung Jin; Park, Yong Jin; Ra, Eun Ju; Kim, Ki Kang; An, Kay Hyeok; Lee, Young Hee; Choi, Jae Young; Park, Chan Ho; Doo, Seok Kwang; Park, Min Ho; Yang, Cheol Woong

    2007-01-01

    Carbon nanotubes-supported Pt nanoparticles were loaded using a microwave oven on the defective carbon nanotubes generated by an additional oxidant during acid treatment. The authors' Raman spectra and x-ray diffraction analysis demonstrated that defects created during oxidation and microwave treatment acted as nucleation seeds for Pt adsorption. The generated Pt nanoparticles had the size distributions of 2-3nm and were uniformly distributed on the defects of carbon nanotubes. The authors' density functional calculations showed that the adsorption of Pt atom on the vacancy of nanotube was significantly stronger by s-p hybridization with carbon atoms near the defect site.

  3. PREPARATION AND CHARACTERIZATION OF DOXORUBICIN-LOADED MAGNETIC ANTICANCER NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Doxorubicin(ADM)-loaded magnetic anticancer nanoparticles,using Fe3O4 as core, doxorubicin as model drug and polyvinylpyrrolidone (PVP) as matrix, were prepared by inverse emulsion polymerization. The experimental results showed that the average diameter of Fe3O4 particles was 19.8nm. The X-ray diffraction indicated that the prepared Fe3O4 particle was pure cubic Fe3O4. The results obtained by SEM showed the magnetic nanoparticles under optimal operating condition had a smooth spherical surface , LLS showed an average size of 78.7nm. And IR results demonstrated that they consisted of ADM, PVP and Fe3O4.

  4. Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles

    Science.gov (United States)

    Abdalla, Mohamed O.; Aneja, Ritu; Dean, Derrick; Rangari, Vijay; Russell, Albert; Jaynes, Jessie; Yates, Clayton; Turner, Timothy

    2010-01-01

    The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe 3O 4 nanoparticles with an average size of 10±2.5 nm. These Fe 3O 4 NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252±6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe 3O 4 NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (l-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe 3O 4 NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces.

  5. Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Mohamed O. [Department of Biology, Tuskegee University, Tuskegee, AL 36088 (United States); Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 (United States); Aneja, Ritu [Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Dean, Derrick [Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Rangari, Vijay [Tuskegee-Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088, United States, (United States); Russell, Albert [Department of Chemistry, Tuskegee University, Tuskegee, AL 36088, United States, (United States); Jaynes, Jessie [George Washington Carver Agricultural Experiment Station, Tuskegee University, Tuskegee, AL 36088 (United States); Yates, Clayton [Department of Biology, Tuskegee University, Tuskegee, AL 36088 (United States); Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 (United States); Turner, Timothy, E-mail: turner@tuskegee.ed [Department of Biology, Tuskegee University, Tuskegee, AL 36088 (United States); Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 (United States)

    2010-01-15

    The delivery of noscapine therapies directly to the site of the tumor would ultimately allow higher concentrations of the drug to be delivered, and prolong circulation time in vivo to enhance the therapeutic outcome of this drug. Therefore, we sought to design magnetic based polymeric nanoparticles for the site directed delivery of noscapine to invasive tumors. We synthesized Fe{sub 3}O{sub 4} nanoparticles with an average size of 10+-2.5 nm. These Fe{sub 3}O{sub 4} NPs were used to prepare noscapine loaded magnetic polymeric nanoparticles (NMNP) with an average size of 252+-6.3 nm. Fourier transform infrared (FT-IR) spectroscopy showed the encapsulation of noscapine on the surface of the polymer matrix. The encapsulation of the Fe{sub 3}O{sub 4} NPs on the surface of the polymer was confirmed by elemental analysis. We studied the drug loading efficiency of polylactide acid (PLLA) and poly (l-lactide acid-co-gylocolide) (PLGA) polymeric systems of various molecular weights. Our findings revealed that the molecular weight of the polymer plays a crucial role in the capacity of the drug loading on the polymer surface. Using a constant amount of polymer and Fe{sub 3}O{sub 4} NPs, both PLLA and PLGA at lower molecule weights showed higher loading efficiencies for the drug on their surfaces.

  6. Novel Lutein Loaded Lipid Nanoparticles on Porcine Corneal Distribution

    Directory of Open Access Journals (Sweden)

    Chi-Hsien Liu

    2014-01-01

    Full Text Available Topical delivery has the advantages including being user friendly and cost effective. Development of topical delivery carriers for lutein is becoming an important issue for the ocular drug delivery. Quantification of the partition coefficient of drug in the ocular tissue is the first step for the evaluation of delivery efficacy. The objectives of this study were to evaluate the effects of lipid nanoparticles and cyclodextrin (CD on the corneal lutein accumulation and to measure the partition coefficients in the porcine cornea. Lipid nanoparticles combined with 2% HPβCD could enhance lutein accumulation up to 209.2±18 (μg/g which is 4.9-fold higher than that of the nanoparticles. CD combined nanoparticles have 68% of drug loading efficiency and lower cytotoxicity in the bovine cornea cells. From the confocal images, this improvement is due to the increased partitioning of lutein to the corneal epithelium by CD in the lipid nanoparticles. The novel lipid nanoparticles could not only improve the stability and entrapment efficacy of lutein but also enhance the lutein accumulation and partition in the cornea. Additionally the corneal accumulation of lutein was further enhanced by increasing the lutein payload in the vehicles.

  7. Size, Loading Efficiency, and Cytotoxicity of Albumin-Loaded Chitosan Nanoparticles: An Artificial Neural Networks Study.

    Science.gov (United States)

    Baharifar, Hadi; Amani, Amir

    2017-01-01

    When designing nanoparticles for drug delivery, many variables such as size, loading efficiency, and cytotoxicity should be considered. Usually, smaller particles are preferred in drug delivery because of longer blood circulation time and their ability to escape from immune system, whereas smaller nanoparticles often show increased toxicity. Determination of parameters which affect size of particles and factors such as loading efficiency and cytotoxicity could be very helpful in designing drug delivery systems. In this work, albumin (as a protein drug model)-loaded chitosan nanoparticles were prepared by polyelectrolyte complexation method. Simultaneously, effects of 4 independent variables including chitosan and albumin concentrations, pH, and reaction time were determined on 3 dependent variables (i.e., size, loading efficiency, and cytotoxicity) by artificial neural networks. Results showed that concentrations of initial materials are the most important factors which may affect the dependent variables. A drop in the concentrations decreases the size directly, but they simultaneously decrease loading efficiency and increase cytotoxicity. Therefore, an optimization of the independent variables is required to obtain the most useful preparation.

  8. In vitro digestion of curcuminoid-loaded lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Noack, Andreas; Oidtmann, Johannes; Kutza, Johannes; Maeder, Karsten, E-mail: maeder@pharmazie.uni-halle.de [Martin Luther University Halle-Wittenberg, Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy (Germany)

    2012-09-15

    Curcuminoid-loaded lipid nanoparticles were produced by melt homogenization. The used lipid matrices were medium chain triglycerides, trimyristin (TM), and tristearin. The mean particle size of the preparations was between 130 and 180 nm. The incorporated curcuminoids revealed a good stability over a period of 12 months. The curcuminoid-loaded lipid nanoparticles were intended for the oral delivery of curcuminoids. Therefore, the fate of the triglyceride matrix in simulated gastric and simulated intestinal media under the influence of pepsin and pancreatin, respectively, was assessed. The degradation of the triglycerides was monitored by the pH-stat method and with high performance thin layer chromatography in connection with spectrodensitometry to quantify the different lipid fractions. The TM nanoparticles were not degraded in simulated gastric fluid (SGF), but the decomposition of the triglyceride matrix was rapid in the intestinal media. The digestion process was faster in the simulated fed state medium compared to the simulated fasted state medium. Additionally, the stability of the incorporated drug was tested in the respective physiological media. The curcuminoids showed an overall good stability in the different test media. The release of the curcuminoids from the lipid nanoparticles was determined by fluorescence imaging techniques. A slow release of the drug was found in phosphate buffer. In contrast, a more distinct release of the curcuminoids was verifiable in SGF and in simulated intestinal fluids. Overall, it was considered that the transfer of the drug into the outer media was mainly triggered by the lipid degradation and not by drug release.

  9. In vitro digestion of curcuminoid-loaded lipid nanoparticles

    Science.gov (United States)

    Noack, Andreas; Oidtmann, Johannes; Kutza, Johannes; Mäder, Karsten

    2012-09-01

    Curcuminoid-loaded lipid nanoparticles were produced by melt homogenization. The used lipid matrices were medium chain triglycerides, trimyristin (TM), and tristearin. The mean particle size of the preparations was between 130 and 180 nm. The incorporated curcuminoids revealed a good stability over a period of 12 months. The curcuminoid-loaded lipid nanoparticles were intended for the oral delivery of curcuminoids. Therefore, the fate of the triglyceride matrix in simulated gastric and simulated intestinal media under the influence of pepsin and pancreatin, respectively, was assessed. The degradation of the triglycerides was monitored by the pH-stat method and with high performance thin layer chromatography in connection with spectrodensitometry to quantify the different lipid fractions. The TM nanoparticles were not degraded in simulated gastric fluid (SGF), but the decomposition of the triglyceride matrix was rapid in the intestinal media. The digestion process was faster in the simulated fed state medium compared to the simulated fasted state medium. Additionally, the stability of the incorporated drug was tested in the respective physiological media. The curcuminoids showed an overall good stability in the different test media. The release of the curcuminoids from the lipid nanoparticles was determined by fluorescence imaging techniques. A slow release of the drug was found in phosphate buffer. In contrast, a more distinct release of the curcuminoids was verifiable in SGF and in simulated intestinal fluids. Overall, it was considered that the transfer of the drug into the outer media was mainly triggered by the lipid degradation and not by drug release.

  10. Fabrication of interconnected microporous biomaterials with high hydroxyapatite nanoparticle loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei; Yao Donggang [School of Polymer Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Zhang Qingwei; Lelkes, Peter I [School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104 (United States); Zhou, Jack G, E-mail: yao@gatech.ed [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104 (United States)

    2010-09-15

    Hydroxyapatite (HA) is known to promote osteogenicity and enhance the mechanical properties of biopolymers. However, incorporating a large amount of HA into a porous biopolymer still remains a challenge. In the present work, a new method was developed to produce interconnected microporous poly(glycolic-co-lactic acid) (PLGA) with high HA nanoparticle loading. First, a ternary blend comprising PLGA/PS (polystyrene)/HA (40/40/20 wt%) was prepared by melt blending under conditions for formation of a co-continuous phase structure. Next, a dynamic annealing stage under small-strain oscillation was applied to the blend to facilitate nanoparticle redistribution. Finally, the PS phase was sacrificially extracted, leaving a porous matrix. The results from different characterizations suggested that the applied small-strain oscillation substantially accelerated the migration of HA nanoparticles during annealing from the PS phase to the PLGA phase; nearly all HA particles were uniformly presented in the PLGA phase after a short period of annealing. After dissolution of the PS phase, a PLGA material with interconnected microporous structure was successfully produced, with a high HA loading above 30 wt%. The mechanisms beneath the experimental observations, particularly on the enhanced particle migration process, were discussed, and strategies for producing highly particle loaded biopolymers with interconnected microporous structures were proposed.

  11. Cargo and Carrier Effects of Rapamycin-Loaded Perfluorocarbon Nanoparticles

    Science.gov (United States)

    Bibee, Kristin Page

    Nanoparticle-based drug delivery has been championed as a means to increase local delivery of therapeutics while decreasing systemic drug exposure. By targeting the particles, and therefore the drugs, to diseased cells of interest, healthy cells will be spared and side effects avoided. This delivery mechanism would be particularly useful for drugs that interfere with cell growth and proliferation pathways, as blocking proliferation in normal cells leads to significant patient morbidity. Rapamycin is a macrolide and a known inhibitor of mTORC1, a protein complex that plays a crucial role in protein translation and cell growth. This work demonstrates the effects of rapamycin complexed with a nanoparticle carrier on two distinct pathologies: a new triple negative breast cancer cell line and a conventional mouse model of muscular dystrophy (mdx). Rapamycin is able to alter mitochondrial function and thus metabolism in both free and nanoparticle-delivered form without killing the cells. Although nanoparticles are considered to be a benign carrier, this work shows that perfluorocarbon nanoparticles are able to induce autophagy in vitro. The benefits of autophagy induction in cancer cells is cell and stage specific, but has been reported to be useful for radiosensitization of triple negative breast cancers. Additionally, the particles are shown to induce autophagy in the mdx model of Duchenne Muscular Dystrophy and, when loaded with rapamycin, dramatically improve strength even in older animals with muscular dystrophy. Overall, this work enhances our understanding of the cellular effects of perfluorocarbon nanoparticles in two different disease models and enhances prospects for clinical translation of nanoparticle-based drug delivery.

  12. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    Science.gov (United States)

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Sebastian, Víctor; Imbuluzqueta, Edurne; Arruebo, Manuel; Blanco-Prieto, María J.; Santamaría, Jesús

    2016-03-01

    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography.A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading

  13. Roxithromycin-loaded lipid nanoparticles for follicular targeting.

    Science.gov (United States)

    Wosicka-Frąckowiak, Hanna; Cal, Krzysztof; Stefanowska, Justyna; Główka, Eliza; Nowacka, Magdalena; Struck-Lewicka, Wiktoria; Govedarica, Biljana; Pasikowska, Monika; Dębowska, Renata; Jesionowski, Teofil; Srčič, Stane; Markuszewski, Michał Jan

    2015-11-30

    Particulate drug carriers e.g. nanoparticles (NPs) have been shown to penetrate and accumulate preferentially in skin hair follicles creating high local concentration of a drug. In order to develop such a follicle targeting system we obtained and characterized solid lipid nanoparticles (SLN) loaded with roxithromycin (ROX). The mean particle size (172±2 nm), polydisperisty index (0.237±0.007), zeta potential (-31.68±3.10 mV) and incorporation efficiency (82.1±3.0%) were measured. The long term stability of ROX-loaded SLN suspensions was proved up to 26 weeks. In vitro drug release study was performed using apparatus 4 dialysis adapters. Skin irritation test conducted using the EpiDerm™ tissue model demonstrated no irritation potential for ROX-loaded SLN. Ex vivo human skin penetration studies, employing rhodamine B hexyl ester perchlorate (RBHE) as a fluorescent dye to label the particles, revealed fluorescence deep in the skin, specifically around the hair follicles up to over 1mm depth. The comparison of fluorescence intensities after application of RBHE solution and RBHE-labelled ROX-loaded SLN was done. Then cyanoacrylate follicular biopsies were obtained in vivo and analyzed for ROX content, proving the possibility of penetration to human pilosebaceous units and delivering ROX by using SLN with the size below 200 nm.

  14. Solid lipid nanoparticles loading adefovir dipivoxil for antiviral therapy

    Institute of Scientific and Technical Information of China (English)

    Xing-guo ZHANG; Jing MIAO; Min-wei LI; Sai-ping JIANG; Fu-qiang HU; Yong-zhong DU

    2008-01-01

    Herein, solid lipid nanoparticles (SLN) were proposed as a new drug delivery system for adefovir dipivoxil (ADV). The octadecylamine-fluorescein isothiocynate (ODA-FITC) was synthesized and used as a fluorescence maker to be incorporated into SLN to investigate the time-dependent cellular uptake of SLN by HepG2.2.15. The SLN of monostearin with ODA-FITC or ADV were prepared by solvent diffusion method in an aqueous system. About 15wt% drug entrapment efficiency (EE) and 3wt% drug loading (DL) could be reached in SLN loading ADV. Comparing with free ADV, the inhibitory effects of ADV loaded in SLN on hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B virus (HBV) DNA levels in vitro were significantly enhanced.

  15. Synthesis of berberine loaded polymeric nanoparticles by central composite design

    Science.gov (United States)

    Mehra, Meenakshi; Sheorain, Jyoti; Kumari, Santosh

    2016-04-01

    Berberine is an isoquinoline alkaloid which is extracted from bark and roots of Berberis vulgaris plant. It has been used in ayurvedic medicine as it possess antimicrobial, antidiabetic, anticancer, antioxidant properties etc. But poor solubility of berberine leads to poor stability and bioavailability in medical formulations decreasing its efficacy. Hence nanoformulations of berberine can help in removing the limiting factors of alkaloid enhancing its utilization in pharmaceutical industry. Sodium alginate polymer was used to encapsulate berberine within nanoparticles by emulsion solvent evaporation method using tween 80 as a surfactant. Two factors and three level in central composite design was used to study the formulation. The optimized formulation (1% v/v of Tween 80 and 0.01% w/v of sodium alginate) of polymeric nanoparticles was taken for further evaluations. The size of synthesized nanoparticles was found to be 71.18 nm by particle size analysis (PSA). The berberine loaded polymeric nanoparticles showed better antibacterial activity compared to aqueous solution of berberine by well diffusion assay.

  16. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The aim of the present research was to study the possibility of using eugenol-loaded chitosan nanoparticles as antioxidants for active bio-based packaging material. Eugenol-loaded chitosan nanoparticles were incorporated into thermoplastic flour (TPF) - a model bio-based plastic - through an extrusion process at temperatures above 150°C. The influences of eugenol-loaded chitosan nanoparticles on crystallinity, morphology, thermal properties, radical scavenging activity, reducing power, tensile properties and barrier properties of TPF were investigated. Although the incorporation of 3% (w/w) of eugenol-loaded chitosan nanoparticles significantly reduced the extensibility and the oxygen barrier property of TPF, it provided antioxidant activity and improved the water vapor barrier property. In addition, TPF containing eugenol-loaded chitosan nanoparticles exhibited superior radical scavenging activity and stronger reducing power compared with TPF containing naked eugenol. The results suggest the applicability of TPF containing eugenol-loaded chitosan nanoparticles as an antioxidant active packaging material.

  17. Solid lipid nanoparticles loading adefovir dipivoxil for antiviral therapy

    OpenAIRE

    Zhang, Xing-Guo; Miao, Jing; Li, Min-wei; Jiang,Sai-Ping; Hu, Fu-Qiang; Du, Yong-Zhong

    2008-01-01

    Herein, solid lipid nanoparticles (SLN) were proposed as a new drug delivery system for adefovir dipivoxil (ADV). The octadecylamine-fluorescein isothiocynate (ODA-FITC) was synthesized and used as a fluorescence maker to be incorporated into SLN to investigate the time-dependent cellular uptake of SLN by HepG2.2.15. The SLN of monostearin with ODA-FITC or ADV were prepared by solvent diffusion method in an aqueous system. About 15 wt% drug entrapment efficiency (EE) and 3 wt% drug loading (D...

  18. Enhanced transdermal delivery of indomethacin-loaded PLGA nanoparticles by iontophoresis.

    Science.gov (United States)

    Tomoda, Keishiro; Terashima, Hiroto; Suzuki, Kenichi; Inagi, Toshio; Terada, Hiroshi; Makino, Kimiko

    2011-12-01

    Nanoparticles effectively deliver therapeutic agent by penetrating into the skin. Indomethacin (IM) and coumarin-6 were loaded in PLGA nanoparticles with an average diameter of 100 nm. IM and coumarin-6 were chosen as a model drug and as a fluorescent marker, respectively. The surfaces of the nanoparticles were negatively charged. Permeability of IM-loaded PLGA nanoparticles through rat skin was studied. Higher amount of IM was delivered through skin when IM was loaded in nanoparticles than IM was free molecules. Also, iontophoresis was applied to enhance the permeability of nanoparticles. When iontophoresis with 3 V/cm was applied, permeability of IM was much higher than that obtained by simple diffusion of nanoparticles through skin. The combination of charged nanoparticle system with iontophoresis is useful for effective transdermal delivery of therapeutic agents.

  19. Magnetic poly(D,L-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment

    Science.gov (United States)

    Antal, Iryna; Kubovcikova, Martina; Zavisova, Vlasta; Koneracka, Martina; Pechanova, Olga; Barta, Andrej; Cebova, Martina; Antal, Vitaliy; Diko, Pavel; Zduriencikova, Martina; Pudlak, Michal; Kopcansky, Peter

    2015-04-01

    In this study anti-hypertensive drug called aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles by the modified nanoprecipitation method. The effect of magnetite and drug concentrations on the size distribution and zeta potential of polymer nanoparticles was investigated. The optimized loadings were as follows: theoretical magnetite loading was 20 mg/100 mg polymer nanoparticles and aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles at theoretical loading 0.6 mg aliskiren/100 mg magnetic polymer nanoparticles. The physicochemical characteristics of nanoparticles were studied, with spherical shape of nanoparticles sized between 58 and 227 nm being one of the observed results. Differential scanning calorimetry and infrared spectroscopy confirmed that aliskiren was successfully identified in the magnetic poly(D,L-lactide) nanoparticles. The in vivo experiments indicated that encapsulated aliskiren decreased blood pressure of the studied male spontaneously hypertensive rat even more significantly than common administered drug.

  20. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment

    Science.gov (United States)

    Zhang, Zhen; Qian, Hanqing; Yang, Mi; Li, Rutian; Hu, Jing; Li, Li; Yu, Lixia; Liu, Baorui; Qian, Xiaoping

    2017-01-01

    Gambogic acid (GA) is expected to be a potential new antitumor drug, but its poor aqueous solubility and inevitable side effects limit its clinical application. Despite these inhe rent defects, various nanocarriers can be used to promote the solubility and tumor targeting of GA, improving antitumor efficiency. In addition, a cell membrane-coated nanoparticle platform that was reported recently, unites the customizability and flexibility of a synthetic copolymer, as well as the functionality and complexity of natural membrane, and is a new synthetic biomimetic nanocarrier with improved stability and biocompatibility. Here, we combined poly(lactic-co-glycolic acid) (PLGA) with red blood-cell membrane (RBCm), and evaluated whether GA-loaded RBCm nanoparticles can retain and improve the antitumor efficacy of GA with relatively lower toxicity in colorectal cancer treatment compared with free GA. We also confirmed the stability, biocompatibility, passive targeting, and few side effects of RBCm-GA/PLGA nanoparticles. We expect to provide a new drug carrier in the treatment of colorectal cancer, which has strong clinical application prospects. In addition, the potential antitumor drug GA and other similar drugs could achieve broader clinical applications via this biomimetic nanocarrier.

  1. Preparation and characterization of Biochanin A loaded solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunlei Tao

    2012-01-01

    Full Text Available Biochanin A, the predominant isoflavones found in plants, had proved its human health benefits. The purpose of this research was to study whether Biochanin A (BCA loaded solid lipid nanoparticles (SLN could improve solution and prolong the half-life of BCA. BCA-SLN was prepared by emulsion evaporation and low temperature solidification technique, and freeze-dried powders were developed to improve stability. The mean particle sizes, zeta potential, entrapment efficiency (EE, and drug loading capacity (DL of BCA was 176.0 nm, −18.7 ± 0.26, 97.15 ± 0.28%, and 6.38 ± 0.04%, respectively. The results of differential scanning calorimetry (DSC and X-ray diffraction analysis (XRD indicated that the BCA was wrapped and absorbed in the nanoparticles. The solution of preparation is much higher than the untreated BCA. Results of stability of SLN showed a relatively short-term stability after storage at 4°C and 25°C for 15 days. Drug release of untreated BCA and BCA-SLN was fit into the Biexponential equations and Weibull equations, respectively, and SLN showed sustained release properties. But after freeze-dried, stability was improved, and the EE and DL had a slightly decrease. The mean particle size was slightly increased, but the structure was not changed. In conclusion, SLN systems can represent an effective strategy to change the poor aqueous solubility and prolong the half-time of BCA.

  2. Microfluidic generation of droplets with a high loading of nanoparticles.

    Science.gov (United States)

    Wan, Jiandi; Shi, Lei; Benson, Bryan; Bruzek, Matthew J; Anthony, John E; Sinko, Patrick J; Prudhomme, Robert K; Stone, Howard A

    2012-09-18

    Microfluidic approaches for controlled generation of colloidal clusters, for example, via encapsulation of colloidal particles in droplets, have been used for the synthesis of functional materials including drug delivery carriers. Most of the studies, however, use a low concentration of an original colloidal suspension (microfluidic approaches for directly making droplets with moderate (10-25 wt %) and high (>60 wt %) particle concentrations. Three types of microfluidic devices, PDMS flow-focusing, PDMS T-junction, and microcapillary devices, are investigated for direct encapsulation of a high concentration of polystyrene (PS) nanoparticles in droplets. In particular, it is shown that PDMS devices fabricated by soft lithography can generate droplets from a 25 wt % PS suspension, whereas microcapillary devices made from glass capillary tubes are able to produce droplets from a 67 wt % PS nanoparticle suspension. When the PS concentration is between 0.6 and 25 wt %, the size of the droplets is found to change with the oil-to-water flow rate ratio and is independent of the concentration of particles in the initial suspensions. Drop sizes from ~12 to 40 μm are made using flow rate ratios Q(oil)/Q(water) from 20 to 1, respectively, with either of the PDMS devices. However, clogging occurs in PDMS devices at high PS concentrations (>25 wt %) arising from interactions between the PS colloids and the surface of PDMS devices. Glass microcapillary devices, on the other hand, are resistant to clogging and can produce droplets continuously even when the concentration of PS nanoparticles reaches 67 wt %. We believe that our findings indicate useful approaches and guidelines for the controlled generation of emulsions filled with a high loading of nanoparticles, which are useful for drug delivery applications.

  3. Ocular pharmacoscintigraphic and aqueous humoral drug availability of ganciclovir-loaded mucoadhesive nanoparticles in rabbits

    NARCIS (Netherlands)

    Akhter, Sohail; Ramazani, Farshad; Ahmad, Mohammad Zaki; Ahmad, Farjam Jalees; Rahman, Ziyaur; Bhatnagar, Aseem; Storm, Gert

    2013-01-01

    The present report describes the improved ocular retention and aqueous humoral drug availability of ganciclovir (GCV) when administered via topical instillation of different kind of nanoparticles onto the rabbit eye. GCV was loaded into PLGA nanoparticles, chitosan-coated nanoparticles and chitosan-

  4. Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Ma, Xing; Zhao, Yanli

    2012-10-24

    Squaraine dyes were loaded inside mesoporous silica nanoparticles, and the nanoparticle surfaces were then wrapped with ultrathin graphene oxide sheets, leading to the formation of a novel hybrid material. The hybrid exhibits remarkable stability and can efficiently protect the loaded dye from nucleophilic attack. The biocompatible hybrid is noncytotoxic and presents significant potential for application in fluorescence imaging in vitro.

  5. Apotransferrin-Induced Recovery after Hypoxic/Ischaemic Injury on Myelination

    Directory of Open Access Journals (Sweden)

    Mariano Guardia Clausi

    2010-10-01

    Full Text Available We have previously demonstrated that aTf (apotransferrin accelerates maturation of OLs (oligodendrocytes in vitro as well as in vivo. The purpose of this study is to determine whether aTf plays a functional role in a model of H/I (hypoxia/ischaemia in the neonatal brain. Twenty-four hours after H/I insult, neonatal rats were intracranially injected with aTf and the effects of this treatment were evaluated in the CC (corpus callosum as well as the SVZ (subventricular zone at different time points. Similar to previous studies, the H/I event produced severe demyelination in the CC. Demyelination was accompanied by microglial activation, astrogliosis and iron deposition. Ferritin levels increased together with lipid peroxidation and apoptotic cell death. Histological examination after the H/I event in brain tissue of aTf-treated animals (H/I aTF revealed a great number of mature OLs repopulating the CC compared with saline-treated animals (H/I S. ApoTf treatment induced a gradual increase in MBP (myelin basic protein and myelin lipid staining in the CC reaching normal levels after 15 days. Furthermore, significant increase in the number of OPCs (oligodendroglial progenitor cells was found in the SVZ of aTf-treated brains compared with H/I S. Specifically, there was a rise in cells positive for OPC markers, i.e. PDGFRα and SHH+ cells, with a decrease in cleaved-caspase-3+ cells compared with H/I S. Additionally, neurospheres from aTf-treated rats were bigger in size and produced more O4/MBP+ cells. Our findings indicate a role for aTf as a potential inducer of OLs in neonatal rat brain in acute demyelination caused by H/I and a contribution to the differentiation/maturation of OLs and survival/migration of SVZ progenitors after demyelination in vivo.

  6. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy

    Directory of Open Access Journals (Sweden)

    Oh KS

    2016-03-01

    Full Text Available Keun Sang Oh,1,* Kyungim Kim,1,* Byeong Deok Yoon,1 Hye Jin Lee,1 Dal Yong Park,1 Eun-yeong Kim,1 Kiho Lee,1 Jae Hong Seo,2 Soon Hong Yuk1,2 1College of Pharmacy, Korea University, Sejong, 2Biomedical Research Center, Korea University Guro Hospital, Guro-gu, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: A mixture of docetaxel (DTX and Solutol® HS 15 (Solutol transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs with a DTX-loaded Solutol nanodroplet (as template NPs core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm were observed to have an increased average diameter (from 11.7 nm to 156.1 nm and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects. Keywords: multilayer nanoparticles, Solutol, Pluronic F-68, docetaxel, cancer therapy

  7. Drug loading to lipid-based cationic nanoparticles

    Science.gov (United States)

    Cavalcanti, Leide P.; Konovalov, Oleg; Torriani, Iris L.; Haas, Heinrich

    2005-08-01

    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures.

  8. Magnetic poly(D,L-lactide) nanoparticles loaded with aliskiren: A promising tool for hypertension treatment

    Energy Technology Data Exchange (ETDEWEB)

    Antal, Iryna, E-mail: iryna.antal@saske.sk [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Kubovcikova, Martina; Zavisova, Vlasta; Koneracka, Martina [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Pechanova, Olga; Barta, Andrej; Cebova, Martina [Institute of Normal and Pathological Physiology, SAS, Bratislava (Slovakia); Antal, Vitaliy; Diko, Pavel [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia); Zduriencikova, Martina [Cancer Research Institute, SAS, Bratislava (Slovakia); Pudlak, Michal; Kopcansky, Peter [Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2015-04-15

    In this study anti-hypertensive drug called aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles by the modified nanoprecipitation method. The effect of magnetite and drug concentrations on the size distribution and zeta potential of polymer nanoparticles was investigated. The optimized loadings were as follows: theoretical magnetite loading was 20 mg/100 mg polymer nanoparticles and aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles at theoretical loading 0.6 mg aliskiren/100 mg magnetic polymer nanoparticles. The physicochemical characteristics of nanoparticles were studied, with spherical shape of nanoparticles sized between 58 and 227 nm being one of the observed results. Differential scanning calorimetry and infrared spectroscopy confirmed that aliskiren was successfully identified in the magnetic poly(D,L-lactide) nanoparticles. The in vivo experiments indicated that encapsulated aliskiren decreased blood pressure of the studied male spontaneously hypertensive rat even more significantly than common administered drug. - Highlights: • Anti-hypertensive drug called aliskiren was encapsulated in magnetic poly(D,L-lactide) nanoparticles by modified nanoprecipitation method. • The optimisation of magnetite and drug loading with regard to the size distribution and zeta potential was investigated. • The physicochemical characteristics of nanoparticles were studied by different techniques. • The in vivo experiments indicated that encapsulated aliskiren decreased blood pressure of the studied male spontaneously hypertensive rat even more significantly than common administered drug.

  9. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb Pro: formulation aspects and nanoparticle stability to nebulization.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Kleimann, Pia; Gessler, Tobias; Seeger, Werner; Kissel, Thomas; Schmehl, Thomas

    2012-01-17

    Polymeric nanoparticles meet the increasing interest for drug delivery applications and hold great promise to improve controlled drug delivery to the lung. Here, we present a series of investigations that were carried out to understand the impact of formulation variables on the nebulization performance of novel biodegradable sildenafil-loaded nanoparticles designed for targeted aerosol therapy of life-threatening pulmonary arterial hypertension. Narrowly distributed poly(D,L-lactide-co-glycolide) nanoparticles (size: ∼200 nm) were prepared by a solvent evaporation technique using poly(vinyl alcohol) (PVA) as stabilizer. The aerodynamic and output characteristics using the Aeroneb Pro nebulizer correlated well with the dynamic viscosity of the employed fluids for nebulization. The nebulization performance was mainly affected by the amount of employed stabilizer, rather than by the applied nanoparticle concentration. Nanoparticles revealed physical stability against forces generated during aerosolization, what is attributed to the adsorbed PVA layer around the nanoparticles. Sildenafil was successfully encapsulated into nanoparticles (encapsulation efficiency: ∼80%). Size, size distribution and sildenafil content of nanoparticles were not affected by nebulization and the in vitro drug release profile demonstrated a sustained sildenafil release over ∼120 min. The current study suggests that the prepared sildenafil-loaded nanoparticles are a promising pharmaceutical for the therapy of pulmonary arterial hypertension.

  10. Functionalization of Hollow Mesoporous Silica Nanoparticles for Improved 5-FU Loading

    Directory of Open Access Journals (Sweden)

    Xiaodong She

    2015-01-01

    Full Text Available Hollow mesoporous silica nanoparticles were successfully fabricated and functionalized with appropriate silanes. After modifications, amine, carboxyl, cyano, and methyl groups were grafted onto the nanoparticles and all functionalized hollow mesoporous silica nanoparticles maintained a spherical and hollow structure with a mean diameter of ~120 nm and a shell thickness of ~10 nm. The loading capacity of the hollow mesoporous silica nanoaprticles to the anticancer drug, 5-fluorouracil, can be controlled via precise functionalization. The presence of amine groups on the surface of nanoparticles resulted in the highest loading capacity of 28.89%, due to the amine functionalized nanoparticles having a similar hydrophilicity but reverse charge to the drug. In addition, the change in pH leads to the variation of the intensity of electrostatic force between nanoparticles and the drug, which finally affects the loading capacity of amine functionalized hollow mesoporous silica nanoparticles to some extent. Higher drug loading was observed at pH of 7.4 and 8.5 as 5-fluorouracil becomes more deprotonated in alkaline conditions. The improved drug loading capacity by amine functionalized hollow mesoporous silica nanoparticles has demonstrated that they can become potential intracellular 5-fluorouracil delivery vehicles for cancers.

  11. Bottom-up fabrication of nanohole arrays loaded with gold nanoparticles: extraordinary plasmonic sensors.

    Science.gov (United States)

    Weiler, Markus; Quint, Stefan B; Klenk, Simon; Pacholski, Claudia

    2014-12-18

    A chemical route to periodic hole arrays in gold films whose holes are loaded with single gold nanoparticles is presented, paving the road to mass production of highly sensitive plasmonic sensors on large areas.

  12. Loading Ag nanoparticles on Cd(II) boron imidazolate framework for photocatalysis

    Science.gov (United States)

    Liu, Min; Zhang, De-Xiang; Chen, Shumei; Wen, Tian

    2016-05-01

    An amine-functionalized Cd(II) boron imidazolate framework (BIF-77) with three-dimensional open structure has been successfully synthesized, which can load Ag nanoparticles (NPs) for photocatalytic degradation of methylene blue (MB).

  13. Streptomycin-loaded PLGA-alginate nanoparticles: preparation, characterization, and assessment

    Science.gov (United States)

    Asadi, Asadollah

    2014-04-01

    The aim of this study was to formulate and characterize streptomycin-loaded PLGA-alginate nanoparticles for their potential therapeutic use in Salmonella subsp. enterica ATCC 14028 infections. The streptomycin nanoparticle was prepared by solvent diffusion method, and the other properties such as size, zeta potential, loading efficacy, release kinetics, and antimicrobial strength were evaluated. The survey shows that nanoparticles may serve as a carrier of streptomycin and may provide localized antibacterial activity in the treatment of Salmonellosis. Electron microscopy showed spherical particles with indentations. The average size of the nanoparticles was 90 nm. At pH 7.2, the release kinetics of streptomycin from the nanoparticles was successfully illustrated as an initial burst defined by a first order equation that after this stage, it has a drastic tendency to obtain steady state. Nevertheless, nanoparticles showed loading efficacy nearly about 70-75 %. In addition, the tendency of concentration of streptomycin released from nanoparticles to reach antibacterial activity was similar to that of free streptomycin against PLGA-alginate, but it had threefold more antimicrobial strength in comparison with free streptomycin. This work shows the potential use of streptomycin-loaded PLGA-alginate nanoparticles and its capability.

  14. Poly(lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanoparticles: drug loading and release properties.

    Science.gov (United States)

    Katsikogianni, Georgia; Avgoustakis, Konstantinos

    2006-01-01

    In this work, the drug loading and in vitro release properties of PLGA-mPEG nanoparticles were studied. Three methyl-xanthine derivatives differing significantly in aqueous solubility, i.e., caffeine, theophylline, and theobromine, were employed as model drugs. Two different PLGA-mPEG copolymer compositions, namely PLGA(40)mPEG(5) and PLGA(136)mPEG(5), were included in the study. The nanoparticles were prepared by a double emulsion technique. The drug release properties of the nanoparticles in phosphate buffered saline (PBS) and in human plasma were determined. An increase of the drug proportion in the feed led to increased drug loading. The composition of the PLGA-mPEG copolymer (PLGA/mPEG molar ratio) did not appear to affect drug loading and encapsulation. Caffeine exhibited higher loading in the nanoparticles than theobromine and this exhibited a little higher loading than theophylline. Solid-state solubility of the drug in PLGA-mPEG did not affect drug loading. Drug loading and encapsulation in the PLGA-mPEG nanoparticles appeared to be governed by the partition coefficient of the drug between the organic phase and the external aqueous phase employed in nanoparticle preparation. Relatively low loading and encapsulation values were obtained, suggesting that the physical entrapment of drugs in PLGA-mPEG nanoparticles could only be an option in the development of formulations of potent drugs. Only the release of the least water-soluble theobromine was efficiently sustained by its entrapment in the nanoparticles, indicating that the physical entrapment of drugs provides the means for the development of controlled-release PLGA-mPEG nanoparticulate formulations only in the case of drugs with low aqueous solubility.

  15. Drug-Loaded Nanoparticles from 'Ershiwuwei Shanhu' Pill Induced Cellular Swelling of SH-SY5Y Neuroblastoma Cells.

    Science.gov (United States)

    Liu, Yali; Song, Xiaoping; Zheng, Siting; Luo, Yuandai; Wang, Leyu; Huang, Fukai; Qiu, Xiaozhong

    2016-03-01

    Drug-loaded nanoparticles from 'Ershiwuwei Shanhu' Pill (ESP) inducing cellular swelling of the SH-SY5Y neuroblastoma cells were investigated. Electron microscope was used to observe nanoparticles existing in the freeze-dried supernatant of 'Ershiwuwei Shanhu' Pill. Drug-free nanoparticles were obtained from the solution of drug-loaded nanoparticles via dialysis. The size and zeta potential of two kinds of nanoparticles were tested by granularmetric analysis and surface charge analysis. Results showed that nanoparticles could penetrate into cellular nucleus and caused cell swelling. CCK8 analysis implied that low concentration of drug-free nanoparticles from 'Ershiwuwei Shanhu' Pill can induce cell proliferation of the SH-SY5Y neuroblastoma cells, while drug-loaded nanoparticles can reduce cell viability through NF-κB pathway. Drug-loaded nanoparticles existed in 'Ershiwuwei Shanhu' pill might play a vital role during pharmacotherapy, which served as nanocarriers in delivering drugs into cells.

  16. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    Science.gov (United States)

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system.

  17. Activation of Latent HIV Using Drug-loaded Nanoparticles

    Science.gov (United States)

    Kovochich, Michael

    Antiretroviral therapy is currently only capable of controlling human immunodeficiency virus (HIV) replication, rather than completely eradicating virus from patients. This is due in part to the establishment of a latent virus reservoir in resting CD4+ T-cells, which persists even in the presence of highly active antiretroviral therapy (HAART). It is thought that forced activation of latently infected cells could induce virus production, allowing targeting of the cell by the immune response. A variety of molecules are able to stimulate HIV from latency. However, no tested purging strategy has proven capable of eliminating the infection completely or preventing viral rebound if therapy is stopped. Hence, novel latency activation approaches are required. Nanoparticles can offer several advantages over more traditional drug delivery methods, including improved drug solubility, stability, and the ability to simultaneously target multiple different molecules to particular cell or tissue types. Here we describe the development of a novel lipid nanoparticle with the protein kinase C activator bryostatin-2 incorporated (LNP-Bry). These particles can target, activate primary human CD4+ T-cells, and stimulate latent virus production from human T-cell lines in vitro and from latently infected cells in a humanized mouse model ex vivo. This activation was synergistically enhanced by the histone deacetylase inhibitor (HDACi) sodium butyrate. Furthermore, LNP-Bry can also be loaded with the protease inhibitor nelfinavir (LNP-Bry-Nel), producing a particle capable of both activating latent virus and inhibiting viral spread. LNP-Bry was further tested for its in vivo biodistribution in both wild type mice (C57 black 6), as well as humanized mice (SCID-hu Thy/Liv, and bone marrow-liver-thymus [BLT]). LNP-Bry accumulated in the spleen and induced the early activation marker CD69 in wild type mice. Taken together, these data demonstrate the ability of nanotechnological approaches to

  18. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    Full Text Available Abstract Background Hydroxycamptothecin (HCPT has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol-poly(γ-benzyl-L-glutamate (PEG-PBLG, and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT. Results The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 β of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 μg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p 0.05. Conclusion Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle

  19. Development of Drug Loaded Nanoparticles Binding to Hydroxyapatite Based on a Bisphosphonate Modified Nonionic Surfactant

    Directory of Open Access Journals (Sweden)

    Jiabin Zhang

    2015-01-01

    Full Text Available This study aimed at development of drug loaded nanoparticles which could bind to hydroxyapatite (HA to construct drug or growth factor releasing bone graft substitutes. To this end, the terminal hydroxyl group of a nonionic surfactant Brij 78 (polyoxyethylene (20 stearyl ether was first modified with pamidronate (Pa. Using Pa-Brij 78 as both a surfactant and an affinity ligand to HA, three different Pa surface functionalized nanoparticles were prepared, named as solid lipid nanoparticles (Pa-SNPs, nanoemulsions (Pa-NEMs, and PLGA nanoparticles (Pa-PNPs. A model drug curcumin was successfully encapsulated in the three nanoparticles. The sizes of Pa-NEM and Pa-PNP were around 150 nm and the size of Pa-SNP was around 90 nm with polydispersity indexes (PDIs less than 0.20. Drug encapsulation efficiencies of the three nanoparticles were all greater than 85%. Furthermore, the order of binding affinity of the nanoparticles to HA was Pa-PNP>Pa-NEM=Pa-SNP. After lyophilization, the sizes of the three nanoparticles were increased about 0.5–2.0-fold but their binding affinities to HA were almost the same as the fresh prepared nanoparticles. In conclusion, a Pa-modified Brij 78 was synthesized and used for fabrication of a series of drug loaded nanoparticles to construct drug-eluting HA-based bone graft substitutes.

  20. Evaluation of self-assembled HCPT-loaded PEG- b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles

    Science.gov (United States)

    Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing

    2014-12-01

    We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly( d, l-lactide) (PEG- b-PLA) and PLA, respectively. Both HCPT-loaded PEG- b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG- b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG- b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG- b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG- b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

  1. Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

    Science.gov (United States)

    Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing

    2014-12-01

    We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

  2. Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment.

    Science.gov (United States)

    Yallapu, Murali M; Ebeling, Mara C; Khan, Sheema; Sundram, Vasudha; Chauhan, Neeraj; Gupta, Brij K; Puumala, Susan E; Jaggi, Meena; Chauhan, Subhash C

    2013-08-01

    Curcumin (CUR), a naturally occurring polyphenol derived from the root of Curcuma longa, has showed potent anticancer and cancer prevention activity in a variety of cancers. However, the clinical translation of CUR has been significantly hampered due to its extensive degradation, suboptimal pharmacokinetics, and poor bioavailability. To address these clinically relevant issues, we have developed a novel CUR-loaded magnetic nanoparticle (MNP-CUR) formulation. Herein, we have evaluated the in vitro and in vivo therapeutic efficacy of this novel MNP-CUR formulation in pancreatic cancer. Human pancreatic cancer cells (HPAF-II and Panc-1) exhibited efficient internalization of the MNP-CUR formulation in a dose-dependent manner. As a result, the MNP-CUR formulation effectively inhibited growth of HPAF-II and Panc-1 cells in cell proliferation and colony formation assays. The MNP-CUR formulation suppressed pancreatic tumor growth in an HPAF-II xenograft mouse model and improved the survival of mice by delaying tumor growth. The growth-inhibitory effect of MNP-CUR formulation correlated with the suppression of proliferating cell nuclear antigen (PCNA), B-cell lymphoma-extra large (Bcl-xL), induced myeloid leukemia cell differentiation protein (Mcl-1), cell surface-associated Mucin 1 (MUC1), collagen I, and enhanced membrane β-catenin expression. MNP-CUR formulation did not show any sign of hemotoxicity and was stable after incubation with human serum proteins. In addition, the MNP-CUR formulation improved serum bioavailability of CUR in mice up to 2.5-fold as compared with free CUR. Biodistribution studies show that a significant amount of MNP-CUR formulation was able to reach the pancreatic xenograft tumor(s), which suggests its clinical translational potential. In conclusion, this study suggests that our novel MNP-CUR formulation can be valuable for the treatment of pancreatic cancer.

  3. PLGA nanoparticles from nano-emulsion templating as imaging agents: Versatile technology to obtain nanoparticles loaded with fluorescent dyes.

    Science.gov (United States)

    Fornaguera, C; Feiner-Gracia, N; Calderó, G; García-Celma, M J; Solans, C

    2016-11-01

    The interest in polymeric nanoparticles as imaging systems for biomedical applications has increased notably in the last decades. In this work, PLGA nanoparticles, prepared from nano-emulsion templating, have been used to prepare novel fluorescent imaging agents. Two model fluorescent dyes were chosen and dissolved in the oil phase of the nano-emulsions together with PLGA. Nano-emulsions were prepared by the phase inversion composition (PIC) low-energy method. Fluorescent dye-loaded nanoparticles were obtained by solvent evaporation of nano-emulsion templates. PLGA nanoparticles loaded with the fluorescent dyes showed hydrodynamic radii lower than 40nm; markedly lower than those reported in previous studies. The small nanoparticle size was attributed to the nano-emulsification strategy used. PLGA nanoparticles showed negative surface charge and enough stability to be used for biomedical imaging purposes. Encapsulation efficiencies were higher than 99%, which was also attributed to the nano-emulsification approach as well as to the low solubility of the dyes in the aqueous component. Release kinetics of both fluorescent dyes from the nanoparticle dispersions was pH-independent and sustained. These results indicate that the dyes could remain encapsulated enough time to reach any organ and that the decrease of the pH produced during cell internalization by the endocytic route would not affect their release. Therefore, it can be assumed that these nanoparticles are appropriate as systemic imaging agents. In addition, in vitro toxicity tests showed that nanoparticles are non-cytotoxic. Consequently, it can be concluded that the preparation of PLGA nanoparticles from nano-emulsion templating represents a very versatile technology that enables obtaining biocompatible, biodegradable and safe imaging agents suitable for biomedical purposes.

  4. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  5. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: III. Impact of drug nanoparticle loading.

    Science.gov (United States)

    Krull, Scott M; Moreno, Jacqueline; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-03-16

    Polymer strip films have emerged as a robust platform for poorly water-soluble drug delivery. However, the common conception is that films cannot exceed low drug loadings, mainly due to poor drug stability, slow release, and film brittleness. This study explores the ability to achieve high loadings of poorly water-soluble drug nanoparticles in strip films while retaining good mechanical properties and enhanced dissolution rate. Aqueous suspensions containing up to 30wt% griseofulvin nanoparticles were prepared via wet stirred media milling and incorporated into hydroxypropyl methylcellulose (HPMC) films. Griseofulvin loading in films was adjusted to be between 9 and 49wt% in HPMC-E15 films and 30 and 73wt% in HPMC-E4M films by varying the mixing ratio of HPMC solution-to-griseofulvin suspension. All films exhibited good content uniformity and nanoparticle redispersibility up to 50wt% griseofulvin, while E4M films above 50wt% griseofulvin had slightly worse content uniformity and poor nanoparticle redispersibility. Increasing drug loading in films generally required more time to achieve 100% release during dissolution, although polymer-drug clusters dispersed from E4M films above 50wt% griseofulvin, resulting in similar dissolution profiles. While all films exhibited good tensile strength, a significant decrease in percent elongation was observed above 40-50wt% GF, resulting in brittle films.

  6. In vitro effect of imatinib mesylate loaded on polybutylcyanoacrylate nanoparticles on leukemia cell line K562.

    Science.gov (United States)

    Hasandoost, Leyla; Akbarzadeh, Azim; Attar, Hossein; Heydarinasab, Amir

    2017-05-01

    The study aimed to prepare imatinib mesylate-loaded polybutylcyanoacrylate (PBCA) nanoparticles and evaluate their efficacy on leukemia cell line K562. The formulation was prepared by miniemulsion polymerization technique. Nanoparticles were characterized by dynamic light scattering (DLS), spectrophotometry, Fourier transform infrared spectroscopy (FTIR), dialysis membrane, and 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) techniques. Nanoscale particles with high encapsulation efficiency (86%) and physical entrapment of drug were observed. In addition, nanoparticles showed suitable drug retention capability and potentiate the cytotoxicity effects of imatinib mesylate. Findings of study suggested PBCA nanoparticles are promising carrier for imatinib mesylate delivery to leukemia cell line K562.

  7. Nanoparticles Containing High Loads of Paclitaxel-Silicate Prodrugs: Formulation, Drug Release, and Anticancer Efficacy.

    Science.gov (United States)

    Han, Jing; Michel, Andrew R; Lee, Han Seung; Kalscheuer, Stephen; Wohl, Adam; Hoye, Thomas R; McCormick, Alon V; Panyam, Jayanth; Macosko, Christopher W

    2015-12-07

    We have investigated particle size, interior structure, drug release kinetics, and anticancer efficacy of PEG-b-PLGA-based nanoparticles loaded with a series of paclitaxel (PTX)-silicate prodrugs [PTX-Si(OR)3]. Silicate derivatization enabled us to adjust the hydrophobicity and hydrolytic lability of the prodrugs by the choice of the alkyl group (R) in the silicate derivatives. The greater hydrophobicity of these prodrugs allows for the preparation of nanoparticles that are stable in aqueous dispersion even when loaded with up to ca. 75 wt % of the prodrug. The hydrolytic lability of silicates allows for facile conversion of prodrugs back to the parent drug, PTX. A suite of eight PTX-silicate prodrugs was investigated; nanoparticles were made by flash nanoprecipitation (FNP) using a confined impingement jet mixer with a dilution step (CIJ-D). The resulting nanoparticles were 80-150 nm in size with a loading level of 47-74 wt % (wt %) of a PTX-silicate, which corresponds to 36-59 effective wt % of free PTX. Cryogenic transmission electron microscopy images show that particles are typically spherical with a core-shell structure. Prodrug/drug release profiles were measured. Release tended to be slower for prodrugs having greater hydrophobicity and slower hydrolysis rate. Nanoparticles loaded with PTX-silicate prodrugs that hydrolyze most rapidly showed in vitro cytotoxicity similar to that of the parent PTX. Nanoparticles loaded with more labile silicates also tended to show greater in vivo efficacy.

  8. A Novel Preparation Method for 5-Aminosalicylic Acid Loaded Eudragit S100 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sining Li

    2012-05-01

    Full Text Available In this study, solution enhanced dispersion by supercritical fluids (SEDS technique was applied for the preparation of 5-aminosalicylic acid (5-ASA loaded Eudragit S100 (EU S100 nanoparticles. The effects of various process variables including pressure, temperature, 5-ASA concentration and solution flow rate on morphology, particle size, 5-ASA loading and entrapment efficiency of nanoparticles were investigated. Under the appropriate conditions, drug-loaded nanoparticles exhibited a spherical shape and small particle size with narrow particle size distribution. In addition, the nanoparticles prepared were characterized by X-ray diffraction, Differential scanning calorimetry and Fourier transform infrared spectroscopy analyses. The results showed that 5-ASA was imbedded into EU S100 in an amorphous state after SEDS processing and the SEDS process did not induce degradation of 5-ASA.

  9. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne

    Directory of Open Access Journals (Sweden)

    V. Vijayan

    2013-01-01

    Conclusion: The result concluded that Neem oil loaded solid lipid nanoparticles with more lecithin content in their colloid exhibit sustained effect which satisfactorily produced the antibacterial action on Acne microbes. Therefore Neem oil loaded SLN was used successfully for prolonged treatment of Acne.

  10. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

    Science.gov (United States)

    Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt

    2015-09-01

    In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan.

  11. Design of Nanoparticles Loaded Acyclovir for Controlled Delivery System

    Directory of Open Access Journals (Sweden)

    Shadab Shahsavari

    2015-10-01

    Full Text Available Introduction: The aim of this research was to develop a new drug release systems based on Nanoparticles. In this study, the natural polymer chitosan was used for preparation of nanoparticles due to its unique properties, such as biocompatibility and biodegradability. Methods: The polymeric nano-drug controlled release system has been designed with experimental design D-optimal response surface methodology, for varied variables such as the concentration of acyclovir, concentration ratio of chitosan/ TPP and pH using the ionic gelation method. The nanoparticles were characterized morphologically by scanning electron microcopy (SEM, particle size analyser (DLS for determining size, zeta and PdI, Fourier Transform Infra-Red (FTIR Spectroscopy for determination of structure of nanoparticlesand thermo gravimetric analysis (TGAfor studying thermal behavior. The optimized nanoparticles were characterized. Results: The size of the particles was detected to be 132±24.3 nm; zeta potential was 32±2.87 mV; PdI of particles was 0.159±0.05; and calculated EE% was 85±4.38%. An in-vitro release study of the prepared nanoparticles illustrated that the percentage of acyclovir released from the nanoparticles was 80.17±2.45% within 48 hrs. Conclusion: The optimized nanoparticles according to SEM image, exhibited segregated and non-aggregated nanoparticles with sub-spherical smooth morphology and also the high thermal stability of acyclovir nanoparticles at temperature up to 200°C due to TGA analysis, which indicated a well-established structure of nanoparticles.

  12. X-ray excited luminescence of polystyrene composites loaded with SrF2 nanoparticles

    Science.gov (United States)

    Demkiv, T. M.; Halyatkin, O. O.; Vistovskyy, V. V.; Hevyk, V. B.; Yakibchuk, P. M.; Gektin, A. V.; Voloshinovskii, A. S.

    2017-03-01

    The polystyrene film nanocomposites of 0.3 mm thickness with embedded SrF2 nanoparticles up to 40 wt% have been synthesized. The luminescent and kinetic properties of the polystyrene composites with embedded SrF2 nanoparticles upon the pulse X-ray excitation have been investigated. The luminescence intensity of the pure polystyrene scintillator film significantly increases when it is loaded with the inorganic SrF2 nanoparticles. The film nanocomposites show fast (∼2.8 ns) and slow (∼700 ns) luminescence decay components typical for a luminescence of polystyrene activators (p-Terphenyl and POPOP) and SrF2 nanoparticles, respectively. It is revealed that the fast decay luminescence component of the polystyrene composites is caused by the excitation of polystyrene by the photoelectrons escaped from the nanoparticles due to photoeffect, and the slow component is caused by reabsorption of the self-trapped exciton luminescence of SrF2 nanoparticles by polystyrene.

  13. Nanoparticle Drug Loading as a Design Parameter to Improve Docetaxel Pharmacokinetics and Efficacy

    OpenAIRE

    Chu, Kevin S.; Schorzman, Allison N.; Finniss, Mathew C.; Bowerman, Charles J.; Peng, Lei; Luft, J. Christopher; Madden, Andrew; Wang, Andrew Z.; Zamboni, William C.; DeSimone, Joseph M.

    2013-01-01

    Nanoparticle (NP) drug loading is one of the key defining characteristics of a NP formulation. However, the effect of NP drug loading on therapeutic efficacy and pharmacokinetics has not been thoroughly evaluated. Herein, we characterized the efficacy, toxicity and pharmacokinetic properties of NP docetaxel formulations that have differential drug loading but are otherwise identical. Particle Replication in Non-wetting Templates (PRINT®), a soft-lithography fabrication technique, was used to ...

  14. Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings.

    Science.gov (United States)

    Enlow, Elizabeth M; Luft, J Christopher; Napier, Mary E; DeSimone, Joseph M

    2011-02-01

    Herein we report the fabrication of engineered poly(lactic acid-co-glycolic acid) nanoparticles via the PRINT (particle replication in nonwetting templates) process with high and efficient loadings of docetaxel, up to 40% (w/w) with encapsulation efficiencies >90%. The PRINT process enables independent control of particle properties leading to a higher degree of tailorability than traditional methods. Particles with 40% loading display better in vitro efficacy than particles with lower loadings and the clinical formulation of docetaxel, Taxotere.

  15. Magnetic properties of superparamagnetic nanoparticles loaded into silicon nanotubes

    Science.gov (United States)

    Granitzer, Petra; Rumpf, Klemens; Gonzalez, Roberto; Coffer, Jeffery; Reissner, Michael

    2014-08-01

    In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described. Furthermore, data from magnetization measurements of the nanocomposite systems are analyzed in terms of iron oxide nanoparticle size dependence. Such biocompatible nanocomposites have potential merit in the field of magnetically guided drug delivery vehicles.

  16. Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique

    Directory of Open Access Journals (Sweden)

    Marina Gallarate

    2011-01-01

    Full Text Available Stearic acid solid lipid nanoparticles were prepared according to a new technique, called coacervation. The main goal of this experimental work was the entrapment of peptide drugs into SLN, which is a difficult task, since their chemical characteristics (molecular weight, hydrophilicity, and stability hamper peptide-containing formulations. Insulin and leuprolide, chosen as model peptide drugs, were encapsulated within nanoparticles after hydrophobic ion pairing with anionic surfactants. Peptide integrity was maintained after encapsulation, and nanoparticles can act in vitro as a sustained release system for peptide.

  17. Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma

    Directory of Open Access Journals (Sweden)

    Li H

    2016-09-01

    Full Text Available Hui Li,1,* Jian Tian,1,2,* Anqing Wu,2 Jiamin Wang,1 Cuicui Ge,2 Ziling Sun1–3 1School of Biological and Basic Medical Science, 2School of Radiological & Interdisciplinary Sciences, Soochow University, 3Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: Self-assembled nanoparticles of the natural polymer, silk fibroin (SF, are a very promising candidate in drug delivery due to their biocompatible and biodegradable properties. In this study, SF nanoparticles loaded with 5-fluorouracil (5-FU and curcumin with size 217±0.4 nm and with a loading efficacy of 45% and 15% for 5-FU and curcumin, respectively, were prepared. The in vitro release effect of 5-FU and curcumin from nanoparticles was evaluated as ~100% and ~5%, respectively. It has been revealed that the application of such a nanodrug can increase the level of reactive oxygen species, which in turn induces apoptosis of cancer cells in vitro. Animal studies have shown that tumors could be noticeably reduced after being injected with the drug-entrapped nanoparticles. More apoptotic cells were found after 7 days of treatment with SF nanoparticles by a hematoxylin–eosin staining assay. These results demonstrate the future potential of nanoparticle-loaded binary drugs in the treatment of breast cancer. Keywords: silk fibroin nanoparticles, 5-flurouracil, curcumin, reactive oxygen species

  18. Fabrication and evaluation of SDF-1 loaded galactosylated chitosan nanoparticles for liver targeting

    Science.gov (United States)

    Xue-Hui, Chu; Zhang-Qi, Feng; Qian, Xu; Jiang-Qiang, Xiao; Xian-Wen, Yuan; Xi-Tai, Sun

    2017-03-01

    Objective. SDF-1 loaded galactosylated chitosan (GC) nanoparticles for liver targeting were synthesized by electrospraying technique, and its biocompatibility and liver targeting effect were evaluated. Method. The SDF-1 loaded GC nanoparticles were constructed and its morphology was observed by the scanning electron microscopy (SEM). Hepatocytes were harvested and cocultured with the nanoparticles, and the albumin secretion and urea synthesis were detected by enzyme-linked immunosorbent assay assay, the concentration of lactate dehydrogenase (LDH) and tumor necrosis factor-α (TNF-α) was also measured. Finally, the nanoparticles were injected intravenously through the caudal vein of rat, and its liver targeting effect was evaluated. Result. SEM showed the nanoparticles distributed uniformly, with an average diameter of 100 nm and a regular spherical shape. There was no significant difference in urea synthesis, albumin secretion, concentration of LDH and TNF-α between two groups (p > 0.05). The nanoparticles were significantly accumulated in the liver tissue after its injection, but seldom fluorescence signals were observed in the lung, spleen, heart and kidney. Conclusion. The SDF-1 loaded GC nanoparticles showed uniform distribution, good biocompatibility and liver targeting effect, and suggested its potential application as a liver targeting delivery system.

  19. Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Parth; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com [National Institute of Pharmaceutical Education and Research (NIPER), Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology (India)

    2015-01-15

    The present study highlights the beneficial synergistic blend of anticancer drug paclitaxel (PTX) and thymoquinone (TQ) in MCF-7 breast cancer cells. We aimed to augment the therapeutic index of PTX using a polymeric nanoparticle system loaded with PTX and TQ. PLGA nanoparticles encapsulating the two drugs, individually or in combination, were prepared by single emulsion solvent evaporation method. The formulated nanoparticles were homogenous with an overall negative charge and their size ranging between 200 and 300 nm. Entrapment efficiency of PTX and TQ in the dual drug-loaded nanoparticles was found to be 82.4 ± 2.18 and 65.8 ± 0.45 %, respectively. The release kinetics of PTX and TQ from the nanoparticles exhibited a biphasic pattern characterised by an initial burst, followed by a gradual and continuous release. The anticancer activity of nanoparticles encapsulating both the drugs was higher as compared to the free drugs in MCF-7 breast cancer cells. The combination index for the dual drug-loaded NPs was found to be 0.688 which is indicative of synergistic interaction. Thus, here, we propose the synthesis and use of dual drug-loaded TQ and PTX NPs which exhibits enhanced anticancer activity and can additionally help to alleviate the toxic effects of PTX by lowering its effective dose.

  20. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    Science.gov (United States)

    Souto, Carlos Augusto Zanoni; Madeira, Klésia Pirola; Rettori, Daniel; Baratti, Mariana Ozello; Rangel, Letícia Batista Azevedo; Razzo, Daniel; da Silva, André Romero

    2013-09-01

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly( d, l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8-7.5 μmol/L), incubation time (1-2 h), and laser power (10-100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 ± 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm2 and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 ± 3 % while for free InPc was 60 ± 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc.

  1. Superior anticancer efficacy of curcumin-loaded nanoparticles against lung cancer

    Institute of Scientific and Technical Information of China (English)

    Haitao Yin; Hao Zhang; Baorui Liu

    2013-01-01

    Curcumin (CM) has anticancer potential for several cancers and blocks several steps in the carcinogenesis process.However,the clinical application of CM is greatly limited due to its low effects in vivo resulted from its poor solubility and pharmacokinetics.This raises the possibility of taking CM as a novel model drug in a new nanoparticlebased delivery system.In this study,CM-loaded nanoparticles were prepared from three kinds of amphilic methoxy poly(ethylene glycol) (mPEG)-polycaprolactone (PCL) block copolymers.It was noted that CM-loaded nanoparticles prepared from mPEG10k-PCL30k showed not only the highest loading efficiency,but also the most sustained release pattern.In vitro studies showed that CM was effectively transported into A549 cells by nanoparticles and localized around the nuclei in the cytoplasm.In addition,the cytotoxicity of CM-loaded nanoparticles with mEPG10k-PCL30k as a drug carrier was in a dose-and time-dependent manner in A549 cells.Further apoptotic staining results demonstrated the superior pro-apoptotic effect of CM-loaded nanoparticles over free drug.Data in this study not only confirmed the potential of CM in treating lung cancer,but also offered an effective way to improve the anticancer efficiency of CM through the nano-drug delivery system.

  2. Magnetic Properties of Polyvinyl Alcohol and Doxorubicine Loaded Iron Oxide Nanoparticles for Anticancer Drug Delivery Applications.

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    Full Text Available The current study emphasizes the synthesis of iron oxide nanoparticles (IONPs and impact of hydrophilic polymer polyvinyl alcohol (PVA coating concentration as well as anticancer drug doxorubicin (DOX loading on saturation magnetization for target drug delivery applications. Iron oxide nanoparticles particles were synthesized by a reformed version of the co-precipitation method. The coating of polyvinyl alcohol along with doxorubicin loading was carried out by the physical immobilization method. X-ray diffraction confirmed the magnetite (Fe3O4 structure of particles that remained unchanged before and after polyvinyl alcohol coating and drug loading. Microstructure and morphological analysis was carried out by transmission electron microscopy revealing the formation of nanoparticles with an average size of 10 nm with slight variation after coating and drug loading. Transmission electron microscopy, energy dispersive, and Fourier transform infrared spectra further confirmed the conjugation of polymer and doxorubicin with iron oxide nanoparticles. The room temperature superparamagnetic behavior of polymer-coated and drug-loaded magnetite nanoparticles were studied by vibrating sample magnetometer. The variation in saturation magnetization after coating evaluated that a sufficient amount of polyvinyl alcohol would be 3 wt. % regarding the externally controlled movement of IONPs in blood under the influence of applied magnetic field for in-vivo target drug delivery.

  3. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities.

    Science.gov (United States)

    Park, Jai Il; Jagadeesan, Dinesh; Williams, Ross; Oakden, Wendy; Chung, Siyon; Stanisz, Greg J; Kumacheva, Eugenia

    2010-11-23

    We report a single-step approach to producing small and stable bubbles functionalized with nanoparticles. The strategy includes the following events occurring in sequence: (i) a microfluidic generation of bubbles from a mixture of CO(2) and a minute amount of gases with low solubility in water, in an aqueous solution of a protein, a polysaccharide, and anionic nanoparticles; (ii) rapid dissolution of CO(2) leading to the shrinkage of bubbles and an increase in acidity of the medium in the vicinity of the bubbles; and (iii) co-deposition of the biopolymers and nanoparticles at the bubble-liquid interface. The proposed approach yielded microbubbles with a narrow size distribution, long-term stability, and multiple functions originating from the attachment of metal oxide, metal, or semiconductor nanoparticles onto the bubble surface. We show the potential applications of these bubbles in ultrasound and magnetic resonance imaging.

  4. Enhanced tolerance and antitumor efficacy by docetaxel-loaded albumin nanoparticles.

    Science.gov (United States)

    Tang, Xiaolei; Wang, Guijun; Shi, Runjie; Jiang, Ke; Meng, Lingtong; Ren, Hao; Wu, Jinhui; Hu, Yiqiao

    2016-10-01

    Docetaxel is one of the most active chemotherapeutic agents for cancer treatment. The traditional docetaxel injection (TAXOTERE®) is currently formulated in the surfactant polysorbate 80, which has been associated with severe adverse reactions. To avoid the use of polysorbate 80 as well as to reduce the systemic toxicity of docetaxel, in this study, docetaxel-loaded albumin nanoparticles were fabricated by a novel simple self-assembly method. The resulting nanoparticles showed a mean diameter size of 150 nm. After being encapsulated into nanoparticles, docetaxel displayed similar cytotoxicity to traditional injection. Since polysorbate 80 was not involved in nanoparticles, the hemolysis was completely eliminated. The maximal tolerance dose of nanoparticles was also increased, which allowed a higher dose to be safely intravenously injected and produced ideal antitumor effects. The 150 nm diameter also allowed the nanoparticles to accumulate in tumor tissue via the enhanced permeability and retention effect. The passive targeting ability further caused the higher antitumor effects of nanoparticles than that of traditional injection at the same dose (7.5 mg/kg). Therefore, docetaxel-loaded albumin nanoparticles fabricated by our strategy showed higher promise in their safety and effectiveness than the traditional docetaxel injection.

  5. Characterization of progesterone loaded biodegradable blend polymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Fernanda Vitória Leimann

    2015-11-01

    Full Text Available ABSTRACT: The encapsulation of progesterone in poly (hydroxybutirate-co-hydroxyvalerate (PHBV, poly (ε-caprolactone (PCL, poly (L-lactic acid (PLLA nanoparticles and PHBV/PCL and PHBV/PLLA blend nanoparticles was investigated in this research. Nanoparticles were produced by miniemulsion/solvent evaporation technique with lecithin as surfactant and were characterized regarding to z-average diameter (Dz and polydispersity (PDI, progesterone recovery yield and encapsulation efficiency. Possible interactions between progesterone and the polymer matrices were investigated by Fourier Transform Infrared Spectroscopy (FTIR. High recoveries (up to 102.43±1.80% for the PHBV/PLLA blend and encapsulation efficiencies (up to 99.53±0.04% for PCL were achieved and the nanoparticles presented narrow size distribution (0.12±0.03 for PLLA. PCL nanoparticles (217.5±2.12nm presented significant difference with the Dz from all the other formulations (P<0.05. The most evident interaction between progesterone and the nanoparticles polymeric matrix was found to PHBV/PCL due to the increase in the intensity of the band located in 1631 cm-1.

  6. Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography.

    Science.gov (United States)

    Satzer, Peter; Wellhoefer, Martin; Jungbauer, Alois

    2014-07-04

    For scale up and efficient production of protein loaded nanoparticles continuous separation by size exclusion chromatography in simulated moving bed (SMB) mode helps do reduce unbound protein concentration and increase yields for perfectly covered particles. Silica nanoparticles were loaded with an excess of beta casein or bovine serum albumin (BSA) and the loaded particles purified by size exclusion chromatography using Sephacryl300 as stationary phase in a four zone SMB. We determined our working points for the SMB from batch separations and the triangle theory described by Mazzotti et al. with an SMB setup of one Sephacryl300 26/70mm column per zone with switch times of 5min for BSA and 7min for beta casein. In the case of BSA the Raffinate contained loaded nanoparticles of 63% purity with 98% recovery and the extract was essentially particle free (95% purity). We showed that the low purity of the Raffinate was only due to BSA multimers present in the used protein solution. In the case of beta casein where no multimers are present we achieved 89% purity and 90% recovery of loaded nanoparticles in the Raffinate and an extract free of particles (92% purity). Using a tangential flow filtration unit with 5kDa cutoff membrane we proved that the extract can be concentrated for recycling of protein and buffer. The calculated space-time-yield for loaded nanoparticles was 0.25g of loaded nanoparticles per hour and liter of used resin. This proves that the presented process is suitable for large scale production for industrial purposes.

  7. Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release

    Science.gov (United States)

    Anh, Nguyen Tuan; Chi, Nguyen T.; Khai Tran, T.; Tuyen Dao, T. P.; Nhan Le, N. T.; Mau Chien, Dang; Hoai, Nguyen To

    2012-12-01

    Nanospheres containing ketoprofen (Keto) and polymer eudragit RS were prepared using an emulsion solvent evaporation method. The ultrasonic probe (VCX500, vibracell) was used as a tool to disperse oil phase into aqueous phase leading to water/oil emulsion. Nanoparticles were successfully prepared and their morphologies and diameters were confirmed by transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. The result showed that particles were spherical with submicron size. The particle size was dependent on the RS concentration, emulsification tools and the types of organic solvents. For the encapsulation ability, Keto-loaded RS nanoparticle showed 9.8% of Keto in nanoparticle, which was evaluated by high-performance liquid chromatography (HPLC). Moreover, the drug release behavior of Keto-loaded eudragit RS nanoparticle was also investigated in vitro at pH 7.4 and compared to referential profenid.

  8. Studies on the Preparation Properties and Drug Loading of theStarch Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    WangJin; HouXinpu

    2001-01-01

    On the basis of studies of starch microspheres, we carried out the research program of starch nanoparticles(SNP)which included preparation, physical and chemical properties and drug loading. The SNP was prepared using reversedphase-microemulsion polymerization method, with soluble starch as raw material. The particle size, quantity ofphosphorous, degradability, scanning electron microgragh, IR spectra and stability of SNP were investigated. Thepharmacodynamics and concentration-time curve of insulin starch nanoparticles were determined.

  9. Synthesis of methylprednisolone loaded ibuprofen modified inulin based nanoparticles and their application for drug delivery.

    Science.gov (United States)

    Zhang, Luzhong; Li, Yue; Wang, Caiping; Li, Guicai; Zhao, Yahong; Yang, Yumin

    2014-09-01

    Ibuprofen modified inulin was synthesized through a direct esterification linkage in which the in situ activation of the carboxylic acid with N,N'-carbonyldiimidazole was carried out. The critical aggregation concentration of the ibuprofen modified inulin was determined by using pyrene as the fluorescence probe. Methylprednisolone loaded nanoparticles were prepared by the self-assembly of the ibuprofen modified inulin copolymer and methylprednisolone. In vitro release of the methylprednisolone and the cytotoxicity of the methylprednisolone loaded nanoparticles against RSC-96 cells were evaluated. Since the ibuprofen and methylprednisolone could stimulate a significant neurite growth and diminish the human neurological deficits after the spinal cord injury, the methylprednisolone loaded nanoparticles based on the ibuprofen modified inulin copolymer may have a great potential in the synergetic effect treatment for spinal cord injury.

  10. Smart polymer platforms for in vitro drug screening assays based on drug-loaded nanoparticles

    DEFF Research Database (Denmark)

    Faralli, Adele

    -electrodes for co-localization of drug-loaded nanoparticles (liposomes) and cancer cells. PEGDA hydrogels are widely used in different fields including tissue engineering and in vivo drug delivery. A home-made setup for the fabrication of PEGDA hydrogels through visible-light photopolymerization is described...... and combinations of chemotherapeutics are embedded within PEGDA gels as free molecules or loaded into nanoparticles (liposomes). The release of molecule from liposomes is temporally controlled through heat treatment and stable nanoparticles embedded within polymer networks are achieved. With the developed...... pathological cell lines. In this thesis is presented also an alternative methodology for drug screening purposes, consisting on the fabrication of a micro- and nano-platform for drug-loaded liposomes immobilization and cell capture. PEDOT-N3 micro-electrodes are fabricated through printed dissolution that...

  11. Preparation and Evaluation of Vancomycin-Loaded N-trimethyl Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiaojiao Xu

    2015-09-01

    Full Text Available Chronic intracellular infections caused by drug-resistant pathogens pose a challenge to the treatment of chronic osteomyelitis. Such treatment requires an intracellular delivery system for the sustained release of antibiotics such as vancomycin (VCM, which is an antibiotic of last resort used against many clinically resistant bacteria. In this work, we report VCM-loaded N-trimethyl chitosan (TMC nanoparticles and their potential application for drug delivery. The results showed that the prepared nanoparticles were predominantly spherical in shape with an average particle diameter of 220 nm, a positive zeta potential, and a loading efficiency of 73.65% ± 1.83%. Furthermore, their drug release profile followed the Higuchi model for sustained release, with non-Fickian diffusion. Over a 24-h period, 6.51% ± 0.58% of the drug within the optimized nanoparticles was released. In vitro cytology showed that osteoblasts (OBs exhibited higher alkaline phosphatase activity (ALP after exposure to TMC nanoparticle material. Furthermore, TMC nanoparticles increased the uptake of water-soluble quantum dots (QDs by OBs, and both nanoparticles and VCM/TMC mixtures improved OB proliferative activity. We also investigated the minimum inhibitory concentration (MIC, 60 μg/mL, half maximal inhibitory concentration (IC50, 48.47 μg/mL, diameter of inhibition zone (DIZ, 1.050 cm, and turbidimetric (TB assay of nanoparticles. All data demonstrated that VCM/TMC nanoparticles had excellent antibacterial activity against the Gram-positive bacterium Staphylococcus aureus. These findings suggest that VCM-loaded TMC nanoparticles have good potential for the sustained delivery of antibiotics to bone infections.

  12. Acid Denaturation Inducing Self-Assembly of Curcumin-Loaded Hemoglobin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kaikai Wang

    2015-12-01

    Full Text Available Hemoglobin is a promising drug carrier but lacks extensive investigation. The chemical conjugation of hemoglobin and drugs is costly and complex, so we have developed curcumin-loaded hemoglobin nanoparticles (CCM-Hb-NPs via self-assembly for the first time. Using the acid-denaturing method, we avoid introducing denaturants and organic solvents. The nanoparticles are stable with uniform size. We have conducted a series of experiments to examine the interaction of hemoglobin and CCM, including hydrophobic characterization, SDS-PAGE. These experiments substantiate that this self-assembly process is mainly driven by hydrophobic forces. Our nanoparticles achieve much higher cell uptake efficiency and cytotoxicity than free CCM solution in vitro. The uptake inhibition experiments also demonstrate that our nanoparticles were incorporated via the classic clathrin-mediated endocytosis pathway. These results indicate that hemoglobin nanoparticles formed by self-assembly are a promising drug delivery system for cancer therapy.

  13. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    Directory of Open Access Journals (Sweden)

    Bennet D

    2012-07-01

    Full Text Available Devasier Bennet,1 Mohana Marimuthu,1 Sanghyo Kim,1 Jeongho An21Department of Bionanotechnology, Gachon University, Gyeonggi, Republic of Korea; 2Department of Polymer Science and Engineering, SunKyunKwan University, Gyeonggi, Republic of KoreaAbstract: Antioxidant (quercetin and hypoglycemic (voglibose drug-loaded poly-D,L-lactide-co-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system.Keywords: quercetin, voglibose, biocompatible materials, encapsulation, transdermal

  14. The antifungal activity of corona treated polyamide and polyester fabrics loaded with silver nanoparticles

    Science.gov (United States)

    Saponjic, Z.; Ilic, V.; Vodnik, V.; Mihailovic, D.; Jovancic, P.; Nedeljkovic, J.; Radetic, M.

    2008-07-01

    This study is aimed to highlight the possibility of using the corona treatment for fiber surface activation that can facilitate the loading of silver nanoparticles from colloids onto the polyester and polyamide fabrics and thus enhance their antifungal activity against Candida albicans. Additionally, the laundering durability of achieved effects was studied. Corona activated polyamide and polyester fabrics loaded with silver nanoparticles showed better antifungal properties compared to untreated fabrics. The positive effect of corona treatment became even more prominent after 5 washing cycles, especially for polyester fabrics.

  15. Electrostatic interaction on loading of therapeutic peptide GLP-1 into porous silicon nanoparticles.

    Science.gov (United States)

    Kaasalainen, Martti; Rytkönen, Jussi; Mäkilä, Ermei; Närvänen, Ale; Salonen, Jarno

    2015-02-10

    Porous silicon (PSi) nanoparticles' tunable properties are facilitating their use at highly challenging medical tasks such as peptide delivery. Because of many different mechanisms that are affecting the interaction between the peptide and the particle, the drug incorporation into the mesoporous delivery system is not straightforward. We have studied the adsorption and loading of incretin hormone glucagon like peptide 1 (GLP-1) on PSi nanoparticles. The results show that the highest loading degree can be achieved in pH values near the isoelectric point of peptide, and the phenomenon is independent of the surface's zeta potential. In order to study the interaction between the peptide and the nanoparticle, we studied the adsorption with lower concentrations and noticed that also non-Coulombic forces have a big role in adsorption of GLP-1. Adsorption is effective and pH-independent especially on low peptide concentrations and onto more hydrophobic nanoparticles. Reversibility of adsorption was studied as a function of buffer pH. When the loading is compared to the total mass of the formulation, the loading degree is 29%, and during desorption experiments 25% is released in 4 h and can be considered as a reversible loading degree. Thus, the peptides adsorbed first seem to create irreversibly adsorbed layer that facilitates reversible adsorption of following peptides.

  16. The Antidepressant Effect of L-Tyrosine-Loaded Nanoparticles: Behavioral Aspects

    Science.gov (United States)

    Alabsi, Abdelrahman; Khoudary, Adel Charbel; Abdelwahed, Wassim

    2016-01-01

    Background Depression has been linked to disruption in the cerebral levels of specific neurotransmitters. L-tyrosine is a precursor of more than one of the neurotransmitters affected by depression. Even though setbacks of monoamines precursors include high doses and low efficiency, many studies have suggested using L-tyrosine as antidepressant. Purpose The purpose of this study was to explore the possible antidepressant effect of L-tyrosine loaded in a nanoparticle-designed formula, using behavioral tests in acute and chronic mild stress (CMS) models of depression in rats. Methods Animals from both models received L-tyrosine-loaded nanoparticles (5 or 10 mg/kg), L-tyrosine solution (10 mg/kg), fluoxetine (10 mg/kg) or placebo daily for 21 days. Rats from the acute stress model of depression were subjected to open field and forced swim tests (FSTs). For the CMS model, sucrose preference test was carried out. Additionally, 3 profiles of the nanoparticles formula were tested in vitro. High dissolution rate and entrapment efficiency were obtained from the in vitro tests. Moreover, L-tyrosine-loaded nanoparticles 10 mg/kg and fluoxetine 10 mg/kg significantly decreased the immobility time in the FST, concomitant with restoration of the basal levels of locomotor activity, distance travelled and rearing counts. Also, an increase of the sucrose consumption was recorded in the sucrose preference test after treatment with L-tyrosine-loaded nanoparticles 10 mg/kg and fluoxetine 10 mg/kg. Results The positive results after treatment with L-tyrosine-loaded nanoparticles, through behavioral tests, are probably attributed to restorating the basal levels of the cerebral noradrenaline. Conclusion The effects of L-tyrosine administration on the cerebral levels of tyrosine hydroxylase and corticotropin-releasing factor should be further investigated. PMID:27647959

  17. Comparative Evaluation of Nimesulide-Loaded Nanoparticles for Anticancer Activity Against Breast Cancer Cells.

    Science.gov (United States)

    Sengel-Turk, Ceyda Tuba; Hascicek, Canan; Bakar, Filiz; Simsek, Elif

    2017-02-01

    Recent clinical and epidemiological researches have declared that non-steroidal anti-inflammatory agents may display as antineoplastic agents and indicate pro-apoptotic and antiproliferative effects on cancer cells. The major purpose of this research was to develop a novel poly(ethyleneglycol)-block-poly(ε-caprolactone) (PEG-b-PCL) nano-sized particles encapsulated with nimesulide (NMS), a selective COX-2 inhibitor, and to evaluate its anticancer activity against MCF-7 breast cancer cells. NMS-encapsulated PEG-b-PCL nanoparticles were fabricated using three different production techniques: (i) by emulsion-solvent evaporation using a high shear homogenizer, (ii) by emulsion-solvent evaporation using an ultrasonicator, and (iii) by nanoprecipitation. Nanoparticles were evaluated with respect to the entrapment efficiency, size characteristics, drug release rates, thermal behavior, cell viability assays, and apoptosis. The resulting nanoparticles were found to be spherical shapes with negative surface charges. The average diameter of all nanoparticles ranged between 148.5 and 307.2 nm. In vitro release profiles showed that all nanoparticles exhibited a biphasic release pattern. NMS-loaded PEG-b-PCL nanoparticles demonstrated significant anticancer activity against MCF-7 breast cancer cells in a dose-dependent manner, and the effects of nanoparticles on cell proliferation were significantly affected by the preparation techniques. The nanoparticles developed in this work displayed higher potential for the NMS delivery against breast cancer treatment for the future.

  18. Optimization of {beta}-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Michael D., E-mail: triplettm@battelle.or [Battelle Memorial Institute, Health and Life Sciences Global Business (United States); Rathman, James F. [The Ohio State University, Department of Chemical and Biomolecular Engineering (United States)

    2009-04-15

    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, {beta}-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of {beta}-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. {beta}-Carotene entrapment efficiency averaged 40%. {beta}-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  19. Nanoparticle Drug Loading as a Design Parameter to Improve Docetaxel Pharmacokinetics and Efficacy

    Science.gov (United States)

    Chu, Kevin S.; Schorzman, Allison N.; Finniss, Mathew C.; Bowerman, Charles J.; Peng, Lei; Luft, J. Christopher; Madden, Andrew; Wang, Andrew Z.; Zamboni, William C.; DeSimone, Joseph M.

    2013-01-01

    Nanoparticle (NP) drug loading is one of the key defining characteristics of a NP formulation. However, the effect of NP drug loading on therapeutic efficacy and pharmacokinetics has not been thoroughly evaluated. Herein, we characterized the efficacy, toxicity and pharmacokinetic properties of NP docetaxel formulations that have differential drug loading but are otherwise identical. Particle Replication in Non-wetting Templates (PRINT®), a soft-lithography fabrication technique, was used to formulate NPs with identical size, shape and surface chemistry, but with variable docetaxel loading. The lower weight loading (9%-NP) of docetaxel was found to have a superior pharmacokinetic profile and enhanced efficacy in a murine cancer model when compared to that of a higher docetaxel loading (20%-NP). The 9%-NP docetaxel increased plasma and tumor docetaxel exposure and reduced liver, spleen and lung exposure when compared to that of 20%-NP docetaxel. PMID:23899444

  20. On the effect of gold nanoparticles loading within carbonaceous macro-mesocellular foams toward lithium-sulfur battery performances

    Science.gov (United States)

    Depardieu, Martin; Demir-Cakan, Rezan; Sanchez, Clément; Birot, Marc; Deleuze, Hervé; Morcrette, Mathieu; Backov, Rénal

    2016-05-01

    Novel carbonaceous monolith foams loaded with gold nanoparticles have been synthesized and thoroughly characterized over several length scale. Their Li-S battery electrode capabilities have been assessed and compared while varying the gold loading and subsequently the specific surface area. Their capacities expressed in either mass (mA h g-1) or volume (mA h cm-3) dimensions have shown that specific surface area and nanoparticles loading are acting in a strong partitioning mode, rather than a cooperative mode, which does not favor the use of gold nanoparticles loading as efficient incremental path toward optimizing porous carbonaceous-based Li-S battery electrodes.

  1. Silymarin-Loaded Nanoparticles Based on Stearic Acid-Modified Bletilla striata Polysaccharide for Hepatic Targeting

    Directory of Open Access Journals (Sweden)

    Yanni Ma

    2016-02-01

    Full Text Available Silymarin has been widely used as a hepatoprotective drug in the treatment of various liver diseases, yet its effectiveness is affected by its poor water solubility and low bioavailability after oral administration, and there is a need for the development of intravenous products, especially for liver-targeting purposes. In this study, silymarin was encapsulated in self-assembled nanoparticles of Bletilla striata polysaccharide (BSP conjugates modified with stearic acid and the physicochemical properties of the obtained nanoparticles were characterized. The silymarin-loaded micelles appeared as spherical particles with a mean diameter of 200 nm under TEM. The encapsulation of drug molecules was confirmed by DSC thermograms and XRD diffractograms, respectively. The nanoparticles exhibited a sustained-release profile for nearly 1 week with no obvious initial burst. Compared to drug solutions, the drug-loaded nanoparticles showed a lower viability and higher uptake intensity on HepG2 cell lines. After intravenous administration of nanoparticle formulation for 30 min to mice, the liver became the most significant organ enriched with the fluorescent probe. These results suggest that BSP derivative nanoparticles possess hepatic targeting capability and are promising nanocarriers for delivering silymarin to the liver.

  2. Silymarin-Loaded Nanoparticles Based on Stearic Acid-Modified Bletilla striata Polysaccharide for Hepatic Targeting.

    Science.gov (United States)

    Ma, Yanni; He, Shaolong; Ma, Xueqin; Hong, Tongtong; Li, Zhifang; Park, Kinam; Wang, Wenping

    2016-02-29

    Silymarin has been widely used as a hepatoprotective drug in the treatment of various liver diseases, yet its effectiveness is affected by its poor water solubility and low bioavailability after oral administration, and there is a need for the development of intravenous products, especially for liver-targeting purposes. In this study, silymarin was encapsulated in self-assembled nanoparticles of Bletilla striata polysaccharide (BSP) conjugates modified with stearic acid and the physicochemical properties of the obtained nanoparticles were characterized. The silymarin-loaded micelles appeared as spherical particles with a mean diameter of 200 nm under TEM. The encapsulation of drug molecules was confirmed by DSC thermograms and XRD diffractograms, respectively. The nanoparticles exhibited a sustained-release profile for nearly 1 week with no obvious initial burst. Compared to drug solutions, the drug-loaded nanoparticles showed a lower viability and higher uptake intensity on HepG2 cell lines. After intravenous administration of nanoparticle formulation for 30 min to mice, the liver became the most significant organ enriched with the fluorescent probe. These results suggest that BSP derivative nanoparticles possess hepatic targeting capability and are promising nanocarriers for delivering silymarin to the liver.

  3. Injectable nanoparticle-loaded hydrogen system for local delivery of sodium alendronate

    NARCIS (Netherlands)

    Posadowska, U.; Parizek, M.; Filova, E.; Wlodarczyk-Biegun, M.K.; Kamperman, M.M.G.; Bacakova, L.; Pamula, E.

    2015-01-01

    Systemic administration of bisphosphonates, e.g. sodium alendronate (Aln) is characterized by extremely low bioavailability and high toxicity. To omit aforementioned drawbacks an injectable system for the intra-bone delivery of Aln based on Aln-loaded nanoparticles (NPs-Aln) suspended in a hydrogel

  4. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells.

    Science.gov (United States)

    Li, Pu-Wang; Wang, Guang; Yang, Zi-Ming; Duan, Wei; Peng, Zheng; Kong, Ling-Xue; Wang, Qing-Huang

    2016-01-01

    Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200-250 nm in diameter with smooth surface and were negatively charged with a zeta potential of - 17.4 mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs.

  5. Photophysical property of a polymeric nanoparticle loaded with an aryl benzyl ester silicon (IV) phthalocyanine

    Science.gov (United States)

    Pan, Sujuan; Ma, Dongdong; Chen, Xiuqin; Wang, Yuhua; Yang, Hongqin; Peng, Yiru

    2014-09-01

    Because of their excellent near-infrared (NIR) optical properties, phthalocyanines (Pcs) have been regarded as promising therapy agents for fluorescence image-guided drug delivery and noninvasive treatment of tumors by photodynamic therapy (PDT). Nevertheless, phthalocyanines are substantially limited in clinical applications owing to their poor solubility, aggregation and insufficient selectivity for cancer cells. To address these issues, we have developed a novel dendrimer-based theranostic nanoparticle for tumor-targeted delivery of phthalocyanine. The preparation procedure involved the modification of the silicon (IV) phthalocyanine molecule with a dendritic axially substitution, which significantly enhances their photophysical property. In order to improve biocompatibility and tumor-targeted delivery, the hydrophobic dendritic phthalocyanine was encapsulated by diblock amphiphilic copolymer poly (ethylene glycol)-poly (Epsilon-caprolactone) (MPEG-PCL) to form a polymeric nanoparticle. The polymeric nanoparticle is spherical with a diameter at about 90 nm. The photophysical property of the polymeric nanoparticle was studied by UV/Vis and fluorescence spectroscopic methods. Compared with the free dendritic phthalocyanine, the Q band of the polymeric nanoparticle was red-shifted, and the fluorescence intensity decreased. Furthermore, the polymeric nanoparticle has a relatively high loading amount and encapsulation rate. Therefore, the polymeric nanoparticle would be a promising third-generation photosensitizer (PS) for PDT.

  6. Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles.

    Science.gov (United States)

    Hermans, Kris; Van den Plas, Dave; Everaert, Arnout; Weyenberg, Wim; Ludwig, Annick

    2012-09-01

    Cyclosporine A loaded poly(lactide-co-glycolide) nanoparticles coated with chitosan were prepared using the o/w emulsification solvent evaporation method. A 2(3) full factorial design was used to investigate the effect of 3 preparation parameters on the particle size, polydispersity index, zeta potential and drug release. In vitro experiments were performed in order to evaluate the cytotoxicity and anti-inflammatory activity of the developed nanoparticles. Particle sizes varied from 156 nm to 314 nm, and polydispersity index values of 0.07-0.56 were obtained depending on the different preparation parameters. All nanoparticles showed positive zeta potential values. Nanoparticles prepared with the highest concentration chitosan retained a positive zeta potential after dispersion in simulated lachrymal fluid, which supports the possibility of an electrostatic interaction between these particles and the negatively charged mucus layer at the eye. The in vitro release profile of cyclosporine A from the chitosan-coated nanoparticles was strongly dependent on the release medium used. None of the cationic nanoparticle formulations showed significant cytotoxicity compared to the negative control using human epithelial cells (HaCaT). Cyclosporine A encapsulated in the various nanoparticle formulations remained anti-inflammatory active as significant suppression of interleukine-2 secretion in concanavalin A stimulated Jurkat T cells was observed.

  7. Super-paramagnetic loaded nanoparticles based on biological macromolecules for in vivo targeted MR imaging.

    Science.gov (United States)

    Sanjai, Chutimon; Kothan, Suchart; Gonil, Pattarapond; Saesoo, Somsak; Sajomsang, Warayuth

    2016-05-01

    Target-specific MRI contrast agent based on super-paramagnetic iron oxide-chitosan-folic acid (SPIONP-CS-FA) nanoparticles was fabricated by using an ionotropic gelation method, which involved the loading of SPIONPs at various concentrations into CS-FA nanoparticles by electrostatic interaction. The SPIONP-CS-FA nanoparticles were characterized by ATR-FTIR, XRD, TEM, and VSM techniques. This study revealed that the advantages of this system would be green fabrication, low cytotoxicity at iron concentrations ranging from 0.52 mg/L to 4.16 mg/L, and high water stability (pH 6) at 4°C over long periods. Average particle size and positive zeta-potential of the SPIONP-CS-FA nanoparticles was found to be 130 nm with narrow size distribution and 42 mV, respectively. In comparison to SPIONP-0.5-CS nanoparticles, SPIONP-0.5-CS-FA nanoparticles showed higher and specific cellular uptake levels into human cervical adenocarcinoma cells due to the presence of folate receptors, while in vivo results (Wistar rat) indicated that only liver tissue showed significant decreases in MR image intensity on T2 weighted images and T2* weighted images after post-injection, in comparison with other organs. Our results demonstrated that SPIONP-CS-FA nanoparticles can be applied as an either tumor or organ specific MRI contrast agents.

  8. Low pressure mediated enhancement of nanoparticle and macromolecule loading into porous silicon structures.

    Science.gov (United States)

    Leonard, Fransisca; Margulis-Goshen, Katrin; Liu, Xuewu; Srinivasan, Srimeenakshi; Magdassi, Shlomo; Godin, Biana

    2014-01-01

    Ensuring drug loading efficiency and consistency is one of the most critical stages in engineering drug delivery vectors based on porous materials. Here we propose a technique to significantly enhance the efficiency of loading by employing simple and widely available methods: applying low pressure with and without centrifugation. Our results point toward the advantages the proposed method over the passive loading, especially where the size difference of loaded materials and the pore size of the porous silicon particles is smaller, an increase up to 20-fold can be observed. The technique described in the study can be used for efficient and reproducible loading of porous materials with therapeutic molecules, nanoparticles and contrast imaging agents for biomedical application.

  9. Exploring the Preparation of Albendazole-Loaded Chitosan-Tripolyphosphate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bong-Seok Kang

    2015-02-01

    Full Text Available The objective of this study was to improve the solubility of albendazole and optimize the preparation of an oral nanoparticle formulation, using β-cyclodextrin (βCD and chitosan-tripolyphosphate (TPP nanoparticles. The solubility of albendazole in buffers, surfactants, and various concentrations of acetic acid solution was investigated. To determine drug loading, the cytotoxic effects of the albendazole concentration in human hepatocellular carcinoma cells (HepG2 were investigated. The formulations were prepared by mixing the drug solution in Tween 20 with the chitosan solution. TPP solution was added dropwise with sonication to produce a nanoparticle through ionic crosslinking. Then the particle size, polydispersity index, and zeta potential of the nanoparticles were investigated to obtain an optimal composition. The solubility of albendazole was greater in pH 2 buffer, Tween 20, and βCD depending on the concentration of acetic acid. Drug loading was determined as 100 µg/mL based on the results of cell viability. The optimized ratio of Tween 20, chitosan/hydroxypropyl βCD, and TPP was 2:5:1, which resulted in smaller particle size and proper zeta positive values of the zeta potential. The chitosan-TPP nanoparticles increased the drug solubility and had a small particle size with homogeneity in formulating albendazole as a potential anticancer agent.

  10. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery.

    Science.gov (United States)

    Kumar, Manoj; Pandey, Ravi Shankar; Patra, Kartik Chandra; Jain, Sunil Kumar; Soni, Muarai Lal; Dangi, Jawahar Singh; Madan, Jitender

    2013-10-01

    Leucine-enkephalin (Leu-Enk) is a neurotransmitter or neuromodulator in pain transmission. Due to non-addictive opioid analgesic activity of this peptide, it might have great potential in pain management. Leu-Enk loaded N-trimethyl chitosan (TMC) nanoparticles were prepared and evaluated as a brain delivery vehicle via nasal route. TMC biopolymer was synthesized and analyzed by (1)H NMR spectroscopy. TMC nanoparticles were prepared by ionic gelation method. Mean peptide encapsulation efficiency and loading capacity were 78.28±3.8% and 14±1.3%, respectively. Mean particle size, polydispersity index and zeta potential were found to be 443±23 nm, 0.317±0.17 and +15±2 mV respectively for optimized formulations. Apparent permeability coefficient (Papp) of Leu-Enk released from nanoparticles across the porcine nasal mucosa was determined to be 7.45±0.30×10(-6) cm s(-1). Permeability of Leu-Enk released from nanoparticles was 35 fold improved from the nasal mucosa as compared to Leu-Enk solution. Fluorescent microscopy of brain sections of mice showed higher accumulation of fluorescent marker NBD-F labelled Leu-Enk, when administered nasally by TMC nanoparticles, while low brain uptake of marker solution was observed. Furthermore, enhancement in brain uptake resulted into significant improvement in the observed antinociceptive effect of Leu-Enk as evidenced by hot plate and acetic acid induced writhing assay.

  11. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Science.gov (United States)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  12. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant, E-mail: pmishra@dbeb.iitd.ac.in [Indian Institute of Technology Delhi, Department of Biochemical Engineering and Biotechnology (India)

    2013-03-15

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide-co-glycolide) (PLGA) microparticles (size 1-4 {mu}m, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 {+-} 28.6 nm, encapsulation efficiency 92.17 {+-} 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  13. In vitro and in vivo performance of biocompatible negatively-charged salbutamol-loaded nanoparticles.

    Science.gov (United States)

    Rytting, Erik; Bur, Michael; Cartier, Regis; Bouyssou, Thierry; Wang, Xiaoying; Krüger, Michael; Lehr, Claus-Michael; Kissel, Thomas

    2010-01-04

    The development and performance of a novel nanoparticle-based formulation for pulmonary delivery has been characterized chronologically through the particle preparation process, in vitro testing of drug release, biocompatibility, degradation, drug transport in cell culture, and in vivo bronchoprotection studies in anaesthetised guinea pigs. This study demonstrates excellent agreement of the in vitro and in vivo experiments undertaken to prove the feasibility of the design, thereby serving as an example highlighting the importance of in vitro test methods that predict in vivo performance. Nanoparticles were prepared from the newly designed negatively-charged polymer poly(vinyl sulfonate-co-vinyl alcohol)-g-poly(d,l-lactic-co-glycolic acid) loaded with salbutamol free base. Average particle sizes of blank and drug-loaded nanoparticles prepared at the various stages of the investigations were between 91 and 204nm; average zeta potential values were between -50.1 and -25.6mV. Blank nanoparticles showed no significant toxicity, and no inflammatory activity was detected in Calu-3 cells. Sustained release of salbutamol from the nanoparticles was observed for 2.5h in vitro, and a prolonged effect was observed for 120min in vivo. These results demonstrate good agreement between in vitro and in vivo tests and also present a promising foundation for future advancement in nanomedicine strategies for pulmonary drug delivery.

  14. Novel free paclitaxel-loaded poly(L-γ-glutamylglutamine–paclitaxel nanoparticles

    Directory of Open Access Journals (Sweden)

    Danbo Yang

    2011-01-01

    Full Text Available Danbo Yang1, Sang Van2, Xinguo Jiang3, Lei Yu1,21Biomedical Engineering and Technology Institute, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai, People's Republic of China; 2Biomedical Group, Nitto Denko Technical Corporation, Oceanside, CA, USA; 3School of Pharmacy, Fudan University, Shanghai, People's Republic of ChinaAbstract: The purpose of this study was to develop a novel formulation of paclitaxel (PTX that would improve its therapeutic index. Here, we combined a concept of polymer–PTX drug conjugate with a concept of polymeric micelle drug delivery to form novel free PTX-loaded poly(L-γ-glutamylglutamine (PGG–PTX conjugate nanoparticles. The significance of this drug formulation emphasizes the simplicity, novelty, and flexibility of the method of forming nanoparticles that contain free PTX and conjugated PTX in the same drug delivery system. The results of effectively inhibiting tumor growth in mouse models demonstrated the feasibility of the nanoparticle formulation. The versatility and potential of this dual PTX drug delivery system can be explored with different drugs for different indications. Novel and simple formulations of PTX-loaded PGG–PTX nanoparticles could have important implications in translational medicines.Keywords: paclitaxel, polymeric micelle, poly(L-γ-glutamylglutamine–paclitaxel, nanoconjugate, nanoparticles

  15. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol-loaded

  16. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery.

    Science.gov (United States)

    Duxfield, Linda; Sultana, Rubab; Wang, Ruokai; Englebretsen, Vanessa; Deo, Samantha; Swift, Simon; Rupenthal, Ilva; Al-Kassas, Raida

    2016-03-01

    The present investigation aimed at improving the ocular bioavailability of gatifloxacin by prolonging its residence time in the eye and reducing problems associated with the drug re-crystallization after application through incorporation into cationic polymeric nanoparticles. Gatifloxacin-loaded nanoparticles were prepared via the nanoprecipitation and double emulsion techniques. A 50:50 Eudragit® RL and RS mixture was used as cationic polymer with other formulation parameters varied. Prepared nanoparticles were evaluated for size, zeta potential, and drug loading. An optimized formulation was selected and further characterized for in vitro drug release, cytotoxicity, and antimicrobial activity. The double emulsion method produced larger nanoparticles than the nanoprecipitation method (410 nm and 68 nm, respectively). Surfactant choice also affected particle size and zeta potential with Tween 80 producing smaller-sized particles with higher zeta potential than PVA. However, the zeta potential was positive at all experimental conditions investigated. The optimal formulation produced by double emulsion technique and has achieved 46% drug loading. This formulation had optimal physicochemical properties with acceptable cytotoxicity results, and very prolonged release rate. The particles antimicrobial activities of the selected formulation have been tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and showed prolonged antimicrobial effect for gatifloxacin.

  17. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles.

    Science.gov (United States)

    El-Naggar, Mehrez E; El-Rafie, M H; El-sheikh, M A; El-Feky, Gina S; Hebeish, A

    2015-11-01

    The current research work focuses on the medical application of the cost-effective cross-linked starch nanoparticles, for the transdermal delivery using Diclofenac sodium (DS) as a model drug. The prepared DS-cross-linked starch nanoparticles were synthesized using nanoprecipitation technique at different concentrations of sodium tripolyphosphate (STPP) in the presence of Tween 80 as a surfactant. The resultant cross-linked starch nanoparticles loaded with DS were characterized using world-class facilities such as TEM, DLS, FT-IR, XRD, and DSc. The efficiency of DS loading was also evaluated via entrapment efficiency as well as in vitro release and histopathological study on rat skin. The optimum nanoparticles formulation selected by the JMP(®) software was the formula that composed of 5% maize starch, 57.7mg DS and 0.5% STPP and 0.4% Tween 80, with particle diameter of about 21.04nm, polydispersity index of 0.2 and zeta potential of -35.3mV. It is also worth noting that this selected formula shows an average entrapment efficiency of 95.01 and sustained DS release up to 6h. The histophathological studies using the best formula on rat skin advocate the use of designed transdermal DS loaded cross-linked starch nanoparticles as it is safe and non-irritant to rat skin. The overall results indicate that, the starch nanoparticles could be considered as a good carrier for DS drug regarding the enhancement in its controlled release and successful permeation, thus, offering a promising nanoparticulate system for the transdermal delivery non-steroidal anti-inflammatory drug (NSAID).

  18. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cátia

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  19. Shea butter solid nanoparticles for curcumin encapsulation: Influence of nanoparticles size on drug loading

    OpenAIRE

    Hajj Ali, Hassan; Michaux, Florentin; Bouelet Ntsama, Isabelle Sandrine; Durand, Pierrick; Jasniewski, Jordane; Linder, Michel

    2015-01-01

    International audience; In the present work, shea butter solid lipid nanoparticles (SLN) were prepared by sonication using nonionic surfactants as stabilizers without organic solvent. The mixture design methodology enabled to control particles size from 50?nm to more than 1?µm according to the mixture composition. Then, curcumin, a natural polyphenol, has been encapsulated in nanoparticles with a wide range of diameters (50–230?nm) and the encapsulation efficiency has been related to the part...

  20. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes.

    Science.gov (United States)

    Parolo, Claudio; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2013-02-15

    The use of gold nanoparticles (AuNPs) as labeling carriers in combination with the enzymatic activity of the horseradish peroxidase (HRP) in order to achieve an improved optical lateral flow immunoassay (LFIA) performance is presented here. Briefly in a LFIA with an immune-sandwich format AuNPs are functionalized with a detection antibody already modified with HRP, obtaining an 'enhanced' label. Two different detection strategies have been tested: the first one following just the red color of the AuNPs and the second one using a substrate for the HRP (3 different substrates are evaluated), which produces a darker color that enhances the intensity of the previous red color of the unmodified AuNPs. In such very simple way it is gaining sensitivity (up to 1 order of magnitude) without losing the simplicity of the LFIA format, opening the way to other LFIA applications including their on-demand performance tuning according to the analytical scenario.

  1. Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma

    Science.gov (United States)

    Soofiyani, Saiedeh Razi; Hallaj-Nezhadi, Somayeh; Lotfipour, Farzaneh; Hosseini, Akbar Mohammad; Baradaran, Behzad

    2016-01-01

    Objective(s): Interleukin-12 (IL-12) as a cytokine has been proved to have a critical role in stimulating the immune system and has been used as immunotherapeutic agents in cancer gene therapy. Chitosan as a polymer, with high ability of binding to nucleic acids is a good candidate for gene delivery since it is biodegradable, biocompatible and non-allergenic polysaccharide. The objective of the present study was to investigate the effects of cells transfected with IL-12 loaded chitosan nanoparticles on the regression of fibrosarcoma tumor cells (WEHI-164) in vivo. Materials and Methods: WEHI-164 tumor cells were transfected with IL-12 loaded chitosan nanoparticles and then were injected subcutaneously to inoculate tumor in BALB/c mice. Tumor volumes were determined and subsequently extracted after mice sacrifice. The immunohistochemistry staining was performed for analysis of Ki-67 expression (a tumor proliferation marker) in tumor masses. The expression of IL-12 and IFN-γ were studied using real-time polymerase chain reaction and immunoblotting. Results: The group treated with IL-12 loaded chitosan nanoparticles indicated decreasing of tumor mass[r1] volume (P<0.001). The results of western blotting and real-time PCR showed that the IL-12 expression was increased in the group. Immunohistochemistry staining indicated that the Ki-67expression was reduced in the group treated with IL-12 loaded chitosan nanoparticles. Conclusion: IL-12 gene therapy using chitosan nanoparticles has therapeutic effects on the regression of tumor masses in fibrosarcoma mouse model. PMID:27917281

  2. Chitosan-clodronate nanoparticles loaded in poloxamer gel for intra-articular administration.

    Science.gov (United States)

    Russo, E; Gaglianone, N; Baldassari, S; Parodi, B; Croce, I; Bassi, A M; Vernazza, S; Caviglioli, G

    2016-07-01

    This work was based on the study of an intra-articular delivery system constituted by a poloxamer gel vehiculating clodronate in chitosan nanoparticles. This system has been conceived to obtain a specific and controlled release of clodronate in the joints to reduce the arthritis rheumatoid degenerative effect. Clodronate (CLO) is a first-generation bisphosphonate with anti-inflammatory properties, inhibiting the cytokine and NO secretion from macrophages, therefore causing apoptosis in these cells. This is related to its ability to be metabolized by cells and converted into a cytotoxic intermediate as a non-hydrolysable analogue of ATP. Chitosan (CHI) was used to develop nanosystems, by ionotropic gelation induced by clodronate itself. A fractional factorial experimental design allowed us to obtain nanoparticles, the diameter of which ranged from 200 to 300nm. Glutaraldehyde was used to increase nanoparticle stability and modify the drug release profile. The zeta potential value of crosslinked nanopaparticles was 21.0mV±1.3, while drug loading was 31.0%±5.4 w/w; nanoparticle yield was 18.2%±1.8 w/w, the encapsulation efficiency was 48.8%±9.9 w/w. Nanoparticles were homogenously loaded in a poloxamer sol, and the drug delivery system is produced in-situ after local administration, when sol become gel at physiological temperature. The properties of poloxamer gels containing CHI-CLO nanoparticles, such as viscosity, gelation temperature and drug release properties, were evaluated. In vitro studies were conducted to evaluate the effects of these nanoparticles on a human monocytic cell line (THP1). The results showed that this drug delivery system is more efficient, with respect to the free drug, to counteract the inflammatory process characteristic of several degenerative diseases.

  3. Magnetic loading of graphene-nickel nanoparticle hybrid for electrochemical sensing of carbohydrates.

    Science.gov (United States)

    Qu, Weidong; Zhang, Luyan; Chen, Gang

    2013-04-15

    Graphene-nickel nanoparticle hybrid was prepared by the one-step far infrared-assisted reduction of graphene oxide and nickel (II) ions using hydrazine. It was loaded on the surface of a magnetic electrode for electrochemical sensing. The feasibility and performance of the novel electrode were demonstrated by measuring carbohydrates using cyclic voltammetry and amperometry. It demonstrated that nickel nanoparticles decorated on graphene sheets exhibited higher electrocatalytic activity toward the oxidation of carbohydrates while graphene improved the electron transduction. The synergistic effect significantly enhanced the current response of carbohydrates.

  4. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy

    Directory of Open Access Journals (Sweden)

    Maji R

    2014-06-01

    Full Text Available Ruma Maji, Niladri Shekhar Dey, Bhabani Sankar Satapathy, Biswajit Mukherjee, Subhasish MondalDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata (Calcutta, IndiaBackground: Four formulations of Tamoxifen citrate loaded polylactide-co-glycolide (PLGA based nanoparticles (TNPs were developed and characterized. Their internalization by Michigan Cancer Foundation-7 (MCF-7 breast cancer cells was also investigated.Methods: Nanoparticles were prepared by a multiple emulsion solvent evaporation method. Then the following studies were carried out: drug-excipients interaction using Fourier transform infrared spectroscopy (FTIR, surface morphology by field emission scanning electron micro­scopy (FESEM, zeta potential and size distribution using a Zetasizer Nano ZS90 and particle size analyzer, and in vitro drug release. In vitro cellular uptake of nanoparticles was assessed by confocal microscopy and their cell viability (% was studied.Results: No chemical interaction was observed between the drug and the selected excipients. TNPs had a smooth surface, and a nanosize range (250–380 nm with a negative surface charge. Drug loadings of the prepared particles were 1.5%±0.02% weight/weight (w/w, 2.68%±0.5% w/w, 4.09%±0.2% w/w, 27.16%±2.08% w/w for NP1–NP4, respectively. A sustained drug release pattern from the nanoparticles was observed for the entire period of study, ie, up to 60 days. Further, nanoparticles were internalized well by the MCF-7 breast cancer cells on a concentration dependent manner and were present in the cytoplasm. The nucleus was free from nanoparticle entry. Drug loaded nanoparticles were found to be more cytotoxic than the free drug.Conclusion: TNPs (NP4 showed the highest drug loading, released the drug in a sustained manner for a prolonged period of time and were taken up well by the MCF-7 breast cancer cell line in vitro. Thus the formulation may be suitable for breast cancer treatment due to the

  5. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid

    Directory of Open Access Journals (Sweden)

    Keum CG

    2011-10-01

    Full Text Available Chang-Gu Keum1*, Young-Wook Noh1*, Jong-Suep Baek1, Ji-Ho Lim1, Chan-Ju Hwang1, Young-Guk Na1, Sang-Chul Shin2, Cheong-Weon Cho11College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Gungdong, Yuseonggu, Daejeon, South Korea; 2College of Pharmacy, Chonnam National University, Yongbongdong, Buggu, Gwangju, South Korea *These authors contributed equally to this work Background: Nanoparticles fabricated from the biodegradable and biocompatible polymer, polylactic-co-glycolic acid (PLGA, are the most intensively investigated polymers for drug delivery systems. The objective of this study was to explore fully the development of a PLGA nanoparticle drug delivery system for alternative preparation of a commercial formulation. In our nanoparticle fabrication, our purpose was to compare various preparation parameters. Methods: Docetaxel-loaded PLGA nanoparticles were prepared by a single emulsion technique and solvent evaporation. The nanoparticles were characterized by various techniques, including scanning electron microscopy for surface morphology, dynamic light scattering for size and zeta potential, x-ray photoelectron spectroscopy for surface chemistry, and high-performance liquid chromatography for in vitro drug release kinetics. To obtain a smaller particle, 0.2% polyvinyl alcohol, 0.03% D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, 2% Poloxamer 188, a five-minute sonication time, 130 W sonication power, evaporation with magnetic stirring, and centrifugation at 8000 rpm were selected. To increase encapsulation efficiency in the nanoparticles, certain factors were varied, ie, 2–5 minutes of sonication time, 70–130 W sonication power, and 5–25 mg drug loading. Results: A five-minute sonication time, 130 W sonication power, and a 10 mg drug loading amount were selected. Under these conditions, the nanoparticles reached over 90% encapsulation efficiency. Release kinetics showed that 20

  6. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne

    Institute of Scientific and Technical Information of China (English)

    V. Vijayan; Shaik Aafreen; S. Sakthivel; K. Ravindra Reddy

    2013-01-01

    Objective:To investigate the treatment of acne and pimples as well as improves skin elasticity by solid lipid nanoparticles(SLNs) loadedNeem oil.Method:Neem oil as a natural agent was incorporated intoSLNs prepared by double emulsification method using different concentration of lecithin andTween80.The characteristics ofSLNs with different concentration of lipid were investigated.Result:The average particlesize ofNeem oil loadedSLNs decreased with increasing concentration of surfactant.SLNs of(221.6±2.0) nm with aPolydispersity index of (0.948±0.040) were obtained at higher concentration of lipid and surfactant.High entrapment efficiency of82.10% revealed the ability of solid lipid nanoparticles to incorporate a high quantity ofNeem oil.Furthermore the stability ofSLNs indicated with negligible drug leakage after3 weeks.Conclusion:The result concluded thatNeem oil loaded solid lipid nanoparticles with more lecithin content in their colloid exhibit sustained effect which satisfactorily produced the antibacterial action onAcne microbes.ThereforeNeem oil loadedSLN was used successfully for prolonged treatment ofAcne.

  7. Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Yang KY

    2013-08-01

    Full Text Available Kwan Yeol Yang,1,* Du Hyeong Hwang,1,* Abid Mehmood Yousaf,2 Dong Wuk Kim,2 Young-Jun Shin,2 Ok-Nam Bae,2 Yong-II Kim,1 Jong Oh Kim,1 Chul Soon Yong,1 Han-Gon Choi2 1College of Pharmacy, Yeungnam University, Dae-Dong, Gyongsan, 2College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Sangnok-gu, Ansan, South Korea *These authors contributed equally to this work Background: The purpose of this study was to develop a novel silymarin-loaded solid nanoparticle system with enhanced oral bioavailability and an ability to provide excellent hepatic protection for poorly water-soluble drugs using Shirasu porous glass (SPG membrane emulsification and a spray-drying technique. Methods: A silymarin-loaded liquid nanoemulsion was formulated by applying the SPG membrane emulsification technique. This was further converted into solid state nanosized particles by the spray-drying technique. The physicochemical characteristics of these nanoparticles were determined by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. Their dissolution, bioavailability, and hepatoprotective activity in rats were assessed by comparison with a commercially available silymarin-loaded product. Results: Formulation of a silymarin-loaded nanoemulsion, comprising silymarin, castor oil, polyvinylpyrrolidone, Transcutol HP, Tween 80, and water at a weight ratio of 5/3/3/1.25/1.25/100 was accomplished using an SPG membrane emulsification technique at an agitator speed of 700 rpm, a feed pressure of 15 kPa, and a continuous phase temperature of 25°C. This resulted in generation of comparatively uniform emulsion globules with a narrow size distribution. Moreover, the silymarin-loaded solid nanoparticles, containing silymarin/castor oil/polyvinylpyrrolidone/Transcutol HP/Tween 80 at a weight ratio of 5/3/3/1.25/1.25, improved about 1,300-fold drug solubility and retained a mean size of about 210 nm

  8. Microfluidic synthesis of dye-loaded polycaprolactone-block-poly(ethylene oxide) nanoparticles: Insights into flow-directed loading and in vitro release for drug delivery.

    Science.gov (United States)

    Bains, Aman; Wulff, Jeremy E; Moffitt, Matthew G

    2016-08-01

    Using the fluorescent probe dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) as a surrogate for hydrophobic drugs, we investigate the effects of water content and on-chip flow rate on the multiscale structure, loading and release properties of DiI-loaded poly(ε-caprolactone)-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles produced in a gas-liquid segmented microfluidic device. We find a linear increase in PCL crystallinity within the nanoparticle cores with increasing flow rate, while mean nanoparticle sizes first decrease and then increase with flow rate coincident with the disappearance and reappearance of long filament nanoparticles. Loading efficiencies at the lower water content (cwc+10wt%) are generally higher (up to 94%) compared to loading efficiencies (up to 53%) at the higher water content (cwc+75wt%). In vitro release times range between ∼2 and 4days for nanoparticles produced at cwc+10wt% and >15days for nanoparticles produced at cwc+75wt%. At the lower water content, slower release of DiI is found for nanoparticles produced at higher flow rate, while at high water content, release times first decrease and then increase with flow rate. Finally, we investigate the effects of the chemical and physical characteristics of the release medium on the kinetics of in vitro DiI release and nanoparticle degradation. This work demonstrates the general utility of dye-loaded nanoparticles as model systems for screening chemical and flow conditions for producing drug delivery formulations within microfluidic devices.

  9. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles.

    Science.gov (United States)

    Esmaeili, Akbar; Asgari, Azadeh

    2015-11-01

    In recent years, the unparalleled and functional properties of essential oils have been extensively reported, but the sensitivity of essential oils to environmental factors and their poor aqueous solubility have limited their applications in industries. Hence, we encapsulated CEO in chitosan nanoparticles by an emulsion-ionic gelation with pantasodium tripolyphosphate (TPP) and sodium hexametaphosphte (HMP), separately, as crosslinkers. The nanoparticles were analyzed by Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and dynamic light scattering (DLS). The encapsulation efficiency (EE) and loading capacity (LC) of CEO in chitosan nanoparticles increased with the increase of initial CEO amount. The nanoparticles displayed an average size of 30-80nm with a spherical shape and regular distribution. In vitro release profiles exhibited an initial burst release and followed by a sustained CEO release at different pH conditions. The amount of CEO release from chitosan nanoparticles was higher in acidic pH to basic or neutral pH, respectively. The biological properties of CEO, before and after the encapsulation process were evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and agar disk diffusion method, respectively. The results indicated the encapsulation of CEO in chitosan nanoparticles could be protected the quality.

  10. Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles.

    Science.gov (United States)

    Seong, Da-Young; Kim, Young-Jin

    2015-05-01

    Although methylene blue (MB) is the most inexpensive photosensitizer with promising applications in the photodynamic therapy (PDT) for its high quantum yield of singlet oxygen generation, the clinical use of MB has been limited by its rapid enzymatic reduction in the biological environment. To enhance PDT efficacy of MB by preventing the enzymatic reduction, we have developed a new mineralization method to produce highly biocompatible MB-loaded calcium phosphate (CaP-MB) nanoparticles in the presence of polymer templates. The resulting CaP-MB nanoparticles exhibited spherical shape with a size of under 50 nm. Fourier transform infrared (FT-IR) and zeta-potential analyses confirmed the insertion of MB into the CaP-MB nanoparticles. The encapsulation of MB in CaP nanoparticles could effectively protect MB from the enzymatic reduction. In addition, the CaP-MB nanoparticles exhibited a good biocompatibility in the dark condition and significantly enhanced PDT efficacy due to apoptotic cell death against human breast cancer cells as compared with free MB, implying that CaP-MB nanoparticle system might be potentially applicable in PDT.

  11. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin.

    Science.gov (United States)

    Zhang, Peiwen; Xu, Yining; Zhu, Xi; Huang, Yuan

    2015-12-30

    Oral administration of insulin remains a challenge due to its poor enzymatic stability and inefficient permeation across epithelium. We herein developed a novel self-assembled polyelectrolyte complex nanoparticles by coating insulin-loaded dodecylamine-graft-γ-polyglutamic acid micelles with trimethyl chitosan (TMC). The TMC material was also conjugated with a goblet cell-targeting peptide to enhance the affinity of nanoparticles with epithelium. The developed nanoparticle possessed significantly enhanced colloid stability, drug protection ability and ameliorated drug release profile compared with graft copolymer micelles or ionic crosslinked TMC nanoparticles. For in vitro evaluation, Caco-2/HT29-MTX-E12 cell co-cultures, which composed of not only enterocyte-like cells but also mucus-secreting cells and secreted mucus layer, were applied to mimic the epithelium. Intracellular uptake and transcellular permeation of encapsulated drug were greatly enhanced for NPs as compared with free insulin or micelles. Goblet cell-targeting modification further increased the affinity of NPs with epithelium with changed cellular internalization mechanism. The influence of mucus on the cell uptake was also investigated. Ex vivo performed with rat mucosal tissue demonstrated that the nanoparticle could facilitate the permeation of encapsulated insulin across the intestinal epithelium. In vivo study preformed on diabetic rats showed that the orally administered nanoparticles elicited a prolonged hypoglycemic response with relative bioavailability of 7.05%.

  12. Nanoembedded Microparticles for Stabilization and Delivery of Drug-Loaded Nanoparticles.

    Science.gov (United States)

    Bohr, Adam; Water, Jorrit; Beck-Broichsitter, Moritz; Yang, Mingshi

    2015-01-01

    Nanoparticle-based pharmaceutical products are currently finding their way onto the market as a popular strategy to improve the therapeutic efficacy of numerous drugs, hereunder medications for a targeted treatment of severe diseases (e.g., cancer). Drug-loaded polymer and lipid nanoparticles are typically produced via solvent-based methods and result in colloidal suspensions, which often suffer from physical and chemical instability (e.g., formation of aggregates) resulting in loss of functionality. There are various ways to stabilize such nanoparticle-based formulations including addition of ionic materials to provide electrostatic repulsion or polymer materials forming a steric barrier between the particles. However, for long-term stability often water needs to be removed to obtain a dry product. For this purpose atomization-based techniques such as spray-drying and spray freeze-drying are frequently used to remove water from the nanoparticle suspensions and to form tailored powder products (e.g., nanoembedded microparticles (NEMs)). NEMs provide an excellent vehicle for both stabilization of nanoparticles and delivery of the nanoparticles to their intended site of action. Excipients such as sugars and biocompatible polymers are used to prepare the surrounding, stabilizing matrix. Further, these "Trojan" vehicles are compatible with a wide range of therapeutic molecules, nanocarriers and applications for different routes of administration. The preparation, properties and stability of these NEMs are described in this review and their application and future development are discussed.

  13. Gentamicin loaded PLGA nanoparticles as local drug delivery system for the osteomyelitis treatment.

    Science.gov (United States)

    Posadowska, Urszula; Brzychczy-Włoch, Monika; Pamuła, Elżbieta

    2015-01-01

    Since there are more and more cases of multiresistance among microorganisms, rational use of antibiotics (especially their systemic vs. local application) is of great importance. Here we propose polymeric nanoparticles as locally applied gentamicin delivery system useful in osteomyelitis therapy. Gentamicin sulphate (GS) was encapsulated in the poly(lactide-co-glycolide) (PLGA 85:15) nanoparticles by double emulsification (water/oil/water, W1/O/W2). The nanoparticles were characterized by dynamic light scattering, laser electrophoresis and atomic force microscopy. UV-vis spectroscopy (O-phthaldialdehyde assay, OPA) and Kirby-Bauer tests were used to evaluate drug release and antimicrobial activity, respectively. Physicochemical characterization showed that size, shape and drug solubilization of the nanoparticles mainly depended on GS content and concentration of surface stabilizer (polyvinyl alcohol, PVA). Laser electrophoresis demonstrated negative value of zeta potential of the nanoparticles attributed to PLGA carboxyl end group presence. Drug release studies showed initial burst release followed by prolonged 35-day sustained gentamicin delivery. Agar-diffusion tests performed with pathogens causing osteomyelitis (Staphylococcus aureus and Staphylococcus epidermidis, both reference strains and clinical isolates) showed antibacterial activity of GS loaded nanoparticles (GS-NPs). It can be concluded that GS-NPs are a promising form of biomaterials useful in osteomyelitis therapy.

  14. Tamoxifen-loaded poly(L-lactide) nanoparticles: Development, characterization and in vitro evaluation of cytotoxicity.

    Science.gov (United States)

    Altmeyer, Clescila; Karam, Thaysa Ksiaskiewcz; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-03-01

    In this study, poly(L-lactide) (PLA) nanoparticles containing Tamoxifen (Tmx) were developed using an emulsion/solvent evaporation method, observing the influence of surfactants and their concentrations on mean particle size and drug entrapment. Nanoparticles were characterized in terms of size, morphology, polydispersity, interaction drug-polymer and in vitro drug release profile. Cytotoxicity over erythrocytes and tumor cells was assessed. The optimized formulation employed as surfactant 1% polyvinyl alcohol. Mean particle size was 155±4 nm (n=3) and Tmx encapsulation efficiency was 85±8% (n=3). The in vitro release profile revealed a biphasic release pattern diffusion-controlled with approximately 24% of drug released in 24 h followed by a sustained release up to 120 h (30% of Tmx released). PLA nanoparticles containing Tmx presented a very low index of hemolysis (less than 10%), in contrast to free Tmx that was significantly hemolytic. Tmx-loaded PLA nanoparticles showed IC50 value 2-fold higher than free Tmx, but considering the prolonged Tmx release from nanoparticles, cytotoxicity on tumor cells was maintained after nanoencapsulation. Thus, PLA nanoparticles are promising carriers for controlled delivery of Tmx with potential application in cancer treatment.

  15. Simvastatin-loaded PLGA nanoparticles for improved oral bioavailability and sustained release: Effect of formulation variables

    Directory of Open Access Journals (Sweden)

    Aman Soni

    2011-01-01

    Full Text Available The objective of this study was to prepare a nanoparticulate formulation of simvastatin (SV for improving oral bioavailability and sustaining the drug release while investigating the effect of various formulation parameters on characteristics of nanoparticles. Nanoparticles containing SV were prepared by a modified emulsification solvent evaporation technique using a biodegradable polymer, poly(d,l-lactide-coglycolide (PLGA as a sustained release carrier. The effect of various formulation parameters such as drug polymer ratios (SV:PLGA, 1:4 to 1:1, organic solvents (methanol/dichloromethane, and surfactants (PVA/polysorbate-80 in a fixed concentration (0.5%, w/v were studied for particle size, drug loading, and entrapment efficiency. Nanoparticles were characterized by differential scanning calorimetry (DSC and their shapes were observed by scanning electron microscopy (SEM. An aqueous solubility study indicated that the dissolution rates were remarkably increased for nanoparticles compared with the drug alone. The in vitro drug release study of the nanoparticles showed a biphasic release pattern: one initial burst release of 40.56% in the first 4 h which can be helpful to improve the penetration of drug followed by a second slow-release phase (extended release consistent with a Higuchi diffusion mechanism. The hypolipidemic activity of nanoparticles was determined in comparison with SV in male Wistar rats for changes in total cholesterol (CH and triglyceride (TG levels in blood. Nanoparticles showed a significantly better in vivo performance than SV in reducing total CH and TG levels which is primarily attributed to the improved solubility and dissolution of nanoparticles. Together, these results indicate that nanoparticulate formulations are ideal carriers for oral administration of SV having great potential to improve the oral bioavailability and sustain the drug release, thereby minimizing the dose-dependent adverse effects and maximizing

  16. DOXORUBICIN-LOADED BORON-RICH POLYMER NANOPARTICLES FOR ORTHOTOPICALLY IMPLANTED LIVER TUMOR TREATMENT

    Institute of Scientific and Technical Information of China (English)

    Lu-zhong Zhang; Ya-jun Zhang; Wei Wu; Xi-qun Jiang

    2013-01-01

    The in vivo behaviors of doxorubicin (DOX)-loaded dextran-poly(3-acrylamidophenylboronic acid) (DextranPAPBA) nanoparticles (NPs) were studied.The DOX-loaded NPs had a narrowly distributed diameter of ca.74 nm and mainly accumulated in liver of tumor-bearing mice after intravenous injection as demonstrated by in vivo real-time near infrared fluorescent imaging.The DOX contents in various tissues were quantified and consisted well with the results of fluorescent imaging.The biodistribution pattern of DOX-loaded NPs encourages us to investigate their liver tumor treatment by using an orthotopically implanted liver tumor model,revealing that the DOX-loaded NPs formulation had better antitumor effect than free DOX.

  17. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration

    DEFF Research Database (Denmark)

    Martins, S. M.; Sarmento, B.; Nunes, C.

    2013-01-01

    This study intended to investigate the ability of solid lipid nanoparticles (SLN) to deliver camptothecin into the brain parenchyma after crossing the blood-brain barrier. For that purpose, camptothecin-loaded SLN with mean size below 200 nm, low polydispersity index (94%) were produced...... studies against glioma and macrophage human cell lines revealed that camptothecin-loaded SLN induced cell death with the lowest maximal inhibitory concentration (IC50) values, revealing higher antitumour activity of camptothecin-loaded SLN against gliomas. Furthermore, in vivo biodistribution studies...... of intravenous camptothecin-loaded SLN performed in rats proved the positive role of SLN on the brain targeting since significant higher brain accumulation of camptothecin was observed, compared to non-encapsulated drug. Pharmacokinetic studies further demonstrated lower deposition of camptothecin in peripheral...

  18. Synthesis and characterization of antimicrobial crosslinked carboxymethyl chitosan nanoparticles loaded with silver.

    Science.gov (United States)

    Mohamed, Riham R; Sabaa, Magdy W

    2014-08-01

    Carboxymethyl chitosan (CMCh)-silver nanoparticle (Ag) hydrogels with high antibacterial activity against three Gram +ve bacteria (Staphylococcus aureus, Bacillus subtilis and Streptococcus faecalis), three Gram -ve bacteria (Escherichia coli, Pseudomonas aeruginosa and Neisseria gonorrhoeae) and a Candida albicans fungus were prepared. The in situ preparation reaction involved crosslinking of CMCh with epichlorohydrin in alkaline medium containing silver nitrate to yield silver nanoparticles loaded CMCh hydrogel giving pale brown or darker hydrogels when the silver content increases. FTIR spectroscopy, SEM and TEM were done for the prepared hydrogels. Silver nanoparticles hydrogels exhibited higher antimicrobial activity than virgin CMCh. TEM analysis showed the small size of the prepared hydrogels to be in the range of 9-16nm in size.

  19. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    Science.gov (United States)

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes.

  20. Preparation, Characterization of Hydrophobic Drug in Combine Loaded Chitosan/Cyclodextrin/Trisodium Citrate Nanoparticles and in vitro Release Study

    Institute of Scientific and Technical Information of China (English)

    JI Jin-gou; ZHANG Jing-fen; HAO Shi-lei; WU Dan-jun; LIU Li; XU Yi

    2012-01-01

    Chitosan/cyclodextrin/trisodium citrate(CS/CD/TSC) nanoparticles with ibuprofen(IBU) loaded were prepared via the ionic cross-linking method,with trisodium citrate selected as the cross-linking agent.The drug-loading capacity,particle size,zeta potential and surface morphology of the obtained nanoparticles were investigated.The results show a good drug-loading capacity.The prepared nanoparticles were spherical in shape with an average size of 293.7 nm and a zeta potential of +30.72 mV.The in vitro release studies show that the controlled release of IBU from the nanoparticles was followed.The drug release from CS/β-CD/TSC nanoparticles followed non-Fickian or anomalous diffusion.

  1. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers.

    Directory of Open Access Journals (Sweden)

    Stefanie Wohlfart

    Full Text Available BACKGROUND: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid (PLGA nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. METHODOLOGY: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA or human serum albumin (PLGA/HSA as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3 × 2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. CONCLUSION: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations.

  2. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Rivero Pedro

    2011-01-01

    Full Text Available Abstract In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS and poly(acrylic acid sodium salt (PAA was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM. Energy dispersive X-ray (EDX was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  3. Fabrication of a Magnetite Nanoparticle-loaded Polymeric Nanoplatform for Magnetically Guided Drug Delivery

    Institute of Scientific and Technical Information of China (English)

    DING Guo-bin; LIU Hui-ying; WANG Yan; L(U) Yan-yun; WU Yi; GUO Yi; XU Li

    2013-01-01

    We developed a magnetite nanoparticle-loaded polymeric nanoplatform for magnetically guided 10-hydroxycamptothecin(HCPT) delivery.The nanoplatform was fabricated by simultaneously incorporating magnetite nanoparticles(NPs) and HCPT into the polymer micelle self-assembled from methoxy polyethylene glycolpoly(D,L-lactide-co-glycolide)(MPEG-PLGA) copolymer.Successful loading of HCPT into the nanoplatform was confirmed by Fourier transform infrared(FTIR) spectroscopy.Subsequently,we examined the in vitro antitumor efficacy of free HCPT and nanoplatform against three different cancer cell lines——HeLa,A549 and HepG2.Flow cytometric analysis was conducted to reveal the cell apoptosis caused by free HCPT and nanoplatform.Finally,the magnetic targeting property of the nanoplatform was evaluated by a self-designed in vitro experiment.

  4. Core-shell poly-methylmethacrylate nanoparticles as effective carriers of electrostatically loaded anionic porphyrin.

    Science.gov (United States)

    Varchi, Greta; Benfenati, Valentina; Pistone, Assunta; Ballestri, Marco; Sotgiu, Giovanna; Guerrini, Andrea; Dambruoso, Paolo; Liscio, Andrea; Ventura, Barbara

    2013-05-01

    Among the medical applications of nanoparticles, their usage as photosensitizer (PS) carriers for photodynamic therapy (PDT) has attracted increasing attention. In the present study we explored the morphological and photophysical properties of core-shell PMMA nanoparticles (PMMA-NPs) electrostatically post-loaded with the synthetic, water soluble 5,10,15,20-tetrakis(4-sulphonatophenyl)-porphyrin (TPPS4). pH response and singlet oxygen analyses of differently loaded samples proved the high capability of the PMMA-NPs to shield the PS from the environment, while retaining the PS singlet oxygen production capability. Preliminary in vitro imaging and phototoxicity experiments on HepG2 cells demonstrated the efficacy of the system to trigger photoinduced cell death in the culture.

  5. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN).

    Science.gov (United States)

    Souto, E B; Anselmi, C; Centini, M; Müller, R H

    2005-05-13

    Solid lipid nanoparticles (SLN) containing a novel potential sunscreen n-dodecyl-ferulate (ester of ferulic acid) were developed. The preparation and stability parameters of n-dodecyl-ferulate-loaded SLN have been investigated concerning particle size, surface electrical charge (zeta potential) and matrix crystallinity. The chemical stability of n-dodecyl-ferulate at high temperatures was also assessed by thermal gravimetry analysis. For the selection of the appropriated lipid matrix, chemically different lipids were melted with 4% (m/m) of active and lipid nanoparticles were prepared by the so-called high pressure homogenization technique. n-Dodecyl-ferulate-loaded SLN prepared with cetyl palmitate showed the lowest mean particle size and polydispersity index, as well as the highest physical stability during storage time of 21 days at 4, 20 and 40 degrees C. These colloidal dispersions containing the sunscreen also exhibited the common melting behaviour of aqueous SLN dispersions.

  6. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    Science.gov (United States)

    Rivero, Pedro José; Urrutia, Aitor; Goicoechea, Javier; Zamarreño, Carlos Ruiz; Arregui, Francisco Javier; Matías, Ignacio Raúl

    2011-12-01

    In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  7. Formulation and Evaluation of Morin-Loaded Solid Lipid Nanoparticles.

    Science.gov (United States)

    Ikeuchi-Takahashi, Yuri; Ishihara, Chizuko; Onishi, Hiraku

    2016-09-01

    In this study, solid lipid nanoparticle (SLN) suspensions were prepared using a base of hard fat with or without ethylcellulose (EC) and polyvinyl alcohols (PVA) and polysorbate (Tween) 60 surfactants. Commercially available PVAs vary in their degree of saponification and polymerization, and the appropriate PVAs to form SLNs from hard fat with or without EC were investigated. A relatively low-saponification-degree PVA was required to reproducibly form SLN suspensions without EC and relatively high-saponification-degree PVAs were suitable for SLNs with EC. The release of morin from SLNs with EC was more sustained than that from SLNs without EC. The maximum plasma concentration (Cmax) of SLNs with and without EC were almost the same, and both were higher than that of a morin suspension. The area under the curve for 0 to 360 min (AUC0-360) of SLNs with EC was increased compared with those of a morin suspension and SLNs without EC. The median diameter of SLNs with EC and a very low-saponification-degree PVA was decreased compared to other formulation, and morin release was more sustained for this formulation. SLNs with EC and a very low-saponification-degree PVA showed higher Cmax and AUC0-360 than SLNs with EC lacking a very low-saponification-degree PVA. The optimized SLNs with EC and a very low-saponification-degree PVA improved bioavailability via increased accessibility to the enterocyte surface by decreased particle size and increased permeation of SLN encapsulated morin through the intestinal membrane by sustained release properties.

  8. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses.

    Science.gov (United States)

    Jung, Hyun Jung; Abou-Jaoude, Michelle; Carbia, Blanca E; Plummer, Caryn; Chauhan, Anuj

    2013-01-10

    Glaucoma is the second major cause of blindness in the world after cataract. Glaucoma management through eye drops that reduce the intraocular pressure (IOP) has major deficiencies including low patient compliance and low bioavailability. Extended wear contact lenses that deliver glaucoma drugs for extended periods could increase patient compliance, while also increasing the bioavailability. To develop extended wear contact lenses that can also provide extended glaucoma therapy, we disperse nanoparticles of PGT (propoxylated glyceryl triacylate) that contain a glaucoma drug timolol. The particles can also be loaded into prefabricated lenses by soaking the lenses in a solution of particles in ethanol. The particle loaded gels can release timolol in phosphate buffered saline (PBS) for about a month at room temperature. The most likely rate controlling mechanism is hydrolysis of the ester bond that links timolol to the PGT matrix, but other mechanisms such as water and drug diffusion, drug dissolution, drug-polymer chain cleavage, time-dependent drug permeability within the polymeric matrix, etc. may also be important. Nanoparticle incorporation in the silicone hydrogels results in reduction in ion and oxygen permeabilities, and an increase in modulus, and the impact on each of these properties is proportional to the particle loading. A gel with 5% particle loading can deliver timolol at therapeutic doses for about a month at room temperature, with a minimal impact on critical lens properties. Preliminary animal studies in Beagle dogs conducted with lenses in which particles are loaded by soaking the lenses in ethanol show a reduction in IOP.

  9. In Vivo Assessment of Clobetasol Propionate-Loaded Lecithin-Chitosan Nanoparticles for Skin Delivery

    Directory of Open Access Journals (Sweden)

    Taner Şenyiğit

    2016-12-01

    Full Text Available The aim of this work was to assess in vivo the anti-inflammatory efficacy and tolerability of clobetasol propionate (CP loaded lecithin/chitosan nanoparticles incorporated into chitosan gel for topical application (CP 0.005%. As a comparison, a commercial cream (CP 0.05% w/w, and a sodium deoxycholate gel (CP 0.05% w/w were also evaluated. Lecithin/chitosan nanoparticles were prepared by self-assembling of the components obtained by direct injection of soybean lecithin alcoholic solution containing CP into chitosan aqueous solution. Nanoparticles obtained had a particle size around 250 nm, narrow distribution (polydispersity index below 0.2 and positive surface charge, provided by a superficial layer of the cationic polymer. The nanoparticle suspension was then loaded into a chitosan gel, to obtain a final CP concentration of 0.005%. The anti-inflammatory activity was evaluated using carrageenan-induced hind paw edema test on Wistar rats, the effect of formulations on the barrier property of the stratum corneum were determined using transepidermal water loss measurements (TEWL and histological analysis was performed to evaluate the possible presence of morphological changes. The results obtained indicate that nanoparticle-in-gel formulation produced significantly higher edema inhibition compared to other formulations tested, although it contained ten times less CP. TEWL measurements also revealed that all formulations have no significant disturbance on the barrier function of skin. Furthermore, histological analysis of rat abdominal skin did not show morphological tissue changes nor cell infiltration signs after application of the formulations. Taken together, the present data show that the use of lecithin/chitosan nanoparticles in chitosan gel as a drug carrier significantly improves the risk-benefit ratio as compared with sodium-deoxycholate gel and commercial cream formulations of CP.

  10. Altered Cell Cycle Arrest by Multifunctional Drug-Loaded Enzymatically-Triggered Nanoparticles.

    Science.gov (United States)

    Huang, Can; Sun, Ying; Shen, Ming; Zhang, Xiangyu; Gao, Pei; Duan, Yourong

    2016-01-20

    cRGD-targeting matrix metalloproteinase (MMP)-sensitive nanoparticles [PLGA-PEG1K-cRGD/PLGA-peptide-PEG5K (NPs-cRGD)] were successfully developed. Au-Pt(IV) nanoparticles, PTX, and ADR were encapsulated into NPs-RGD separately. The effects of the drug-loaded nanoparticles on the cell cycle were investigated. Here, we showed that higher cytotoxicity of drug-loaded nanoparticles was related to the cell cycle arrest, compared to that of free drugs. The NPs-cRGD studied here did not disrupt cell cycle progression. The cell cycle of Au-Pt(IV)@NPs-cRGD showed a main S phase arrest in all phases of the cell cycle phase, especially in G0/G1 phase. PTX@NPs-cRGD and ADR@NPs-cRGD showed a higher ratio of G2/M and S phase arrest than the free drugs, respectively. Cells in G0/G1 and S phases of the cell cycle had a higher uptake ratio of NPs-cRGD. A nutrient deprivation or an increase in the requirement of nutrients in tumor cells could promote the uptake of nanoparticles from the microenvironments. In vivo, NPs-cRGD could efficiently accumulate at tumor sites. The inhibition of tumor growth coupled with cell cycle arrest is in line with that in vitro. On the basis of our results, we propose that future studies on nanoparticle action mechanism should consider the cell cycle, which could be different from free drugs. Understanding the actions of cell cycle arrest could affect the application of nanomedicine in the clinic.

  11. Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel.

    Science.gov (United States)

    de Oliveira, Rachel; Zhao, Pengxiang; Li, Na; de Santa Maria, Luiz Claudio; Vergnaud, Juliette; Ruiz, Jaime; Astruc, Didier; Barratt, Gillian

    2013-10-01

    The aim of these studies was to synthesize, characterize and evaluate the efficacy of pegylated gold nanoparticles (AuNPs) that differed in their PEG molecular weight, using PEG 550 and PEG 2000. The synthesis of the gold nanoparticles was carried out by modified Brust method with a diameter of 4-15 nm. The targeting agent folic acid was introduced by the covalent linkage. Finally, the anti-cancer drug docetaxel was encapsulated by the AuNPs by non covalent adsorption. The nanoparticles were characterized by transmission electron microscopy and used for in vitro studies against a hormone-responsive prostate cancer cell line, LnCaP. The loaded nanoparticles reduced the cell viability in more than 50% at concentrations of 6 nM and above after 144 h of treatment. Moreover, observation of prostate cancer cells by optical microscopy showed damage to the cells after exposure to drug-loaded AuNPs while unloaded AuNPs had much less effect.

  12. IN VITRO AND IN VIVO EVALUATION OF PIROXICAM LOADED CERAMIC NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    PAVANI VENGALA

    2016-07-01

    Full Text Available The use of nanotechnology in drug delivery is spreading rapidly. The nanocarriers have been used for the enhanced delivery of a range of drugs. The present study was aimed at investigating the application of ceramic nanoparticles called as aquasomes for the delivery of drug, piroxicam. Piroxicam belongs to oxicam group of NSAID’s, commonly used for the treatment of arthritis. It is a BCS class II drug, with low solubility. There is a need to improve the dissolution property of piroxicam in order to enhance its therapeutic efficacy. Ceramic Nanoparticles were prepared by colloidal precipitation method. The ceramic core was coated with polysaccharide, cellobiose, followed by adsorption of drug. The drug loaded nanoparticles were evaluated for size, entrapment efficiency and drug release profile. The SEM studies indicated that the formed particles were with nanometric dimensions (185 nm. 21% drug loading was observed and more than 95% drug release was observed within 135 min in 0.1N HCl compared with pure drug which released 89% in 90 mins. In vitro dissolution studies indicated that the piroxicam ceramic nanoparticles released the drug in a controlled manner. Anti-nociceptive and anti-inflammatory studies were performed with piroxicam cellobiose aquasomes. Paw edema method was employed for assessing anti-inflammatory effect. The anti-inflammatory activity of aquasome formulation showed quicker effect up to 3 h compared to pure piroxicam.

  13. Synthesis of mesoporous silica nanoparticles and drug loading of poorly water soluble drug cyclosporin A

    Directory of Open Access Journals (Sweden)

    A Lodha

    2012-01-01

    Full Text Available Mesoporous silica nanoparticles (MSNs are introduced as chemically and thermally stable nanomaterials with well-defined and controllable morphology and porosity. It is shown that these particles possess external and internal surfaces that can be selectively functionalized with multiple organic and inorganic groups. Silica nano-particles were synthesized by chemical methods from tetraethylorthosilicate (TEOS, methanol (CH3OH and deionised water in the presence of sodium hydroxide as catalyst at 80°C temperature. The nature and morphology of particles was investigated by scanning electron microscopy (SEM, N2 adsorption/desorption method using BET instrument and X-ray diffraction (XRD. Silica nanoparticles are applicable to a wide range of therapeutic entities from small molecule to peptides and proteins including hydrophobic and hydrophilic entities. Drug loading does not require chemical modification of the molecule; there are no changes in the drug structure or activity after loading and subsequent release of the drug. Thus, well suited to solve formulation problems associated with hydrophobic drugs such as peptide and protein drugs like cyclosporine A. Silica nanoparticles improved the solubility of poorly water soluble drugs and enhanced the absorption and bioavailability of these compounds.

  14. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability.

    Science.gov (United States)

    Dadparvar, Miriam; Wagner, Sylvia; Wien, Sascha; Worek, Franz; von Briesen, Hagen; Kreuter, Jörg

    2014-10-01

    Severe intoxications with organophosphates require the immediate administration of atropine in combination with acetyl cholinesterase (AChE) reactivators such as HI-6. Although this therapy regimen enables the treatment of peripheral symptoms, the blood-brain barrier (BBB) restricts the access of the hydrophilic antidotes to the central nervous system which could lead to a fatal respiratory arrest. Therefore, HI-6-loaded albumin nanoparticles were previously developed to enhance the transport across this barrier and were able to reactivate organophosphate-(OP)-inhibited AChE in an in vitro BBB model. Since HI-6 is known to be moisture-sensitive, the feasibility of freeze-drying of the HI-6-loaded nanoparticles was investigated in the present study using different cryo- and lyoprotectants at different concentrations. Trehalose and sucrose (3%, w/v)-containing formulations were superior to mannitol concerning the physicochemical parameters of the nanoparticles whereas trehalose-containing samples were subject of a prolonged storage stability study at temperatures between -20°C and +40°C for predetermined time intervals. Shelf-life computations of the freeze-dried HI-6 nanoparticle formulations revealed a shelf-life time of 18 months when stored at -20°C. The formulations' efficacy was proven in vitro by reactivation of OP-inhibited AChE after transport over a porcine brain capillary endothelial cell layer model.

  15. Curcumin loaded in bovine serum albumin–chitosan derived nanoparticles for targeted drug delivery

    Indian Academy of Sciences (India)

    SRIDHAR SKYLAB RAJAN; AKILA PANDIAN; TAMILSELVI PALANIAPPAN

    2016-06-01

    The main aim of this study is to prepare biocompatible polymeric nanoparticles for targeted delivery of curcumin to human colorectal adenocarcinoma (DLD-1) cells. Curcumin has an ability to block proliferation ofcancer cells by suppressing the nuclear transcription factor NF-KB hence, it is chosen as drug in the current study. To avoid its low bio-availability, high dosage and poor aqueous solubility, curcumin nanoparticles are prepared and loaded in naturally available biopolymers like chitosan and bovine serum albumin (BSA) by nanoprecipitation method at pH 6.3. The prepared nanoformulation was then characterized for surface morphology, particle size, polydispersity index, FT-IR spectra, UV–Visible spectrometer, confocal microscopy and in vitro cytotoxicity studies. Results showed that sizes of the prepared nanoparticles were ranged between 181 and 363 nm and curcumin-loaded particles were selectively targeting colorectal carcinoma cells effectively when concentration gets increased. So this study proved that BSA–chitosan based nanoparticles can be used as an efficient vehicle for effective curcumin delivery in treatment of cancer cells.

  16. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Kayal, S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ramanujan, R.V., E-mail: ramanujan@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2010-04-06

    Magnetic drug targeting is a drug delivery system that can be used in locoregional cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. Magnetic carriers were synthesized by coprecipitation of iron oxide followed by coating with polyvinyl alcohol (PVA). Characterization was carried out using X-ray diffraction, TEM, TGA, FTIR and VSM techniques. The magnetic core of the carriers was magnetite (Fe{sub 3}O{sub 4}), with average size of 10 nm. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. The amount of PVA bound to the iron oxide nanoparticles were estimated by thermogravimetric analysis (TGA) and the attachment of PVA to the iron oxide nanoparticles was confirmed by FTIR analysis. Doxorubicin (DOX) drug loading and release profiles of PVA coated iron oxide nanoparticles showed that up to 45% of adsorbed drug was released in 80 h, the drug release followed the Fickian diffusion-controlled process. The binding of DOX to the PVA was confirmed by FTIR analysis. The present findings show that DOX loaded PVA coated iron oxide nanoparticles are promising for magnetically targeted drug delivery.

  17. Formulation and Physicochemical Characterization of Lycopene-Loaded Solid Lipid Nanoparticles

    OpenAIRE

    Elham Nazemiyeh; Morteza Eskandani; Hossein Sheikhloie; Hossein Nazemiyeh

    2016-01-01

    Purpose: Lycopene belongs to the carotenoids that shows good pharmacological properties including antioxidant, anti-inflammatory and anticancer. However, as a result of very low aqueous solubility, it has a limited systemic absorption, following oral administration. Methods: Here, we prepared a stable lycopene-loaded solid lipid nanoparticles using Precirol® ATO5, Compritol 888 ATO and myristic acid by hot homogenization method with some modification. The size and morph...

  18. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao

    2012-04-26

    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improved insulin loading in poly (lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids

    DEFF Research Database (Denmark)

    Garcia Diaz, Maria; Foged, Camilla; Nielsen, Hanne Mørck

    2015-01-01

    of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique...... efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid–insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer...... during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes....

  20. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles.

    Science.gov (United States)

    Bimbo, Luis M; Denisova, Oxana V; Mäkilä, Ermei; Kaasalainen, Martti; De Brabander, Jef K; Hirvonen, Jouni; Salonen, Jarno; Kakkola, Laura; Kainov, Denis; Santos, Hélder A

    2013-08-27

    Influenza A viruses (IAVs) cause recurrent epidemics in humans, with serious threat of lethal worldwide pandemics. The occurrence of antiviral-resistant virus strains and the emergence of highly pathogenic influenza viruses have triggered an urgent need to develop new anti-IAV treatments. One compound found to inhibit IAV, and other virus infections, is saliphenylhalamide (SaliPhe). SaliPhe targets host vacuolar-ATPase and inhibits acidification of endosomes, a process needed for productive virus infection. The major obstacle for the further development of SaliPhe as antiviral drug has been its poor solubility. Here, we investigated the possibility to increase SaliPhe solubility by loading the compound in thermally hydrocarbonized porous silicon (THCPSi) nanoparticles. SaliPhe-loaded nanoparticles were further investigated for the ability to inhibit influenza A infection in human retinal pigment epithelium and Madin-Darby canine kidney cells, and we show that upon release from THCPSi, SaliPhe inhibited IAV infection in vitro and reduced the amount of progeny virus in IAV-infected cells. Overall, the PSi-based nanosystem exhibited increased dissolution of the investigated anti-IAV drug SaliPhe and displayed excellent in vitro stability, low cytotoxicity, and remarkable reduction of viral load in the absence of organic solvents. This proof-of-principle study indicates that PSi nanoparticles could be used for efficient delivery of antivirals to infected cells.

  1. Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The objective of the present work was to improve the thermal stability of eugenol by encapsulating into chitosan nanoparticles via an emulsion-ionic gelation crosslinking method. The influences of the initial eugenol content and tripolyphosphate (TPP) concentration on the loading capacity (LC), encapsulation efficiency (EE), morphology and surface charge of the eugenol-loaded chitosan nanoparticles were also investigated. LC and EE tended to increase with increasing initial eugenol content and decreasing TPP concentration. Particles with LC of 12% and EE of 20% exhibited a spherical shape with an average size of less than 100 nm. Thermal stability of the encapsulated eugenol was verified through its extrusion at 155°C with a model plastic, i.e. thermoplastic flour (TPF). TPF containing encapsulated eugenol showed 8-fold higher remaining eugenol content and 2.7-fold greater radical scavenging activity than that containing naked eugenol. The results suggest the possible use of eugenol-loaded chitosan nanoparticles as antioxidants in bioactive plastics for food packaging.

  2. Injection of SDF-1 loaded nanoparticles following traumatic brain injury stimulates neural stem cell recruitment.

    Science.gov (United States)

    Zamproni, Laura N; Mundim, Mayara V; Porcionatto, Marimelia A; des Rieux, Anne

    2017-03-15

    Recruiting neural stem cell (NSC) at the lesion site is essential for central nervous system repair. This process could be triggered by the local delivery of the chemokine SDF-1. We compared two PLGA formulations for local brain SDF-1 delivery: SDF-1 loaded microspheres (MS) and SDF-1 loaded nanoparticles (NP). Both formulations were able to encapsulate more than 80% of SDF-1 but presented different release profiles, with 100% of SDF-1 released after 6days for the MS and with 25% of SDF-1 released after 2 weeks for NP. SDF-1 bioactivity was demonstrated by a chemotactic assay. When injected in mouse brain after traumatic brain injury, only SDF-1 nanoparticles induced NSC migration to the damage area. More neuroblasts (DCX+ cells) could be visualized around the lesions treated with NP SDF-1 compared to the other conditions. Rostral migratory stream destabilization with massive migration of DCX+ cell toward the perilesional area was observed 2 weeks after NP SDF-1 injection. Local injection of SDF-1-loaded nanoparticles induces recruitment of NSC and could be promising for brain injury lesion.

  3. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    Science.gov (United States)

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer.

  4. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis

    Science.gov (United States)

    Yuan, Ziming; Pan, Yue; Cheng, Ruoyu; Sheng, Lulu; Wu, Wei; Pan, Guoqing; Feng, Qiming; Cui, Wenguo

    2016-06-01

    There is a high local recurrence (LR) rate in breast-conserving therapy (BCT) and enhancement of the local treatment is promising as a way to improve this. Thus we propose a drug delivery system using doxorubicin (DOX)-loaded mesoporous silica nanoparticle composite nanofibers which can release anti-tumor drugs in two phases—burst release in the early stage and sustained release at a later stage—to reduce the LR of BCT. In the present study, we designed a novel composite nanofibrous scaffold to realize the efficient release of drugs by loading both DOX and DOX-loaded mesoporous silica nanoparticles into an electrospun PLLA nanofibrous scaffold. In vitro results demonstrated that this kind of nanomaterial can release DOX in two phases, and the results of in vivo experiments showed that this hybrid nanomaterial significantly inhibited the tumor growth in a solid tumor model. Histopathological examination demonstrated that the apoptosis of tumor cells in the treated group over a 10 week period was significant. The anti-cancer effects were also accompanied with decreased expression of Bcl-2 and TNF-α, along with up-regulation of Bax, Fas and the activation of caspase-3 levels. The present study illustrates that the mesoporous silica nanoparticle composite nanofibrous scaffold could have anti-tumor properties and could be further developed as adjuvant therapeutic protocols for the treatment of cancer.

  5. Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis

    Directory of Open Access Journals (Sweden)

    Maheshkumar P Soni

    2014-01-01

    Full Text Available Background: Buparvaquone (BPQ, a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES organs. The present study investigates development of solid lipid nanoparticles (SLN of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C. Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC, powder X-ray diffraction (XRD and scanning electron microscope (SEM study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8% and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52% uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed

  6. Curcumin-Loaded Chitosan-Coated Nanoparticles as a New Approach for the Local Treatment of Oral Cavity Cancer.

    Science.gov (United States)

    Mazzarino, Leticia; Loch-Neckel, Gecioni; Bubniak, Lorena Dos Santos; Mazzucco, Suelen; Santos-Silva, Maria Cláudia; Borsali, Redouane; Lemos-Senna, Elenara

    2015-01-01

    Mucoadhesive nanoparticles loaded with curcumin were developed as a new approach to deliver curcumin for the local treatment of oral cancer. PCL nanoparticles coated with chitosan displaying different molar masses were prepared by using the nanoprecipitation technique. The mucoadhesive properties of nanoparticle suspensions were demonstrated by their strong ability to interact with the glycoprotein mucin through electrostatic interactions. Similar permeation profiles of curcumin loaded in uncoated and chitosan-coated nanoparticles across porcine esophageal mucosa were verified. Curcumin concentrations retained in the mucosa suggest the possibility of a local effect of the drug. In vitro studies demonstrated that free curcumin.and curcumin loaded into nanoparticles coated with chitosan caused significant reduction of SCC-9 human oral cancer cell viability in a concentration and time-dependent manner. However, no significant cell death was observed after 24 h of treatment with unloaded nanoparticles coated with chitosan. In addition, curcumin-loaded nanoparticles showed reduced cytotoxicity, when compared with the free drug. Therefore, chitosan-coated PCL nanoparticles may be considered a promising strategy to deliver curcumin directly into the oral cavity for the treatment of oral cancer.

  7. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability

    Directory of Open Access Journals (Sweden)

    Ilaiyaraja Nallamuthu

    2015-06-01

    Full Text Available In this study, chlorogenic acid (CGA, a phenolic compound widely distributed in fruits and vegetables, was encapsulated into chitosan nanoparticles by ionic gelation method. The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively. A regular, spherical shaped distribution of nanoparticles was observed through scanning electron microscopy (SEM and the success of entrapment was confirmed by FTIR analysis. The encapsulation efficiency of CGA was at about 59% with the loading efficiency of 5.2%. In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further, the release kinetics study revealed the burst release of 69% CGA from nanoparticles at the end of 100th hours. Pharmacokinetic analysis in rats showed a lower level of Cmax, longer Tmax, longer MRT, larger AUC0–t and AUC0–∞ for the CGA nanoparticles compared to free CGA. Collectively, these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.

  8. Preparation, characterisation and antibacterial activity of a florfenicol-loaded solid lipid nanoparticle suspension.

    Science.gov (United States)

    Wang, Ting; Chen, Xiaojin; Lu, Mengmeng; Li, Xihe; Zhou, WenZhong

    2015-12-01

    A florfenicol-loaded solid lipid nanoparticle (FFC-SLN) suspension was prepared by hot homogenisation and ultrasonic technique. The suspension was characterised for its release profile, stability, toxicity, and the physicochemical properties of the nanoparticles. Antibacterial activity of the suspension was evaluated in vitro and in vivo. The results showed that the mean diameter, polydispersity index and zeta potential of the nanoparticles were 253 ± 3 nm, 0.409 ± 0.022 and 47.5 ± 0.21 mV, respectively. In vitro release profile showed the FFC-SLN suspension had sustained release effect. The minimum inhibition concentration values of the FFC-SLN suspension were 6 and 3 µg/mL against Staphylococcus aureus and Escherichia coli respectively, compared with 3.5 and 2 µg/mL of native florfenicol. The suspension was relatively stable at 4°C and less stable at room temperature during 9 months storage. Although the nanoparticle carriers exhibited cytotoxicity in cell cultures, the LD50 of the lyophilised dry power of the suspension was higher than 5 g/kg body weight. Mortality protection against E. coli lethal infection in mice showed that the nanoparticle suspension had much better efficacy (6/10) than native drug (1/10). These results indicate that FFC-SLN suspension could be a promising formulation in veterinary medicine.

  9. Preparation of Temozolomide-Loaded Nanoparticles for Glioblastoma Multiforme Targeting—Ideal Versus Reality

    Science.gov (United States)

    Lee, Chooi Yeng; Ooi, Ing Hong

    2016-01-01

    Temozolomide (TMZ) is one of the most effective chemotherapeutic agents for glioblastoma multiforme, but the required high administration dose is accompanied by side effects. To overcome this problem and to further improve TMZ’s efficacy, targeted delivery of TMZ by using polymeric nanoparticles has been explored. We synthesised the PLGA-PEG-FOL copolymer and attempted encapsulation of TMZ into PLGA-PEG-FOL nanoparticles using the emulsion solvent evaporation method and the nanoprecipitation method. Conjugation of PEG and FOL to PLGA has been reported to be able to increase the delivery of TMZ to the brain as well as targeting the glioma cells. However, despite making numerous modifications to these methods, the loading of TMZ in the nanoparticles only ranged between 0.2% and 2%, and the nanoparticles were between 400 nm and 600 nm in size after freeze-drying. We proceed with determining the release profile of TMZ in phosphate buffered saline (PBS). Our initial data indicated that TMZ was slowly released from the nanoparticles. The metabolite of TMZ rather than the parent compound was detected in PBS. Our study suggests that while PLGA-PEG-FOL can be used as a polymeric or encapsulation material for central delivery of TMZ, a practical and cost effective formulation method is still far from reach. PMID:27618068

  10. Preparation of Temozolomide-Loaded Nanoparticles for Glioblastoma Multiforme Targeting-Ideal Versus Reality.

    Science.gov (United States)

    Lee, Chooi Yeng; Ooi, Ing Hong

    2016-09-08

    Temozolomide (TMZ) is one of the most effective chemotherapeutic agents for glioblastoma multiforme, but the required high administration dose is accompanied by side effects. To overcome this problem and to further improve TMZ's efficacy, targeted delivery of TMZ by using polymeric nanoparticles has been explored. We synthesised the PLGA-PEG-FOL copolymer and attempted encapsulation of TMZ into PLGA-PEG-FOL nanoparticles using the emulsion solvent evaporation method and the nanoprecipitation method. Conjugation of PEG and FOL to PLGA has been reported to be able to increase the delivery of TMZ to the brain as well as targeting the glioma cells. However, despite making numerous modifications to these methods, the loading of TMZ in the nanoparticles only ranged between 0.2% and 2%, and the nanoparticles were between 400 nm and 600 nm in size after freeze-drying. We proceed with determining the release profile of TMZ in phosphate buffered saline (PBS). Our initial data indicated that TMZ was slowly released from the nanoparticles. The metabolite of TMZ rather than the parent compound was detected in PBS. Our study suggests that while PLGA-PEG-FOL can be used as a polymeric or encapsulation material for central delivery of TMZ, a practical and cost effective formulation method is still far from reach.

  11. Preparation of Temozolomide-Loaded Nanoparticles for Glioblastoma Multiforme Targeting—Ideal Versus Reality

    Directory of Open Access Journals (Sweden)

    Chooi Yeng Lee

    2016-09-01

    Full Text Available Temozolomide (TMZ is one of the most effective chemotherapeutic agents for glioblastoma multiforme, but the required high administration dose is accompanied by side effects. To overcome this problem and to further improve TMZ’s efficacy, targeted delivery of TMZ by using polymeric nanoparticles has been explored. We synthesised the PLGA-PEG-FOL copolymer and attempted encapsulation of TMZ into PLGA-PEG-FOL nanoparticles using the emulsion solvent evaporation method and the nanoprecipitation method. Conjugation of PEG and FOL to PLGA has been reported to be able to increase the delivery of TMZ to the brain as well as targeting the glioma cells. However, despite making numerous modifications to these methods, the loading of TMZ in the nanoparticles only ranged between 0.2% and 2%, and the nanoparticles were between 400 nm and 600 nm in size after freeze-drying. We proceed with determining the release profile of TMZ in phosphate buffered saline (PBS. Our initial data indicated that TMZ was slowly released from the nanoparticles. The metabolite of TMZ rather than the parent compound was detected in PBS. Our study suggests that while PLGA-PEG-FOL can be used as a polymeric or encapsulation material for central delivery of TMZ, a practical and cost effective formulation method is still far from reach.

  12. Rapamycin-loaded nanoparticles for inhibition of neointimal hyperplasia in experimental vein grafts

    Directory of Open Access Journals (Sweden)

    Ma Hao

    2011-05-01

    Full Text Available Abstract Background Nanoparticles possess several advantages as a carrier system for intracellular delivery of therapeutic agents. Rapamycin is an immunosuppressive agent which also exhibits marked antiproliferative properties. We investigated whether rapamycin-loaded nanoparticles(NPs can reduce neointima formation in a rat model of vein graft disease. Methods Poly(lactic-co-glycolic acid (PLGA NPs containing rapamycin was prepared using an oil/water solvent evaporation technique. Nanoparticle size and morphology were determined by dynamic light scattering methodology and electron microscopy. In vitro cytotoxicity of blank, rapamycin-loaded PLGA (RPLGA NPs was studied using MTT Assay. Excised rat jugular vein was treated ex vivo with blank-NPs, or rapamycin-loaded NPs, then interposed back into the carotid artery position using a cuff technique. Grafts were harvested at 21 days and underwent morphometric analysis as well as immunohistochemical analysis. Results Rapamycin was efficiently loaded in PLGA nanoparticles with an encapsulation efficiency was 87.6%. The average diameter of NPs was 180.3 nm. The NPs-containing rapamycin at 1 ng/ml significantly inhibited vascular smooth muscular cells proliferation. Measurement of rapamycin levels in vein grafts shown that the concentration of rapamycin in vein grafts at 3 weeks after grafting were 0.9 ± 0.1 μg/g. In grafted veins without treatment intima-media thickness was 300.4 ±181.5 μm after grafting 21 days. Whereas, Veins treated with rapamycin-loaded NPs showed a reduction of intimal-media thickness of 150.2 ± 62.5 μm (p = 0.001. CD-31 staining was used to measure luminal endothelial coverage in grafts and indicated a high level of endothelialization in 21 days vein grafts with no significant effect of blank or rapamycin-loaded NPs group. Conclusions We conclude that sustained-release rapamycin from rapymycin loaded NPs inhibits vein graft thickening without affecting the

  13. Paclitaxel-loaded star-shaped copolymer nanoparticles for enhanced malignant melanoma chemotherapy against multidrug resistance

    Science.gov (United States)

    Su, Yongsheng; Hu, Jian; Huang, Zhibin; Huang, Yubin; Peng, Bingsheng; Xie, Ni; Liu, Hui

    2017-01-01

    Malignant melanoma (MM) is the most dangerous type of skin cancer with annually increasing incidence and death rates. However, chemotherapy for MM is restricted by low topical drug concentration and multidrug resistance. In order to surmount the limitation and to enhance the therapeutic effect on MM, a new nanoformulation of paclitaxel (PTX)-loaded cholic acid (CA)-functionalized star-shaped poly(lactide-co-glycolide) (PLGA)-D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) nanoparticles (NPs) (shortly PTX-loaded CA-PLGA-TPGS NPs) was fabricated by a modified method of nanoprecipitation. The particle size, zeta potential, morphology, drug release profile, drug encapsulation efficiency, and loading content of PTX-loaded NPs were detected. As shown by confocal laser scanning, NPs loaded with coumarin-6 were internalized by human melanoma cell line A875. The cellular uptake efficiency of CA-PLGA-TPGS NPs was higher than those of PLGA NPs and PLGA-TPGS NPs. The antitumor effects of PTX-loaded NPs were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that star-shaped PTX-loaded CA-PLGA-TPGS NPs were significantly superior to commercial PTX formulation Taxol®. Such drug delivery nanocarriers are potentially applicable to the improvement of clinical MM therapy. PMID:28293102

  14. Loading of atorvastatin and linezolid in β-cyclodextrin–conjugated cadmium selenide/silica nanoparticles: A spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Eva Janet; Shibu, Abhishek [Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu (India); Ramasamy, Sivaraj; Paulraj, Mosae Selvakumar [Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu (India); Enoch, Israel V.M.V., E-mail: drisraelenoch@gmail.com [Department of Nanosciences & Technology, Karunya University, Coimbatore 641114, Tamil Nadu (India); Department of Chemistry, Karunya University, Coimbatore 641114, Tamil Nadu (India)

    2016-08-01

    The preparation of β–cyclodextrin–conjugated cadmium selenide–silica nanoparticles, the loading of two drugs viz., Atorvastatin and linezolid in the cyclodextrin cavity, and the fluorescence energy transfer between CdSe/SiO{sub 2} nanoparticles and the drugs encapsulated in the cyclodextrin cavity are reported in this paper. IR spectroscopy, X-ray diffractometry, transmission electron microscopy, and particle size analysis by light–scattering experiment were used as the tools of characterizing the size and the crystal system of the nanoparticles. The nanoparticles fall under hexagonal system. The silica–shell containing CdSe nanoparticles were functionalized by reaction with aminoethylamino–β–cyclodextrin. Fluorescence spectra of the nanoparticles in their free and drug–encapsulated forms were studied. The FÖrster distances between the encapsulated drugs and the CdSe nanoparticles are below 3 nm. The change in the FÖrster resonance energy parameters under physiological conditions may aid in tracking the release of drugs from the cavity of the cyclodextrin. - Highlights: • CdSe/SiO{sub 2} nanoparticles of crystallite size 15 nm are prepared. • β-Cyclodextrin is attached to the surface of the nanoparticles. • Atorvastatin and linezolid get encapsulated in the cyclodextrin cavity. • FRET efficiency between the nanoparticles and the loaded drugs are determined.

  15. Oleyl-hyaluronan micelles loaded with upconverting nanoparticles for bio-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pospisilova, Martina, E-mail: martina.pospisilova@contipro.com; Mrazek, Jiri; Matuska, Vit; Kettou, Sofiane; Dusikova, Monika; Svozil, Vit; Nesporova, Kristina; Huerta-Angeles, Gloria; Vagnerova, Hana; Velebny, Vladimir [Contipro Biotech (Czech Republic)

    2015-09-15

    Hyaluronan (HA) represents an interesting polymer for nanoparticle coating due to its biocompatibility and enhanced cell interaction via CD44 receptor. Here, we describe incorporation of oleate-capped β–NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} nanoparticles (UCNP-OA) into amphiphilic HA by microemulsion method. Resulting structures have a spherical, micelle-like appearance with a hydrodynamic diameter of 180 nm. UCNP-OA-loaded HA micelles show a good stability in PBS buffer and cell culture media. The intensity of green emission of UCNP-OA-loaded HA micelles in water is about five times higher than that of ligand-free UCNP, indicating that amphiphilic HA effectively protects UCNP luminescence from quenching by water molecules. We found that UCNP-OA-loaded HA micelles in concentrations up to 50 μg mL{sup −1} increase cell viability of normal human dermal fibroblasts (NHDF), while viability of human breast adenocarcinoma cells MDA–MB–231 is reduced at these concentrations. The utility of UCNP-OA-loaded HA micelles as a bio-imaging probe was demonstrated in vitro by successful labelling of NHDF and MDA–MB–231 cells overexpressing the CD44 receptor.

  16. Bleomycin Loaded Magnetite Nanoparticles Functionalized by Polyacrylic Acid as a New Antitumoral Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Yue Xu

    2013-01-01

    Full Text Available Objective. To prepare, characterize, and analyze the release behavior of bleomycin-loaded magnetite nanoparticles (BLM-MNPs coated with polyacrylic acid (PAA as a new drug delivery system that can be specifically distributed in the tumor site. Methods. BLM-MNPs coated with PAA were prepared using a solvothermal approach. The particles were characterized using scanning electron microscope (SEM, vibrating sample magnetometer (VSM, and Fourier transform infrared spectroscopy (FTIR. The loading and release behaviors of BLM-MNPs were examined by a mathematical formula and in vitro release profile at pH 7.5. Results. The sphere Fe3O4 nanoparticles with the size of approximately 30 nm exhibit a saturation magnetization of 87 emu/g. The noncoordinated carboxylate groups of PAA confer on the good dispersibility in the aqueous solution and lead to a good loading efficiency of BLM reaching 50% or higher. Approximately 98% of immobilized BLM could be released within 24 h, of which 22.4% was released in the first hour and then the remaining was released slowly and quantitatively in the next 23 hours. Conclusion. BLM-MNPs were prepared and characterized successfully. The particles show high saturation magnetization, high drug loading capacity, and favorable release property, which could contribute to the specific delivery and controllable release of BLM, and the BLM-MNPs could be a potential candidate for the development of treating solid tumors.

  17. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization.

    Science.gov (United States)

    Fonte, Pedro; Araújo, Francisca; Seabra, Vítor; Reis, Salette; van de Weert, Marco; Sarmento, Bruno

    2015-12-30

    The purpose of this work was to evaluate the influence of the co-encapsulation of lyoprotectants with insulin into PLGA nanoparticles, on the stability of the protein and nanoparticles upon lyophilization. Different lyoprotectants were used, namely trehalose, glucose, sucrose, fructose and sorbitol at 10% (w/v). Insulin-loaded PLGA nanoparticles with co-encapsulated lyoprotectants achieved a mean particle size of 386-466nm, and a zeta potential ranging between -34 and -38mV, dependent on the lyoprotectant used. Formulations had association efficiencies and loading capacities of 85-91% and 10-12%, respectively. The lyophilization process increased the colloidal stability of nanoparticles, and maintained their spherical shape and smooth surface, particularly in presence of lyoprotectants. XRPD revealed that the lyophilizates of nanoparticles with co-encapsulated lyoprotectants were amorphous, whereas formulations with externally added lyoprotectants, except trehalose, showed crystallinity. FTIR assessment showed that co-encapsulating lyoprotectants better preserved insulin structure upon lyophilization with a spectral area overlap of 82-87%, compared to only 72% in lyoprotectant absence. These results were confirmed by circular dichroism spectroscopy. Surprisingly, the simultaneous co-encapsulation and addition of lyoprotectants was detrimental to protein stabilization. The insulin in vitro release studies demonstrated that formulations with co-encapsulated trehalose, glucose, sucrose, fructose and sorbitol achieved 83%, 69%, 70%, 77% and 74%, respectively after 48h. In contrast, formulations added with those lyoprotectants prior lyophilization showed a lower release rate not higher than 60% after 48h. This work gives rise to a different promising strategy of co-encapsulating lyoprotectants and therapeutic proteins, to better stabilize protein structure upon lyophilization.

  18. Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Shuyu Xie

    2011-03-01

    Full Text Available Shuyu Xie, Luyan Zhu, Zhao Dong, Yan Wang, Xiaofang Wang, WenZhong ZhouDepartment of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of ChinaAbstract: The purpose of this study was to use solid lipid nanoparticles (SLN to improve the pharmacological activity of ofloxacin. Ofloxacin-loaded SLN were prepared using palmitic acid as lipid matrix and poly vinyl alcohol (PVA as emulsifier by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy, and photon correlation spectroscopy. Pharmacokinetics was studied after oral administration in mice. In vitro antibacterial activity and in vivo antibacterial efficacy of the SLN were investigated using minimal inhibitory concentrations (MIC and a mouse protection model. The results demonstrated that the encapsulation efficiency, loading capacity, diameter, polydispersivity index, and zeta potential of the nanoparticles were 41.36% ± 1.50%, 4.40% ± 0.16%, 156.33 ± 7.51 nm, 0.26 ± 0.04, and –22.70 ± 1.40 mv, respectively. The SLN showed sustained release and enhanced antibacterial activity in vitro. Pharmacokinetic results demonstrated that SLN increased the bioavailability of ofloxacin by 2.27-fold, and extended the mean residence time of the drug from 10.50 to 43.44 hours. Single oral administrations of ofloxacin-loaded nanoparticles at 3 drug doses, 5 mg/kg, 10 mg/kg, and 20 mg/kg, all produced higher survival rates of lethal infected mice compared with native ofloxacin. These results indicate that SLN might be a promising delivery system to enhance the pharmacological activity of ofloxacin.Keywords: ofloxacin, pharmacological activity, solid lipid nanoparticles, antibacterial activity

  19. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy

    Science.gov (United States)

    Phuc Le, Thi Minh; Phuc Pham, Van; Lua Dang, Thi Minh; Huyen La, Thi; Hanh Le, Thi; Huan Le, Quang

    2013-06-01

    Nanoparticles (NPs) have been proven to be an effective delivery system with few side effects for anticancer drugs. In this study, curcumin-loaded NPs have been prepared by an ionic gelation method using chitosan (Chi) and pluronic®F-127 (PF) as carriers to deliver curcumin to the target cancer cells. Prepared NPs were characterized using Zetasizer, fluorescence microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Our results showed that the encapsulation efficiency of curcumin was approximately 50%. The average size of curcumin-loaded PF/Chi NPs was 150.9 nm, while the zeta potential was 5.09 mV. Cellular uptake of curcumin-loaded NPs into HEK293 cells was confirmed by fluorescence microscopy.

  20. MO-FG-BRA-05: Next Generation Radiotherapy Biomaterials Loaded With Gold Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cifter, G; Ngwa, W [Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (United States); Univ Massachusetts Lowell, Lowell, MA (United States); Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Korideck, H; Cormack, R; Makrigiorgos, G [Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (United States); Kumar, R [Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (United States); Northeastern University, Boston, MA (United States); Sridhar, S [Northeastern University, Boston, MA (United States)

    2015-06-15

    Purpose: It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. In this work, we developed prototypes of such RT biomaterials and investigated the sustained release of GNPs from the biomaterials as a function of design parameters. Methods: Prototype smart biomaterials were produced by incorporating the GNPs in poly(D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. For comparison, commercially available spacers were also coated with a polymer film loaded with fluorescent GNP. Optical/spectroscopy methods were used to monitor in vitro release of GNPs over time as a function of different design parameters: polymer weighting, type, and initial (loading) GNP concentrations. Inductively coupled plasma mass spectrometry was employed to verify GNP release. Results: Results showed that gold nanoparticles could be successfully loaded in the new RT biomaterial prototypes. Burst release of GNPs could be achieved within 1 to 25 days depending on the preparation approach. Burst release was followed by sustained release profile over time. The amount of released GNP increased with increasing loading concentration as expected. The release profiles could also be customized as a function of polymer weighting, or preparation approaches. Conclusion: Considered together, our results highlight potential for the development of next generation RT biomaterials loaded with GNPs customizable to different RT schedules. Such biomaterials could be employed as needed instead of currently used inert spacers/fiducials at no additional inconvenience to patients, to enhance RT.

  1. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    Science.gov (United States)

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris.

  2. Antimicrobial Activity of Glass lonomer Cement Incorporated with Chlorhexidine-Loaded Zeolite Nanoparticles.

    Science.gov (United States)

    Kim, Hyun-Jin; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-02-01

    A functional dental restorative system with antimicrobial properties was developed using zeolite (ZE) nanoparticles (NPs) as a drug delivery carrier. ZE NPs loaded with chlorhexidine (CHX) were prepared using the ionic immobilization method. The resulting CHX-loaded ZE NPs were then incorporated into commercial dental glass ionomer cement (GIC). The average size of the CHX-loaded ZE NPs was about 100 to 200 nm, and the NPs were dispersed homogeneously in the GIC. The in vitro release profile of encapsulated GIC containing CHX showed an early release burst of approximately 30% of the total CHX by day 7, whereas GIC containing CHX-loaded ZE NPs showed a sustained release of CHX without the early release burst in a 4-week immersion study. The agar diffusion test results showed that the GIC incorporated with CHX-loaded ZE NPs showed a larger growth inhibition zone of Streptococcus mutans than GIC alone, indicating that this innovative delivery platform potently imparted antimicrobial activity to the GIC. Moreover, these findings suggest that a range of antimicrobial drugs that inhibit the growth of oral bacteria can be incorporated efficiently into dental GIC using CHX-loaded ZE NPs.

  3. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties

    Energy Technology Data Exchange (ETDEWEB)

    Yoksan, Rangrong, E-mail: rangrong.y@ku.ac.th [Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Paholyothin Rd., Ladyao, Jatujak, Bangkok 10900 (Thailand); Chirachanchai, Suwabun [Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330 (Thailand)

    2010-07-20

    The fabrication of silver nanoparticles was accomplished by {gamma}-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 {+-} 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20-25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the {gamma}-ray irradiated chitosan solution was 5.64 {mu}g/mL. The silver nanoparticle-loaded chitosan-starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan-starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.

  4. Formation of enriched black tea extract loaded chitosan nanoparticles via electrospraying

    Science.gov (United States)

    Hammond, Samuel James

    Creating nanoparticles of beneficial nutraceuticals and pharmaceuticals has had a large surge of research due to the enhancement of absorption and bioavailability by decreasing their size. One of these ways is by electrohydrodynamic atomization, also known as electrospraying. In general, this novel process is done by forcing a liquid through a capillary nozzle and which is subjected to an electrical field. While there are different ways to create nanoparticles, the novel method of electrospraying can be beneficial over other types of nanoparticle formation. Reasons include high control over particle size and distribution by altering electrospray parameters (voltage, flow rate, distance, and time), higher encapsulation efficiency than other methods, and also it is a one step process without exposure to extreme conditions (Gomez-Estaca et. al. 2012, Jaworek and Sobcyzk 2008). The current study aimed to create a chitosan encapsulated theaflavin-2 enriched black tea extract (BTE) nanoparticles via electrospraying. The first step of this process was to create the smallest chitosan nanoparticles possible by altering the electrospray parameters and the chitosan-acetic acid solution parameters. The solution properties altered include chitosan molecular weight, acetic acid concentration, and chitosan concentration. Specifically, the electrospray parameters such as voltage, flow rate and distance from syringe to collector are the most important in determining particle size. After creating the smallest chitosan particles, the TF-2 enriched black tea extract was added to the chitosan-acetic acid solution to be electrosprayed. The particles were assessed with the following procedures: Atomic force microscopy (AFM) and scanning electron microscopy (SEM) for particle morphology and size, and loading efficiency with ultraviolet--visible spectrophotometer (UV-VIS). Chitosan-BTE nanoparticles were successfully created in a one step process. Diameter of the particles on average

  5. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Xiao X

    2013-11-01

    Full Text Available Xiaojun Xiao,1,* Xiaowei Zeng,2,* Xinxin Zhang,3,* Li Ma,3 Xiaoyu Liu,1 Haiqiong Yu,1 Lin Mei,2 Zhigang Liu1 1Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, 2Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 3Faculty of Basic Medical Science, Nanchang University, Nanchang, People's Republic of China *These authors contributed equally to this work Background: Pollen allergy is the most common allergic disease. However, tropical pollens, such as those of Palmae, have seldom been investigated compared with the specific immunotherapy studies done on hyperallergenic birch, olive, and ragweed pollens. Although poly(lactic-co-glycolic acid (PLGA has been extensively applied as a biodegradable polymer in medical devices, it has rarely been utilized as a vaccine adjuvant to prevent and treat allergic disease. In this study, we investigated the immunotherapeutic effects of recombinant Caryota mitis profilin (rCmP-loaded PLGA nanoparticles and the underlying mechanisms involved. Methods: A mouse model of allergenic asthma was established for specific immunotherapy using rCmP-loaded PLGA nanoparticles as the adjuvant. The model was evaluated by determining airway hyperresponsiveness and levels of serum-specific antibodies (IgE, IgG, and IgG2a and cytokines, and observing histologic sections of lung tissue. Results: The rCmP-loaded PLGA nanoparticles effectively inhibited generation of specific IgE and secretion of the Th2 cytokine interleukin-4, facilitated generation of specific IgG2a and secretion of the Th1 cytokine interferon-gamma, converted the Th2 response to Th1, and evidently alleviated allergic symptoms. Conclusion: PLGA functions more appropriately as a specific immunotherapy adjuvant for allergen vaccines than does conventional Al(OH3 due to its superior efficacy, longer potency, and markedly fewer side effects. The rCmP-loaded PLGA nanoparticles developed

  6. Chitosan Nanolayered Cisplatin-Loaded Lipid Nanoparticles for Enhanced Anticancer Efficacy in Cervical Cancer

    Science.gov (United States)

    Wang, Jing-yi; Wang, Yu; Meng, Xia

    2016-11-01

    In this study, cisplatin (CDDP)-loaded chitosan-coated solid lipid nanoparticles (SLN) was successfully formulated to treat HeLa cervical carcinoma. The formulation nanoparticles were nanosized and exhibited a controlled release of drug in physiological conditions. The blank nanoparticles exhibited an excellent biocompatibility profile indicating its suitability for cancer targeting. The incorporation of CDDP in SLN remarkably increased the cancer cell death as evident from the MTT assay. Importantly, CDDP-loaded chitosan-coated SLN (CChSLN) significantly ( P < 0.05) decreased the viability of cancer cells even at low concentration. The higher cytotoxicity potential of CChSLN was attributed to the higher cellular uptake as well as the sustained drug release manner in comparison with CSLN. Consistent with the cytotoxicity assay, CChSLN showed the lowest IC50 value of 0.6125 μg/ml while CSLN presented 1.156 μg/ml. CChSLN showed a significantly higher apoptosis in cancer cells compared to that of CSLN and CDDP, which is attributed to the better internalization of nanocarriers and controlled release of anticancer drugs in the intracellular environment. Our findings suggest that this new formulation could be a promising alternative for the treatment of cervical cancers. These findings are encouraging us to continue our research, with a more extended investigation of cellular response in real time and in animal models.

  7. Development of duloxetine hydrochloride loaded mesoporous silica nanoparticles: characterizations and in vitro evaluation.

    Science.gov (United States)

    Ganesh, Mani; Ubaidulla, Udhumansha; Hemalatha, Pushparaj; Peng, Mei Mei; Jang, Hyun Tae

    2015-08-01

    This study investigated the potential use of mesoporous silica nanoparticles (MSNs) as a carrier for duloxetine hydrochloride (DX), which is prone to acid degradation. Sol-gel and solvothermal methods were used to synthesize the MSNs, which, after calcination and drug loading, were then characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) technique, thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and diffuse reflectance ultraviolet-visible (DRS-UV-Vis) spectroscopy. Releases of DX from the MSNs were good in pH 7.4 (90%) phosphate buffer but poor in acidic pH (40%). In a comparative release study between the MSNs in phosphate buffer, TW60-3DX showed sustained release for 140 h, which was higher than the other nanoparticles. The mechanism of DX release from the MSNs was studied using Peppas kinetics model. The "n" value of all three MSNs ranged from 0.45 to 1 with a correlation coefficient (r (2)) >0.9, which indicated that the release of the drug from the system follows the anomalous transport or non-Fickian diffusion. The results supported the efficacy of mesoporous silica nanoparticles synthesized here as a promising carrier for duloxetine hydrochloride with higher drug loading and greater pH-sensitive release.

  8. Formulation and evaluation of dorzolamide hydrochloride-loaded nanoparticles as controlled release drug delivery system

    Directory of Open Access Journals (Sweden)

    Azza A Hasan

    2012-01-01

    Full Text Available This study aimed to prepare anti-glaucomatous dorzolamide hydrochloride-(Dorzo loaded nanoparticles as a controlled release system. Eudragit RS 100 (RS and/or RL 100 (RL were used in formulations by an opportunely adapted Quasi-emulsion solvent diffusion technique. The formulations were evaluated in terms of particle size, zeta potential, drug entrapment, and release profile. All formulations showed tiny particle size varying from 114 to 395 nm for RS and 65 to 277 nm for RL. Positive zeta potential was +19 to +32 mV for RS and +23 to +42 mV for RL formulations. It was demonstrated that increasing polymer concentration lead to increase the percentage of drug entrapped in all batches, to a certain extent (drug: polymer 1:4. Nanoparticles prepared using RL showed lower entrapment efficiency than RS. In contrast, increasing the stirring rate resulted in an increase in the percentage of Dorzo entrapped. A prolonged drug release was shown by all the formulations. Increasing the polymer concentration caused a decrease in the release rate. Moreover, it was evident that increasing RL content increased the amount of Dorzo released. Dorzo-loaded nanoparticles could represent promising drug ophthalmic carriers, due to small particle size, positive zeta potential, and sustained release profile; hence, expecting prolonged corneal contact time, more therapeutically efficient, decreased frequency of administration per day, and better patient compliance.

  9. Enhanced in vitro and in vivo therapeutic efficacy of codrug-loaded nanoparticles against liver cancer

    Directory of Open Access Journals (Sweden)

    Li X

    2012-10-01

    Full Text Available Xiaolin Li,1,* Hua’e Xu,2,* Xinzheng Dai,3,4,* Zhenshu Zhu,5 Baorui Liu,6 Xiaowei Lu11Department of Geriatrics, 2Department of Pharmacy, the First Affiliated Hospital to Nanjing Medical University, Nanjing; 3Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, 4Liver Transplantation Center, the First Affiliated Hospital to Nanjing Medical University, Nanjing; 5Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing; 6The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China*These authors contributed equally to this workAbstract: Paclitaxel (Ptx, one of the most widely used anticancer agents, has demonstrated extraordinary activities against a variety of solid tumors. However, the therapeutic response of Ptx is often associated with severe side effects caused by its nonspecific cytotoxic effects and special solvents (Cremophor EL®. The current study reports the stable controlled release of Ptx/tetrandrine (Tet-coloaded nanoparticles by amphilic methoxy poly(ethylene glycol–poly(caprolactone block copolymers. There were three significant findings. Firstly, Tet could effectively stabilize Ptx-loaded nanoparticles with the coencapsulation of Tet and Ptx. The influence of different Ptx/Tet feeding ratios on the size and loading efficiency of the nanoparticles was also explored. Secondly, the encapsulation of Tet and Ptx into nanoparticles retains the synergistic anticancer efficiency of Tet and Ptx against mice hepatoma H22 cells. Thirdly, in the in vivo evaluation, intratumoral administration was adopted to increase the site-specific delivery. Ptx/Tet nanoparticles, when delivered intratumorally, exhibited significantly improved antitumor efficacy; moreover, they substantially increased the overall survival in an established H22-transplanted mice model. Further investigation into the

  10. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    Science.gov (United States)

    Ambaye, Almaz

    Ag/BSA nanoparticles was found to be in a range of 9-13 nm. X-ray photo electron spectroscopy measurements of argon sputtered Ag/BSA nanoparticles provided evidence that the outer and inner region of nanoparticles are mainly composed of BSA and silver, respectively. Having characterized the nanoparticles, the next phase of the study was to evaluate the antibacterial activity and cytotoxicity level of BSA stabilized silver nanoparticles. The antibacterial efficacy of Ag/BSA nanoparticles against E. coli and S. aureus was evaluated, and minimum lethal concentration was found to be 2ppm and 7ppm, respectively. E. coli showed a higher susceptibility to silver nanoparticles than S. aureus, which could be attributed to the difference in the cell wall structure. We have also investigated the cytotoxicity level of Ag/BSA nanoparticles towards MC3T3-E1 osteoblast cells. The minimum bactericidal concentration found for both strains is lower than the silver nanoparticles concentration that was toxic to the osteoblast cells. Preliminary studies of Ag/BSA nanoparticles loaded collagen immobilized PHBV film showed that the Ag/BSA nanoparticles loaded PHBV film inhibit bacterial growth. The findings of our study can be extremely useful in the design of novel scaffold to address the critical needs of bone tissue engineering community.

  11. Cisplatin Loaded Hyaluronic Acid Modified TiO2 Nanoparticles for Neoadjuvant Chemotherapy of Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Enling Liu

    2015-01-01

    Full Text Available Novel tumor-targeting titanium dioxide (TiO2 nanoparticles modified with hyaluronic acid (HA were developed to explore the feasibility of exploiting the pH-responsive drug release property of TiO2 and the tumor-targeting ability of HA to construct a tumor-targeting cisplatin (CDDP delivery system (HA-TiO2 for potential neoadjuvant chemotherapy of ovarian cancer. The experimental results indicated that CDDP release from the HA-TiO2 nanoparticles was significantly accelerated by decreasing pH from 7.4 to 5.0, which is of particular benefit to cancer therapy. CDDP-loaded HA-TiO2 nanoparticles increased the accumulation of CDDP in A2780 ovarian cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo real-time imaging assay revealed that HA-TiO2 nanoparticles possessed preferable tumor-targeting ability which might potentially minimize the toxic side effects of CDDP in clinical application.

  12. Physico-chemical characterization and cytotoxicity evaluation of curcumin loaded in chitosan/chondroitin sulfate nanoparticles.

    Science.gov (United States)

    Jardim, Katiúscia Vieira; Joanitti, Graziella Anselmo; Azevedo, Ricardo Bentes; Parize, Alexandre Luis

    2015-11-01

    In this study, chitosan (CTS)/chondroitin sulfate (CS) nanoparticles, both pure and curcumin-loaded, were synthesized by ionic gelation. This method is simple and efficient for obtaining nanoparticles with a low polydispersity index (0.151±0.03 to 0.563±0.07) and hydrodynamic diameter in the range of 175.7±2.5 to 710.2±8.9nm, for this study. Samples have a relatively high zeta potential value, a fact that indicates that the colloidal system has good physical and chemical stabilities. The efficiency of the curcumin encapsulation in nanoparticles, which ranged from 62.4±0.61% to 68.3±0.88%, depends on the pH of the chitosan solution. The release of curcumin from the nanoparticles was enabled by a diffusion mechanism, with fast release in a phosphate buffer solution at pH6.8. The assaying of cell viability by the MTT test showed that the presence of both free curcumin and curcumin in the nanoencapsulated form leads to a statistically significant reduction in the viability of A549 cells, by comparison with the control group. The most significant reductions in cell viability of 41.1% and 60.4% (pnanoparticles with the chitosan solution at pH6.0, respectively.

  13. Atorvastatin calcium loaded chitosan nanoparticles: in vitro evaluation and in vivo pharmacokinetic studies in rabbits

    Directory of Open Access Journals (Sweden)

    Abdul Baquee Ahmed

    2015-06-01

    Full Text Available In this study, we prepared atorvastatin calcium (AVST loaded chitosan nanoparticles to improve the oral bioavailability of the drug. Nanoparticles were prepared by solvent evaporation technique and evaluated for its particle size, entrapment efficiency, zeta potential, in vitro release and surface morphology by scanning electron microscopy (SEM. In addition, the pharmacokinetics of AVST from the optimized formulation (FT5 was compared with marketed immediate release formulation (Atorva(r in rabbits. Particle size of prepared nanoparticles was ranged between 179.3 ± 7.12 to 256.8 ± 8.24 nm with a low polydispersity index (PI value. Zeta potential study showed that the particles are stable with positive values between 13.03 ± 0.32 to 46.90 ± 0.49 mV. FT-IR studies confirmed the absence of incompatibility of AVST with excipient used in the formulations. In vitro release study showed that the drug release was sustained for 48 h. Results of pharmacokinetics study showed significant changes in the pharmacokinetic parameter (2.2 fold increase in AUC of the optimized formulation as compared to marketed formulation (Atorva(r. Thus, the developed nanoparticles evidenced the improvement of oral bioavailability of AVST in rabbit model.

  14. Bioactive Glass Nanoparticles-Loaded Poly(ɛ-caprolactone Nanofiber as Substrate for ARPE-19 Cells

    Directory of Open Access Journals (Sweden)

    Tadeu Henrique Lima

    2016-01-01

    Full Text Available Bioactive glass nanoparticles-loaded poly(ɛ-caprolactone nanofibers (BIOG PCL nanofibers were synthesized and evaluated as substrates for ocular cells (ARPE-19. BIOG PCL nanofibers were characterized using SEM, FTIR, and DSC, and the in vitro degradation profile was also investigated. The in vitro ocular biocompatibility of nanofibers was exploited in Müller glial cells (MIO-M1 cells and in chorioallantoic membrane (CAM; and the proliferative capacity, cytotoxicity, and functionality were evaluated. Finally, ARPE-19 cells were seeded onto BIOG PCL nanofibers and they were investigated as supports for in vitro cell adhesion and proliferation. SEM images revealed the incorporation of BIOG nanoparticles into PCL nanofibers. Nanoparticles did not induce modifications in the chemical structure and semicrystalline nature of PCL in the nanofiber, as shown by FTIR and DSC. MIO-M1 cells exposed to BIOG PCL nanofibers showed viability, and they were able to proliferate and to express GFAP, indicating cellular functionality. Moreover, nanofibers were well tolerated by CAM. These findings suggested the in vitro ocular biocompatibility and absence of toxicity of these nanofibers. Finally, the BIOG nanoparticles modulated the protein adsorption, and, subsequently, ARPE-19 cells adhered and proliferated onto the nanostructured supports, establishing cell-substrate interactions. In conclusion, the biodegradable and biocompatible BIOG PCL nanofibers supported the ARPE-19 cells.

  15. Enzyme-free ethanol sensor based on electrospun nickel nanoparticle-loaded carbon fiber paste electrode.

    Science.gov (United States)

    Liu, Yang; Zhang, Lei; Guo, Qiaohui; Hou, Haoqing; You, Tianyan

    2010-03-24

    We have developed a novel nickel nanoparticle-loaded carbon fiber paste (NiCFP) electrode for enzyme-free determination of ethanol. An electrospinning technique was used to prepare the NiCF composite with large amounts of spherical nanoparticles firmly embedded in carbon fibers (CF). In application to electroanalysis of ethanol, the NiCFP electrode exhibited high amperometric response and good operational stability. The calibration curve was linear up to 87.5 mM with a detection limit of 0.25 mM, which is superior to that obtained with other transition metal based electrodes. For detection of ethanol present in liquor samples, the values obtained with the NiCFP electrode were in agreement with the ones declared on the label. The attractive analytical performance and simple preparation method make this novel material promising for the development of effective enzyme-free sensors.

  16. Design and Characterization of Metformin-Loaded Solid Lipid Nanoparticles for Colon Cancer.

    Science.gov (United States)

    Ngwuluka, Ndidi C; Kotak, Darsheen J; Devarajan, Padma V

    2017-02-01

    Colorectal cancer is a global concern, and its treatment is fraught with non-selective effects including adverse side effects requiring hospital visits and palliative care. A relatively safe drug formulated in a bioavailability enhancing and targeting delivery platform will be of significance. Metformin-loaded solid lipid nanoparticles (SLN) were designed, optimized, and characterized for particle size, zeta potential, drug entrapment, structure, crystallinity, thermal behavior, morphology, and drug release. Optimized SLN were 195.01 ± 6.03 nm in size, -17.08 ± 0.95 mV with regard to surface charge, fibrous in shape, largely amorphous, and release of metformin was controlled. The optimized size, charge, and shape suggest the solid lipid nanoparticles will migrate and accumulate in the colon tumor preventing its proliferation and subsequently leading to tumor shrinkage and cell death.

  17. Magnetic field-enhanced cellular uptake of doxorubicin loaded magnetic nanoparticles for tumor treatment

    Science.gov (United States)

    Venugopal, Indu; Pernal, Sebastian; Duproz, Alexandra; Bentley, Jeromy; Engelhard, Herbert; Linninger, Andreas

    2016-09-01

    Cancer remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. In recent years, several varieties of nanoparticles (NPs) have been synthesized with the intent of being utilized as tumor drug delivery vehicles. We have produced superparamagnetic, gold-coated magnetite (Fe3O4@Au) NPs and loaded them with the chemotherapeutic drug doxorubicin (DOX) for magnetic drug targeting (MDT) of tumors. The synthetic strategy uses the food thickening agent gellan gum (Phytagel) as a negatively charged shell around the Fe3O4@Au NP onto which the positively charged DOX molecules are loaded via electrostatic attraction. The resulting DOX-loaded magnetic nanoparticles (DOX-MNPs) were characterized using transmission electron microscopy, energy dispersive x-ray spectroscopy, superconducting quantum interference device magnetometry, surface area electron diffraction, zeta potential measurements, fourier transform infrared spectroscopy as well as UV/Vis and fluorescence spectroscopy. Cytotoxicity of the DOX-MNPs was demonstrated using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on C6 glioma cells. Cellular uptake of DOX-MNPs was enhanced with magnetic fields, which was quantitatively determined using flow cytometry. This improved uptake also led to greater tumor cell death, which was measured using MTT assay. These MDT results are promising for a new therapy for cancer.

  18. Preparation and in vitro drug delivery response of doxorubicin loaded PAA coated magnetite nanoparticles

    Directory of Open Access Journals (Sweden)

    Omidirad Reyhan

    2013-01-01

    Full Text Available In this study, spherical superparamagnetic iron oxide nanoparticles (SPION with mean diameter of 6 nm were prepared by means of a reduction-precipitation method. The surface of SPION were coated with poly(acrylic acid 5000 (PAA-5000 and followed by loading of anticancer drug doxorubicin. Drug loading efficiency was (14.64 ± 0.29. In vitro drug release studies were done for 8 h at two different pH (4.2 and 7.4 and drug release rates at pH 4.2 (100% DOX released in 2 h was much faster than that at pH 7.4 (~78% DOX released in 8 h. These results indicate that these DOX-carrier nanoparticles have a high drug loading capacity and favorable release property for magnetic drug targeting. Kinetic drug release followed Korsmeyer-Peppas model at pH 4.2 while at pH 7.4 zero order model was best fitted, and drug release mechanism followed super case II transport in acidic and basic medium. The samples were characterized by XRD, SEM, TEM, FTIR, and UV-Vis.

  19. Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Vanesa; Conde, Joao; Hernandez, Yulan [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain); Baptista, Pedro V. [Universidade Nova de Lisboa, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Centro de Investigacao em Genetica Molecular Humana (Portugal); Ibarra, M. R.; Fuente, Jesus M. de la, E-mail: jmfuente@unizar.es [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain)

    2012-06-15

    The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold-thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs ({approx}14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

  20. Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles

    Science.gov (United States)

    Sanz, Vanesa; Conde, João; Hernández, Yulán; Baptista, Pedro V.; Ibarra, M. R.; de la Fuente, Jesús M.

    2012-06-01

    The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold-thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs ( 14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

  1. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill.

    Science.gov (United States)

    Steiner, Denise; Finke, Jan Henrik; Kwade, Arno

    2016-09-25

    Orodispersible films possess a great potential as a versatile platform for nanoparticle-loaded oral dosage forms. In this case, poorly water-soluble organic materials were ground in a stirred media mill and embedded into a polymer matrix. The aim of this study was the shortening of this manufacturing process by the integration of several process steps into a stirred media mill without facing disadvantages regarding the film quality. Furthermore, this process integration is time conserving due to the high stress intensities provided in the mill and applicable for high solids contents and high suspension viscosities. Two organic materials, the model compound Anthraquinone and the active pharmaceutical ingredient Naproxen were investigated in this study. Besides the impact of the film processing on the crystallinity of the particles in the orodispersible film, a particle load of up to 50% was investigated with the new developed processing route. Additionally, a disintegration test was developed, combining an appropriate amount of saliva substitute and a clear endpoint determination. In summary, high nanoparticle loads in orodispersible films with good particle size preservation after film redispersion in water as well as a manufacturing of the film casting mass within a few minutes in a stirred media mill was achieved.

  2. Novel docetaxel-loaded nanoparticles based on PCL-Tween 80 copolymer for cancer treatment

    Directory of Open Access Journals (Sweden)

    Mei L

    2011-11-01

    Full Text Available Yuandong Ma1,2*, Yi Zheng1,2*, Xiaowei Zeng1-3*, Liqin Jiang4, Hongbo Chen1,2, Ranyi Liu5, Laiqiang Huang1,2, Lin Mei1,21School of Life Sciences, Tsinghua University, Beijing, 2Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 3Materials and Environment Experimental Center, Department of Materials Science and Engineering, Qinhuangdao Branch, Northeastern University, Qinhuangdao, 4Insitute of Biomedical Engineering, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, 5State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China *These authors contributed equally to this workBackground: The formulation of docetaxel available for clinical use (Taxotere® contains a high concentration of polysorbate 80 (Tween 80. After incorporation of Tween 80 into poly-ε-caprolactone (PCL-Tween 80 copolymer, the relative amount of Tween 80 should be decreased and the advantages of PCL and Tween 80 should be combined.Methods: A novel PCL-Tween 80 copolymer was synthesized from ε-caprolactone and Tween 80 in the presence of stannous octoate as a catalyst via ring opening polymerization. Two types of nanoparticle formulation were made from commercial PCL and a self-synthesized PCL-Tween 80 copolymer using a modified solvent extraction/evaporation method.Results: The nanoparticles were found by field emission scanning electron microscopy to have a spherical shape and be 200 nm in diameter. The copolymers could encapsulate 10% of the drug in the nanoparticles and release 34.9% of the encapsulated drug over 28 days. PCL-Tween 80 nanoparticles could be internalized into the cells and had higher cellular uptake than the PCL nanoparticles. The drug-loaded PCL-Tween 80 nanoparticles showed better in vitro cytotoxicity towards C6 cancer cells than commercial Taxotere at the same drug concentration.Conclusion: Nanoparticles

  3. ANTIBACTERIAL AND CATALYTIC PROPERTIES OF SILVER NANOPARTICLES LOADED ZEOLITE: GREEN METHOD FOR SYNTHESIS OF SILVER NANOPARTICLES USING LEMON JUICE AS REDUCING AGENT

    OpenAIRE

    SELVAMUTHUMARI J.; Meenakshi, S.; M. Ganesan; Nagaraj, S; PANDIAN K.

    2016-01-01

    Zeolite Y is a cage-like alumina silicate which is widely used as solid support to immobilize metal and metal sulfide nanoclusters. We have attempted to synthesis silver nanoparticle-loaded zeolite Y by an ion exchange method followed by a biogenic reduction method using lemon juice as a reducing agent. The antimicrobial activity of the silver ion, silver nanoparticles and silver chloride-modified zeolite was investigated against various Gram negative and Gram positive microorganisms. The sil...

  4. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration.

    Science.gov (United States)

    Martins, Susana M; Sarmento, Bruno; Nunes, Cláudia; Lúcio, Marlene; Reis, Salette; Ferreira, Domingos C

    2013-11-01

    This study intended to investigate the ability of solid lipid nanoparticles (SLN) to deliver camptothecin into the brain parenchyma after crossing the blood-brain barrier. For that purpose, camptothecin-loaded SLN with mean size below 200 nm, low polydispersity index (94%) were produced. Synchrotron small and wide angle X-ray scattering (SAXS/WAXS) analysis indicates that SLN maintain their physical stability in contact with DMPC membrane, whereas SLN change the lamellar structure of DMPC into a cubic phase, which is associated with efficient release of the incorporated drugs. Cytotoxicity studies against glioma and macrophage human cell lines revealed that camptothecin-loaded SLN induced cell death with the lowest maximal inhibitory concentration (IC50) values, revealing higher antitumour activity of camptothecin-loaded SLN against gliomas. Furthermore, in vivo biodistribution studies of intravenous camptothecin-loaded SLN performed in rats proved the positive role of SLN on the brain targeting since significant higher brain accumulation of camptothecin was observed, compared to non-encapsulated drug. Pharmacokinetic studies further demonstrated lower deposition of camptothecin in peripheral organs, when encapsulated into SLN, with consequent decrease in potential side toxicological effects. These results confirmed the potential of camptothecin-loaded SLN for antitumour brain treatments.

  5. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan.

    Science.gov (United States)

    Zhang, Yanzhuo; Zhi, Zhuangzhi; Jiang, Tongying; Zhang, Jinghai; Wang, Zhanyou; Wang, Siling

    2010-08-03

    The purpose of this study was to develop mesoporous silica nanoparticles (MSNs) loaded with a poorly water-soluble drug, intended to be orally administered, able to improve the dissolution rate and enhance the drug loading capacity. Spherical MSNs were synthesized using an organic template method in an oil/water phase, and large pore diameter MSNs were functionalized with aminopropyl groups through postsynthesis. MSNs as well as the resulting functionalized MSNs were investigated as matrices for loading and release of the model drug telmisartan (TEL). The effects of different pore sizes and surface chemical groups on TEL uptake and release were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and HPLC. The total pore volume and the pore diameter of MSNs were the two main factors limiting the maximum drug load capacity. MSNs allow a very high drug loading of about 60% in weight. The release rate of TEL from MSNs with a pore diameter of 12.9 nm was found to be effectively increased and the release rate of TEL from the functionalized MSNs was effectively controlled compared with that from the unmodified MSNs. We believe that the present study will help in the design of oral drug delivery systems for the dissolution enhancement and/or sustained release of poorly water-soluble drugs.

  6. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases

    Science.gov (United States)

    Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.

    2015-07-01

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from

  7. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors.

    Science.gov (United States)

    Gao, Pei; Zhang, Xiangyu; Wang, Hongzhi; Zhang, Qinghong; Li, He; Li, Yaogang; Duan, Yourong

    2016-01-19

    Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.

  8. Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer.

    Science.gov (United States)

    Wang, Tzu-Yin; Choe, Jung Woo; Pu, Kanyi; Devulapally, Rammohan; Bachawal, Sunitha; Machtaler, Steven; Chowdhury, Sayan Mullick; Luong, Richard; Tian, Lu; Khuri-Yakub, Butrus; Rao, Jianghong; Paulmurugan, Ramasamy; Willmann, Jürgen K

    2015-04-10

    Ultrasound induced microbubble cavitation can cause enhanced permeability across natural barriers of tumors such as vessel walls or cellular membranes, allowing for enhanced therapeutic delivery into the target tissues. While enhanced delivery of small (100nm) therapeutic carriers into cancer remains unclear and may require a higher pressure for sufficient delivery. Enhanced delivery of larger therapeutic carriers such as FDA approved pegylated poly(lactic-co-glycolic acid) nanoparticles (PLGA-PEG-NP) has significant clinical value because these nanoparticles have been shown to protect encapsulated drugs from degradation in the blood circulation and allow for slow and prolonged release of encapsulated drugs at the target location. In this study, various acoustic parameters were investigated to facilitate the successful delivery of two nanocarriers, a fluorescent semiconducting polymer model drug nanoparticle as well as PLGA-PEG-NP into human colon cancer xenografts in mice. We first measured the cavitation dose produced by various acoustic parameters (pressure, pulse length, and pulse repetition frequency) and microbubble concentration in a tissue mimicking phantom. Next, in vivo studies were performed to evaluate the penetration depth of nanocarriers using various acoustic pressures, ranging between 1.7 and 6.9MPa. Finally, a therapeutic microRNA, miR-122, was loaded into PLGA-PEG-NP and the amount of delivered miR-122 was assessed using quantitative RT-PCR. Our results show that acoustic pressures had the strongest effect on cavitation. An increase of the pressure from 0.8 to 6.9MPa resulted in a nearly 50-fold increase in cavitation in phantom experiments. In vivo, as the pressures increased from 1.7 to 6.9MPa, the amount of nanoparticles deposited in cancer xenografts was increased from 4- to 14-fold, and the median penetration depth of extravasated nanoparticles was increased from 1.3-fold to 3-fold, compared to control conditions without ultrasound, as

  9. Optimization of methazolamide-loaded solid lipid nanoparticles for ophthalmic delivery using Box-Behnken design.

    Science.gov (United States)

    Wang, Fengzhen; Chen, Li; Jiang, Sunmin; He, Jun; Zhang, Xiumei; Peng, Jin; Xu, Qunwei; Li, Rui

    2014-09-01

    The purpose of the present study was to optimize methazolamide (MTZ)-loaded solid lipid nanoparticles (SLNs) which were used as topical eye drops by evaluating the relationship between design factors and experimental data. A three factor, three-level Box-Behnken design (BBD) was used for the optimization procedure, choosing the amount of GMS, the amount of phospholipid, the concentration of surfactant as the independent variables. The chosen dependent variables were entrapment efficiency, dosage loading, and particle size. The generated polynomial equations and response surface plots were used to relate the dependent and independent variables. The optimal nanoparticles were formulated with 100 mg GMS, 150 mg phospholipid, and 1% Tween80 and PEG 400 (1:1, w/v). A new formulation was prepared according to these levels. The observed responses were close to the predicted values of the optimized formulation. The particle size was 197.8 ± 4.9 nm. The polydispersity index of particle size was 0.239 ± 0.01 and the zeta potential was 32.7 ± 2.6 mV. The entrapment efficiency and dosage loading were about 68.39% and 2.49%, respectively. Fourier transform infrared spectroscopy (FT-IR) study indicated that the drug was entrapped in nanoparticles. The optimized formulation showed a sustained release followed the Peppas model. MTZ-SLNs showed significant prolonged decreasing intraocular pressure effect comparing with MTZ solution in vivo pharmacodynamics studies. The results of acute eye irritation study indicated that MTZ-SLNs and AZOPT both had no eye irritation. Furthermore, the MTZ-SLNs were suitable to be stored at low temperature (4 °C).

  10. Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Lihua Cheng

    Full Text Available BACKGROUND: Cisplatin is a potent anticancer drug, but its clinical application has been limited due to its undesirable physicochemical characteristics and severe side effects. Better drug formulations for cisplatin are highly desired. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we have developed a nanoparticle formulation for cisplatin with high encapsulation efficiency and reduced toxicity by using cisplatin-crosslinked carboxymethyl cellulose (CMC core nanoparticles made from poly(lactide-co-glycolide-monomethoxy-poly(polyethylene glycol copolymers (PLGA-mPEG. The nanoparticles have an average diameter of approximately 80 nm measured by transmission electron microscope (TEM. The encapsulation efficiency of cisplatin in the nanoparticles is up to 72%. Meanwhile, we have also observed a controlled release of cisplatin in a sustained manner and dose-dependent treatment efficacy of cisplatin-loaded nanoparticles against IGROV1-CP cells. Moreover, the median lethal dose (LD(50 of the cisplatin-loaded nanoparticles was more than 100 mg/kg by intravenous administration, which was much higher than that of free cisplatin. CONCLUSION: This developed cisplatin-loaded nanoparticle is a promising formulation for the delivery of cisplatin, which will be an effective therapeutic regimen of ovarian cancer without severe side effects and cumulative toxicity.

  11. FORMULATION, CHARACTERIZATION AND IN VITRO EVALUATION OF NOVEL THIENOPYRIMIDINES AND TRIAZOLOTHIENOPYRIMIDINES LOADED SOLID LIPID NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Mulla Jameel Ahmed S.

    2010-09-01

    Full Text Available Thienopyrimidines and triazolothienopyrimidines loaded solid lipid nanoparticles (SLNs were produced by microemulsion method. All the formulations were subjected to particle size analysis, zeta potential, compound entrapment efficiency and in vitro release studies. The SLNs formed were in nano-size range with maximum entrapment efficiency. Formulation with 195 nm in particle size and 84.20% of compound entrapment was subjected to scanning electron microscopy (SEM for surface morphology, differential scanning calorimetry (DSC for thermal analysis and short term stability studies. SEM confirms that the SLNs are circular in shape. The compound release behavior from SLN suspension exhibited biphasic pattern with an initial burst and prolonged release over 24 h.

  12. Preparation and Evaluation in Vitro of BCNU-Loaded PLA Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    GUOYan-shuang; YUANXu-bo; LIUXiao-yan; LUJian; CHANGJin; KANGChun-sheng; PUPei-yu

    2004-01-01

    In this study, using a spontaneous emulsification/solvent extraction method, BCNU-Ioaded PLA nanoparticles (NPs) with small particle size and narrow size distribution have been acquired. The particle size of the NPs ranged from 40-60 nm and 100-200 nm according to different requirements. SEM and TEM showed that the particle size considerably decreases with increasing emulsification concentration and decreasing PLA concentration and ratio of oil to water. The highest drug loading ratio and drug encapsulation efficiency of NPs were 5. 63% and 33.45%. The results demonstrated that decrease of initial BCNU content resuited in a noticeably increased encapsulation yield. A thorough study in vitro showed that the drug could be steadily released from NPs for one week. In addition, drug-loaded NPs had higher antitumor activity, compared with free BCNU,and sustained drug release characteristics as well.

  13. Development of CMC hydrogels loaded with silver nano-particles for medical applications.

    Science.gov (United States)

    Hebeish, Ali; Hashem, M; El-Hady, M M Abd; Sharaf, S

    2013-01-30

    Innovative CMC-based hydrogels with great potentials for usage in medical area were principally synthesized as per two strategies .The first involved reaction of epichlorohydrin in alkaline medium containing silver nitrate to yield silver nano-particles (AgNPs)-loaded CMC hydrogel. While CMC acted as stabilizing for AgNPs, trisodium citrate was added to the reaction medium to assist CMC in establishing reduction of Ag(+) to AgNPs. The second strategy entailed preparation of CMC hydrogel which assists the in situ preparation of AgNPs under the same conditions. In both strategies, factors affecting the characterization of AgNPs-loaded CMC hydrogels were studied. Analysis and characterization of the so obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, EDX, UV-vis spectrophotometer and TEM. Antimicrobial activity of the hydrogels was examined and mechanisms involved in their synthesis were reported.

  14. Phytochemical-loaded mesoporous silica nanoparticles for nose-to-brain olfactory drug delivery.

    Science.gov (United States)

    Lungare, Shital; Hallam, Keith; Badhan, Raj K S

    2016-11-20

    Central nervous system (CNS) drug delivery is often hampered due to the insidious nature of the blood-brain barrier (BBB). Nose-to-brain delivery via olfactory pathways have become a target of attention for drug delivery due to bypassing of the BBB. The antioxidant properties of phytochemicals make them promising as CNS active agents but possess poor water solubility and limited BBB penetration. The primary aim of this study was the development of mesoporous silica nanoparticles (MSNs) loaded with the poorly water-soluble phytochemicals curcumin and chrysin which could be utilised for nose-to-brain delivery. We formulated spherical MSNP using a templating approach resulting in ∼220nm particles with a high surface porosity. Curcumin and chrysin were successfully loaded into MSNP and confirmed through Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and HPLC approaches with a loading of 11-14% for curcumin and chrysin. Release was pH dependant with curcumin demonstrating increased chemical stability at a lower pH (5.5) with a release of 53.2%±2.2% over 24h and 9.4±0.6% for chrysin. MSNP were demonstrated to be non-toxic to olfactory neuroblastoma cells OBGF400, with chrysin (100μM) demonstrating a decrease in cell viability to 58.2±8.5% and curcumin an IC50 of 33±0.18μM. Furthermore confocal microscopy demonstrated nanoparticles of <500nm were able to accumulate within cells with FITC-loaded MSNP showing membrane localised and cytoplasmic accumulation following a 2h incubation. MSNP are useful carriers for poorly soluble phytochemicals and provide a novel vehicle to target and deliver drugs into the CNS and bypass the BBB through olfactory drug delivery.

  15. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Amalendu P; Zeglam, Karim; Mukerjee, Anindita; Vishwanatha, Jamboor K [Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Thamake, Sanjay, E-mail: Jamboor.vishwanatha@unthsc.edu [Department of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-07-22

    The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 {+-} 3.7 to 260 {+-} 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.

  16. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging

    Science.gov (United States)

    Ranjan, Amalendu P.; Zeglam, Karim; Mukerjee, Anindita; Thamake, Sanjay; Vishwanatha, Jamboor K.

    2011-07-01

    The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 ± 3.7 to 260 ± 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.

  17. Statistical design for formulation optimization of hydrocortisone butyrate-loaded PLGA nanoparticles.

    Science.gov (United States)

    Yang, Xiaoyan; Patel, Sulabh; Sheng, Ye; Pal, Dhananjay; Mitra, Ashim K

    2014-06-01

    The aim of this investigation was to develop hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) with ideal encapsulation efficiency (EE), particle size, and drug loading (DL) under emulsion solvent evaporation technique utilizing various experimental statistical design modules. Experimental designs were used to investigate specific effects of independent variables during preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. Plackett-Burman design for independent variables was first conducted to prescreen various formulation and process variables during the development of NP. Selected primary variables were further optimized by central composite design. This process leads to an optimum formulation with desired EE, particle size, and DL. Contour plots and response surface curves display visual diagrammatic relationships between the experimental responses and input variables. The concentration of PLGA, drug, and polyvinyl alcohol and sonication time were the critical factors influencing the responses analyzed. Optimized formulation showed EE of 90.6%, particle size of 164.3 nm, and DL of 64.35%. This study demonstrates that statistical experimental design methodology can optimize the formulation and process variables to achieve favorable responses for HB-loaded NP.

  18. Physicochemical characterization of sildenafil-loaded solid lipid nanoparticle dispersions (SLN) for pulmonary application.

    Science.gov (United States)

    Paranjpe, M; Finke, J H; Richter, C; Gothsch, T; Kwade, A; Büttgenbach, S; Müller-Goymann, C C

    2014-12-10

    For the development of any colloidal system, thorough characterization is extremely essential. This article discusses the physicochemical characterization of sildenafil-loaded solid lipid nanoparticle dispersions (SLN) including stability analysis over 6 months time period for possible pulmonary administration for the treatment of pulmonary arterial hypertension (PAH). SLN consisting of phospholipid and triglycerides were manufactured using a novel microchannel homogenization method. These sildenafil-loaded SLN were then subjected to physicochemical characterization namely, particle size and distribution over shelf life, differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and analysis of nebulization performance of these SLN by the means of next generation impactor (NGI). Additionally, the morphology of nebulized particles was assessed by transmission electron microscopy using negative staining technique. The solubility of sildenafil citrate and base in the lipid matrix was determined and was 0.1% w/w and 1% w/w, respectively. From the particle size measurements, it was observed that SLN without sildenafil demonstrated consistent particle sizes over 6 months. For the sildenafil-loaded SLN, increased particle sizes were found after manufacturing and further increased within weeks. From WAXD studies, after 6 months high intensity reflections corresponding to the stable β modification were observed. From DSC results, the peak minimum temperatures increased upon storage, hinting at a transformation to the stable β modification of triglycerides in the case of sildenafil-loaded SLN. Hence, it can be concluded that even small drug concentration influences particle size and stability.

  19. Design and characterization of antimicrobial usnic acid loaded-core/shell magnetic nanoparticles.

    Science.gov (United States)

    Taresco, Vincenzo; Francolini, Iolanda; Padella, Franco; Bellusci, Mariangela; Boni, Adriano; Innocenti, Claudia; Martinelli, Andrea; D'Ilario, Lucio; Piozzi, Antonella

    2015-01-01

    The application of magnetic nanoparticles (MNPs) in medicine is considered much promising especially because they can be handled and directed to specific body sites by external magnetic fields. MNPs have been investigated in magnetic resonance imaging, hyperthermia and drug targeting. In this study, properly functionalized core/shell MNPs with antimicrobial properties were developed to be used for the prevention and treatment of medical device-related infections. Particularly, surface-engineered manganese iron oxide MNPs, produced by a micro-emulsion method, were coated with two different polymers and loaded with usnic acid (UA), a dibenzofuran natural extract possessing antimicrobial activity. Between the two polymer coatings, the one based on an intrinsically antimicrobial cationic polyacrylamide (pAcDED) resulted to be able to provide MNPs with proper magnetic properties and basic groups for UA loading. Thanks to the establishment of acid-base interactions, pAcDED-coated MNPs were able to load and release significant drug amounts resulting in good antimicrobial properties versus Staphylococcus epidermidis (MIC = 0.1 mg/mL). The use of pAcDED having intrinsic antimicrobial activity as MNP coating in combination with UA likely contributed to obtain an enhanced antimicrobial effect. The developed drug-loaded MNPs could be injected in the patient soon after device implantation to prevent biofilm formation, or, later, in presence of signs of infection to treat the biofilm grown on the device surfaces.

  20. Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles.

    Science.gov (United States)

    Arias, José L; Ruiz, M Adolfina; Gallardo, Visitación; Delgado, Angel V

    2008-01-01

    In this work, we describe a reproducible method to prepare polymeric colloidal nanospheres of poly(ethyl-2-cyanoacrylate), poly(butylcyanoacrylate), poly(hexylcyanoacrylate) and poly(octylcyanoacrylate) with a magnetite core, and loaded with the anticancer drug Tegafur. The method is based on the emulsion polymerization procedure, often used in the synthesis of poly(alkylcyanoacrylate) nanospheres for drug delivery. The heterogeneous structure of the particles confer them both magnetic-field responsiveness and potential applicability as drug carriers. In order to investigate to what extent is this target achieved, we compare the surface electrical properties of the core/shell particles with those of both the nucleus and the coating material. The hysteresis cycles of both magnetite and composite particles demonstrate that the polymer shell reduces the magnetic responsiveness of the particles, but keeps their soft ferrimagnetic character unchanged. A detailed investigation of the capabilities of the core/shell particles to load this drug is shown. We found, by means of spectrophotometric and electrophoretic measurements, the existence of two drug loading mechanisms: absorption or entrapment in the polymeric network, and surface adsorption. The type of polymer, the pH and the drug concentration are the main factors determining the drug incorporation to the nanoparticles. The release studies showed a biphasic profile affected by the type of polymeric shell, the type of drug incorporation and the amount of drug loaded.

  1. In Situ Loading of Basic Fibroblast Growth Factor Within Porous Silica Nanoparticles for a Prolonged Release

    Directory of Open Access Journals (Sweden)

    Postovit Lynne-Marie

    2009-01-01

    Full Text Available Abstract Basic fibroblast growth factor (bFGF, a protein, plays a key role in wound healing and blood vessel regeneration. However, bFGF is easily degraded in biologic systems. Mesoporous silica nanoparticles (MSNs with well-tailored porous structure have been used for hosting guest molecules for drug delivery. Here, we report an in situ route to load bFGF in MSNs for a prolonged release. The average diameter (d of bFGF-loaded MSNs is 57 ± 8 nm produced by a water-in-oil microemulsion method. The in vitro releasing profile of bFGF from MSNs in phosphate buffer saline has been monitored for 20 days through a colorimetric enzyme linked immunosorbent assay. The loading efficiency of bFGF in MSNs is estimated at 72.5 ± 3%. In addition, the cytotoxicity test indicates that the MSNs are not toxic, even at a concentration of 50 μg/mL. It is expected that the in situ loading method makes the MSNs a new delivery system to deliver protein drugs, e.g. growth factors, to help blood vessel regeneration and potentiate greater angiogenesis.

  2. Transient loading of CD34+ hematopoietic progenitor cells with polystyrene nanoparticles

    Science.gov (United States)

    Deville, Sarah; Hadiwikarta, Wahyu Wijaya; Smisdom, Nick; Wathiong, Bart; Ameloot, Marcel; Nelissen, Inge; Hooyberghs, Jef

    2017-01-01

    CD34+ hematopoietic progenitor cells (HPCs) offer great opportunities to develop new treatments for numerous malignant and non-malignant diseases. Nanoparticle (NP)-based strategies can further enhance this potential, and therefore a thorough understanding of the loading behavior of HPCs towards NPs is essential for a successful application. The present study focusses on the interaction kinetics of 40 nm sized carboxylated polystyrene (PS) NPs with HPCs. Interestingly, a transient association of the NPs with HPCs is observed, reaching a maximum within 1 hour and declining afterwards. This behavior is not seen in dendritic cells (CD34-DCs) differentiated from HPCs, which display a monotonic increase in NP load. We demonstrate that this transient interaction requires an energy-dependent cellular process, suggesting active loading and release of NPs by HPCs. This novel observation offers a unique approach to transiently equip HPCs. A simple theoretical approach modeling the kinetics of NP loading and release is presented, contributing to a framework of describing this phenomenon. PMID:28138242

  3. Oridonin Loaded Solid Lipid Nanoparticles Enhanced Antitumor Activity in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-01-01

    Full Text Available Oridonin (ORI, a famous diterpenoid from Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis and autophagy-inducing activity in human cancer therapy, while clinical application of ORI is limited by its strong hydrophobicity and rapid plasma clearance. The purpose of this study was to evaluate whether the antitumor activity of ORI could be enhanced by loading into solid lipid nanoparticles (SLNs. ORI-loaded SLNs were prepared by hot high pressure homogenization with narrow size distribution and good entrapment efficacy. MTT assay indicated that ORI-loaded SLNs enhanced the inhibition of proliferation against several human cancer cell lines including breast cancer MCF-7 cells, hepatocellular carcinoma HepG 2 cells, and lung carcinoma A549 cells compared with free ORI, while no significant enhancement of toxicity to human mammary epithelial MCF-10A cells was shown. Meanwhile, flow cytometric analysis demonstrated that ORI-SLNs induced more significant cell cycle arrest at S and decreased cell cycle arrest at G1/G0 phase in MCF-7 cells than bulk ORI solution. Hoechst 33342 staining and Annexin V/PI assay indicated that apoptotic rates of cells treated with ORI-loaded SLNs were higher compared with free ORI. In summary, our data indicated that SLNs may be a potential carrier for enhancing the antitumor effect of hydrophobic drug ORI.

  4. Antibacterial performance on plasma polymerized heptylamine films loaded with silver nanoparticles

    Science.gov (United States)

    Lin, Yu-Chun; Lin, Chia-Chun; Lin, Chih-Hao; Wang, Meng-Jiy

    2017-01-01

    The antibacterial performance of the plasma-polymerized (pp) heptylamine thin films loaded with silver nanoparticles was evaluated against the colonization of Escherichia coli and Staphylococcus aureus. The properties including the thickness and chemical composition of the as deposited HApp films were modulated by adjusting plasma parameters. The acquired results showed that the film thickness was controlled in the range of 20 to 400 nm by adjusting deposition time. The subsequent immersion of the HApp thin films in silver nitrate solutions result in the formation of amine-metal complexes, in which the silver nanoparticles were reduced directly on the matrices to form Ag@HApp. The reduction reaction of silver was facilitated by applying NaBH4 as a reducing agent. The results of physicochemical analyses including morphological analysis and ellipsometry revealed that the silver nanoparticles were successfully reduced on the HApp films, and the amount of reduced silver was closely associated which the thickness of the plasma-polymerized films, the concentration of applied metal ions solutions, and the time of immobilization. Regarding the antibacterial performance, the Ag@HApp films reduced by NaBH4 showed antibacterial abilities of 70.1 and 68.2% against E. coli and S. aureus, respectively.

  5. Study on docetaxel-loaded nanoparticles with high antitumor efficacy against malignant melanoma

    Institute of Scientific and Technical Information of China (English)

    Donghui Zheng; Xiaolin Li; Huae Xu; Xiaowei Lu; Yong Hu; Weixin Fan

    2009-01-01

    Docetaxel (Doc) has extraordinary activities against a variety of solid tumors.However,the clinical efficacy of Doc is limited due to its poor solubility,low selective dis-tribution,fast elimination in vivo,etc.In the present study,Doc was incorporated into the core-shell structure of nanoparticles prepared based on our previous work.The obtained docetaxel-loaded nanoparticles (DOCNP) were characterized with various biophysical method-ologies,and its antitumor efficacy against malignant mel-anoma was evaluated both in vitro and in vivo.Our results indicated that Doc could be incorporated into the nanoparticles with high encapsulation efficiency (>90%).The incorporated Doc can be released from DOCNP in a sustained manner.In vitro cytotoxicity studies indicated that DOCNP could effectively kill B16 cells and show a dose- and time-dependent efficacy.Furthermore,intratu-moral administration revealed that DOCNP has signifi-cantly higher antitumor effect and lower toxicity to normal cells and tissues than free Doc.These results suggest that DOCNP may be a promising drug delivery system in therapy for malignant melanoma.

  6. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax.

    Science.gov (United States)

    Kheradmandnia, Soheila; Vasheghani-Farahani, Ebrahim; Nosrati, Mohsen; Atyabi, Fatemeh

    2010-12-01

    Solid lipid nanoparticles (SLNs) have been proposed as suitable colloidal carriers for delivery of drugs with limited solubility. Ketoprofen as a model drug was incorporated into SLNs prepared from a mixture of beeswax and carnauba wax using Tween 80 and egg lecithin as emulsifiers. The characteristics of the SLNs with various lipid and surfactant composition were investigated. The mean particle size of drug-loaded SLNs decreased upon mixing with Tween 80 and egg lecithin as well as upon increasing total surfactant concentration. SLNs of 75 ± 4 nm with a polydispersity index of 0.2 ± 0.02 were obtained using 1% (vol/vol) mixed surfactant at a ratio of 60:40 Tween 80 to egg lecithin. The zeta potential of these SLNs varied in the range of -15 to -17 (mV), suggesting the presence of similar interface properties. High drug entrapment efficiency of 97% revealed the ability of SLNs to incorporate a poorly water-soluble drug such as ketoprofen. Differential scanning calorimetry thermograms and high-performance liquid chromatographic analysis indicated the stability of nanoparticles with negligible drug leakage after 45 days of storage. It was also found that nanoparticles with more beeswax content in their core exhibited faster drug release as compared with those containing more carnauba wax in their structure.

  7. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies.

    Science.gov (United States)

    Gaspar, Diana P; Faria, Vasco; Gonçalves, Lídia M D; Taboada, Pablo; Remuñán-López, Carmen; Almeida, António J

    2016-01-30

    Systemic administration of antitubercular drugs can be complicated by off-target toxicity to cells and tissues that are not infected by Mycobacterium tuberculosis . Delivery of antitubercular drugs via nanoparticles directly to the infected cells has the potential to maximize efficacy and minimize toxicity. The present work demonstrates the potential of solid lipid nanoparticles (SLN) as a delivery platform for rifabutin (RFB). Two different RFB-containing SLN formulations were produced using glyceryl dibehenate or glyceryl tristearate as lipid components. Full characterization was performed in terms of particle size, encapsulation and loading efficiency, morphology by transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies. Physical stability was evaluated when formulations were stored at 5 ± 3°C and in the freeze-dried form. Formulations were stable throughout lyophilization without significant variations on physicochemical properties and RFB losses. The SLN showed to be able to endure harsh temperature conditions as demonstrated by dynamic light scattering (DLS). Release studies revealed that RFB was almost completely released from SLN. In vitro studies with THP1 cells differentiated in macrophages showing a nanoparticle uptake of 46 ± 3% and 26 ± 9% for glyceryl dibehenate and glyceryl tristearate SLN, respectively. Cell viability studies using relevant lung cell lines (A549 and Calu-3) revealed low cytotoxicity for the SLN, suggesting these could be new potential vehicles for pulmonary delivery of antitubercular drugs.

  8. FORMULATION AND EVALUATION OF CURCUMIN LOADED MAGNETIC NANOPARTICLES FOR CANCER THERAPY

    Directory of Open Access Journals (Sweden)

    T. Silambarasi, S. Latha*, M. Thambidurai and P. Selvamani

    2012-05-01

    Full Text Available The conventional chemotherapeutic agents in oncology drug discovery still exhibit poor specificity in reaching tumor site and often restricted by dose-limiting toxicity. The combination of developing drug formulation by utilizing both controlled release technology and drug targeting technology may provide a more efficient and less harmful solution to conquer the limitations found in conventional chemotherapy. In this study, the anticancer drug curcumin was encapsulated in a polymeric magnetic nanoparticle which was synthesized with polymers β-cyclodextrin cross linked with epichlorhydrin, hydrophobically modified dextran byoleoylchloride and magnetite as magnetic material. Particle size, surface morphology, zeta potential and magnetic measurements were used to characterize the developed drug formulations. The developed drug-iron conjugated nanoparticles were found to be within the size range of 100nm with excellent negative surface charge (>-30eV and spherical in shape. The magnetic susceptibility and magnetization curve substantiate the super paramagnetic property of the developed drug formulation. Furthermore, the drug content and encapsulation efficiency found was directly proportional to epichlorhydrin β-cyclodextrin concentration in the developed formulation. The in-vitro release profile of curcumin loaded magnetic nanoparticles exhibited biphasic initial release first 24 hours and release extended upto 72 hours. The drug release kinetics indicated that drug release from drug formulations were best explained by Higuchi’s equation, as these plots showed the highest linearity but a close relationship was also noted with first-order kinetics.

  9. Isoniazid loaded gelatin-cellulose whiskers nanoparticles for controlled drug delivery applications

    Indian Academy of Sciences (India)

    MANDIP SARMAH; ANOWAR HUSSAIN; ANAND RAMTEKE; TARUN K MAJI

    2016-08-01

    Natural polymers like gelatin have been used as a potential drug carrier for controlled delivery applications due to their various advantages over synthetic polymers. Cellulose Whiskers (CWs) have the capacity to form strong hydrogen bonds which help in controlling the release of drug and also provide goodstrength to the drug carrier. In this report, CWs were prepared from filter paper cellulose by acid hydrolysis. Also, attempt was made to prepare gelatin-CWs nanoparticles by desolvation method using an anti-tuberculosis drug, isoniazid and a crosslinker glutaraldehyde (GA). The CWs and gelatin-CWs nanoparticles were characterized by X-ray diffractometry (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The effect of CWs on gelatin nanoparticlesover 8-hour period was measured in swelling studies. Efficiency of drug loading and subsequent release of isoniazid in buffer solutions at pH 1.2 (0.1N HCl) and pH 7.4 (phosphate buffer) were studied. Cytotoxicity study showed less toxicity for gelatin-CWs nanoparticles.

  10. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.

    Science.gov (United States)

    Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro

    2016-09-01

    The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles.

  11. Titantium Dioxide Nanoparticles Assembled by DNA Molecules Hybridization and Loading of DNA Interacting Proteins.

    Science.gov (United States)

    Wu, Aiguo; Paunesku, Tatjana; Brown, Eric M B; Babbo, Angela; Cruz, Cecille; Aslam, Mohamed; Dravid, Vinayak; Woloschak, Gayle E

    2008-02-01

    This work demonstrates the assembly of TiO(2) nanoparticles with attached DNA oligonucleotides into a 3D mesh structure by allowing base pairing between oligonucleotides. A change of the ratio of DNA oligonucleotide molecules and TiO(2) nanoparticles regulates the size of the mesh as characterized by UV-visible light spectra, transmission electron microscopy and atomic force microscopy images. This type of 3D mesh, based on TiO(2)-DNA oligonucleotide nanoconjugates, can be used for studies of nanoparticle assemblies in material science, energy science related to dye-sensitized solar cells, environmental science as well as characterization of DNA interacting proteins in the field of molecular biology. As an example of one such assembly, proliferating cell nuclear antigen protein (PCNA) was cloned, its activity verified, and the protein was purified, loaded onto double strand DNA oligonucleotide-TiO(2) nanoconjugates, and imaged by atomic force microscopy. This type of approach may be used to sample and perhaps quantify and/or extract specific cellular proteins from complex cellular protein mixtures affinity based on their affinity for chosen DNA segments assembled into the 3D matrix.

  12. Cyanine-loaded lipid nanoparticles for improved in vivo fluorescence imaging

    Science.gov (United States)

    Texier, Isabelle; Goutayer, Mathieu; da Silva, Anabela; Guyon, Laurent; Djaker, Nadia; Josserand, Véronique; Neumann, Emmanuelle; Bibette, Jérôme; Vinet, Françoise

    2009-09-01

    Fluorescence is a very promising radioactive-free technique for functional imaging in small animals and, in the future, in humans. However, most commercial near-infrared dyes display poor optical properties, such as low fluorescence quantum yields and short fluorescence lifetimes. In this paper, we explore whether the encapsulation of infrared cyanine dyes within the core of lipid nanoparticles (LNPs) could improve their optical properties. Lipophilic dialkylcarbocyanines DiD and DiR are loaded very efficiently in 30-35-nm-diam lipid droplets stabilized in water by surfactants. No significant fluorescence autoquenching is observed up to 53 dyes per particle. Encapsulated in LNP, which are stable for more than one year at room temperature in HBS buffer (HEPES 0.02 M, EDTA 0.01 M, pH 5.5), DiD and DiR display far improved fluorescence quantum yields Φ (respectively, 0.38 and 0.25) and longer fluorescence lifetimes τ (respectively, 1.8 and 1.1 ns) in comparison to their hydrophilic counterparts Cy5 (φ=0.28, τ=1.0 ns) and Cy7 (φ=0.13, τ=0.57 ns). Moreover, dye-loaded LNPs are able to accumulate passively in various subcutaneous tumors in mice, thanks to the enhanced permeability and retention effect. These new fluorescent nanoparticles therefore appear as very promising labels for in vivo fluorescence imaging.

  13. Experimental and Mathematical Studies on the Drug Release Properties of Aspirin Loaded Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yixiang Shi

    2014-01-01

    Full Text Available The study of drug release dynamic is aiming at understanding the process that drugs release in human body and its dynamic characteristics. It is of great significance since these characteristics are closely related to the dose, dosage form, and effect of the drugs. The Noyes-Whitney function is used to represent how the solid material is dissolved into solution, and it is well used in study of drug dynamic. In this research, aspirin (acetylsalicylic acid (ASA has been encapsulated with different grades of chitosan (CS varying in molecular weight (Mw for the purpose of controlled release. The encapsulation was accomplished by ionic gelation technology based on assembly of positively charged chitosan and negatively charged sodium tripolyphosphate (TPP. The encapsulation efficiency, loading capacity, and drug release behavior of aspirin loaded chitosan nanoparticles (CS-NPs were studied. It was found that the concentration of TPP and Aspirin, molecular weights of chitosan have important effect on the drug release patterns from chitosan nanoparticles. The results for simulation studies show that the Noyes-Whitney equation can be successfully used to interpret the drug release characteristics reflected by our experimental data.

  14. Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles

    Science.gov (United States)

    Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir

    2017-02-01

    In the presented work, amphiphilic nanoparticles based on chitosan and carboxy-enriched polylactic acid have been prepared to improve the stability of the pro-drug temozolomide in physiological media by encapsulation. The carrier, with a diameter in the range of 150-180 nm, was able to accommodate up to 800 μg of temozolomide per mg of polymer. The obtained formulation showed good stability in physiological condition and preparation media up to 1 month. Temozolomide loaded inside the carrier exhibited greater stability than the free drug, in particular in simulated physiological solution at pH 7.4 where the hydrolysis in the inactive metabolite was clearly delayed. CS-SPLA nanoparticles demonstrated a pH-dependent TMZ release kinetics with the opportunity to increase or decrease the rate. Mass spectroscopy, UV-Vis analysis, and in vitro cell tests confirmed the improvement in temozolomide stability and effectiveness when loaded into the polymeric carrier, in comparison with the free drug.

  15. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy.

    Science.gov (United States)

    Dilnawaz, Fahima; Singh, Abhalaxmi; Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-05-01

    The primary inadequacy of chemotherapeutic drugs is their relative non-specificity and potential side effects to the healthy tissues. To overcome this, drug loaded multifunctional magnetic nanoparticles are conceptualized. We report here an aqueous based formulation of glycerol monooleate coated magnetic nanoparticles (GMO-MNPs) devoid of any surfactant capable of carrying high payload hydrophobic anticancer drugs. The biocompatibility was confirmed by tumor necrosis factor alpha assay, confocal microscopy. High entrapment efficiency approximately 95% and sustained release of encapsulated drugs for more than two weeks under in vitro conditions was achieved for different anticancer drugs (paclitaxel, rapamycin, alone or combination). Drug loaded GMO-MNPs did not affect the magnetization properties of the iron oxide core as confirmed by magnetization study. Additionally the MNPs were functionalized with carboxylic groups by coating with DMSA (Dimercaptosuccinic acid) for the supplementary conjugation of amines. For targeted therapy, HER2 antibody was conjugated to GMO-MNPs and showed enhanced uptake in human breast carcinoma cell line (MCF-7). The IC(50) doses revealed potential antiproliferative effect in MCF-7. Therefore, antibody conjugated GMO-MNPs could be used as potential drug carrier for the active therapeutic aspects in cancer therapy.

  16. Enhanced Ehrlich tumor inhibition using DOX-NP™ and gold nanoparticles loaded liposomes

    Science.gov (United States)

    Mady, M. M.; Al-Shaikh, F. H.; Al-Farhan, F. F.; Aly, A. A.; Al-Mohanna, M. A.; Ghannam, M. M.

    2016-04-01

    Treatment with doxorubicin (DOX) is a common regime in treating various types of cancer. DOX-NP™ is one of a well established marketed liposomal formulation for DOX. It offers distinct advantages over conventional DOX in reducing the cardiac toxicity and increasing the tolerability and efficacy. Gold nanoparticles (GNPs), a typical biocompatible nanomaterial, have been widely used in biomedical engineering and bioanalytical applications such as biomedical imaging and biosensors. Ehrlich tumors were grown in female balb mice by subcutaneous injection of Ehrlich ascites carcinoma cells. Mice bearing Ehrlich tumor were injected with saline, free doxorubicin (DOX) in solution, gold nanoparticles loaded liposomes and commercial liposomal encapsulated doxorubicin (DOX-NP™). The results showed that GNPs loaded liposomes could enhance the antitumor activity of commercial liposomal formulation (DOX-NP™) and displayed significantly decreased systemic toxicity compared with free DOX and commercial liposomal formulation (DOX-NP™) at the equivalent dose. So the combination of GNPs and liposomes is expected to significantly increase the likelihood of cell killing and make it a promising new approach to cancer therapy.

  17. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage.

    Science.gov (United States)

    He, Bo; Ge, Jiao; Yue, Pengxiang; Yue, XueYang; Fu, Ruiyan; Liang, Jin; Gao, Xueling

    2017-04-15

    The optimal preparation parameters to create anthocyanin-loaded chitosan nanoparticles was predicted using response surface methodology (RSM). A Box-Behnken design was used to determine the preparation parameters that would achieve the preferred particle size and high encapsulation efficiency. The result suggested that the optimized conditions were 2.86mg/mL carboxymethyl chitosan (CMC), 0.98mg/mL chitosan hydrochloride (CHC) and 5.97mg anthocyanins. Using the predicted amounts, the experimentally prepared particles averaged 219.53nm with 63.15% encapsulation efficiency. The result was less than 5% different than the predicted result of 214.83nm particle size and 61.80% encapsulation efficiency. Compared with the free anthocyanin solution, the anthocyanin-loaded chitosan nanoparticles showed a slowed degradation in simulated gastrointestinal fluid. Compared with the free anthocyanin solutions in a model beverage system, the stability of the anthocyanins was increased in the anthocyanin-loaded chitosan nanoparticles.

  18. Enhanced tumor uptake, biodistribution and pharmacokinetics of etoposide loaded nanoparticles in Dalton′s lymphoma tumor bearing mice

    Directory of Open Access Journals (Sweden)

    Movva Snehalatha

    2013-01-01

    Full Text Available Background: Nanotechnology plays a remarkable role in the field of the treatment of Lymphomas associated with tumor. Objective: The purpose of this study is to determine and to compare the tumor uptake, biodistribution and pharmacokinetics of radiolabeled etoposide and etoposide loaded nanoparticles in Dalton′s Lymphoma tumor bearing mice and healthy mice. Materials and Methods: Etoposide loaded nanoparticles were prepared by nanoprecipitation technique using the poly (lactic-co-glycolic acid (PLGA in the presence of Pluronic F 68 (F 68 as a stabilizer and characterized by particle size analyzer, zeta potential and transmission electron microscope. Etoposide and etoposide loaded nanoparticles were labeled with Technetium-99m (Tc-99m by the direct method and various quality control tests were carried out. The labeling parameters like labeling efficiency, stability, etc., were optimized to get high labeling efficiency as well as stability of the labeled formulations. Tc-99m labeled formulations were administered intravenously in Balb C mice and their biodistribution and pharmacokinetics were determined. Results: Mean size of the etoposide loaded PLGA nanoparticles was found to be 105.1 nm. The concentration of both free etoposide and nanoparticles increased with time and showed higher tumor concentrations of both free etoposide and nanoparticles increased with time and showed higher retention, indicating their applicability in effective and prolonged tumor therapy. Nuclear scintigraphic images confirm the presence of labeled complexes at the site of tumor for 24 h at higher concentration than in the normal muscles. Conclusion: This study indicated higher tumor affinity and targeting properties of etoposide loaded nanoparticles than free etoposide.

  19. Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: in vivo and drug loading study.

    Science.gov (United States)

    Xu, Helan; Shen, Li; Xu, Lan; Yang, Yiqi

    2015-02-01

    In this research, controlled delivery of hollow nanoparticles from zein, the corn storage protein, to different organs of mice was achieved via crosslinking using citric acid, a non-toxic polycarboxylic acid derived from starch. Besides, crosslinking significantly enhanced water stability of nanoparticles while preserving their drug loading efficiency. Protein nanoparticles have been widely investigated as vehicles for delivery of therapeutics. However, protein nanoparticles were not stable in physiological conditions, easily cleared by mononuclear phagocyte system (MPS), and thus mainly accumulated and degraded in spleen and liver, the major MPS organs. Effective delivery to major non-MPS organs, such as kidney, was usually difficult to achieve, as well as long resident time of nanoparticles. In this research, hollow zein nanoparticles were chemically crosslinked with citric acid. Controlled delivery and prolonged accumulation of the nanoparticles in kidney, one major non-MPS organ, were achieved. The nanoparticles showed improved stability in aqueous environment at pH 7.4 without affecting the adsorption of 5-FU, a common anticancer drug. In summary, citric acid crosslinked hollow zein nanoparticles could be potential vehicles for controllable delivery of anticancer therapeutics.

  20. Preparation of Ibuprofen-loaded Eudragit S100 nanoparticles by Solvent evaporation technique.

    Directory of Open Access Journals (Sweden)

    VINEELA CH

    2014-07-01

    Full Text Available Aim The aim of the present study is to prepare Ibuprofen loaded Eudragit-S100 nanoparticles by means of Solvent evaporation method. Span 80 is used as surfactant. The model drug, Ibuprofen is a non-steroidal antiinflammatory drug (NSAID commonly used for the relief of symptoms of arthritis, primary dysmenorrheal, alleviating fever and reducing inflammation. It also has an analgesic effect, anti-platelet effect and vasodilation effect. Ibuprofen is available in the form of extended release tablets, chewable tablets, sustained release capsules, liquid filled capsules, syrup and suspension. Methodology Solvent evaporation technique was adapted for the preparation of Ibuprofen loaded Eudragit S100 nanoparticles. Preformed polymeric and drug solution was used as internal phase and mineral oil with 1% span 80 is used as external phase and allowed for stirring resulting in the formation of nanoparticles. Parameters like stirring rate, polymer to drug concentration and organic solvent quantity were optimized. Results and Conclusion In order to optimize the concentration of drug, polymer and organic solvent, three formulations were prepared by varying the concentration of polymer and solvents. The results obtained were compared. On comparision formulation 3(1:2 was showing particles in nanorange (345nm, higher stability (-26.9mV and better entrapment efficiency (96.47. Invitro drug release studies were performed for a period of 10hrs and 46.02% of the drug has been released from the formulation. Conclusion It was observed that as the polymer ratio increases the release rate is sustained and encapsulation efficiency also increased.

  1. Methotrexate-loaded PEGylated chitosan nanoparticles: synthesis, characterization, and in vitro and in vivo antitumoral activity.

    Science.gov (United States)

    Chen, Juan; Huang, Liuqing; Lai, Huixian; Lu, Chenghao; Fang, Ming; Zhang, Qiqing; Luo, Xuetao

    2014-07-07

    Cancer nanotherapeutics are rapidly progressing and being implemented to solve several limitations of conventional drug delivery systems. In this paper, we report a novel strategy of preparing methotrexate (MTX) nanoparticles based on chitosan (CS) and methoxypoly(ethylene glycol) (mPEG) used as nanocarriers to enhance their targeting and prolong blood circulation. MTX and mPEG-conjugated CS nanoparticles (NPs) were prepared and evaluated for their targeting efficiency and toxicity in vitro and in vivo. The MTX-mPEG-CS NP size determined by dynamic light scattering was 213 ± 2.0 nm with a narrow particle size distribution, and its loading content (LC %) and encapsulation efficiency (EE) were 44.19 ± 0.64% and 87.65 ± 0.79%, respectively. In vitro release behavior of MTX was investigated. In vivo optical imaging in mice proved that MTX was released from particles subsequently and targeted to tumor tissue, showing significantly prolonged retention and specific selectivity. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay obviously indicated that the higher inhibition efficiency of MTX-mPEG-CS NPs meant that much more MTX was transferred into the tumor cells. A significant right-shift in the flow cytometry (FCM) assay demonstrated that MTX-loaded nanoparticles were far superior to a pure drug in the inhibition of growth and proliferation of Hela cells. These results suggest that MTX-mPEG-CS NPs could be a promising targeting anticancer chemotherapeutic agent, especially for cervical carcinoma.

  2. Preparation and in vitro/in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nanoparticles.

    Science.gov (United States)

    Zu, Yuangang; Zhang, Yin; Wang, Weiguo; Zhao, Xiuhua; Han, Xue; Wang, Kunlun; Ge, Yunlong

    2016-01-01

    Resveratrol (RES) is natural polyphenol with a strong biological activity, but its disadvantages, such as poor water solubility, susceptibility to oxidative decomposition and rapid metabolism in the body, which substantially restricts in vivo bioavailability, need to be resolved. This study used carboxymethyl chitosan (CMCS) as a drug carrier and utilized emulsion cross-linking to prepare RES-loaded CMCS nanoparticles (RES-CMCSNPs). A single-factor experiment was performed to optimize the preparation of these particles; in vitro and in vivo characteristics were evaluated. Spherical RES-CMCSNPs were prepared under optimal conditions, in which average particle size, potential, drug loading and encapsulation efficiency were (155.3 ± 15.2) nm, (-10.28 ± 6.4) mV, (5.1 ± 0.8)% and (44.5 ± 2.2)%, respectively. FTIR, DSC and XRD showed that RES molecules were wrapped in the nanoparticles. In vitro DPPH radical scavenging abilities showed RES-CMCSNPs were better than RES raw powder. The nanoparticles improved the solubility of RES, thereby greatly improving the antioxidant activity of the drug. In vitro release experiments of RES and RES-CMCSNPs by simulating the human gastrointestinal tract were performed, in which RES-CMCSNPs rendered better releasing effects than raw RES. Raw RES and RES-CMCSNPs results were in line with those obtained for the single-chamber model for pharmacokinetic studies in rats. Compared with the bulk drugs, the RES-CMCSNPs exhibited increased in vivo absorption, prolonged duration of action and increased relative bioavailability by 3.516 times more than those of the raw RES. In addition, the residual chloroform is less than the ICH limit for class 2 solvents.

  3. Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery.

    Science.gov (United States)

    Elbialy, Nihal Saad; Fathy, Mohamed Mahmoud; Khalil, Wafaa Mohamed

    2015-07-25

    Treatment of approximately 50% of human cancers includes the use of chemotherapy. The major problem associated with chemotherapy is the inability to deliver pharmaceuticals to specific site of the body without inducing normal tissue toxicity. Latterly, magnetic targeted drug delivery (MTD) has been used to improve the therapeutic performance of the chemotherapeutic agents and reduce the severe side effects associated with the conventional chemotherapy for malignant tumors. In this study, we were focused on designing biocompatible magnetic nanoparticles that can be used as a nanocarrier's candidate for MTD regimen. Magnetic gold nanoparticles (MGNPs) were prepared and functionalized with thiol-terminated polyethylene glycol (PEG), then loaded with anti-cancer drug doxorubicin (DOX). The physical properties of the prepared NPs were characterized using different techniques. Transmission electron microscopy (TEM) revealed the spherical mono-dispersed nature of the prepared MGNPs with size about 22 nm. Energy dispersive X-ray spectroscopy (EDX) assured the existence of both iron and gold elements in the prepared nanoparticles. Fourier transform infrared (FTIR) spectroscopy assessment revealed that PEG and DOX molecules were successfully loaded on the MGNPs surfaces, and the amine group of DOX is the active attachment site to MGNPs. In vivo studies proved that magnetic targeted drug delivery can provide a higher accumulation of drug throughout tumor compared with that delivered by passive targeting. This clearly appeared in tumor growth inhibition assessment, biodistribution of DOX in different body organs in addition to the histopathological examinations of treated and untreated Ehrlich carcinoma. To assess the in vivo toxic effect of the prepared formulations, several biochemical parameters such as aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), urea, uric acid and creatinine were measured. MTD

  4. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules

    Science.gov (United States)

    Carregal-Romero, Susana; Guardia, Pablo; Yu, Xiang; Hartmann, Raimo; Pellegrino, Teresa; Parak, Wolfgang J.

    2014-12-01

    Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat

  5. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth.

    Science.gov (United States)

    Zhu, Wei; Lee, Se-Jun; Castro, Nathan J; Yan, Dayun; Keidar, Michael; Zhang, Lijie Grace

    2016-01-01

    Nano-based drug delivery devices allowing for effective and sustained targeted delivery of therapeutic agents to solid tumors have revolutionized cancer treatment. As an emerging biomedical technique, cold atmospheric plasma (CAP), an ionized non-thermal gas mixture composed of various reactive oxygen species, reactive nitrogen species, and UV photons, shows great potential for cancer treatment. Here we seek to develop a new dual cancer therapeutic method by integrating promising CAP and novel drug loaded core-shell nanoparticles and evaluate its underlying mechanism for targeted breast cancer treatment. For this purpose, core-shell nanoparticles were synthesized via co-axial electrospraying. Biocompatible poly (lactic-co-glycolic acid) was selected as the polymer shell to encapsulate anti-cancer therapeutics. Results demonstrated uniform size distribution and high drug encapsulation efficacy of the electrosprayed nanoparticles. Cell studies demonstrated the effectiveness of drug loaded nanoparticles and CAP for synergistic inhibition of breast cancer cell growth when compared to each treatment separately. Importantly, we found CAP induced down-regulation of metastasis related gene expression (VEGF, MTDH, MMP9, and MMP2) as well as facilitated drug loaded nanoparticle uptake which may aid in minimizing drug resistance-a major problem in chemotherapy. Thus, the integration of CAP and drug encapsulated nanoparticles provides a promising tool for the development of a new cancer treatment strategy.

  6. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles

    Directory of Open Access Journals (Sweden)

    Dongmei Zhao

    2010-09-01

    Full Text Available Dongmei Zhao, Xiuhua Zhao, Yuangang Zu, Jialei Li, Yu Zhang, Ru Jiang, Zhonghua ZhangKey Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, Heilongjiang, ChinaAbstract: Paclitaxel (Taxol® is an important anticancer drug in clinical use for treatment of a variety of cancers. Because of its low solubility, it is formulated in high concentration in Cremophor EL® which induces hypersensitivity reactions. In this study, targeted delivery of paclitaxel-loaded nanoparticles was prepared by a desolvation procedure, crosslinked on the wall material of bovine serum albumin, and subsequently decorated by folic acid. The characteristics of the nanoparticles, such as amount of folate conjugation, surface morphology, drug entrapment efficiency, drug loading efficiency, and release kinetics were investigated in vitro. The targeting effect was investigated in vitro by cancer cell uptake of fluorescein isothiocyanate-labeled nanoparticles. The spherical nanoparticles obtained were negatively charged with a zeta potential of about -30 mV, and characterized around 210 nm with a narrow size distribution. Drug entrapment efficiency and drug loading efficiency were approximately 95.3% and 27.2%, respectively. The amount of folate conjugation was 9.22 µg/mg of bovine serum albumin. The folate-decorated nanoparticles targeted a human prostate cancer cell line effectively.Keywords: paclitaxel, bovine serum albumin, folate, nanoparticles, target delivery

  7. Amsacrine analog-loaded solid lipid nanoparticle to resolve insolubility for injection delivery: characterization and pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Fang YP

    2016-03-01

    Full Text Available Yi-Ping Fang,1 Chih-Hung Chuang,2 Pao-Chu Wu,1 Yaw-Bin Huang,1 Cherng-Chyi Tzeng,3 Yeh-Long Chen,3 Ya-Ting Liu,1 Yi-Hung Tsai,1 Ming-Jun Tsai4–6 1School of Pharmacy, College of Pharmacy, 2Department of Biomedical and Environment Biology, College of Life Science, 3School of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 4Department of Neurology, China Medical University Hospital, 5School of Medicine, Medical College, China Medical University, Taichung, 6Department of Neurology, China Medical University An-Nan Hospital, Tainan, Taiwan Abstract: Amsacrine analog is a novel chemotherapeutic agent that provides potentially broad antitumor activity when compared to traditional amsacrine. However, the major limitation of amsacrine analog is that it is highly lipophilic, making it nonconductive to intravenous administration. The aim of this study was to utilize solid lipid nanoparticles (SLN to resolve the delivery problem and to investigate the biodistribution of amsacrine analog-loaded SLN. Physicochemical characterizations of SLN, including particle size, zeta potential, entrapment efficiency, and stability, were evaluated. In vitro release behavior was also measured by the dialysis method. In vivo pharmacokinetics and biodistribution behavior of amsacrine analog were investigated and incorporated with a non invasion in vivo imaging system to confirm the localization of SLN. The results showed that amsacrine analog-loaded SLN was 36.7 nm in particle size, 0.37 in polydispersity index, and 34.5±0.047 mV in zeta potential. More than 99% of amsacrine analog was successfully entrapped in the SLN. There were no significant differences in the physicochemical properties after storage at room temperature (25°C for 1 month. Amsacrine analog-loaded SLN maintained good stability. An in vitro release study showed that amsacrine analog-loaded SLN sustained a release pattern and followed the zero equation. An

  8. Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: preparation, solid state characterization, and evaluation of antimicrobial effect against Staphylococcus aureus.

    Science.gov (United States)

    Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro

    2017-05-01

    Ciprofloxacin HCl-loaded calcium carbonate (CaCO3) nanoparticles were prepared via a w/o microemulsion method and characterized by dynamic light scattering, scanning electron microscopy, X-ray powder diffraction (XRPD) analysis, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). The in vitro drug release profiles as well as antimicrobial effect against Staphylococcus aureus (S. aureus) were also evaluated. The antibacterial effect was studied using serial dilution technique to determine the minimum inhibitory concentration (MIC) of the nanoparticles and was confirmed by streak cultures. The mean particle size, drug loading and entrapment efficiency were calculated to be 116.09 nm, 20.49% and 44.05%, respectively. PXRD and FTIR studies confirmed that both vaterite and calcite polymorphs of CaCO3 were formed during the preparation process. In vitro release profiles of the nanoparticles showed slow release pattern for 12 h. The drug-loaded nanoparticles showed similar MICs against S. aureus compared to untreated drug. However, a preserved antimicrobial effect was observed for drug-loaded nanoparticles compared to untreated drug after 2 days of incubation.

  9. Preparation and Characterization of Nimodipine-loaded Methoxy Poly (ethylene glycol)-poly (lactic acid) Diblock Copolymer Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHA Liu-sheng; LI Lan; ZHAO Hui-peng

    2006-01-01

    Amphiphilic diblock copolymers, methoxy poly (ethylene glycol)-poly(lactic acid) (MePEG-PLA), were synthesized from monomers of DL-lactide and methoxy poly (ethylene glycol) by a ring opening bulk polymerization in the presence of stannous octoate. Their chemical structure and physical properties were investigated using FTIR, NMR, GPC, and fluorescence spectroscopy. To estimate the feasibility as colloidal drug carrier, nimodipine (ND) was loaded into MePEG-PLA block copolymer nanoparticles by phaseseparation/dialysis method. The mean diameter and drug loading efficiency of ND-loaded MePEG-PLA copolymer nanoparticles depended on PLA/MePEG block composition of the copolymer and drug/polymer feed ratio in preparation. NMR study confirmed that nimodipine was entrapped into the hydrophobic inner core of MePEG-PLA copolymer nanoparticles and hydrophilic PEG chains were located on the surface of the drug-loaded polymer nanoparticles. In vitro release experiments exhibited the sustained release behavior of nimodipine from MePEG-PLA copolymer nanoparticles, without any burst effect.

  10. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Ghaffari

    2010-12-01

    Full Text Available Solmaz Ghaffari1, Jaleh Varshosaz1, Afrooz Saadat2, Fatemeh Atyabi21Department of Pharmaceutics, Faculty of Pharmacy and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; 2Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: Solid lipid nanoparticles (SLNs of amikacin were designed in this study for pulmonary delivery to reduce the dose or its administration intervals leading to reduction of its toxicities especially in long term treatment. Nanoparticles of amikacin were prepared from cholesterol by solvent diffusion technique and homogenization. The size, zeta potential, loading efficiency, and release profile of the nanoparticles were studied. The conventional broth macrodilution tube method was used to determine the minimum inhibitory concentration (MIC and minimum bacteriostatic concentration (MBC of amikacin SLNs with respect to Pseudomonas aeruginosa in vitro. To guarantee the stability of desired SLNs, they were lyophilized using cryoprotectants. Results showed that considering the release profile of amikacin from the studied nanocarrier, MIC and MBC of amikacin could be about two times less in SLNs of amikacin compared to the free drug. Therefore, fewer doses of amikacin in SLNs can clear the infection with less adverse effects and more safety. Particle size enlargement after lyophilization of desired SLNs after two months storage was limited in comparison with non-lyophilized particles, 996 and 194 nm, respectively. Zeta potential of lyophilized particles was increased to +17 mV from +4 mV before lyophilization. Storage of particles in higher temperature caused accelerated drug release.Keywords: amikacin, antimicrobial effects, Pseudomonas aeruginosa, solid lipid nanoparticles, stability

  11. New Method to Prepare Mitomycin C Loaded PLA-Nanoparticles with High Drug Entrapment Efficiency

    Science.gov (United States)

    Hou, Zhenqing; Wei, Heng; Wang, Qian; Sun, Qian; Zhou, Chunxiao; Zhan, Chuanming; Tang, Xiaolong; Zhang, Qiqing

    2009-07-01

    The classical utilized double emulsion solvent diffusion technique for encapsulating water soluble Mitomycin C (MMC) in PLA nanoparticles suffers from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. In this paper, MMC loaded PLA nanoparticles were prepared by a new single emulsion solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of MMC by formation of MMC-SPC complex. Four main influential factors based on the results of a single-factor test, namely, PLA molecular weight, ratio of PLA to SPC (wt/wt) and MMC to SPC (wt/wt), volume ratio of oil phase to water phase, were evaluated using an orthogonal design with respect to drug entrapment efficiency. The drug release study was performed in pH 7.2 PBS at 37 °C with drug analysis using UV/vis spectrometer at 365 nm. MMC-PLA particles prepared by classical method were used as comparison. The formulated MMC-SPC-PLA nanoparticles under optimized condition are found to be relatively uniform in size (594 nm) with up to 94.8% of drug entrapment efficiency compared to 6.44 μm of PLA-MMC microparticles with 34.5% of drug entrapment efficiency. The release of MMC shows biphasic with an initial burst effect, followed by a cumulated drug release over 30 days is 50.17% for PLA-MMC-SPC nanoparticles, and 74.1% for PLA-MMC particles. The IR analysis of MMC-SPC complex shows that their high liposolubility may be attributed to some weak physical interaction between MMC and SPC during the formation of the complex. It is concluded that the new method is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and longer sustained drug release in comparison to classical method.

  12. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: Development and characterization.

    Science.gov (United States)

    Hazzah, Heba A; Farid, Ragwa M; Nasra, Maha M A; El-Massik, Magda A; Abdallah, Ossama Y

    2015-08-15

    This study aimed to prepare and evaluate mucoadhesive sponges as dosage forms for delivering solid lipid nanoparticles. For this purpose curcumin (Cur) was formulated as solid nanoparticles (SLN) using Gelucire 50/13, and polaxomer 407. The prepared CurSLN dispersion was thickened with different mucoadhesive polymers. Different concentrations of glycerol, and mannitol of range (0.25-20%), and (0-1%), respectively were also examined. The formed gel was poured into oblong molds and freeze dried to form mucoadhesive sponge to be applied to the buccal mucosa. The prepared sponges were evaluated for their, in-vivo residence time, in-vitro and in-vivo drug release, and hydration capacity. Surface morphology for the different sponges were examined using SEM. TEM was also carried out for sponge fragments previously dispersed into water. Infrared spectroscopy was conducted to investigate interaction between used ingredients. The results showed that the CurSLN loaded HPMC, and Polycarbophil sponges showed 4, and 15 h in-vivo residence time, respectively, providing a considerable amount of curcumin into saliva. The incorporation of glycerol and mannitol at concentration of 1% provided elegant and flexible sponges. The SEM showed that the deposition of CurSLN differed according to the type of polymer used. TEM confirmed the integrity of liberated CurSLN from sponges. IR spectra showed an interaction between HPMC and poloxamer 407, which affected its behavior as a gelling agent. The obtained results provide an efficient approach for delivering solid lipid nanoparticles in a solid dosage form keeping the nanoparticle characters and integrity.

  13. Development of PLGA nanoparticles simultaneously loaded with vincristine and verapamil for treatment of hepatocellular carcinoma.

    Science.gov (United States)

    Song, Xiang Rong; Zheng, Yu; He, Gu; Yang, Li; Luo, You Fu; He, Zhi Yao; Li, Shuang Zhi; Li, Jun Ming; Yu, Shui; Luo, Xun; Hou, Shi Xiang; Wei, Yu Quan

    2010-12-01

    Hepatocellular carcinoma (HCC) is one of the malignant tumors with poor chemo-sensitivity to vincristine sulfate (VCR) due to multi-drug resistance (MDR). Combinations of encapsulated VCR and verapamil hydrochloride (VRP, a chemo-sensitizer) might be a potential strategy to improve HCC therapeutic efficacy of VCR. PLGA nanoparticles (PLGANPs) simultaneously loaded with VCR and VRP (CVn) were prepared. The entrapment efficiencies of VCR and VRP were 70.92 ± 3.78% and 85.78 ± 3.23%, respectively (n = 3). The HCC therapeutic activity of CVn was assessed using MTT assay. In BEL7402 and BEL7402/5-FU human hepatocarcinoma cell lines, CVn had the same antitumor effect as one free drug/another agent-loaded PLGANPs (C + Vn or Cn + V) combination and coadministration of two single-agent-loaded PLGANPs (Cn + Vn), which was slightly higher than that of the free VCR/VRP combination (C - V). CVn might cause lower normal tissue drug toxicity by the enhanced permeation and retention effect in vivo. Additionally, CVn might cause fewer drug-drug interaction and be the most potential formulation to simultaneously deliver VCR and VRP to the target cell in vivo than the other three nanoparticle formulations (C + Vn, Cn + V, and Cn + Vn). Therefore, we speculate that CVn might be the most effective preparation in the treatment of drug-resistant human HCC in vivo.

  14. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas, E-mail: shoja-sa@modares.ac.ir [Tarbiat Modares University, Biotechnology Group, Faculty of Chemical Engineering (Iran, Islamic Republic of); Morshedi, Dina; Arpanaei, Ayyoob [National Institute of Genetic Engineering and Biotechnology, Department of Industrial and Environmental Biotechnology (Iran, Islamic Republic of); Marvian, Amir Tayaranian [Aarhus University, Department of Biomedicine (Denmark)

    2015-04-15

    Gallic acid (GA), as an antioxidant and antiparkinson agent, was loaded onto cationic human serum albumin nanoparticles (HSA NPs). Polyethylenimine (PEI)-coated HSA (PEI-HSA) NPs were prepared using three different methods: (I) coating negatively charged HSA NPs with positively charged PEI through attractive electrostatic interactions, (II) coating HSA NPs with PEI via covalent amide bond formation using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride, and (III) coating HSA NPs with PEI via covalent bonding using glutaraldehyde for linking amine groups of PEI and amine groups of albumin NPs. Method II was selected since it resulted in a higher shift in the zeta potential value (mV) and less zeta potential value deviation, and also less size polydispersity. GA was loaded by adsorption onto the surface of PEI-HSA NPs of two different sizes: 117 ± 2.9 nm (PEI-P1) and 180 ± 3.1 nm (PEI-P2) NPs. Both GA-entrapment and GA-loading efficiencies increased slightly with the increasing size of NPs, and were affected intensely by the mass ratio of GA to PEI-HSA NPs. Free radical scavenging of GA was quantified based on the 2,2-diphenyl-1-picrylhydrazyl method. The obtained results showed that GA remains active during the preparation of GA-loaded PEI-HSA NPs. The cytotoxicities of HSA, PEI-HSA, and GA-loaded PEI-HSA NPs on the PC-12 cells, as the neuroendocrine cell line, were measured. Our results indicate that positively charged PEI-HSA NPs are good candidates for efficient and safe delivery of GA to the brain.

  15. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Campos, I; AsIn, L; Torres, T E; Tres, A; Ibarra, M R; Goya, G F [Instituto de Nanociencia de Aragon (INA), Mariano Esquillor s/n, CP 50018, Zaragoza (Spain); Marquina, C, E-mail: goya@unizar.es [Condensed Matter Department, Sciences Faculty, University of Zaragoza, 50009 (Spain)

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH{sub 2}{sup +}) or negative (COOH{sup -}) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  16. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells

    Science.gov (United States)

    Marcos-Campos, I.; Asín, L.; Torres, T. E.; Marquina, C.; Tres, A.; Ibarra, M. R.; Goya, G. F.

    2011-05-01

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH2 + ) or negative (COOH - ) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  17. In vitro and ex vivo toxicological testing of sildenafil-loaded solid lipid nanoparticles.

    Science.gov (United States)

    Paranjpe, M; Neuhaus, V; Finke, J H; Richter, C; Gothsch, T; Kwade, A; Büttgenbach, S; Braun, A; Müller-Goymann, C C

    2013-08-01

    The aim of this study was to investigate the potential cytotoxicity of solid lipid nanoparticles (SLN) loaded with sildenafil. The SLNs were tested as a new drug delivery system (DDS) for the inhalable treatment of pulmonary hypertension in human lungs. Solubility of sildenafil in SLN lipid matrix (30:70 phospholipid:triglyceride) was determined to 1% sildenafil base and 0.1% sildenafil citrate, respectively. Sildenafil-loaded SLN with particle size of approximately 180 nm and monomodal particle size distribution were successfully manufactured using a novel microchannel homogenization method and were stable up to three months. Sildenafil-loaded SLN were then used in in vitro and ex vivo models representing lung and heart tissue. For in vitro models, human alveolar epithelial cell line (A459) and mouse heart endothelium cell line (MHEC5-T) were used. For ex vivo models, rat precision cut lung slices (PCLS) and rat heart slices (PCHS) were used. All the models were treated with plain SLN and sildenafil-loaded SLN in a concentration range of 0-5000 µg/ml of lipid matrix. The toxicity was evaluated in vitro and ex vivo by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Median lethal dose 50% (LD50) values for A549 cells and PCLS were found to be in the range of 1200-1900 µg/ml while for MHEC5-T cells and precision cut heart slices values were found between 1500 and 2800 µg/ml. PCHS showed slightly higher LD50 values in comparison to PCLS. Considering the toxicological aspects, sildenafil-loaded SLN could have potential in the treatment of pulmonary hypertension via inhalation route.

  18. Investigating the ability of nanoparticle-loaded hydroxypropyl methylcellulose and xanthan gum gels to enhance drug penetration into the skin.

    Science.gov (United States)

    Cai, X J; Mesquida, P; Jones, S A

    2016-11-20

    Nanoparticle-loaded topical formulations can disrupt drug aggregation through controlled drug-nanoparticle interactions to enhance topical drug delivery. However, the complex relationship between the drug, nanoparticle and formulation vehicle requires further understanding. The aim of this study was to use nanoparticle-loaded hydroxypropyl methylcellulose (HPMC) and xanthan gum gels to probe how the drug, nanoparticle and formulation vehicle interactions influenced the delivery of an aggregated drug into the skin. Tetracaine was chosen as a model drug. It was loaded into HPMC and xanthan gum gels, and it was presented to porcine skin using infinite and finite dosing protocols. Gel infinite doses showed no important differences in tetracaine skin permeation rate, but HPMC gel finite doses delivered the drug more efficiently (46.99±7.96μg/cm(2)/h) compared to the xanthan gum (1.16±0.14μg/cm(2)/h). Finite doses of the nanoparticle-loaded HPMC gel generated a 10-fold increase in drug flux (109.95±28.63μg/cm(2)/h) compared to the equivalent xanthan gum system (14.19±2.27μg/cm(2)/h). Rheology measurements suggested that the differences in the gels ability to administer the drug into the skin were not a consequence of gel-nanoparticle interactions rather, they were a consequence of the dehydration mediated diffusional restriction imparted on the drug by xanthan gum compared to the viscosity independent interactions of HPMC with the drug.

  19. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers: II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations

    Science.gov (United States)

    Das, Surajit; Kiong Ng, Wai; Tan, Reginald B. H.

    2014-03-01

    This study focused on: (i) feasibility of the previously developed sucrose ester stabilized SLNs and NLCs to encapsulate different imidazole antifungal drugs and (ii) preparation and evaluation of topical gel formulations of those SLNs and NLCs. Three imidazole antifungal drugs; clotrimazole, ketoconazole and climbazole were selected for this study. The results suggested that size, size distribution and drug encapsulation efficiency depend on the drug molecule and type of nanoparticles (SLN/NLC). The drug release experiment always showed faster drug release from NLCs than SLNs when the same drug molecule was loaded in both nanoparticles. However, drug release rate from both SLNs and NLCs followed the order of climbazole > ketoconazole > clotrimazole. NLCs demonstrated better physicochemical stability than SLNs in the case of all drugs. The drug release rate from ketoconazole- and clotrimazole-loaded SLNs became faster after three months than a fresh formulation. There was no significant change in drug release rate from climbazole-loaded SLNs and all drug-loaded NLCs. Gel formulations of SLNs and NLCs were prepared using polycarbophil polymer. Continuous flow measurements demonstrated non-Newtonian flow with shear-thinning behavior and thixotropy. Oscillation measurements depicted viscoelasticity of the gel formulations. Similar to nanoparticle dispersion, drug release rate from SLN- and NLC-gel was in the order of climbazole > ketoconazole > clotrimazole. However, significantly slower drug release was noticed from all gel formulations than their nanoparticle counterparts. Unlike nanoparticle dispersions, no significant difference in drug release from gel formulations containing SLNs and NLCs was observed for each drug. This study concludes that gel formulation of imidazole drug-loaded SLNs and NLCs can be used for sustained/prolonged topical delivery of the drugs.

  20. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations.

    Science.gov (United States)

    Das, Surajit; Ng, Wai Kiong; Tan, Reginald B H

    2014-03-14

    This study focused on: (i) feasibility of the previously developed sucrose ester stabilized SLNs and NLCs to encapsulate different imidazole antifungal drugs and (ii) preparation and evaluation of topical gel formulations of those SLNs and NLCs. Three imidazole antifungal drugs; clotrimazole, ketoconazole and climbazole were selected for this study. The results suggested that size, size distribution and drug encapsulation efficiency depend on the drug molecule and type of nanoparticles (SLN/NLC). The drug release experiment always showed faster drug release from NLCs than SLNs when the same drug molecule was loaded in both nanoparticles. However, drug release rate from both SLNs and NLCs followed the order of climbazole > ketoconazole > clotrimazole. NLCs demonstrated better physicochemical stability than SLNs in the case of all drugs. The drug release rate from ketoconazole- and clotrimazole-loaded SLNs became faster after three months than a fresh formulation. There was no significant change in drug release rate from climbazole-loaded SLNs and all drug-loaded NLCs. Gel formulations of SLNs and NLCs were prepared using polycarbophil polymer. Continuous flow measurements demonstrated non-Newtonian flow with shear-thinning behavior and thixotropy. Oscillation measurements depicted viscoelasticity of the gel formulations. Similar to nanoparticle dispersion, drug release rate from SLN- and NLC-gel was in the order of climbazole > ketoconazole > clotrimazole. However, significantly slower drug release was noticed from all gel formulations than their nanoparticle counterparts. Unlike nanoparticle dispersions, no significant difference in drug release from gel formulations containing SLNs and NLCs was observed for each drug. This study concludes that gel formulation of imidazole drug-loaded SLNs and NLCs can be used for sustained/prolonged topical delivery of the drugs.

  1. Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study

    Directory of Open Access Journals (Sweden)

    Basu S

    2012-12-01

    Full Text Available Sumit Basu,1,2 Biswajit Mukherjee,1 Samrat Roy Chowdhury,1 Paramita Paul,1 Rupak Choudhury,3 Ajeet Kumar,1 Laboni Mondal,1 Chowdhury Mobaswar Hossain,1 Ruma Maji11Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India; 2Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA; 3Department of Biochemistry, Ballygunge Science College, Kolkata, IndiaObjective: We describe the development, evaluation, and comparison of colloidal gold-loaded, poly(d,l-lactic-co-glycolic acid-based nanoparticles containing anti-acquired immunodeficiency syndrome drug stavudine and uptake of these nanoparticles by macrophages in vitro.Methods: We used the following methods in this study: drug-excipient interaction by Fourier transform infrared spectroscopy, morphology of nanoparticles by field-emission scanning electron microscopy, particle size by a particle size analyzer, and zeta potential and polydispersity index by a zetasizer. Drug loading and in vitro release were evaluated for formulations. The best formulation was incorporated with fluorescein isothiocyanate. Macrophage uptake of fluorescein isothiocyanate nanoparticles was studied in vitro.Results: Variations in process parameters, such as speed of homogenization and amount of excipients, affected drug loading and the polydispersity index. We found that the drug was released for a prolonged period (over 63 days from the nanoparticles, and observed cellular uptake of stavudine nanoparticles by macrophages.Conclusion: Experimental nanoparticles represent an interesting carrier system for the transport of stavudine to macrophages, providing reduced required drug dose and improved drug delivery to macrophages over an extended period. The presence of colloidal gold in the particles decreased the drug content and resulted in comparatively faster drug release.Keywords: stavudine, poly(d,l-lactic-co-glycolic acid, nanoparticles

  2. Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA- g-chitosan copolymer

    Science.gov (United States)

    Thammawong, C.; Sreearunothai, P.; Petchsuk, A.; Tangboriboonrat, P.; Pimpha, N.; Opaprakasit, P.

    2012-08-01

    Naproxen (NPX) drug-loaded magnetic nanoparticles (MNPs) have been prepared in a one-step process utilizing a biocompatible polylactide-grafted-chitosan copolymer. The copolymer serves both as a NPX drug carrier as well as a polymeric surfactant for the synthesis of MNPs without the use of any additional surfactant. Highly stable MNPs with high magnetization in the form of maghemite (γ-Fe2O3) are prepared in aqueous media. Effects of preparation conditions on structures and properties of the copolymer-coated and drug-loaded MNPs are investigated by employing particle size and zeta potential measurements, transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction, Fourier-transform infrared, nuclear magnetic resonance, and confocal Raman spectroscopy. The results show that average particle size (150-300 nm), coating efficiency, and coating structures of the resulting MNPs materials are strongly dependent on MNP/copolymer and MNP/NPX ratios in feed. It is also observed that NPX acts as co-surfactant in the drug-loading process, resulting in different encapsulating structures with the variation in the MNP/copolymer and MNP/NPX ratios. Properties of the MNPs materials can be further optimized for use in specific biomedical applications.

  3. Preparation and characterizations of naproxen-loaded magnetic nanoparticles coated with PLA-g-chitosan copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Thammawong, C.; Sreearunothai, P. [Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT) (Thailand); Petchsuk, A. [National Metal and Materials Technology Center (MTEC) (Thailand); Tangboriboonrat, P. [Mahidol University, Department of Chemistry, Faculty of Science (Thailand); Pimpha, N. [National Nanotechnology Center (NANOTEC) (Thailand); Opaprakasit, P., E-mail: pakorn@siit.tu.ac.th [Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (SIIT) (Thailand)

    2012-08-15

    Naproxen (NPX) drug-loaded magnetic nanoparticles (MNPs) have been prepared in a one-step process utilizing a biocompatible polylactide-grafted-chitosan copolymer. The copolymer serves both as a NPX drug carrier as well as a polymeric surfactant for the synthesis of MNPs without the use of any additional surfactant. Highly stable MNPs with high magnetization in the form of maghemite ({gamma}-Fe{sub 2}O{sub 3}) are prepared in aqueous media. Effects of preparation conditions on structures and properties of the copolymer-coated and drug-loaded MNPs are investigated by employing particle size and zeta potential measurements, transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction, Fourier-transform infrared, nuclear magnetic resonance, and confocal Raman spectroscopy. The results show that average particle size (150-300 nm), coating efficiency, and coating structures of the resulting MNPs materials are strongly dependent on MNP/copolymer and MNP/NPX ratios in feed. It is also observed that NPX acts as co-surfactant in the drug-loading process, resulting in different encapsulating structures with the variation in the MNP/copolymer and MNP/NPX ratios. Properties of the MNPs materials can be further optimized for use in specific biomedical applications.

  4. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles.

    Science.gov (United States)

    Oliveira, Mariana S; Mussi, Samuel V; Gomes, Dawidson A; Yoshida, Maria Irene; Frezard, Frederic; Carregal, Virgínia M; Ferreira, Lucas A M

    2016-04-01

    This work aimed to develop solid lipid nanoparticles (SLN) co-loaded with doxorubicin and α-tocopheryl succinate (TS), a succinic acid ester of α-tocopherol that exhibits anticancer actions, evaluating the influence of TS on drug encapsulation efficiency. The SLN were characterized for size, zeta potential, entrapment efficiency (EE), and drug release. Studies of in vitro anticancer activity were also conducted. The EE was significantly improved from 30 ± 1% to 96 ± 2% for SLN without and with TS at 0.4%, respectively. In contrast, a reduction in particle size from 298 ± 1 to 79 ± 1 nm was observed for SLN without and with TS respectively. The doxorubicin release data show that SLN provide a controlled drug release. The in vitro studies showed higher cytotoxicity for doxorubicin-TS-loaded SLN than for free doxorubicin in breast cancer cells. These findings suggest that TS-doxorubicin-loaded SLN is a promising alternative for the treatment of cancer.

  5. Study of antimicrobial effects of vancomycin loaded PLGA nanoparticles against enterococcus clinical isolates.

    Science.gov (United States)

    Lotfipour, F; Abdollahi, S; Jelvehgari, M; Valizadeh, H; Hassan, M; Milani, M

    2014-07-01

    Researchers have demonstrated that antimicrobial agents in nanoparticle (NP) forms have better activities. Vancomycin (VCM), as a glycopeptide antibiotic with antimicrobial activity against gram positive bacteria, is poorly absorbed from the intestinal tract. Enterococcus is a genus of bacteria that became resistant to a wide range of antibiotics in last decades, and cause severe infections in hospitalized patients. This paper describes preparation of VCM--loaded poly (lactic-co-glycolic acid) (PLGA) NPs and compares the antimicrobial effects with drug solution against clinical Enterococcus isolates. VCM-loaded PLGA NPs were fabricated by W1/O/W2 solvent evaporation method. The comparison of obtained Minimum Inhibitory Concentration (MIC) values showed a significant decrease in the antimicrobial effect of VCM -loaded NPs. Results also indicated that the potency of the NPs against VCM resistant isolates of Enterococcus was less than VCM susceptible isolates. The reduced antimicrobial effect of formulated NPs in invitro condition is perhaps related to the strong electrostatic linkage between hydrophilic drug (VCM) and hydrophobic polymer (PLGA) that lead to the slow release of the antibiotic from polymeric NPs.

  6. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability.

    Science.gov (United States)

    Wang, Yifeng; Sun, Yi; Wang, Jine; Yang, Yang; Li, Yulin; Yuan, Yuan; Liu, Changsheng

    2016-07-13

    In this study, we demonstrate a facile strategy (DL-SF) for developing MSN-based nanosystems through drug loading (DL, using doxorubicin as a model drug) followed by surface functionalization (SF) of mesoporous silica nanoparticles (MSNs) via aqueous (3-aminopropyl)triethoxysilane (APTES) silylation. For comparison, a reverse functionalization process (i.e., SF-DL) was also studied. The pre-DL process allows for an efficient encapsulation (encapsulation efficiency of ∼75%) of an anticancer drug [doxorubicin (DOX)] inside MSNs, and post-SF allows in situ formation of an APTES outer layer to restrict DOX leakage under physiological conditions. This method makes it possible to tune the DOX release rate by increasing the APTES decoration density through variation of the APTES concentration. However, the SF-DL approach results in a rapid decrease in drug loading capacity with an increase in APTES concentration because of the formation of the APTES outer layer hampers the inner permeability of the DOX drug, resulting in a burst release similar to that of undecorated MSNs. The resulting DOX-loaded DL-SF MSNs present a slightly negatively charged surface under physiological conditions and become positively charged in and extracellular microenvironment of solid tumor due to the protonation effect under acidic conditions. These merits aid their maintenance of long-term stability in blood circulation, high cellular uptake by a kind of skin carcinoma cells, and an enhanced intracellular drug release behavior, showing their potential in the delivery of many drugs beyond anticancer chemotherapeutics.

  7. Docetaxel-loaded polylactic acid-co-glycolic acid nanoparticles: formulation, physicochemical characterization and cytotoxicity studies.

    Science.gov (United States)

    Pradhan, Roshan; Poudel, Bijay Kumar; Ramasamy, Thiruganesh; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2013-08-01

    In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate (SLS) and poloxamer 407, the anionic and non-ionic surfactants respectively for stabilization. The NPs were prepared by emulsification/solvent evaporation method. The combination of these surfactants at weight ratio of 1:0.5 was able to produce uniformly distributed small sized NPs and demonstrated the better stability of NP dispersion with high encapsulation efficiency (85.9 +/- 0.6%). The drug/polymer ratio and phase ratio were 2:10 and 1:10, respectively. The optimized formulation of DTX-loaded PLGA NPs had a particle size and polydispersity index of 104.2 +/- 1.5 nm and 0.152 +/- 0.006, respectively, which was further supported by TEM image. In vitro release study was carried out with dialysis membrane and showed 32% drug release in 192 h. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.481, which suggested the drug was released by anomalous or non-Fickian diffusion. In addition, DTX-loaded PLGA NPs in 72 h, displayed approximately 75% cell viability reduction at 10 microg/ml DTX concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of DTX into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.

  8. X-ray excited luminescence of polystyrene-based scintillator loaded with LaPO4-Pr nanoparticles

    Science.gov (United States)

    Demkiv, T. M.; Halyatkin, O. O.; Vistovskyy, V. V.; Gektin, A. V.; Voloshinovskii, A. S.

    2016-10-01

    Polystyrene film nanocomposites of 0.3 mm thickness with embedded LaPO4-Pr nanoparticles (40 wt. %) have been synthesized. The luminescent and kinetic properties of these polystyrene composites with embedded LaPO4-Pr nanoparticles upon pulse X-ray excitation have been studied. The luminescence intensity of this polystyrene material significantly increases as it is loaded with inorganic LaPO4-Pr nanoparticles. Nanocomposite films reveal luminescence spectra typical for polystyrene activators (p-Terphenyl and POPOP) and two components of decay time kinetics of luminescence with 12 ns and 2.8 ns time constants, depending on nanoparticle sizes. The component with 12 ns decay constant arises due to the radiative transfer of the 5d-4f-emission of the Pr3+ ions in the LaPO4 nanoparticles to the polystyrene. The decay component with the time constant 2.8 ns originates from luminescence of polystyrene matrix excited by electrons emitted from nanoparticles due to the photoeffect. This nonradiative mechanism of energy transfer from nanoparticles to polystyrene matrices is determinative for nanoparticles, as their sizes are smaller than a mean free path of an electron.

  9. Caffeic Acid Phenethyl Ester Loaded PLGA Nanoparticles: Effect of Various Process Parameters on Reaction Yield, Encapsulation Efficiency, and Particle Size

    Directory of Open Access Journals (Sweden)

    Serap Derman

    2015-01-01

    Full Text Available CAPE loaded PLGA nanoparticles were prepared using the oil in water (o/w single emulsion solvent evaporation methods. Five different processing parameters including initial CAPE amount, initial PLGA amount, PVA concentration in aqueous phase, PVA volume, and solvent type were screened systematically to improve encapsulation of hydrophobic CAPE molecule, simultaneously minimize particle size, and raise the reaction yield. Obtained results showed that the encapsulation efficiency of the nanoparticles significantly increased with the increase of the initial CAPE amount (p<0.05 and particle size (p<0.05. Furthermore, the particle size is significantly influenced by initial polymer amount (p<0.05 and surfactant concentration (p<0.05. By the optimization of process parameters, the nanoparticles produced 70±6% reaction yield, 89±3% encapsulation efficiency, -34.4±2.5 mV zeta potential, and 163±2 nm particle size with low polydispersity index 0.119±0.002. The particle size and surface morphology of optimized nanoparticles were studied and analyses showed that the nanoparticles have uniform size distribution, smooth surface, and spherical shape. Lyophilized nanoparticles with different CAPE and PLGA concentration in formulation were examined for in vitro release at physiological pH. Interestingly, the optimized nanoparticles showed a high (83.08% and sustained CAPE release (lasting for 16 days compared to nonoptimized nanoparticle.

  10. Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model.

    Science.gov (United States)

    Ali, Hazem; Kalashnikova, Irina; White, Mark Andrew; Sherman, Michael; Rytting, Erik

    2013-09-15

    The purpose of this study was to prepare dexamethasone-loaded polymeric nanoparticles and evaluate their potential for transport across human placenta. Statistical modeling and factorial design was applied to investigate the influence of process parameters on the following nanoparticle characteristics: particle size, polydispersity index, zeta potential, and drug encapsulation efficiency. Dexamethasone and nanoparticle transport was subsequently investigated using the BeWo b30 cell line, an in vitro model of human placental trophoblast cells, which represent the rate-limiting barrier for maternal-fetal transfer. Encapsulation efficiency and drug transport were determined using a validated high performance liquid chromatography method. Nanoparticle morphology and drug encapsulation were further characterized by cryo-transmission electron microscopy and X-ray diffraction, respectively. Nanoparticles prepared from poly(lactic-co-glycolic acid) were spherical, with particle sizes ranging from 140 to 298 nm, and encapsulation efficiency ranging from 52 to 89%. Nanoencapsulation enhanced the apparent permeability of dexamethasone from the maternal compartment to the fetal compartment more than 10-fold in this model. Particle size was shown to be inversely correlated with drug and nanoparticle permeability, as confirmed with fluorescently labeled nanoparticles. These results highlight the feasibility of designing nanoparticles capable of delivering medication to the fetus, in particular, potential dexamethasone therapy for the prenatal treatment of congenital adrenal hyperplasia.

  11. Pulmonary Delivery of Voriconazole Loaded Nanoparticles Providing a Prolonged Drug Level in Lungs: A Promise for Treating Fungal Infection.

    Science.gov (United States)

    Das, Pranab Jyoti; Paul, Paramita; Mukherjee, Biswajit; Mazumder, Bhaskar; Mondal, Laboni; Baishya, Rinku; Debnath, Mita Chatterjee; Dey, Kumar Saurav

    2015-08-03

    Current therapies are insufficient to prevent recurrent fungal infection especially in the lower part of the lung. A careful and systematic understanding of the properties of nanoparticles plays a significant role in the design, development, optimization, and in vivo performances of the nanoparticles. In the present study, PLGA nanoparticles containing the antifungal drug voriconazole was prepared and two best formulations were selected for further characterization and in vivo studies. The nanoparticles and the free drug were radiolabeled with technetium-99m with 90% labeling efficiency, and the radiolabeled particles were administered to investigate the effect on their blood clearance, biodistribution, and in vivo gamma imaging. In vivo deposition of the drug in the lobes of the lung was studied by LC-MS/MS study. The particles were found to be spherical and had an average hydrodynamic diameter of 300 nm with a smooth surface. The radiolabeled particles and the free drug were found to accumulate in various major organs. Drug accumulation was more pronounced in the lung in the case of administration of the nanoparticles than that of the free drug. The free drug was found to be excreted more rapidly than the nanoparticle containing drug following the inhalation route as assessed by gamma scintigraphy study. Thus, the study reveals that pulmonary administration of nanoparticles containing voriconazole could be a better therapeutic choice even as compared to the iv route of administration of the free drug and/or the drug loaded nanoparticles.

  12. Enhanced apoptotic and anticancer potential of paclitaxel loaded biodegradable nanoparticles based on chitosan.

    Science.gov (United States)

    Gupta, Umesh; Sharma, Saurabh; Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok K; Singh, Yuvraj; Chourasia, Manish K; Kumar, Vipin

    2017-05-01

    Taxanes have established and proven effectivity against different types of cancers; in particular breast cancers. However, the high hemolytic toxicity and hydrophobic nature of paclitaxel and docetaxel have always posed challenges to achieve safe and effective delivery. Use of bio-degradable materials with an added advantage of nanotechnology could possibly improve the condition so as to achieve better and safe delivery. In the present study paclitaxel loaded chitosan nanoparticles were formulated and optimized using simple w/o nanoemulsion technique. The observed average size, pdi, zeta potential, entrapment efficiency and drug loading for the optimized paclitaxel loaded chitosan nanoparticle formulation (PTX-CS-NP-10) was 226.7±0.70nm, 0.345±0.039, 37.4±0.77mV, 79.24±2.95% and 11.57±0.81%; respectively. Nanoparticles were characterized further for size by Transmission Electron Microscopy (TEM). In vitro release studies exhibited sustained release pattern and more than 60% release was observed within 24h. Enhanced in vitro anticancer activity was observed as a result of MTT assay against triple negative MDA-MB-231 breast cancer cell lines. The observed IC50 values obtained for PTX-CS-NP-10 was 9.36±1.13μM and was almost 1.6 folds (p<0.05) less than the pure drug. Similarly, PTX-CS-NP-10 were extremely biocompatible and safe as observed for haemolytic toxicity which was almost 4 folds less (p<0.05) than the naïve drug. Anticancer activity was further evaluated using flow cytometry for apoptosis. Cell apoptosis study revealed that PTX-CS-NP-10 treatment resulted into enhanced (almost double) late cell apoptosis than naïve paclitaxel. Hence the developed nanoparticulate formulation not only reduced the overall toxicity but also resulted into improved anticancer efficacy of paclitaxel. It can be concluded that a robust, stable and comparatively safe nanoformulation of paclitaxel was developed, characterized and evaluated.

  13. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers

    Directory of Open Access Journals (Sweden)

    RP Thatipamula

    2011-03-01

    Full Text Available Background and the purpose of the study: Domperidone (DOM is a dopamine- receptor (D2 antagonist, widely used in the treatment of motion-sickness. The pharmacokinetic parameters of DOM make it a suitable candidate for development of Solid Lipid Nanoparticle (SLN and Nanostructured Lipide Carrier (NLC. The purpose of the present investigation was to prepare and evaluate DOM loaded solid lipid nanoparticles (DOM-SLN and DOM loaded nanostructured lipid carriers (DOM-NLC. Methods: DOM loaded SLN and NLC were prepared by hot homogenization followed by ultrasonication technique, using trimyristin as solid lipid, cetyl recinoleate as liquid lipid and a mixture of soy phosphatidylcholine (99% and tween 80 as surfactant. SLN and NLC were characterized for particle size, polydispersity index (PDI, zeta potential and entrapment efficiency. The effects of composition of lipid materials and surfactant mixture on the particle size, PDI, zeta potential, drug entrapment efficiency, and in vitro drug release behavior were investigated. DSC analysis was performed to characterize the state of drug and lipid modification. Shape and surface morphology were determined by transmission electron microscopy (TEM. SLN and NLC formulations were subjected to stability study over a period of 40 days. Results: The mean particle size, PDI, zeta potential and entrapment efficiency of optimized SLN (SLN1 and NLC were found to be 30.45 nm, 0.156, 12.40 mV, 87.84 % and 32.23 nm, 0.160, 10.47 mV, 90.49 % respectively. DSC studies revealed that DOM was in an amorphous state and triglycerides were in the β prime form in SLN and NLC. Shape and surface morphology was determined by TEM revealed fairly spherical shape of nanoparticles. In vitro release studies demonstrated that both the SLN and NLC formulations possessed a controlled release over a period of 24 hrs. SLN and NLC formulations were subjected to stability over a period of 40 days. There was no significant (P < 0.05 change

  14. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Omwoyo WN

    2014-08-01

    Full Text Available Wesley Nyaigoti Omwoyo,1,2 Bernhards Ogutu,3,4 Florence Oloo,3,5 Hulda Swai,6 Lonji Kalombo,6 Paula Melariri,6 Geoffrey Maroa Mahanga,2 Jeremiah Waweru Gathirwa3,4 1Department of Chemistry, Maasai Mara University, Narok, Kenya; 2Department of Chemistry, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya; 3Center for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya; 4Kenya Medical Research Institute, Nairobi, Kenya; 5Department of Chemical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya; 6Department of Polymers and Composites, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract: Primaquine (PQ is one of the most widely used antimalarial drugs and is the only available drug that combats the relapsing form of malaria. PQ use in higher doses is limited by severe tissue toxicity including hematological- and gastrointestinal-related side effects. Nanoformulation of drugs in an appropriate drug carrier system has been extensively studied and shown to have the potential to improve bioavailability, thereby enhancing activity, reducing dose frequency, and subsequently reducing toxicity. The aim of this work was to design, synthesize, and characterize PQ-loaded solid lipid nanoparticles (SLNs (PQ-SLNs as a potential drug-delivery system. SLNs were prepared by a modified solvent emulsification evaporation method based on a water-in-oil-in-water (w/o/w double emulsion. The mean particle size, zeta potential, drug loading, and encapsulation efficiency of the PQ-SLNs were 236 nm, +23 mV, 14%, and 75%, respectively. The zeta potential of the SLNs changed dramatically, from -6.54 mV to +23.0 mV, by binding positively charged chitosan as surface modifier. A spherical morphology of PQ-SLNs was seen by scanning electron microscope. In vitro, release profile depicted a steady drug release over 72 hours. Differential scanning calorimeter thermograms demonstrated presence

  15. Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Xie Shuyu

    2011-11-01

    Full Text Available Abstract Background Our previous studies demonstrated that tilmicosin-loaded hydrogenated castor oil solid lipid nanoparticles (Til-HCO-SLN are a promising formulation for enhanced pharmacological activity and therapeutic efficacy in veterinary use. The purpose of this work was to evaluate the acute toxicity of Til-HCO-SLN. Methods Two nanoparticle doses were used for the study in ICR mice. The low dose (766 mg/kg.bw with tilmicosin 7.5 times of the clinic dosage and below the median lethal dose (LD50 was subcutaneously administered twice on the first and 7th day. The single high dose (5 g/kg.bw was the practical upper limit in an acute toxicity study and was administered subcutaneously on the first day. Blank HCO-SLN, native tilmicosin, and saline solution were included as controls. After medication, animals were monitored over 14 days, and then necropsied. Signs of toxicity were evaluated via mortality, symptoms of treatment effect, gross and microscopic pathology, and hematologic and biochemical parameters. Results After administration of native tilmicosin, all mice died within 2 h in the high dose group, in the low dose group 3 died after the first and 2 died after the second injections. The surviving mice in the tilmicosin low dose group showed hypoactivity, accelerated breath, gloomy spirit and lethargy. In contrast, all mice in Til-HCO-SLN and blank HCO-SLN groups survived at both low and high doses. The high nanoparticle dose induced transient clinical symptoms of treatment effect such as transient reversible action retardation, anorexy and gloomy spirit, increased spleen and liver coefficients and decreased heart coefficients, microscopic pathological changes of liver, spleen and heart, and minor changes in hematologic and biochemical parameters, but no adverse effects were observed in the nanoparticle low dose group. Conclusions The results revealed that the LD50 of Til-HCO-SLN and blank HCO-SLN exceeded 5 g/kg.bw and thus the

  16. MRI-assessed therapeutic effects of locally administered PLGA nanoparticles loaded with anti-inflammatory siRNA in a murine arthritis model

    DEFF Research Database (Denmark)

    Te Boekhorst, Bernard C M; Jensen, Linda B; Colombo, Stefano;

    2012-01-01

    for disease remission. We evaluated the anti-inflammatory effects of poly(dl-lactide-co-glycolide acid) (PLGA) nanoparticles loaded with small interfering RNA (siRNA) directed against TNF-a in vitro and in vivo. The siRNA-loaded PLGA nanoparticles mediated a dose-dependent TNF-a silencing....... In addition, proper siRNA dosing seems to be important for a positive therapeutic outcome in vivo. However, further studies are needed to fully clarify the mechanism(s) underlying the observed anti-inflammatory effects of the siRNA-loaded nanoparticles....... with nanoparticles loaded with TNF-a siRNA (1µg) resulted in a reduction in disease activity, evident by a significant decrease of the paw scores and joint effusions, as compared to treatment with PLGA nanoparticles loaded with non-specific control siRNA, whereas the degree of bone marrow edema in the tibial...

  17. Antitumor activity of docetaxel-loaded polymeric nanoparticles fabricated by Shirasu porous glass membrane-emulsification technique

    Directory of Open Access Journals (Sweden)

    Yu YN

    2013-07-01

    Full Text Available Yunni Yu,1,* Songwei Tan,1,2,* Shuang Zhao,1 Xiangting Zhuang,1 Qingle Song,1 Yuliang Wang,1 Qin Zhou,2,3 Zhiping Zhang1,2 1Tongji School of Pharmacy, 2National Engineering Research Center for Nanomedicine, 3College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Docetaxel (DTX has excellent efficiency against a wide spectrum of cancers. However, the current clinical formulation has limited its usage, as it causes some severe side effects. Various polymeric nanoparticles have thus been developed as alternative formulations of DTX, but they have been mostly fabricated on a laboratory scale. Previously, we synthesized a novel copolymer, poly(lactide-D-α-tocopheryl polyethylene glycol 1000 succinate (PLA-TPGS, and found that it exhibited great potential in drug delivery with improved properties. In this study, we applied the Shirasu porous glass (SPG membrane-emulsification technique to prepare the DTX-loaded PLA-TPGS nanoparticles on a pilot scale. The effect of several formulation variables on the DTX-loaded nanoparticle properties, including particle size, zeta potential, and drug-encapsulation efficiency, were investigated based on surfactant type and concentration in the aqueous phase, organic/aqueous phase volumetric ratio, membrane-pore size, transmembrane cycles, and operation pressure. The DTX-loaded nanoparticles were obtained with sizes of 306.8 ± 5.5 nm and 334.1 ± 2.7 nm (mean value ± standard deviation, and drug-encapsulation efficiency of 81.8% ± 4.5% and 64.5% ± 2.7% for PLA-TPGS and poly(lactic-co-glycolic acid (PLGA nanoparticles, respectively. In vivo pharmacokinetic study exhibited a significant advantage of PLA-TPGS nanoparticles over PLGA nanoparticles and Taxotere. Drug-loaded PLA-TPGS nanoparticles exhibited 1.78-, 6.34- and 3.35-fold higher values for area under the curve, half-life, and mean

  18. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    Science.gov (United States)

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery.

  19. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo.

    Science.gov (United States)

    Frede, Annika; Neuhaus, Bernhard; Klopfleisch, Robert; Walker, Catherine; Buer, Jan; Müller, Werner; Epple, Matthias; Westendorf, Astrid M

    2016-01-28

    Cytokines and chemokines are predominant players in the progression of inflammatory bowel diseases. While systemic neutralization of these players with antibodies works well in some patients, serious contraindications and side effects have been reported. Therefore, the local interference of cytokine signaling mediated by siRNA-loaded nanoparticles might be a promising new therapeutic approach. In this study, we produced multi-shell nanoparticles consisting of a calcium phosphate (CaP) core coated with siRNA directed against pro-inflammatory mediators, encapsulated into poly(d,l-lactide-co-glycolide acid) (PLGA), and coated with a final outer layer of polyethyleneimine (PEI), for the local therapeutic treatment of colonic inflammation. In cell culture, siRNA-loaded CaP/PLGA nanoparticles exhibited a rapid cellular uptake, almost no toxicity, and an excellent in vitro gene silencing efficiency. Importantly, intrarectal application of these nanoparticles loaded with siRNA directed against TNF-α, KC or IP-10 to mice suffering from dextran sulfate sodium (DSS)-induced colonic inflammation led to a significant decrease of the target genes in colonic biopsies and mesenteric lymph nodes which was accompanied with a distinct amelioration of intestinal inflammation. Thus, this study provides evidence that the specific and local modulation of the inflammatory response by CaP/PLGA nanoparticle-mediated siRNA delivery could be a promising approach for the treatment of intestinal inflammation.

  20. Liposomes loaded with hydrophilic magnetite nanoparticles: Preparation and application as contrast agents for magnetic resonance imaging.

    Science.gov (United States)

    German, S V; Navolokin, N A; Kuznetsova, N R; Zuev, V V; Inozemtseva, O A; Anis'kov, A A; Volkova, E K; Bucharskaya, A B; Maslyakova, G N; Fakhrullin, R F; Terentyuk, G S; Vodovozova, E L; Gorin, D A

    2015-11-01

    Magnetic fluid-loaded liposomes (MFLs) were fabricated using magnetite nanoparticles (MNPs) and natural phospholipids via the thin film hydration method followed by extrusion. The size distribution and composition of MFLs were studied using dynamic light scattering and spectrophotometry. The effective ranges of magnetite concentration in MNPs hydrosol and MFLs for contrasting at both T2 and T1 relaxation were determined. On T2 weighted images, the MFLs effectively increased the contrast if compared with MNPs hydrosol, while on T1 weighted images, MNPs hydrosol contrasting was more efficient than that of MFLs. In vivo magnetic resonance imaging (MRI) contrasting properties of MFLs and their effects on tumor and normal tissues morphology, were investigated in rats with transplanted renal cell carcinoma upon intratumoral administration of MFLs. No significant morphological changes in rat internal organs upon intratumoral injection of MFLs were detected, suggesting that the liposomes are relatively safe and can be used as the potential contrasting agents for MRI.

  1. Curcumin loaded PLGA-poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells.

    Science.gov (United States)

    Mayol, Laura; Serri, Carla; Menale, Ciro; Crispi, Stefania; Piccolo, Maria Teresa; Mita, Luigi; Giarra, Simona; Forte, Maurizio; Saija, Antonina; Biondi, Marco; Mita, Damiano Gustavo

    2015-06-01

    The pharmacological potential of curcumin (CURC) is severely restricted because of its low water solubility/absorption, short half-life and poor bioavailability. To overcome these issues, CURC-loaded nanoparticles (NPs) were produced by a double emulsion technique. In particular, NPs were made up of an amphiphilic blend of poloxamers and PLGA to confer stealth properties to the NPs to take advantage of the enhanced permeability and retention (EPR) effect. Different surface properties of NPs made up of bare PLGA and PLGA/poloxamer blend were confirmed by the different interactions of these NPs with serum proteins and also by their ability to be internalized by mesothelioma cell line. The uptake of PLGA/poloxamer NPs induces a persistent block in G0/G1 phase of the cell cycle up to 72 h, thus overcoming the drug tolerance phenomenon, normally evidenced with free CURC.

  2. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes.

    Science.gov (United States)

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development.

  3. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting.

    Science.gov (United States)

    Lv, Yongjiu; Hao, Lan; Hu, Wenjing; Ran, Ya; Bai, Yan; Zhang, Liangke

    2016-01-01

    This study fabricated novel multifunctional pH-sensitive nanoparticles loaded into microbubbles (PNP-MB) with the combined advantages of two excellent drug delivery vehicles, namely, pH-sensitive nanoparticles and microbubbles. As an antitumor drug, resveratrol (RES) was loaded into acetylated β-cyclodextrin nanoparticles (RES-PNP). The drug-loaded nanoparticles were then encapsulated into the internal space of the microbubbles. The characterization and morphology of this vehicle were investigated through dynamic light scattering and confocal laser scanning microscopy, respectively. In vitro drug release was performed to investigate the pH sensitivity of RES-PNP. The antitumor property of RES-loaded PNP-MB (RES-PNP-MB) was also analyzed in vivo to evaluate the antitumor effect of RES-PNP-MB. Results suggested that PNP exhibited pH sensitivity, and was successfully encapsulated into the microbubbles. RES-PNP-MB exhibit effective tumor growth suppressing in vivo. Therefore, such drug delivery vehicle should be of great attention in tumor therapy.

  4. Influences of Organic Solvents on Particle Size and Drug-loading Efficiency for 5-Fluorouracil Poly(lactic acid) Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LIUXiao-yan; CHANGJin; GUOYan-shuang; YUANXu-bo; LIXiao-rong; LIUChun-ling; SONGCun-xian

    2004-01-01

    The objective of this study was to investigate the influences of organic solvents on particle size, drug content, loading efficiency and yield for 5-Fluorouracil Poly (lactic acid) nanoparticles . The 5-Fluorouracil was entrapped into poly(lactic acid)(PLA) nanoparticles using a water-in-oil-in-water solvent evaporation technique. During the preparation process, ethyl acetate and acetone were used as organic solvents since they are less toxic than the more commonly used dichloromethane. The effect of the three solvents on particle size, drug content, loading efficiency and yield of nanopartcles was compared. When the solvent of the oil phase was acetone, the highest drug content, smallest particle size and lowest yield were obtained for the PLA nanoparticles.

  5. Optimized Preparation of Levofloxacin-loaded Chitosan Nanoparticles by Ionotropic Gelation

    Science.gov (United States)

    Guan, J.; Cheng, P.; Huang, S. J.; Wu, J. M.; Li, Z. H.; You, X. D.; Hao, L. M.; Guo, Y.; Li, R. X.; Zhang, H.

    The present work investigates the feasibility of fabricating chitosan (CS)-levofloxacin (LOF) nanoparticles by ionotropic gelation technology. An orthogonal experiment was designed to optimize its preparing parameters and multi-index comprehensive weighed score analysis method was used to study the effects of various factors including concentration of CS, concentration of tripolyphosphate (TPP), mass ratio of CS to TPP, and mass ratio of CS to LOF on the properties of nanoparticles. The particles prepared under optimal condition of 2 mg/ml CS concentration, 2 mg/ml TPP concentration, 0.5:1 mass ratio of oil to water and 4:1 mass ratio of CS to TPP had 140 nm diameter, 0.95 span, 6.13% loading capacity (LC) and 24.91% encapsulation efficiency (EE). In vitro release profile showed that LOF released fast initially and then slowly with T90 occurring at 76.5 h. Future studies should focus on antibacterial and biocompatible properties in order to evaluate its potential as sustainable delivery system.

  6. Asymmetric photoelectric property of transparent TiO{sub 2} nanotube films loaded with Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); College of Applied Science, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China); Liang, Wei, E-mail: 986903124@qq.com [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China); Liu, Yiming; Zhang, Wanggang; Zhou, Diaoyu; Wen, Jing [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan, Shanxi 030024 (China)

    2016-11-15

    Highlights: • Highly transparent films of TiO{sub 2} nanotube arrays were directly fabricated on FTO glasses. • Semitransparent TNT-Au composite films were obtained and exhibited excellent photoelectrocatalytic ability. • Back-side of TNT-Au composite films was firstly irradiated and tested to compare with front-side of films. - Abstract: Semitransparent composite films of Au loaded TiO{sub 2} nanotubes (TNT-Au) were prepared by sputtering Au nanoparticles on highly transparent TiO{sub 2} nanotubes films, which were fabricated directly on FTO glasses by anodizing the Ti film sputtered on the FTO glasses. Compared with pure TNT films, the prepared TNT-Au films possessed excellent absorption ability and high photocurrent response and improved photocatalytic activity under visible-light irradiation. It could be concluded that Au nanoparticles played important roles in improving the photoelectrochemical performance of TNT-Au films. Moreover, in this work, both sides of TNT-Au films were researched and compared owing to theirs semitransparency. It was firstly found that the photoelectric activity of TNT-Au composite films with back-side illumination was obviously superior to front-side illumination.

  7. Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles.

    Science.gov (United States)

    Akers, Walter J; Kim, Chulhong; Berezin, Mikhail; Guo, Kevin; Fuhrhop, Ralph; Lanza, Gregory M; Fischer, Georg M; Daltrozzo, Ewald; Zumbusch, Andreas; Cai, Xin; Wang, Lihong V; Achilefu, Samuel

    2011-01-25

    The contrast mechanisms used for photoacoustic tomography (PAT) and fluorescence imaging differ in subtle, but significant, ways. The design of contrast agents for each or both modalities requires an understanding of the spectral characteristics as well as intra- and intermolecular interactions that occur during formulation. We found that fluorescence quenching that occurs in the formulation of near-infrared (NIR) fluorescent dyes in nanoparticles results in enhanced contrast for PAT. The ability of the new PAT method to utilize strongly absorbing chromophores for signal generation allowed us to convert a highly fluorescent dye into an exceptionally high PA contrast material. Spectroscopic characterization of the developed NIR dye-loaded perfluorocarbon-based nanoparticles for combined fluorescence and PA imaging revealed distinct dye-dependent photophysical behavior. We demonstrate that the enhanced contrast allows detection of regional lymph nodes of rats in vivo with time-domain optical and photoacoustic imaging methods. The results further show that the use of fluorescence lifetime imaging, which is less dependent on fluorescence intensity, provides a strategic approach to bridge the disparate contrast reporting mechanisms of fluorescence and PA imaging methods.

  8. Stable and efficient loading of silver nanoparticles in spherical polyelectrolyte brushes and the antibacterial effects.

    Science.gov (United States)

    Liu, Xiaochi; Xu, Yisheng; Wang, Xiaohan; Shao, Mingfei; Xu, Jun; Wang, Jie; Li, Li; Zhang, Rui; Guo, Xuhong

    2015-03-01

    A more efficient and convenient strategy was demonstrated to immobilize silver nanoparticles (NPs) with a crystalline structure into the spherical polyelectrolyte brushes (SPB) as an antibacterial material. The SPB used for surface coating (Ag immobilized PVK-PAA SPB) consists of a poly(N-vinylcarbazole) (PVK) core and poly(acrylic acid) (PAA) chain layers which are anchored onto the surface of PVK core at one end. Well-dispersed silver nanoparticles (diameter∼3.5 nm) then formed and were electrostatically confined in the brush layer. Ag content is controlled by a repeated loading process. Thin film coatings were then constructed by layer-by-layer depositions of positive charged poly(diallyldimethylammonium chloride) (PDDA) and SPB. The multilayer composites display excellent stability as well as antibacterial performance but not for simple PVK-PAA coated surface. The results show that almost complete bacteria growth including both dispersed bacterial cells and biofilms was inhibited over a period of 24 h. This approach opens a novel strategy for stable and efficient immobilization of Ag NPs in fabrication of antibacterial materials.

  9. Metformin-loaded BSA nanoparticles in cancer therapy: a new perspective for an old antidiabetic drug.

    Science.gov (United States)

    Jose, Pinkybel; Sundar, K; Anjali, C H; Ravindran, Aswathy

    2015-03-01

    Clinical and experimental data suggest that there is a strong association between type II diabetic mellitus and pancreatic cancer. The present study focuses on exploring the anticancer and antidiabetic properties of metformin-loaded bovine serum albumin nanoparticles (BSA NPs) on (MiaPaCa-2) pancreatic carcinoma cell lines. Albumin nanoparticles were synthesized using coacervation method and the average size of the particles was found to be 97 nm. The particles were stable and showed a spherical morphology with narrow size distribution. We investigated the impact of two stages characterized in type II diabetes mellitus (hyperglycemia and hyperinsulinemia) on the proliferation of MiaPaCa-2 cells and compared the inhibitory effects of bare metformin to that of MET-BSA NPs. Further, different concentrations of insulin and glucose were added along with bare metformin, bare BSA, and metformin encapsulated BSA carrier on MiaPaCa-2 cells to check the strong association between type II diabetes and pancreatic cancer. The results revealed that MET-BSA NPs showed more toxicity when compared with drug and carrier individually.

  10. Antioxidant activity of idebenone-loaded neutral and cationic solid-lipid nanoparticles.

    Science.gov (United States)

    Leonardi, Antonio; Crasci', Lucia; Panico, Annamaria; Pignatello, Rosario

    2015-01-01

    Idebenone (IDE) is a lipophilic benzoquinone electron carrier synthetic analogue of coenzyme Q10, which behaves as an antioxidant and free radical scavenging molecule. Recently, the therapeutic application of IDE in Leber's hereditary optic neuropathy has been discussed. This work was aimed at evaluating the encapsulation of IDE in solid-lipid nanoparticles (SLN). In particular, we tested the possibility of adapting the quasi-emulsion solvent diffusion technique, already proposed to produce polymeric nanoparticles, to prepare positively charged SLN with different compositions. Such a charge, due to the addition of a cationic lipid, would facilitate the interaction with the negatively charged eye surface epithelium, with a consequent longer pre-corneal residence time of the colloidal systems. In a preliminary evaluation of the produced IDE-loaded SLN, the antioxidant activity of the drug was demonstrated using an oxygen radical absorbance capacity assay. Encapsulation of the drug in the nanocarrier systems seems able to protect IDE from degradation and prolong its antioxidant potential.

  11. Preparation, characterization and scale-up of sesamol loaded solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Vandita Kakkar

    2012-01-01

    Full Text Available Sesamol loaded solid lipid nanoparticles (SSLNs were prepared with the aim of minimizing its distribution to tissues and achieving its targeting to the brain. Three scale-up batches (100x1 L of S-SLNs were prepared using a microemulsification technique and all parameters were statistically compared with the small batch (1x;10 mL. S-SLNs with a particle size of less than 106 nm with a spherical shape (transmission electron microscopy were successfully prepared with a total drug content and entrapment efficiency of 94.26±2.71% and 72.57±5.20%, respectively. Differential scanning calorimetry and infrared spectroscopy confirmed the formation of lipidic nanoparticles while powder X-ray diffraction revealed their amorphous profile. S-SLNs were found to be stable for three months at 5±3°C in accordance with International Conference on Harmonisation guidelines. The SLN preparation process was successfully scaled-up to a 100x batch on a laboratory scale. The procedure was easy to perform and allowed reproducible SLN dispersions to be obtained.

  12. Silica cross-linked micelles loading with silicon nanoparticles: preparation and characterization.

    Science.gov (United States)

    Pan, Guo-Hui; Barras, Alexandre; Boussekey, Luc; Boukherroub, Rabah

    2013-08-14

    A new family of luminescent and stable silicon-based nanoparticles (NPs), silica cross-linked pluronic F127 (PF127) micelles loaded with decyl capped silicon nanoparticles (decyl-SiNPs), were synthesized in aqueous media. The decyl-SiNPs were prepared by first liberating hydride terminated SiNPs (H-SiNPs) from a porous silicon matrix followed by their functionalization via hydrosilylation with 1-decene under photochemical activation. The silicon-based NPs exhibit bright photoluminescence (PL) with a quantum yield of ∼3.8% and peaking at ∼2.0 eV, which lies within the transmission window that is useful for biological imaging. They display a hydrodynamic size of ∼25 nm with exterior polyethylene oxide (PEO) blocks stretching out in aqueous media. Chloroform was found to quench the excitation at energy above 4.9 eV by shielding the incident light or relaxing the charge carriers, which highlights that caution against solvent interference should be taken when performing the studies on PL origin and luminescence efficiency of SiNPs. For PF127, the blocks of hydrophilic PEO participate in the PL quenching, while poly(propylene oxide) (PPO) does not. The colloidal solution displays excellent PL stability against salt (NaCl) and temperature but is susceptible to basic solution at pH above 9.

  13. Production, characterisation, and in vitro nebulisation performance of budesonide-loaded PLA nanoparticles.

    Science.gov (United States)

    Amini, Mohammad Ali; Faramarzi, Mohammad Ali; Gilani, Kambiz; Moazeni, Esmaeil; Esmaeilzadeh-Gharehdaghi, Elina; Amani, Amir

    2014-01-01

    The aim of this study is to prepare a nanosuspension of budesonide for respiratory delivery using nebuliser by optimising its particle size and characterising its in vitro deposition behaviour. PLA (poly lactic acid)-budesonide nanosuspension (BNS) was prepared using high-pressure emulsification/solvent evaporation method. To optimise particle size, different parameters such as PLA concentration, sonication time, and amplitude were investigated. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscope (SEM) analyses were performed to characterise the prepared PLA-budesonide nanoparticles. The in vitro aerodynamic characteristics of the PLA-BNS using a jet nebuliser were estimated and compared with that of commercially available suspension formulation of budesonide. Budesonide-loaded PLA nanoparticles with fine particle size (an average size of 224-360 nm), narrow size distribution, and spherical and smooth surface were prepared. The optimum condition for preparation of fine particle size for aerosolisation was found to be at PLA concentration of 1.2 mg/ml and amplitude of 70 for 75 s sonication time. The in vitro aerosolisation performance of PLA-BNS compared to that of commercial budesonide indicated that it has significantly (p PLA-BNS could be considered as a promising alternative suspension formulation for deep lung delivery of the drug using nebuliser.

  14. Microscopic and dielectric studies of ZnO nanoparticles loaded in ortho-chloropolyaniline nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Aashish [Indian Institute of Science, Department of Materials Engineering (India); Parveen, Ameena [First Grade Degree College, Department of Physics (India); Deshpande, Raghunandan [H.K.E. Society' s Matoshree Taradevi Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry (India); Bhat, Ravishankar [Gulbarga University, Department of Materials Science, Nanotechnology Laboratory (India); Koppalkar, Anilkumar, E-mail: koppalkar@rediffmail.com [S. S. Margol College, Department of Physics (India)

    2013-01-15

    We have studied the preparation of zinc oxide nanoparticles loaded in various weight percentages in ortho-chloropolyaniline by in situ polymerization method. The length of the O-chloropolyaniline tube is found to be 200 nm and diameter is about 150 nm wherein the embedded ZnO nanoparticles is of 13 nm as confirmed from scanning electron microscopy as well as transmission electron microscopy characterizations. The presence of the vibration band of the metal oxide and other characteristic bands confirms that the polymer nanocomposites are characterized by their Fourier transmission infrared spectroscopy. The X-ray diffraction pattern of nanocomposites reveals their polycrystalline nature. Electrical property of nanocomposites is a function of the filler as well as the matrix. Cole-Cole plots reveal the presence of well-defined semicircular arcs at high frequencies which are attributed to the bulk resistance of the material. Among all nanocomposites, 30 wt% shows the low relaxation time of 151 s, and hence it has high conductivity.

  15. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection.

    Science.gov (United States)

    Liu, Gui-Ting; Chen, Hui-Fen; Lin, Guo-Ming; Ye, Ping-ping; Wang, Xiao-Ping; Jiao, Ying-Zhi; Guo, Xiao-Yu; Wen, Ying; Yang, Hai-Feng

    2014-06-15

    An electrochemical sensor of acetaminophen (AP) based on electrochemically reduced graphene (ERG) loaded nickel oxides (Ni2O3-NiO) nanoparticles coated onto glassy carbon electrode (ERG/Ni2O3-NiO/GCE) was prepared by a one-step electrodeposition process. The as-prepared electrode was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The electrocatalytic properties of ERG/Ni2O3-NiO modified glassy carbon electrode toward the oxidation of acetaminophen were analyzed via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrodes of Ni2O3-NiO/GCE, ERG/GCE, and Ni2O3-NiO deposited ERG/GCE were fabricated for the comparison and the catalytic mechanism understanding. The studies showed that the one-step prepared ERG/Ni2O3-NiO/GCE displayed the highest electro-catalytic activity, attributing to the synergetic effect derived from the unique composite structure and physical properties of nickel oxides nanoparticles and graphene. The low detection limit of 0.02 μM (S/N=3) with the wide linear detection range from 0.04 μM to 100 μM (R=0.998) was obtained. The resulting sensor was successfully used to detect acetaminophen in commercial pharmaceutical tablets and urine samples.

  16. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    Science.gov (United States)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2013-10-01

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions.

  17. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer

    Directory of Open Access Journals (Sweden)

    Qu N

    2016-07-01

    Full Text Available Na Qu,1 Robert J Lee,1,2 Yating Sun,1 Guangsheng Cai,1 Junyang Wang,1 Mengqiao Wang,1 Jiahui Lu,1 Qingfan Meng,1 Lirong Teng,1 Di Wang,1 Lesheng Teng1,3 1School of Life Sciences, Jilin University, Changchun, People’s Republic of China; 2Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA; 3State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, People’s Republic of China Abstract: Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween. A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%, and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. Keywords: cabazitaxel, human serum albumin, nanoparticle, drug delivery, toxicity, pros­tate cancer

  18. Aripiprazole loaded poly(caprolactone) nanoparticles: Optimization and in vivo pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Krutika; Pandey, Abhijeet; Patel, Sneha

    2016-09-01

    In the present investigation, a Quality by Design strategy was applied for formulation and optimization of aripiprazole (APZ) loaded PCL nanoparticles (APNPs) using nanoprecipitation method keeping entrapment efficiency (%EE) and particle size (PS) as critical quality attributes. Establishment of design space was done followed by analysis of its robustness and sensitivity. Characterization of optimized APNPs was done using DSC, FT-IR, PXRD and TEM studies and was evaluated for drug release, hemocompatibility and nasal toxicity. PS, zeta potential and %EE of optimized APNPs were found to be 199.2 ± 5.65 nm, − 21.4 ± 4.6 mV and 69.2 ± 2.34% respectively. In vitro release study showed 90 ± 2.69% drug release after 8 h. Nasal toxicity study indicated safety of developed formulation for intranasal administration. APNPs administered via intranasal route facilitated the brain distribution of APZ incorporated with the AUC{sub 0→8} in rat brain approximately 2 times higher than that of APNPs administered via intravenous route. Increase in C{sub max} was observed which might help in dose reduction along with reduction in dose related side effects. The results of the study indicate that intranasally administered APZ loaded PCL NPs can potentially transport APZ via nose to brain and can serve as a non-invasive alternative for the delivery of APZ to brain. - Highlights: • It explores intra-nasal route for treatment of schizophrenia. • Quality by Design strategy has been used for optimization and assessesment of design space robustness. • PCL nanoparticles enhance penetration of drug into brain leading to increased C{sub max} and decrease in T{sub max}. • It can act as potential platform for treatment of schizophrenia with decreased dose related toxicities.

  19. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation.

    Science.gov (United States)

    Dudhipala, Narendar; Veerabrahma, Kishan

    2016-01-01

    Candesartan cilexetil (CC) is used in the treatment of hypertension and heart failure. It has poor aqueous solubility and low oral bioavailability. In this work, CC loaded solid lipid nanoparticles (CC-SLNs) were developed to improve the oral bioavailability. Components of the SLNs include either of trimyristin/tripalmitin/tristearin, and surfactants (Poloxamer 188 and egg lecithin E80). The CC loaded nanoparticles were prepared by hot homogenization followed by ultrasonication method. The physicochemical properties, morphology of CC-SLNs were characterized, the pharmacokinetic and pharmacodynamic behaviour of CC-SLNs were evaluated in rats. Stable CC-SLNs having a mean particle size of 180-220 nm with entrapment efficiency varying in between 91-96% were developed. The physical stability of optimized formulation was studied at refrigerated and room temperature for 3 months. Further, freeze drying was tried for improving the physical stability. DSC and XRD analyses indicated that the drug incorporated into SLN was in amorphous form but not in crystalline state. The SLN-morphology was found to be nearly spherical by electron microscopic studies. Pharmacokinetic results indicated that the oral bioavailability of CC was improved over 2.75-fold after incorporation into SLNs. Pharmacodynamic study of SLNs in hypertensive rats showed a decrease in systolic blood pressure for 48 h, while suspension showed a decrease in systolic blood pressure for only 2 h. Taken together, these effects are due to enhanced bioavailability coupled with sustained action of CC in SLN formulation. Thus, the results conclusively demonstrated the role of CC-SLNs for a significant enhancement in oral bioavailability along with improved pharmacodynamic effect.

  20. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D., E-mail: sakthi@toyo.jp

    2013-10-15

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions. - Highlights: • Aptamer escorted, theranostic biodegradable PLGA carriers were developed. • Can target cancer cells, control drug release, image and magnetically guide. • Highly specific to the targeted cancer cells thus delivering

  1. Preparation and functional studies of hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody

    Directory of Open Access Journals (Sweden)

    Yang J

    2014-05-01

    Full Text Available Jingjing Yang,1,3,* Xiaoping Huang,1,3,* Fanghong Luo,1 Xiaofeng Cheng,3 Lianna Cheng,3 Bin Liu,4 Lihong Chen,2 Ruyi Hu,1,3 Chunyan Shi,1,3 Guohong Zhuang,1,3 Ping Yin2 1Anti-Cancer Research Center, Medical College, Xiamen University, Fujian, People's Republic of China, 2The Department of Pathology, Zhongshan Hospital, Xiamen University, Xiamen, People's Republic of China, 3Organ transplantation institution, Xiamen University, Xiamen, People's Republic of China, 4Jilin Vocational College of Industry and Technology, Jilin, People's Republic of China  *These authors contributed equally to this work Objective: To prepare hydroxyethyl chitosan nanoparticles loaded with anti-human death receptor 5 single-chain antibody, and study their characteristics, functions, and mechanisms of action. Materials and methods: The anti-human death receptor 5 single-chain antibody was constructed and expressed. Protein-loaded hydroxyethyl chitosan nanoparticles were prepared, and their size, morphology, particle-size distribution and surface zeta potential were measured by scanning electron microscopy and laser particle-size analysis. Mouse H22 hepatocellular carcinoma cells were cultured, and growth inhibition was examined using the CellTiter-Blue cell-viability assay. Flow cytometry and Hoechst 33342 were employed to measure cell apoptosis. Kunming mice with H22 tumor models were treated with protein-loaded hydroxyethyl chitosan nanoparticles, and their body weight and tumor size were measured, while hematoxylin and eosin staining was used to detect antitumor effects in vivo and side effects from tumors. Results: The protein-loaded hydroxyethyl chitosan nanoparticles had good stability; the zeta potential was -24.2±0.205, and the dispersion index was 0.203. The inhibition of the protein-loaded hydroxyethyl chitosan nanoparticles on H22 growth was both time- and dose-dependent. Increased expressions of active caspase 8, active caspase 3, and BAX were detected

  2. On the accessibility of surface-bound drugs on magnetic nanoparticles. Encapsulation of drugs loaded on modified dextran-coated superparamagnetic iron oxide by β-cyclodextrin.

    Science.gov (United States)

    Sudha, Natesan; Yousuf, Sameena; Israel, Enoch V M V; Paulraj, Mosae Selvakumar; Dhanaraj, Premnath

    2016-05-01

    We report the loading of drugs on aminoethylaminodextran-coated iron oxide nanoparticles, their superparamagnetic behavior, loading of drugs on them, and the β-cyclodextrin-complex formation of the drugs on the surface of the nanoparticles. The magnetic behavior is studied using vibrating sample magnetometry and X-ray photoelectron spectroscopy is used to analyze the elemental composition of drug-loaded nanoparticles. Scanning electron microscopy shows ordered structures of drug-loaded nanoparticles. UV-visible absorption and fluorescence spectroscopy are used to study the binding of the surface-loaded drugs to β-cyclodextrin. All of the drugs form 1:1 host-guest complexes. The iodide ion quenching of fluorescence of free- and iron oxide-attached drugs are compared. The binding strengths of the iron oxide surface-loaded drugs-β-cyclodextrin binding are smaller than those of the free drugs.

  3. Simultaneous loading of 5-florouracil and SPIONs in HSA nanoparticles: Optimization of preparation, characterization and in vitro drug release study

    Directory of Open Access Journals (Sweden)

    H. Kouchakzadeh

    2016-01-01

    Full Text Available Objective(s: Over the past two decades, considerable interest has been focused on utilizing biocompatible magnetic nanoparticles (MNPs for biomedical applications. In this study, production of human serum albumin (HSA nanoparticles using desolvation technique that were simultaneous loaded with high amounts of superparamagnetic iron oxide nanoparticles (SPIONs and 5-flourouracil (5-FU was investigated. Materials and Methods: 5-FU loading (% and SPIONs entrapment efficiency (% were optimized using response surface methodology (RSM. The design expert software used to analyse the interactive effects of pH, 5-FU and SPIONs concentrations. Results:The optimum conditions found to be pH of 8.2, drug concentration of 1.5 mg/ml and SPIONs concentration of 2.79 mg/ml. Under the mentioned optimum conditions, particles with the size of 111.8 nm, zeta potential of -37.1 mV, 5-FU loading of 15.8% and SPIONs entrapment efficiency of 41.1% were obtained. In vitro cumulative release of 5-FU from the nanoparticles was evaluated in phosphate buffer saline (pH 7.4, 37 °C. Results indicated that 85% of the 5-FU released during 95 h, which revealed a sustained release profile. In addition, Vibrating Sample Magnetometer (VSM analyses confirmed the superparamagnetic properties of magnetic albumin nanoparticles manufactured under the optimum conditions. Conclusion: According to the findings,SPIONs and 5-FU loaded HAS  nanoparticles arepromising for use as  novel targeted delivery system due to proper magnetic and drug release behaviours.

  4. Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability

    Directory of Open Access Journals (Sweden)

    Ibrahim WM

    2013-12-01

    Full Text Available Waheed M Ibrahim,1 Abdullah H AlOmrani,2 Alaa Eldeen B Yassin31Drug Sector, Saudi Food and Drug Authority, 2Department of Pharmaceutics, College of Pharmacy, King Saud University, 3Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi ArabiaBackground: Solid lipid nanoparticles (SLN, novel drug delivery carriers, can be utilized in enhancing both intestinal permeability and dissolution of poorly absorbed drugs. The aim of this work was to enhance the intestinal permeability of sulpiride by loading into SLN.Methods: A unique ultrasonic melt-emulsification method with minimum stress conditions was used for the preparation of SLN. The mixture of the drug and the melted lipids was simply dispersed in an aqueous solution of a surfactant at a temperature that was 10°C higher than the melting points of the lipids using probe sonication, and was then simultaneously dispersed in cold water. Several formulation parameters were optimized, including the drug-to-lipid ratio, and the types of lipids and surfactants used. The produced SLN were evaluated for their particle size and shape, surface charge, entrapment efficiency, crystallinity of the drug and lipids, and the drug release profile. The rat everted sac intestine model was utilized to evaluate the change in intestinal permeability of sulpiride by loading into SLN.Results: The method adopted allowed successful preparation of SLN with a monodispersed particle size of 147.8–298.8 nm. Both scanning electron microscopic and atomic force microscopic images showed uniform spherical particles and confirmed the sizes determined by the light scattering technique. Combination of triglycerides with stearic acid resulted in a marked increase in zeta potential, entrapment efficiency, and drug loading; however, the particle size was increased. The type of surfactant used was critical for particle size

  5. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin, E-mail: jzhang@eng.uwo.ca; Li Jiaxin [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada); Razavi, Fereidoon S. [Brock University, Department of Physics (Canada); Mumin, Abdul Md. [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada)

    2011-05-15

    A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe{sub 3}O{sub 4}) coated with fluorescent silica (SiO{sub 2}) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe{sub 3}O{sub 4}, the formation of SiO{sub 2} coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core-shell structure. The magnetic core of the core-shell nanoparticles is 60 {+-} 10 nm in diameter. The thickness of the fluorescent SiO{sub 2} shell is estimated at 15 {+-} 5 nm. In addition, the fluorescent signal of the SiO{sub 2} shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength ({lambda}{sub em}) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe{sub 3}O{sub 4}-SiO{sub 2} NPs) were studied. The hysteresis loop of the core-shell NPs measured at room temperature shows that the saturation magnetization (M{sub s}) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H{sub c}) and remanent magnetization (M{sub r}) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core-shell particles have the superparamagnetic properties. The measured blocking temperature (T{sub B}) of the TRITC-dextran loaded Fe{sub 3}O{sub 4}-SiO{sub 2} NPs is about 122.5 K. It is expected that the multifunctional core-shell nanoparticles can be used in bio-imaging.

  6. Cell death induced by application of time-varying magnetic fields on nanoparticle-loaded dendritic cells

    CERN Document Server

    Marcos-Campos, I; Torres, T E; Marquina, C; Tres, A; Ibarra, M R; Goya, G F

    2010-01-01

    Aim: To assess the capability of monocyte-derived dendritic cells (DCs) to take Fe3O4 magnetic nanoparticles (MNPs), keeping their viability. To provoke cell death on these MNPs-loaded DCs using an external alternating magnetic field (AMF). Material & methods: Peripheral blood mononuclear cells were isolated from normal blood and platelets removed by centrifugation. Immunoselected CD14+ cells were cultured for 5 days, and the resulting cell phenotype was determined against several markers using flow cytometry. Co-cultures of DCs and MNPs were done overnight. The amount of Fe3O4 nanoparticles incorporated by DCs was quantified by magnetization measurements. MNPs-loaded DCs were exposed to AMF for 30 min and then cell viability was measured using trypan blue and FACS (annexin-propidium iodide) protocols. Morphological changes were investigated using scanning electron microscopy. Results: No significant decrease in cell viability of MNP/loaded DCs was observed up to five days, as compared against control sam...

  7. Kinetics Study of Photocatalytic Activity of Flame-Made Unloaded and Fe-Loaded CeO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. Channei

    2013-01-01

    Full Text Available Unloaded CeO2 and nominal 0.50, 1.00, 1.50, 2.00, 5.00, and 10.00 mol% Fe-loaded CeO2 nanoparticles were synthesized by flame spray pyrolysis (FSP. The samples were characterized to obtain structure-activity relation by X-ray diffraction (XRD, high-resolution transmission electron microscopy (HRTEM, Brunauer, Emmett, and Teller (BET nitrogen adsorption, X-ray photoelectron spectroscopy (XPS, and UV-visible diffuse reflectance spectrophotometry (UV-vis DRS. XRD results indicated that phase structures of Fe-loaded CeO2 nanoparticles were the mixture of CeO2 and Fe2O3 phases at high iron loading concentrations. HRTEM images showed the significant change in morphology from cubic to almost-spherical shape observed at high iron loading concentration. Increased specific surface area with increasing iron content was also observed. The results from UV-visible reflectance spectra clearly showed the shift of absorption edge towards longer visible region upon loading CeO2 with iron. Photocatalytic studies showed that Fe-loaded CeO2 sample exhibited higher activity than unloaded CeO2, with optimal 2.00 mol% of iron loading concentration being the most active catalyst. Results from XPS analysis suggested that iron in the Fe3+ state might be an active species responsible for enhanced photocatalytic activities observed in this study.

  8. Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method

    Science.gov (United States)

    Wang, Qin; Wu, Puyuan; Ren, Wei; Xin, Kai; Yang, Yang; Xie, Chen; Yang, Chenchen; Liu, Qin; Yu, Lixia; Jiang, Xiqun; Liu, Baorui; Li, Rutain; Wang, Lifeng

    2014-07-01

    To establish a satisfactory delivery system for the delivery of salinomycin (Sal), a novel, selective cancer stem cell inhibitor with prominent toxicity, gelatinase-responsive core-shell nanoparticles (NPs), were prepared by nanoprecipitation method (NR-NPs) and single emulsion method (SE-NPs). The gelatinase-responsive copolymer was prepared by carboxylation and double amination method. We studied the stability of NPs prepared by nanoprecipitation method with different proportions of F68 in aqueous phase to determine the best proportion used in our study. Then, the NPs were prepared by nanoprecipitation method with the best proportion of F68 and single emulsion method, and their physiochemical traits including morphology, particle size, zeta potential, drug loading content, stability, and in vitro release profiles were studied. The SE-NPs showed significant differences in particle size, drug loading content, stability, and in vitro release profiles compared to NR-NPs. The SE-NPs presented higher drug entrapment efficiency and superior stability than the NR-NPs. The drug release rate of SE-NPs was more sustainable than that of the NR-NPs, and in vivo experiment indicated that NPs could prominently reduce the toxicity of Sal. Our study demonstrates that the SE-NPs could be a satisfactory method for the preparation of gelatinase-responsive NPs for intelligent delivery of Sal.

  9. Loading of praziquantel in the crystal lattice of solid lipid nanoparticles - studies by DSC and SAXS

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.L.R.; Cassimiro, D.L.; Almeida, A.E.; Ribeiro, C.A.; Gremiao, M.P.D. [UNESP, Araraquara, SP (Brazil); Sarmento, V.H.V. [Universidade Federal de Sergipe (UFS), Itabaiana, SE (Brazil); Andreani, T.; Silva, A.M.; Souto, E.B. [Universidade de Tras-os-Montes e Alto Douro, Vila Real (Portugal)

    2012-07-01

    Full text: Praziquantel (PZQ) is the drug of choice for oral treatment of schistosomiasis and other fluke infections that affect humans. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. In this work, solid lipid nanoparticles loaded with PZQ (PZQ-SLN) were prepared by a modified oil-in-water microemulsion method selecting stearic acid as lipid phase after solubility screening studies. The mean particle size (Z-Ave) and zeta potential (ZP) were 500 nm and -34.0 mV, respectively. Morphology and shape of PZQ-SLN were analysed by scanning electron microscopy revealing the presence of spherical particles with smooth surface. Differential scanning calorimetry suggested that SLN comprised a less ordered arrangement of crystals and the drug was molecularly dispersed in the lipid matrix. No supercooled melts were detected. The entrapment efficiency (EE) and loading capacity of PZQ, determined by high performance liquid chromatography, were 99.0 and 17.5, respectively. Effective incorporation of PZQ into the particles was confirmed by small angle X-ray scattering revealing the presence of a lipid lamellar structure. Stability parameters of PZQ-SLN stored at room temperature (25 deg C) and at 4 deg C were checked by analysing Z-Ave, ZP and the EE for a period of 60 days Results showed a relatively long-term physical stability after storage at 4 deg C, without drug expulsion. (author)

  10. Preparation and Characterization of Catalase-Loaded Solid Lipid Nanoparticles Protecting Enzyme against Proteolysis

    Directory of Open Access Journals (Sweden)

    Ce Qi

    2011-07-01

    Full Text Available Catalase-loaded solid lipid nanoparticles (SLNs were prepared by the double emulsion method (w/o/w and solvent evaporation techniques, using acetone/methylene chloride (1:1 as an organic solvent, lecithin and triglyceride as oil phase and Poloxmer 188 as a surfactant. The optimized SLN was prepared by lecithin: triglyceride ratio (5%, 20-second + 30-second sonication, and 2% Poloxmer 188. The mean particle size of SLN was 296.0 ± 7.0 nm, polydispersity index range and zeta potential were 0.322–0.354 and −36.4 ± 0.6, respectively, and the encapsulation efficiency reached its maximum of 77.9 ± 1.56. Catalase distributed between the solid lipid and inner aqueous phase and gradually released from Poloxmer coated SLNs up to 20% within 20 h. Catalase-loaded SLN remained at 30% of H2O2-degrading activity after being incubated with Proteinase K for 24 h, while free catalase lost activity within 1 h.

  11. Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin targeting by topical delivery.

    Science.gov (United States)

    Bikkad, Mahesh L; Nathani, Ajaz H; Mandlik, Satish K; Shrotriya, Shilpa N; Ranpise, Nisharani S

    2014-06-01

    The clinical use of halobetasol propionate (HP) is related to some adverse effects like irritation, pruritus and stinging. The purpose of this work was to construct HP-loaded solid lipid nanoparticles (HP-SLN) formulation with skin targeting to minimizing the adverse side effects and providing a controlled release. HP-SLN were prepared by solvent injection method and formula was optimized by the application of 3(2) factorial design. The nanoparticulate dispersion was evaluated for particle size and entrapment efficiency (EE). Optimized batch was characterized for differential scanning calorimetry (DSC), scanning electron microscopy, X-ray diffraction study and finally incorporated into polymeric gels of carbopol for convenient application. The nanoparticulate gels were evaluated comparatively with the commercial product with respect to ex-vivo skin permeation and deposition study on human cadaver skins and finally skin irritation study. HP-SLN showed average size between 200 nm and 84-94% EE. DSC studies revealed no drug-excipient incompatibility and amorphous dispersed of HP in SLN. Ex vivo study of HP-SLN loaded gel exhibited prolonged drug release up to 12 h where as in vitro drug deposition and skin irritation studies showed that HP-SLN formulation can avoid the systemic uptake, better accumulative uptake of the drug and nonirritant to the skin compared to marketed formulation. These results indicate that the studied HP-SLN formulation represent a promising carrier for topical delivery of HP, having controlled drug release, and potential of skin targeting with no skin irritation.

  12. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Dongfei; Jiang Sunmin [Nanjing Medical University, School of Pharmacy (China); Shen Hong [Nanjing Brain Hospital Affiliated to Nanjing Medical University, Neuro-Psychiatric Institute (China); Qin Shan; Liu Juanjuan; Zhang Qing; Li Rui, E-mail: chongloutougao@gmail.com; Xu Qunwei, E-mail: qunweixu@163.com [Nanjing Medical University, School of Pharmacy (China)

    2011-06-15

    The preparation of solid lipid nanoparticles (SLNs) suffers from the drawback of poor incorporation of water-soluble drugs. The aim of this study was therefore to assess various formulation and process parameters to enhance the incorporation of a water-soluble drug (diclofenac sodium, DS) into SLNs prepared by the emulsion/solvent evaporation method. Results showed that the entrapment efficiency (EE) of DS was increased to approximately 100% by lowering the pH of dispersed phase. The EE of DS-loaded SLNs (DS-SLNs) had been improved by the existence of cosurfactants and increment of PVA concentration. Stabilizers and their combination with PEG 400 in the dispersed phase also resulted in higher EE and drug loading (DL). EE increased and DL decreased as the phospholipid/DS ratio became greater, while the amount of DS had an opposite effect. Ethanol turned out to be the ideal solvent making DS-SLNs. EE and DL of DS-SLNs were not affected by either the stirring speed or the viscosity of aqueous and dispersed phase. According to the investigations, drug solubility in dispersion medium played the most important role in improving EE.

  13. Bio-modified carbon nanoparticles loaded with methotrexate Possible carrier for anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumar, Thangavelu [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India); Prabhavathi, Sundaram [Department of Biotechnology, SRM University, Kattankulathur, Chennai 603 203 (India); Chamundeeswari, Munusamy [St. Joseph' s College of Engineering, Sholinganallur, Chennai 600119 (India); Sastry, Thotapalli Parvathaleswara, E-mail: sastrytp@hotmail.com [Bio-Products Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, Tamil Nadu (India)

    2014-03-01

    The modification of carbon nanoparticles (CNPs) using biological molecules is important in the field of chemical biology, as the CNPs have the potential to deliver the drugs directly to the targeted cells and tissues. We have modified the CNPs by coating bovine serum albumin (BSA) on their surfaces and loaded with methotrexate (Mtx). Infrared spectra have revealed the coating of BSA and Mtx on CNP (CBM). Scanning electron microscopy (SEM) and atomic force microscope (AFM) pictures have exhibited the spherical nature of the composite and coating of the proteins on CNPs. The prepared CBM biocomposite has exhibited a sustained release of drug. MTT assay using A549 lung cancer cell lines has revealed 83% cell death at 150 μg/ml concentration of CBM. These results indicate that CNPs based biocomposites may be tried as therapeutic agents in treatment of cancer like diseases. - Highlights: • It's a cost effective method with maximum anticancer activity. • Maximum drug loading (methotrexate) and release have been achieved. • The prepared CBM was found to be biocompatible and hemocompatible. • About 83% of A549 lung cancer cell line apoptosis was observed with CBM.

  14. Aripiprazole loaded poly(caprolactone) nanoparticles: Optimization and in vivo pharmacokinetics.

    Science.gov (United States)

    Sawant, Krutika; Pandey, Abhijeet; Patel, Sneha

    2016-09-01

    In the present investigation, a Quality by Design strategy was applied for formulation and optimization of aripiprazole (APZ) loaded PCL nanoparticles (APNPs) using nanoprecipitation method keeping entrapment efficiency (%EE) and particle size (PS) as critical quality attributes. Establishment of design space was done followed by analysis of its robustness and sensitivity. Characterization of optimized APNPs was done using DSC, FT-IR, PXRD and TEM studies and was evaluated for drug release, hemocompatibility and nasal toxicity. PS, zeta potential and %EE of optimized APNPs were found to be 199.2±5.65nm, -21.4±4.6mV and 69.2±2.34% respectively. In vitro release study showed 90±2.69% drug release after 8h. Nasal toxicity study indicated safety of developed formulation for intranasal administration. APNPs administered via intranasal route facilitated the brain distribution of APZ incorporated with the AUC0→8 in rat brain approximately 2 times higher than that of APNPs administered via intravenous route. Increase in Cmax was observed which might help in dose reduction along with reduction in dose related side effects. The results of the study indicate that intranasally administered APZ loaded PCL NPs can potentially transport APZ via nose to brain and can serve as a non-invasive alternative for the delivery of APZ to brain.

  15. Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer.

    Science.gov (United States)

    Tsujimoto, Hironori; Morimoto, Yuji; Takahata, Risa; Nomura, Shinsuke; Yoshida, Kazumichi; Horiguchi, Hiroyuki; Hiraki, Shuichi; Ono, Satoshi; Miyazaki, Hiromi; Saito, Daizo; Hara, Isao; Ozeki, Eiichi; Yamamoto, Junji; Hase, Kazuo

    2014-12-01

    Although there have been multiple advances in the development of novel anticancer agents and operative procedures, prognosis of patients with advanced gastric cancer remains poor, especially in patients with peritoneal metastasis. In this study, we established nanoparticles loaded with indocyanine green (ICG) derivatives: ICG loaded lactosomes (ICGm) and investigated the diagnostic and therapeutic value of photodynamic therapy (PDT) using ICGm for experimental peritoneal dissemination of gastric cancer. Experimental peritoneal disseminated xenografts of human gastric cancer were established in nude mice. Three weeks after intraperitoneal injection of the cancer cells, either ICGm (ICGm-treated mice) or ICG solution (ICG-treated mice) was injected through the tail vein. Forty-eight hours after injection of the photosensitizer, in vivo and ex vivo imaging was carried out. For PDT, 48 h after injection of the photosensitizer, other mice were irradiated through the abdominal wall, and the body weight and survival rate were monitored. In vivo imaging revealed that peritoneal tumors were visualized through the abdominal wall in ICGm-treated mice, whereas only non-specific fluorescence was observed in ICG-treated mice. The PDT reduced the total weight of the disseminated nodules and significantly improved weight loss and survival rate in ICGm-treated mice. In conclusion, ICGm can be used as a novel diagnostic and therapeutic nanodevice in peritoneal dissemination of gastric cancer.

  16. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo.

    Science.gov (United States)

    Lu, Jingkai; Chuan, Xingxing; Zhang, Hua; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang

    2014-08-25

    Previously, PEGylated paclitaxel (PEG-PTX) was found not favorable as a polymer prodrug because of its poor antitumor efficiency. But surprisingly, it was found in our study that PEG-PTX could form a novel nanoparticle system with free PTX. To address how this system works, we compared PTX loaded PEG-PTX nanoparticles (PEG-PTX/PTX) with PTX loaded PEG-PLA micelles (PEG-PLA/PTX) or PTX injection available (Taxol(®)) in vitro and in vivo. Firstly, it was found that PEG-PTX/PTX was more stable in aqueous solution than PEG-PLA/PTX in terms of PTX crystal formation and drug release. Then it was demonstrated that coumarin loaded PEG-PTX nanoparticles had a much higher uptake in MCF-7 cells compared to coumarin loaded PEG-PLA micelles. The in vivo imaging study revealed that DIR or DID (near infrared fluorescent substances) loaded PEG-PTX nanoparticles distributed more in tumors in MCF-7 tumor bearing mice than DIR or DID loaded PEG-PLA micelles and solvent system of Taxol(®). In the efficacy study with MCF-7 tumor bearing mice, PEG-PTX/PTX showed significantly higher antitumor activity than PEG-PLA/PTX at the same PTX dosage. At the dose of 10mg free PTX per kg, PEG-PTX/PTX displayed similar efficacy as Taxol(®) but less toxicity evaluated by the loss of body weight. With the increase of free PTX to 15 mg/kg, PEG-PTX/PTX showed significantly better efficacy than Taxol(®). In conclusion, with favorable characteristics in stability, cellular uptake, cytotoxicity, biodistribution, safety and efficacy, PEG-PTX/PTX seems highly potential as a nanocarrier for PTX delivery.

  17. Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines.

    Science.gov (United States)

    Youm, Ibrahima; Youan, Bi-Botti C

    2013-10-01

    This study tests the hypothesis that pegylated nanoparticles (NPs) could be taken up by the cochlear cells [House Ear Institute-organ of Corti 1 (HEI-OC1) and Stria vascularis K-1 (SVK-1)], through endocytic pathways. Furthermore, the in vitro drug release and the cytotoxicity of Furosemide (FUR)-loaded NPs on these two cochlear cells are investigated. FUR-loaded pegylated NPs are prepared by the emulsion-solvent diffusion method without surfactant. The NPs are characterized for particle mean diameter, polydispersity index (PDI), morphology, percent drug encapsulation efficiency (EE%), and FUR release kinetics. The methyl tetrazolium salt (MTS) and lactate dehydrogenase (LDH) bioassays are used to evaluate in vitro, the cytotoxicity of FUR-loaded NPs and native FUR. The NPs uptake is investigated using confocal microscopy, microplate reader/fluorimetry, and flow cytometry. Spherical NPs with a mean diameter range of 133-210 nm and PDI values varying from 0.037 to 0.41 are produced. The FUR EE% is 86% and the drug is released from the NPs according to the zero-order and Higuchi models. After treatment with blank NPs, the percentage of cell viability and cell death are 95.96% and 8.95%, in HEI-OC1 cells, respectively. The NPs are internalized by HEI-OC1 cells through a clathrin-dependent pathway. In addition, results show that NPs can be taken up via clathrin and cytoskeleton mediated pathways in SVK-1 cells. The internalization of the pegylated NPs can enhance the drug toxicity by necrosis in a dose-dependent and sustained release manner. The formulated NPs provide a promising template for a targeted drug delivery system to the inner ear.

  18. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles.

    Science.gov (United States)

    Chorny, Michael; Hood, Elizabeth; Levy, Robert J; Muzykantov, Vladimir R

    2010-08-17

    Antioxidant enzymes have shown promise as a therapy for pathological conditions involving increased production of reactive oxygen species (ROS). However the efficiency of their use for combating oxidative stress is dependent on the ability to achieve therapeutically adequate levels of active enzymes at the site of ROS-mediated injury. Thus, the implementation of antioxidant enzyme therapy requires a strategy enabling both guided delivery to the target site and effective protection of the protein in its active form. To address these requirements we developed magnetically responsive nanoparticles (MNP) formed by precipitation of calcium oleate in the presence of magnetite-based ferrofluid (controlled aggregation/precipitation) as a carrier for magnetically guided delivery of therapeutic proteins. We hypothesized that antioxidant enzymes, catalase and superoxide dismutase (SOD), can be protected from proteolytic inactivation by encapsulation in MNP. We also hypothesized that catalase-loaded MNP applied with a high-gradient magnetic field can rescue endothelial cells from hydrogen peroxide toxicity in culture. To test these hypotheses, a family of enzyme-loaded MNP formulations were prepared and characterized with respect to their magnetic properties, enzyme entrapment yields and protection capacity. SOD- and catalase-loaded MNP were formed with average sizes ranging from 300 to 400 nm, and a protein loading efficiency of 20-33%. MNP were strongly magnetically responsive (magnetic moment at saturation of 14.3 emu/g) in the absence of magnetic remanence, and exhibited a protracted release of their cargo protein in plasma. Catalase stably associated with MNP was protected from proteolysis and retained 20% of its initial enzymatic activity after 24h of exposure to pronase. Under magnetic guidance catalase-loaded MNP were rapidly taken up by cultured endothelial cells providing increased resistance to oxidative stress (62+/-12% cells rescued from hydrogen peroxide induced

  19. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications.

    Science.gov (United States)

    Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S

    2016-07-01

    In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study.

  20. Comparison of three different conjugation strategies in the construction of herceptin-bearing paclitaxel-loaded nanoparticles.

    Science.gov (United States)

    Yu, Kongtong; Zhou, Yulin; Li, Yuhuan; Sun, Xiangshi; Sun, Fengying; Wang, Xinmei; Mu, Hongyan; Li, Jie; Liu, Xiaoyue; Teng, Lesheng; Li, Youxin

    2016-08-19

    Research on quantitatively controlling the ligand density on the surface of nanocarriers is in the frontier and becomes a technical difficulty for targeted delivery system designing. In this study, we developed an improved pre-conjugation (Imp) strategy, in which herceptin as a ligand was pre-conjugated with DSPE-PEG2000-Mal via chemical cross-linking, followed by conjugation onto the surface of pre-prepared paclitaxel-loaded PLGA/DODMA nanoparticles (PDNs) through hydrophobic interaction and electrostatic attraction for paclitaxel delivery. Compared with the post-conjugation (Pos) strategy, in which the ligand was conjugated onto the nanoparticle surface after the preparation of the nanoparticles, it realized a precise control targeting effect via adjustment of the herceptin density on the surface of the nanoparticles. Within the range of 0-20% of DSPE-PEG2000-herceptin in the blend, it showed a linear relation with the ligand density on the surface of the nanoparticles. The Imp strategy protected the bioactivity of the ligand during the preparation of nanoparticles. At the same time it avoided the waste of an excess amount of herceptin to drive the conjugation reaction in comparison with the post-conjugation (Pos) strategy. The nanoparticles from the Imp strategy showed much better cytotoxicity (p < 0.001), tumor targeting and cellular uptake efficiency (p < 0.001) than that of the other strategies in BT474 cells, in which BT474 cells were HER2 receptor over-expression breast cancer cell lines. A significant reduction in cellular uptake of the nanoparticles from the Imp strategy was observed in the presence of sucrose and cytochalasin D, indicating that clathrin-mediated and caveolae-dependent endocytosis was as a primary mechanism of cellular entry for these antibody-modified nanoparticles.

  1. Preparation and characterization of magnetic Fe{sub 3}O{sub 4}–chitosan nanoparticles loaded with isoniazid

    Energy Technology Data Exchange (ETDEWEB)

    Qin, H.; Wang, C.M.; Dong, Q.Q. [School of Chemistry and Materials Science, Nanjing Normal University Nanjing, Jiangsu 210097 (China); Zhang, L.; Zhang, X. [Nanjing Chest Hospital, Jiangsu 210097 (China); Ma, Z.Y., E-mail: 07197@njnu.edu.cn [School of Chemistry and Materials Science, Nanjing Normal University Nanjing, Jiangsu 210097 (China); Han, Q.R. [School of Chemistry and Materials Science, Nanjing Normal University Nanjing, Jiangsu 210097 (China)

    2015-05-01

    A novel and simple method has been proposed to prepare magnetic Fe{sub 3}O{sub 4}–chitosan nanoparticles loaded with isoniazid (Fe{sub 3}O{sub 4}/CS/INH nanocomposites). Efforts have been made to develop isoniazid (INH) loaded chitosan (CS) nanoparticles by ionic gelation of chitosan with tripolyphosphate (TPP). The factors that influence the preparation of chitosan nanoparticles, including the TPP concentration, the chitosan/TPP weight ratio and the chitosan concentration on loading capacity and encapsulation efficiency of chitosan nanoparticles were studied. The magnetic Fe{sub 3}O{sub 4} nanoparticles were prepared by co-precipitation method of Fe{sup 2+} and Fe{sup 3+}. Then the magnetic Fe{sub 3}O{sub 4}/CS/INH nanocomposites were prepared by ionic gelation method. The magnetic Fe{sub 3}O{sub 4} nanoparticles and magnetic Fe{sub 3}O{sub 4}/CS/INH nanocomposites were characterized by XRD, TEM, FTIR and SQUID magnetometry. The in vitro release of Fe{sub 3}O{sub 4}/CS/INH nanocomposites showed an initial burst release in the first 10 h, followed by a more gradual and sustained release for 48 h. It is suggested that the magnetic Fe{sub 3}O{sub 4}/CS/INH nanocomposites may be exploited as potential drug carriers for controlled-release applications in magnetic targeted drugs delivery system. - Highlights: • A novel and simple method for preparation of nanocomposites for biomedicine. • All the materials are non-toxic and biocompatibility. • This paper gives systematic study of the nanocomposites in biomedicine.

  2. The anti-tumor effect of p53 gene-loaded hydroxyapatite nanoparticles in vitro and in vivo

    Science.gov (United States)

    Zhao, Ruibo; Yang, Xinyan; Chen, Cen; Chen, Kan; Wang, Shibing; Xie, Chungang; Ren, Xiaoyuan; Kong, Xiangdong

    2014-04-01

    This research focused on anti-tumor effect of pEGFP-C1-p53 (p53) gene-loaded hydroxyapatite (HAp) nanoparticles in vitro and in vivo. Four kinds of HAp nanoparticles, spherical HAp nanoparticles (S-HAp, diameter: 50 nm), needle-like HAp nanoparticles (N-HAp, average length: 110 nm and width: 30 nm), rod-like HAp nanoparticles (R-HAp, average length: 100 nm and width: 30 nm), and short-rod-like HAp nanoparticles (SR-HAp, average length: 40 nm and width: 30 nm), were prepared initially. The HAp nanoparticles with or without being modified by PEI (named HAp and HAp-PEI, respectively) have excellent biocompatibility as shown by MTT assay and crystal violet staining tests. Then, the subsequent MTT, Hocehst staining tests, and Western blot showed that the killing effect of p53-loaded HAp-PEI (HAp-PEI-p53) was effective with fair selectivity toward Hep-3B and HuH-7 cells' cell lines. Moreover, HAp-PEI-p53 could inhibit the tumor growth in vivo, and the mechanism of tumor growth inhibition was verified by the hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, P53 protein immunohistochemistry, and transmission electron microscope of the tumor cell in vivo. We found that HAp-PEI-p53 has good anti-cancer effect in vitro and in vivo, especially for the S-HAp-PEI-p53. Tumor metastasis could be suppressed significantly by the S-HAp-PEI-p53 and N-HAp-PEI-p53 treatments by the in vivo imaging system. All these results lead to the conclusion that the particle sizes of HAp ranging from 100 to 200 nm are appropriate for cancer gene therapy and may be widely used in anti-cancer investigation.

  3. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy

    Directory of Open Access Journals (Sweden)

    Ranjan Amalendu P

    2012-08-01

    Full Text Available Abstract Background Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. Methods In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid nanoparticles (PLGA-CURC. This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM using Central Composite Design (CCD and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 ± 9.8 nm and the drug loading was determined to be 10.32 ± 1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞ being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. Conclusions A successful

  4. Pharmaceutical potential of tacrolimus-loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues.

    Science.gov (United States)

    Thao, Le Quang; Byeon, Hyeong Jun; Lee, Changkyu; Lee, Seunghyun; Lee, Eun Seong; Choi, Han-Gon; Park, Eun-Seok; Youn, Yu Seok

    2016-01-30

    Albumin is considered an attractive dug carrier for hydrophobic drugs to target inflamed joints of rheumatoid arthritis. This study focused on the pharmaceutical potential of albumin-based nanoparticles (NPs) on delivery of tacrolimus (TAC) to enhance targetability and anti-arthritic efficacy. TAC-loaded human serum albumin (HSA) nanoparticles (TAC HSA-NPs) were prepared using the nab™ technology. The resulting NPs were 185.8 ± 6.8 nm in diameter and had a zeta potential value of -30.5 ± 1.1 mV, as determined by dynamic light scattering. Particles were uniformly spherical in shape as determined by transmission electron microscopy. The encapsulation efficacy of TAC was 79.3 ± 3.7% and the water solubility was over 46 times greater than that of free TAC. TAC was gradually released from NPs over 24h, which is sufficient time for targeting and treatment of the NPs in inflamed arthritis via intravenous injection. In vitro study using splenocytes excised from spleens of mice following induction of arthritis using collagen clearly demonstrated the anti-proliferative activity of TAC HSA-NPs on activated T cells compared with non-activated T cells. Furthermore, TAC HSA-NPs displayed significantly more anti-arthritic activity than TAC formulations including intravenously administered TAC solution or oral TAC suspension, as reflected by the incidence of arthritis and clinical score (1.6 vs. 3.2 and 5.0, respectively). These improvements were due to the targetability of HSA that facilitated the accumulation of TAC HSA-NPs at inflamed arthritis sites. TAC HSA-NPs are a promising drug delivery system to enhance water solubility and increase accumulation in joints for treatment of rheumatoid arthritis.

  5. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    Directory of Open Access Journals (Sweden)

    Ahmed TA

    2016-02-01

    Full Text Available Tarek A Ahmed1,2 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt Abstract: In this study, optimized freeze-dried finasteride nanoparticles (NPs were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM. Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD. Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful

  6. Characterization, pharmacokinetics, and hypoglycemic effect of berberine loaded solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Xue M

    2013-12-01

    Full Text Available Mei Xue, Ming-xing Yang, Wei Zhang, Xiu-min Li, De-hong Gao, Zhi-min Ou, Zhi-peng Li, Su-huan Liu, Xue-jun Li, Shu-yu Yang Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, Xiamen, People’s Republic of China Abstract: The high aqueous solubility, poor permeability, and absorption of berberine (BBR result in its low plasma level after oral administration, which greatly limits its clinical application. BBR solid lipid nanoparticles (SLNs were prepared to achieve improved bioavailability and prolonged effect. Developed SLNs showed homogeneous spherical shapes, small size (76.8 nm, zeta potential (7.87 mV, encapsulation efficiency (58%, and drug loading (4.2%. The power of X-ray diffraction combined with 1H nuclear magnetic resonance spectroscopy was employed to analyze chemical functional groups and the microstructure of BBR-SLNs, and indicated that the drug was wrapped in a lipid carrier. Single dose (50 mg/kg oral pharmacokinetic studies in rats showed significant improvement (P<0.05 in the peak plasma concentration, area under the curve, and variance of mean residence time of BBR-SLNs when compared to BBR alone (P<0.05, suggesting improved bioavailability. Furthermore, oral administration of both BBR and BBR-SLNs significantly suppressed body weight gain, fasting blood glucose levels, and homeostasis assessment of insulin resistance, and ameliorated impaired glucose tolerance and insulin tolerance in db/db diabetic mice. BBR-SLNs at high dose (100 mg/kg showed more potent effects when compared to an equivalent dose of BBR. Morphologic analysis demonstrated that BBR-SLNs potentially promoted islet function and protected the islet from regeneration. In conclusion, our study demonstrates that by entrapping BBR into SLNs the absorption of BBR and its anti-diabetic action were effectively enhanced. Keywords: berberine, solid lipid nanoparticles, pharmacokinetic, hypoglycemic effect

  7. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile

    Science.gov (United States)

    Rafiei, Pedram; Haddadi, Azita

    2017-01-01

    Docetaxel is a highly potent anticancer agent being used in a wide spectrum of cancer types. There are important matters of concern regarding the drug’s pharmacokinetics related to the conventional formulation. Poly(lactide-co-glycolide) (PLGA) is a biocompatible/biodegradable polymer with variable physicochemical characteristics, and its application in human has been approved by the United States Food and Drug Administration. PLGA gives polymeric nanoparticles with unique drug delivery characteristics. The application of PLGA nanoparticles (NPs) as intravenous (IV) sustained-release delivery vehicles for docetaxel can favorably modify pharmacokinetics, biofate, and pharmacotherapy of the drug in cancer patients. Surface modification of PLGA NPs with poly(ethylene glycol) (PEG) can further enhance NPs’ long-circulating properties. Herein, an optimized fabrication approach has been used for the preparation of PLGA and PLGA–PEG NPs loaded with docetaxel for IV application. Both types of NP formulations demonstrated in vitro characteristics that were considered suitable for IV administration (with long-circulating sustained-release purposes). NP formulations were IV administered to an animal model, and docetaxel’s pharmacokinetic and biodistribution profiles were determined and compared between study groups. PLGA and PEGylated PLGA NPs were able to modify the pharmacokinetics and biodistribution of docetaxel. Accordingly, the mode of changes made to pharmacokinetics and biodistribution of docetaxel is attributed to the size and surface properties of NPs. NPs contributed to increased blood residence time of docetaxel fulfilling their role as long-circulating sustained-release drug delivery systems. Surface modification of NPs contributed to more pronounced docetaxel blood concentration, which confirms the role of PEG in conferring long-circulation properties to NPs. PMID:28184163

  8. Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicroside and hydroxytyrosol.

    Science.gov (United States)

    Guan, Qingxia; Sun, Shuang; Li, Xiuyan; Lv, Shaowa; Xu, Ting; Sun, Jialin; Feng, Wenjing; Zhang, Liang; Li, Yongji

    2016-02-01

    This study investigated the therapeutic efficiency of monomethoxy polyethylene glycol-poly(lactic-co-glycolic acid) (mPEG-PLGA) co-loaded with syringopicroside and hydroxytyrosol as a drug with effective targeting and loading capacity as well as persistent circulation in vivo. The nanoparticles were prepared using a nanoprecipitation method with mPEG-PLGA as nano-carrier co-loaded with syringopicroside and hydroxytyrosol (SH-NPs). The parameters like in vivo pharmacokinetics, biodistribution in vivo, fluorescence in vivo endomicroscopy, and cellular uptake of SH-NPs were investigated. Results showed that the total encapsulation efficiency was 32.38 ± 2.76 %. Total drug loading was 12.01 ± 0.42 %, particle size was 91.70 ± 2.11 nm, polydispersity index was 0.22 ± 0.01, and zeta potential was -24.5 ± 1.16 mV for the optimized SH-NPs. The nanoparticle morphology was characterized using transmission electron microscopy, which indicated that the particles of SH-NPs were in uniformity within the nanosize range and of spherical core shell morphology. Drug release followed Higuchi kinetics. Compared with syringopicroside and hydroxytyrosol mixture (SH), SH-NPs produced drug concentrations that persisted for a significantly longer time in plasma following second-order kinetics. The nanoparticles moved gradually into the cell, thereby increasing the quantity. ALT, AST, and MDA levels were significantly lower on exposure to SH-NPs than in controls. SH-NPs could inhibit the proliferation of HepG2.2.15 cells and could be taken up by HepG2.2.15 cells. The results confirmed that syringopicroside and hydroxytyrosol can be loaded simultaneously into mPEG-PLGA nanoparticles. Using mPEG-PLGA as nano-carrier, sustained release, high distribution in the liver, and protective effects against hepatic injury were observed in comparison to SH.

  9. Dual Agent Loaded PLGA Nanoparticles Enhanced Antitumor Activity in a Multidrug-Resistant Breast Tumor Eenograft Model

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-02-01

    Full Text Available Multidrug-resistant breast cancers have limited and ineffective clinical treatment options. This study aimed to develop PLGA nanoparticles containing a synergistic combination of vincristine and verapamil to achieve less toxicity and enhanced efficacy on multidrug-resistant breast cancers. The 1:250 molar ratio of VCR/VRP showed strong synergism with the reversal index of approximately 130 in the multidrug-resistant MCF-7/ADR cells compared to drug-sensitive MCF-7 cells. The lyophilized nanoparticles could get dispersed quickly with the similar size distribution, zeta potential and encapsulation efficiency to the pre-lyophilized nanoparticles suspension, and maintain the synergistic in vitro release ratio of drugs. The co-encapsulated nanoparticle formulation had lower toxicity than free vincristine/verapamil combinations according to the acute-toxicity test. Furthermore, the most effective tumor growth inhibition in the MCF-7/ADR human breast tumor xenograft was observed in the co-delivery nanoparticle formulation group in comparison with saline control, free vincristine, free vincristine/verapamil combinations and single-drug nanoparticle combinations. All the data demonstrated that PLGANPs simultaneously loaded with chemotherapeutic drug and chemosensitizer might be one of the most potential formulations in the treatment of multidrug-resistant breast cancer in clinic.

  10. Comparison of pharmacokinetic profiles of PM02734 loaded lipid nanoparticles and cyclodextrins: in vitro and in vivo characterization.

    Science.gov (United States)

    Estella-Hermoso de Mendoza, A; Calvo, P; Bishop, A; Avilés, P; Blanco-Prieto, M J

    2012-08-01

    PM02734 is a chemically synthesized depsipeptide derived from the marine kahalalides family with a broad spectrum of activity against solid tumors in vitro and in vivo, but presenting low bioavailability. In this work, solid lipid nanoparticles made of Precirol ATO 5 have been developed using a hot homogenization method followed by high shear homogenization and ultrasonication. These solid lipid nanoparticles show suitable size (around 150 nm) and encapsulation efficiency (nearly 70%) for the oral administration of the compound PM02734. A physical-chemical stability study was performed after 6 months of storage at different thermical conditions, concluding that solid lipid nanoparticles stored at 4 degrees C were more stable than solid lipid nanoparticles stored at 25 degrees C. The pharmacokinetic profile of drug-loaded solid lipid nanoparticles was also evaluated in Beagle dogs and compared with that of a cyclodextrin-based delivery system by means of AUC, C(max) and T(max) parameter estimation. Solid lipid nanoparticle based formulation provided a sustained release of the drug for a longer period of time than the cyclodextrins.

  11. Structural consequences of binding of UO{sub 2}{sup 2+} to apo-transferrin: Can this protein account for entry of uranium into human cells?

    Energy Technology Data Exchange (ETDEWEB)

    Vidaud, C [CEA Valrho, DSV, DIEP, Service de Biochimie Post Genomique and Toxicologie Nucleaire, F-30207 Bagnols Sur Ceze (France); Vidaud, C.; Gourion-Arsiquaud, S; Rollin-Genetet, F; Torne-Celer, C; Plantevin, S; Pible, O; Quemeneur, E; Berthomieu, C. [CEA Cadarache, Laboratoire de Bioenergetique Cellulaire and Laboratoire des Interactions Proteine-Metal, DSV/DEVM, UMR 6191 CNRS-CEA-Universite Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex (France)

    2007-02-15

    It has been established that transferrin binds a variety of metals. These include toxic uranyl ions which form rather stable uranyl-transferrin derivatives. We determined the extent to which the iron binding sites might accommodate the peculiar topographic profile of the uranyl ion and the consequences of its binding on protein conformation. Indeed, metal intake via endocytosis of the transferrin/transferrin receptor depends on the adequate coordination of the metal in its site, which controls protein conformation and receptor binding. Using UV-vis and Fourier transform infrared difference spectroscopy coupled to a micro-dialysis system, we showed that at both metal binding sites two tyrosines are uranyl ligands, while histidine does not participate with its coordination sphere. Analysis by circular dichroism and differential scanning calorimetry (DSC) showed major differences between structural changes associated with interactions of iron or uranyl with apo-transferrin. Uranyl coordination reduces the level of protein stabilization compared to iron, but this may be simply related to partial lobe closure. The lack of interaction between uranyl-TF and its receptor was shown by flow cytometry using Alexa 488-labeled holo-transferrin. We propose a structural model summarizing our conclusion that the uranyl-TF complex adopts an open conformation that is not appropriate for optimal binding to the transferrin receptor. (authors)

  12. Radiosensitization of TPGS-emulsified docetaxel-loaded poly(lactic-co-glycolic acid) nanoparticles in CNE-1 and A549 cells.

    Science.gov (United States)

    Shi, Wei; Yuan, Yin; Chu, Min; Zhao, Shuang; Song, Qingle; Mu, Xiaoqian; Xu, Shuangbing; Zhang, Zhiping; Yang, Kunyu

    2016-03-01

    Docetaxel is among the most effective radiosensitizers. It is widely used as radiosensitizer in many tumors, including head and neck carcinoma. Nevertheless, poor solubility and severe hypersensitivity limit its clinical use and its therapeutic effect remains to be improved. In this study, docetaxel-loaded polymeric nanoparticles were prepared by nanoprecipitation method to be new radiosensitizer with lower side effects and higher efficacy. The physiochemical characteristics of the nanoparticles were studied. Two human tumor cell lines which are resistant to radiotherapy were used in this research. We have compared the radioenhancement efficacy of docetaxel-loaded nanoparticles with docetaxel in A549 and CNE-1 cells. Compared with docetaxel, radiosensitization of docetaxel-loaded nanoparticles was improved significantly (sensitization enhancement ratio in A549 increased 1.24-fold to 1.68-fold when the radiation was applied 2 h after the drug, p nanoparticles. The improved radiosensitization efficacy was associated with enhanced G2/M arrest, promoted apoptosis and the role of D-alpha-tocopheryl polyethylene glycol 1000 succinate which will enhance the cell uptake and inhibit the multiple drug resistance. Moreover, the radiosensitization efficacy of docetaxel-loaded nanoparticles was more prominent than docetaxel. In conclusion, tocopheryl polyethylene glycol 1000 succinate-emulsified docetaxel-loaded PLGA nanoparticles were more efficacious and fewer adverse effects were observed than with the commercial docetaxel formulation. Thus, PLGA nanoparticles hold promise as a radiosensitizing agent.

  13. Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles

    Directory of Open Access Journals (Sweden)

    Lou J

    2014-05-01

    Full Text Available Jie Lou,1 Wenjing Hu,2 Rui Tian,3 Hua Zhang,1 Yuntao Jia,4 Jingqing Zhang,1 Liangke Zhang11Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China; 2Chongqing Xijiao Hospital, Chongqing, People’s Republic of China; 3The Experimental Teaching Centre, Chongqing Medical University, Chongqing, People’s Republic of China; 4Department of Pharmacy, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaAbstract: This study aimed to optimize and evaluate a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles (Cur-BSA-NPs-Gel. Albumin nanoparticles were prepared via a desolvation method, and the gels were prepared via a cold method. The central composite design and response surface method was used to evaluate the effects of varying Pluronic® F127 and Pluronic® F68 concentrations on the sol–gel transition temperature, which is an indicator of optimum formulations. The optimized formulation was a free-flowing liquid below 30.9°C that transformed into a semi-solid gel above 34.2°C after dilution with simulated tear fluid. Results of the in vitro release and erosion behavior study indicated that Cur-BSA-NPs-Gel achieved superior sustained-release effects and that incorporation of albumin nanoparticles exerted minimal effects on the gel structure. In addition, in vivo ophthalmic experiments employing Cur-BSA-NPs-Gel were subsequently performed in rabbits. In vivo eye irritation results showed that Cur-BSA-NPs-Gel might be considered safe for ophthalmic drug delivery. The in vivo study also revealed that the formulation could significantly increase curcumin bioavailability in the aqueous humor. In conclusion, the optimized in situ gel formulation developed in this work has significant potential for ocular application.Keywords: diabetic retinopathy, sustained release

  14. Preparation and in vivo pharmacokinetics of curcumin-loaded PCL-PEG-PCL triblock copolymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Feng R

    2012-07-01

    Full Text Available Runliang Feng,1,* Zhimei Song,1,* Guangxi Zhai2 1Department of Pharmaceutical Engineering, College of Medicine and Life Science, University of Jinan, Jinan, Shandong Province, 2Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province, People's Republic of China*These authors contributed equally to this workBackground: Curcumin (CUR has been linked with antioxidant, anti-inflammatory, antimicrobial, anti amyloid, and antitumor effects, but its application is limited because of its low aqueous solubility and poor oral bioavailability.Methods: To improve its bioavailability and water solubility, we synthesized two series of poly (ε-Caprolactone-poly (ethylene glycol-poly (ε-Caprolactone triblock copolymers by ring-opening polymerization of poly (ethylene glycol and ε-Caprolactone, with stannous 2-ethylhexanoate as the catalyst. Structure of the copolymers was characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography. The nanoparticles (NPs were prepared using a probe-type ultrasonic emulsion and solvent evaporation method. To obtain an optimal delivery system, we explored the effect of the length of the copolymers' hydrophilic and hydrophobic chains on the encapsulation of hydrophobic CUR, performing entrapment efficiency and drug loading evaluations, as well as studying the particle distribution and in vitro release using the direct dispersion method. Finally, study of the in vivo pharmacokinetics of the CUR-loaded NPs was also carried out on selected copolymers in comparison with CUR solution formulations.Results: CUR was encapsulated with 94.3% and 95.5% efficiency in biodegradable nanoparticulate formulations based on NP43 and NP63, respectively. Dynamic laser light scattering and transmission electron microscopy indicated a particle diameter of 55.6 nm and 62.4 nm for NP43 and NP63, respectively. Fourier transform

  15. In vitro evaluation of 5-aminolevulinic acid (ALA loaded PLGA nanoparticles

    Directory of Open Access Journals (Sweden)

    Shi L

    2013-07-01

    Full Text Available Lei Shi,1 Xiuli Wang,1 Feng Zhao,2 Hansen Luan,2 Qingfeng Tu,1 Zheng Huang,3 Hao Wang,2 Hongwei Wang1,41Shanghai Skin Disease Hospital, Shanghai, People's Republic of China; 2National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China; 3Ministry of Education (MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Normal University, Fuzhou, People's Republic of China; 4Huadong Hospital, Fudan University, Shanghai, People's Republic of ChinaBackground: 5-Aminolevulinic acid (ALA is a prodrug for topical photodynamic therapy. The effectiveness of topical ALA can be limited by its bioavailability. The aim of this study was to develop a novel ALA delivery approach using poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs.Methods: A modified double emulsion solvent evaporation method was used to prepare ALA loaded PLGA NPs (ALA PLGA NPs. The characteristics, uptake, protoporphyrin IX fluorescence kinetics, and cytotoxicity of ALA PLGA NPs toward a human skin squamous cell carcinoma cell line were examined.Results: The mean particle size of spherical ALA PLGA NPs was 65.6 nm ± 26 nm with a polydispersity index of 0.62. The encapsulation efficiency was 65.8% ± 7.2% and ALA loading capacity was 0.62% ± 0.27%. When ALA was dispersed in PLGA NPs, it turned into an amorphous phase. ALA PLGA NPs could be taken up by squamous cell carcinoma cells and localized in the cytoplasm. The protoporphyrin IX fluorescence kinetics and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay showed that ALA PLGA NPs were more effective than free ALA of the same concentration.Conclusion: PLGA NPs provide a promising ALA delivery strategy for topical ALA-photodynamic therapy of skin squamous cell carcinoma.Keywords: 5-Aminolevulinic acid (ALA, nanoparticles, poly(lactic-co-glycolic acid (PLGA, skin squamous cell carcinoma, photodynamic therapy (PDT

  16. Preparation and in vitro/in vivo characterization of enteric-coated nanoparticles loaded with the antihypertensive peptide VLPVPR

    Directory of Open Access Journals (Sweden)

    Sun HY

    2014-04-01

    Full Text Available Haiyan Sun, Dong Liu, Yan Li, Xuwei Tang, Yanli Cong Shenzhen Key Laboratory of Fermentation, Purification and Analysis, Shenzhen Polytechnic, Guangdong, People's Republic of China Abstract: Our previous study revealed that the peptide Val-Leu-Pro-Val-Pro-Arg (VLPVPR, which was prepared using deoxyribonucleic acid recombinant technology, effectively decreased the blood pressure of spontaneous hypertensive rats; however, the effect only lasts 6 hours, likely due to its low absorption in the gastrointestinal tract. To overcome this problem, the purpose of this study was to characterize (methoxy-polyethylene glycol-b-poly(D,L-lactide-co-glycolide-b-poly(L-lysine nanoparticles as in vitro and in vivo carriers for the effective delivery of VLPVPR. In our study, the VLPVPR nanoparticles were prepared using a double emulsion method, coated with Eudragit S100, and freeze-dried to produce enteric-coated nanoparticles. The optimized parameters from the double emulsion method was obtained from orthogonal experiments, including drug loading (DL and encapsulated ratio (ER at 6.12% and 86.94%, respectively, and the average particle size was below 100 nm. The release experiment demonstrated that the nanoparticles were sensitive to pH: almost completely released at pH 7.4 after 8 hours, but demonstrated much less release at pH 4.5 or pH 1.0 in the same amount of time. Therefore, the nanoparticles are suitable for enteric release. In vivo compared with the untreated group, the medium and high doses of orally administered VLPVPR nanoparticles reduced blood pressure for more than 30 hours, demonstrating that these nanoparticles have long-lasting and significant antihypertensive effects in spontaneously hypertensive rats. Keywords: mPEG-PLGA-PLL, in vivo studies, Val-Leu-Pro-Val-Pro-Arg peptide, enteric-coated, nanoparticle, antihypertensive peptide

  17. Development and analytical characterization of vitamin(s)-loaded chitosan nanoparticles for potential food packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, Antonella, E-mail: antonellamaria.aresta@uniba.it; Calvano, Cosima Damiana [University of Bari, Department of Chemistry (Italy); Trapani, Adriana; Cellamare, Saverio [University of Bari, Department of Pharmacy-Drug Sciences (Italy); Zambonin, Carlo Giorgio; De Giglio, Elvira [University of Bari, Department of Chemistry (Italy)

    2013-04-15

    Most vitamins are well-known natural antioxidant agents which can be usefully employed for foods preservation to increase their shelf life. In the present study, we aimed to investigate the potential of vitamin-based chitosan nanoparticles (CSNPs) for novel food packaging application. In particular, Vitamin C- and/or E-loaded CSNPs were formulated following the ionic gelation technique and using sulfobutylether-{beta}-cyclodextrin as cross-linking agent. The obtained CSNPs were characterized in terms of size and zeta potential measurements, leading to size range of 375-503 nm and zeta range values from +16.0 to +33.8 mV. At the solid-state, the same particles were subjected to X-ray photoelectron spectroscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. Then, the antioxidant potential of the produced vitamin(s) nanoparticulate formulations has been evaluated through 1,1-diphenyl-2-picrylhydrazyl test, a rapid spectrophotometric assay. The standardized procedure was used on vitamin(s)-modified CSNPs systems to determine both the amount of active vitamin(s) loaded in CSNPs and their release performances by in vitro release studies. Of all, high vitamins association efficiency along with an improvement of their shelf life (also under light exposure up to 7 days) were achieved. Altogether, the results suggest that Vitamin E is available in a hydrophilic delivery system able to replace organic solvents usually used for the solubilization of this antioxidant agent. In conclusion, these nanocarriers represent a promising strategy for the co-administration of Vitamin E and Vitamin C in packaging materials intended for a better storage of hydrophilic and/or lipophilic food.

  18. A novel approach to oral iron delivery using ferrous sulphate loaded solid lipid nanoparticles.

    Science.gov (United States)

    Zariwala, M Gulrez; Elsaid, Naba; Jackson, Timothy L; Corral López, Francisco; Farnaud, Sebastien; Somavarapu, Satyanarayana; Renshaw, Derek

    2013-11-18

    Iron (Fe) loaded solid lipid nanoparticles (SLN's) were formulated using stearic acid and iron absorption was evaluated in vitro using the cell line Caco-2 with intracellular ferritin formation as a marker of iron absorption. Iron loading was optimised at 1% Fe (w/w) lipid since an inverse relation was observed between initial iron concentration and SLN iron incorporation efficiency. Chitosan (Chi) was included to prepare chitosan coated SLN's. Particle size analysis revealed a sub-micron size range (300.3±31.75 nm to 495.1±80.42 nm), with chitosan containing particles having the largest dimensions. As expected, chitosan (0.1%, 0.2% and 0.4% w/v) conferred a net positive charge on the particle surface in a concentration dependent manner. For iron absorption experiments equal doses of Fe (20 μM) from selected formulations (SLN-FeA and SLN-Fe-ChiB) were added to Caco-2 cells and intracellular ferritin protein concentrations determined. Caco-2 iron absorption from SLN-FeA (583.98±40.83 ng/mg cell protein) and chitosan containing SLN-Fe-ChiB (642.77±29.37 ng/mg cell protein) were 13.42% and 24.9% greater than that from ferrous sulphate (FeSO4) reference (514.66±20.43 ng/mg cell protein) (p≤0.05). We demonstrate for the first time preparation, characterisation and superior iron absorption in vitro from SLN's, suggesting the potential of these formulations as a novel system for oral iron delivery.

  19. Formulation Optimization of Rosuvastatin Calcium-Loaded Solid Lipid Nanoparticles by 32 Full-Factorial Design

    Directory of Open Access Journals (Sweden)

    Kruti A. Dhoranwala

    2015-12-01

    Full Text Available The present investigation was aimed at developing Rosuvastatin Calcium loaded solid lipid nanoparticles (SLNs. The SLNs were prepared using high pressure homogenization technique. Glyceryl monostearate (GMS and Poloxamer 188 were employed as lipid carrier and surfactant respectively. A two factor, three level (32 full factorial design was applied to study the effect of independent variables i.e. amount of GMS (X1 and amount of Poloxamer 188 (X2 on dependent variables i.e. Particle size (Y1 and % entrapment efficiency (Y2. Particles size, % entrapment efficiency (%EE, zeta potential, drug content, in vitro drug release and particles morphology were evaluated for SLNs. Contour plots and response surface plots showed visual representation of relationship between the experimental responses (dependent variables and the set of input (independent variables. The adequacy of the regression model was verified by a check point analysis. The optimized batch (B10 contained 2.2 gm of GMS and 1% of Poloxamer 188. Batch B 10 exhibited mean particle size of 529.6 nm ± 6.36 nm; polydispersity index (PDI of 0.306 ± 0.042; zeta potential of -31.88 mV ± (-2.50 mV and %EE of 48.90% ± 1.72%. The drug release experiments exhibited an initial rapid release followed by sustained release extended upto 36 h. Differential scanning calorimetry (DSC studies showed that there was no chemical interaction between drug (Rosuvastatin Calcium and lipid (GMS whereas scanning electron microscopy (SEM studies indicated that Rosuvastatin Calcium loaded SLNs are spherical, discrete and homogenous. Accelerated stability studies showed that there was no significant change occurring in the responses after storage for a total period of 3 months.

  20. Fabrication and evaluation of curcumin-loaded nanoparticles based on solid lipid as a new type of colloidal drug delivery system

    Directory of Open Access Journals (Sweden)

    J Chen

    2013-01-01

    Full Text Available Curcumin has very broad spectrum of biological activities; however, photodegradation, short half-life and low bioavailability have limited its clinical application. Curcumin-loaded solid lipid nanoparticles were studied to overcome these problems. The aim of this study was to optimize the best formulation on curcumin-loaded solid lipid nanoparticles. Emulsion-evaporation and low temperature-solidification technique was applied with monostearin as lipid carriers. The single factor analysis and orthogonal design were used to optimize formulation and various parameters were investigate. By the optimisation of a single factor analysis and orthogonal test, the particles size, polydispersity index, zeta potential, encapsulation efficiency and drug loading capacity of the optimised formulation were 99.99 nm, 0.158, −19.9 mV, 97.86%, and 4.35%, respectively. The differential scanning calorimetry and X-ray diffraction analysis results demonstrated new structure was formed in nanoparticles. The release kinetics in vitro demonstrated curcumin-loaded solid lipid nanoparticles can control drug release. These studies confirmed that curcumin-loaded solid lipid nanoparticles could be prepared successfully with high drug entrapment efficiency and loading capacity. Curcumin-loaded solid lipid nanoparticles may be a promising drug delivery system to control drug release and improve bioavailability.

  1. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    Science.gov (United States)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2016-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  2. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines

    Science.gov (United States)

    Panwar, Richa; Sharma, Asvene K.; Kaloti, Mandeep; Dutt, Dharm; Pruthi, Vikas

    2016-08-01

    Ferulic acid (FA) is a widely distributed hydroxycinnamic acid found in various cereals and fruits exhibiting potent antioxidant and anticancer activities. However, due to low solubility and permeability, its availability to biological systems is limited. Non-toxic chitosan-tripolyphosphate pentasodium (CS-TPP) nanoparticles (NPs) are used to load sparingly soluble molecules and drugs, increasing their bioavailability. In the present work, we have encapsulated FA into the CS-TPP NPs to increase its potential as a therapeutic agent. Different concentrations of FA were tested to obtain optimum sized FA-loaded CS-TPP nanoparticles (FA/CS-TPP NPs) by ionic gelation method. Nanoparticles were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy (FTIR), thermogravimetric analyses and evaluated for their anticancer activity against ME-180 human cervical cancer cell lines. The FTIR spectra confirmed the encapsulation of FA and thermal analysis depicted its degradation profile. A concentration-dependent relationship between FA encapsulation efficiency and FA/CS-TPP NPs diameter was observed. Smooth and spherical FA-loaded cytocompatible nanoparticles with an average diameter of 125 nm were obtained at 40 µM FA conc. The cytotoxicity of 40 µM FA/CS-TPP NPs against ME-180 cervical cancer cell lines was found to be higher as compared to 40 µM native FA. Apoptotic morphological changes as cytoplasmic remnants and damaged wrinkled cells in ME-180 cells were visualized using scanning electron microscopic and fluorescent microscopic techniques. Data concluded that chitosan enveloped FA nanoparticles could be exploited as an excellent therapeutic drug against cancer cells proliferation.

  3. Towards better modelling of drug-loading in solid lipid nanoparticles: Molecular dynamics, docking experiments and Gaussian Processes machine learning.

    Science.gov (United States)

    Hathout, Rania M; Metwally, Abdelkader A

    2016-11-01

    This study represents one of the series applying computer-oriented processes and tools in digging for information, analysing data and finally extracting correlations and meaningful outcomes. In this context, binding energies could be used to model and predict the mass of loaded drugs in solid lipid nanoparticles after molecular docking of literature-gathered drugs using MOE® software package on molecularly simulated tripalmitin matrices using GROMACS®. Consequently, Gaussian processes as a supervised machine learning artificial intelligence technique were used to correlate the drugs' descriptors (e.g. M.W., xLogP, TPSA and fragment complexity) with their molecular docking binding energies. Lower percentage bias was obtained compared to previous studies which allows the accurate estimation of the loaded mass of any drug in the investigated solid lipid nanoparticles by just projecting its chemical structure to its main features (descriptors).

  4. Improved antifungal activity of itraconazole-loaded PEG/PLA nanoparticles.

    Science.gov (United States)

    Essa, Sherief; Louhichi, Fatiha; Raymond, Martine; Hildgen, Patrice

    2013-01-01

    Poly(ethylene glycol)/polylactic acid (PEG/PLA) nanoparticles (NPs) containing the hydrophobic antifungal itraconazole (ITZ) were developed to provide a controlled release pattern of ITZ as well as to improve its aqueous dispersibility and hence enhance its antifungal action. Two PEG/PLA copolymers (PEGylated PLA polymers) were used in this study; branched PEGylated polymer in which PEG was grafted on PLA backbone at 7% (mol/mol of lactic acid monomer), PEG7%-g-PLA, and multiblock copolymer of PLA and PEG, (PLA-PEG-PLA)n with nearly similar PEG insertion ratio and similar PEG chain length. ITZ-loaded PLA NPs were also prepared and included in this study as a control. ITZ-NPs were prepared from a 1 : 1 w/w blend of PLA and each PEGylated polymer either PEG7%-g-PLA or (PLA-PEG-PLA)n using an oil-in-water emulsion evaporation method. The NPs morphology, size and size distribution, zeta potential, loading efficiency, release profile and antifungal activity were characterized. All ITZ-NPs were nearly spherical with smooth surface and showed less aggregating tendency with a size range of 185-285 nm. All ITZ-NPs measured nearly neutral zeta potential values close to 0 mV. The % LE of ITZ was ∼94% for PEG7%-g-PLA NPs and ∼83% for (PLA-PEG-PLA)n at 15.3% w/w theoretical loading. PEG/PLA NPs were stable over time regarding size and size distribution and % ITZ loading efficiency (% LE). ITZ release showed an initial burst followed by a gradual release profile for ITZ-NPs over 5 days. (PLA-PEG-PLA)n NPs exhibited faster release rates than PEG7%-g-PLA NPs particularly at the last 2 days. Differential scanning calorimetry and powder X-ray diffractometry data confirmed that ITZ exists in an amorphous state or a solid solution state into the NPs matrix. Fourier transform infrared revealed the possibility of chemical interaction between ITZ and the NPs matrix polymer indicating the successful entrapment of ITZ inside the particles. In haemolysis test, ITZ-NPs caused

  5. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(L-lactide) fibrous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shen [Department of Orthopaedics, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Zhao, Jingwen [Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215007 (China); School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Ruan, Hongjiang; Wang, Wei [Department of Orthopaedics, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China); Wu, Tianyi [Department of Orthopaedic Surgery, 2nd Affiliated hospital of Nanjing Medical University, Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011 (China); Cui, Wenguo, E-mail: wgcui80@hotmail.com [Orthopedic Institute, Soochow University, 708 Renmin Road, Suzhou, Jiangsu 215007 (China); School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Fan, Cunyi, E-mail: fancunyi888@hotmail.com [Department of Orthopaedics, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233 (China)

    2013-04-01

    The complications of tendon injury are frequently compromised by peritendinous adhesions and tendon sheath infection. Physical barriers for anti-adhesion may increase the incidence of postoperative infection. This study was designed to evaluate the potential of silver nanoparticles (AgNPs)-loaded poly(L-lactide) (PLLA) electrospun fibrous membranes to prevent adhesion formation and infection. Results of an in vitro drug release study showed that a burst release was followed by sustained release from electrospun fibrous membranes with a high initial silver content. Fewer fibroblasts adhered to and proliferated on the AgNP-loaded PLLA electrospun fibrous membranes compared with pure PLLA electrospun fibrous membrane. In the antibacterial test, the AgNP-loaded PLLA electrospun fibrous membranes can prevent the adhesion of Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa. Taken together, these results demonstrate that AgNP-loaded PLLA electrospun fibrous membranes have the convenient practical medical potential of reduction of infection and adhesion formation after tendon injury. - Highlights: ► Silver nanoparticles are directly electrospun into PLLA fibrous membrane. ► Long-lasting release of Ag + ions is achieved. ► Cytotoxicity of silver ions benefits the anti-proliferation of physical barriers. ► Broad anti-microbial effect of drug-loaded fibrous membrane is revealed. ► Antibacterial and anti-adhesion effects of the physical barriers are combined.

  6. Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading.

    Science.gov (United States)

    He, Qiulai; Yuan, Zhe; Zhang, Jing; Zhang, Shilu; Zhang, Wei; Zou, Zhuocheng; Wang, Hongyu

    2017-04-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) has raised concerns about the environmental threats to the wastewater treatment systems. Shock loading of 10, 50 and 100 mg/L ZnO NPs was conducted to evaluate impacts on reactor performance, microbial activities and extracellular polymeric substances (EPS) in parent aerobic/oxic/anoxic (A/O/A) granular sequencing batch reactors (SBRs). The results showed that ZnO NPs caused inhibition to nitrogen transformations due to acute toxicity to nitrification and denitrification. However, phosphorus removal remained unaffected by the exposure to ZnO NPs. Besides, ZnO NPs significantly enhanced the oxygen respiration rate and caused acute toxicity to ammonia oxidizing rate (10.40-35.21%), phosphorus release rate (37.79-19.80%), aerobic phosphorus uptake rate (36.95-20.69%) and total phosphorus uptake rate (32.77-16.91%) of aerobic granules. ZnO NPs stimulated the secretion of EPS, especially the content of protein (PN), which could relieve the toxicity of ZnO NPs.

  7. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq

    2017-02-01

    Full Text Available The present research work focuses on a novel ultraclean desulfurization process of model oil by the adsorption method using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent. The parameters investigated are effect of contact time, adsorbent dose, initial dibenzothiophene (DBT concentration and temperature. Experimental tests were conducted in batch process. Pseudo first and second order kinetic equations were used to examine the experimental data. It was found that pseudo second order kinetic equation described the data of the DBT adsorption onto all types of adsorbents very well. The isotherm data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm model fits the data very well for the adsorption of DBT onto all three forms of adsorbents. The adsorption of DBT was also investigated at different adsorbent doses and was found that the percentage adsorption of DBT was increased with increasing the adsorbent dose, while the adsorption in mg/g was decreased with increasing the adsorbent dose. The prepared adsorbents were analyzed by scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX and X-ray diffraction (XRD.

  8. Molybdenum-Loaded Anatase TiO2 Nanoparticles With Enhanced Optoelectronics Properties

    Science.gov (United States)

    Bargougui, R.; Bouazizi, N.; Ammar, S.; Azzouz, A.

    2017-01-01

    The structural, optical and electrical properties of molybdenum nanoparticles (Mo-NPs)-loaded anatase TiO2 were investigated using x-ray diffraction, UV-Vis diffuse reflectance, and Fourier transform infrared and complex impedance spectroscopy. x-ray diffraction showed that Mo-NPs incorporation induced a decrease in particle size from 30 nm to 21 nm of TiO2 and TiO2-Mo, respectively, producing a slight structure expansion. Mo-NPs dispersion resulted in a slight decrease in the optical band gap energy from 3.85 eV to 3.51 eV. Slight shifts towards higher wavelengths were attributed to the change in the acceptor capacity level induced by Mo-NPs. In addition, the ac impedance studies show the effect of Mo-NPs incorporation that appeared to be responsible for conductance of enhancement. The conduction mechanism is based on space charge-limited current via deep levels with different energy positions in the band gap. The temperature dependence of electrical properties showed that both capacitance and conductance of TiO2-Mo samples increased with increasing temperature. At low frequency, the relaxation phenomenon is related to the surface effect. The results will be beneficial to further developing titanium dioxide photo-catalysts.

  9. Ag nanoparticles loaded on porous graphitic carbon nitride with enhanced photocatalytic activity for degradation of phenol

    Science.gov (United States)

    Han, Zhenwei; Wang, Nan; Fan, Hai; Ai, Shiyun

    2017-03-01

    Highly efficient photocatalyst of visible-light-driven Ag nanoparticles loaded on porous graphitic carbon nitride (g-C3N4) was prepared by the reduction of Ag ions on porous g-C3N4. The obtained Ag/porous g-C3N4 composite products were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflection spectra (DRS), thermal gravimetric analysis (TGA). The results demonstrated that a homogeneous distribution of Ag NPs of 10 nm was attached onto the surface of the porous g-C3N4. The prepared Ag/porous g-C3N4 samples were applied for catalyzing the degradation of phenol in water under visible light irradiation. Porous g-C3N4 demonstrated an excellent support for the formation and dispersion of small uniform Ag NPs. When the weight percentage of Ag reaches 5%, the nanohybrid exhibits superior photocatalytic activities compared to bulk g-C3N4, porous g-C3N4, and 2% Ag/porous g-C3N4 hybrids. The enhanced photocatalytic performance is due to the synergic effect between Ag and porous g-C3N4, which suppressed the recombination of photogenerated electron-hole pairs.

  10. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control.

    Science.gov (United States)

    Cao, Jing; Guenther, Richard H; Sit, Tim L; Lommel, Steven A; Opperman, Charles H; Willoughby, Julie A

    2015-05-13

    Plant parasitic nematodes are one of the world's major agricultural pests, causing in excess of $157 billion in worldwide crop damage annually. Abamectin (Abm) is a biological pesticide with a strong activity against a wide variety of plant parasitic nematodes. However, Abm's poor mobility in the soil compromises its nematicide performance because of the limited zone of protection surrounding the growing root system of the plant. In this study, we manipulated Abm's soil physical chemistry by encapsulating Abm within the Red clover necrotic mosaic virus (RCNMV) to produce a plant virus nanoparticle (PVN) delivery system for Abm. The transmission electron microscopic and dynamic light scattering characterization of Abm-loaded PVN (PVN(Abm)) indicated the resultant viral capsid integrity and morphology comparable to native RCNMV. In addition, the PVN(Abm) significantly increased Abm's soil mobility while enabling a controlled release strategy for Abm's bioavailability to nematodes. As a result, PVN(Abm) enlarged the zone of protection from Meloidogyne hapla root knot nematodes in the soil as compared to treating with free Abm molecules. Tomato seedlings treated with PVN(Abm) had healthier root growth and a reduction in root galling demonstrating the success of this delivery system for the increased efficacy of Abm to control nematode damage in crops.

  11. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles.

    Science.gov (United States)

    Silva, A C; Kumar, A; Wild, W; Ferreira, D; Santos, D; Forbes, B

    2012-10-15

    A solid lipid nanoparticles (SLN) formulation to improve the oral delivery of risperidone (RISP), a poorly water-soluble drug, was designed and tested. Initially, lipid-RISP solubility was screened to select the best lipid for SLN preparation. Compritol(®)-based formulations were chosen and their long-term stability was assessed over two years of storage (at 25 °C and 4 °C) by means of particle size, polydispersity index (PI), zeta potential (ZP) and encapsulation efficiency (EE) measurements. SLN shape was observed by transmission electron microscopy (TEM) at the beginning and end of the study. The oxidative potential (OP) of the SLN was measured and their biocompatibility with Caco-2 cells was evaluated using the (4,5-dimethylthiazol-2-yl)2,5-dyphenyl-tetrazolium bromide (MTT) assay. In vitro drug release and transport studies were performed to predict the in vivo release profile and to evaluate the drug delivery potential of the SLN formulations, respectively. The RISP-loaded SLN systems were stable and had high EE and similar shape to the placebo formulations before and after storage. Classical Fickian diffusion was identified as the release mechanism for RISP from the SLN formulation. Biocompatibility and dose-dependent RISP transport across Caco-2 cells were observed for the prepared SLN formulations. The viability of SLN as formulations for oral delivery of poorly water-soluble drugs such as RISP was illustrated.

  12. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery.

    Science.gov (United States)

    Jose, S; Anju, S S; Cinu, T A; Aleykutty, N A; Thomas, S; Souto, E B

    2014-10-20

    Resveratrol is a potent anticancer. However, because of its low half-life (solid lipid nanoparticles (SLN) for resveratrol. SLN were prepared by solvent evaporation technique employing high speed homogenization followed by ultrasonication. SLN were designed at varying drug-lipid ratios (1:5, 1:9, 1:10, 1:11, 1:12 and 1:15) using Tween 80 or a combination of Tween 80 and polyvinyl alcohol (PVA) as surfactants. The mean particle size and zeta potential of the optimized formulation (drug-lipid ratio of 1:10) were 248.30 ± 3.80nm and -25.49 ± 0.49mV, respectively. The particle size and the encapsulation efficiency (EE) increased when varying the drug-lipid ratio from 1:5 to 1:15. Scanning electron microscopic (SEM) analysis showed that SLN were spherical in shape and had a smooth surface. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses revealed that the matrix of drug-loaded SLN was in disordered crystalline phase. The in vitro release study in phosphate buffer pH 7.4 followed a sustained release pattern. The drug release data was found to fit best into Higuchi kinetic model suggesting the diffusion controlled mechanism of drug release. The cytotoxicity assay (MAT) showed that SLN were equally effective (PSLN could significantly (PSLN serve as promising therapeutic systems to treat neoplastic diseases located in the brain tissue.

  13. Near-infrared dye-loaded magnetic nanoparticles as photoacoustic contrast agent for enhanced tumor imaging

    Institute of Scientific and Technical Information of China (English)

    Chuang Gao; Zhi-Fei Dai; Chang-Hui Li; Xiao-Long Liang; Zi-Jian Deng; Dong Peng; Yu-Shen Jin; Yan Ma; Yan-Yan Li; Yu-Kun Zhu; Jian-Zhong Xi; Jie Tian

    2016-01-01

    Objective: Photoacoustic (PA) tomography (PAT) has attracted extensive interest because of its optical absorption contrast and ultrasonic detection. This study aims to develop a biocompatible and biodegradable PA contrast agent particularly promising for clinical applications in human body. Methods: In this study, we presented a PA contrast agent: 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)] (DSPE-PEG)-coated superparamagnetic iron oxide (SPIO) nanoparticles (NPs) loaded with indocyanine green (ICG). We used ICG and SPIO NPs because both drugs are approved by the U.S. Food and Drug Administration. Given the strong absorption of near-infrared laser pulses, SPIO@DSPE-PEG/ICG NPs with a uniform diameter of ~28 nm could significantly enhance PA signals. Results: We demonstrated the contrast enhancement of these NPs in phantom and animal experiments, in which thein vivo circulation time of SPIO@DSPE-PEG/ICG NPs was considerably longer than that of free ICG. These novel NPs also displayed a high efficiency of tumor targeting. Conclusions: SPIO@DSPE-PEG/ICG NPs are promising PAT contrast agents for clinical applications.

  14. RES and brain targeting stavudine-loaded solid lipid nanoparticles for AIDS therapy

    Directory of Open Access Journals (Sweden)

    Panchaxari M Dandagi

    2012-01-01

    Full Text Available Cells of the reticuloendothelial system (RES, e.g., macrophages play an important role in the immunopathogenesis of Acquired Immunodeficiency Syndrome (AIDS. The objective of the present study was to investigate the possibility of specifically targeting antiviral drugs Stavudine to RES (like Liver, Spleen etc. and brain using solid lipid nanoparticles (SLNs as colloidal drug carriers. Various lipids like stearic acid, cetyl palmitate, glyceryl behenate and phospholipid in combination have been used and effect of lipid on properties of SLNs has been investigated. The SLNs of Stavudine were prepared by double emulsion solvent evaporation method. The diameter of SLNs was determined and found in range of 175 ± 6.027 to 393 ± 2.309 nm depending on the type of lipid used. Percentage drug entrapment was found to be influenced by the concentration and type of lipid used, which was found in the range of 18.1 to 65.2%. The drug release behavior was studied by dialysis bag method and the release pattern of drug was found to follow Higuchi model. Results of stability evaluation showed a relatively long-term stability after storage at 4°C for 1 month. Stavudine-loaded SLNs were successfully prepared, optimized and effectively targeted to RES and brain. SLNs of Stavudine have been shown to be taken up by brain 11 fold greater as compared to pure Stavudine. This finding is more important since Human Immunodeficiency Syndrome (HIV infect the central nervous system.

  15. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN).

    Science.gov (United States)

    Schwarz; Mehnert

    1997-11-28

    Solid lipid nanoparticles (SLN) of a quality acceptable for i.v. administration were freeze-dried. Dynasan 112 and Compritol ATO 888 were used as lipid matrices for the SLN, stabilisers were Lipoid S 75 and poloxamer 188, respectively. To study the protective effect of various types and concentrations of cryoprotectants (e.g. carbohydrates), freeze-thaw cycles were carried out as a pre-test. The sugar trehalose proved to be most effective in preventing particle growth during freezing and thawing and also in the freeze-drying process. Changes in particle size distribution during lyophilisation could be minimised by optimising the parameters of the lyophilisation process, i.e. freezing velocity and redispersion method. Lyophilised drug-free SLN could be reconstituted in a quality considered suitable for i.v. injection with regard to the size distribution. Loading with model drugs (tetracaine, etomidate) impairs the quality of reconstituted SLN. However, the lyophilisate quality is sufficient for formulations less critical to limited particle growth, e.g. freeze-dried SLN for oral administration.

  16. Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate.

    Science.gov (United States)

    Posadowska, Urszula; Parizek, Martin; Filova, Elena; Wlodarczyk-Biegun, Malgorzata; Kamperman, Marleen; Bacakova, Lucie; Pamula, Elzbieta

    2015-05-15

    Systemic administration of bisphosphonates, e.g. sodium alendronate (Aln) is characterized by extremely low bioavailability and high toxicity. To omit aforementioned drawbacks an injectable system for the intra-bone delivery of Aln based on Aln-loaded nanoparticles (NPs-Aln) suspended in a hydrogel matrix (gellan gum, GG) was developed. Aln was encapsulated in poly(lactide-co-glycolide) (PLGA 85:15) by solid-oil-water emulsification. Drug release tests showed that within 25 days all the encapsulated drug was released from NPs-Aln and the release rate was highest at the beginning and decreased with time. In contrast, by suspending NPs-Aln in a GG matrix, the release rate was significantly lower and more constant in time. The GG-NPs-Aln system was engineered to be easily injectable and was able to reassemble its structure after extrusion as shown by rheological measurements. Invitro studies showed that the GG-NPs-Aln was cytocompatible with MG-63 osteoblast-like cells and it inhibited RANKL-mediated osteoclastic differentiation of RAW 264.7 cells. The injectability, the sustained local delivery of small doses of Aln and the biological activity render the GG-NPs-Aln system promising for the local treatment of osteoporosis and other bone tissue disorders.

  17. Bevacizumab loaded solid lipid nanoparticles prepared by the coacervation technique: preliminary in vitro studies

    Science.gov (United States)

    Battaglia, Luigi; Gallarate, Marina; Peira, Elena; Chirio, Daniela; Solazzi, Ilaria; Giordano, Susanna Marzia Adele; Gigliotti, Casimiro Luca; Riganti, Chiara; Dianzani, Chiara

    2015-06-01

    Glioblastoma, the most common primary brain tumor in adults, has an inauspicious prognosis, given that overcoming the blood-brain barrier is the major obstacle to the pharmacological treatment of brain tumors. As neoangiogenesis plays a key role in glioblastoma growth, the US Food and Drug Administration approved bevacizumab (BVZ), an antivascular endothelial growth factor antibody for the treatment of recurrent glioblastoma in patients whose the initial therapy has failed. In this experimental work, BVZ was entrapped in solid lipid nanoparticles (SLNs) prepared by the fatty-acid coacervation technique, thanks to the formation of a hydrophobic ion pair. BVZ activity, which was evaluated by means of four different in vitro tests on HUVEC cells, increased by 100- to 200-fold when delivered in SLNs. Moreover, SLNs can enhance the permeation of fluorescently labelled BVZ through an hCMEC/D3 cell monolayer—an in vitro model of the blood brain barrier. These results are promising, even if further in vivo studies are required to evaluate the effective potential of BVZ-loaded SLNs in glioblastoma treatment.

  18. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    Science.gov (United States)

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor.

  19. Mesoporous Silica Nanoparticles Loaded with Cisplatin and Phthalocyanine for Combination Chemotherapy and Photodynamic Therapy in vitro

    Directory of Open Access Journals (Sweden)

    Juan L. Vivero-Escoto

    2015-12-01

    Full Text Available Mesoporous silica nanoparticles (MSNs have been synthesized and loaded with both aluminum chloride phthalocyanine (AlClPc and cisplatin as combinatorial therapeutics for treating cancer. The structural and photophysical properties of the MSN materials were characterized by different spectroscopic and microscopic techniques. Intracellular uptake and cytotoxicity were evaluated in human cervical cancer (HeLa cells by confocal laser scanning microscopy (CLSM and 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS assays, respectively. The CLSM experiments showed that the MSN materials can be readily internalized in HeLa cells. The cytotoxic experiments demonstrated that, after light exposure, the combination of both AlClPc and cisplatin compounds in the same MSN platform potentiate the toxic effect against HeLa cells in comparison to the control AlClPc-MSN and cisplatin-MSN materials. These results show the potential of using MSN platforms as nanocarriers for combination photodynamic and chemotherapies to treat cancer.

  20. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer.

    Science.gov (United States)

    Geetha, T; Kapila, Meenakshi; Prakash, Om; Deol, Parneet Kaur; Kakkar, Vandita; Kaur, Indu Pal

    2015-02-01

    Abstract Role of reactive oxygen species (ROS) in skin carcinogenesis is well documented. Natural molecules, like sesamol, with marked antioxidant potential can be useful in combating skin cancers. In vitro antiproliferative (using MTT assay) and DNA fragmentation studies in HL 60 cell lines, confirmed the apoptotic nature of sesamol. However, it showed a significant flux across the mice skin upon topical application, such that its local availability in skin is limited. Former is attributed mainly to its properties like small size, low molecular weight (138.28), and a sufficient lipid and water solubility (log P 1.29; solubility 38.8 mg/ml). To achieve its maximum epicutaneous delivery, packaging it into a suitable carrier system is thus indicated. Sesamol-loaded solid lipid nanoparticles (S-SLN) were thus prepared with particle size of 127.9 nm (PI: 0.256) and entrapment efficiency of 88.21%. Topical application of S-SLN in a cream base indicated significant retention in the skin with minimal flux across skin as confirmed by the in-vivo skin retention and ex-vivo skin permeation studies. In vivo anticancer studies performed on TPA-induced and benzo(a)pyrene initiated tumour production (ROS mediated) in mouse epidermis showed the normalization (in histology studies) of skin cancers post their induction, upon treatment with S-SLN.

  1. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications

    Directory of Open Access Journals (Sweden)

    Yallapu MM

    2012-04-01

    Full Text Available Murali M Yallapu1, Shadi F Othman2, Evan T Curtis2, Nichole A Bauer1, Neeraj Chauhan1,3, Deepak Kumar4,5, Meena Jaggi1,3,6, Subhash C Chauhan1,3,61Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, SD, 2Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, 3Basic Biomedical Science Division, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 4Cancer Research Laboratory, Department of Biology, University of the District of Columbia, 5Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 6Department of Obstetrics/Gynecology, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USABackground: The next generation magnetic nanoparticles (MNPs with theranostic applications have attracted significant attention and will greatly improve nanomedicine in cancer therapeutics. Such novel MNP formulations must have ultra-low particle size, high inherent magnetic properties, effective imaging, drug targeting, and drug delivery properties. To achieve these characteristic properties, a curcumin-loaded MNP (MNP-CUR formulation was developed.Methods: MNPs were prepared by chemical precipitation method and loaded with curcumin (CUR using diffusion method. The physicochemical properties of MNP-CUR were characterized using dynamic light scattering, transmission electron microscopy, and spectroscopy. The internalization of MNP-CUR was achieved after 6 hours incubation with MDA-MB-231 breast cancer cells. The anticancer potential was evaluated by a tetrazolium-based dye and colony formation assays. Further, to prove MNP-CUR results in superior therapeutic effects over CUR, the mitochondrial membrane potential integrity and reactive oxygen species generation were determined. Magnetic resonance imaging capability and magnetic targeting property were also evaluated.Results: MNP-CUR exhibited individual particle grain size of ~9 nm

  2. Preparation and functional characterization of tumor-targeted folic acid-chitosan conjugated nanoparticles loaded with mitoxantrone

    Institute of Scientific and Technical Information of China (English)

    王炜; 童春义; 刘星言; 李涛; 刘斌; 熊炜

    2015-01-01

    Folic acid conjugated chitosan was prepared by cross-linking reaction with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), and then used as a template to prepare folic acid-chitosan (FA-CS) conjugated nanoparticles and load mitoxantrone nanoparticles (FA-CSNP/MTX). Drug dissolution testing, CCK-8 method, and confocal microscopy were used to detect their controlled-release capability in different situations and the specific uptake by HONE1 cells. The experimental results show that the nanoparticles have uniform size distribution of 48−58 nm. The highest encapsulation rate of the particles on mitoxantrone hydrochloride (MTX) is (77.5±1.9)%, and the drug loading efficiency is (18.4±0.4)%. The sustained release effect, cell growth inhibition activity and targeting effect of the FA-CS/MTX nanoparticles are good in artificial gastric fluid and intestinal fluid. It is demonstrated that the FA-CSNP system is a potentially useful system for the targeted delivery of anticancer drug MTX.

  3. Development and optimization of N-Acetylcysteine-loaded poly (lactic-co-glycolic acid) nanoparticles by electrospray.

    Science.gov (United States)

    Karimi Zarchi, Ali Akbar; Abbasi, Shayan; Faramarzi, Mohammad Ali; Gilani, Kambiz; Ghazi-Khansari, Mahmoud; Amani, Amir

    2015-01-01

    N-Acetylcysteine (NAC) loaded PLGA nanoparticles were prepared by electrospray method. The influence of independent parameters such as concentration, flow rate and nozzle to collector distance was studied on particle size and size distribution of generated nanoparticles using a Box-Behnken experimental design. Smallest size was found to be obtained at minimum value for both flow rate and concentration of polymer, regardless of collecting distance value in the ranges studied. Additionally, the minimum value of size distribution was observed at lowest values of both concentration of polymer and collecting distance, regardless of flow rate value. In total, a sample with minimum size and polydispersity was predicted to have flow rate, polymer concentration and collecting distance values of 0.06(ml/h), 0.5(%w/w) and 9.28(cm), respectively. The experimentally prepared nanoparticles with lowest size and size distribution values, had a size of 122(nm) and size distribution of 24. Zeta potential, drug loading and encapsulation efficiency of optimized nanoparticles were -6.58, 5% and 54.5%, respectively.

  4. Folate Functionalized PLGA Nanoparticles Loaded with Plasmid pVAX1-NH36: Mathematical Analysis of Release

    Directory of Open Access Journals (Sweden)

    Cindy Alejandra Gutiérrez-Valenzuela

    2016-11-01

    Full Text Available Plasmid DNA (pVAX1-NH36 was encapsulated in nanoparticles of poly-dl-lactic-co-glycolic (PLGA functionalized with polyethylene glycol (PEG and folic acid (PLGA-PEG-FA without losing integrity. PLGA-PEG-FA nanoparticles loaded with pVAX1-NH36 (pDNA-NPs were prepared by using a double emulsification-solvent evaporation technique. PLGA-PEG-FA synthesis was verified by FT-IR and spectrophotometry methods. pVAX1-NH36 was replicated in Escherichia coli (E. coli cell cultures. Atomic force microscopy (AFM analysis confirmed pDNA-NPs size with an average diameter of 177–229 nm, depending on pVAX1-NH36 loading and zeta potentials were below −24 mV for all preparations. In vitro release studies confirmed a multiphase release profile for the duration of more than 30-days. Plasmid release kinetics were analyzed with a release model that considered simultaneous contributions of initial burst and degradation-relaxation of nanoparticles. Fitting of release model against experimental data presented excellent correlation. This mathematical analysis presents a novel approach to describe and predict the release of plasmid DNA from biodegradable nanoparticles.

  5. Anti-tumor Efficiency of Lipid-coated Cisplatin Nanoparticles Co-loaded with MicroRNA-375.

    Science.gov (United States)

    Yang, Tan; Zhao, Pengxuan; Rong, Zhao; Li, Bin; Xue, Huiying; You, Jia; He, Chuanchuan; Li, Weijie; He, Xingxing; Lee, Robert J; Ma, Xiang; Xiang, Guangya

    2016-01-01

    One of the major challenges in the hepatocellular carcinoma (HCC) treatment is its insensitivity to chemotherapeutic drugs. Here, we report the development of novel lipid-coated cisplatin nanoparticles co-loaded with microRNA-375 (NPC/miR-375) as a potential treatment for chemotherapy insensitive HCC. The NPC/miR-375 was fabricated by mixing two reverse microemulsions containing KCl solution and a highly soluble cis-diaminedihydroplatinum (II) coated with a cationic lipid layer. Subsequently, the miR-375 was incorporated into the lipid-coated cisplatin nanoparticles. The NPC/miR375 nanoparticles were expected to further decrease cell proliferation and to enhance the anti-tumor effect of cisplatin in chemotherapy resistant HCC cells. In vitro analysis of intracellular trafficking revealed that NPC/miR-375 were able to escape from the late endosomes instead of lysosomes thus avoiding degradation of the miR-375 in lysosomes. Importantly, NPC/miR-375 enhanced apoptosis and induced cell cycle arrest in HCC cells in vitro. In the double oncogenes Akt/Ras-induced primary HCC mouse model, multiple doses of NPC/miR-375 significantly inhibited tumor growth and delayed the tumor relapse. Our results indicate that cisplatin nanoparticles co-loaded with miR-375 represent a potential therapeutic agent for chemotherapy-insensitive HCC.

  6. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Dongdong; Li, Nuan; Zhang, Weiwei; Yang, Endong; Mou, Zhipeng; Zhao, Zhiwei; Liu, Haiping; Wang, Weiyun, E-mail: weiywswzy@163.com [Anhui Agricultural University, School of Life Sciences (China)

    2016-01-15

    Nanotechnology-based approaches have tremendous potential for enhancing efficacy against infectious diseases. PLGA-based nanoparticles as drug delivery carrier have shown promising potential, owing to their sizes and related unique properties. This article aims to develop nanosized poly (d, l-lactide-co-glycolide) PLGA nanoparticle formulation loaded with quercetin (QT). QT is an antioxidant and antibacterial compound isolated from Chinese traditional medicine with low skin permeability and extreme water insolubility. The quercetin-loaded PLGA nanoparticles (PQTs) were synthesized by emulsion–solvent evaporation method and stabilized by coating with poly (vinyl alcohol). The characteristics of PQTs were analyzed by Fourier transform infrared spectroscopy, Ultraviolet–Visible spectroscopy, scanning electron microscope, transmission electron microscopy, and atomic force microscopy, respectively. The PQTs showed a spherical shape with an average size of 100–150 nm. We compared the antibacterial effects of PQTs against Escherichia coli (E. coli) and Micrococcus tetragenus (M. tetragenus).The PQTs produced stronger antibacterial activity to E. coli than that to M. tetragenus through disrupting bacterial cell wall integrity. The antibacterial ratio was increased with the increasing dosages and incubation time. Next, we tested the in vivo antibacterial activity in mice. No noticeable organ damage was captured from H&E-staining organ slices, suggesting the promise of using PQTs for in vivo applications. The results of this study demonstrated the interaction between bacteria and PLGA-based nanoparticles, providing encouragement for conducting further investigations on properties and antimicrobial activity of the PQTs in clinical application.

  7. Quercetin-loaded PLGA nanoparticles: a highly effective antibacterial agent in vitro and anti-infection application in vivo

    Science.gov (United States)

    Sun, Dongdong; Li, Nuan; Zhang, Weiwei; Yang, Endong; Mou, Zhipeng; Zhao, Zhiwei; Liu, Haiping; Wang, Weiyun

    2016-01-01

    Nanotechnology-based approaches have tremendous potential for enhancing efficacy against infectious diseases. PLGA-based nanoparticles as drug delivery carrier have shown promising potential, owing to their sizes and related unique properties. This article aims to develop nanosized poly ( d, l-lactide-co-glycolide) PLGA nanoparticle formulation loaded with quercetin (QT). QT is an antioxidant and antibacterial compound isolated from Chinese traditional medicine with low skin permeability and extreme water insolubility. The quercetin-loaded PLGA nanoparticles (PQTs) were synthesized by emulsion-solvent evaporation method and stabilized by coating with poly (vinyl alcohol). The characteristics of PQTs were analyzed by Fourier transform infrared spectroscopy, Ultraviolet-Visible spectroscopy, scanning electron microscope, transmission electron microscopy, and atomic force microscopy, respectively. The PQTs showed a spherical shape with an average size of 100-150 nm. We compared the antibacterial effects of PQTs against Escherichia coli ( E. coli) and Micrococcus tetragenus ( M. tetragenus).The PQTs produced stronger antibacterial activity to E. coli than that to M. tetragenus through disrupting bacterial cell wall integrity. The antibacterial ratio was increased with the increasing dosages and incubation time. Next, we tested the in vivo antibacterial activity in mice. No noticeable organ damage was captured from H&E-staining organ slices, suggesting the promise of using PQTs for in vivo applications. The results of this study demonstrated the interaction between bacteria and PLGA-based nanoparticles, providing encouragement for conducting further investigations on properties and antimicrobial activity of the PQTs in clinical application.

  8. Clinical outcomes of amniotic membrane loaded with5-FU PLGA nanoparticles in experimental trabeculectomy

    Institute of Scientific and Technical Information of China (English)

    Fang; Hu; Xiang-Yun; Zeng; Zhao-Lian; Xie; Lin-Lin; Liu; Liang; Huang

    2015-01-01

    AIM: To evaluate the effect of amniotic membrane loaded with 5-fluorouracil poly(lactic-co-glycolic acid)(PLGA) nanoparticles(5-FU-NPs) in the surgical outcomes of experimental trabeculectomy in rabbits.METHODS: Thirty-two New Zealand white rabbits were randomly categorized into four groups with 8 rabbits in each group. Group 1, the control group, performed traditional trabeculectomy without adjuvant treatment.While the experimental groups performed compound trabeculectomy with different implantations including amniotic membrane(group 2), 5-FU-NPs(group 3) and amniotic membrane loaded with 5-FU-NPs(group 4).Clinical evaluations including IOP measurement and filtration bleb analysis were performed in all groups postoperatively.RESULTS: There is no significant difference of mean IOP in all groups at first 7d after surgery. While at P14,mean IOPs of experimental group 2(9.8 ±2.1 mm Hg),groups 3(8.9 ±2.8 mm Hg) and group 4(7.6 ±2.3 mm Hg)were significantly reduced compared to control group(12.4 ±2.6 mm Hg; n =8, P <0.05). At P21, mean IOPs of groups 3(11.7±3.2 mm Hg) and group 4(9.9±1.6 mm Hg)were significantly decreased compare to control group(17.9±1.6 mm Hg) and group 2(16.6 ±2.8 mm Hg; n =8,P <0.05). At P28, mean IOPs of groups 3(13.8±3.3 mm Hg)and group 4(10.6 ±2.0 mm Hg) were also significantly reduced compare to control group(19.4±2.3 mm Hg) and group 2(18.5 ±2.4 mm Hg; n =8, P <0.05). Meanwhile mean IOP of group 4 is significantly decreased compared to group 3 at P28(n =8, P <0.05). Survival analysis of functional filtration blub in all groups revealed the longest survival time in group 4(24.9±5.1d) compared to that in group 3(20.6 ±4.3d), group 2(15.0 ±5.2d) and control group(10.1±5.7d).CONCLUSION: Amniotic membrane loaded with 5-FuNPs may function as an effective anti-scarring implant and provides improved long-term surgical outcomes for experimental trabeculectomy in rabbits.

  9. Perfluorocarbon-Loaded Hollow Bi2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer.

    Science.gov (United States)

    Song, Guosheng; Liang, Chao; Yi, Xuan; Zhao, Qi; Cheng, Liang; Yang, Kai; Liu, Zhuang

    2016-04-13

    Hollow Bi2 Se3 nanoparticles prepared by a cation exchange method are loaded with perfluorocarbon as an oxygen carrier. With these nanoparticles, a promising concept is demonstrated to enhance radiotherapy by not only using their X-ray-absorbing ability to locally concentrate radiation energy in the tumor, but also employing near-infrared light to trigger burst release of oxygen from the nanoparticles to overcome hypoxia-associated radio-resistance.

  10. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination : Biological properties and immunogenicity in a mouse model

    NARCIS (Netherlands)

    Amidi, Maryam; Romeijn, Stefan G.; Verhoef, J. Coos; Junginger, Hans E.; Bungener, Laura; Huckriede, Anke; Crommelin, Daan J. A.; Jiskoot, Wim

    2007-01-01

    In this study, the potential of N-trimethyl chitosan (TMC) nanoparticles as a carrier system for the nasal delivery of a monovalent influenza subunit vaccine was investigated. The antigen-loaded nanoparticles were prepared by mixing a solution containing TMC and monovalent influenza A subunit H3N2 w

  11. 雷公藤甲素纳米载药系统的研究进展%Research progress of triptolide-loaded nanoparticles delivery systems

    Institute of Scientific and Technical Information of China (English)

    杨祥良; 杨亚江; 刘明星; 梅之南; 陈华兵; 郭国宁; 徐辉碧

    2005-01-01

    This paper reviewed the study of triptolide-loaded nano delivery systems (NDOS) in our group during the past. It was investigated for the preparation, characterization, pharmacology and toxicology of solid lipid nanoparticles (SLN), microemulsion and polymeric nanoparticles. The results indicated that the NDS presented more powerful activity and a lower toxicity in comparison with other drug carrier.

  12. Preparation and characterization of gold nanoparticles and nanowires loaded into rod-shaped silica by a one-step procedure

    Science.gov (United States)

    Mnasri, Najib; Nyalosaso, Jeff L.; Kachbouri, Sana; Zajac, Jerzy; Elaloui, Elimame; Charnay, Clarence

    2017-01-01

    Rod-shaped mesoporous silica nanoparticles (RMSN) with built-in gold nanoparticles or thin gold nanowires in the pore channels were in situ synthesized via a one-step procedure. The insertion of a hydrophobic gold precursor into the mesopores of RMSN was reached through a micellar solubilization mechanism and gold nanoparticles were achieved through a thermal reduction. The resulting RMSN and Au-RMSN samples were characterized by using X-ray diffraction, transmission and scanning microscopies (TEM and SEM), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption and solid-state Nuclear Magnetic Resonance (NMR). The interaction of Au precursor (a carbene complex) with the thiol group at the silica surface was identified and found to play a crucial role in the dispersion of the uniform metal nanoparticles at the internal surface of RMSN. Moreover, TEM micrographs revealed the absence of large gold particles outside the mesopore network. The shape of Au nanoparticles and their loading amount in the mesoporous silica could be easily tuned by altering the concentration of gold precursor.

  13. Design of experiments for the development of poly(d,l-lactide-co-glycolide) nanoparticles loaded with Uncaria tomentosa

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ana Ferreira, E-mail: ana.ribeiro@ifrj.edu.br [Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy (Brazil); Ferreira, Carina Torres Garruth; Santos, Juliana Fernandes dos [Federal Institute of Education, Science and Technology of Rio de Janeiro, Faculty of Pharmacy (Brazil); Cabral, Lúcio Mendes; Sousa, Valéria Pereira de [Federal University of Rio de Janeiro, Department of Drugs and Pharmaceutics, Faculty of Pharmacy (Brazil)

    2015-02-15

    Polymeric nanoparticles have been shown to be effective carriers for natural substances that possess anticancer properties. Incorporation of these natural substances into polymeric nanoparticles increases targeting of these drugs, thus reducing side effects. Uncaria tomentosa (UT) is a Peruvian Amazon plant (existing in the Brazilian Amazon rainforest) that possesses promising anti-tumor activity. This paper describes the development of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles loaded with UT extract. The emulsion solvent evaporation method was utilized and the initial conditions were determined for the organic phase (OP) and the aqueous phase (AP). The influence of surfactant (type and concentration), PLGA concentration and AP volume on nanoparticle size, polydispersity index (PI), and entrapment efficiency (EE) was determined using a fractional factorial design (FFD). In addition, the formulation was optimized using a Box–Behnken design. After the conditions were optimized, UT nanoparticles were obtained using an OP composed of an ethyl acetate:acetone (3:2) mixture which contained the UT alkaloids and PLGA, and an AP composed of a buffered solution of Poloxamer 188 (pH 7.5). The optimized formulation produced an EE of 64.6 %, a particle size of 107.4 nm and a PI of 0.163. The preliminary experiments provided important information regarding the behavior of the nanoparticulate system and the FFD used in this study greatly facilitated the selection of the most optimal conditions for formulation development.

  14. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells.

    Science.gov (United States)

    Zhang, Hongling; Liu, Gan; Zeng, Xiaowei; Wu, Yanping; Yang, Chengming; Mei, Lin; Wang, Zhongyuan; Huang, Laiqiang

    2015-01-01

    Genistein is one of the most studied isoflavonoids with potential antitumor efficacy, but its poor water solubility limits its clinical application. Nanoparticles (NPs), especially biodegradable NPs, entrapping hydrophobic drugs have promising applications to improve the water solubility of hydrophobic drugs. In this work, TPGS-b-PCL copolymer was synthesized from ε-caprolactone initiated by d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) through ring-opening polymerization and characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The genistein-loaded NPs were prepared by a modified nanoprecipitation method and characterized in the aspects of particle size, surface charge, morphology, drug loading and encapsulation efficiency, in vitro drug release, and physical state of the entrapped drug. The TPGS-b-PCL NPs were found to have higher cellular uptake efficiency than PCL NPs. MTT and colony formation experiments indicated that genistein-loaded TPGS-b-PCL NPs achieved the highest level of cytotoxicity and tumor cell growth inhibition compared with pristine genistein and genistein-loaded PCL NPs. Furthermore, compared with pristine genistein and genistein-loaded PCL NPs, the genistein-loaded TPGS-b-PCL NPs at the same dose were more effective in inhibiting tumor growth in the subcutaneous HeLa xenograft tumor model in BALB/c nude mice. In conclusion, the results suggested that genistein-loaded biodegradable TPGS-b-PCL nanoparticles could enhance the anticancer effect of genistein both in vitro and in vivo, and may serve as a potential candidate in treating cervical cancer.

  15. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.

    Science.gov (United States)

    Singh, Jasvinder; Pandit, Sreenivas; Bramwell, Vincent W; Alpar, H Oya

    2006-02-01

    Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.

  16. Cyclosporine-loaded solid lipid nanoparticles (SLN): drug-lipid physicochemical interactions and characterization of drug incorporation.

    Science.gov (United States)

    Müller, R H; Runge, S A; Ravelli, V; Thünemann, A F; Mehnert, W; Souto, E B

    2008-03-01

    Solid lipid nanoparticles (SLN) were produced loaded with cyclosporine A in order to develop an improved oral formulation. In this study, the particles were characterized with regard to the structure of the lipid particle matrix, being a determining factor for mode of drug incorporation and drug release. Differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) measurements were employed for the analysis of the polymorphic modifications and mode of drug incorporation. Particles were produced using Imwitor 900 as lipid matrix (the suspension consisted of 10% particles, 8% Imwitor 900, 2% cyclosporine A), 2.5% Tagat S, 0.5% sodium cholate and 87% water. DSC and WAXS were used to analyse bulk lipid, bulk drug, drug incorporated in the bulk and unloaded and drug-loaded SLN dispersions. The processing of the bulk lipid into nanoparticles was accompanied by a polymorphic transformation from the beta to the alpha-modification. After production, the drug-free SLN dispersions converted back to beta-modification, while the drug-loaded SLN stayed primarily in alpha-modification. After incorporation of cyclosporine A into SLN, the peptide lost its crystalline character. Based on WAXS data, it could be concluded that cyclosporine is molecularly dispersed in between the fatty acid chains of the liquid-crystalline alpha-modification fraction of the loaded SLN.

  17. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation

    Science.gov (United States)

    Song, Zhiwang; Lu, Yonglin; Zhang, Xia; Wang, Haiping; Han, Junyi; Dong, Chunyan

    2016-01-01

    Folate-conjugated, curcumin-loaded human serum albumin nanoparticles (F-CM-HSANPs) were obtained by the chemical conjugation of folate to the surface of the curcumin (CM)-loaded human serum albumin nanoparticles (NPs). The NPs were characterized by various parameters, including size, polydispersity, zeta potential, morphology, encapsulation efficiency, and drug release profile. The mean particle size of F-CM-HSANPs was 165.6±15.7 nm (polydispersity index <0.28), and the average encapsulation efficiency percentage and drug loading percentage of the F-CM-HSANPs were 88.7%±4.8% and 7.9%±0.4%, respectively. Applied in vitro, the CM NPs, after conjugation with folate, maintained sustained release, and a faster release of CM was more visibly observed than the unconjugated NPs. F-CM-HSANPs can prolong the retention time of CM significantly in vivo. However, after intravenous injection of F-CM-HSANPs, the pharmacokinetic parameters of CM were not significantly different from those of CM-loaded human serum albumin NPs. The improved antitumor activity of F-CM-HSANPs may be attributable to the protection of drug from enzymatic deactivation followed by the selective localization at the desired site. These results suggest that the intravenous injection of F-CM-HSANPs is likely to have an advantage in the current clinical CM formulation, because it does not require the use of a solubilization agent and it is better able to target the tumor tissue. PMID:27574403

  18. Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications.

    Science.gov (United States)

    Udompornmongkol, Panisa; Chiang, Been-Huang

    2015-11-01

    The purpose of the present study was to fabricate polymeric nanoparticles as drug carriers for encapsulated curcumin with enhanced anti-colorectal cancer applications. Nanoparticles were formulated from chitosan and gum arabic, natural polysaccharides, via an emulsification solvent diffusion method. The formation of curcumin nanoparticles was confirmed by Fourier transform infrared spectroscopy and differential scanning calorimeter. The results show that curcumin was entrapped in carriers with +48 mV, 136 nm size, and high encapsulation efficiency (95%). Based on an in vitro release study, we inferred that curcumin nanoparticles could tolerate hydrolysis due to gastric juice or small intestinal enzymes, and therefore, it should reach the colon largely intact. In addition, curcumin nanoparticles had higher anti-colorectal cancer properties than free curcumin due to greater cellular uptake. Therefore, we concluded that curcumin was successfully encapsulated in chitosan-gum arabic nanoparticles with superior anti-colorectal cancer activity.

  19. Near-infrared imaging loaded polymeric nanoparticles: in vitro and in vivo studies

    Science.gov (United States)

    Lei, Tingjun; Manchanda, Romila; Huang, Yen-Chih; Fernandez-Fernandez, Alicia; Bunetska, Karina; Milera, Andrew; Sarmiento, Azael; McGoron, Anthony J.

    2013-02-01

    Introduction: Recent research has focused on developing new biomaterials for delivery of imaging agents and drugs. In our study, we report a new biocompatible and biodegradable polymer, termed poly(glycerol-co-malic-dodecanoate) (PGMD), which was then used for synthesis of nanoparticles (NPs) and loading of NIR dyes. Methods: The PGMD polymer was synthesized via thermal condensation method and was characterized by FTIR. The NPs were synthesized via o/w single emulsion technique. IR820 was chosen as the NIR dye. The loading efficiency of IR820 in PGMD NPs was measured by spectrophotometer. The release of IR820 was estimated with a spectrofluorometer in different pH phosphate buffered saline. The cytotoxicity of NPs was estimated through a Sulforhodamine B colorimetric assay. A biodistribution and pharmacokinetics study of the NPs versus free IR820 was performed in a murine model (n=12) after i.v. injection. Plasma samples were collected at time points 15-30-60 minutes and 24 hours. Organ samples were also collected and measured at the 24-hour time point. Results and Discussion: Void PGMD NPs and IR820-PGMD NPs had mean sizes around 90 nm and 110 nm, respectively. FTIR showed that polyester bonds were forming in the PGMD polymer. The release of IR820 was increased in acidic buffer (pH=5.0) as compared to neutral buffer (pH=7.4), indicating that the release of IR820 is controllable. Cellular uptake studies showed comparable fluorescence of IR820-PGMD NPs to free IR820 (5 μM) after 24-hour exposure. IR820-PGMD NPs induced significant cancer cell killing after laser exposure due to the photothermal effect of the dye. In vivo studies showed that the IR820 in NPs formulation has a longer plasma half-life than free IR820, providing longer imaging collection times for cancer diagnostics, and potentially widening the window for hyperthermia applications. Conclusion: We expect that ease of synthesis and good biocompatibility make PGMD a good candidate for numerous imaging

  20. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Joshy, K.S. [Department of Chemistry, CMS College Kottayam, Kerala (India); International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sharma, Chandra P. [Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala (India); Kalarikkal, Nandakumar [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Sandeep, K. [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Thomas, Sabu, E-mail: sabuchathukulam@yahoo.co.uk [International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Pothen, Laly A. [Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala (India)

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66 ± 12.22 nm and modified solid lipid nanoparticles showed an average size of 265.61 ± 80.44 nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. - Highlights: • SLN of AZT-SA, AZT-SA-AV was developed • Better drug loading efficacy • Good uptake.

  1. Solid Lipid Nanoparticles Loaded with Edaravone for Inner Ear Protection After Noise Exposure

    Institute of Scientific and Technical Information of China (English)

    Gang Gao; Ya Liu; Chang-Hua Zhou; Ping Jiang; Jian-Jun Sun

    2015-01-01

    Background:Antioxidants and the duration of treatment after noise exposure on hearing recovery are important.We investigated the protective effects of an antioxidant substance,edaravone,and its slow-release dosage form,edaravone solid lipid nanoparticles (SLNs),in steady noise-exposed guinea pigs.Methods:SLNs loaded with edaravone were produced by an ultrasound technique.Edaravone solution or edaravone SLNs were administered by intratympanic or intravenous injection after the 1st day of noise exposure.Guinea pigs were exposed to 110 dB sound pressure level (SPL) noise,centered at 0.25-4.0 kHz,for 4 days at 2 h/d.After noise exposure,the guinea pigs underwent auditory brainstem response (ABR) threshold measurements,reactive oxygen species (ROS) were detected in their cochleas with electron spin resonance (ESR),and outer hair cells (OHCs) were counted with silvernitrate (AgNO3) staining at 1,4,and 6 days.Results:The ultrasound technique was able to prepare adequate edaravone SLNs with a mean particle size of 93.6 nm and entrapment efficiency of 76.7%.Acoustic stress-induced ROS formation and edaravone exerted a protective effect on the cochlea.Comparisons of hearing thresholds and ROS changes in different animal groups showed that the threshold shift and ROS generation were significantly lower in treated animals than in those without treatment,especially in the edaravone SLN intratympanic injection group.Conclusions:Edaravone SLNs show noticeable slow-release effects and have certain protective effects against noise-induced hearing loss (NIHL).

  2. Evaluation of bioavailability, efficacy, and safety profile of doxorubicin-loaded solid lipid nanoparticles

    Science.gov (United States)

    Patro, Nagaraju M.; Devi, Kshama; Pai, Roopa S.; Suresh, Sarasija

    2013-12-01

    We investigated the bioavailability, efficacy, and toxicity of doxorubicin-loaded solid lipid nanoparticles (DOX-SLNs) prepared by a simple modified double-emulsification method. A 3-factor, 3-level Box-Behnken statistical design was adopted in the optimization of DOX-SLN formulation considering dependent factors particle size and entrapment efficiency. Optimized SLN formulation composed of lipid (2 %) consisting of soya lecithin and Precirol ATO 5 (1:3) with Pluronic F68 (0.3 %) resulted in 217.36 ± 3.31 nm particle size and 59.45 ± 1.75 % entrapment efficiency. DOX-SLN exhibited significant enhancement ( p rats. DOX-SLN exhibited higher peak plasma concentration (6.761 ± 0.08 vs. 2.412 ± 0.04 μg/ml), increased AUC (61.368 ± 3.54 vs. 5.812 ± 0.49 μg/ml h), decreased clearance (36 ± 0.01 vs. 619 ± 0.005 mL/h kg), and volume of distribution (733 ± 0.092 vs. 2,064 ± 0.061 mL/kg) when compared to free DOX. The collective results of cardiac and kidney enzyme assay, antioxidant enzyme levels, hematological parameters, effect on body weight and tumor volume, tumor necrosis factor-α level, histopathological examination, and survival analysis confirmed the improved efficacy and safety profile of DOX-SLN in 7,12-dimethyl benzanthracene-induced breast cancer in SD rats.

  3. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    Science.gov (United States)

    Ahmed, Tarek A

    2016-01-01

    In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. PMID:26893559

  4. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: an improved oral bioavailability in rats.

    Science.gov (United States)

    Dwivedi, Pankaj; Khatik, Renuka; Khandelwal, Kiran; Taneja, Isha; Raju, Kanumuri Siva Rama; Wahajuddin; Paliwal, Sarvesh Kumar; Dwivedi, Anil Kumar; Mishra, Prabhat Ranjan

    2014-05-15

    Arteether (ART), an artemisinin derivative, is a life saving drug for multiple drug resistant malaria. It has a deliverance effect in Falciparum malaria and cerebral malaria. We have prepared solid lipid nanoparticles (SLN) by high pressure homogenization (HPH) technique. ART-loaded SLN (ART-SLN) has been produced reproducibly with homogeneous particle size. ART-SLN was characterized for their size measured by Zetasizer Nano-ZS, Malvern, UK and by high resolution transmission electron microscopy (HR-TEM) and which was found to be 100 ± 11.2 nm. The maximum percentage entrapment efficiency (%EE) determined with the high-performance liquid chromatography (HPLC) has been found to be 69 ± 4.2% in ART-SLN-3. The release pattern from ART-SLN revealed that the release of ART is slow but time-dependent manner, which is desirable as it will help to protect the acid degradation of ART in stomach. The percentage cytotoxicity of blank SLN has been found within the acceptable range. The pharmacokinetics results indicated that ART-SLN-3 absorption has been significantly enhanced in comparison to ART in aqueous suspension and ART in ground nut oil (GNO) in rats. The % relative bioavailability (RB%) of ART-SLN to the ART in GNO and ART in aqueous suspension in rats was 169.99% and 7461%, respectively which was found to be significantly high in both the cases. From the results, it can be concluded that ART-SLN offers a new approach to improve the oral bioavailability of ART.

  5. Solid Lipid Nanoparticles Loaded with Edaravone for Inner Ear Protection After Noise Exposure

    Directory of Open Access Journals (Sweden)

    Gang Gao

    2015-01-01

    Full Text Available Background: Antioxidants and the duration of treatment after noise exposure on hearing recovery are important. We investigated the protective effects of an antioxidant substance, edaravone, and its slow-release dosage form, edaravone solid lipid nanoparticles (SLNs, in steady noise-exposed guinea pigs. Methods: SLNs loaded with edaravone were produced by an ultrasound technique. Edaravone solution or edaravone SLNs were administered by intratympanic or intravenous injection after the 1 st day of noise exposure. Guinea pigs were exposed to 110 dB sound pressure level (SPL noise, centered at 0.25-4.0 kHz, for 4 days at 2 h/d. After noise exposure, the guinea pigs underwent auditory brainstem response (ABR threshold measurements, reactive oxygen species (ROS were detected in their cochleas with electron spin resonance (ESR, and outer hair cells (OHCs were counted with silvernitrate (AgNO 3 staining at 1, 4, and 6 days. Results: The ultrasound technique was able to prepare adequate edaravone SLNs with a mean particle size of 93.6 nm and entrapment efficiency of 76.7%. Acoustic stress-induced ROS formation and edaravone exerted a protective effect on the cochlea. Comparisons of hearing thresholds and ROS changes in different animal groups showed that the threshold shift and ROS generation were significantly lower in treated animals than in those without treatment, especially in the edaravone SLN intratympanic injection group. Conclusions: Edaravone SLNs show noticeable slow-release effects and have certain protective effects against noise-induced hearing loss (NIHL.

  6. Biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites.

    Science.gov (United States)

    Gu, Jisheng; Wang, Teng; Fan, Guoxin; Ma, Junhua; Hu, Wei; Cai, Xiaobing

    2016-04-01

    The aim of this study was to evaluate the in vitro and in vivo biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites. In vitro cytotoxicity tests by cholecystokinin octapeptide (CCK-8) assay showed that the 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements were cytocompatible for mouse osteoblastic cell line MC3T3-E1. The microscopic observation confirmed that MC3T3-E1cells incubated with Van-CaSO4 group and 5%Van-MSN-CaSO4 group exhibited clear spindle-shaped changes, volume increase and maturation, showing that these cements supported adhesion of osteoblastic cells on their surfaces. In addition, the measurement of alkaline phosphatase activity revealed the osteoconductive property of these biomaterials. In order to assess in vivo biocompatibility, synthesized cements were implanted into the distal femur of twelve adult male and female New Zealand rabbits. After implantation in artificial defects of the distal femur, 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements did not damage the function of main organs of rabbits. In addition, the Van-MSN-CaSO4 composite allowed complete repair of bone defects with new bone formation 3 months after implantation. These results show potential application of Van-MSN-CaSO4 composites as bone graft materials for the treatment of open fracture in human due to its mechanical, osteoconductive and potential sustained drug release characteristics and the absence of adverse effects on the body.

  7. Safety and efficacy of antioxidants-loaded nanoparticles for an anti-aging application.

    Science.gov (United States)

    Felippi, Cândice C; Oliveira, Dileusa; Ströher, Alessandra; Carvalho, Anderson R; Van Etten, Eliana A M Aquino; Bruschi, Márcia; Raffin, Renata P

    2012-04-01

    The aim of this work was to perform a pilot study on the safety and efficacy of nanoparticle formulation for cosmetic application. The encapsulated actives in the nanoparticles were a blend of coenzyme Q10, retinyl palmitate, tocopheryl acetate, grape seed oil and linseed oil. The nanoparticle suspension was characterized in terms of pH and particle size. For the safety assessment, alternative methods as cytotoxicity and HET CAM were used. The clinical skin compatibility tests were also performed. The efficacy was evaluated in healthy volunteers presenting different degrees of periorbital wrinkles. Skin hydration was performed by corneometry. The nanoparticles presented narrow size around 140 nm and pH close to neutral and were suitable to cutaneous application. The alternative tests demonstrated that the nanoparticles did not present potential to induce skin irritant effects, cytotoxicity or generate oxidative stress. The clinical assays confirmed the in vitro results, demonstrating the safety of the nanoparticles, which were not irritant, sensitizing and comedogenic. Furthermore, the exposure to UVA light did not cause photoxicity. Regarding the efficacy, nanoparticles presented significant reduction in wrinkle degree after 21 days of application compared to the control. The volunteers could differentiate the nanoparticles and the control product by means of subjective analyses. In conclusion, the nanoparticles containing antioxidant actives were safe for topical use and presented anti-aging activity in vivo and are suitable to be used as cosmetic ingredient.

  8. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light

    Science.gov (United States)

    Zhao, Chanjuan; Feng, Bo; Li, Yiting; Tan, Jing; Lu, Xiong; Weng, Jie

    2013-09-01

    Highly ordered anatase-type titanium nanotubes (TNTs) arrays were prepared on the surface of titanium by anodization and subsequently heat treatment at 450 °C for 5 h. Three different diameters of TNTs (50 nm, 75 nm, 100 nm) were fabricated via the voltage changed. Then Ag was loaded on these TNTs through a photo-reduction method of AgNO3 solution. Ag particles with the size of approximately 10 nm were uniformly distributed on the surface of TNTs. Samples were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic absorption spectrometry and contact angle test. Meanwhile, the antibacterial activities of Ag-loaded TiO2 nanotubes (TNTs-Ag) were evaluated through antibacterial experiment against both Escherichia coli and Staphylococcus aureus in the dark and under the UV light (λ = 365 nm) irradiation respectively. The results indicated that under the UV light TNTs-Ag had higher antibacterial activities to the two bacteria than TNTs, though the later also showed antibacterial ability. While in the dark environment, the loading of Ag nanoparticles largely enhanced the antibacterial activities of the titanium nanotubes. In addition, the antibacterial efficiencies of all samples increased with increase of nanotube diameters both in the dark and under the UV light. Therefore, TNTs loaded with Ag nanoparticles are expected to be well suited for endo-prosthetic applications due to their excellent antibacterial activities in the dark. And their antibacterial efficiencies can be controlled by adjusting diameters of TNTs, distribution and size of Ag nanoparticles.

  9. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation

    Directory of Open Access Journals (Sweden)

    Song Z

    2016-08-01

    Full Text Available Zhiwang Song,1,* Yonglin Lu,1,* Xia Zhang,1,* Haiping Wang,2 Junyi Han,3 Chunyan Dong1 1Breast Cancer Center, 2Department of Pharmacy, 3Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Folate-conjugated, curcumin-loaded human serum albumin nanoparticles (F-CM-HSANPs were obtained by the chemical conjugation of folate to the surface of the curcumin (CM-loaded human serum albumin nanoparticles (NPs. The NPs were characterized by various parameters, including size, polydispersity, zeta potential, morphology, encapsulation efficiency, and drug release profile. The mean particle size of F-CM-HSANPs was 165.6±15.7 nm (polydispersity index <0.28, and the average encapsulation efficiency percentage and drug loading percentage of the F-CM-HSANPs were 88.7%±4.8% and 7.9%±0.4%, respectively. Applied in vitro, the CM NPs, after conjugation with folate, maintained sustained release, and a faster release of CM was more visibly observed than the unconjugated NPs. F-CM-HSANPs can prolong the retention time of CM significantly in vivo. However, after intravenous injection of F-CM-HSANPs, the pharmacokinetic parameters of CM were not significantly different from those of CM-loaded human serum albumin NPs. The improved antitumor activity of F-CM-HSANPs may be attributable to the protection of drug from enzymatic deactivation followed by the selective localization at the desired site. These results suggest that the intravenous injection of F-CM-HSANPs is likely to have an advantage in the current clinical CM formulation, because it does not require the use of a solubilization agent and it is better able to target the tumor tissue. Keywords: curcumin, folate, HSA nanoparticles, pharmacokinetic parameters 

  10. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chanjuan; Feng, Bo, E-mail: fengbo@swjtu.edu.cn; Li, Yiting; Tan, Jing; Lu, Xiong; Weng, Jie

    2013-09-01

    Highly ordered anatase-type titanium nanotubes (TNTs) arrays were prepared on the surface of titanium by anodization and subsequently heat treatment at 450 °C for 5 h. Three different diameters of TNTs (50 nm, 75 nm, 100 nm) were fabricated via the voltage changed. Then Ag was loaded on these TNTs through a photo-reduction method of AgNO{sub 3} solution. Ag particles with the size of approximately 10 nm were uniformly distributed on the surface of TNTs. Samples were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic absorption spectrometry and contact angle test. Meanwhile, the antibacterial activities of Ag-loaded TiO{sub 2} nanotubes (TNTs-Ag) were evaluated through antibacterial experiment against both Escherichia coli and Staphylococcus aureus in the dark and under the UV light (λ = 365 nm) irradiation respectively. The results indicated that under the UV light TNTs-Ag had higher antibacterial activities to the two bacteria than TNTs, though the later also showed antibacterial ability. While in the dark environment, the loading of Ag nanoparticles largely enhanced the antibacterial activities of the titanium nanotubes. In addition, the antibacterial efficiencies of all samples increased with increase of nanotube diameters both in the dark and under the UV light. Therefore, TNTs loaded with Ag nanoparticles are expected to be well suited for endo-prosthetic applications due to their excellent antibacterial activities in the dark. And their antibacterial efficiencies can be controlled by adjusting diameters of TNTs, distribution and size of Ag nanoparticles.

  11. Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients

    Directory of Open Access Journals (Sweden)

    Katayoun Derakhshandeh

    2010-07-01

    Full Text Available Katayoun Derakhshandeh1, Marzieh Soheili1, Simin Dadashzadeh2, Reza Saghiri31Department of Pharmaceutics, Faculty of Pharmacy, University of Medical Science, Kermanshah 67145-1673, Iran; 2Department of Pharmaceutics, Faculty of Pharmacy, Shaheed Beheshti University of Medical Science, Tehran, Iran; 3Deptartment of Biochemistry, Pasteur Institute, Tehran, IranAbstract: The purpose in this study was to investigate poly(ethylene glycol-modified poly (d,l-lactide-co-glycolide nanoparticles (PLGA-PEG-NPs loading 9-nitrocamptothecin (9-NC as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84, and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs have a better physicochemical characterization

  12. Anti-proliferative and apoptosis-triggering potential of disulfiram and disulfiram-loaded polysorbate 80-stabilized PLGA nanoparticles on hepatocellular carcinoma Hep3B cell line.

    Science.gov (United States)

    Hoda, Muddasarul; Pajaniradje, Sankar; Shakya, Garima; Mohankumar, Kumaravel; Rajagopalan, Rukkumani

    2016-08-01

    There is an emerging trend to restudy known drugs for their anti-cancer potential. One such anti-alcoholic drug, disulfiram, with significant anti-cancer potential was studied for its efficacy against Hep3B cell lines, an in vitro model of hepatocellular carcinoma. Simultaneously, we intended to study the effect of polysorbate 80-stabilized PLGA nanoparticles and its DSF-loaded counterpart. Cell and nuclear staining, comet assay, flow cytometry and Western blots were performed. Results suggest that cell proliferation was inhibited by DSF and its PLGA nanoparticles through cell cycle arrest, triggering activation of apoptotic pathways that culminates with cell death. DSF loaded nanoparticles when compared with free DSF, showed significantly lesser effect due to its sustained drug-releasing property, while empty nanoparticles showed negligible influence on Hep3B cells. Our results suggest that DSF alone contributes to cell death, while polysorbate 80-stabilized PLGA nanoparticles show sustained drug release patterns that would potentially lower dosage regimens.

  13. Research progress of drug-loading gold nanoparticles%载药金纳米粒的研究进展

    Institute of Scientific and Technical Information of China (English)

    张鑫; 刘颖; 冯年平

    2016-01-01

    In recent years ,as a novel drug delivery system ,gold nanoparticles have attracted widespread attention .Be-cause of their special physicochemical properties ,such as quantum size effect ,unique optical phenomenon ,easily reacting with thiol compounds or disulfides and so on ,gold nanoparticles can delivery variety of types of drugs ,like proteins ,nucleic acid , small molecular drugs ,therefore they can be applied in tumor treatment and detection .In this paper the preparation of drug-loading gold nanoparticles ,their drug-loading ways and safety issues were reviewed .%近年来,作为一种新型药物递送系统,金纳米粒已引起了广泛关注.由于其特殊的物理化学性质,能与多种类型药物发生相互作用,如蛋白质、核酸、小分子药物等,从而可应用于肿瘤治疗和检测.笔者对载药金纳米粒的制备方法、载药方式和安全性等问题进行综述.

  14. Preparation and Optimization of Triptolide-Loaded Solid Lipid Nanoparticles for Oral Delivery with Reduced Gastric Irritation

    Directory of Open Access Journals (Sweden)

    Xiangliang Yang

    2013-10-01

    Full Text Available Triptolide (TP often causes adverse reactions in the gastrointestinal tract when it is administered orally. This study aimed to prepare and optimize triptolide-loaded solid lipid nanoparticles (TP-SLN with reduced gastric irritation. The microemulsion technique was used to formulate TP-SLN employing a five-level central composite design (CCD that was developed for exploring the optimum levels of three independent variables on particle size, encapsulation efficiency (EE and drug loading (DL. Quadratic polynomial models were generated to predict and evaluate the three independent variables with respect to the three responses. The optimized TP-SLN was predicted to comprise fraction of lipid of 49.73%, surfactant to co-surfactant ratio of 3.25, and lipid to drug ratio of 55.27, which showed particle size of 179.8 ± 5.7 nm, EE of 56.5 ± 0.18% and DL of 1.02 ± 0.003% that were in good agreement with predicted values. In addition, the optimized nanoparticles manifested a sustained-release pattern in vitro and were stable during 3 h of incubation in simulated gastric fluids without significant size change and the majority (91% of the drug was protected. Furthermore, the nanoparticles did not show obvious gastric irritation caused by oral administration of TP in rats.

  15. Antibacterial Activity of Fructus forsythia Essential Oil and the Application of EO-Loaded Nanoparticles to Food-Borne Pathogens

    Directory of Open Access Journals (Sweden)

    Na Guo

    2016-10-01

    Full Text Available Fructus forsythia essential oil (FEO with excellent antibacterial activity was rarely reported. The objective of the present study was to investigate the antibacterial activity and the antibacterial mechanism of FEO against two food-borne pathogenic bacteria, Escherichia coli (E. coli and Staphylococcus aureus (S. aureus in vitro. When treated FEO, the zones of inhibition (ZOI of E. coli (20.5 ± 0.25 mm and S. aureus (24.3 ± 0.21 mm were much larger than control (p < 0.05. The minimum inhibitory concentrations (MICs of FEO were 3.13 mg/mL and 1.56 mg/mL for E. coli and S. aureus, respectively. The antibacterial mechanism of FEO against E. coil was due to the changes in permeability and integrity of cell membrane leading to the leakage of nucleic acids and proteins. With the superior antibacterial activity of FEO, the nano-encapsulation method has been applied in FEO. When compared to FEO and blank chitosan nanoparticles, FEO-loaded nanoparticles (chitosan to FEO of 1:1 can effectively inhibit the growth of E. coil above 90% at room temperature. It is necessary to consider that FEO and FEO-loaded nanoparticles will become promising antibacterial additives for food preservative, cosmetic, and pharmaceutical applications.

  16. Antibacterial Activity of Fructus forsythia Essential Oil and the Application of EO-Loaded Nanoparticles to Food-Borne Pathogens

    Science.gov (United States)

    Guo, Na; Gai, Qing-Yan; Jiao, Jiao; Wang, Wei; Zu, Yuan-Gang; Fu, Yu-Jie

    2016-01-01

    Fructus forsythia essential oil (FEO) with excellent antibacterial activity was rarely reported. The objective of the present study was to investigate the antibacterial activity and the antibacterial mechanism of FEO against two food-borne pathogenic bacteria, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in vitro. When treated FEO, the zones of inhibition (ZOI) of E. coli (20.5 ± 0.25 mm) and S. aureus (24.3 ± 0.21 mm) were much larger than control (p antibacterial mechanism of FEO against E. coil was due to the changes in permeability and integrity of cell membrane leading to the leakage of nucleic acids and proteins. With the superior antibacterial activity of FEO, the nano-encapsulation method has been applied in FEO. When compared to FEO and blank chitosan nanoparticles, FEO-loaded nanoparticles (chitosan to FEO of 1:1) can effectively inhibit the growth of E. coil above 90% at room temperature. It is necessary to consider that FEO and FEO-loaded nanoparticles will become promising antibacterial additives for food preservative, cosmetic, and pharmaceutical applications.

  17. Critical Material Attributes of Strip Films Loaded With Poorly Water-Soluble Drug Nanoparticles: II. Impact of Polymer Molecular Weight.

    Science.gov (United States)

    Krull, Scott M; Ammirata, Jennifer; Bawa, Sonia; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-02-01

    Recent work established polymer strip films as a robust platform for delivery of poorly water-soluble drug particles. However, a simple means of manipulating rate of drug release from films with minimal impact on film mechanical properties has yet to be demonstrated. This study explores the impact of film-forming polymer molecular weight (MW) and concentration on properties of polymer films loaded with poorly water-soluble drug nanoparticles. Nanoparticles of griseofulvin, a model Biopharmaceutics Classification System class II drug, were prepared in aqueous suspension via wet stirred media milling. Aqueous solutions of 3 viscosity grades of hydroxypropyl methylcellulose (14, 21, and 88 kDa) at 3 viscosity levels (∼9500, ∼12,000, and ∼22,000 cP) were mixed with drug suspension, cast, and dried to produce films containing griseofulvin nanoparticles. Few differences in film tensile strength or elongation at break were observed between films within each viscosity level regardless of polymer MW despite requiring up to double the time to achieve 100% drug release. This suggests film-forming polymer MW can be used to manipulate drug release with little impact on film mechanical properties by matching polymer solution viscosity. In addition, changing polymer MW and concentration had no negative impact on drug content uniformity or nanoparticle redispersibility.

  18. Lomustine loaded chitosan nanoparticles: characterization and in-vitro cytotoxicity on human lung cancer cell line L132.

    Science.gov (United States)

    Mehrotra, Archana; Nagarwal, Ramesh Chand; Pandit, Jayanta Kumar

    2011-01-01

    The aim of this work was to prepare chitosan nanoparticles loaded with antineoplastic drug Lomustine (LCNPs), by ionic-gelation method with homogenization. The nanoparticles were characterized for particle size, polydispersity index (PDI), surface morphology, encapsulation efficiency, in-vitro drug release and cytotoxicity on human lung cancer cell line L132 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The particle size, zeta potential and encapsulation efficiency of prepared nanoparticles ranged from 75 ± 1.1 to 637 ± 1.6 nm (PDI from 0.05 ± 0.001 to 0.18 ± 0.007), 37.2 ± 0.21 to 53.8 ± 0.18 mV and 66.74 ± 1.4 to 98.0 ± 1.8% respectively. The particles were spherical in shape with smooth surface in scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Mechanical shearing by homogenization treatment significantly changed the nanoparticle size. The drug release rate was biphasic and diffusion controlled over the 8 h. LCNPs greatly inhibited the growth of the L132 cancer cell line used in this study in comparison to the native Lomustine (LMT).

  19. Sustained PDGF-BB release from PHBHHx loaded nanoparticles in 3D hydrogel/stem cell model.

    Science.gov (United States)

    Dong, Cui-Ling; Webb, William R; Peng, Qiang; Tang, James Z; Forsyth, Nicholas R; Chen, Guo-Qiang; El Haj, Alicia J

    2015-01-01

    This study aimed to design a growth factor loaded copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx) nanoparticles containing 3D collagen matrix to achieve growth factor sustained release for long-term stimulation of human mesenchymal stem cells (hMSCs) proliferation/differentiation for tissue engineer application. Platelet-derived growth factor-BB (PDGF-BB), which is known to enhance hMSCs proliferation in human serum, was selected as a model growth factor, and biodegradable copolyester of PHBHHx was chosen to be the sustained release vehicle. PDGF-BB phospholipid complex encapsulated PHBHHx nanoparticles were fabricated, and their effect on hMSCs proliferation was investigated via assays of CCK-8 and live-dead staining to cells inoculated in 2D tissue culture plates and 3D collagen gel scaffolds, respectively. The resulting spherical PHBHHx nanoparticles were stable in terms of their mean particle size, polydispersity index and zeta potential before and after lyophilization. In vitro study revealed a sustained release of PDGF-BB with a low burst release. Furthermore, sustained released PDGF-BB was revealed to significantly promote hMSCs proliferation in both cell monolayer and cell seeded 3D collagen scaffolds inoculated in serum-free media. Therefore, the 3D collagen matrices with locally sustained release growth factor nanoparticles hold promise to be used for stem cell tissue engineering.

  20. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    Science.gov (United States)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  1. Synthesis and Characterization of Magnetic SiO2 Nanoparticles Loaded with Naproxen for Anti-inflammatory Therapy

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Xia; CHEN Zhi-long; HUANG Peng; ZHOU Xing-ping

    2010-01-01

    The aim of this study is to synthesize of magnetic SiO2 nanoparticles(MSNPs)loaded with Naproxen(NAPMSNPs)for targeting anti-flammatory therapy.The Fe3O4 nanoparticles were coated with a thin layer of silica by st(o)ber method and the drug was encapsulated in it simultaneously.The optimal conditions were investigated for the synthesis of MSNPs.The shape,size,and phase structure of NAP-MSNP were characterized by transmission electron micrographs(TEM)and X-ray diffraction(XRD).The drug encapsulation efficiency was confirmed by FT-IR and measured by UV spectrometry.The NAP-MSNPs show the response at the external magnetic field and the drug could be released readily from NAP-MSNPs.All of these facts suggest the NAP-MSNPs could be applied in a promising drug release-controlling system for targeting anti-inflammatory therapy.

  2. Fabrication and Characterization of Gd-DTPA-Loaded Chitosan-Poly(Acrylic Acid) Nanoparticles for Magnetic Resonance Imaging.

    Science.gov (United States)

    Ahmed, Arsalan; Zhang, Chao; Guo, Jian; Hu, Yong; Jiang, Xiqun

    2015-08-01

    Gd-DTPA-loaded chitosan-poly(acrylic acid) nanoparticles (Gd-DTPA@CS-PAA NPs) were formulated based on the reaction system of water-soluble polymer-monomer pairs of acrylic acid in chitosan solution followed by sorption of Gd-DTPA. Morphological investigations revealed the spherical shape of these NPs with about 220 nm particle size. These NPs showed charge reversal characteristic in acidic solution. In vitro and in vivo magnetic characteristics of these NPs were explored to estimate their utilization in targeted enhanced magnetic resonance imaging. Relaxation studies showed that these NPs possessed pH susceptible relaxation properties, which could introduce in vivo-specific distribution of contrast agent. MRI experiment showed that these nanoparticles had better results in contrast enhancement, and the concentration of contrast agent increased in liver and brain with increment in time. Thus, these NPs could maintain in vivo long circulation and high relaxation rate and were suitable agents for magnetic resonance imaging.

  3. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model.

    Science.gov (United States)

    Md, Shadab; Khan, Rashid A; Mustafa, Gulam; Chuttani, Krishna; Baboota, Sanjula; Sahni, Jasjeet K; Ali, Javed

    2013-02-14

    The primary aim of this study was to investigate the potential use of chitosan nanoparticles as a delivery system to enhance the brain targeting efficiency of bromocriptine (BRC) following intranasal (i.n.) administration. The BRC loaded chitosan nanoparticles (CS NPs) were prepared by ionic gelation of CS with tripolyphosphate anions. These NPs had a mean size (161.3 ± 4. 7 nm), zeta potential (+40.3 ± 2.7 mV), loading capacity (37.8% ± 1.8%) and entrapment efficiency (84.2% ± 3.5%). The oral administration of haloperidol (2mg/kg) to mice produced typical Parkinson (PD) symptoms. Catalepsy and akinesia outcomes in animals receiving BRC either in solution or within CS NPs showed a reversal in catalepsy and akinesia behavior when compared to haloperidol treated mice, this reversal being specially pronounced in mice receiving BRC loaded CS NPs. Biodistribution of BRC formulations in the brain and blood of mice following i.n. and intravenous (i.v.) administration was performed using optimized technetium labeled (99mTc-labeled) BRC formulations. The brain/blood ratio of 0.47 ± 0.04, 0.69 ± 0.031, and 0.05 ± 0.01 for BRC solution (i.n.), BRC loaded CS NPs (i.n.) and (i.v.) respectively, at 0.5h are suggestive of direct nose to brain transport bypassing the blood-brain barrier. Gamma scintigraphy imaging of mice brain following i.v. and i.n. administrations were performed to determine the localization of drug in brain. The drug targeting index and direct transport percentage for BRC loaded CS NPs following i.n. route were 6.3 ± 0.8 and 84.2% ± 1.9%. These encouraging results confirmed the development of a novel non-invasive nose to brain delivery system of BRC for the treatment of PD.

  4. Synthesis, characterization, and cytotoxicity of the plasmid EGFP-p53 loaded on pullulan-spermine magnetic nanoparticles

    Science.gov (United States)

    Eslaminejad, Touba; Nematollahi-Mahani, Seyed Noureddin; Ansari, Mehdi

    2016-03-01

    Magnetic nanoparticles have been used as effective vehicles for the targeted delivery of therapeutic agents that can be controlled in their concentration and distribution to a desired part of the body by using externally driven magnets. This study focuses on the synthesis, characterization, and functionalization of pullulan-spermine (PS) magnetic nanoparticles for medical applications. Magnetite nanopowder was produced by thermal decomposition of goethite (FeOOH) in oleic acid and 1-octadecene; pullulan-spermine was deposited on the magnetite nanoparticles in the form of pullulan-spermine clusters. EGFP-p53 plasmid was loaded on functionalized iron oleate to transfer into cells. Synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). The encapsulation efficiency and drug loading efficiency of the nanocomplexes were tested. FTIR studies showed the presence of oleic acid and 1-octadecene in the iron oleate nanopowder and verified the interaction between spermine and pullulan. The characteristic bands of PS in the spectrum of the pullulan-spermine-coated iron oleate (PSCFO) confirmed that PS covered the surface of the iron oleate particles. TEM studies showed the average size of the iron oleate nanopowder, the PSCFO, and the plasmid-carrying PSCFO (PSCFO/pEGFP-p53) to be 34±12 nm, 100±50 nm and 172±3 nm, respectively. Magnetic measurements revealed that magnetic saturation of the PSCFO was lower in comparison with the iron oleate nanopowder due to the presence of organic compounds in the former. In cytotoxicity tests performed using U87 cells as glioblastoma cells, a 92% survival rate was observed at 50 μg/μl of the plasmid-carrying PSCFO, with an IC50 value of 189 μg/μl.

  5. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Ji P

    2016-03-01

    Full Text Available Peng Ji, Tong Yu, Ying Liu, Jie Jiang, Jie Xu, Ying Zhao, Yanna Hao, Yang Qiu, Wenming Zhao, Chao WuCollege of Pharmacy, Liaoning Medical University, Jinzhou, Liaoning Province, People’s Republic of ChinaAbstract: Naringenin (NRG, a flavonoid compound, had been reported to exhibit extensive pharmacological effects, but its water solubility and oral bioavailability are only ~46±6 µg/mL and 5.8%, respectively. The purpose of this study is to design and develop NRG-loaded solid lipid nanoparticles (NRG-SLNs to provide prolonged and sustained drug release, with improved stability, involving nontoxic nanocarriers, and increase the bioavailability by means of pulmonary administration. Initially, a group contribution method was used to screen the best solid lipid matrix for the preparation of SLNs. NRG-SLNs were prepared by an emulsification and low-temperature solidification method and optimized using an orthogonal experiment approach. The morphology was examined by transmission electron microscopy, and the particle size and zeta potential were determined by photon correlation spectroscopy. The total drug content of NRG-SLNs was measured by high-performance liquid chromatography, and the encapsulation efficiency (EE was determined by Sephadex gel-50 chromatography and high-performance liquid chromatography. The in vitro NRG release studies were carried out using a dialysis bag. The best cryoprotectant to prepare NRG-SLN lyophilized powder for future structural characterization was selected using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The short-term stability, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay, cellular uptake, and pharmacokinetics in rats were studied after pulmonary administration of NRG-SLN lyophilized powder. Glycerol monostearate was selected to prepare SLNs, and the optimal formulation of NRG-SLNs was spherical in shape, with a particle

  6. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model.

    Science.gov (United States)

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2013-11-01

    Glioblastomas (GBMs) are highly lethal primary brain tumours. Treatment of these malignant gliomas remains ineffective as these are extremely resistant to chemotherapeutic applications. Furthermore, combination therapy for cancer treatment is becoming more popular because it generates synergistic anticancer effects, by reducing individual drug-related toxicity and associated side effects. Currently, magnetic nanoparticles (MNPs) based drug delivery system has attracted much more attention owing to its intrinsic magnetic properties and drug loading capacity. In the present study, MNPs based drug delivery approach for co-delivering of potent chemotherapeutic drugs such as Curcumin (herbal drug) and Temozolomide (DNA methylating agent) has been implemented. The dual drug loaded MNPs formulations were evaluated in two-dimensional (2-D) monolayer culture and three-dimensional (3-D) tumour spheroid culture of T-98G cells for understanding the therapeutic discrepancy. The dual drug loaded MNPs formulations demonstrated higher cytotoxic effect than single drug loaded MNPs formulations as compared to their corresponding native drugs in 2-D and 3-D culture. The combination index (CI) analysis revealed synergistic mode of action of dual drug loaded MNPs formulations, which was further confirmed by cell death induction assay mediated by acridine orange (AO)/propidium iodide (PI) staining, illustrating higher efficacy of the formulation towards GBM therapy.

  7. Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film.

    Science.gov (United States)

    Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj

    2016-03-01

    Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability.

  8. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA-TPGS for the treatment of liver cancer.

    Science.gov (United States)

    Wu, Binquan; Liang, Yong; Tan, Yi; Xie, Chunmei; Shen, Jin; Zhang, Mei; Liu, Xinkuang; Yang, Lixin; Zhang, Fujian; Liu, Liang; Cai, Shuyu; Huai, De; Zheng, Donghui; Zhang, Rongbo; Zhang, Chao; Chen, Ke; Tang, Xiaolong; Sui, Xuemei

    2016-02-01

    The purpose of this research is to develop nanoparticles (NPs) of star-shaped copolymer mannitol-functionalized PLGA-TPGS for Genistein delivery for liver cancer treatment, and evaluate their therapeutic effects in liver cancer cell line and hepatoma-tumor-bearing nude mice in comparison with the linear PLGA nanoparticles and PLGA-TPGS nanoparticles. The Genistein-loaded M-PLGA-TPGS nanoparticles (MPTN), prepared by a modified nanoprecipitation method, were observed by FESEM and TEM to be near-spherical shape with narrow size distribution. The nanoparticles were further characterized in terms of their size, size distribution, surface charge, drug-loading content, encapsulation efficiency and in vitro drug release profiles. The data showed that the M-PLGA-TPGS nanoparticles were found to be stable, showing almost no change in particle size and surface charge during 3-month storage of their aqueous solution. In vitro Genistein release from the nanoparticles exhibited biphasic pattern with burst release at the initial 4days and sustained release afterwards. The cellular uptake efficiency of fluorescent M-PLGA-TPGS nanoparticles was 1.25-, 1.22-, and 1.29-fold higher than that of the PLGA-TPGS nanoparticles at the nanoparticle concentrations of 100, 250, and 500μg/mL, respectively. In the MPTN group, the ratio of apoptotic cells increased with the drug dose increased, which exhibited dose-dependent effect and a significant difference compared with Genistein solution group (pnanoparticles have higher antitumor efficacy than that of linear PLGA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, the star-shaped copolymer M-PLGA-TPGS could be used as a potential and promising bioactive material for nanomedicine development for liver cancer treatment.

  9. Poly ɛ-caprolactone nanoparticles loaded with Uncaria tomentosa extract: preparation, characterization, and optimization using the Box–Behnken design

    Science.gov (United States)

    Ribeiro, Ana Ferreira; de Oliveira Rezende, Ricardo Leite; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira

    2013-01-01

    Purpose The aim of this research was to develop and optimize a process for obtaining poly ɛ-caprolactone (PCL) nanoparticles loaded with Uncaria tomentosa (UT) extract. Methods Nanoparticles were produced by the oil-in-water emulsion solvent evaporation method. Preliminary experiments determined the initial conditions of the organic phase (OP) and of the aqueous phase (AP) that would be utilized for this study. Ultimately, a three-factor three-level Box–Behnken design (BBD) was employed during the optimization process. PCL and polyvinyl alcohol (PVA) concentrations (X1 and X2, respectively) and the AP/OP volume ratio (X3) were the independent variables studied, while entrapment efficiency (Y1), particle mean diameter (Y2), polydispersity (Y3), and zeta potential (Y4) served as the evaluated responses. Results Preliminary experiments revealed that the optimal initial conditions for the preparation of nanoparticles were as follows: OP composed of 5 mL ethyl acetate/acetone (3/2) mixture containing UT extract and PCL, and an AP of buffered PVA (pH 7.5) solution. Statistical analysis of the BBD results indicated that all of the studied factors had significant effects on the responses Y1, Y2, and Y4, and these effects are closely described or fitted by regression equations. Based on the obtained models and the selected desirability function, the nanoparticles were optimized to maximize Y1 and minimize Y2. These optimal conditions were achieved using 3% (w/v) PCL, 1% (w/v) PVA, and an AP/OP ratio of 1.7, with predicted values of 89.1% for Y1 and 280 nm for Y2. Another batch was produced under the same optimal conditions. The entrapment efficiency of this new batch was measured at 81.6% (Y1) and the particles had a mean size of 247 nm (Y2) and a polydispersity index of 0.062 (Y3). Conclusion This investigation obtained UT-loaded nanoparticle formulations with desired characteristics. The BBD approach was a useful tool for nanoparticle development and optimization, and

  10. Poly ε-caprolactone nanoparticles loaded with Uncaria tomentosa extract: preparation, characterization, and optimization using the Box–Behnken design

    Directory of Open Access Journals (Sweden)

    Ribero AF

    2013-01-01

    Full Text Available Ana Ferreira Ribeiro, Ricardo Leite de Oliveira Rezende, Lúcio Mendes Cabral, Valéria Pereira de SousaDepartment of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, BrazilPurpose: The aim of this research was to develop and optimize a process for obtaining poly ε-caprolactone (PCL nanoparticles loaded with Uncaria tomentosa (UT extract.Methods: Nanoparticles were produced by the oil-in-water emulsion solvent evaporation method. Preliminary experiments determined the initial conditions of the organic phase (OP and of the aqueous phase (AP that would be utilized for this study. Ultimately, a three-factor three-level Box–Behnken design (BBD was employed during the optimization process. PCL and polyvinyl alcohol (PVA concentrations (X1 and X2, respectively and the AP/OP volume ratio (X3 were the independent variables studied, while entrapment efficiency (Y1, particle mean diameter (Y2, polydispersity (Y3, and zeta potential (Y4 served as the evaluated responses.Results: Preliminary experiments revealed that the optimal initial conditions for the preparation of nanoparticles were as follows: OP composed of 5 mL ethyl acetate/acetone (3/2 mixture containing UT extract and PCL, and an AP of buffered PVA (pH 7.5 solution. Statistical analysis of the BBD results indicated that all of the studied factors had significant effects on the responses Y1, Y2, and Y4, and these effects are closely described or fitted by regression equations. Based on the obtained models and the selected desirability function, the nanoparticles were optimized to maximize Y1 and minimize Y2. These optimal conditions were achieved using 3% (w/v PCL, 1% (w/v PVA, and an AP/OP ratio of 1.7, with predicted values of 89.1% for Y1 and 280 nm for Y2. Another batch was produced under the same optimal conditions. The entrapment efficiency of this new batch was measured at 81.6% (Y1 and the particles had a mean size of 247 nm (Y2 and a

  11. Development and in vitro evaluation of Letrozole loaded biodegradable nanoparticles for breast cancer therapy

    Directory of Open Access Journals (Sweden)

    Sanjoy Kumar Dey

    2009-09-01

    Full Text Available The objectives of our study were to prepare and evaluate a biodegradable nanoparticulate system of Letrozole (LTZ intended for breast cancer therapy. LTZ loaded poly(lactide-co-glycolide nanoparticles (LTZ-PLGA-NPs were prepared by emulsion-solvent evaporation method using methylene chloride and polyvinyl alcohol. Percentage of drug (with respect to polymer was selected as formulation variable. LTZ-PLGA-NPs were characterized by particle size, zeta potential, infrared spectra, drug entrapment efficiency and in vitro release. Sonication was done with an ultrasound pulse sonicator at 70 W, 30 kHz for 90 sec to produce stable NPs of mean size range from 64 nm to 255 nm with high entrapment efficiency (68% to 82%. Percentage of drug significantly influenced particle size, entrapment efficiency and release (p Os objetivos de nosso estudo foram preparar e avaliar o sistema de nanopartícula biodegradável de letrozol na terapia de câncer mamário. Nanopartículas de poli(lactídeo-co-glicolídeo carregadas com LTZ (LTZ-PLGA-NPs foram preparadas pelo método de emulsão-evaporação de solvente, utilizando dicloro metano e álcool polivinílico. A porcentagem do fármaco (com relação ao polímero foi selecionada como variável da formulação. LTZ-PLGA-NPs foram caracterizadas pelo tamanho da partícula, potencial zeta, espectros no infravermelho, eficiência de inclusão e liberação in vitro. A sonicação foi realizada com sonicador de ultrassom, de pulso a 70W e 30 kHz por 90 segundos para produzir NPs estáveis, de faixa de tamanho médio de 64 nm a 266 nm, com alta eficiência de inclusão (68% a 82%. A porcentagem do fármaco foi significativamente influenciada pelo tamanho da partícula, eficiência de inclusão e liberação (p<0,05. O sistema controlou significativamente a liberação de LTZ e estudos posteriores poderiam mostrar sua utilidade potencial na terapia de câncer de mama.

  12. Bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity

    Directory of Open Access Journals (Sweden)

    Duan YR

    2012-07-01

    Full Text Available Peihao Yin,1,* Yan Wang,1,* YanYan Qiu,1 LiLi Hou,1 Xuan Liu,1 Jianmin Qin,1 Yourong Duan,2 Peifeng Liu,2 Ming Qiu,3 Qi Li11Department of Clinical Oncology, Putuo Hospital and Interventional Cancer Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; 2Shanghai Cancer Institute, Jiaotong University, Shanghai, China; 3Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China *These authors contributed equally to this workBackground: Recent studies have shown that bufalin has a good antitumor effect but has high toxicity, poor water solubility, a short half-life, a narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study aimed to determine the targeting efficacy of nanoparticles (NPs made of methoxy polyethylene glycol (mPEG, polylactic-co-glycolic acid (PLGA, poly-L-lysine (PLL, and cyclic arginine-glycine-aspartic acid (cRGD loaded with bufalin, ie, bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles (BNPs, in SW620 colon cancer-bearing mice.Methods: BNPs showed uniform size. The size, shape, zeta potential, drug loading, encapsulation efficiency, and release of these nanoparticles were studied in vitro. The tumor targeting, cellular uptake, and growth-inhibitory effect of BNPs in vivo were tested.Results: BNPs were of uniform size with an average particle size of 164 ± 84 nm and zeta potential of 2.77 mV. The encapsulation efficiency was 81.7% ± 0.89%, and the drug load was 3.92% ± 0.16%. The results of in vitro cytotoxicity studies showed that although the blank NPs were nontoxic, they enhanced the cytotoxicity of bufalin in BNPs. Drug release experiments showed that the release of the drug was prolonged and sustained. The results of confocal laser scanning microscopy indicated that BNPs could effectively bind to human umbilical vein endothelial cells. In the SW620

  13. Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats

    Directory of Open Access Journals (Sweden)

    Yang X

    2012-04-01

    Full Text Available Xinxin Yang1*, Ruiyuan Zheng2*, Yunpeng Cai2, Meiling Liao2, Weien Yuan1,2, Zhenguo Liu11Department of Neurology, Xinhua Hospital (affiliated to Shanghai Jiaotong University School of Medicine, 2School of Pharmacy, Shanghai Jiaotong University, Shanghai, People's Republic of China*Xinxin Yang and Ruiyuan Zheng contributed equally to this workBackground: Levodopa remains the most effective drug in the treatment of Parkinson's disease. However, long-term administration of levodopa induces motor complications, such as levodopa-induced dyskinesia. The mechanisms underlying levodopa-induced dyskinesia are not fully understood.Methods: In this study, we prepared levodopa methyl ester (LDME/benserazide-loaded nanoparticles, which can release LDME and benserazide in a sustained manner. Dyskinesia was induced in rats by repeated administration of levodopa then treated with LDME plus benserazide or the same dose of LDME/benserazide-loaded nanoparticles. Apomorphine-induced rotations and abnormal involuntary movements (AIMs were measured on treatment days 1, 5, 10, 15, and 20. In addition, the levels of phosphorylated dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein of 32 kDa, extracellular signal-regulated kinases 1/2, and ΔfosB were determined by Western blot. Tau levels were determined by Western blot and immunohistochemistry. Dynorphin levels in the striatum and cortex of rats were measured using enzyme-linked immunosorbent assay.Results: Over the course of levodopa treatment, the rats developed abnormal AIMs, classified as locomotive, axial, orolingual, and forelimb dyskinesia. The degree of reduction of apomorphine-induced rotations was comparable in dyskinetic rats treated with LDME plus benserazide or LDME/benserazide-loaded nanoparticles. The axial, limb, and orolingual (ALO AIMs of dyskinetic rats treated with LDME/benserazide-loaded nanoparticles were 14 ± 2.5, 9 ± 2.0, and 10 ± 2.1 on treatment days 10, 15, and 20

  14. Dual drug-loaded biofunctionalized amphiphilic chitosan nanoparticles: Enhanced synergy between cisplatin and demethoxycurcumin against multidrug-resistant stem-like lung cancer cells.

    Science.gov (United States)

    Huang, Wei-Ting; Larsson, Mikael; Lee, Yi-Chi; Liu, Dean-Mo; Chiou, Guang-Yuh

    2016-12-01

    Lung cancer kills more humans than any other cancer and multidrug resistance (MDR) in cancer stem-like cells (CSC) is emerging as a reason for failed treatments. One concept that addresses this root cause of treatment failure is the utilization of nanoparticles to simultaneously deliver dual drugs to cancer cells with synergistic performance, easy to envision - hard to achieve. (1) It is challenging to simultaneously load drugs of highly different physicochemical properties into one nanoparticle, (2) release kinetics may differ between drugs and (3) general requirements for biomedical nanoparticles apply. Here self-assembled nanoparticles of amphiphilic carboxymethyl-hexanoyl chitosan (CHC) were shown to present nano-microenvironments enabling simultaneous loading of hydrophilic and hydrophobic drugs. This was expanded into a dual-drug nano-delivery system to treat lung CSC. CHC nanoparticles were loaded/chemically modified with the anticancer drug cisplatin and the MDR-suppressing Chinese herbal extract demethoxycurcumin, followed by biofunctionalization with CD133 antibody for enhanced uptake by lung CSC, all in a feasible one-pot preparation. The nanoparticles were characterized with regard to chemistry, size, zeta potential and drug loading/release. Biofunctionalized and non-functionalized nanoparticles were investigated for uptake by lung CSC. Subsequently the cytotoxicity of single and dual drugs, free in solution or in nanoparticles, was evaluated against lung CSC at different doses. From the dose response at different concentrations the degree of synergy was determined through Chou-Talalay's Plot. The biofunctionalized nanoparticles promoted synergistic effects between the drugs and were highly effective against MDR lung CSC. The efficacy and feasible one-pot preparation suggests preclinical studies using relevant disease models to be justified.

  15. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Ajinath Eknath Shirsat

    2015-01-01

    Full Text Available The purpose of present study was to optimize rizatriptan (RZT chitosan (CS nanoparticles using ionic gelation method by application of quality by design (QbD approach. Based on risk assessment, effect of three variables, that is CS %, tripolyphosphate % and stirring speed were studied on critical quality attributes (CQAs; particle size and entrapment efficiency. Central composite design (CCD was implemented for design of experimentation with 20 runs. RZT CS nanoparticles were characterized for particle size, polydispersity index, entrapment efficiency, in-vitro release study, differential scanning calorimetric, X-ray diffraction, scanning electron microscopy (SEM. Based on QbD approach, design space (DS was optimized with a combination of selected variables with entrapment efficiency > 50% w/w and a particle size between 400 and 600 nm. Validation of model was performed with 3 representative formulations from DS for which standard error of − 0.70-3.29 was observed between experimental and predicted values. In-vitro drug release followed initial burst release 20.26 ± 2.34% in 3-4 h with sustained drug release of 98.43 ± 2.45% in 60 h. Lower magnitude of standard error for CQAs confirms the validation of selected CCD model for optimization of RZT CS nanoparticles. In-vitro drug release followed dual mechanism via, diffusion and polymer erosion. RZT CS nanoparticles were prepared successfully using QbD approach with the understanding of the high risk process and formulation parameters involved and optimized DS with a multifactorial combination of critical parameters to obtain predetermined RZT loaded CS nanoparticle specifications.

  16. Poly(ε-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release.

    Science.gov (United States)

    Kaffashi, Babak; Davoodi, Saeed; Oliaei, Erfan

    2016-07-11

    In this study, the antibacterial bionanocomposites of poly(ε-caprolactone) (PCL) with different concentrations of triclosan (TC) loaded polylactic acid (PLA) nanoparticles (30wt% triclosan) (LATC30) were fabricated via a melt mixing process in order to lower the burst release of PCL and to extend the antibacterial activity during its performance. Due to the PLA's higher glass transition temperature (Tg) and less flexibility compared with PCL; the PLA nanoparticles efficiently trapped the TC particles, reduced the burst release of TC from the bionanocomposites; and extended the antibacterial property of the samples up to two years. The melt mixing temperature was adjusted to a temperature lower than the melting point of LATC30 nanoparticles; therefore, these nanoparticles were dispersed in the PCL matrix without any chemical reaction and/or drug extraction. The sustained release behavior of TC from PCL remained unchanged since no significant changes occurred in the samples' crystallinity compared with that in the neat PCL. The elastic moduli of samples were enhanced once LATC30 is included. This is necessary since the elastic modulus is decreased with water absorption. The rheological behaviors of samples showed appropriate properties for melt electro-spinning. A stable process was established as the relaxation time of the bionanocomposites was increased. The hydrophilic properties of samples were increased with increasing LATC30. The proliferation rate of the fibroblast (L929) cells was enhanced as the content of nanoparticles was increased. A system similar to this could be implemented to prepare long-term antibacterial and drug delivery systems based on PCL and various low molecular weight drugs. The prepared bionanocomposites are considered as candidates for the soft connective tissue engineering and long-term drug delivery.

  17. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles.

    Science.gov (United States)

    Shirsat, Ajinath Eknath; Chitlange, Sohan S

    2015-01-01

    The purpose of present study was to optimize rizatriptan (RZT) chitosan (CS) nanoparticles using ionic gelation method by application of quality by design (QbD) approach. Based on risk assessment, effect of three variables, that is CS %, tripolyphosphate % and stirring speed were studied on critical quality attributes (CQAs); particle size and entrapment efficiency. Central composite design (CCD) was implemented for design of experimentation with 20 runs. RZT CS nanoparticles were characterized for particle size, polydispersity index, entrapment efficiency, in-vitro release study, differential scanning calorimetric, X-ray diffraction, scanning electron microscopy (SEM). Based on QbD approach, design space (DS) was optimized with a combination of selected variables with entrapment efficiency > 50% w/w and a particle size between 400 and 600 nm. Validation of model was performed with 3 representative formulations from DS for which standard error of - 0.70-3.29 was observed between experimental and predicted values. In-vitro drug release followed initial burst release 20.26 ± 2.34% in 3-4 h with sustained drug release of 98.43 ± 2.45% in 60 h. Lower magnitude of standard error for CQAs confirms the validation of selected CCD model for optimization of RZT CS nanoparticles. In-vitro drug release followed dual mechanism via, diffusion and polymer erosion. RZT CS nanoparticles were prepared successfully using QbD approach with the understanding of the high risk process and formulation parameters involved and optimized DS with a multifactorial combination of critical parameters to obtain predetermined RZT loaded CS nanoparticle specifications.

  18. Statistical optimization of dithranol-loaded solid lipid nanoparticles using factorial design

    Directory of Open Access Journals (Sweden)

    Makarand Suresh Gambhire

    2011-09-01

    Full Text Available This study describes a 3² full factorial experimental design to optimize the formulation of dithranol (DTH loaded solid lipid nanoparticles (SLN by the pre-emulsion ultrasonication method. The variables drug: lipid ratio and sonication time were studied at three levels and arranged in a 3² factorial design to study the influence on the response variables particle size and % entrapment efficiency (%EE. From the statistical analysis of data polynomial equations were generated. The particle size and %EE for the 9 batches (R1 to R9 showed a wide variation of 219-348 nm and 51.33- 71.80 %, respectively. The physical characteristics of DTH-loaded SLN were evaluated using a particle size analyzer, differential scanning calorimetry and X-ray diffraction. The results of the optimized formulation showed an average particle size of 219 nm and entrapment efficiency of 69.88 %. Ex-vivo drug penetration using rat skin showed about a 2-fold increase in localization of DTH in skin as compared to the marketed preparation of DTH.Este estudo descreve o planejamento factorial 3² para otimizar a formulação de nanopartículas lipídicas sólidas (SLN carregadas com ditranol (DTH pelo método da ultrassonificação pré-emulsão. As variáveis como proporção de fármaco:lipídio e o tempo de sonicação foram estudados em três níveis e arranjados em planejamento fatorial 3² para estudar a influência nas variáveis de resposta tamanho de partícula e eficiência percentual de retenção do fármaco (%EE. Pela análise estatística, geraram-se equações polinomiais. O tamanho da partícula e a %EE para os 9 lotes (R1 a R9 mostraram ampla variação, respectivamente, 219-348 nm e 51,33-71,80%. As características físicas das SLN carregadas com DTN foram avaliadas utilizando-se analisador de tamanho de partícula, calorimetria de varredura diferencial e difração de raios X. Os resultados da formulação otimizada mostraram tamanho médio de partícula de

  19. Anthracycline Drugs on Modified Surface of Quercetin-Loaded Polymer Nanoparticles: A Dual Drug Delivery Model for Cancer Treatment.

    Directory of Open Access Journals (Sweden)

    Chabita Saha

    Full Text Available Polymer nanoparticles are vehicles used for delivery of hydrophobic anti-cancer drugs, like doxorubicin, paclitaxel or chemopreventors like quercetin (Q. The present study deals with the synthesis and characterisation of nano formulations (NFs from Q loaded PLGA (poly lactic-co-glycolic acid nano particles (NPs by surface modification. The surface of Q-loaded (NPs is modified by coating with biopolymers like bovine serum albumin (BSA or histones (His. Conventional chemotherapeutic drugs adriamycin (ADR and mitoxantrone (MTX are bound to BSA and His respectively before being coated on Q-loaded NPs to nano formulate NF1 and NF2 respectively. The sizes of these NFs are in the range 400-500 nm as ascertained by SEM and DLS measurements. Encapsulation of Q in polymer NPs is confirmed from shifts in FT-IR, TGA and DSC traces of Q-loaded NPs compared to native PLGA and Q. Surface modification in NFs is evidenced by three distinct regions in their TEM images; the core, polymer capsule and the coated surface. Negative zeta potential of Q-loaded NPs shifted to positive potential on surface modification in NF1 and NF2. In vitro release of Q from the NFs lasted up to twenty days with an early burst release. NF2 is better formulation than NF1 as loading of MTX is 85% compared to 23% loading of ADR. Such NFs are expected to overcome multi-drug resistance (MDR by reaching and treating the target cancerous cells by virtue of size, charge and retention.

  20. Hinokitiol-Loaded Mesoporous Calcium Silicate Nanoparticles Induce Apoptotic Cell Death through Regulation of the Function of MDR1 in Lung Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Fang Shen

    2016-04-01

    Full Text Available Hinokitiol is a tropolone-related compound found in heartwood cupressaceous plants. Hinokitiol slows the growth of a variety of cancers through inhibition of cell proliferation. The low water solubility of hinokitiol leads to less bioavailability. This has been highlighted as a major limiting factor. In this study, mesoporous calcium silicate (MCS nanoparticles, both pure and hinokitiol-loaded, were synthesized and their effects on A549 cells were analyzed. The results indicate that Hino-MCS nanoparticles induce apoptosis in higher concentration loads (>12.5 μg/mL for A549 cells. Hino-MCS nanoparticles suppress gene and protein expression levels of multiple drug resistance protein 1 (MDR1. In addition, both the activity and the expression levels of caspase-3/-9 were measured in Hino-MCS nanoparticle-treated A549 cells. The Hino-MCS nanoparticles-triggered apoptosis was blocked by inhibitors of pan-caspase, caspase-3/-9, and antioxidant agents (N-acetylcysteine; NAC. The Hino-MCS nanoparticles enhance reactive oxygen species production and the protein expression levels of caspase-3/-9. Our data suggest that Hino-MCS nanoparticles trigger an intrinsic apoptotic pathway through regulating the function of MDR1 and the production of reactive oxygen species in A549 cells. Therefore, we believe that Hino-MCS nanoparticles may be efficacious in the treatment of drug-resistant human lung cancer in the future.

  1. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11

    Directory of Open Access Journals (Sweden)

    Santos DM

    2012-04-01

    Full Text Available Diego M Santos1, Marcia W Carneiro1, Tatiana R de Moura1, Kiyoshi Fukutani1, Jorge Clarencio1, Manuel Soto2, Socorro Espuelas3,4, Claudia Brodskyn1,5, Aldina Barral1,5, Manoel Barral-Netto1,5, Camila I de Oliveira1,51Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, BA, Brazil; 2Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Departamento de Biologia Molecular, Universidad Autonoma de Madrid, Madrid; 3Departamento de Farmacia y Tecnología Farmacéutica, 4Instituto de Salud Tropical, Facultad de Farmacia, Universidad de Navarra, Pamplona, Spain; 5Instituto de Investigação em Imunologia, Salvador, BA, BrazilBackground: Vaccine development has been a priority in the fight against leishmaniases, which are vector-borne diseases caused by Leishmania protozoa. Among the different immunization strategies employed to date is inoculation of plasmid DNA coding for parasite antigens, which has a demonstrated ability to induce humoral and cellular immune responses. In this sense, inoculation of plasmid DNA encoding Leishmania kinetoplasmid membrane protein-11 (KMP-11 was able to confer protection against visceral leishmaniasis. However, recently the use of antigen delivery systems such as poly(lactic-co-glycolic acid (PLGA nanoparticles has also proven effective for eliciting protective immune responses.Methods: In the present work, we tested two immunization strategies with the goal of obtaining protection, in terms of lesion development and parasite load, against cutaneous leishmaniasis caused by L. braziliensis. One strategy involved immunization with plasmid DNA encoding L. infantum chagasi KMP-11. Alternatively, mice were primed with PLGA nanoparticles loaded with the recombinant plasmid DNA and boosted using PLGA nanoparticles loaded with recombinant KMP-11.Results: Both immunization strategies elicited detectable cellular immune responses with the presence of both proinflammatory and anti

  2. Preparation and characterization of curcumin-piperine dual drug loaded nanoparticles

    Institute of Scientific and Technical Information of China (English)

    C Moorthi; Kiran Krishnan; R Manavalan; K Kathiresan

    2012-01-01

    Objective: To prepare curcumin-piperine (Cu-Pi) nanoparticles by various methods and to study the effect of various manufacturing parameters on Cu-Pi nanoparticles and to identify a suitable method for the preparation of Cu-Pi nanoparticles to overcome oral bioavailability and cancer cell targeting limitations in the treatment of cancer. Methods: Cu-Pi nanoparticles were prepared by thin film hydration method, solid dispersion method, emulsion polymerization method and Fessi method. Optimization was carried out to study the effect of various manufacturing parameter on the Cu-Pi nanoparticles. Results: Out of four methods, Fessi method produced a minimum average particle size of 85.43 nm with a polydispersity index of 0.183 and zeta potential of 29.7 mV. Change of organic solvent (acetone or ethanol) did not have any significant effect on Cu-Pi nanoparticles. However, increase in sonication time, stirring speed, viscosity, use of 1:10:10 ratio of drug/polymer/surfactant, and use of anionic surfactant or combination of anionic surfactant with cationic polymer or combination of non-ionic surfactant with cationic polymer had a significant effect on Cu-Pi nanoparticles. Conclusions: Cu-Pi nanoparticles coated with PEG containing copolymer produced by Fessi method had a minimum average particle size, excellent polydispersity index and optimal zeta potential which fall within the acceptable limits of the study. This dual nanoparticulate drug delivery system appears to be promising to overcome oral bioavailability and cancer cell targeting limitations in the treatment of cancer.

  3. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization

    DEFF Research Database (Denmark)

    Fonte, Pedro; Araújo, Francisca; Seabra, Vítor;

    2015-01-01

    The purpose of this work was to evaluate the influence of the co-encapsulation of lyoprotectants with insulin into PLGA nanoparticles, on the stability of the protein and nanoparticles upon lyophilization. Different lyoprotectants were used, namely trehalose, glucose, sucrose, fructose and sorbitol...... confirmed by circular dichroism spectroscopy. Surprisingly, the simultaneous co-encapsulation and addition of lyoprotectants was detrimental to protein stabilization. The insulin in vitro release studies demonstrated that formulations with co-encapsulated trehalose, glucose, sucrose, fructose and sorbitol...

  4. Size-Dependence of the Activity of Gold Nanoparticle-Loaded Titanium(IV) Oxide Plasmonic Photocatalyst for Water Oxidation.

    Science.gov (United States)

    Teranishi, Miwako; Wada, Masataka; Naya, Shin-Ichi; Tada, Hiroaki

    2016-09-19

    Mesoporous TiO2 nanocrystalline film was formed on fluorine-doped tin oxide electrode (TiO2 /FTO) and gold nanoparticles (NPs) of different sizes were loaded onto the surface with the loading amount kept constant (Au/TiO2 /FTO). Visible-light irradiation (λ>430 nm) of the Au/TiO2 /FTO photoanode in a photoelectrochemical cell with the structure of photoanode|0.1 m NaClO4 aqueous solution|Ag/AgCl (reference electrode)|glassy carbon (cathode) leads to the oxidation of water to oxygen (O2 ). We show that the visible-light activity of the Au/TiO2 /FTO anode increases with a decrease in Au particle size (d) at 2.9≤d≤11.9 nm due to the enhancement of the charge separation and increasing photoelectrocatalytic activity.

  5. Preparation and in vitro-in vivo evaluation of salmon calcitonin-loaded polymeric nanoparticles.

    Science.gov (United States)

    Glowka, Eliza; Sapin-Minet, Anne; Leroy, Pierre; Lulek, Janina; Maincent, Philippe

    2010-01-01

    The aim of the study was to develop and characterize polymeric nanoparticles as a sustained release system for salmon calcitonin (sCT). Nanoparticles were prepared by a double emulsion solvent evaporation method using Eudragit RS and two types of a biodegradable poly(lactic-co-glycolic) copolymer (PLGA). It was demonstrated that sCT was incorporated into nanoparticles with encapsulation efficiencies in the range 69-83%. In vitro release studies, unconventionally conducted in 5% acetic acid, showed great differences in sCT release time profiles. Nanoparticles with fast release profile (Eudragit RS, PLGA/Eudragit RS) released 80-100% of the encapsulated drug within a few hours. In contrast, the sCT release from pure PLGA nanoparticles was very slow, incomplete and reached only 20% after 4 weeks. In vivo study, conducted in Wistar rats, proved that elevated serum sCT levels could be sustained for 3 days after subcutaneous administration of PLGA nanoparticles and the achieved bioavailability was increased compared to sCT solution.

  6. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang H

    2015-03-01

    Full Text Available Hongling Zhang,1,2* Gan Liu,1,2* Xiaowei Zeng,1,2 Yanping Wu,1,2 Chengming Yang,3 Lin Mei,1,2 Zhongyuan Wang,2,4 Laiqiang Huang1,2 1School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China; 2The Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, People’s Republic of China; 3Xili Hospital, Shenzhen, Guangdong, People’s Republic of China; 4School of Medicine, Shenzhen University, Shenzhen, People’s Republic of China *These authors contributed equally to this work Abstract: Genistein is one of the most studied isoflavonoids with potential antitumor efficacy, but its poor water solubility limits its clinical application. Nanoparticles (NPs, especially biodegradable NPs, entrapping hydrophobic drugs have promising applications to improve the water solubility of hydrophobic drugs. In this work, TPGS-b-PCL copolymer was synthesized from ε-caprolactone initiated by d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS through ring-opening polymerization and characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The genistein-loaded NPs were prepared by a modified nanoprecipitation method and characterized in the aspects of particle size, surface charge, morphology, drug loading and encapsulation efficiency, in vitro drug release, and physical state of the entrapped drug. The TPGS-b-PCL NPs were found to have higher cellular uptake efficiency than PCL NPs. MTT and colony formation experiments indicated that genistein-loaded TPGS-b-PCL NPs achieved the highest level of cytotoxicity and tumor cell growth inhibition compared with pristine genistein and genistein-loaded PCL NPs. Furthermore, compared with pristine genistein and genistein-loaded PCL NPs

  7. Methotrexate-loaded biodegradable nanoparticles: preparation, characterization and evaluation of its cytotoxic potential against U-343 MGa human neuronal glioblastoma cells

    Indian Academy of Sciences (India)

    Kranti P Musmade; Praful B Deshpande; Prashant B Musmade; M Naseer Maliyakkal; A Ranjith Kumar; M Sreenivasa Reddy; N Udupa

    2014-06-01

    Nanoparticles represent one of the attractive alternatives in the effective treatment of cancer chemotherapy. In the present work, formulation and development of a novel methotrexate (MTX)-loaded biodegradable nanoparticles using poly(D,L-lactide-co-glycolide) (PLGA) was carried out. The prepared nanoparticles were evaluated for physicochemical properties such as particle size, zeta potential, release studies, etc and also evaluated for its in vitro cytotoxic potential against U-343 MGa human neuronal glioblastoma cells. Particle size of optimized formulation was < 200 nm. There was a considerable decrease in cell viability and enhancement in cytotoxic activity of MTX-loaded nanoparticles compared to MTX alone when tested against U-343 MGa human neuronal glioblastoma cells.

  8. Minocycline Loaded Hybrid Composites Nanoparticles for Mesenchymal Stem Cells Differentiation into Osteogenesis

    Directory of Open Access Journals (Sweden)

    Allister Yingwei Tham

    2016-07-01

    Full Text Available Bone transplants are used to treat fractures and increase new tissue development in bone tissue engineering. Grafting of massive implantations showing slow curing rate and results in cell death for poor vascularization. The potentials of biocomposite scaffolds to mimic extracellular matrix (ECM and including new biomaterials could produce a better substitute for new bone tissue formation. A purpose of this study is to analyze polycaprolactone/silk fibroin/hyaluronic acid/minocycline hydrochloride (PCL/SF/HA/MH nanoparticles initiate human mesenchymal stem cells (MSCs proliferation and differentiation into osteogenesis. Electrospraying technique was used to develop PCL, PCL/SF, PCL/SF/HA and PCL/SF/HA/MH hybrid biocomposite nanoparticles and characterization was analyzed by field emission scanning electron microscope (FESEM, contact angle and Fourier transform infrared spectroscopy (FT-IR. The obtained results proved that the particle diameter and water contact angle obtained around 0.54 ± 0.12 to 3.2 ± 0.18 µm and 43.93 ± 10.8° to 133.1 ± 12.4° respectively. The cell proliferation and cell-nanoparticle interactions analyzed using (3-(4,5-dimethyl thiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium inner salt MTS assay (Promega, Madison, WI, USA, FESEM for cell morphology and 5-Chloromethylfluorescein diacetate (CMFDA dye for imaging live cells. Osteogenic differentiation was proved by expression of osteocalcin, alkaline phosphatase activity (ALP and mineralization was confirmed by using alizarin red (ARS. The quantity of cells was considerably increased in PCL/SF/HA/MH nanoparticles when compare to all other biocomposite nanoparticles and the cell interaction was observed more on PCL/SF/HA/MH nanoparticles. The electrosprayed PCL/SF/HA/MH biocomposite nanoparticle significantly initiated increased cell proliferation, osteogenic differentiation and mineralization, which provide huge potential for bone tissue engineering.

  9. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: Preparation, mechanism, and their antibacterial activity

    Science.gov (United States)

    Tang, Chengli; Hu, Dongmei; Cao, Qianqian; Yan, Wei; Xing, Bo

    2017-02-01

    The effective and strong adherence of silver nanoparticles (AgNPs) to the substrate surface is pivotal to the practical application of those AgNPs-modified materials. In this work, AgNPs were synthesized through a green and facile hydrothermal method. Chitosan was introduced as the binding agent for the effective loading of AgNPs on activated carbon fibers (ACF) surface to fabricate the antibacterial material. Apart from conventional instrumental characterizations, i. e., scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), zeta potential and Brunauer-Emmett-Teller (BET) surface area measurement, molecular dynamics simulation method was also applied to explore the loading mechanism of AgNPs on the ACF surface. The AgNPs-loaded ACF material showed outstanding antibacterial activity for S. aureus and E. coli. The combination of experimental and theoretical calculation results proved chitosan to be a promising binding agent for the fabrication of AgNPs-loaded ACF material with excellent antibacterial activity.

  10. Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process

    Science.gov (United States)

    Pei, Yuchen; Xiao, Chaoxian; Goh, Tian-Wei; Zhang, Qianhui; Goes, Shannon; Sun, Weijun; Huang, Wenyu

    2016-06-01

    Metal nanoparticles (NPs) loaded on oxides have been widely used as multifunctional nanomaterials in various fields such as optical imaging, sensors, and heterogeneous catalysis. However, the deposition of metal NPs on oxide supports with high efficiency and homogeneous dispersion still remains elusive, especially when silica is used as the support. Amino-functionalization of silica can improve loading efficiency, but metal NPs often aggregate on the surface. Herein, we report that a facial annealing of amino-functionalized silica can significantly improve the dispersion and enhance the loading efficiency of various metal NPs, such as Pt, Rh, and Ru, on the silica surface. A series of characterization techniques, such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Zeta potential analysis, UV-Vis spectroscopy, thermogravimetric analysis coupled with infrared analysis (TGA-IR), and nitrogen physisorption, were employed to study the changes of surface properties of the amino-functionalized silica before and after annealing. We found that the annealed amino-functionalized silica surface has more cross-linked silanol groups and relatively lesser amount of amino groups, and less positively charges, which could be the key to the uniform deposition of metal NPs during the loading process. These results could contribute to the preparation of metal/oxide hybrid NPs for the applications that require uniform dispersion.

  11. Synthesis of ZnPc loaded poly(methyl methacrylate) nanoparticles via miniemulsion polymerization for photodynamic therapy in leukemic cells.

    Science.gov (United States)

    Feuser, Paulo Emilio; Gaspar, Pamela Cristina; Jacques, Amanda Virtuoso; Tedesco, Antônio Claudio; dos Santos Silva, Maria Claudia; Ricci-Júnior, Eduardo; Sayer, Claudia; de Araújo, Pedro Henrique Hermes

    2016-03-01

    The goal of this work was to synthesize and characterize ZnPc loaded poly(methyl methacrylate) (PMMA) nanoparticles (NPs) by miniemulsion polymerization. Biocompatibility assays were performed in murine fibroblast (L929) cells and human peripheral blood lymphocytes (HPBL). Finally, photobiological assays were performed in two leukemic cells: chronic myeloid leukemia in blast crisis (K562) and acute lymphoblastic leukemia (Jurkat). ZnPc loaded PMMA NPs presented an average diameter of 97±2.5 nm with a low polydispersity index and negative surface charge. The encapsulation efficiency (EE %) of ZnPc PMMA NPs was 87%±2.12. The release of ZnPc from PMMA NPs was slow and sustained without the presence of burst effect, indicating homogeneous drug distribution in the polymeric matrix. NP biocompatibility was observed on the treatment of peripheral blood lymphocytes and L929 fibroblast cells. Phototoxicity assays showed that the ZnPc loaded in PMMA NPs was more phototoxic than ZnPc after activation with visible light at 675 nm, using a low light dose of 2J/cm(2) in both leukemic cells (Jurkat and K562). The results from fluorescence microscopy (EB/OA) and DNA fragmentation suggest that the ZnPc loaded PMMA NPs induced cell death by apoptosis. Based on presented results, our study suggests that PDT combined with the use of polymeric NPs, may be an excellent alternative for leukemia treatment.

  12. Fabrication of surfactant-free quercetin-loaded PLGA nanoparticles: evaluation of hepatoprotective efficacy by nuclear scintigraphy

    Science.gov (United States)

    Ganguly, Soumya; Gaonkar, Raghuvir H.; Sinha, Samarendu; Gupta, Amit; Chattopadhyay, Dipankar; Chattopadhyay, Sankha; Sachdeva, Satbir S.; Ganguly, Shantanu; Debnath, Mita C.

    2016-07-01

    The purpose of this study was to develop surfactant-free quercetin-loaded PLGA nanoparticles (Qr-NPs) and investigate the hepatoprotective efficacy of the product non-invasively by nuclear scintigraphy. The nanoparticles were prepared using PLGA by dialysis method and ranged in size between 50 and 250 nm with a narrow range of distribution. They were found to arrive at the fenestra of liver sinusoidal epithelium for accumulation. The sizes of nanoparticles (batch S1) were optimal to reach the target and offer enough protection of the hepatocytes degenerated by CCl4 intoxication as determined by various biochemical and histopathological tests. In vitro studies exhibited the cytotoxic effect of the formulation against HepG2 cell line. The hepatoprotective efficacy of Qr-NPs evaluated non-invasively by nuclear scintigraphic technique using 99mTc-labelled sulphur colloid revealed abnormality in liver at the area of decreased uptake in rats of CCl4-treated group, which disappeared in Qr-NP-treated group. In dynamic studies with 99mTc-mebrofenin, excretion was severely impaired in CCl4-treated group but was moderate in drug-treated group, proving the recovery of animals from damage.

  13. Synthesis, characterization and in vitro anti-cancer evaluation of hesperetin-loaded nanoparticles in human oral carcinoma (KB) cells

    Science.gov (United States)

    Gurushankar, K.; Gohulkumar, M.; Rajendra Prasad, N.; Krishnakumar, N.

    2014-03-01

    Hesperetin (HET), a naturally occurring plant bioflavonoid present in citrus fruits, possesses potential anti-inflammatory and anti-carcinogenic activities but poor aqueous solubility limits its applications. To improve its applicability in cancer therapy, hesperetin was encap