WorldWideScience

Sample records for apoptotic tumor response

  1. Functional membrane androgen receptors in colon tumors trigger pro-apoptotic responses in vitro and reduce drastically tumor incidence in vivo

    Directory of Open Access Journals (Sweden)

    Föller Michael

    2009-12-01

    Full Text Available Abstract Background Membrane androgen receptors (mAR have been implicated in the regulation of cell growth, motility and apoptosis in prostate and breast cancer. Here we analyzed mAR expression and function in colon cancer. Results Using fluorescent mAR ligands we showed specific membrane staining in colon cell lines and mouse xenograft tumor tissues, while membrane staining was undetectable in healthy mouse colon tissues and non-transformed intestinal cells. Saturation/displacement assays revealed time- and concentration-dependent specific binding for testosterone with a KD of 2.9 nM. Stimulation of colon mAR by testosterone albumin conjugates induced rapid cytoskeleton reorganization and apoptotic responses, even in the presence of anti-androgens. The actin cytoskeleton drug cytochalasin B effectively inhibited the pro-apoptotic responses and caspase-3 activation. Interestingly, in vivo studies revealed that mAR activation resulted in a 65% reduction of tumor incidence in chemically induced Balb/c mice colon tumors. Conclusion Our results demonstrate for the first time that functional mARs are predominantly expressed in colon tumors and that their activation results in induction of anti-tumor responses in vitro and extensive reduction of tumor incidence in vivo.

  2. Cadmium regulation of apoptotic and stress response genes in tumoral and immortalized epithelial cells of the human breast.

    Science.gov (United States)

    Sirchia, Rosalia; Longo, Alessandra; Luparello, Claudio

    2008-10-01

    Cadmium (Cd) is a widely-disseminated metal which can be imported and accumulated in living cells thereby drastically interfering with their biological mechanisms. Increasing interest has been recently focused on the elucidation of the cellular and molecular aspects of Cd-dependent regulation of gene expression and signal transduction pathways in different model system. Concerning breast cancer, very limited studies have been produced so far on the role played by Cd on estrogen receptor-negative human breast cancer cells, that are expected to be insensitive to the already-proven metallo-estrogenic effect exerted by Cd on the estrogen receptor-positive cell counterparts. Here, we have examined the effects of long-term (96 h) exposure of estrogen receptor-negative MDA-MB231 malignant adenocarcinoma cells to CdCl(2) at 5 microM concentration, corresponding to the IC(50) for this time of incubation, by evaluating the expression levels of genes coding for stress response factors (e.g. heat shock proteins and metallothioneins), and for apoptosis-related factors and enzymes. In parallel, we tested the gene expression pattern of immortalized HB2 breast epithelial cells, taken as non-tumoral counterpart, after the same exposure to the metal which instead did not exert any change in their cell number with respect to controls. Our cumulative results indicate that, whilst HB2 cells appear to activate defense mechanisms against metal stress principally via metallothionein massive up-regulation and appearance of the spliced form of XBP-1 message, MDA-MB231 cells seem to couple the onset of a protective reaction (e.g. up-regulation of hsp27 and metallothioneins) to the switching-on of new intracellular pathways directing cells to a kind of death which shares several aspects with the apoptotic program, such as down-regulation of Bcl-2 and over-expression of Dap kinase and several caspases.

  3. Investigation of DNA damage response and apoptotic gene methylation pattern in sporadic breast tumors using high throughput quantitative DNA methylation analysis technology

    Directory of Open Access Journals (Sweden)

    Prakash Neeraj

    2010-11-01

    Full Text Available Abstract Background- Sporadic breast cancer like many other cancers is proposed to be a manifestation of abnormal genetic and epigenetic changes. For the past decade our laboratory has identified genes involved in DNA damage response (DDR, apoptosis and immunesurvelliance pathways to influence sporadic breast cancer risk in north Indian population. Further to enhance our knowledge at the epigenetic level, we performed DNA methylation study involving 17 gene promoter regions belonging to DNA damage response (DDR and death receptor apoptotic pathway in 162 paired normal and cancerous breast tissues from 81 sporadic breast cancer patients, using a high throughput quantitative DNA methylation analysis technology. Results- The study identified five genes with statistically significant difference between normal and tumor tissues. Hypermethylation of DR5 (P = 0.001, DCR1 (P = 0.00001, DCR2 (P = 0.0000000005 and BRCA2 (P = 0.007 and hypomethylation of DR4 (P = 0.011 in sporadic breast tumor tissues suggested a weak/aberrant activation of the DDR/apoptotic pathway in breast tumorigenesis. Negative correlation was observed between methylation status and transcript expression levels for TRAIL, DR4, CASP8, ATM, CHEK2, BRCA1 and BRCA2 CpG sites. Categorization of the gene methylation with respect to the clinicopathological parameters showed an increase in aberrant methylation pattern in advanced tumors. These uncharacteristic methylation patterns corresponded with decreased death receptor apoptosis (P = 0.047 and DNA damage repair potential (P = 0.004 in advanced tumors. The observation of BRCA2 -26 G/A 5'UTR polymorphism concomitant with the presence of methylation in the promoter region was novel and emerged as a strong candidate for susceptibility to sporadic breast tumors. Conclusion- Our study indicates that methylation of DDR-apoptotic gene promoters in sporadic breast cancer is not a random phenomenon. Progressive epigenetic alterations in advancing

  4. {sup 99m}Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials

    Energy Technology Data Exchange (ETDEWEB)

    Belhocine, Tarik Z. [Western University, Biomedical Imaging Research Centre (BIRC), London, Ontario (Canada); Blankenberg, Francis G. [Lucile Salter Packard Children' s Hospital, Stanford, Division of Pediatric Radiology, Department of Radiology, Palo Alto, CA (United States); Kartachova, Marina S. [Medical Center Alkmaar, Department of Nuclear Medicine, Alkmaar (Netherlands); Stitt, Larry W. [LW Stitt Statistical Services, London, Ontario (Canada); Vanderheyden, Jean-Luc [JLVMI Consulting LLC, Waukesha, WI (United States); Hoebers, Frank J.P. [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO Clinic), GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Wiele, Christophe van de [University Hospital Ghent, Department of Nuclear Medicine and Radiology, Ghent (Belgium)

    2015-12-15

    , an increase of ≥25 % in uptake following treatment was considered a significant threshold for an apoptotic tumor response (partial response, complete response). In three other phase I/II clinical trials, increases of ≥28 %, ≥42 % and ≥47 % in uptake following treatment were found to be the mean cut-off levels in responders. In a phase II/III multicenter clinical trial, an increase of ≥23 % in uptake following treatment was found to be the minimum cut-off level for a tumor response. In one clinical trial, no significant difference in {sup 99m}Tc-annexin A5 uptake in terms of %ID was found in healthy tissues after chemotherapy compared to baseline. In two other clinical trials, intraobserver and interobserver measurements of {sup 99m}Tc-annexin A5 tumor uptake were found to be reproducible (mean difference <5 %, kappa = 0.90 and 0.82, respectively) and to be highly correlated with treatment outcome (Spearman r = 0.99, p < 0.0001). The meta-analysis demonstrated a pooled positive PPV of 100 % (95 % CI 92 - 100 %) and a pooled NPV of 70 % (95 % CI 55 - 82 %) for prediction of a tumor response after the first course of chemotherapy and/or radiotherapy in terms of ΔU%. In a symmetric sROC analysis, the AUC was 0.919 and the Q* index was 85.21 %. Quantitative {sup 99m}Tc-annexin A5 imaging has been investigated in clinical trials for the assessment of apoptotic tumor responses. This meta-analysis showed a high pooled PPV and a moderate pooled NPV with ΔU cut-off values ranging between 20 % and 30 %. Standardization of quantification and harmonization of results are required for high-quality clinical research. A standardized uptake value score (SUV, ΔSUV) using quantitative SPECT/CT imaging may be a promising approach to the simple, reproducible and semiquantitative assessment of apoptotic tumor changes. (orig.)

  5. Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    Science.gov (United States)

    Ford, Catriona A.; Petrova, Sofia; Pound, John D.; Voss, Jorine J.L.P.; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L.; Gallimore, Awen M.; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E.; Dunbar, Donald R.; Murray, Paul G.; Ruckerl, Dominik; Allen, Judith E.; Hume, David A.; van Rooijen, Nico; Goodlad, John R.; Freeman, Tom C.; Gregory, Christopher D.

    2015-01-01

    Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. PMID:25702581

  6. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    Science.gov (United States)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  7. Multimodality Imaging of Tumor Response to Doxil

    Directory of Open Access Journals (Sweden)

    Fan Zhang, Lei Zhu, Gang Liu, Naoki Hida, Guangming Lu, Henry S. Eden, Gang Niu, Xiaoyuan Chen

    2011-01-01

    Full Text Available Purpose: Early assessment of tumor responses to chemotherapy could enhance treatment outcomes by ensuring that, from the beginning, treatments meet the individualized needs of patients. In this study, we applied multiple modality molecular imaging techniques to pre-clinical monitoring of early tumor responses to Doxil, focusing on imaging of apoptosis.Methods: Mice bearing UM-SCC-22B human head and neck squamous cancer tumors received either PBS or 1 to 2 doses of Doxil® (doxorubicin HCl liposome injection (10 mg/kg/dose. Bioluminescence signals from an apoptosis-responsive reporter gene were captured for apoptosis evaluation. Tumor metabolism and proliferation were assessed by 18F-FDG and 3'-18F-fluoro-3'-deoxythymidine (18F-FLT positron emission tomography. Diffusion-weighted magnetic resonance imaging (DW-MRI was performed to calculate averaged apparent diffusion coefficients (ADCs for the whole tumor volume. After imaging, tumor samples were collected for histological evaluation, including terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL, anti-CD31, and Ki-67 immunostaining.Results: Two doses of Doxil significantly inhibited tumor growth. Bioluminescence imaging (BLI indicated apoptosis of tumor cells after just 1 dose of Doxil treatment, before apparent tumor shrinkage. 18F-FDG and 18F-FLT PET imaging identified decreased tumor metabolism and proliferation at later time points than those at which BLI indicated apoptosis. MRI measurements of ADC altered in response to Doxil, but only after tumors were treated with 2 doses. Decreased tumor proliferation and increased apoptotic cells were confirmed by changes of Ki-67 index and apoptotic ratio.Conclusion: Our study of tumor responses to different doses of Doxil demonstrated that it is essential to combine apoptosis imaging strategies with imaging of other critical biological or pathological pathways, such as metabolism and proliferation, to improve clinical decision making

  8. Enhanced apoptotic response to photodynamic therapy after bcl-2 transfection.

    Science.gov (United States)

    Kim, H R; Luo, Y; Li, G; Kessel, D

    1999-07-15

    Apoptosis is a cellular death process involving the sequential activation of a series of caspases, endonucleases, and other enzymes. The initiation of apoptosis can be inhibited by overexpression of bcl-2 and certain other members of a related family of proteins. We examined the effects of bcl-2 overexpression on the apoptotic response to photodynamic therapy (PDT), using aluminum phthalocyanine as the photosensitizing agent. In this study, we compared the immortalized human breast epithelial cell line MCF10A with a subline (MCF10A/bcl-2) transfected with the human bcl-2 gene. The latter was approximately 2-fold more sensitive to the phototoxic effects of PDT. At a 50 mJ/cm2 light dose, photodamage to MCF-10A/bcl-2 resulted in a greater loss of the mitochondrial membrane potential (delta(psi)m), enhanced release of mitochondrial cytochrome c, a more rapid and greater activation of caspase-3, and a greater apoptotic response. Western blot analysis revealed that the transfected cell line showed overexpression of both bcl-2 and bax, and that PDT caused selective destruction of bcl-2, leaving bax unaffected. The greater apoptotic response by the transfected line is, therefore, attributed to the higher bax:bcl-2 ratio after photodamage.

  9. Nucleo-cytoplasmic communication in apoptotic response to genotoxic and inflammatory stress

    Institute of Scientific and Technical Information of China (English)

    Jean Y. J. WANG

    2005-01-01

    Genotoxic agents or inflammatory cytokines activate cellular stress responses and trigger programmed cell death.We have identified a signal transduction module, including three nuclear proteins that participate in the regulation of cell death induced by chemotherapeutic agents and tumor necrosis factor (TNF). In this nuclear signaling module, retinoblastoma protein (Rb) functions as an inhibitor of apoptotic signal transduction. Inactivation of Rb by phosphorylation or caspase-dependent cleavage/degradation is required for cell death to occur. Rb inhibits the Abl tyrosine kinase. Thus,Rb inactivation is a pre-requisite for Abl activation by DNA damage or TNF. Activation of nuclear Abl and its downstream effector p73 induces mitochondriadependent cell death. The involvement of these nuclear signal transducers in TNF induced apoptosis, which does not require new gene expression, indicates that nuclear events other than transcription can contribute to extrinsic apoptotic signal transduction.

  10. Enhancement of the pro-apoptotic properties of Newcastle disease virus promotes tumor remission in syngeneic murine cancer models

    Science.gov (United States)

    Cuadrado-Castano, Sara; Ayllon, Juan; Mansour, Mena; de la Iglesia-Vicente, Janis; Jordan, Stefan; Tripathi, Shashank; García-Sastre, Adolfo; Villar, Enrique

    2015-01-01

    Newcastle disease virus (NDV) is considered a promising agent for cancer therapy due to its oncolytic properties. These include preferential replication in transformed cells, induction of innate and adaptive immune responses within tumors and cytopathic effects in infected tumor cells due to the activation of apoptosis. In order to enhance the latter and thus possibly enhance the overall oncolytic activity of NDV, we generated a recombinant NDV encoding the human TNF receptor Fas (rNDV-B1/Fas). rNDV-B1/Fas replicates to similar titers as its wild type (rNDV-B1) counterpart, however overexpression of Fas in infected cells leads to higher levels of cytotoxicity correlated with faster and increased apoptosis responses in which both the intrinsic and extrinsic pathways are activated earlier. Furthermore, in vivo studies in syngeneic murine melanoma model show an enhancement of the oncolytic properties of rNDV-B1/Fas, with major improvements in survival and tumor remission. Altogether, our data suggest that up-regulation of the pro-apoptotic function of NDV is a viable approach to enhance its anti-tumor properties, and adds to the currently known, rationally-based strategies to design optimized therapeutic viral vectors for the treatment of cancer. PMID:25761895

  11. Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity.

    Directory of Open Access Journals (Sweden)

    Céline Delloye-Bourgeois

    Full Text Available The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway-Patched-Smoothened-Gli-has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON, a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH-CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.

  12. Malignant mixed Mullerian tumors of the uterus: histopathological evaluation of cell cycle and apoptotic regulatory proteins

    Directory of Open Access Journals (Sweden)

    Senger Jenna-Lynn B

    2010-07-01

    Full Text Available Abstract Aim The aim of our study was to evaluate survival outcomes in malignant mixed Mullerian tumors (MMMT of the uterus with respect to the role of cell cycle and apoptotic regulatory proteins in the carcinomatous and sarcomatous components. Methods 23 cases of uterine MMMT identified from the Saskatchewan Cancer Agency (1970-1999 were evaluated. Immunohistochemical expression of Bad, Mcl-1, bcl-x, bak, mdm2, bax, p16, p21, p53, p27, EMA, Bcl-2, Ki67 and PCNA was correlated with clinico-pathological data including survival outcomes. Results Histopathological examination confirmed malignant epithelial component with homologous (12 cases and heterologous (11 cases sarcomatous elements. P53 was strongly expressed (70-95% in 15 cases and negative in 5 cases. The average survival in the p53+ve cases was 3.56 years as opposed to 8.94 years in p53-ve cases. Overexpression of p16 and Mcl-1 were observed in patients with longer survival outcomes (> 2 years. P16 and p21 were overexpressed in the carcinomatous and sarcomatous elements respectively. Cyclin-D1 was focally expressed only in the carcinomatous elements. Conclusions Our study supports that a cell cycle and apoptotic regulatory protein dysregulation is an important pathway for tumorigenesis and b p53 is an important immunoprognostic marker in MMMT of the uterus.

  13. Apoptotic neutrophils containing Staphylococcus epidermidis stimulate macrophages to release the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6.

    Science.gov (United States)

    Wilsson, Asa; Lind, Sara; Ohman, Lena; Nilsdotter-Augustinsson, Asa; Lundqvist-Setterud, Helen

    2008-06-01

    Staphylococcus epidermidis infections are usually nosocomial and involve colonization of biomaterials. The immune defense system cannot efficiently control the bacteria during these infections, which often results in protracted chronic inflammation, in which a key event is disturbed removal of neutrophils by tissue macrophages. While ingesting uninfected apoptotic neutrophils, macrophages release anti-inflammatory cytokines that lead to resolution of inflammation. In clinical studies, we have previously found elevated levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 in synovial fluid from prostheses infected with coagulase negative staphylococci. We show that macrophages phagocytosing apoptotic neutrophils containing S. epidermidis released TNF-alpha and interleukin-6, whereas macrophages phagocytosing spontaneously apoptotic neutrophils did not. This difference was not due to dissimilar phagocytic capacities, because macrophages ingested both types of neutrophils to the same extent. The activation was induced mainly by the apoptotic neutrophils themselves, not by the few remaining extracellular bacteria. Macrophages were not activated by apoptotic neutrophils that contained paraformaldehyde-killed S. epidermidis. Proinflammatory reactions induced by clearance of apoptotic neutrophils containing S. epidermidis might represent an important mechanism to combat the infective agent. This activation of macrophages may contribute to the development of chronic inflammation instead of inflammation resolution.

  14. Growth inhibition and pro-apoptotic activity of violacein in Ehrlich ascites tumor.

    Science.gov (United States)

    Bromberg, Natália; Dreyfuss, Juliana L; Regatieri, Caio V; Palladino, Marcelly V; Durán, Nelson; Nader, Helena B; Haun, Marcela; Justo, Giselle Z

    2010-06-07

    The continuing threat to biodiversity lends urgency to the need of identification of sustainable source of natural products. This is not so much trouble if there is a microbial source of the compound. Herein, violacein, a natural indolic pigment extracted from Chromobacterium violaceum, was evaluated for its antitumoral potential against the Ehrlich ascites tumor (EAT) in vivo and in vitro. Evaluation of violacein cytotoxicity using different endpoints indicated that EAT cells were twofold (IC(50)=5.0 microM) more sensitive to the compound than normal human peripheral blood lymphocytes. In vitro studies indicated that violacein cytotoxicity to EAT cells is mediated by a rapid (8-12h) production of reactive oxygen species (ROS) and a decrease in intracellular GSH levels, probably due to oxidative stress. Additionally, apoptosis was primarily induced, as demonstrated by an increase in Annexin-V positive cells, concurrently with increased levels of DNA fragmentation and increased caspase-2, caspase-9 and caspase-3 activities up to 4.5-, 6.0- and 5.5-fold, respectively, after 72 h of treatment. Moreover, doses of 0.1 and 1.0 microg kg(-1) violacein, administered intraperitoneally (i.p.) to EAT-bearing mice throughout the lifespan of the animals significantly inhibited tumor growth and increased survival of mice. In view of these results, a 35-day toxicity study was conducted in vivo. Complete hematology, biochemistry (ALT, AST and creatinine levels) and histopathological analysis of liver and kidney indicated that daily doses of violacein up to 1000 microg kg(-1) for 35 days are well tolerated and did not cause hematotoxicity nor renal or hepatotoxicity when administered i.p. to mice. Altogether, these results indicate that violacein causes oxidative stress and an imbalance in the antioxidant defense machinery of cells culminating in apoptotic cell death. Furthermore, this is the first report of its antitumor activity in vivo, which occurs in the absence of toxicity to

  15. Endoplasmic Reticulum Ca(2+) Handling and Apoptotic Resistance in Tumor-Derived Endothelial Colony Forming Cells.

    Science.gov (United States)

    Poletto, Valentina; Dragoni, Silvia; Lim, Dmitry; Biggiogera, Marco; Aronica, Adele; Cinelli, Mariapia; De Luca, Antonio; Rosti, Vittorio; Porta, Camillo; Guerra, Germano; Moccia, Francesco

    2016-10-01

    Truly endothelial progenitor cells (EPCs) can be mobilized from bone marrow to support the vascular network of growing tumors, thereby sustaining the metastatic switch. Endothelial colony forming cells (ECFCs) are the only EPC subtype belonging to the endothelial phenotype and capable of incorporating within neovessels. The intracellular Ca(2+) machinery plays a key role in ECFC activation and is remodeled in renal cellular carcinoma-derived ECFCs (RCC-ECFCs). Particularly, RCC-ECFCs seems to undergo a drop in endoplasmic reticulum (ER) Ca(2+) concentration ([Ca(2+) ]ER ). This feature is remarkable when considering that inositol-1,4,5-trisphosphate (InsP3 )-dependent ER-to-mitochondria Ca(2+) transfer regulates the intrinsic apoptosis pathway. Herein, we sought to assess whether: (1) the [Ca(2+) ]ER and the InsP3 -induced ER-mitochondria Ca(2+) shuttle are reduced in RCC-ECFCs; and (2) the dysregulation of ER Ca(2+) handling leads to apoptosis resistance in tumor-derived cells. RCC-ECFCs displayed a reduction both in [Ca(2+) ]ER and in the InsP3 -dependent mitochondrial Ca(2+) uptake, while they expressed normal levels of Bcl-2 and Bak. The decrease in [Ca(2+) ]ER was associated to a remarkable ER expansion in RCC-ECFCs, which is a hallmark of ER stress, and did not depend on the remodeling of the Ca(2+) -transporting and the ER Ca(2+) -storing systems. As expected, RCC-ECFCs were less sensitive to rapamycin- and thapsigargin-induced apoptosis; however, buffering intracellular Ca(2+) levels with BAPTA dampened apoptosis in both cell types. Finally, store-operated Ca(2+) entry was seemingly uncoupled from the apoptotic machinery in RCC-ECFCs. Thus, the chronic underfilling of the ER Ca(2+) pool could confer a survival advantage to RCC-ECFCs and underpin RCC resistance to pharmacological treatment. J. Cell. Biochem. 117: 2260-2271, 2016. © 2016 Wiley Periodicals, Inc.

  16. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens

    DEFF Research Database (Denmark)

    Straten, Per thor; Andersen, Mads Hald

    2010-01-01

    Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal regulators of apoptotic cell death. They are all highly overexpressed in cancers of different origin in which they enhance the survival of the cancer cells. Consequently, they represent prime candidates for anti-ca...

  17. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    Science.gov (United States)

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  18. Apoptotic neurons induce proliferative responses of progenitor cells in the postnatal neocortex.

    Science.gov (United States)

    Petrenko, Volodymyr; Mihhailova, Jevgenia; Salmon, Patrick; Kiss, Jozsef Z

    2015-11-01

    Apoptotic cell death is the leading cause of neuronal loss after neonatal brain injury. Little is known about the intrinsic capacity of the immature cerebral cortex for replacing dead cells. Here we test the hypothesis that neuronal apoptosis is able to trigger compensatory proliferation in surrounding cells. In order to establish a "pure" apoptotic cell death model and to avoid the confounding effects of broken blood-brain barrier and inflammatory reactions, we used a diphtheria toxin (DT) and diphtheria toxin receptor (DTR) system to induce ablation of layer IV neurons in the rodent somatosensory cortex during the early postnatal period. We found that DT-triggered apoptosis is a slowly progressing event lasting about for 7 days. While dying cells expressed the morphological features of apoptosis, we could not detect immunoreactivity for activated caspase-3 in these cells. Microglia activation and proliferation represented the earliest cellular responses to apoptotic cell death. In addition, we found that induced apoptosis triggered a massive proliferation of undifferentiated progenitor cell pool including Sox2 as well as NG2 cells. The default differentiation pattern of proliferating progenitors appears to be the glial phenotype; we could not find evidence for newly generated neurons in response to apoptotic neuronal death. These results suggest that mitotically active progenitor populations are intrinsically capable to contribute to the repair process of injured cortical tissue and may represent a potential target for neuronal replacement strategies.

  19. Pro-apoptotic Bim suppresses breast tumor cell metastasis and is a target gene of SNAI2.

    Science.gov (United States)

    Merino, D; Best, S A; Asselin-Labat, M-L; Vaillant, F; Pal, B; Dickins, R A; Anderson, R L; Strasser, A; Bouillet, P; Lindeman, G J; Visvader, J E

    2015-07-23

    Evasion of cell death is fundamental to the development of cancer and its metastasis. The role of the BCL-2-mediated (intrinsic) apoptotic program in these processes remains poorly understood. Here we have investigated the relevance of the pro-apoptotic protein BIM to breast cancer progression using the MMTV-Polyoma middle-T (PyMT) transgenic model. BIM deficiency in PyMT females did not affect primary tumor growth, but substantially increased the survival of metastatic cells within the lung. These data reveal a role for BIM in the suppression of breast cancer metastasis. Intriguingly, we observed a striking correlation between the expression of BIM and the epithelial to mesenchymal transition transcription factor SNAI2 at the proliferative edge of the tumors. Overexpression and knockdown studies confirmed that these two genes were coordinately expressed, and chromatin immunoprecipitation analysis further revealed that Bim is a target of SNAI2. Taken together, our findings suggest that SNAI2-driven BIM-induced apoptosis may temper metastasis by governing the survival of disseminating breast tumor cells.

  20. Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels

    DEFF Research Database (Denmark)

    Poulsen, Kristian Arild; Andersen, E C; Hansen, C F;

    2010-01-01

    Changes in cell volume and ion gradients across the plasma membrane play a pivotal role in the initiation of apoptosis. Here we explore the kinetics of apoptotic volume decrease (AVD) and ion content dynamics in wild-type (WT) and multidrug-resistant (MDR) Ehrlich ascites tumor cells (EATC). In WT......3728 inhibited AVD and completely abolished the differences in AVD, ionic movements, and caspase 3 activation between WT and MDR EATC. Finally, the maximal capacity of volume-regulated anion channel was found to be strongly repressed in MDR EATC. Together, these data suggest that impairment of AVD...

  1. The plant defensin NaD1 induces tumor cell death via a non-apoptotic, membranolytic process.

    Science.gov (United States)

    Baxter, Amy A; Poon, Ivan Kh; Hulett, Mark D

    2017-01-01

    Cationic anti-microbial peptides (CAPs) have an important role in host innate defense against pathogens such as bacteria and fungi. Many CAPs including defensins also exhibit selective cytotoxic activity towards mammalian cells via both apoptotic and non-apoptotic processes, and are being investigated as potential anticancer agents. The anti-fungal plant defensin from ornamental tobacco, Nicotiana alata Defensin 1 (NaD1), was recently shown to induce necrotic-like cell death in a number of tumor cell types within 30 min of treatment, at a concentration of 10 μM. NaD1-mediated cell killing within these experimental parameters has been shown to occur via binding to the plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) in target cells to facilitate membrane destabilization and subsequent lysis. Whether NaD1 is also capable of inducing apoptosis in tumor cells has not been reported previously. In this study, treatment of MM170 (melanoma) and Jurkat T (leukemia) cells with subacute (CAPs that have been shown to induce apoptosis through caspase activation, dying cells were not sensitive to a pancaspase inhibitor nor did they display caspase activity or DNA fragmentation over the 24 h treatment time. Furthermore, over the 24 h period, cells exhibited necrotic phenotypes and succumbed to membrane permeabilization. These results indicate that the cytotoxic mechanism of NaD1 at subacute concentrations is membranolytic rather than apoptotic and is also likely to be mediated through a PIP2-targeting cell lytic pathway.

  2. Mitochondrial response and calcium ion change in apoptotic insect cells induced by SfaMNPV

    Institute of Scientific and Technical Information of China (English)

    XIU Meihong; PENG Jianxin; HONG Huazhu

    2005-01-01

    Mitochondrial responses and changes of calcium ions in apoptotic insect SL-1 cells induced by Syngrapha falcifera multiple nuclear polyhedrosis virus (SfaMNPV) are reported in this paper. By using Rhodamine 123 as a fluorescent labeling probe, flow cytometry analysis and confocal laser scanning microscope observation we observed that the mitochondrial transmembrane potential (△Ψm) began to decrease in SL-1 cells at 4 h post infection and △Ψm reduced continuously with the extension of virus infection. Western blotting indicated that the Bcl-2 level in the mitochondria gradually declined and was down- regulated. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria, which indicated that cytochrome c was released from mitochondria into cytosol. These results suggest that mitochondrion-mediated apoptotic signal transduction pathway exists in apoptotic insect cell induced by SfaMNPV. Cytosolic free calcium ([Ca2+]i) concentration rapidly increased after SfaMNPV infection and the elevated calcium was tested to come partly from extracelllular calcium ion influx. Flow cytometry analysis indicated that the apoptosis in SL-1 cells was not influenced by established cytosolic calcium clamped conditions and the EGTA inhibiting calcium influx. Therefore, neither the elevation of cytosolic calcium ion nor extracellular calcium entry was the inducing factor of apoptosis, which hinted that the depletion of ER Ca2+ store contributed to SL-1 cell apoptosis induced by SfaMNPV.

  3. Visualization of proteolytic activity associated with the apoptotic response in cancer cells

    Science.gov (United States)

    Tice, Brian George

    Caspases execute programmed cell death, where low levels of caspase activity are linked to cancer. Chemotherapies utilize induction of apoptosis as a key mechanism for cancer treatment, where caspase-3 is a major player involved in dismantling these aberrant cells. The ability to sensitively measure the initial caspase-3 cleavage events during apoptosis is important for understanding the initiation of this complex cellular process, however, current ensemble methods are not sensitive enough to measure single cleavage events in cells. By utilizing the optical properties of plasmon coupling, peptide-linked gold nanoparticles were developed to enable single molecule imaging of caspase-3 activity in two different cancer systems. Au crown nanoparticles were assembled in a multimeric fashion to overcome the high and heterogeneous background scattering of live cells. In a colon cancer (SW620) cell line challenged with tumor necrosis factor-alpha (TNF-alpha), single molecule trajectories show early stage caspase-3 activation within minutes, which was not detectable by ensemble assays until 23 hours. Variability in caspase-3 activation among the population of cells was identified and likely a result of each cell's specific resistance to death receptor-induced apoptosis. Following these studies, improvements by way of sensitivity and selectivity were tailored into an improved nanosensor construct. Au nanoshell dimers were prepared as a comparably bright construct with 1) reduced heterogeneity compared to the synthesis of the crown nanoparticles and 2) a peptide sequence highly selective for caspase-3. Chronic myeloid leukemia (CML) K562 cells were assessed for their early apoptotic response upon treatment with dasatinib, a clinically approved tyrosine kinase inhibitor that specifically targets BCR-ABL. It has been demonstrated that inhibition of BCR-ABL by dasatinib commits K562 cells to apoptosis. Single molecule experiments with Au nanoshell dimers show caspase-3 activation

  4. A functional yeast survival screen of tumor-derived cDNA libraries designed to identify anti-apoptotic mammalian oncogenes.

    Directory of Open Access Journals (Sweden)

    Moritz Eißmann

    Full Text Available Yeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors. These results confirm the great potential of this screening tool to identify novel anti-apoptotic and tumor-relevant molecules. Three of the isolated candidate genes were further analyzed regarding their anti-apoptotic function in cell culture and their potential as a therapeutic target for molecular therapy. PAICS, an enzyme required for de novo purine biosynthesis, the long non-coding RNA MALAT1 and the MAST2 kinase are overexpressed in certain tumor entities and capable of suppressing apoptosis in human cells. Using a subcutaneous xenograft mouse model, we also demonstrated that glioblastoma tumor growth requires MAST2 expression. An additional advantage of the yeast survival screen is its universal applicability. By using various inducible pro-apoptotic killer proteins and screening the appropriate cDNA library prepared from normal or pathologic tissue of interest, the survival screen can be used to identify apoptosis inhibitors in many different systems.

  5. Usage of whey protein may cause liver damage via inflammatory and apoptotic responses.

    Science.gov (United States)

    Gürgen, S G; Yücel, A T; Karakuş, A Ç; Çeçen, D; Özen, G; Koçtürk, S

    2015-07-01

    The purpose of this study was to investigate the long- and short-term inflammatory and apoptotic effects of whey protein on the livers of non-exercising rats. Thirty rats were divided into three groups namely (1) control group, (2) short-term whey (WS) protein diet (252 g/kg for 5 days), and (3) long-term whey (WL) protein diet (252 g/kg for 4 weeks). Interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), and cytokeratin 18 (CK-18-M30) were assessed using enzyme-linked immunosorbent assay and immunohistochemical methods. Apoptosis was evaluated using the terminal transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method. Hepatotoxicity was evaluated by quantitation of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Based on the biochemical levels and immunohistochemical results, the highest level of IL-1β was identified in the WL group (p whey protein is used in an uninformed manner and without exercising, adverse effects on the liver may occur by increasing the apoptotic signal in the short term and increasing inflammatory markers and hepatotoxicity in the long term.

  6. Myricanol Induces Apoptotic Cell Death and Anti-Tumor Activity in Non-Small Cell Lung Carcinoma in Vivo

    Directory of Open Access Journals (Sweden)

    Guanhai Dai

    2015-01-01

    Full Text Available This study explored the inhibiting effect and mechanism of myricanol on lung adenocarcinoma A549 xenografts in nude mice. Forty nude mice with subcutaneous A549 xenografts were randomly divided into five groups: high-dose myricanol (40 mg/kg body weight group; middle-dose myricanol (20 mg/kg body weight group; low-dose myricanol (10 mg/kg body weight group; polyethylene glycol 400 vehicle group (1 mL/kg; and tumor model group. Nude mice were sacrificed after 14 days of treatment and the tumor inhibition rate (TIR, % was then calculated. The relative mRNA expression levels of Bax, Bcl-2, VEGF, HIF-1α, and survivin in the tumor tissues were determined by real-time PCR. TUNEL assay was applied to determine cellular apoptosis, while IHC test was performed to detect the protein expression levels of Bax, Bcl-2, VEGF, HIF-1α, and survivin. The TIR of the three myricanol-treated groups ranged from 14.9% to 38.5%. The IHC results showed that the protein expression of Bcl-2, VEGF, HIF-1α, and survivin were consistently downregulated, whereas that of Bax was upregulated after myricanol treatment. Myricanol also significantly upregulated the mRNA expression of Bax and downregulated that of Bcl-2, VEGF, HIF-1α, and survivin in a dose-dependent manner (p < 0.05 to 0.001. These results are consistent with those of IHC. The TUNEL assay results indicated that apoptotic-positive cells significantly increased in the myricanol-treated tumor tissues compared with the cells of the vehicle control group (p < 0.01 to 0.001. These data suggest that myricanol could significantly decelerate tumor growth in vivo by inducing apoptosis.

  7. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma.

    LENUS (Irish Health Repository)

    Bennett, M W

    2012-02-03

    Various cancer cell lines express Fas ligand (FasL) and can kill lymphoid cells by Fas-mediated apoptosis in vitro. FasL expression has been demonstrated in several human malignancies in vivo. We sought to determine whether human esophageal carcinomas express FasL, and whether FasL expression is associated with increased apoptosis of tumor-infiltrating lymphocytes (TIL) in vivo, thereby contributing to the immune privilege of the tumor. Using in situ hybridization and immunohistochemistry, respectively, FasL mRNA and protein were colocalized to neoplastic esophageal epithelial cells in all esophageal carcinomas (squamous, n = 6; adenocarcinoma, n = 2). The Extent of FasL expression was variable, with both FasL-positive and FasL-negative neoplastic regions occurring within tumors. TIL were detected by immunohistochemical staining for the leukocyte common Ag, CD45. FasL expression was associated with a mean fourfold depletion of TIL when compared with FasL-negative areas within the same tumors (range 1.6- to 12-fold, n = 6,p < 0.05). Cell death of TIL was detected by dual staining of CD45 (immunohistochemistry) and DNA strand breaks (TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling). There was a mean twofold increase in detectable cell death among TIL in FasL-positive areas compared with FasL-negative areas (range 1.6- to 2.4-fold, n = 6, p < 0.05). In conclusion, we demonstrate a statistically significant, quantitative reduction of TIL concomitant with significantly increased TIL apoptosis within FasL-expressing areas of esophageal tumors. Our findings suggest Fas-mediated apoptotic depletion of TIL in response to FasL expression by esophageal cancers, and provide the first direct, quantitative evidence to support the Fas counterattack as a mechanism of immune privilege in vivo in human cancer.

  8. Paracrine Apoptotic Effect of p53 Mediated by Tumor Suppressor Par-4

    Directory of Open Access Journals (Sweden)

    Ravshan Burikhanov

    2014-01-01

    Full Text Available The guardian of the genome, p53, is often mutated in cancer and may contribute to therapeutic resistance. Given that p53 is intact and functional in normal tissues, we harnessed its potential to inhibit the growth of p53-deficient cancer cells. Specific activation of p53 in normal fibroblasts selectively induced apoptosis in p53-deficient cancer cells. This paracrine effect was mediated by p53-dependent secretion of the tumor suppressor Par-4. Accordingly, the activation of p53 in normal mice, but not p53−/− or Par-4−/− mice, caused systemic elevation of Par-4, which induced apoptosis of p53-deficient tumor cells. Mechanistically, p53 induced Par-4 secretion by suppressing the expression of its binding partner, UACA, which sequesters Par-4. Thus, normal cells can be empowered by p53 activation to induce Par-4 secretion for the inhibition of therapy-resistant tumors.

  9. The BRCA1 Tumor Suppressor Binds to Inositol 1,4,5-Trisphosphate Receptors to Stimulate Apoptotic Calcium Release*

    Science.gov (United States)

    Hedgepeth, Serena C.; Garcia, M. Iveth; Wagner, Larry E.; Rodriguez, Ana M.; Chintapalli, Sree V.; Snyder, Russell R.; Hankins, Gary D. V.; Henderson, Beric R.; Brodie, Kirsty M.; Yule, David I.; van Rossum, Damian B.; Boehning, Darren

    2015-01-01

    The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. PMID:25645916

  10. Inhibition of mitochondria responsible for the anti-apoptotic effects of melatonin during ischemia-reperfusion

    Institute of Scientific and Technical Information of China (English)

    HAN Yi-xiang; ZHANG Sheng-hui; WANG Xi-ming; WU Jian-bo

    2006-01-01

    Objective: To investigate a possible mechanism responsible for anti-apoptotic effects of melatonin and provide theoretical evidences for clinical therapy. Methods: Ischemia-reperfusion mediated neuronal cell injury model was constructed in cerebellar granule neurons (CGNs) by deprivation of glucose, serum and oxygen in media. After ischemia, melatonin was added to the test groups to reach differential concentration during reperfusion. DNA fragmentation, mitochondrial transmembrane potential,mitochondrial cytochrome c release and caspase-3 activity were observed after subjecting cerebellar granule neurons to oxygen-glucose deprivation (OGD). Results: The results showed that OGD induced typical cell apoptosis change, DNA ladder and apoptosis-related alterations in mitochondrial functions including depression of mitochondrial transmembrane potential (its maximal protection ratio was 73.26%) and release of cytochrome c (its maximal inhibition ratio was 42.52%) and the subsequent activation of caspase-3 (its maximal protection ratio was 59.32%) in cytoplasm. Melatonin reduced DNA damage and inhibited release of mitochondrial cytochrome c and activation of caspase-3. Melatonin can strongly prevent the OGD-induced loss of the mitochondria membrane potential. Conclusion: Our findings suggested that the direct inhibition of mitochondrial pathway might essentially contribute to its anti-apoptotic effects in neuronal ischemia-reperfusion.

  11. Pro-apoptotic Gene PUMA and Tumor Therapy%促凋亡基因puma与肿瘤治疗

    Institute of Scientific and Technical Information of China (English)

    王明立

    2012-01-01

    p53上调凋亡调控因子(puma)是Bcl-2蛋白家族的促凋亡成员之一,是p53的下游靶基因,发挥作用却与p53的状态无关,可通过p53依赖和非依赖途径诱导细胞凋亡.puma在多种肿瘤组织中低表达,与肿瘤的发生密切相关.puma与放疗、化疗有协同作用,上调puma可以增强肿瘤细胞对放化疗的敏感性,而puma缺失则可降低放化疗对正常细胞的损伤.随着研究的深入,puma有望成为肿瘤治疗的新靶点.%p53 upregulated modulator of apoptosis( PUMA )is a pro-apoptotic protein member of the Bcl-2 family. PUMA is the down-stream target gene of p53, playing the role regardless of the state of p53. PUMA induces apoptosis via both p53-dependent and p53-independent mechanisms. PUMA has low expression in a variety of tumor tissues and is closely related with tumor occurrence. PUMA has a syner-gistic effect with radiotherapy and chemotherapy. Upregulation of PUMA expression could enhance the sensitivity of tumor cells to radiotherapy and chemotherapy, while the deletion of PUMA could reduce the damage of radiotherapy and chemotherapy to normal cells. PUMA is expected to be a new target of cancer therapy along with the further studies.

  12. An NQO1-initiated and p53-independent apoptotic pathway determines the anti-tumor effect of tanshinone IIA against non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available NQO1 is an emerging and promising therapeutic target in cancer therapy. This study was to determine whether the anti-tumor effect of tanshinone IIA (TSA is NQO1 dependent and to elucidate the underlying apoptotic cell death pathways. NQO1(+ A549 cells and isogenically matched NQO1 transfected and negative H596 cells were used to test the properties and mechanisms of TSA induced cell death. The in vivo anti-tumor efficacy and the tissue distribution properties of TSA were tested in tumor xenografted nude mice. We observed that TSA induced an excessive generation of ROS, DNA damage, and dramatic apoptotic cell death in NQO1(+ A549 cells and H596-NQO1 cells, but not in NQO1(- H596 cells. Inhibition or silence of NQO1 as well as the antioxidant NAC markedly reversed TSA induced apoptotic effects. TSA treatment significantly retarded the tumor growth of A549 tumor xenografts, which was significantly antagonized by dicoumarol co-treatment in spite of the increased and prolonged TSA accumulations in tumor tissues. TSA activated a ROS triggered, p53 independent and caspase dependent mitochondria apoptotic cell death pathway that is characterized with increased ratio of Bax to Bcl-xl, mitochondrial membrane potential disruption, cytochrome c release, and subsequent caspase activation and PARP-1 cleavage. The results of these findings suggest that TSA is a highly specific NQO1 target agent and is promising in developing as an effective drug in the therapy of NQO1 positive NSCLC.

  13. Clinical predictive factors of pathologic tumor response

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chi Hwan; Kim, Won Dong; Lee, Sang Jeon; Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of)

    2012-09-15

    The aim of this study was to identify clinical predictive factors for tumor response after preoperative chemoradiotherapy (CRT) in rectal cancer. The study involved 51 patients who underwent preoperative CRT followed by surgery between January 2005 and February 2012. Radiotherapy was delivered to the whole pelvis at a dose of 45 Gy in 25 fractions, followed by a boost of 5.4 Gy in 3 fractions to the primary tumor with 5 fractions per week. Three different chemotherapy regimens were used. Tumor responses to preoperative CRT were assessed in terms of tumor downstaging and pathologic complete response (ypCR). Statistical analyses were performed to identify clinical factors associated with pathologic tumor response. Tumor downstaging was observed in 28 patients (54.9%), whereas ypCR was observed in 6 patients (11.8%). Multivariate analysis found that predictors of downstaging was pretreatment relative lymphocyte count (p = 0.023) and that none of clinical factors was significantly associated with ypCR. Pretreatment relative lymphocyte count (%) has a significant impact on the pathologic tumor response (tumor downstaging) after preoperative CRT for locally advanced rectal cancer. Enhancement of lymphocyte-mediated immune reactions may improve the effect of preoperative CRT for rectal cancer.

  14. Insulin-responsiveness of tumor growth.

    Science.gov (United States)

    Chantelau, Ernst

    2009-05-01

    In October 2008, the 2nd International Insulin & Cancer Workshop convened roughly 30 researchers from eight countries in Düsseldorf/Germany. At this meeting, which was industry-independent like the preceding one in 2007, the following issues were discussed a) association between certain cancers and endogenous insulin production in humans, b) growth-promoting effects of insulin in animal experiments, c) mitogenic and anti-apoptotic activity of pharmaceutic insulin and insulin analogues in in vitro experiments, d) potential mechanisms of insulin action on cell growth, mediated by IGF-1 receptor and insulin receptor signaling, and e) IGF-1 receptor targeting for inhibition of tumor growth. It was concluded that further research is necessary to elucidate the clinical effects of these observations, and their potential for human neoplastic disease and treatment.

  15. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats.

    Science.gov (United States)

    Paredes, Sergio D; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A F

    2015-01-01

    Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription-polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury.

  16. Parameter identification using stochastic simulations reveals a robustness in CD95 apoptotic response.

    Science.gov (United States)

    Zimmer, Christoph; Schleich, Kolja; Lavrik, Inna

    2016-04-26

    A number of mathematical models of apoptosis generated recently allowed us to understand intrinsic mechanisms of life/death decisions in a cell. Nevertheless, the parameters for the mathematical models are often experimentally difficult to obtain and there is an emerging need for the development of efficient approaches for parameter estimation. In this study we suggest a new method for parameter estimation, which is based on stochastic simulations and can be used when the number of molecules in the system is small. Our approach comprised the following steps: we start from the selection of parameters that lead to a good ordinary differential equation (ODE) fit. We continued by carrying out stochastic simulations for each of these parameters. Comparing the correlation structure of these simulations with the data, we finally could identify the best parameter set. The method was applied for a model of CD95-induced apoptosis, the new best identified parameters fit well to the experimental data. The best parameter set allowed us to get new insights into CD95 apoptosis regulation and can be applied for the comprehensive analysis of other signaling networks. The modeling approach allowed us to get new insights into network regulation, in particular, to identify robustness in CD95 apoptotic response. Taken together, this new method provides valuable predictions and can be applied for the analysis of other signaling networks.

  17. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells.

    Science.gov (United States)

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina; Henninger, Christian; Thomale, Jürgen; Schupp, Nicole; Fritz, Gerhard

    2016-02-01

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model. The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury.

  18. Immune Responses of Dendritic Cells Loaded with Antigens from Apoptotic Cholangiocarcinoma Cells Caused by γ-Irradation

    Institute of Scientific and Technical Information of China (English)

    WUGang; HANBenli; PEIXuetao

    2002-01-01

    Objective:To investigate the induction cytotoxic T cells(CTLs) with antitumor activity and therapeutic efficacy after dendritic cells(DCs) acquired antigen from apoptotic cholangiocarcinoma cells caused by γ-irradiation. Methods:DCs from peripheral blood mononuclear cells (PBMC) that maintain the antigen capturing and processing capacity charateristic of immature cells have been established in vitro, using granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). Then, in cholangiocarcinoma cells apoptosis was induced by γ-irradiation. The experimental groups were as follows:(1)coculture of DCs and apoptotic cancer cells and T cells;(2)coculture of DCs and necrotic cancer cells and T cells;(3)coculture of DCs, cultured cancer cell and T cells. They are cocultured for 7 days.DCs and T cells were riched, isolated and their antitumor response was tested. Results:The cells had typical dendritic morphology, expressed high levels of CDla and B7, acquired antigen from apoptotic cells caused by γ-irradiation and induced an increased T cell stimulatory capacity in mixed lymphocyte reactions (MLR). Conclusion:DCs obtained from PBMCs using GM-CSF and IL-4 can efficiently present antigen derived from apoptotic cells caused by γ-irradiation and efficiently induce T cells.This strategy, therefore, may present an effective approach to transduce DCs with antigen.

  19. Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold

    Energy Technology Data Exchange (ETDEWEB)

    Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar; Calvo-Sanjuán, Rubén; Gracia-Fleta, Lucía; Naval, Javier; Marzo, Isabel, E-mail: imarzo@unizar.es

    2012-02-01

    Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.

  20. H pylori receptor MHC class Ⅱ contributes to the dynamic gastric epithelial apoptotic response

    Institute of Scientific and Technical Information of China (English)

    David A Bland; Giovanni Suarez; Ellen J Beswick; Johanna C Sierra; Victor E Reyes

    2006-01-01

    AIM: To investigate the role of MHC class Ⅱ in the modulation of gastric epithelial cell apoptosis induced by H pylori infection.METHODS: After stimulating a human gastric epithelial cell line with bacteria or agonist antibodies specific for MHC class Ⅱ and CD95, the quantitation of apoptotic and anti-apoptotic events, including caspase activation,BCL-2 activation, and FADD recruitment, was performed with a fluorometric assay, a cytometric bead array, and confocal microscopy, respectively.RESULTS: Pretreatment of N87 cells with the anti-MHC class Ⅱ IgM antibody RFD1 resulted in a reduction in global caspase activation at 24 h of H pylori infection.When caspase 3 activation was specifically measured,crosslinking of MHC class Ⅱ resulted in a marked reduced caspase activation, while simple ligation of MHC class Ⅱ did not. Crosslinking of MHC class Ⅱ also resulted in an increased activation of the anti-apoptosis molecule BCL-2 compared to simple ligation. Confocal microscope analysis demonstrated that the pretreatment of gastric epithelial cells with a crosslinking anti-MHC class Ⅱ IgM blocked the recruitment of FADD to the cell surface.CONCLUSION: The results presented here demonstrate that the ability of MHC class Ⅱ to modulate gastric epithelial apoptosis is at least partially dependent on its crosslinking. Furthermore, while previous research has demonstrated that MHC class Ⅱ signaling can be proapoptotic during extended ligation, we have shown that the crosslinking of this molecule has anti-apoptotic effects during the earlier time points of H pylori infection.This effect is possibly mediated by the ability of MHC class Ⅱ to modulate the activation of the pro-apoptotic receptor Fas by blocking the recruitment of the accessory molecule FADD, and this delay in apoptosis induction could allow for prolonged cytokine secretion by H pyloriinfected gastric epithelial cells.

  1. The anti-apoptotic factor Che-1/AATF links transcriptional regulation, cell cycle control, and DNA damage response

    Directory of Open Access Journals (Sweden)

    Fanciulli Maurizio

    2007-07-01

    Full Text Available Abstract Che-1 is a RNA polymerase II binding protein involved in the transcriptional regulation of E2F target genes and in cell proliferation. Recently, it has been shown that Che-1 accumulates in cells responding to genotoxic agents such as Doxorubicin and ionizing radiation. The DNA damage-activated checkpoint kinases ATM and Chk2 interact with and phosphorylate Che-1, enhancing its accumulation and stability, and promoting Che-1-mediated transcription of p53-responsive genes and of p53 itself, as evidenced by microarray analysis. This transcriptional response is suppressed by expression of a Che-1 mutant lacking ATM and Chk2 phosphorylation amino acid residues, or by depletion of Che-1 by RNA silencing. In addition, chromatin immunoprecipitation analysis has shown that Che-1 is released from E2F target genes and recruited to the p21 and p53 promoters after DNA damage. Che-1 contributes to the maintenance of the G2/M checkpoint in response to genotoxic stress. These findings identify a new mechanism by which the checkpoint kinases regulate, via the novel effector Che-1, the p53 pathway. Lastly, increasing evidence suggests that Che-1 may be involved in apoptotic signaling in neural tissues. In cortical neurons, Che-1 exhibits anti-apoptotic activity, protecting cells from neuronal damage induced by amyloid β-peptide. In cerebellar granule neurons, Che-1 interacts with Tau in the cytoplasmic compartment and this interaction is modulated during neuronal apoptosis. Finally, Che-1 directly interacts with the neuronal cell-death inducer "NRAGE" which downregulates endogenous Che-1 by targeting it for proteasome-dependent degradation. These findings identify Che-1 as a novel cytoprotective factor against apoptotic insults and suggest that Che-1 may represent a potential target for therapeutic application.

  2. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells

    Directory of Open Access Journals (Sweden)

    Chen YH

    2013-07-01

    Full Text Available Ying-Hui Chen,1,2,* Jo-Yu Wang,3,* Bo-Syong Pan,3,4 Yi-Fen Mu,3 Meng-Shao Lai,3,4 Edmund Cheung So,5 Thian-Sze Wong,6 Bu-Miin Huang3,4 1Department of Anesthesia, Chi-Mei Medical Center, Liouying, 2Department of Nursing, Min-Hwei College of Health Care Management, 3Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 4The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 5Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan; 6Department of Surgery, University of Hong Kong Medical Center, Faculty of Medicine, The University of Hong Kong, Hong Kong *Authors contributed equally to this work Purpose: The present study aims to investigate whether the combination treatment of cordycepin (an extracted pure compound from Cordyceps sinensis and cisplatin (a platinum-based chemotherapy drug has better apoptotic effect in head and neck squamous cell carcinoma (HNSCC. Methods: The apoptotic influences of cordycepin and/or cisplatin treatments to human OC3, OEC-M1, and FaDu HNSCC cells were investigated by morphological observations, viability assay, flow cytometry assay, and Western blotting methods. Results: Data showed that the cell death phenomenon increased as the dosage of cordycepin or cisplatin increased, and it appeared more in cordycepin plus cisplatin cotreatment among three cell lines. Cell survival rates significantly decreased as the dosage of cordycepin or cisplatin increased, and the better apoptotic effects were observed in cotreatment. Cell cycle analysis further demonstrated that percentages of subG1 cells in cordycepin or cisplatin treatments significantly increased, suggesting that cells underwent apoptosis, and cordycepin plus cisplatin induced many more subG1 cells. Furthermore, cordycepin or cisplatin induced caspase-8, caspase-9, caspase-3, and poly adenosine diphosphate-ribose polymerase protein cleavages, and stimulated c

  3. Hederagenin Supplementation Alleviates the Pro-Inflammatory and Apoptotic Response to Alcohol in Rats

    Directory of Open Access Journals (Sweden)

    Gyeong-Ji Kim

    2017-01-01

    Full Text Available In this study, we determined the effects of hederagenin isolated from Akebia quinata fruit on alcohol-induced hepatotoxicity in rats. Specifically, we investigated the hepatoprotective, anti-inflammatory, and anti-apoptotic effects of hederagenin, as well as the role of AKT and mitogen-activated protein kinase (MAPK signaling pathways in ethanol-induced liver injury. Experimental animals were randomly divided into three groups: normal (sham, 25% ethanol, and 25% ethanol + hederagenin (50 mg/kg/day. Each group was orally administered the respective treatments once per day for 21 days. Acetaldehyde dehydrogenase-2 mRNA expression was higher and alcohol dehydrogenase mRNA expression was lower in the ethanol + hederagenin group than those in the ethanol group. Pro-inflammatory cytokines, including TNF-α, IL-6, and cyclooxygenase-2, significantly increased in the ethanol group, but these increases were attenuated by hederagenin. Moreover, Western blot analysis showed increased expression of the apoptosis-associated protein, Bcl-2, and decreased expression of Bax and p53 after treatment with hederagenin. Hederagenin treatment attenuated ethanol-induced increases in activated p38 MAPK and increased the levels of phosphorylated AKT and ERK. Hederagenin alleviated ethanol-induced liver damage through anti-inflammatory and anti-apoptotic activities. These results suggest that hederagenin is a potential candidate for preventing alcoholic liver injury.

  4. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Mathieu Pernice

    Full Text Available BACKGROUND: Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts. METHODOLOGY/PRINCIPAL FINDINGS: The PRESENT study reports the impacts of different stressors (colchicine and heat stress on three phases of apoptosis: (i the potential initiation by differential expression of Bcl-2 members, (ii the execution of apoptotic events by activation of caspase 3-like proteases and (iii and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity. CONCLUSIONS/SIGNIFICANCE: In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in

  5. Anti-apoptotic response during anoxia and recovery in a freeze-tolerant wood frog (Rana sylvatica

    Directory of Open Access Journals (Sweden)

    Victoria E.M. Gerber

    2016-03-01

    Full Text Available The common wood frog, Rana sylvatica, utilizes freeze tolerance as a means of winter survival. Concealed beneath a layer of leaf litter and blanketed by snow, these frogs withstand subzero temperatures by allowing approximately 65–70% of total body water to freeze. Freezing is generally considered to be an ischemic event in which the blood oxygen supply is impeded and may lead to low levels of ATP production and exposure to oxidative stress. Therefore, it is as important to selectively upregulate cytoprotective mechanisms such as the heat shock protein (HSP response and expression of antioxidants as it is to shut down majority of ATP consuming processes in the cell. The objective of this study was to investigate another probable cytoprotective mechanism, anti-apoptosis during oxygen deprivation and recovery in the anoxia tolerant wood frog. In particular, relative protein expression levels of two important apoptotic regulator proteins, Bax and p-p53 (S46, and five anti-apoptotic/pro-survival proteins, Bcl-2, p-Bcl-2 (S70, Bcl-xL, x-IAP, and c-IAP in response to normoxic, 24 Hr anoxic exposure, and 4 Hr recovery stages were assessed in the liver and skeletal muscle using western immunoblotting. The results suggest a tissue-specific regulation of the anti-apoptotic pathway in the wood frog, where both liver and skeletal muscle shows an overall decrease in apoptosis and an increase in cell survival. This type of cytoprotective mechanism could be aimed at preserving the existing cellular components during long-term anoxia and oxygen recovery phases in the wood frog.

  6. Extraskeletal myxoid chondrosarcoma: tumor response to sunitinib

    Directory of Open Access Journals (Sweden)

    Stacchiotti Silvia

    2012-10-01

    Full Text Available Abstract Background Extraskeletal myxoid chondrosarcoma (EMCS is a rare soft tissue sarcoma of uncertain differentiation, characterized in most cases by a translocation that results in the fusion protein EWSR1-CHN (the latter even called NR4A3 or TEC. EMCS is marked by >40% incidence of metastases in spite of its indolent behaviour. It is generally resistant to conventional chemotherapy, and, to the best of our knowledge, no data have been reported to date about the activity of tirosin-kinase inhibitor (TKI in this tumor. We report on two consecutive patients carrying an advanced EMCS treated with sunitinib. Methods Since July 2011, 2 patients with progressive pretreated metastatic EMCS (Patient1: woman, 58 years, PS1; Patient2: man, 63 years, PS1 have been treated with continuous SM 37.5 mg/day, on an individual use basis. Both patients are evaluable for response. In both cases diagnosis was confirmed by the presence of the typical EWSR1-CHN translocation. Results Both patients are still on treatment (11 and 8 months. Patient 1 got a RECIST response after 4 months from starting sunitinib, together with a complete response by PET. An interval progression was observed after stopping sunitinib for toxicity (abscess around previous femoral fixation, but response was restored after restarting sunitinib. Patient 2 had an initial tumor disease stabilization detected by CT scan at 3 months. Sunitinib was increased to 50 mg/day, with evidence of a dimensional response 3 months later. Conclusions Sunitinib showed antitumor activity in 2 patients with advanced EMCS. Further studies are needed to confirm these preliminary results.

  7. Enhanced Antiproliferative and Apoptotic Response of HT-29 Adenocarcinoma Cells to Combination of Photoactivated Hypericin and Farnesyltransferase Inhibitor Manumycin A

    Directory of Open Access Journals (Sweden)

    Peter Fedoročko

    2011-11-01

    Full Text Available Several photodynamically-active substances and farnesyltransferase inhibitors are currently being investigated as promising anticancer drugs. In this study, the combined effect of hypericin (the photodynamically-active pigment from Hypericum perforatum and selective farnesyltransferase inhibitor manumycin (manumycin A; the selective farnesyltransferase inhibitor from Streptomyces parvulus on HT-29 adenocarcinoma cells was examined. We found that the combination treatment of cells with photoactivated hypericin and manumycin resulted in enhanced antiproliferative and apoptotic response compared to the effect of single treatments. This was associated with increased suppression of clonogenic growth, S phase cell cycle arrest, elevated caspase-3/7 activity and time-dependent total cleavage of procaspase-3 and lamin B, cleavage of p21Bax into p18Bax and massive PARP cleavage. Moreover, we found that the apoptosis-inducing factor is implicated in signaling events triggered by photoactivated hypericin. Our results showed the relocalization of apoptosis-inducing factor (AIF to the nuclei after hypericin treatment. In addition, we discovered that not only manumycin but also photoactivated hypericin induced the reduction of total Ras protein level. Manumycin decreased the amount of farnesylated Ras, and the combination treatment decreased the amount of both farnesylated and non-farnesylated Ras protein more dramatically. The present findings indicate that the inhibition of Ras processing may be the determining factor for enhancing the antiproliferative and apoptotic effects of combination treatment on HT-29 cells.

  8. The early antitumor immune response is necessary for tumor growth

    OpenAIRE

    Parmiani, Giorgio; Maccalli, Cristina

    2012-01-01

    Early events responsible of tumor growth in patients with a normal immune system are poorly understood. Here, we discuss, in the context of human melanoma, the Prehn hypothesis according to which a weak antitumor immune response may be required for tumor growth before weakly or non-immunogenic tumor cell subpopulations are selected by the immune system.

  9. Relationship between thermometry results and tumor response in thermoradiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yasumasa [Kinki Univ., Sayama, Osaka (Japan). School of Medicine; Hiraoka, Masahiro

    1998-09-01

    Clinical results of thermoradiotherapy for various tumors at Kyoto University were reviewed with a special attention to the relationship between thermometry results and tumor response. Thermometry for superficial and subsurface tumors were satisfactory, and continuous multipoint thermometry could be performed for the tumors. Thermal parameters predicting complete tumor regression were minimum tumor temperature, minimum equivalent time at 43degC, and number of the treatment goal heat sessions. On the other hand, thermal data obtained were insufficient for deep-seated tumors, and no significant relationship could be demonstrated between tumor response and thermal parameters for deep-seated tumors. On the other hand, significant correlation between tumor degeneration and intravesical temperatures was demonstrated for bladder tumors. Until non-invasive thermometry is available clinically, temperature measurements of bladder or rectal cavity can be an alternative method of direct insertion of thermal probes into the pelvic tumors. Because a significant relationship between certain thermal parameters and tumor response was demonstrated for superficial tumors, stringent quality control of thermometry is required for the success of clinical hyperthermia of both superficial and deep-seated tumors. (author)

  10. Impact of Stromal Sensitivity on Radiation Response of Tumors Implanted in SCID Hosts Revisited

    Science.gov (United States)

    García-Barros, Mónica; Thin, Tin Htwe; Maj, Jerzy; Cordon-Cardo, Carlos; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2010-01-01

    Severe combined immunodeficient (SCID) mice carry a germ-line mutation in DNA-PK, associated with deficiency in recognition and repair DNA double strand breaks. Thus, SCID cells and tissues display increased sensitivity to radiation-induced post-mitotic (clonogenic) cell death. Nonetheless, the single radiation doses required for 50% permanent local control (TCD50) of tumors implanted in SCID mice are not significantly different from the TCD50 values of the same tumors in wild-type hosts. Whereas the tumor stroma is derived from the host, the observation that tumors implanted in SCID mice do not exhibit hypersensitivity to radiation might imply that stromal endothelial elements do not contribute substantially to tumor cure by ionizing radiation. Here we challenge this notion, testing the hypothesis that acid sphingomyelinase (ASMase)-mediated endothelial apoptosis, which results from plasma membrane alterations, not DNA damage, is a crucial element in the cure of tumors in SCID mice by single dose radiotherapy (SDRT). We show that endothelium in MCA/129 fibrosarcomas and B16 melanomas exhibit a wild-type apoptotic phenotype in SCID hosts, abrogated in tumors in SCIDasmase−/− littermates, which also acquire resistance to SDRT. Conversion into a radioresistant tumor phenotype when implanted in SCIDasmase−/− hosts provides compelling evidence that cell membrane ASMase-mediated microvascular dysfunction, rather than DNA damage-mediated endothelial clonogenic lethality, plays a mandatory role in the complex pathophysiologic mechanism of tumor cure by SDRT, and provides an explanation for the wild-type SDRT responses reported in tumors implanted in SCID mice. PMID:20924105

  11. Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma.

    Science.gov (United States)

    Won, Kyoung-Jae; Im, Joo-Young; Yun, Chae-Ok; Chung, Kyung-Sook; Kim, Young Joo; Lee, Jung-Sun; Jung, Young-Jin; Kim, Bo-Kyung; Song, Kyung Bin; Kim, Young-Ho; Chun, Ho-Kyung; Jung, Kyeong Eun; Kim, Moon-Hee; Won, Misun

    2014-06-01

    Human Noxin (hNoxin, C11Orf82), a homolog of mouse noxin, is highly expressed in colorectal and lung cancer tissues. hNoxin contains a DNA-binding C-domain in RPA1, which mediates DNA metabolic processes, such as DNA replication and DNA repair. Expression of hNoxin is associated with S phase in cancer cells and in normal cells. Expression of hNoxin was induced by ultraviolet (UV) irradiation. Knockdown of hNoxin caused growth inhibition of colorectal and lung cancer cells. The comet assay and western blot analysis revealed that hNoxin knockdown induced apoptosis through activation of p38 mitogen-activated protein kinase (MAPK)/p53 in non-small cell lung carcinoma A549 cells. Furthermore, simultaneous hNoxin knockdown and treatment with DNA-damaging agents, such as camptothecin (CPT) and UV irradiation, enhanced apoptosis, whereas Trichostatin A (TSA) did not. However, transient overexpression of hNoxin rescued cells from DNA damage-induced apoptosis but did not block apoptosis in the absence of DNA damage. These results suggest that hNoxin may be associated with inhibition of apoptosis in response to DNA damage. An adenovirus expressing a short hairpin RNA against hNoxin transcripts significantly suppressed the growth of A549 tumor xenografts, indicating that hNoxin knockdown has in vivo anti-tumor efficacy. Thus, hNoxin is a DNA damage-induced anti-apoptotic protein and potential therapeutic target in cancer.

  12. Acrolein activates cell survival and apoptotic death responses involving the endoplasmic reticulum in A549 lung cells.

    Science.gov (United States)

    Tanel, André; Pallepati, Pragathi; Bettaieb, Ahmed; Morin, Patrick; Averill-Bates, Diana A

    2014-05-01

    Acrolein, a highly reactive α,β-unsaturated aldehyde, is a product of endogenous lipid peroxidation. It is a ubiquitous environmental pollutant that is generated mainly by smoke, overheated cooking oil and vehicle exhaust. Acrolein damages cellular proteins, which could lead to accumulation of aberrantly-folded proteins in the endoplasmic reticulum (ER). This study determines the mechanisms involved in acrolein-induced apoptosis mediated by the ER and possible links with the ER stress response in human A549 lung cells. The exposure of cells to acrolein (15-50μM) for shorter times of 15 to 30min activated several ER stress markers. These included the ER chaperone protein BiP and the three ER sensors: (i) the survival/rescue molecules protein kinase RNA (PKR)-like ER kinase (PERK) and eukaryotic initiation factor 2 alpha (eIF2α) were phosphorylated; (ii) cleavage of activating transcription factor 6 (ATF6) occurred, and (iii) inositol-requiring protein-1 alpha (IRE1α) was phosphorylated. Acrolein (25-50μM) caused apoptotic cell death mediated by the ER after 2h, which was characterised by the induction of CHOP and activation of ER proteases calpain and caspase-4. Calpain and caspase-7 were the initiating factors for caspase-4 activation in acrolein-induced apoptosis. These results increase our knowledge about cellular responses to acrolein in lung cells, which have implications for human health.

  13. Roles of chlorophyllin in cell proliferation and the expression of apoptotic and cell cycle genes in HB4a non-tumor breast cells.

    Science.gov (United States)

    D Epiro, Gláucia Fernanda Rocha; Semprebon, Simone Cristine; Niwa, Andressa Megumi; Marcarini, Juliana Cristina; Mantovani, Mário Sérgio

    2016-06-01

    Chlorophyllin (Chl) has attracted interest in the scientific community due to its chemopreventive and antimutagenic properties. However, the molecular mechanisms of action of Chl remain unclear. This study assesses the effects on cell proliferation and the expression of genes involved in apoptosis, and the cell cycle in HB4a cells treated with Chl. Chl was cytotoxic and induced apoptosis to HB4a cells at 400 μg/mL. Analysis of gene expression showed that there was a decrease in the mRNA level of BIRC5 and CCNA2 genes involved in apoptosis and cell cycle progression, respectively. The proapoptotic gene BAX and the antiapoptotic genes BCL-2 and BCL-XL were upregulated. The cytotoxicity of Chl has been attributed to increases in the expression of BAX and decreases in the expression of genes involved in the cell cycle, but increases in the expression of anti-apoptotic genes suggests a mechanism for protection from cell death induced by Chl. This study provides important information about mechanisms that protect against or trigger damaging processes in non-tumor cells.

  14. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities.

    Directory of Open Access Journals (Sweden)

    Radu O Minea

    Full Text Available Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1, VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis. Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.

  15. p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT cells to cisplatin.

    Directory of Open Access Journals (Sweden)

    Matthias Gutekunst

    Full Text Available Consistent with the excellent clinical results in testicular germ cell tumors (TGCT, most cell lines derived from this cancer show an exquisite sensitivity to Cisplatin. It is well accepted that the high susceptibility of TGCT cells to apoptosis plays a central role in this hypersensitive phenotype. The role of the tumor suppressor p53 in this response, however, remains controversial. Here we show that siRNA-mediated silencing of p53 is sufficient to completely abrogate hypersensitivity not only to Cisplatin but also to non-genotoxic inducers of p53 such as the Mdm2 antagonist Nutlin-3 and the proteasome inhibitor Bortezomib. The close relationship between p53 protein levels and induction of apoptosis is lost upon short-term differentiation, indicating that this predominant pro-apoptotic function of p53 is unique in pluripotent embryonal carcinoma (EC cells. RNA interference experiments as well as microarray analysis demonstrated a central role of the pro-apoptotic p53 target gene NOXA in the p53-dependent apoptotic response of these cells. In conclusion, our data indicate that the hypersensitivity of TGCT cells is a result of their unique sensitivity to p53 activation. Furthermore, in the very specific cellular context of germ cell-derived pluripotent EC cells, p53 function appears to be limited to induction of apoptosis.

  16. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  17. Anti-tumor immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  18. Remodeling of Tumor Stroma and Response to Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Anna; Ganss, Ruth, E-mail: ganss@waimr.uwa.edu.au [Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Perth 6000 (Australia)

    2012-03-27

    Solid tumors are intrinsically resistant to therapy. Cancer progression occurs when tumor cells orchestrate responses from diverse stromal cell types such as blood vessels and their support cells, inflammatory cells, and fibroblasts; these cells collectively form the tumor microenvironment and provide direct support for tumor growth, but also evasion from cytotoxic, immune and radiation therapies. An indirect result of abnormal and leaky blood vessels in solid tumors is high interstitial fluid pressure, which reduces drug penetration, but also creates a hypoxic environment that further augments tumor cell growth and metastatic spread. Importantly however, studies during the last decade have shown that the tumor stroma, including the vasculature, can be modulated, or re-educated, to allow better delivery of chemotherapeutic drugs or enhance the efficiency of active immune therapy. Such remodeling of the tumor stroma using genetic, pharmacological and other therapeutic approaches not only enhances selective access into tumors but also reduces toxic side effects. This review focuses on recent novel concepts to modulate tumor stroma and thus locally increase therapeutic efficacy.

  19. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

    Directory of Open Access Journals (Sweden)

    Anita Thakur

    2015-08-01

    Full Text Available Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses.

  20. iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation.

    Science.gov (United States)

    Park, Hyun Jung; Lee, Sung Won; Park, Se-Ho; Hong, Seokmann

    2016-01-01

    Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and

  1. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    Science.gov (United States)

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    the inhibition of secondary apoptotic responses after SCI. These findings support further investigation of the future clinical application of EFS after SCI.

  2. Monitoring of Tumor Response to Cisplatin Using Optical Spectroscopy

    Science.gov (United States)

    Spliethoff, Jarich W.; Evers, Daniel J.; Jaspers, Janneke E.; Hendriks, Benno H.W.; Rottenberg, Sven; Ruers, Theo J.M.

    2014-01-01

    INTRODUCTION: Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy–autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS: Brca1−/−; p53−/− mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS: Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS: This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response. PMID:24726234

  3. Assessment of serum tumor markers, tumor cell apoptosis and immune response in patients with advanced colon cancer after DC-CIK combined with intravenous chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Lei-Fan Li; Xiu-Yun Wang; Hui-Qiong Xu; Xia Liu

    2016-01-01

    Objective:To study the effect of DC-CIK combined with intravenous chemotherapy on serum tumor markers, tumor cell apoptosis and immune response in patients with advanced colon cancer.Methods:A total of 79 patients with advanced colon cancer conservatively treated in our hospital between May 2012 and October 2015 were retrospectively studied and divided into DC-CIK group and intravenous chemotherapy group according to different therapeutic regimens, DC-CIK group received DC-CIK combined with intravenous chemotherapy and intravenous chemotherapy group received conventional intravenous chemotherapy. After three cycles of chemotherapy, the content of tumor markers in serum, expression levels of apoptotic molecules in tumor lesions as well as immune function indexes were determined.Results:After 3 cycles of chemotherapy, CEA, CA199, CA242, HIF-1α, IL-4, IL-5 and IL-10 content in serum of DC-CIK group were significantly lower than those of intravenous chemotherapy group;p53, FAM96B, PTEN, PHLPP, ASPP2and RASSF10 mRNA content in tumor lesions of DC-CIK group were significantly higher than those of intravenous chemotherapy group; the fluorescence intensity of CD3, CD4 and CD56 on peripheral blood mononuclear cell surface of DC-CIK group were significantly higher than those of intravenous chemotherapy group while the fluorescence intensity of CD8 and CD25 were significantly lower than those of intravenous chemotherapy group; IL-2 and IFN-γ content in serum of DC-CIK group were significantly higher than those of intravenous chemotherapy group while IL-4, IL-5 and IL-10 content were significantly lower than those of intravenous chemotherapy group.Conclusions: DC-CIK combined with intravenous chemotherapy has better effect on killing colon cancer cells and inducing colon cancer cell apoptosis than conventional intravenous chemotherapy, and can also improve the body's anti-tumor immune response.

  4. Opposite role of Bax and BCL-2 in the anti-tumoral responses of the immune system

    Directory of Open Access Journals (Sweden)

    Bougras Gwenola

    2004-08-01

    Full Text Available Abstract Background The relative role of anti apoptotic (i.e. Bcl-2 or pro-apoptotic (e.g. Bax proteins in tumor progression is still not completely understood. Methods The rat glioma cell line A15A5 was stably transfected with human Bcl-2 and Bax transgenes and the viability of theses cell lines was analyzed in vitro and in vivo. Results In vitro, the transfected cell lines (huBax A15A5 and huBcl-2 A15A5 exhibited different sensitivities toward apoptotic stimuli. huBax A15A5 cells were more sensitive and huBcl-2 A15A5 cells more resistant to apoptosis than mock-transfected A15A5 cells (pCMV A15A5. However, in vivo, in syngenic rat BDIX, these cell lines behaved differently, as no tumor growth was observed with huBax A15A5 cells while huBcl-2 A15A5 cells formed large tumors. The immune system appeared to be involved in the rejection of huBax A15A5 cells since i huBax A15A5 cells were tumorogenic in nude mice, ii an accumulation of CD8+ T-lymphocytes was observed at the site of injection of huBax A15A5 cells and iii BDIX rats, which had received huBax A15A5 cells developed an immune protection against pCMV A15A5 and huBcl-2 A15A5 cells. Conclusions We show that the expression of Bax and Bcl-2 controls the sensitivity of the cancer cells toward the immune system. This sensitization is most likely to be due to an increase in immune induced cell death and/or the amplification of an anti tumour immune response

  5. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    Science.gov (United States)

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.

  6. Advances in identification and application of tumor antigen inducing anti-cancer responses

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Tumor antigen is one of the important bases of tumor immunotherapy[1]. With the discovery of novel tumor antigens, interest in specific immunotherapy for treatment of malignancies has increased substantially. Nowadays more and more scientists paid close attention to various tumor antigens with their roles or/and applications in anti-cancer immune responses, immune tolerance, tumor markers, tumor immunotherapy and so on. Here we discussed the classification of tumor antigens and summarized the technologies of identification and application of tumor antigens.

  7. TUMOR-SPECIFIC IMMUNE RESPONSE AFTER PHOTODYNAMIC THERAPY

    Directory of Open Access Journals (Sweden)

    Yu. N. Anokhin

    2016-01-01

    Full Text Available Increased incidence of malignancies requires a search for new therapeutic approaches. E.g., photodynamic therapy (PDT is an effective anti-cancer treatment that involves administration of a photosensitizing dye followed by visible light irradiation of the tumor. Pre-clinical studies have shown that local photodynamic therapy enhances systemic antitumor immunity. Moreover, it is well known that the long-term effects of PDT depend on functioning of intact adaptive immune response. In this context, the immune system plays a fundamental role. Interestingly, the PDT action is associated with stimulation of systemic immune response against a locally treated tumor. In fact, PDT has been shown to effectively stimulate both innate and adaptive immune systems of the host, by triggering the release of various pro-inflammatory and acutephase response mediators thus leading to massive infiltration of the treated site with neutrophils, dendritic cells and other inflammatory cells. PDT efficacy depends, in part, on induction of tumor-specific immune response which is dependent on cytotoxic T lymphocytes and natural killer (NK cells. The set of specific receptors enables NK cells to recognize surface molecules on the target cells. Expression of the latter molecules is indicative of viral infection, tumor formation, or cell stress (e.g., DNA damage. The NK cells are also involved into various biological processes in the organism, playing a critical role in immune surveillance, thus representing a potential tool for cancer therapy. It was shown that the tumor cells have increased sensitivity to NK cell-mediated lytic action following PDT. In this review, we further discuss potential relationships between PDT and antitumor immune response.

  8. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors.

    Science.gov (United States)

    Cros, J; Hentic, O; Rebours, V; Zappa, M; Gille, N; Theou-Anton, N; Vernerey, D; Maire, F; Lévy, P; Bedossa, P; Paradis, V; Hammel, P; Ruszniewski, P; Couvelard, A

    2016-08-01

    Temozolomide (TEM) showed encouraging results in well-differentiated pancreatic neuroendocrine tumors (WDPNETs). Low O(6)-methylguanine-DNA methyltransferase (MGMT) expression and MGMT promoter methylation within tumors correlate with a better outcome under TEM-based chemotherapy in glioblastoma. We aimed to assess whether MGMT expression and MGMT promoter methylation could help predict the efficacy of TEM-based chemotherapy in patients with WDPNET. Consecutive patients with progressive WDPNET and/or liver involvement over 50% who received TEM between 2006 and 2012 were retrospectively studied. Tumor response was assessed according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 guidelines. Nuclear expression of MGMT was assessed by immunochemistry (H-score, 0-300) and MGMT promoter methylation by pyrosequencing. Forty-three patients (21 men, 58years (27-84)) with grade 1 WDPNET (n=6) or 2 (n=36) were analyzed. Objective response, stable disease, and progression rates were seen in 17 patients (39.5%), 18 patients (41.9%), and 8 patients (18.6%), respectively. Low MGMT expression (≤50) was associated with radiological objective response (P=0.04) and better progression-free survival (PFS) (HR=0.35 (0.15-0.81), P=0.01). Disease control rate at 18months of treatment remained satisfying with an MGMT score up to 100 (74%) but dropped with a higher expression. High MGMT promoter methylation was associated with a low MGMT expression and longer PFS (HR=0.37 (0.29-1.08), P=0.05). Low MGMT score (≤50) appears to predict an objective tumor response, whereas an intermediate MGMT score (50-100) seems to be associated with prolonged stable disease.

  9. Immunologic response to tumor ablation with irreversible electroporation.

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Li

    Full Text Available BACKGROUND: Irreversible electroporation (IRE is a promising technique for the focal treatment of pathologic tissues, which involves placing minimally invasive electrodes within the targeted region. However, the knowledge about the therapeutic efficacy and immune reactions in response to IRE remains in its infancy. METHODS: In this work, to detect whether tumor ablation with IRE could trigger the immunologic response, we developed an osteosarcoma rat model and applied IRE directly to ablate the tumor. In the experiment, 118 SD rats were randomized into 4 groups: the control, sham operation, surgical resection, and IRE groups. Another 28 rats without tumor cell implantation served as the normal non-tumor-bearing group. We analyzed the changes in T lymphocyte subsets, sIL-2R and IL-10 levels in the peripheral blood one day before operation, as well as at 1, 3, 7,14 and 21 days after the operation. Moreover, splenocytes were assayed for IFN-γ and IL-4 production using intracellular cytokine staining one day before the operation, as well as at 7 and 21 days after operation. RESULTS: We found that direct IRE completely ablated the tumor cells. A significant increase in peripheral lymphocytes, especially CD3(+ and CD4(+ cells, as well as an increased ratio of CD4(+/CD8(+ were detectable 7 days after operation in both the IRE and surgical resection groups. Compared with the surgical resection group, the IRE group exhibited a stronger cellular immune response. The sIL-2R level of the peripheral blood in the IRE group decreased with time and was significantly different from that in the surgical resection group. Moreover, ablation with IRE significantly increased the percentage of IFN-γ-positive splenocytes. CONCLUSION: These findings indicated that IRE could not only locally destroy the tumor but also change the status of cellular immunity in osteosarcoma-bearing rats. This provides experimental evidence for the clinical application of IRE in

  10. Neurotransmitters and neuronal apoptotic cell death of chronically aluminum intoxicated Nile catfish (Clarias gariepinus) in response to ascorbic acid supplementation.

    Science.gov (United States)

    Khalil, Samah R; Hussein, Mohamed M A

    2015-12-01

    Few studies have been carried out to assess the neurotoxic effect of aluminum (Al) on the aquatic creatures. This study aims to evaluate the neurotoxic effects of long term Al exposure on the Nile catfish (Clarias gariepinus) and the potential ameliorative influence of ascorbic acid (ASA) over a 180 days exposure period. Forty eight Nile catfish were divided into four groups: control group, placed in clean water, ASA exposed group (5mg/l), AlCl3 received group (28.96 μg/l; 1/20 LC50), and group received AlCl3 concomitantly with ASA. Brain tissue was examined by using flow cytometry to monitor the apoptotic cell population, HPLC analysis for the quantitative estimation of brain monoamine neurotransmitters [serotonin (5-HT), dopamine (DA), norepinephrine (NE)]. The amino acid neurotransmitters [serum taurine, glycine, aspartate and glutamine and brain gamma aminobutyric acid (GABA)] levels were assessed, plus changes in brain tissue structure using light microscopy. The concentration of Al in both brain tissue and serum was determined by using atomic absorption spectrophotometery. The Al content in serum and brain tissue were both elevated and Al exposure induced an increase in the number of apoptotic cells, a marked reduction of the monoamine and amino acids neurotransmitters levels and changes in tissue morphology. ASA supplementation partially abolished the effects of AL on the reduced neurotransmitter, the degree of apoptosis and restored the morphological changes to the brain. Overall, our results indicate that, ASA is a promising neuroprotective agent against for Al-induced neurotoxicity in the Nile catfish.

  11. Immunosuppressive effects of apoptotic cells

    Science.gov (United States)

    Voll, Reinhard E.; Herrmann, Martin; Roth, Edith A.; Stach, Christian; Kalden, Joachim R.; Girkontaite, Irute

    1997-11-01

    Apoptotic cell death is important in the development and homeostasis of multicellular organisms and is a highly controlled means of eliminating dangerous, damaged or unnecessary cells without causing an inflammatory response or tissue damage,. We now show that the presence of apoptotic cells during monocyte activation increases their secretion of the anti-inflammatory and immunoregulatory cytokine interleukin 10 (IL-10) and decreases secretion of the proinflammatory cytokines tumour necrosis factor-α (TNF-α), IL-1 and IL-12. This may inhibit inflammation and contribute to impaired cell-mediated immunity in conditions associated with increased apoptosis, such as viral infections, pregnancy, cancer and exposure to radiation.

  12. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  13. Radiation therapy for intracranial germ cell tumors. Predictive value of tumor response as evaluated by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Kazuhiko; Toita, Takafumi; Kakinohana, Yasumasa; Yamaguchi, Keiichiro; Miyagi, Koichi; Kinjo, Toshihiko; Yamashiro, Katsumi; Sawada, Satoshi [Ryukyu Univ., Nishihara, Okinawa (Japan). School of Medicine

    1997-07-01

    This retrospective study analyzed the outcome in patients with intracranial germ-cell tumors to determine whether tumor response during radiation therapy can predict achievement of primary local with radiation therapy alone. Between 1983 and 1993, 22 patients with untreated primary intracranial germ cell tumors received a total whole brain radiation dose of between 18 Gy and 45 Gy (mean 31.3 Gy) with or without a localized field of 10 to 36.4 Gy (mean, 22.4 Gy), or local irradiation only (1 patient). In 10 patients with pineal tumor only, who were treated first with radiation therapy, tumor response to radiation therapy was evaluated using computed tomography (CT) (at baseline, and approximately 20 Gy and 50 Gy). Areas of calcification in the tumor were subtracted from total tumor volume. Follow-up time ranged from 2 to 12 years. Five-year actuarial survival rates for patients with germinoma were 71%, 100% for patients with a teratoma component, and 100% for patients without histologic verification. Patients with germinomas or tumors suspected of being germinomas who were given more than 50 Gy had no local relapse. There was no correlation between primary local control by radiation therapy alone and initial tumor volume. The rate of tumor volume response to irradiation assessed by CT was significantly different in those patients who relapsed compared to those who did not relapse. Tumor response during radiation therapy using CT was considered to be predictive of primary local control with radiation therapy alone. (author)

  14. Assessment of lung tumor response by perfusion CT.

    Science.gov (United States)

    Coche, E

    2013-01-01

    Perfusion CT permits evaluation of lung cancer angiogenesis and response to therapy by demonstrating alterations in lung tumor vascularity. It is advocated that perfusion CT performed shortly after initiating therapy may provide a better evaluation of physiological changes rather than the conventional size assessment obtained with RECIST. The radiation dose,the volume of contrast medium delivered to the patient and the reproducibility of blood flow parameters remain an issue for this type of investigation.

  15. Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors

    Science.gov (United States)

    2005-08-01

    Emmons, Ph.D. CONTRACTING ORGANIZATION: University of Arkansas for Medical Sciences Little Rock, Arkansas 72205 REPORT DATE: August 2005 TYPE OF REPORT...SUBTITLE 5a. CONTRACT NUMBER Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors 5b. GRANT NUMBER DAMD17-01-1-0366 5c. PROGRAM...binding affinities of peptide and carbohyd- Hollingsworth, M. A. 1997. Oligosaccharides expressed on MUCl rate with I-A’ will be illuminating. However

  16. A systematic review of humoral immune responses against tumor antigens.

    Science.gov (United States)

    Reuschenbach, Miriam; von Knebel Doeberitz, Magnus; Wentzensen, Nicolas

    2009-10-01

    This review summarizes studies on humoral immune responses against tumor-associated antigens (TAAs) with a focus on antibody frequencies and the potential diagnostic, prognostic, and etiologic relevance of antibodies against TAAs. We performed a systematic literature search in Medline and identified 3,619 articles on humoral immune responses and TAAs. In 145 studies, meeting the inclusion criteria, humoral immune responses in cancer patients have been analyzed against over 100 different TAAs. The most frequently analyzed antigens were p53, MUC1, NY-ESO-1, c-myc, survivin, p62, cyclin B1, and Her2/neu. Antibodies against these TAAs were detected in 0-69% (median 14%) of analyzed tumor patients. Antibody frequencies were generally very low in healthy individuals, with the exception of few TAAs, especially MUC1. For several TAAs, including p53, Her2/neu, and NY-ESO-1, higher antibody frequencies were reported when tumors expressed the respective TAA. Antibodies against MUC1 were associated with a favorable prognosis while antibodies against p53 were associated with poor disease outcome. These data suggest different functional roles of endogenous antibodies against TAAs. Although data on prediagnostic antibody levels are scarce and antibody frequencies for most TAAs are at levels precluding use in diagnostic assays for cancer early detection, there is some promising data on achieving higher sensitivity for cancer detection using panels of TAAs.

  17. Polyethylene glycol-functionalized poly (Lactic Acid-co-Glycolic Acid) and graphene oxide nanoparticles induce pro-inflammatory and apoptotic responses in Candida albicans-infected vaginal epithelial cells

    Science.gov (United States)

    Johnson, Shemedia J.; Danielsen, Zhixia Yan; Lim, Jin-Hee; Mudalige, Thilak; Linder, Sean

    2017-01-01

    Mucous-penetrating nanoparticles consisting of poly lactic acid-co-glycolic acid (PLGA)-polyethylene glycol (PEG) could improve targeting of microbicidal drugs for sexually transmitted diseases by intravaginal inoculation. Nanoparticles can induce inflammatory responses, which may exacerbate the inflammation that occurs in the vaginal tracts of women with yeast infections. This study evaluated the effects of these drug-delivery nanoparticles on VK2(E6/E7) vaginal epithelial cell proinflammatory responses to Candida albicans yeast infections. Vaginal epithelial cell monolayers were infected with C. albicans and exposed to 100 μg/ml 49.5 nm PLGA-PEG nanospheres or 20 μg/ml 1.1 x 500 nm PEG-functionalized graphene oxide (GO-PEG) sheets. The cells were assessed for changes in mRNA and protein expression of inflammation-related genes by RT-qPCR and physiological markers of cell stress using high content analysis and flow cytometry. C. albicans exposure suppressed apoptotic gene expression, but induced oxidative stress in the cells. The nanomaterials induced cytotoxicity and programmed cell death responses alone and with C. albicans. PLGA-PEG nanoparticles induced mRNA expression of apoptosis-related genes and induced poly (ADP-ribose) polymerase (PARP) cleavage, increased BAX/BCL2 ratios, and chromatin condensation indicative of apoptosis. They also induced autophagy, endoplasmic reticulum stress, and DNA damage. They caused the cells to excrete inflammatory recruitment molecules chemokine (C-X-C motif) ligand 1 (CXCL1), interleukin-1α (IL1A), interleukin-1β (IL1B), calprotectin (S100A8), and tumor necrosis factor α (TNF). GO-PEG nanoparticles induced expression of necrosis-related genes and cytotoxicity. They reduced autophagy and endoplasmic reticulum stress, and apoptotic gene expression responses. The results show that stealth nanoparticle drug-delivery vehicles may cause intracellular damage to vaginal epithelial cells by several mechanisms and that their use

  18. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    Science.gov (United States)

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  19. Regulatory T Cells in Tumor-Associated Tertiary Lymphoid Structures Suppress Anti-tumor T Cell Responses.

    Science.gov (United States)

    Joshi, Nikhil S; Akama-Garren, Elliot H; Lu, Yisi; Lee, Da-Yae; Chang, Gregory P; Li, Amy; DuPage, Michel; Tammela, Tuomas; Kerper, Natanya R; Farago, Anna F; Robbins, Rebecca; Crowley, Denise M; Bronson, Roderick T; Jacks, Tyler

    2015-09-15

    Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically engineered mouse model of lung adenocarcinoma and found that Treg cells suppressed anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLSs). TA-TLSs have been described in human lung cancers, but their function remains to be determined. TLSs in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen-presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLSs upon Treg cell depletion, leading to tumor destruction. Thus, we propose that Treg cells in TA-TLSs can inhibit endogenous immune responses against tumors, and targeting these cells might provide therapeutic benefit for cancer patients.

  20. Metastasized lung cancer suppression by Morinda citrifolia (Noni) leaf compared to Erlotinib via anti-inflammatory, endogenous antioxidant responses and apoptotic gene activation.

    Science.gov (United States)

    Lim, Swee-Ling; Mustapha, Noordin M; Goh, Yong-Meng; Bakar, Nurul Ain Abu; Mohamed, Suhaila

    2016-05-01

    Metastasized lung and liver cancers cause over 2 million deaths annually, and are amongst the top killer cancers worldwide. Morinda citrifolia (Noni) leaves are traditionally consumed as vegetables in the tropics. The macro and micro effects of M. citrifolia (Noni) leaves on metastasized lung cancer development in vitro and in vivo were compared with the FDA-approved anti-cancer drug Erlotinib. The extract inhibited the proliferation and induced apoptosis in A549 cells (IC50 = 23.47 μg/mL) and mouse Lewis (LL2) lung carcinoma cells (IC50 = 5.50 μg/mL) in vitro, arrested cancer cell cycle at G0/G1 phases and significantly increased caspase-3/-8 without changing caspase-9 levels. The extract showed no toxicity on normal MRC5 lung cells. Non-small-cell lung cancer (NSCLC) A549-induced BALB/c mice were fed with 150 and 300 mg/kg M. citrifolia leaf extract and compared with Erlotinib (50 mg/kg body weight) for 21 days. It significantly increased the pro-apoptotic TRP53 genes, downregulated the pro-tumourigenesis genes (BIRC5, JAK2/STAT3/STAT5A) in the mice tumours, significantly increased the anti-inflammatory IL4, IL10 and NR3C1 expression in the metastasized lung and hepatic cancer tissues and enhanced the NFE2L2-dependent antioxidant responses against oxidative injuries. The extract elevated serum neutrophils and reduced the red blood cells, haemoglobin, corpuscular volume and cell haemoglobin concentration in the lung cancer-induced mammal. It suppressed inflammation and oedema, and upregulated the endogenous antioxidant responses and apoptotic genes to suppress the cancer. The 300 mg/kg extract was more effective than the 50 mg/kg Erlotinib for most of the parameters measured.

  1. Control of the adaptive immune response by tumor vasculature

    Directory of Open Access Journals (Sweden)

    Laetitia eMauge

    2014-03-01

    Full Text Available The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by abnormal vessel structure and permeability, and by specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intratumoral immune responses and contribute to the development of intratumoral immunosuppression, which is a major mechanism for promoting the development, progression and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of antitumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.

  2. Interferon regulatory factor-1 (IRF-1) is involved in the induction of phosphatidylserine receptor (PSR) in response to dsRNA virus infection and contributes to apoptotic cell clearance in CHSE-214 cell.

    Science.gov (United States)

    Kung, Hsin-Chia; Evensen, Øystein; Hong, Jiann-Ruey; Kuo, Chia-Yu; Tso, Chun-Hsi; Ngou, Fang-Huar; Lu, Ming-Wei; Wu, Jen-Leih

    2014-10-23

    The phosphatidylserine receptor (PSR) recognizes a surface marker on apoptotic cells and initiates engulfment. This receptor is important for effective apoptotic cell clearance and maintains normal tissue homeostasis and regulation of the immune response. However, the regulation of PSR expression remains poorly understood. In this study, we determined that interferon regulatory factor-1 (IRF-1) was dramatically upregulated upon viral infection in the fish cell. We observed apoptosis in virus-infected cells and found that both PSR and IRF-1 increased simultaneously. Based on a bioinformatics promoter assay, IRF-1 binding sites were identified in the PSR promoter. Compared to normal viral infection, we found that PSR expression was delayed, viral replication was increased and virus-induced apoptosis was inhibited following IRF-1 suppression with morpholino oligonucleotides. A luciferase assay to analyze promoter activity revealed a decreasing trend after the deletion of the IRF-1 binding site on PSR promoter. The results of this study indicated that infectious pancreatic necrosis virus (IPNV) infection induced both the apoptotic and interferon (IFN) pathways, and IRF-1 was involved in regulating PSR expression to induce anti-viral effects. Therefore, this work suggests that PSR expression in salmonid cells during IPNV infection is activated when IRF-1 binds the PSR promoter. This is the first report to show the potential role of IRF-1 in triggering the induction of apoptotic cell clearance-related genes during viral infection and demonstrates the extensive crosstalk between the apoptotic and innate immune response pathways.

  3. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation.

    Science.gov (United States)

    Stuart, Lynda M; Lucas, Mark; Simpson, Cathy; Lamb, Jonathan; Savill, John; Lacy-Hulbert, Adam

    2002-02-15

    Dendritic cells (DCs) are the sentinels of the immune system, able to interact with both naive and memory T cells. The recent observation that DCs can ingest cells dying by apoptosis has raised the possibility that DCs may, in fact, present self-derived Ags, initiating both autoimmunity and tumor-specific responses, especially if associated with appropriate danger signals. Although the process of ingestion of apoptotic cells has not been shown to induce DC maturation, the exact fate of these phagocytosing DCs remains unclear. In this paper we demonstrate that DCs that ingest apoptotic cells are able to produce TNF-alpha but have a diminished ability to produce IL-12 in response to external stimuli, a property that corresponds to a failure to up-regulate CD86. By single-cell analysis we demonstrate that these inhibitory effects are restricted to those DCs that have engulfed apoptotic cells, with bystander DCs remaining unaffected. These changes were independent of the production of anti-inflammatory cytokines TGF-beta1 and IL-10 and corresponded with a diminished capacity to stimulate naive T cells. Thus, the ingestion of apoptotic cells is not an immunologically null event but is capable of modulating DC maturation. These results have important implications for our understanding of the role of clearance of dying cells by DCs not only in the normal resolution of inflammation but also in control of subsequent immune responses to apoptotic cell-derived Ags.

  4. Loss of drug-induced activation of the CD95 apoptotic pathway in a cisplatin-resistant testicular germ cell tumor cell line

    NARCIS (Netherlands)

    Spierings, DCJ; de Vries, EGE; Vellenga, E; de Jong, S

    2003-01-01

    Testicular germ cell tumors (TGCTs) are unusually sensitive to cisplatin. In the present study the role of the CD95 death pathway in cisplatin sensitivity of TGCT cells was studied in Tera and its in vitro acquired cisplatin-resistant subclone Tera-CP. Cisplatin induced an increase in CD95 membrane

  5. Tumor response to ionizing radiation and combined 2-deoxy-D-glucose application in EATC tumor bearing mice: monitoring of tumor size and microscopic observations

    Energy Technology Data Exchange (ETDEWEB)

    Latz, D. (Dept. of Radiotherapy, Heidelberg Univ. (Germany)); Thonke, A. (Inst. of Biophysics, Frankfurt Univ. (Germany)); Jueling-Pohlit, L. (Inst. of Biophysics, Frankfurt Univ. (Germany)); Pohlit, W. (Inst. of Biophysics, Frankfurt Univ. (Germany))

    1993-07-01

    The present study deals with the changes induced by two fractionation schedules (5x9 Gy and 10x4.5 Gy; 30 MeV-electrons) of ionizing radiations and 2-Deoxy-D-Glucose (2-DG) application on EATC tumor bearing swiss albino mice. The monitoring of tumor response was carried out by means of calliper measurement on the macroscopic level and by histopathological examination of tumor preparations stained with hematoxiline and eosine on the microscopic level. The tumor material was assessed at suitable intervals after treatment by killing the animals. The tumor response was analysed in the histological preparations and the thickness of the tumor band was determined quantitatively by an ocularmicrometric technique. Tumor damage was most extensive in the combined treated animals (5x9 Gy + 2-DG). Only in this group local tumor control was achievable. The histological analysis of tumor preparations revealed additional data about treatment-induced changes in the tumor compared to the measurement of the tumor volume with mechanical callipers. We also found that the treatment outcome could be predicted from the histopathological analysis. It is concluded that studies involving histopathological examinations may give some insight into the way cancer is controlled by radiotherapy and may be of value in prognosis and selection of treatment in patients. (orig.)

  6. Apoptotic resistance to ionizing radiation in pediatric B-precursor acute lymphoblastic leukemia frequently involves increased NF-kappaB survival pathway signaling.

    Science.gov (United States)

    Weston, Victoria J; Austen, Belinda; Wei, Wenbin; Marston, Eliot; Alvi, Azra; Lawson, Sarah; Darbyshire, Philip J; Griffiths, Mike; Hill, Frank; Mann, Jill R; Moss, Paul A H; Taylor, A Malcolm R; Stankovic, Tatjana

    2004-09-01

    To investigate possible causes of the variable response to treatment in pediatric B-precursor acute lymphoblastic leukemia (ALL) and to establish potential novel therapeutic targets, we used ionizing radiation (IR) exposure as a model of DNA damage formation to identify tumors with resistance to p53-dependent apoptosis. Twenty-one of 40 ALL tumors responded normally to IR, exhibiting accumulation of p53 and p21 proteins and cleavage of caspases 3, 7, and 9 and of PARP1. Nineteen tumors exhibited apoptotic resistance and lacked PARP1 and caspase cleavage; although 15 of these tumors had normal accumulation of p53 and p21 proteins, examples exhibited abnormal expression of TRAF5, TRAF6, and cIAP1 after IR, suggesting increased NF-kappaB prosurvival signaling as the mechanism of apoptotic resistance. The presence of a hyperactive PARP1 mutation in one tumor was consistent with such increased NF-kappaB activity. PARP1 inhibition restored p53-dependent apoptosis after IR in these leukemias by reducing NF-kappaB DNA binding and transcriptional activity. In the remaining 4 ALL tumors, apoptotic resistance was associated with a TP53 mutation or with defective activation of p53. We conclude that increased NF-kappaB prosurvival signaling is a frequent mechanism by which B-precursor ALL tumors develop apoptotic resistance to IR and that PARP1 inhibition may improve the DNA damage response of these leukemias.

  7. Carbohydrate Mimetic Peptides for Pan Anti-Tumor Responses

    Directory of Open Access Journals (Sweden)

    Thomas eKieber-Emmons

    2014-06-01

    Full Text Available Molecular mimicry is fundamental to biology which transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience in bringing a tumor-associated carbohydrate mimetic peptide to the clinic. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor associated carbohydrate antigens and the notion of reverse engineering to develop carbohydrate mimetic peptides in vaccine design strategies to induce responses to pan-glycan antigens expressed on cancer cells.

  8. Chemopreventive Activity of Ferulago angulate against Breast Tumor in Rats and the Apoptotic Effect of Polycerasoidin in MCF7 Cells: A Bioassay-Guided Approach.

    Science.gov (United States)

    Karimian, Hamed; Fadaeinasab, Mehran; Zorofchian Moghadamtousi, Soheil; Hajrezaei, Maryam; Razavi, Mahboubeh; Safi, Sher Zaman; Ameen Abdulla, Mahmood; Mohd Ali, Hapipah; Ibrahim Noordin, Mohamad

    2015-01-01

    Ferulago angulata leaf hexane extract (FALHE) was found to be a potent inducer of MCF7 cell apoptosis. The aims of the present study were to investigate the in vivo chemopreventive effect of FALHE in rats, to identify the contributing anticancer compound in FALHE and to determine its potential mechanism of action against MCF7 cells. Thirty rats harboring LA7-induced breast tumors were divided into five groups: tumor control, low-dose FALHE, high-dose FALHE, treatment control (tamoxifen) and normal control. Breast tissues were then subjected to histopathological and immunohistochemical analyses. A bioassay-guided investigation on FALHE was performed to identify the cytotoxic compound and its mechanism of action through flow cytometry, real-time qPCR and western blotting analyses. An in vivo study showed that FALHE suppressed the expression of the tumor markers PCNA and Ki67. The tumor size was reduced from 2031 ± 281 mm3 to 432 ± 201 mm3 after FALHE treatment. FALHE administration induced apoptosis in breast tumor cells, and this was confirmed by high expression levels of Bax, p53 and caspase 3. Cell cycle arrest was suggested by the expression of p21 and p27. The in vitro experimental results resulted in the isolation of polycerasoidin as a bioactive ingredient of FALHE with an IC50 value of 3.16 ± 0.31 μg/ml against MCF7 cells. Polycerasoidin induced mitochondrial-dependent apoptosis in breast cancer cells via caspase activation and changes in the mRNA and protein expression of Bax and Bcl-2. In addition, flow cytometric analysis demonstrated that the treated MCF7 cells were arrested at the G1 phase, and this was associated with the up-regulation of p21 and p27 at both the mRNA and protein levels. The results of the present study reinforce further investigations scrutinizing the promising potential of the F. angulata chemical constituents as breast cancer chemopreventive agents.

  9. Rapid in vivo Taxotere quantitative chemosensitivity response by 4.23 Tesla sodium MRI and histo-immunostaining features in N-Methyl-N-Nitrosourea induced breast tumors in rats

    Directory of Open Access Journals (Sweden)

    Wu Ed X

    2005-08-01

    Full Text Available Abstract Background Sodium weighted images can indicate sodium signal intensities from different features in the tumor before and 24 hours following administration of Taxotere. Aim To evaluate the association of in vivo intracellular sodium magnetic resonance image intensities with immuno-biomarkers and histopathological features to monitor the early tumor response to Taxotere chemotherapy in Methyl-Nitroso-Urea induced rat xenograft breast tumors. Methods and Materials Methyl-Nitroso-Urea (MNU induced rat xenograft breast tumors were imaged for sodium MRI and compared with tumor histology, immunostaining after 24 hours chemotherapy. Results Sodium MRI signal intensities represented sodium concentrations. Excised tumor histological sections showed different in vitro histological end points i.e. single strand DNA content of cell nuclei during cell cycle (G1/S-G2/M, distinct S or M histograms (Feulgen labeling to nuclear DNA content by CAS 200, mitotic figures and apoptosis at different locations of breast tumors. Necrosis and cystic fluid appeared gray on intracellular (IC sodium images while apoptosis rich regions appeared brighter on IC sodium images. After 24 hours Taxotere-treated tumors showed lower 'IC/EC ratio' of viable cells (65–76% with higher mitotic index; apoptotic tumor cells at high risk due to cytotoxicity (>70% with high apoptotic index; reduced proliferation index (270 vs 120 per high power field associated with enhanced IC sodium in vivo MR image intensities and decreased tumor size (3%; p in vivo associated with apoptosis and different pre-malignant features within 24 hours of exposure of cancer cells to anti-neoplastic Taxotere drug. Conclusion Sodium MRI imaging may be used as in vivo rapid drug monitoring method to evaluate Taxotere chemosensitivity response associated with neoplasia, apoptosis and tumor histology features.

  10. HIC1 (hypermethylated in cancer 1) SUMOylation is dispensable for DNA repair but is essential for the apoptotic DNA damage response (DDR) to irreparable DNA double-strand breaks (DSBs).

    Science.gov (United States)

    Paget, Sonia; Dubuissez, Marion; Dehennaut, Vanessa; Nassour, Joe; Harmon, Brennan T; Spruyt, Nathalie; Loison, Ingrid; Abbadie, Corinne; Rood, Brian R; Leprince, Dominique

    2017-01-10

    The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFβR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.

  11. Harnessing naturally occurring tumor immunity: a clinical vaccine trial in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Mayu O Frank

    Full Text Available BACKGROUND: Studies of patients with paraneoplastic neurologic disorders (PND have revealed that apoptotic tumor serves as a potential potent trigger for the initiation of naturally occurring tumor immunity. The purpose of this study was to assess the feasibility, safety, and immunogenicity of an apoptotic tumor-autologous dendritic cell (DC vaccine. METHODS AND FINDINGS: We have modeled PND tumor immunity in a clinical trial in which apoptotic allogeneic prostate tumor cells were used to generate an apoptotic tumor-autologous dendritic cell vaccine. Twenty-four prostate cancer patients were immunized in a Phase I, randomized, single-blind, placebo-controlled study to assess the safety and immunogenicity of this vaccine. Vaccinations were safe and well tolerated. Importantly, we also found that the vaccine was immunogenic, inducing delayed type hypersensitivity (DTH responses and CD4+ and CD8+ T cell proliferation, with no effect on FoxP3+ regulatory T cells. A statistically significant increase in T cell proliferation responses to prostate tumor cells in vitro (p = 0.002, decrease in prostate specific antigen (PSA slope (p = 0.016, and a two-fold increase in PSA doubling time (p = 0.003 were identified when we compared data before and after vaccination. CONCLUSIONS: An apoptotic cancer cell vaccine modeled on naturally occurring tumor immune responses in PND patients provides a safe and immunogenic tumor vaccine. TRIAL REGISTRATION: ClinicalTrials.gov NCT00289341.

  12. Resveratrol triggers the pro-apoptotic endoplasmic reticulum stress response and represses the pro-survival XBP1 signaling in human multiple myeloma cells

    Science.gov (United States)

    Wang, Feng-Ming; Galson, Deborah L.; Roodman, G. David; Ouyang, Hongjiao

    2012-01-01

    Objective Resveratrol, trans-3, 4’, 5,-trihydroxystilbene, suppresses multiple myeloma (MM). The endoplasmic reticulum (ER) stress response component IRE1α/XBP1 axis is essential for MM pathogenesis. We investigated the molecular action of resveratrol on IRE1α/XBP1 axis in human MM cells. Methods Human MM cell lines ANBL-6, OPM2, and MM.1S were utilized to determine the molecular signaling events following the treatment with resveratrol. The stimulation of IRE1α/XBP1 axis was analyzed by Western blot and reverse transcription polymerase chain reaction. The effect of resveratrol on the transcriptional activity of spliced XBP1 was assessed by luciferase assays. Chromatin immunoprecipitation (ChIP) was performed to determine the effects of resveratrol on the DNA binding activity of XBP1 in MM cells. Results Resveratrol activated IRE1α as evidenced by XBP1 mRNA splicing and the phosphorylation of both IRE1α and its downstream kinase JNK in MM cells. These responses were associated with resveratrol-induced cytotoxicity of MM cells. Resveratrol selectively suppressed the transcriptional activity of XBP1s while it stimulated gene expression of the molecules that are regulated by non-IRE1/XBP1 axis of the ER stress response. Luciferase assays indicated that resveratrol suppressed the transcriptional activity of XBP1s through sirtuin 1 (SIRT1), a downstream molecular target of resveratrol. ChIP studies revealed that resveratrol decreased the DNA binding capacity of XBP1 and increased the enrichment of SIRT1 at the XBP1 binding region in the XBP1 promoter. Conclusion Resveratrol exerts its chemotherapeutic effect on human MM cells through mechanisms involving the impairment of the pro-survival XBP1 signaling and the activation of pro-apoptotic ER stress response. PMID:21723843

  13. Hypoxic Tumor Can be More Responsive to Fractionated Irradiation Combined with SR 4233 (Tirapazamine)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Han [Seoul National University College of Medicine, Seoul (Korea, Republic of); Brown, J. Martin [Stanford Univ., Stanford (United States)

    1994-02-15

    Hypothesis that hypoxic tumors should be more responsive to the addition of preferential hypoxic cell cytotoxin SR 4233 (tirapazamine) to fractionated irradiation was tested in the mouse SCCVII carcinoma and RIF-1 sarcoma, Model of hypoxic tumor was established using the tumor bed effect; tumors growing in the preirradiated tissue (preirradiated tumors) were more hypoxic than tumors growing in the unirradiated tissue (unirradiated tumors). When the tumors reached a mean volume of 100 mm{sup 3}, both unirradiated and preirradiated tumors were treated with a fractionated course of 6 x 2 Gy in 3 days or 8 x2.5 Gy in 4 days with SR 4233 (0.08m mol/kg/injection) given 30 minutes before each irradiation or without SR 4233. Compared to the unirradiated tumors, hypoxic preirradiated tumors were approximately 5 times more resistant to fractionated irradiation alone but were approximately 5 times more responsive to SR 4233. Addition of SR 4233 potentiated the effect of fractionated irradiation in both unirradiated and preirradiated tumors. Potentiation in the preirradiated tumors was morequal to or greater than that in the unirradiated tumors and seemed to be higher for more fractionated treatment. We confirm the hypothesis in a transplantable mouse tumor. Present results suggest that radioresistance of some hypoxic tumors can be overcome with hypoxic cytotoxin.

  14. Retinoblastoma loss modulates DNA damage response favoring tumor progression.

    Directory of Open Access Journals (Sweden)

    Marcos Seoane

    Full Text Available Senescence is one of the main barriers against tumor progression. Oncogenic signals in primary cells result in oncogene-induced senescence (OIS, crucial for protection against cancer development. It has been described in premalignant lesions that OIS requires DNA damage response (DDR activation, safeguard of the integrity of the genome. Here we demonstrate how the cellular mechanisms involved in oncogenic transformation in a model of glioma uncouple OIS and DDR. We use this tumor type as a paradigm of oncogenic transformation. In human gliomas most of the genetic alterations that have been previously identified result in abnormal activation of cell growth signaling pathways and deregulation of cell cycle, features recapitulated in our model by oncogenic Ras expression and retinoblastoma (Rb inactivation respectively. In this scenario, the absence of pRb confers a proliferative advantage and activates DDR to a greater extent in a DNA lesion-independent fashion than cells that express only HRas(V12. Moreover, Rb loss inactivates the stress kinase DDR-associated p38MAPK by specific Wip1-dependent dephosphorylation. Thus, Rb loss acts as a switch mediating the transition between premalignant lesions and cancer through DDR modulation. These findings may have important implications for the understanding the biology of gliomas and anticipate a new target, Wip1 phosphatase, for novel therapeutic strategies.

  15. Short-term inhibition of TERT induces telomere length-independent cell cycle arrest and apoptotic response in EBV-immortalized and transformed B cells

    Science.gov (United States)

    Celeghin, Andrea; Giunco, Silvia; Freguja, Riccardo; Zangrossi, Manuela; Nalio, Silvia; Dolcetti, Riccardo; De Rossi, Anita

    2016-01-01

    Besides its canonical role in stabilizing telomeres, telomerase reverse transcriptase (TERT) may promote tumorigenesis through extra-telomeric functions. The possible therapeutic effects of BIBR1532 (BIBR), a powerful TERT inhibitor, have been evaluated in different cellular backgrounds, but no data are currently available regarding Epstein–Barr virus (EBV)-driven B-cell malignancies. Our aim was to characterize the biological effects of TERT inhibition by BIBR on EBV-immortalized lymphoblastoid cell lines (LCLs) and fully transformed Burkitt's lymphoma (BL) cell lines. We found that BIBR selectively inhibits telomerase activity in TERT-positive 4134/Late and 4134/TERT+ LCLs and EBV-negative BL41 and EBV-positive BL41/B95.8 BL cell lines. TERT inhibition led to decreased cell proliferation, accumulation of cells in the S-phase and ultimately to increased apoptosis, compared with mock-treated control cells. All these effects occurred within 72 h and were not observed in BIBR-treated TERT-negative 4134/TERT- and U2OS cells. The cell cycle arrest and apoptosis, consequent upon short-term TERT inhibition, were associated with and likely dependent on the activation of the DNA damage response (DDR), highlighted by the increased levels of γH2AX and activation of ATM and ATR pathways. Analyses of the mean and range of telomere lengths and telomere dysfunction-induced foci indicated that DDR after short-term TERT inhibition was not related to telomere dysfunction, thus suggesting that TERT, besides stabilizing telomere, may protect DNA via telomere-independent mechanisms. Notably, TERT-positive LCLs treated with BIBR in combination with fludarabine or cyclophosphamide showed a significant increase in the number of apoptotic cells with respect to those treated with chemotherapeutic agents alone. In conclusion, TERT inhibition impairs cell cycle progression and enhances the pro-apoptotic effects of chemotherapeutic agents in TERT-positive cells. These results support new

  16. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  17. Tumor response to radiotherapy is dependent on genotype-associated mechanisms in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Williams Jerry R

    2010-08-01

    Full Text Available Abstract Background We have previously shown that in vitro radiosensitivity of human tumor cells segregate non-randomly into a limited number of groups. Each group associates with a specific genotype. However we have also shown that abrogation of a single gene (p21 in a human tumor cell unexpectedly sensitized xenograft tumors comprised of these cells to radiotherapy while not affecting in vitro cellular radiosensitivity. Therefore in vitro assays alone cannot predict tumor response to radiotherapy. In the current work, we measure in vitro radiosensitivity and in vivo response of their xenograft tumors in a series of human tumor lines that represent the range of radiosensitivity observed in human tumor cells. We also measure response of their xenograft tumors to different radiotherapy protocols. We reduce these data into a simple analytical structure that defines the relationship between tumor response and total dose based on two coefficients that are specific to tumor cell genotype, fraction size and total dose. Methods We assayed in vitro survival patterns in eight tumor cell lines that vary in cellular radiosensitivity and genotype. We also measured response of their xenograft tumors to four radiotherapy protocols: 8 × 2 Gy; 2 × 5Gy, 1 × 7.5 Gy and 1 × 15 Gy. We analyze these data to derive coefficients that describe both in vitro and in vivo responses. Results Response of xenografts comprised of human tumor cells to different radiotherapy protocols can be reduced to only two coefficients that represent 1 total cells killed as measured in vitro 2 additional response in vivo not predicted by cell killing. These coefficients segregate with specific genotypes including those most frequently observed in human tumors in the clinic. Coefficients that describe in vitro and in vivo mechanisms can predict tumor response to any radiation protocol based on tumor cell genotype, fraction-size and total dose. Conclusions We establish an analytical

  18. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.

  19. Evaluation of preventive and therapeutic activity of novel non-steroidal anti-inflammatory drug, CG100649, in colon cancer: Increased expression of TNF-related apoptosis-inducing ligand receptors enhance the apoptotic response to combination treatment with TRAIL.

    Science.gov (United States)

    Woo, Jong Kyu; Kang, Ju-Hee; Jang, Yeong-Su; Ro, Seonggu; Cho, Joong Myung; Kim, Hwan-Mook; Lee, Sang-Jin; Oh, Seung Hyun

    2015-04-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested as the potential new class of preventive or therapeutic antitumor agents. The aim of the present study was to evaluate the antitumor activity of the novel NSAID, CG100649. CG100649 is a novel NSAID dual inhibitor for COX-2 and carbonic anhydrase (CA)-I/-II. In the present study, we investigated the alternative mechanism by which CG100649 mediated suppression of the colon cancer growth and development. The anchorage‑dependent and -independent clonogenic assay showed that CG100649 inhibited the clonogenicity of human colon cancer cells. The flow cytometric analysis showed that CG100649 induced the G2/M cell cycle arrest in colon cancer cells. Animal studies showed that CG100649 inhibited the tumor growth in colon cancer xenograft in nude mice. Furthermore, quantitative PCR and FACS analysis demonstrated that CG100649 upregulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors (DR4 and DR5) but decreased the expression of decoy receptors (DcR1 and DcR2) in colon cancer cells. The results showed that CG100649 treatment sensitized TRAIL‑mediated growth suppression and apoptotic cell death. The combination treatment resulted in significant repression of the intestinal polyp formation in APCmin/+ mice. Our data clearly demonstrated that CG100649 contains preventive and therapeutic activity for colon cancer. The present study may be useful for identification of the potential benefit of the NSAID CG100649, for the achievement of a better treatment response in colon cancer.

  20. Effects of interval and continuous exercise training on CD4 lymphocyte apoptotic and autophagic responses to hypoxic stress in sedentary men.

    Directory of Open Access Journals (Sweden)

    Tzu-Pin Weng

    Full Text Available Exercise is linked with the type/intensity-dependent adaptive immune responses, whereas hypoxic stress facilitates the programmed death of CD4 lymphocytes. This study investigated how high intensity-interval (HIT and moderate intensity-continuous (MCT exercise training influence hypoxia-induced apoptosis and autophagy of CD4 lymphocytes in sedentary men. Thirty healthy sedentary males were randomized to engage either HIT (3-minute intervals at 40% and 80%VO2max, n=10 or MCT (sustained 60%VO2max, n=10 for 30 minutes/day, 5 days/week for 5 weeks, or to a control group that did not received exercise intervention (CTL, n=10. CD4 lymphocyte apoptotic and autophagic responses to hypoxic exercise (HE, 100 W under 12%O2 for 30 minutes were determined before and after various regimens. The results demonstrated that HIT exhibited higher enhancements of pulmonary ventilation, cardiac output, and VO2 at ventilatory threshold and peak performance than MCT did. Before the intervention, HE significantly down-regulated autophagy by decreased beclin-1, Atg-1, LC3-II, Atg-12, and LAMP-2 expressions and acridine orange staining, and simultaneously enhanced apoptosis by increased phospho-Bcl-2 and active caspase-9/-3 levels and phosphotidylserine exposure in CD4 lymphocytes. However, five weeks of HIT and MCT, but not CTL, reduced the extents of declined autophagy and potentiated apoptosis in CD4 lymphocytes caused by HE. Furthermore, both HIT and MCT regimens manifestly lowered plasma myeloperoxidase and interleukin-4 levels and elevated the ratio of interleukin-4 to interferon-γ at rest and following HE. Therefore, we conclude that HIT is superior to MCT for enhancing aerobic fitness. Moreover, either HIT or MCT effectively depresses apoptosis and promotes autophagy in CD4 lymphocytes and is accompanied by increased interleukin-4/interferon-γ ratio and decreased peroxide production during HE.

  1. Carbohydrate-Mimetic Peptides for Pan Anti-Tumor Responses

    Science.gov (United States)

    Kieber-Emmons, Thomas; Saha, Somdutta; Pashov, Anastas; Monzavi-Karbassi, Behjatolah; Murali, Ramachandran

    2014-01-01

    Molecular mimicry is fundamental to biology and transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience examining the immunological aspects and implications of carbohydrate–peptide mimicry. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor-associated carbohydrate antigens, and the notion of reverse engineering to develop carbohydrate-mimetic peptides in vaccine design strategies to induce responses to glycan antigens expressed on cancer cells. PMID:25071769

  2. Apoptotic cell clearance: basic biology and therapeutic potential.

    Science.gov (United States)

    Poon, Ivan K H; Lucas, Christopher D; Rossi, Adriano G; Ravichandran, Kodi S

    2014-03-01

    The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.

  3. Temperature-dependent viral replication and antiviral apoptotic response in viral haemorrhagic septicaemia virus (VHSV)-infected olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Avunje, Satheesha; Kim, Wi-Sik; Oh, Myung-Joo; Choi, Ilsu; Jung, Sung-Ju

    2012-06-01

    The olive flounder (Paralichthys olivaceus) shows a high rate of mortality to viral haemorrhagic septicaemia virus (VHSV) in the winter and spring but has zero mortality over 20 °C. In this experiment, we studied the effect of rearing temperature on viral replication, viral transcription and antiviral apoptotic immune response in VHSV-infected olive flounder by real-time polymerase chain reaction. Olive flounder were given intra-peritoneal injections of VHSV (10(7.8) TCID(50)/ml) and were reared at 15 °C or 20 °C. Five fish were randomly sampled for head kidney at 3, 6 and 12 h post-infection (hpi) and 1, 2, 4 and 7 days post-infection (dpi). Total RNA extracted from the tissue was reverse transcribed and used as template for real-time PCR. In the 15 °C group, the number of viral gRNA copies peaked after 2 dpi and remained high through 7 dpi, while in the 20 °C group, the copy number was at the highest at 1 dpi but drastically declined at later stages. Viral mRNA levels in the 15 °C group gradually increased starting at 3 hpi to reach their maximum value at 12 hpi and remained high until 2 dpi, whereas the other group showed much lower copy numbers that were undetectably low at 4 and 7 dpi. Type II IFN expression increased as the viral copies increased and the 20 °C group showed quicker and stronger expression than the 15 °C group. The MHC class I and CD8 expression was high in both the groups at early stage of infection (3-6 hpi) but at later stages (2-7 dpi) in 15 °C group expression reduced below control levels, while they expressed higher to control in 20 °C group. The expression of granzyme in 15 °C fish showed a single peak at 2 dpi, but was consistently expressing in 20 °C fish. Individuals expressed very high levels of perforin expressed very high levels of caspase 3. In 15 °C fish, TNFα, FasL and p53 expressed significantly higher than 20 °C only at initial stages of infection (3-6 hpi). Caspase 3 expression found to be low in 15 °C fish

  4. Breast tumor oxygenation in response to carbogen intervention assessed simultaneously by three oxygen-sensitive parameters

    Science.gov (United States)

    Gu, Yueqing; Bourke, Vincent; Kim, Jae Gwan; Xia, Mengna; Constantinescu, Anca; Mason, Ralph P.; Liu, Hanli

    2003-07-01

    Three oxygen-sensitive parameters (arterial hemoglobin oxygen saturation SaO2, tumor vascular oxygenated hemoglobin concentration [HbO2], and tumor oxygen tension pO2) were measured simultaneously by three different optical techniques (pulse oximeter, near infrared spectroscopy, and FOXY) to evaluate dynamic responses of breast tumors to carbogen (5% CO2 and 95% O2) intervention. All three parameters displayed similar trends in dynamic response to carbogen challenge, but with different response times. These response times were quantified by the time constants of the exponential fitting curves, revealing the immediate and the fastest response from the arterial SaO2, followed by changes in global tumor vascular [HbO2], and delayed responses for pO2. The consistency of the three oxygen-sensitive parameters demonstrated the ability of NIRS to monitor therapeutic interventions for rat breast tumors in-vivo in real time.

  5. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor.

    Science.gov (United States)

    Eini, Hadar; Frishman, Valeria; Yulzari, Robert; Kachko, Leonid; Lewis, Eli C; Chaimovitz, Cidio; Douvdevani, Amos

    2015-11-01

    Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development.

  6. Integrin-mediated active tumor targeting and tumor microenvironment response dendrimer-gelatin nanoparticles for drug delivery and tumor treatment.

    Science.gov (United States)

    Hu, Guanlian; Zhang, Huiqing; Zhang, Li; Ruan, Shaobo; He, Qin; Gao, Huile

    2015-12-30

    Due to the high morbidity and mortality of cancer, it has become an urgent matter to develop an effective and a safe treatment strategy. Nanoparticles (NP) based drug delivery systems have gained much attention nowadays but they faced a paradoxical issue in delivering drugs into tumors: NP with large size were characterized with weak tumor penetration, meanwhile NP with small size resulted in poor tumor retention. To solve this problem, we proposed a multistage drug delivery system which could intelligently shrink its size from large size to small size in the presence of matrix metalloproteinase-2 (MMP-2) which were highly expressed in tumor tissues, therefore the multistage system could benefit from its large size for better retention effect in tumor and then shrunk to small size to contribute to better penetration efficiency. The multistage drug delivery system, RGD-DOX-DGL-GNP, was constructed by 155.4nm gelatin NP core (the substrate of MMP-2) and surface decorated with doxorubicin (DOX) and RGD peptide conjugated dendritic poly-l-lysine (DGL, 34.3nm in diameter). In vitro, the size of multistage NP could effectively shrink in the presence of MMP-2. Thus, the RGD-DOX-DGL-GNP could penetrate deep into tumor spheroids. In vivo, this multistage drug delivery system showed higher tumor retention and deeper penetration than both DOX-DGL and DOX-GNP. Consequently, RGD-DOX-DGL-GNP successfully combined the advantages of dendrimers and GNP in vivo, resulting in an outstanding anti-tumor effect. In conclusion, the multistage drug delivery system could intelligently shrink from large size to small size in the tumor microenvironment and displayed better retention and penetration efficiency, making it an impressing system for cancer treatment.

  7. Portal vein thrombosis and arterioportal shunts: Effects on tumor response after chemoembolization of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Thomas J Vogl; Nour-Eldin Nour-Eldin; Sally Emad-Eldin; Nagy NN Naguib; Joerg Trojan; Hans Ackermann; Omar Abdelaziz

    2011-01-01

    AIM: To evaluate the effect of portal vein thrombosis and arterioportal shunts on local tumor response in advanced cases of unresectable hepatocellular carcinoma treated by transarterial chemoembolization. METHODS: A retrospective study included 39 patients (mean age: 66.4 years, range: 45-79 years, SD: 7) with unresectable hepatocellular carcinoma (HCC) who were treated with repetitive transarterial chemoembolization (TACE) in the period between March 2006 and October 2009. The effect of portal vein thrombosis (PVT) (in 19 out of 39 patients), the presence of arterioportal shunt (APS) (in 7 out of 39), the underlying liver pathology, Child-Pugh score, initial tumor volume, number of tumors and tumor margin definition on imaging were correlated with the local tumor response after TACE. The initial and end therapy local tumor responses were evaluated according to the response evaluation criteria in solid tumors (RECIST) and magnetic resonance imaging volumetric measurements. RESULTS: The treatment protocols were well tolerated by all patients with no major complications. Local tumor response for all patients according to RECIST criteria were partial response in one patient (2.6%), stable disease in 34 patients (87.1%), and progressive disease in 4 patients (10.2%). The MR volumetric measurements showed that the PVT, APS, underlying liver pathology and tumor margin definition were statistically significant prognostic factors for the local tumor response (P = 0.018, P = 0.008, P = 0.034 and P = 0.001, respectively). The overall 6-, 12- and 18-mo survival rates from the initial TACE were 79.5%, 37.5% and 21%, respectively. CONCLUSION: TACE may be exploited safely for palliative tumor control in patients with advanced unresectable HCC; however, tumor response is significantly affected by the presence or absence of PVT and APS.

  8. Tumor Phagocytes Promote Breast Cancer Invasion and Metastasis

    Science.gov (United States)

    2010-10-14

    passive physiological event to clear unwanted cells, we hypothesize that clearance of apoptotic tumor cells by tumor phagocytes produce soluble...FACS assay. Introduction: The purpose of cancer chemotherapy and immunotherapy is to kill cancer cells, mostly by apoptosis. Phagocytes, which...microenvironment for metastasis. A major barrier to effective anti-cancer immunotherapy is the ability of the host to mount a durable anti-tumor response [4

  9. Is human hepatocellular carcinoma a hormone-responsive tumor?

    Institute of Scientific and Technical Information of China (English)

    Massimo Di Maio; Bruno Daniele; Sandra Pignata; Ciro Gallo; Ermelinda De Maio; Alessandro Morabito; Maria Carmela Piccirillo; Francesco Perrone

    2008-01-01

    Before the positive results recently obtained with multitarget tyrosine kinase inhibitor sorafenib, there was no standard systemic treatment for patients with advanced hepatocellular carcinoma (HCC). Sex hormones receptors are expressed in a significant proportion of HCC samples. Following preclinical and epidemiological studies supporting a relationship between sex hormones and HCC tumorigenesis, several randomized controlled trials (RCTs) tested the efficacy of the anti-estrogen tamoxifen as systemic treatment. Largest among these trials showed no survival advantage from the administration of tamoxifen, and the recent Cochrane systematic review produced a completely negative result. This questions the relevance of estrogen receptor-mediated pathways in HCC. However, a possible explanation for these disappointing results is the lack of proper patients selection according to sex hormones receptors expression, but unfortunately the interaction between this expression and efficacy of tamoxifen has not been studied adequately. It has been also proposed that negative results might be explained if tamoxifen acts in HCC via an estrogen receptor-independent pathway, that requires higher doses than those usually administered, but an Asian RCT conducted to assess dose-response effect was completely negative. Interesting, preliminaryresults have been obtained when hormonal treatment (tamoxifen or megestrol) has been selected according to the presence of wild-type or variant estrogen receptors respectively, but no large RCTs are available to support this strategy. Negative results have been obtained also with anti-androgen therapy. In conclusion, there is no robust evidence to consider HCC a hormone-responsive tumor. Hormonal treatments should not be part of the current management of HCC.

  10. Inhibitory effect of α-lipoic acid on thioacetamide-induced tumor promotion through suppression of inflammatory cell responses in a two-stage hepatocarcinogenesis model in rats.

    Science.gov (United States)

    Fujii, Yuta; Segawa, Risa; Kimura, Masayuki; Wang, Liyun; Ishii, Yuji; Yamamoto, Ryuichi; Morita, Reiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2013-09-25

    To investigate the protective effect of α-lipoic acid (a-LA) on the hepatocarcinogenic process promoted by thioacetamide (TAA), we used a two-stage liver carcinogenesis model in N-diethylnitrosamine (DEN)-initiated and TAA-promoted rats. We examined the modifying effect of co-administered a-LA on the liver tissue environment surrounding preneoplastic hepatocellular lesions, with particular focus on hepatic macrophages and the mechanism behind the decrease in apoptosis of cells surrounding preneoplastic hepatocellular lesions during the early stages of hepatocellular tumor promotion. TAA increased the number and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of proliferating and apoptotic cells in the liver. Co-administration with a-LA suppressed these effects. TAA also increased the numbers of ED2(+), cyclooxygenase-2(+), and heme oxygenase-1(+) hepatic macrophages as well as the number of CD3(+) lymphocytes. These effects were also suppressed by a-LA. Transcript levels of some inflammation-related genes were upregulated by TAA and downregulated by a-LA in real-time RT-PCR analysis. Outside the GST-P(+) foci, a-LA reduced the numbers of apoptotic cells, active caspase-8(+) cells and death receptor (DR)-5(+) cells. These results suggest that hepatic macrophages producing proinflammatory factors may be activated in TAA-induced tumor promotion. a-LA may suppress tumor-promoting activity by suppressing the activation of these macrophages and the subsequent inflammatory responses. Furthermore, a-LA may suppress tumor-promoting activity by suppressing the DR5-mediated extrinsic pathway of apoptosis and the subsequent regeneration of liver cells outside GST-P(+) foci.

  11. The combined status of ATM and p53 link tumor development with therapeutic response

    DEFF Research Database (Denmark)

    Jiang, Hai; Reinhardt, H Christian; Bartkova, Jirina;

    2009-01-01

    commonly used by tumors to bypass early neoplastic checkpoints ultimately determine chemotherapeutic response and generate tumor-specific vulnerabilities that can be exploited with targeted therapies. Specifically, evaluation of the combined status of ATM and p53, two commonly mutated tumor suppressor...... genes, can help to predict the clinical response to genotoxic chemotherapies. We show that in p53-deficient settings, suppression of ATM dramatically sensitizes tumors to DNA-damaging chemotherapy, whereas, conversely, in the presence of functional p53, suppression of ATM or its downstream target Chk2......While the contribution of specific tumor suppressor networks to cancer development has been the subject of considerable recent study, it remains unclear how alterations in these networks are integrated to influence the response of tumors to anti-cancer treatments. Here, we show that mechanisms...

  12. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  13. Complete clinical response to neoadjuvant chemotherapy in a 54-year-old male with Askin tumor.

    LENUS (Irish Health Repository)

    Mulsow, J

    2012-02-01

    Askin tumor is a tumor of the thoracopulmonary region that most commonly affects children and adolescents. These rare tumors are a form of primitive neuroectodermal tumor and typically carry a poor prognosis. Treatment is multimodal and consists of a combination of neoadjuvant chemotherapy, radical resection, and adjuvant chemo- and radiotherapy or all of the above. Surgery is advocated in most cases. We report a case of Askin tumor in a 54-year-old male who showed rapid and complete response to neoadjuvant chemotherapy. This allowed potentially radical surgery to be avoided. At one-year follow-up he remains disease-free.

  14. Overcoming Hypoxic-Resistance of Tumor Cells to TRAIL-Induced Apoptosis through Melatonin

    Directory of Open Access Journals (Sweden)

    You-Jin Lee

    2014-07-01

    Full Text Available A solid tumor is often exposed to hypoxic or anoxic conditions; thus, tumor cell responses to hypoxia are important for tumor progression as well as tumor therapy. Our previous studies indicated that tumor cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-induced cell apoptosis under hypoxic conditions. Melatonin inhibits cell proliferation in many cancer types and induces apoptosis in some particular cancer types. Here, we examined the effects of melatonin on hypoxic resistant cells against TRAIL-induced apoptosis and the possible mechanisms of melatonin in the hypoxic response. Melatonin treatment increased TRAIL-induced A549 cell death under hypoxic conditions, although hypoxia inhibited TRAIL-mediated cell apoptosis. In a mechanistic study, hypoxia inducible factor-1α and prolyl-hydroxylase 2 proteins, which increase following exposure to hypoxia, were dose-dependently down-regulated by melatonin treatment. Melatonin also blocked the hypoxic responses that reduced pro-apoptotic proteins and increased anti-apoptotic proteins including Bcl-2 and Bcl-xL. Furthermore, melatonin treatment reduced TRAIL resistance by regulating the mitochondrial transmembrane potential and Bax translocation. Our results first demonstrated that melatonin treatment induces apoptosis in TRAIL-resistant hypoxic tumor cells by diminishing the anti-apoptotic signals mediated by hypoxia and also suggest that melatonin could be a tumor therapeutic tool by combining with other apoptotic ligands including TRAIL, particularly in solid tumor cells exposed to hypoxia.

  15. Anti-tumor response induced by immunologically modified carbon nanotubes and laser irradiation using rat mammary tumor model

    Science.gov (United States)

    Acquaviva, Joseph T.; Hasanjee, Aamr M.; Bahavar, Cody F.; Zhou, Fefian; Liu, Hong; Howard, Eric W.; Bullen, Liz C.; Silvy, Ricardo P.; Chen, Wei R.

    2015-03-01

    Laser immunotherapy (LIT) is being developed as a treatment modality for metastatic cancer which can destroy primary tumors and induce effective systemic anti-tumor responses by using a targeted treatment approach in conjunction with the use of a novel immunoadjuvant, glycated chitosan (GC). In this study, Non-invasive Laser Immunotherapy (NLIT) was used as the primary treatment mode. We incorporated single-walled carbon nanotubes (SWNTs) into the treatment regimen to boost the tumor-killing effect of LIT. SWNTs and GC were conjugated to create a completely novel, immunologically modified carbon nanotube (SWNT-GC). To determine the efficacy of different laser irradiation durations, 5 minutes or 10 minutes, a series of experiments were performed. Rats were inoculated with DMBA-4 cancer cells, a highly aggressive metastatic cancer cell line. Half of the treatment group of rats receiving laser irradiation for 10 minutes survived without primary or metastatic tumors. The treatment group of rats receiving laser irradiation for 5 minutes had no survivors. Thus, Laser+SWNT-GC treatment with 10 minutes of laser irradiation proved to be effective at reducing tumor size and inducing long-term anti-tumor immunity.

  16. Invited review--neuroimaging response assessment criteria for brain tumors in veterinary patients.

    Science.gov (United States)

    Rossmeisl, John H; Garcia, Paulo A; Daniel, Gregory B; Bourland, John Daniel; Debinski, Waldemar; Dervisis, Nikolaos; Klahn, Shawna

    2014-01-01

    The evaluation of therapeutic response using cross-sectional imaging techniques, particularly gadolinium-enhanced MRI, is an integral part of the clinical management of brain tumors in veterinary patients. Spontaneous canine brain tumors are increasingly recognized and utilized as a translational model for the study of human brain tumors. However, no standardized neuroimaging response assessment criteria have been formulated for use in veterinary clinical trials. Previous studies have found that the pathophysiologic features inherent to brain tumors and the surrounding brain complicate the use of the response evaluation criteria in solid tumors (RECIST) assessment system. Objectives of this review are to describe strengths and limitations of published imaging-based brain tumor response criteria and propose a system for use in veterinary patients. The widely used human Macdonald and response assessment in neuro-oncology (RANO) criteria are reviewed and described as to how they can be applied to veterinary brain tumors. Discussion points will include current challenges associated with the interpretation of brain tumor therapeutic responses such as imaging pseudophenomena and treatment-induced necrosis, and how advancements in perfusion imaging, positron emission tomography, and magnetic resonance spectroscopy have shown promise in differentiating tumor progression from therapy-induced changes. Finally, although objective endpoints such as MR imaging and survival estimates will likely continue to comprise the foundations for outcome measures in veterinary brain tumor clinical trials, we propose that in order to provide a more relevant therapeutic response metric for veterinary patients, composite response systems should be formulated and validated that combine imaging and clinical assessment criteria.

  17. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  18. Apoptotic activity in Libyan breast cancer

    Directory of Open Access Journals (Sweden)

    Boder Jamela

    2012-06-01

    Full Text Available Abstract Background We evaluated the relationship of the apoptotic activity index (AI and the standardized mitotic-apoptotic ratio (SMI/AI with clinicopathological features and prognosis in Libyan female breast cancer (BC patients. We then compared our results with corresponding results in Finnish and Nigerian female BC patients. Methods Histological samples of breast carcinoma from 130 patients were retrospectively studied: an estimation of the apoptotic activity per square millimeter (expressed as apoptotic activity index (AI, and standardized mitotic-apoptotic ratio (SMI/AI was made, and the results compared with the clinicopathological features and the patient’s survival. Results There was a statistically significant correlation between the AI and most of the clinicopathological features; the strongest association was observed for clinical stage lymph node (LN status (P = 0.005. There were also correlations between AI and histological grade (P = 0.035, large tumor size (P = 0.011 and the clinical stage (P = 0.009. There were, however, prominent AI differences between Libyan, Nigerian and Finnish populations. The mean values of AI and SMI/AI in Libyan BC patients were 12.8 apoptotic figures per square millimeter and 2.8, respectively. The Libyan AI is slightly higher than in Nigeria, but much higher than in Finland. The differences between countries are seen throughout the samples as well as being present in certain subgroups. The survival analysis indicated that short survival time was associated with high apoptotic indices values and so can identify aggressive tumors and provide significant prognostic support. The cutoff (4 and 18 apoptosis/mm2 of AI might be applied as a quantitative criterion for Libyan BC to separate the patients into good, moderate and bad prognosis groups. Conclusions The results indicated that the differences in AI among the three countries may be due to the known variation in the distribution of

  19. [Peculiarities of urinary bladder cancer tumor cells apoptosis response on neoadjuvant chemotherapy].

    Science.gov (United States)

    Iatsyna, A I; Stakhovskiĭ, É A; Sheremet, Ia A; Spivak, S I; Stakhovskiĭ, A É; Gavriliuk, O N; Vitruk, Iu V; Emets, A I; Blium, Ia B

    2011-01-01

    Induced apoptosis in urinary bladder cancer tumor cells of patients was studied using TUNEL reaction. It was shown that increase in induced apoptosis value had a definite correlation between corresponding features of tumor reaction as a response on Gemcitabine-Cisplatin neoadjuvant chemotherapy application. It was found that evaluation of induced apoptosis in urinary bladder cancer tumor cells using TUNEL method allows forecasting the effectiveness of chemotherapy on the cellular level in patients with this type of cancer.

  20. A model of hemodynamic responses of rat tumors to hyperoxic gas challenge

    Science.gov (United States)

    Xia, Mengna; Mason, Ralph P.; Liu, Hanli

    2005-04-01

    We measured the changes of oxy-hemoglobin (Δ[HbO2]) and deoxy-hemoglobin concentration (Δ[Hb]) in rat breast 13762NF tumors with respect to oxygen or carbogen inhalation using near-infrared spectroscopy (NIRS). The changes in tumor blood flow can be estimated from the NIRS data provided with certain model assumptions. In the theoretical approach, we modified the Windkessel model so as to associate the mathematical model with such physiological parameters of tumor vasculature as total hemoglobin concentration ([HbT]), tumor blood flow (TBF), and tumor metabolic rate of oxygen (TMRO2). The computational results show that hyperoxic gas administration to the rat tumors always gave rise to improvement of tumor Δ[HbO2], while the same hyperoxic gas intervention could result in different responses in tumor [HbT], TBF, and TMRO2. This preliminary study has demonstrated that NIRS, a noninvasive tool to monitor tumor oxygenation, may also be used to estimate tumor perfusion and oxygen consumption rate in response to therapeutic interventions, if a suitable mathematical model is provided.

  1. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, I., E-mail: iespinoza@fis.puc.cl [Institute of Physics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile and Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany); Peschke, P. [Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany); Karger, C. P. [Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany)

    2015-01-15

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  2. Sickle erythrocytes target cytotoxics to hypoxic tumor microvessels and potentiate a tumoricidal response.

    Directory of Open Access Journals (Sweden)

    David S Terman

    Full Text Available Resistance of hypoxic solid tumor niches to chemotherapy and radiotherapy remains a major scientific challenge that calls for conceptually new approaches. Here we exploit a hitherto unrecognized ability of sickled erythrocytes (SSRBCs but not normal RBCs (NLRBCs to selectively target hypoxic tumor vascular microenviroment and induce diffuse vaso-occlusion. Within minutes after injection SSRBCs, but not NLRBCs, home and adhere to hypoxic 4T1 tumor vasculature with hemoglobin saturation levels at or below 10% that are distributed over 70% of the tumor space. The bound SSRBCs thereupon form microaggregates that obstruct/occlude up to 88% of tumor microvessels. Importantly, SSRBCs, but not normal RBCs, combined with exogenous prooxidant zinc protoporphyrin (ZnPP induce a potent tumoricidal response via a mutual potentiating mechanism. In a clonogenic tumor cell survival assay, SSRBC surrogate hemin, along with H(2O(2 and ZnPP demonstrate a similar mutual potentiation and tumoricidal effect. In contrast to existing treatments directed only to the hypoxic tumor cell, the present approach targets the hypoxic tumor vascular environment and induces injury to both tumor microvessels and tumor cells using intrinsic SSRBC-derived oxidants and locally generated ROS. Thus, the SSRBC appears to be a potent new tool for treatment of hypoxic solid tumors, which are notable for their resistance to existing cancer treatments.

  3. T-cell response to p53 tumor-associated antigen in patients with colorectal carcinoma.

    Science.gov (United States)

    Bueter, Marco; Gasser, Martin; Schramm, Nicolai; Lebedeva, Tatiana; Tocco, Georges; Gerstlauer, Christiane; Grimm, Martin; Nichiporuk, Ekaterina; Thalheimer, Andreas; Thiede, Arnulf; Meyer, Detlef; Benichou, Gilles; Waaga-Gasser, Ana Maria

    2006-02-01

    Despite the radical surgical resection performed in patients with colorectal carcinoma, there is a high rate of tumor recurrence. Over an observation period of 3 years, 18% of the patients in our collective suffered a tumor relapse with local or distinct metastases after initial R0-resection. Some evidence suggests that this may be due to suppression of anti-tumor responses, a phenomenon that might be attributed to regulatory T cells. The aim of our study was to investigate the tumor-specific immune response depending on the UICC stage of patients with colorectal cancer. The cellular immune responses against defined antigens that are overexpressed in most of the patients with colorectal cancer were characterized. For this purpose, the tumor suppressor gene, p53, was chosen as the tumor-associated antigen that exhibits mutations and overexpression in up to 60% of colorectal carcinoma. We observed that p53 induced both IFN-gamma and IL-10 secretion. The predominance of IL-10 production indicated that regulatory T cells directly participate in modulating the anti-tumor immune response. IL-10 levels in the blood as well as the expression of regulatory T-cell specific genes at the tumor site correlate with the UICC stage of the disease. These results may provide an explanation for the poor prognosis and increased recurrence rate in patients with advanced carcinoma.

  4. Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2016-11-01

    Full Text Available The tumor suppressor p53 is the most frequently mutated gene in human cancers. Most of the mutations are missense leading to loss of p53 function in inducing apoptosis and senescence. In addition to these autonomous effects of p53 inactivation/dysfunction on tumorigenesis, compelling evidence suggests that p53 mutation/inactivation also leads to gain-of-function or activation of non-autonomous pathways, which either directly or indirectly promote tumorigenesis. Experimental and clinical results suggest that p53 dysfunction fuels pro-tumor inflammation and serves as an immunological gain-of-function driver of tumorigenesis via skewing immune landscape of the tumor microenvironment (TME. It is now increasingly appreciated that p53 dysfunction in various cellular compartments of the TME leads to immunosuppression and immune evasion. Although our understanding of the cellular and molecular processes that link p53 activity to host immune regulation is still incomplete, it is clear that activating/reactivating the p53 pathway in the TME also represents a compelling immunological strategy to reverse immunosuppression and enhance antitumor immunity. Here, we review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and discuss how targeting the p53 pathway can be exploited to alter the immunological landscape of tumors for maximizing therapeutic outcome.

  5. Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment

    Science.gov (United States)

    Cui, Yan; Guo, Gang

    2016-01-01

    The tumor suppressor p53 is the most frequently mutated gene in human cancers. Most of the mutations are missense leading to loss of p53 function in inducing apoptosis and senescence. In addition to these autonomous effects of p53 inactivation/dysfunction on tumorigenesis, compelling evidence suggests that p53 mutation/inactivation also leads to gain-of-function or activation of non-autonomous pathways, which either directly or indirectly promote tumorigenesis. Experimental and clinical results suggest that p53 dysfunction fuels pro-tumor inflammation and serves as an immunological gain-of-function driver of tumorigenesis via skewing immune landscape of the tumor microenvironment (TME). It is now increasingly appreciated that p53 dysfunction in various cellular compartments of the TME leads to immunosuppression and immune evasion. Although our understanding of the cellular and molecular processes that link p53 activity to host immune regulation is still incomplete, it is clear that activating/reactivating the p53 pathway in the TME also represents a compelling immunological strategy to reverse immunosuppression and enhance antitumor immunity. Here, we review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and discuss how targeting the p53 pathway can be exploited to alter the immunological landscape of tumors for maximizing therapeutic outcome. PMID:27869779

  6. Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment.

    Science.gov (United States)

    Cui, Yan; Guo, Gang

    2016-11-19

    The tumor suppressor p53 is the most frequently mutated gene in human cancers. Most of the mutations are missense leading to loss of p53 function in inducing apoptosis and senescence. In addition to these autonomous effects of p53 inactivation/dysfunction on tumorigenesis, compelling evidence suggests that p53 mutation/inactivation also leads to gain-of-function or activation of non-autonomous pathways, which either directly or indirectly promote tumorigenesis. Experimental and clinical results suggest that p53 dysfunction fuels pro-tumor inflammation and serves as an immunological gain-of-function driver of tumorigenesis via skewing immune landscape of the tumor microenvironment (TME). It is now increasingly appreciated that p53 dysfunction in various cellular compartments of the TME leads to immunosuppression and immune evasion. Although our understanding of the cellular and molecular processes that link p53 activity to host immune regulation is still incomplete, it is clear that activating/reactivating the p53 pathway in the TME also represents a compelling immunological strategy to reverse immunosuppression and enhance antitumor immunity. Here, we review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and discuss how targeting the p53 pathway can be exploited to alter the immunological landscape of tumors for maximizing therapeutic outcome.

  7. Molecular determinants of treatment response in human germ cell tumors

    NARCIS (Netherlands)

    F. Mayer; J.A. Stoop (Hans); G.L. Scheffer (George); R. Scheper; J.W. Oosterhuis (Wolter); L.H.J. Looijenga (Leendert); C. Bokemeyer

    2003-01-01

    textabstractPURPOSE: Germ cell tumors (GCTs) are highly sensitive to cisplatin-based chemotherapy. This feature is unexplained, as is the intrinsic chemotherapy resistance of mature teratomas and the resistant phenotype of a minority of refractory GCTs. Various cellular pathways ma

  8. Immune response against large tumors eradicated by treatment with cyclophosphamide and IL-12.

    Science.gov (United States)

    Tsung, K; Meko, J B; Tsung, Y L; Peplinski, G R; Norton, J A

    1998-02-01

    Previous studies have demonstrated eradication of small (4-8 mm) established murine MCA207 sarcomas by treatment with systemic IL-12. Analysis of the mechanism has revealed a cellular and molecular immune response at the tumor typical of a Th1 cell-mediated, macrophage-effected, delayed-type hypersensitivity (DTH) response. In the current study we investigate the immune response against long term established, large MCA207 tumors induced by combined treatment with IL-12 and cyclophosphamide (Cy), an agent known to potentiate the DTH response. Our results demonstrate that s.c. large MCA207 tumors (15-20 mm) that are refractory to treatment by either IL-12 or Cy alone can be completely eradicated by the combination of Cy and IL-12. IL-12 is apparently the only cytokine capable of mediating tumor eradication, and the effect is dependent on IFN-gamma. The contribution of Cy is probably due to immunopotentiation of DTH rather than to direct cytotoxicity to the tumor. The regression of these large tumors takes >4 wk and, in many cases, is self-sustained, in that little or no additional IL-12 is needed beyond the initial week of administration. Analysis of the cellular and molecular events at the tumor site suggests that the mechanism is a Th1-mediated antitumor immune response.

  9. Hyperphosphatemic familial tumoral calcinosis: response to acetazolamide and postulated mechanisms.

    Science.gov (United States)

    Finer, Gal; Price, Heather E; Shore, Richard M; White, Kenneth E; Langman, Craig B

    2014-06-01

    Hyperphosphatemic familial tumoral calcinosis (HFTC) is characterized by enhanced renal phosphate absorption, hyperphosphatemia, and tumor-like extraosseous calcifications due to inactivating mutations in FGF23 or associated proteins. Surgical excision is needed when low phosphate diet and phosphate binders are ineffective. Sporadic reports have supported acetazolamide use. We report on a 7-year-old African American boy who presented with severe HFTC requiring numerous surgical excisions. Tumors continued to appear and others reoccurred despite phosphate restriction and sevelamer carbonate. At the age of 9.5 years, acetazolamide (40 mg/kg/day) was added and resulted in mild metabolic acidosis (bicarbonate 25.3 mEq/L vs. 21.4 mEq/L, P < 0.001; serum pH 7.38 vs. 7.31, P = 0.013, pre- and post-acetazolamide, respectively) but no change in tubular reabsorption of phosphate (TRP) (96.9% vs. 95.9%, P = 0.34) or serum phosphate (6.6 mg/dl vs. 6.9 mg/dl, P = 0.52 pre- and post-acetazolamide, respectively). Following the initiation of acetazolamide therapy, the patient experienced significant improvement in disease course as indicated by resolution of localized bone pain, cessation of tumor formation, and no tumor recurrence. Despite mild metabolic acidosis, our patient had improved linear growth and did not develop any other side effects related to therapy. Intact FGF23 remained abnormally low throughout disease course, while C-terminal FGF23 increased with acetazolamide. We conclude that acetazolamide can control severe HFTC by inducing mild metabolic acidosis despite no change in serum phosphate or TRP. This effect may be exerted though improved calcium-phosphate complex solubility and increased FGF23 locally.

  10. Enhanced responses to tumor immunization following total body irradiation are time-dependent.

    Directory of Open Access Journals (Sweden)

    Adi Diab

    Full Text Available The development of successful cancer vaccines is contingent on the ability to induce effective and persistent anti-tumor immunity against self-antigens that do not typically elicit immune responses. In this study, we examine the effects of a non-myeloablative dose of total body irradiation on the ability of tumor-naïve mice to respond to DNA vaccines against melanoma. We demonstrate that irradiation followed by lymphocyte infusion results in a dramatic increase in responsiveness to tumor vaccination, with augmentation of T cell responses to tumor antigens and tumor eradication. In irradiated mice, infused CD8(+ T cells expand in an environment that is relatively depleted in regulatory T cells, and this correlates with improved CD8(+ T cell functionality. We also observe an increase in the frequency of dendritic cells displaying an activated phenotype within lymphoid organs in the first 24 hours after irradiation. Intriguingly, both the relative decrease in regulatory T cells and increase in activated dendritic cells correspond with a brief window of augmented responsiveness to immunization. After this 24 hour window, the numbers of dendritic cells decline, as does the ability of mice to respond to immunizations. When immunizations are initiated within the period of augmented dendritic cell activation, mice develop anti-tumor responses that show increased durability as well as magnitude, and this approach leads to improved survival in experiments with mice bearing established tumors as well as in a spontaneous melanoma model. We conclude that irradiation can produce potent immune adjuvant effects independent of its ability to induce tumor ablation, and that the timing of immunization and lymphocyte infusion in the irradiated host are crucial for generating optimal anti-tumor immunity. Clinical strategies using these approaches must therefore optimize such parameters, as the correct timing of infusion and vaccination may mean the difference

  11. Evaluation of lung tumor response to therapy: Current and emerging techniques.

    Science.gov (United States)

    Coche, E

    2016-10-01

    Lung tumor response to therapy may be evaluated in most instances by morphological criteria such as RECIST 1.1 on computed tomography (CT) or magnetic resonance imaging (MRI). However, those criteria are limited because they are based on tumoral dimensional changes and do not take into account other morphologic criteria such as density evaluation, functional or metabolic changes that may occur following conventional or targeted chemotherapy. New techniques such as dual-energy CT, PET-CT, MRI including diffusion-weighted MRI has to be considered into the new technical armamentarium for tumor response evaluation. Integration of all informations provided by the different imaging modalities has to be integrated and represents probably the future goal of tumor response evaluation. The aim of the present paper is to review the current and emerging imaging criteria used to evaluate the response of therapy in the field of lung cancer.

  12. Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics.

    Science.gov (United States)

    Ferretti, Stephane; Allegrini, Peter R; Becquet, Mike M; McSheehy, Paul Mj

    2009-09-01

    Solid tumors have a raised interstitial fluid pressure (IFP) due to high vessel permeability, low lymphatic drainage, poor perfusion, and high cell density around the blood vessels. To investigate tumor IFP as an early-response biomarker, we have tested the effect of seven anticancer chemotherapeutics including cytotoxics and targeted cytostatics in 13 experimental tumor models. IFP was recorded with the wick-in-needle method. Models were either ectopic or orthotopic and included mouse and rat syngeneic as well as human xenografts in nude mice. The mean basal IFP was between 4.4 and 15.2mm Hg; IFP was lowest in human tumor xenografts and highest in rat syngeneic models. Where measured, basal IFP correlated positively with relative tumor blood volume (rTBV) determined by dynamic contrast-enhanced magnetic resonance imaging. Most chemotherapeutics sooner (2 or 3 days) or later (6 or 7 days) lowered tumor IFP significantly, and the cytotoxic patupilone caused the greatest decrease in IFP. In rat mammary orthotopic BN472 tumors, significant drug-induced decreases in IFP and rTBV correlated positively with each other for both patupilone and the cytostatic vatalanib. In the two orthotopic models studied, early decreases in IFP were significantly (P tumor volume. Thus, drug-induced decreases in tumor IFP are an early marker of response to therapy, which could aid clinical development.

  13. Tumor Interstitial Fluid Pressure as an Early-Response Marker for Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Stephane Ferretti

    2009-09-01

    Full Text Available Solid tumors have a raised interstitial fluid pressure (IFP due to high vessel permeability, low lymphatic drainage, poor perfusion, and high cell density around the blood vessels. To investigate tumor IFP as an early-response biomarker, we have tested the effect of seven anticancer chemotherapeutics including cytotoxics and targeted cytostatics in 13 experimental tumor models. IFP was recorded with the wick-in-needle method. Models were either ectopic or orthotopic and included mouse and rat syngeneic as well as human xenografts in nude mice. The mean basal IFP was between 4.4 and 15.2mm Hg; IFP was lowest in human tumor xenografts and highest in rat syngeneic models. Where measured, basal IFP correlated positively with relative tumor blood volume (rTBV determined by dynamic contrast-enhanced magnetic resonance imaging. Most chemotherapeutics sooner (2 or 3 days or later (6 or 7 days lowered tumor IFP significantly, and the cytotoxic patupilone caused the greatest decrease in IFP. In rat mammary orthotopic BN472 tumors, significant drug-induced decreases in IFP and rTBV correlated positively with each other for both patupilone and the cytostatic vatalanib. In the two orthotopic models studied, early decreases in IFP were significantly (P ≤ .005 correlated with late changes in tumor volume. Thus, drug-induced decreases in tumor IFP are an early marker of response to therapy, which could aid clinical development.

  14. Bacteriolytic therapy can generate a potent immune response against experimental tumors.

    Science.gov (United States)

    Agrawal, Nishant; Bettegowda, Chetan; Cheong, Ian; Geschwind, Jean-Francois; Drake, Charles G; Hipkiss, Edward L; Tatsumi, Mitsuaki; Dang, Long H; Diaz, Luis A; Pomper, Martin; Abusedera, Mohammad; Wahl, Richard L; Kinzler, Kenneth W; Zhou, Shibin; Huso, David L; Vogelstein, Bert

    2004-10-19

    When spores of the anaerobic bacterium Clostridium novyi-NT are systemically injected into animals, they germinate exclusively within the hypoxic regions of cancers. The germinated bacteria destroy adjacent tumor cells but spare a rim of well oxygenated tumor cells that subsequently expand. Surprisingly, we found that approximately 30% of mice treated with such spores were cured of their cancers despite the viable tumor rim initially remaining after spore germination. The mechanism underlying this effect was shown to be immune-mediated, because cured animals rejected a subsequent challenge of the same tumor. Similar effects were observed in rabbits with intrahepatic tumors. It was particularly notable that the induced immune response, when combined with the bacteriolytic effects of C. novyi-NT, could eradicate large established tumors.

  15. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    Science.gov (United States)

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  16. Plasticity of gamma delta T cells: impact on the anti-tumor response

    Directory of Open Access Journals (Sweden)

    Virginie eLafont

    2014-12-01

    Full Text Available The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of gamma and delta chains (gamma delta T cells are of particular interest. gamma delta T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary and prostate cancer directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating gamma delta T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that gamma delta T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating gamma deltaT cells could exert an immunosuppressive activity by negatively regulating DC maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to gamma delta T cells and promote their differentiation into gamma delta T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of gamma delta T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying gamma delta T cell expansion, differentiation and recruitment in the tumor microenvironment.

  17. Reactive oxygen species and mitogen-activated protein kinase induce apoptotic death of SH-SY5Y cells in response to fipronil.

    Science.gov (United States)

    Ki, Yeo-Woon; Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-05-20

    There are multiple lines of evidence showing that environmental toxicants including pesticides may contribute to neuronal cell death. Fipronil (FPN) is a phenylpyrazole insecticide that acts on insect GABA receptors. Although the action of FPN is restricted to insect neuronal or muscular transmitter systems, a few studies have assessed the effects of this neurotoxicant on neuronal cell death distinct from an insect. To determine the mechanisms underlying FPN-induced neuronal cell death, we evaluated the ability of this chemical to induce oxidative stress and studied the involvement of mitogen activated protein kinases (MAPKs) in FPN-induced apoptosis stress in human neuroblastoma SH-SY5Y (SH-SY5Y) cells. Exposure of SH-SY5Y cells to FPN led to the production of reactive oxygen species (ROS) and apoptotic cell death via activation of caspase-9 and caspase-3. Interestingly, the antioxidant, N-acetyl-cysteine (NAC) attenuated apoptotic cell death and ROS production induced by FPN. These results indicated that oxidative stress plays a central role in FPN-induced cytotoxicity. Mitochondrial complex I activity was also inhibited by FPN treatment. These finding indicate that FPN triggers intrinsic apoptosis via the mitochondrial signaling pathway that is initiated by the generation of ROS. Furthermore, FPN treatment induced phosphorylation of MAPK members. Activation of these protein kinases by FPN was involved in the onset of apoptosis as inhibitors specific to these kinases protect against FPN-induced cell death as well as ROS generation. Our data indicate that FPN-induced apoptosis is mediated primarily by the generation of ROS and activation of MAPK members followed by activation of the intrinsic apoptotic pathway.

  18. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  19. Physiological Imaging-Defined, Response-Driven Subvolumes of a Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Farjam, Reza [Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Tsien, Christina I.; Feng, Felix Y. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Gomez-Hassan, Diana [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Hayman, James A.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue, E-mail: yuecao@umich.edu [Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States)

    2013-04-01

    Purpose: To develop an image analysis framework to delineate the physiological imaging-defined subvolumes of a tumor in relating to treatment response and outcome. Methods and Materials: Our proposed approach delineates the subvolumes of a tumor based on its heterogeneous distributions of physiological imaging parameters. The method assigns each voxel a probabilistic membership function belonging to the physiological parameter classes defined in a sample of tumors, and then calculates the related subvolumes in each tumor. We applied our approach to regional cerebral blood volume (rCBV) and Gd-DTPA transfer constant (K{sup trans}) images of patients who had brain metastases and were treated by whole-brain radiation therapy (WBRT). A total of 45 lesions were included in the analysis. Changes in the rCBV (or K{sup trans})–defined subvolumes of the tumors from pre-RT to 2 weeks after the start of WBRT (2W) were evaluated for differentiation of responsive, stable, and progressive tumors using the Mann-Whitney U test. Performance of the newly developed metrics for predicting tumor response to WBRT was evaluated by receiver operating characteristic (ROC) curve analysis. Results: The percentage decrease in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was significantly greater in the group of responsive tumors than in the group of stable and progressive tumors (P<.007). The change in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was a predictor for post-RT response significantly better than change in the gross tumor volume observed during the same time interval (P=.012), suggesting that the physiological change occurs before the volumetric change. Also, K{sup trans} did not add significant discriminatory information for assessing response with respect to rCBV. Conclusion: The physiological imaging-defined subvolumes of the tumors delineated by our method could be candidates for boost target, for which further development and evaluation

  20. Expression of EGFR Under Tumor Hypoxia: Identification of a Subpopulation of Tumor Cells Responsible for Aggressiveness and Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoogsteen, Ilse J., E-mail: i.hoogsteen@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Marres, Henri A.M.; Hoogen, Franciscus J.A. van den [Department of Otorhinolaryngology/Head-Neck Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Rijken, Paul F.J.W.; Lok, Jasper; Bussink, Johan; Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-11-01

    Purpose: Overexpression of epidermal growth factor receptor (EGFR) and tumor hypoxia have been shown to correlate with worse outcome in several types of cancer including head-and-neck squamous cell carcinoma. Little is known about the combination and possible interactions between the two phenomena. Methods and Materials: In this study, 45 cases of histologically confirmed squamous cell carcinomas of the head and neck were analyzed. All patients received intravenous infusions of the exogenous hypoxia marker pimonidazole prior to biopsy. Presence of EGFR, pimonidazole binding, and colocalization between EGFR and tumor hypoxia were examined using immunohistochemistry. Results: Of all biopsies examined, respectively, 91% and 60% demonstrated EGFR- and pimonidazole-positive areas. A weak but significant association was found between the hypoxic fractions of pimonidazole (HFpimo) and EGFR fractions (F-EGFR) and between F-EGFR and relative vascular area. Various degrees of colocalization between hypoxia and EGFR were found, increasing with distance from the vasculature. A high fraction of EGFR was correlated with better disease-free and metastasis-free survival, whereas a high degree of colocalization correlated with poor outcome. Conclusions: Colocalization of hypoxia and EGFR was demonstrated in head-and-neck squamous cell carcinomas, predominantly at longer distances from vessels. A large amount of colocalization was associated with poor outcome, which points to a survival advantage of hypoxic cells that are also able to express EGFR. This subpopulation of tumor cells might be indicative of tumor aggressiveness and be partly responsible for treatment resistance.

  1. Apoptotic and necrotic changes in the midgut glands of the wolf spider Xerolycosa nemoralis (Lycosidae) in response to starvation and dimethoate exposure.

    Science.gov (United States)

    Wilczek, G; Rost-Roszkowska, M; Wilczek, P; Babczyńska, A; Szulińska, E; Sonakowska, L; Marek-Swędzioł, M

    2014-03-01

    In the present study, the intensity of degenerative changes (apoptosis, necrosis) in the cells of the midgut glands of male and female wolf spiders, Xerolycosa nemoralis (Lycosidae), exposed to natural (starvation) and anthropogenic (the organophosphorous pesticide dimethoate) stressors under laboratory conditions were compared. The spiders were collected from two differentially polluted sites, both located in southern Poland: Katowice-Welnowiec, which is heavily polluted with metals, and Pilica, the reference site. Starvation and dimethoate treatment resulted in enhancement of apoptotic and necrotic changes in the midgut glands of the spiders. The frequency of degenerative changes in starving individuals was twice as high as in the specimens intoxicated with dimethoate. The percentage of apoptotic and necrotic cells was higher in starving males than in starving females. A high intensity of necrotic changes, together with increased Cas-3 like activity and a greater percentage of cells with depolarized mitochondria, were typical of starving males from the polluted site. The cell death indices observed in females depended more strongly on the type of stressor than on previous preexposure to pollutants.

  2. Tyrosine Phosphorylation Modulates the Vascular Responses of Mesenteric Arteries from Human Colorectal Tumors

    Directory of Open Access Journals (Sweden)

    Eduardo Ferrero

    2013-01-01

    Full Text Available The aim of this study was to analyze whether tyrosine phosphorylation in tumoral arteries may modulate their vascular response. To do this, mesenteric arteries supplying blood flow to colorectal tumors or to normal intestine were obtained during surgery and prepared for isometric tension recording in an organ bath. Increasing tyrosine phosphorylation with the phosphatase inhibitor, sodium orthovanadate produced arterial contraction which was lower in tumoral than in control arteries, whereas it reduced the contraction to noradrenaline in tumoral but not in control arteries and reduced the relaxation to bradykinin in control but not in tumoral arteries. Protein expression of VEGF-A and of the VEGF receptor FLT1 was similar in control and tumoral arteries, but expression of the VEGF receptor KDR was increased in tumoral compared with control arteries. This suggests that tyrosine phosphorylation may produce inhibition of the contraction in tumoral mesenteric arteries, which may increase blood flow to the tumor when tyrosine phosphorylation is increased by stimulation of VEGF receptors.

  3. In vitro study of immunosuppressive effect of apoptotic cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-jin; ZHENG Shu-sen

    2005-01-01

    Recent studies revealed that apoptotic cells are actively involved in immunosuppression and anti-inflammation. After being phagocytosed by macrophages, apoptotic cells can actively regulate cytokines secretion from lipopolysaccharide (LPS)-stimulated macrophages, in which the secretion of immunosuppressive cytokines such as interleukin-10 (IL-10) is increased while the pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNFα), interleukin-1beta (IL-1β) and leukin-8 (IL-8) are suppressed. In this paper, we first present evidence that phagocytosed apoptotic cells regulate cytokine secretion of LPS-stimulated macrophages, but also inhibit the activation of T lymphocytes stimulated by ConA. These data suggest that apoptotic cells can alter the biological behavior of macrophages which gain immunosuppressive property.

  4. A kinetic model of tumor growth and its radiation response with an application to Gamma Knife stereotactic radiosurgery

    CERN Document Server

    Watanabe, Yoichi; Leder, Kevin Z; Hui, Susanta K

    2015-01-01

    We developed a mathematical model to simulate the growth of tumor volume and its response to a single fraction of high dose irradiation. We made several key assumptions of the model. Tumor volume is composed of proliferating (or dividing) cancer cells and non-dividing (or dead) cells. Tumor growth rate (or tumor volume doubling time, Td) is proportional to the ratio of the volumes of tumor vasculature and the tumor. The vascular volume grows slower than the tumor by introducing the vascular growth retardation factor, theta. Upon irradiation the proliferating cells gradually die over a fixed time period after irradiation. Dead cells are cleared away with cell clearance time, Tcl. The model was applied to simulate pre-treatment growth and post-treatment radiation response of rat rhabdomyosarcoma tumor and metastatic brain tumors of five patients who were treated by Gamma Knife stereotactic radiosurgery (GKSRS). By selecting appropriate model parameters, we showed the temporal variation of the tumors for both th...

  5. Tumor Radiation Therapy Creates Therapeutic Vaccine Responses to the Colorectal Cancer Antigen GUCY2C

    Energy Technology Data Exchange (ETDEWEB)

    Witek, Matthew [Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Blomain, Erik S.; Magee, Michael S.; Xiang, Bo; Waldman, Scott A. [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Snook, Adam E., E-mail: adam.snook@jefferson.edu [Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania (United States)

    2014-04-01

    Purpose: Radiation therapy (RT) is thought to produce clinical responses in cancer patients, not only through direct toxicity to cancer cells and supporting tumor stroma cells, but also through activation of immunologic effectors. More recently, RT has potentiated the local and systemic effects of cancer immunotherapy (IT). However, combination regimens that maximize immunologic and clinical efficacy remain undefined. Methods and Materials: We evaluated the impact of local RT on adenoviral-mediated vaccination against the colorectal cancer antigen GUCY2C (Ad5-GUCY2C) in a murine subcutaneous tumor model using mouse CT26 colon cancer cells (CT26-GUCY2C). Immune responses were assessed by ELISpot, and clinical responses were assessed by tumor size and incidence. Results: The specific sequence of tumor-directed RT preceding Ad5-GUCY2C IT transformed inactive therapeutic Ad5-GUCY2C vaccination into a curative vaccine. GUCY2C-specific T cell responses were amplified (P<.05), tumor eradication was maximized (P<.01), and tumor volumes were minimized (P<.001) in mice whose tumors were irradiated before, compared with after, Ad5-GUCY2C vaccination. The immunologic and antitumor efficacy of Ad5-GUCY2C was amplified comparably by unfractionated (8 Gy × 1), or biologically equivalent doses of fractionated (3.5 Gy × 3), RT. The antitumor effects of sequential RT and IT (RT-IT) depended on expression of GUCY2C by tumor cells and the adenoviral vaccine vector, and tumor volumes were inversely related to the magnitude of GUCY2C-specific T cell responses. Moreover, mice cured of CT26-GUCY2C tumors by RT-IT showed long-lasting antigen-dependent protection, resisting tumors formed by GUCY2C-expressing 4T1 breast cancer cells inoculated 50 days after CT26 cells. Conclusions: Optimal sequencing of RT and IT amplifies antigen-specific local and systemic immune responses, revealing novel acute and long-term therapeutic antitumor protection. These observations underscore the importance

  6. Acute Tumor Response to ZD6126 Assessed by Intrinsic Susceptibility Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Simon P. Robinson

    2005-05-01

    Full Text Available The effective magnetic resonance imaging (MRI transverse relaxation rate R2* was investigated as an early acute marker of the response of rat GH3 prolactinomas to the vascular-targeting agent, ZD6126. Multigradient echo (MGRE MRI was used to quantify R2*, which is sensitive to tissue deoxyhemoglobin levels. Tumor R2* was measured prior to, and either immediately for up to 35 minutes, or 24 hours following administration of 50 mg/kg ZD6126. Following MRI, tumor perfusion was assessed by Hoechst 33342 uptake. Tumor R2* significantly increased to 116 ± 4% of baseline 35 minutes after challenge, consistent with an ischemic insult induced by vascular collapse. A strong positive correlation between baseline R2* and the subsequent increase in R2* measured 35 minutes after treatment was obtained, suggesting that the baseline R2* is prognostic for the subsequent tumor response to ZD6126. In contrast, a significant decrease in tumor R2* was found 24 hours after administration of ZD6126. Both the 35-minute and 24-hour R2* responses to ZD6126 were associated with a decrease in Hoechst 33342 uptake. Interpretation of the R2* response is complex, yet changes in tumor R2* may provide a convenient and early MRI biomarker for detecting the antitumor activity of vascular-targeting agents.

  7. Targeting amino acid metabolism in cancer growth and anti-tumor immune response

    Institute of Scientific and Technical Information of China (English)

    Elitsa; Ananieva

    2015-01-01

    Recent advances in amino acid metabolism have revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the development of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino acid metabolic pathways in tumor cells. In the context of the tumor microenvironment,however,tumor cells form metabolic relationships with immune cells,and they oftencompete for common nutrients. Many tumors evolved to escape immune surveillance by taking advantage of their metabolic flexibility and redirecting nutrients for their own advantage. This review outlines the most recent advances in targeting amino acid metabolic pathways in cancer therapy while giving consideration to the impact these pathways may have on the anti-tumor immune response.

  8. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guangwen; Yang, Tianming [College of Pharmacy, South-Central University for Nationalities, Wuhan (China); Wang, Chaoyuan [College of Life Science, South-Central University for Nationalities, Wuhan (China); Su, Hanwen, E-mail: suhanwen-1@163.com [Renmin Hospital of Wuhan University, Wuhan (China); Xiang, Meixian, E-mail: xiangmeixian99@163.com [College of Pharmacy, South-Central University for Nationalities, Wuhan (China)

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearing mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.

  9. miRNAs modulate the drug response of tumor cells

    Institute of Scientific and Technical Information of China (English)

    WU XueMei; XIAO HuaSheng

    2009-01-01

    Chemotherapy is one of the major treatments of malignant carcinomas. However, its efficiency is af-fected by both intrinsic and acquired resistance to anticancer drugs. The cellular mechanisms of drug resistance include the overexpression of energy-dependent transporters that eject anticancer drugs from cells such as p-glycoprotein and multidrug resistance related protein (MRP), the mutation of drug targets, the activation of DNA repair pathways, the defects in cellular death pathways and so on. The genetic and epigenetic changes of these genes can lead to cancer drug resistance. Among these mechanisms, microRNAs (miRNAs) which are critical and essential for many important processes such as development, differentiation, and even carcinogenesis have been reported to regulate the chemo-sensitivity of tumor cells. In this paper we briefly review the relationship between miRNA and cancer drug resistance.

  10. miRNAs modulate the drug response of tumor cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Chemotherapy is one of the major treatments of malignant carcinomas. However,its efficiency is affected by both intrinsic and acquired resistance to anticancer drugs. The cellular mechanisms of drug resistance include the overexpression of energy-dependent transporters that eject anticancer drugs from cells such as p-glycoprotein and multidrug resistance related protein (MRP),the mutation of drug targets,the activation of DNA repair pathways,the defects in cellular death pathways and so on. The genetic and epigenetic changes of these genes can lead to cancer drug resistance. Among these mechanisms,microRNAs (miRNAs) which are critical and essential for many important processes such as development,differentiation,and even carcinogenesis have been reported to regulate the chemosen-sitivity of tumor cells. In this paper we briefly review the relationship between miRNA and cancer drug resistance.

  11. Loss of CSL Unlocks a Hypoxic Response and Enhanced Tumor Growth Potential in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eike-Benjamin Braune

    2016-05-01

    Full Text Available Notch signaling is an important regulator of stem cell differentiation. All canonical Notch signaling is transmitted through the DNA-binding protein CSL, and hyperactivated Notch signaling is associated with tumor development; thus it may be anticipated that CSL deficiency should reduce tumor growth. In contrast, we report that genetic removal of CSL in breast tumor cells caused accelerated growth of xenografted tumors. Loss of CSL unleashed a hypoxic response during normoxic conditions, manifested by stabilization of the HIF1α protein and acquisition of a polyploid giant-cell, cancer stem cell-like, phenotype. At the transcriptome level, loss of CSL upregulated more than 1,750 genes and less than 3% of those genes were part of the Notch transcriptional signature. Collectively, this suggests that CSL exerts functions beyond serving as the central node in the Notch signaling cascade and reveals a role for CSL in tumorigenesis and regulation of the cellular hypoxic response.

  12. Brain tumor vessel response to synchrotron microbeam radiation therapy: a short-term in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Serduc, Raphael; Christen, Thomas; Farion, Regine; Bouchet, Audrey; Sanden, Boudewijn van der; Segebarth, Christoph; Remy, Chantal; Barbier, Emmanuel L [INSERM, U836, F38043 Grenoble (France); Laissue, Jean [Institute of Pathology, University of Bern (Switzerland); Braeuer-Krisch, Elke; Duc, Geraldine Le; Bravin, Alberto [European Synchrotron Radiation Facility, F38043 Grenoble (France)], E-mail: serduc@esrf.fr

    2008-07-07

    The aim of this work focuses on the description of the short-term response of a 9L brain tumor model and its vasculature to microbeam radiation therapy (MRT) using magnetic resonance imaging (MRI). Rat 9L gliosarcomas implanted in nude mice brains were irradiated by MRT 13 days after tumor inoculation using two orthogonal arrays of equally spaced 28 planar microbeams (25 {mu}m width, 211 {mu}m spacing and dose 500 Gy). At 1, 7 and 14 days after MRT, apparent diffusion coefficient, blood volume and vessel size index were mapped by MRI. Mean survival time after tumor inoculation increased significantly between MRT-treated and untreated groups (23 and 28 days respectively, log-rank test, p < 0.0001). A significant increase of apparent diffusion coefficient was observed 24 h after MRT in irradiated tumors versus non-irradiated ones. In the untreated group, both tumor size and vessel size index increased significantly (from 7.6 {+-} 2.2 to 19.2 {+-} 4.0 mm{sup 2} and +23%, respectively) between the 14th and the 21st day after tumor cell inoculation. During the same period, in the MRT-treated group, no difference in tumor size was observed. The vessel size index measured in the MRT-treated group increased significantly (+26%) between 14 and 28 days of tumor growth. We did not observe the significant difference in blood volume between the MRT-treated and untreated groups. MRT slows 9L tumor growth in a mouse brain but MRI results suggest that the increase in survival time after our MRT approach may be rather due to a cytoreduction than to early direct effects of ionizing radiation on tumor vessels. These results suggest that MRT parameters need to be optimized to further damage tumor vessels.

  13. A Fast Hydrogen Sulfide-Releasing Donor Increases the Tumor Response to Radiotherapy.

    Science.gov (United States)

    De Preter, Géraldine; Deriemaeker, Caroline; Danhier, Pierre; Brisson, Lucie; Cao Pham, Thanh Trang; Grégoire, Vincent; Jordan, Bénédicte F; Sonveaux, Pierre; Gallez, Bernard

    2016-01-01

    Hydrogen sulfide (H2S) is the last gaseous transmitter identified in mammals, and previous studies have reported disparate conclusions regarding the implication of H2S in cancer progression. In the present study, we hypothesized that sodium hydrosulfide (NaHS), a fast H2S-releasing donor, might interfere with the mitochondrial respiratory chain of tumor cells, increase tumor oxygenation, and potentiate the response to irradiation. Using electron paramagnetic resonance (EPR) oximetry, we found a rapid increase in tumor pO2 after NaHS administration (0.1 mmol/kg) in two human tumor models (breast MDA-MB-231 and cervix SiHa), an effect that was due to a decreased oxygen consumption and an increased tumor perfusion. Tumors irradiated 15 minutes after a single NaHS administration were more sensitive to irradiation compared with those that received irradiation alone (increase in growth delay by 50%). This radiosensitization was due to the oxygen effect, as the increased growth delay was abolished when temporarily clamped tumors were irradiated. In contrast, daily NaHS injection (0.1 mmol/kg/day for 14 days) did not provide any effect on tumor growth in vivo. To understand these paradoxical data, we analyzed the impact of external factors on the cellular response to NaHS. We found that extracellular pH had a dramatic effect on the cell response to NaHS, as the proliferation rate (measured in vitro by BrdU incorporation) was increased at pH = 7.4, but decreased at pH = 6.5. Overall, our study highlights the complex role of environmental components in the response of cancer cells to H2S and suggests a new approach for the use of H2S donors in combination with radiotherapy.

  14. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  15. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways.

    Science.gov (United States)

    DelNero, Peter; Lane, Maureen; Verbridge, Scott S; Kwee, Brian; Kermani, Pouneh; Hempstead, Barbara; Stroock, Abraham; Fischbach, Claudia

    2015-07-01

    Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation.

  16. Apoptotic death sensor: an organelle's alter ego?

    Science.gov (United States)

    Bratton, S B; Cohen, G M

    2001-06-01

    Caspases are intracellular cysteine proteases that are primarily responsible for the stereotypic morphological and biochemical changes that are associated with apoptosis. Caspases are often activated by the apoptotic protease-activating factor 1 (APAF-1) apoptosome, a complex that is formed following mitochondrial release of cytochrome c in response to many death-inducing stimuli. Both pro- and anti-apoptotic BCL-2 family members regulate apoptosis, primarily by their effects on mitochondria, whereas many inhibitor of apoptosis proteins (IAPs) regulate apoptosis by directly inhibiting distinct caspases. Exposure of cells to chemicals and radiation, as well as loss of trophic stimuli, perturb cellular homeostasis and, depending on the type of cellular stress, particular or multiple organelles appear to 'sense' the damage and signal the cell to undergo apoptosis by stimulating the formation of unique and/or common caspase-activating complexes.

  17. Automated detection of breast tumor in MRI and comparison of kinetic features for assessing tumor response to chemotherapy

    Science.gov (United States)

    Aghaei, Faranak; Tan, Maxine; Zheng, Bin

    2015-03-01

    Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) is used increasingly in diagnosis of breast cancer and assessment of treatment efficacy in current clinical practice. The purpose of this preliminary study is to develop and test a new quantitative kinetic image feature analysis method and biomarker to predict response of breast cancer patients to neoadjuvant chemotherapy using breast MR images acquired before the chemotherapy. For this purpose, we developed a computer-aided detection scheme to automatically segment breast areas and tumors depicting on the sequentially scanned breast MR images. From a contrast-enhancement map generated by subtraction of two image sets scanned pre- and post-injection of contrast agent, our scheme computed 38 morphological and kinetic image features from both tumor and background parenchymal regions. We applied a number of statistical data analysis methods to identify effective image features in predicting response of the patients to the chemotherapy. Based on the performance assessment of individual features and their correlations, we applied a fusion method to generate a final image biomarker. A breast MR image dataset involving 68 patients was used in this study. Among them, 25 had complete response and 43 had partially response to the chemotherapy based on the RECIST guideline. Using this image feature fusion based biomarker, the area under a receiver operating characteristic curve is AUC = 0.850±0.047. This study demonstrated that a biomarker developed from the fusion of kinetic image features computed from breast MR images acquired pre-chemotherapy has potentially higher discriminatory power in predicting response of the patients to the chemotherapy.

  18. Immunologic Monitoring of Cellular Responses by Dendritic/Tumor Cell Fusion Vaccines

    Directory of Open Access Journals (Sweden)

    Shigeo Koido

    2011-01-01

    Full Text Available Although dendritic cell (DC- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell.

  19. Semiautomated volumetric response evaluation as an imaging biomarker in superior sulcus tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vos, C.G.; Paul, M.A. [VU University Medical Center, Departments of Surgery, Amsterdam (Netherlands); Dahele, M.; Soernsen de Koste, J.R. van; Senan, S. [VU University Medical Center, Departments of Radiation Oncology, Amsterdam (Netherlands); Bahce, I.; Smit, E.F. [VU University Medical Center, Departments of Pulmonary Diseases, Amsterdam (Netherlands); Thunnissen, E. [VU University Medical Center, Departments of Pathology, Amsterdam (Netherlands); Hartemink, K.J. [VU University Medical Center, Departments of Surgery, Amsterdam (Netherlands); Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL), Department of Surgery, Amsterdam (Netherlands)

    2014-02-15

    Volumetric response to therapy has been suggested as a biomarker for patient-centered outcomes. The primary aim of this pilot study was to investigate whether the volumetric response to induction chemoradiotherapy was associated with pathological complete response (pCR) or survival in patients with superior sulcus tumors managed with trimodality therapy. The secondary aim was to evaluate a semiautomated method for serial volume assessment. In this retrospective study, treatment outcomes were obtained from a departmental database. The tumor was delineated on the computed tomography (CT) scan used for radiotherapy planning, which was typically performed during the first cycle of chemotherapy. These contours were transferred to the post-chemoradiotherapy diagnostic CT scan using deformable image registration (DIR) with/without manual editing. CT scans from 30 eligible patients were analyzed. Median follow-up was 51 months. Neither absolute nor relative reduction in tumor volume following chemoradiotherapy correlated with pCR or 2-year survival. The tumor volumes determined by DIR alone and DIR + manual editing correlated to a high degree (R{sup 2} = 0.99, P < 0.01). Volumetric response to induction chemoradiotherapy was not correlated with pCR or survival in patients with superior sulcus tumors managed with trimodality therapy. DIR-based contour propagation merits further evaluation as a tool for serial volumetric assessment. (orig.)

  20. Strong spontaneous tumor neoantigen responses induced by a natural human carcinogen

    Science.gov (United States)

    Creaney, Jenette; Ma, Shaokang; Sneddon, Sophie A; Tourigny, Michelle R; Dick, Ian M; Leon, Justine S; Khong, Andrea; Fisher, Scott A; Lake, Richard A; Lesterhuis, W Joost; Nowak, Anna K; Leary, Shay; Watson, Mark W; Robinson, Bruce W

    2015-01-01

    A key to improving cancer immunotherapy will be the identification of tumor-specific “neoantigens” that arise from mutations and augment the resultant host immune response. In this study we identified single nucleotide variants (SNVs) by RNA sequencing of asbestos-induced murine mesothelioma cell lines AB1 and AB1-HA. Using the NetMHCpan 2.8 algorithm, the theoretical binding affinity of predicted peptides arising from high-confidence, exonic, non-synonymous SNVs was determined for the BALB/c strain. The immunoreactivity to 20 candidate mutation-carrying peptides of increased affinity and the corresponding wild-type peptides was determined using interferon-γ ELISPOT assays and lymphoid organs of non-manipulated tumor-bearing mice. A strong endogenous immune response was demonstrated to one of the candidate neoantigens, Uqcrc2; this response was detected in the draining lymph node and spleen. Antigen reactive cells were not detected in non-tumor bearing mice. The magnitude of the response to the Uqcrc2 neoantigen was similar to that of the strong influenza hemagglutinin antigen, a model tumor neoantigen. This work confirms that the approach of RNAseq plus peptide prediction and ELISPOT testing is sufficient to identify natural tumor neoantigens. PMID:26140232

  1. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.

    Directory of Open Access Journals (Sweden)

    Howard Y Chang

    2004-02-01

    Full Text Available Cancer invasion and metastasis have been likened to wound healing gone awry. Despite parallels in cellular behavior between cancer progression and wound healing, the molecular relationships between these two processes and their prognostic implications are unclear. In this study, based on gene expression profiles of fibroblasts from ten anatomic sites, we identify a stereotyped gene expression program in response to serum exposure that appears to reflect the multifaceted role of fibroblasts in wound healing. The genes comprising this fibroblast common serum response are coordinately regulated in many human tumors, allowing us to identify tumors with gene expression signatures suggestive of active wounds. Genes induced in the fibroblast serum-response program are expressed in tumors by the tumor cells themselves, by tumor-associated fibroblasts, or both. The molecular features that define this wound-like phenotype are evident at an early clinical stage, persist during treatment, and predict increased risk of metastasis and death in breast, lung, and gastric carcinomas. Thus, the transcriptional signature of the response of fibroblasts to serum provides a possible link between cancer progression and wound healing, as well as a powerful predictor of the clinical course in several common carcinomas.

  2. Local tumor irradiation augments the response to IL-2 therapy in a murine renal adenocarcinoma.

    Science.gov (United States)

    Younes, E; Haas, G P; Dezso, B; Ali, E; Maughan, R L; Kukuruga, M A; Montecillo, E; Pontes, J E; Hillman, G G

    1995-10-15

    We have previously demonstrated that local tumor irradiation effectively enhanced the therapeutic effect of IL-2 therapy on pulmonary metastases from a murine renal adenocarcinoma, Renca. Irradiation with 300 rad to the left lung only, followed by systemic IL-2 therapy, results in increased tumor reduction in both lungs, suggesting that radiation enhances the systemic effect of immunotherapy. In this study, we show that irradiation of the tumor-bearing organ is essential for the combined effect of both modalities. This effect is radiation dose-dependent as increases in the radiation dosage result in greater tumor reduction in the irradiated field as well as systemically in nonirradiated fields when combined with immunotherapy. We find that irradiation has a direct inhibitory effect on Renca cell growth in vitro. Irradiation of Renca cells also causes an upregulation in H-2Kd class I MHC antigen detectable at 300 rad and more pronounced with 800 rad. By in vivo selective depletion of lymphocyte subsets, we demonstrate the involvement of Lyt-2+ and L3T4+ T cell subsets and AsGM1+ cells, including NK cells, in the antitumor effect mediated by tumor irradiation and IL-2 therapy. Immunohistochemistry studies, performed on lung sections, showed a significant infiltration of CD3+ T cells and macrophages in the tumor nodules following treatment with tumor irradiation and IL-2 therapy. Our studies indicate that the mechanism of interaction between tumor irradiation and immunotherapy may include radiation-induced alterations in the tumor growth and antigenicity which may enhance or trigger an anti-tumor response elicited by IL-2 and mediated by T cells, AsGM1+ cells, and macrophages.

  3. Patterns of tumor response in canine and feline cancer patients treated with electrochemotherapy: preclinical data for the standardization of this treatment in pets and humans

    OpenAIRE

    2007-01-01

    Abstract Electrochemotherapy (ECT) is a novel anticancer therapy that is currently being evaluated in human and pet cancer patients. ECT associates the administration of an anti-tumor agent to the delivery of trains of appropriate waveforms. The increased uptake of chemotherapy leads to apoptotic death of the neoplasm thus resulting in prolonged local control and extended survival. In this paper we describe the histological features of a broad array of spontaneous tumors of companion animals ...

  4. Measurement of response of pulmonal tumors in 64-slice MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Sohns, Christian; Sossalla, Samuel (Dept. of Cardiology and Pneumology/Heart Center, Georg-August-Univ., Goettingen (Germany)), e-mail: christian.sohns@gmx.de; Mangelsdorf, Johanna; Obenauer, Silvia (Dept. of Radiology, Georg-August-Univ., Goettingen (Germany)); Konietschke, Frank (Dept. of Medical Statistics, Georg-August-Univ., Goettingen (Germany))

    2010-06-15

    Background: Advances in CT technology from single to multi-detector row CT (MDCT) permit a high resolution and volumetric presentation of pulmonary lesions. This implicates emerging measurement techniques that need to be contrasted with established methods. Purpose: To compare bidimensional, unidimensional, and volumetric methods for evaluation of treatment response in patients with lung lesions. Material and Methods: This study comprised 68 patients with pulmonary lesions who underwent a total of 276 64-MDCTs of chest at baseline and follow-up. RECIST and WHO criteria were used for unidimensional and bidimensional methods and region growing (RG) for volumetry. Patients were classified into four response categories. Respectively, two measurement techniques were contrasted and the kappa index was calculated. For intra-observer reproducibility the relative measurement error (RME) and kappa index with regard to agreement of response categories were evaluated. Results: Comparison of WHO und RECIST criteria achieves high correlation with kappa indices of 0.76 and 0.82. In particular, lesions with moderate increase of size in the range of 25-44% for bidimensional and 12-29% for unidimensional measurement result in different response categories when applying WHO and RECIST criteria. WHO criteria delivered PD more often than RECIST. kappa indices of 0.79 and 0.87 were attained in comparison of RECIST and RG, and 0.83 and 0.84 for WHO and RG. RME was 2.82% for RECIST, 7.53% for WHO, and 8.97% for RG. Intra-observer reproducibility was 95% for RECIST, 95% for WHO, and 96% for RG. Conclusion: The comparison of all methods resulted in no statistically significant differences. WHO criteria seemed to diverge the most, they declared several lesions prematurely as progression, and showed no benefit in comparison to RECIST. RG showed the best reproducibility, considered irregular lesions, was slightly superior to RECIST, and could be applied uniformly. Unidimensional measurement

  5. C-Reactive Protein Is an Important Biomarker for Prognosis Tumor Recurrence and Treatment Response in Adult Solid Tumors: A Systematic Review.

    LENUS (Irish Health Repository)

    Shrotriya, Shiva

    2015-01-01

    A systematic literature review was done to determine the relationship between elevated CRP and prognosis in people with solid tumors. C-reactive protein (CRP) is a serum acute phase reactant and a well-established inflammatory marker. We also examined the role of CRP to predict treatment response and tumor recurrence.

  6. "The Lower Threshold" phenomenon in tumor cells toward endogenous digitalis-like compounds: Responsible for tumorigenesis?

    Directory of Open Access Journals (Sweden)

    Heidrun Weidemann

    2012-01-01

    Full Text Available Since their first discovery as potential anti-cancer drugs decades ago, there is increasing evidence that digitalis-like compounds (DLC have anti-tumor effects. Less is known about endogenous DLC (EDLC metabolism and regulation. As stress hormones synthesized in and secreted from the adrenal gland, they likely take part in the hypothalamo-pituitary-adrenal (HPA axis. In a previous study, we revealed reduced EDLC concentrations in plasma and organs from immune-compromised animals and proposed that a similar situation of a deregulated HPA axis with "adrenal EDLF exhaustion" may contribute to tumorigenesis in chronic stress situations. Here, we put forward the hypothesis that a lowered EDLC response threshold of tumor cells as compared with normal cells increases the risk of tumorigenesis, especially in those individuals with reduced EDLC plasma concentrations after chronic stress exposure. We will evaluate this hypothesis by (a summarizing the effects of different DLC concentrations on tumor as compared with normal cells and (b reviewing some essential differences in the Na/K-ATPase of tumor as compared with normal cells (isoform pattern, pump activity, mutations of other signalosome receptors. We will conclude that (1 tumor cells, indeed, seem to have their individual "physiologic" EDLC response range that already starts at pmolar levels and (2 that individuals with markedly reduced (pmolar EDLC plasma levels are predisposed to cancer because these EDLC concentrations will predominantly stimulate the proliferation of tumor cells. Finally, we will summarize preliminary results from our department supporting this hypothesis.

  7. Role of Gene Methylation in Antitumor Immune Response: Implication for Tumor Progression

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Alfonso; Castro-Vega, Isabel [Department of Immunology, Hospital Clinico Universitario, Campus Universitario Teatinos S/N, 29010 Malaga (Spain); Redondo, Maximino, E-mail: mredondo@hcs.es [Department of Biochemistry, CIBER ESP, Hospital Costa del Sol, Marbella, Málaga, Carretera de Cadiz km 187, 29603 (Spain)

    2011-03-29

    Cancer immunosurveillance theory has emphasized the role of escape mechanisms in tumor growth. In this respect, a very important factor is the molecular characterization of the mechanisms by which tumor cells evade immune recognition and destruction. Among the many escape mechanisms identified, alterations in classical and non-classical HLA (Human Leucocyte Antigens) class I and class II expression by tumor cells are of particular interest. In addition to the importance of HLA molecules, tumor-associated antigens and accessory/co-stimulatory molecules are also involved in immune recognition. The loss of HLA class I antigen expression and of co-stimulatory molecules can occur at genetic, transcriptional and post-transcriptional levels. Epigenetic defects are involved in at least some mechanisms that preclude mounting a successful host-antitumor response involving the HLA system, tumor-associated antigens, and accessory/co-stimulatory molecules. This review summarizes our current understanding of the role of methylation in the regulation of molecules involved in the tumor immune response.

  8. Induction of Cell Cycle Arrest and Apoptotic Response of Head and Neck Squamous Carcinoma Cells (Detroit 562) by Caffeic Acid and Caffeic Acid Phenethyl Ester Derivative

    Science.gov (United States)

    Tanasiewicz, Marta

    2017-01-01

    Natural polyphenols have been observed to possess antiproliferative properties. The effects, including apoptotic potential of bioactive phenolic compounds, caffeic acid (CA) and its derivative caffeic acid phenethyl ester (CAPE), on cell proliferation and apoptosis in human head and neck squamous carcinoma cells (HNSCC) line (Detroit 562) were investigated and compared. Cancer cells apoptosis rates and cell cycle arrests were analysed by flow cytometry. Exposure to CA and CAPE was found to result in a dose-dependent decrease in the viability of Detroit 562 cells at different levels. CA/CAPE treatment did significantly affect the viability of Detroit 562 cells (MTT results). CAPE-mediated loss of viability occurred at lower doses and was more pronounced, with the concentrations which inhibit the growth of cells by 50% estimated at 201.43 μM (CA) and 83.25 μM (CAPE). Dead Cell Assay with Annexin V labelling demonstrated that CA and CAPE treatment of Detroit 562 cells resulted in an induction of apoptosis at 50 μM and 100 μM doses. The rise of mainly late apoptosis was observed for 100 μM dose and CA/CAPE treatment did affect the distribution of cells in G0/G1 phase. A combination of different phenolic compounds, potentially with chemotherapeutics, could be considered as an anticancer drug. PMID:28167973

  9. Cytosolic pro-apoptotic SPIKE induces mitochondrial apoptosis in cancer.

    Science.gov (United States)

    Nikolic, Ivana; Kastratovic, Tatjana; Zelen, Ivanka; Zivanovic, Aleksandar; Arsenijevic, Slobodan; Mitrovic, Marina

    2010-04-30

    Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic "BH3-only" BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast. In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase's downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.

  10. In vivo optical imaging of tumor and microvascular response to ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Azusa Maeda

    Full Text Available Radiotherapy is a widely used cancer treatment. However, understanding how ionizing radiation affects tumor cells and their vasculature, particularly at cellular, subcellular, genetic, and protein levels, has been limited by an inability to visualize the response of these interdependent components within solid tumors over time and in vivo. Here we describe a new preclinical experimental platform combining intravital multimodal optical microscopy for cellular-level longitudinal imaging, a small animal x-ray microirradiator for reproducible spatially-localized millimeter-scale irradiations, and laser-capture microdissection of ex vivo tissues for transcriptomic profiling. Using this platform, we have developed new methods that exploit the power of optically-enabled microscopic imaging techniques to reveal the important role of the tumor microvasculature in radiation response of tumors. Furthermore, we demonstrate the potential of this preclinical platform to study quantitatively--with cellular and sub-cellular details--the spatio-temporal dynamics of the biological response of solid tumors to ionizing radiation in vivo.

  11. In vivo optical imaging of tumor and microvascular response to ionizing radiation.

    Science.gov (United States)

    Maeda, Azusa; Leung, Michael K K; Conroy, Leigh; Chen, Yonghong; Bu, Jiachuan; Lindsay, Patricia E; Mintzberg, Shani; Virtanen, Carl; Tsao, Julissa; Winegarden, Neil A; Wang, Yanchun; Morikawa, Lily; Vitkin, I Alex; Jaffray, David A; Hill, Richard P; DaCosta, Ralph S

    2012-01-01

    Radiotherapy is a widely used cancer treatment. However, understanding how ionizing radiation affects tumor cells and their vasculature, particularly at cellular, subcellular, genetic, and protein levels, has been limited by an inability to visualize the response of these interdependent components within solid tumors over time and in vivo. Here we describe a new preclinical experimental platform combining intravital multimodal optical microscopy for cellular-level longitudinal imaging, a small animal x-ray microirradiator for reproducible spatially-localized millimeter-scale irradiations, and laser-capture microdissection of ex vivo tissues for transcriptomic profiling. Using this platform, we have developed new methods that exploit the power of optically-enabled microscopic imaging techniques to reveal the important role of the tumor microvasculature in radiation response of tumors. Furthermore, we demonstrate the potential of this preclinical platform to study quantitatively--with cellular and sub-cellular details--the spatio-temporal dynamics of the biological response of solid tumors to ionizing radiation in vivo.

  12. 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors.

    NARCIS (Netherlands)

    Troost, E.G.C.; Bussink, J.; Hoffmann, A.L.; Boerman, O.C.; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2010-01-01

    Accelerated tumor cell proliferation is an important mechanism adversely affecting therapeutic outcome in head and neck cancer. 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a PET tracer to noninvasively image tumor cell proliferation. The aims of this study were to monitor early tumor response b

  13. Monitoring early tumor response to drug therapy with diffuse optical tomography

    Science.gov (United States)

    Flexman, Molly L.; Vlachos, Fotios; Kim, Hyun Keol; Sirsi, Shashank R.; Huang, Jianzhong; Hernandez, Sonia L.; Johung, Tessa B.; Gander, Jeffrey W.; Reichstein, Ari R.; Lampl, Brooke S.; Wang, Antai; Borden, Mark A.; Yamashiro, Darrell J.; Kandel, Jessica J.; Hielscher, Andreas H.

    2012-01-01

    Although anti-angiogenic agents have shown promise as cancer therapeutics, their efficacy varies between tumor types and individual patients. Providing patient-specific metrics through rapid noninvasive imaging can help tailor drug treatment by optimizing dosages, timing of drug cycles, and duration of therapy--thereby reducing toxicity and cost and improving patient outcome. Diffuse optical tomography (DOT) is a noninvasive three-dimensional imaging modality that has been shown to capture physiologic changes in tumors through visualization of oxygenated, deoxygenated, and total hemoglobin concentrations, using non-ionizing radiation with near-infrared light. We employed a small animal model to ascertain if tumor response to bevacizumab (BV), an anti-angiogenic agent that targets vascular endothelial growth factor (VEGF), could be detected at early time points using DOT. We detected a significant decrease in total hemoglobin levels as soon as one day after BV treatment in responder xenograft tumors (SK-NEP-1), but not in SK-NEP-1 control tumors or in non-responder control or BV-treated NGP tumors. These results are confirmed by magnetic resonance imaging T2 relaxometry and lectin perfusion studies. Noninvasive DOT imaging may allow for earlier and more effective control of anti-angiogenic therapy.

  14. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2016-11-01

    Full Text Available The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells’ growth and expansion can influence neighboring cells’ behavior, leading to a modulation of mesenchymal stromal cell (MSC activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT, a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.

  15. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    OpenAIRE

    2007-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune...

  16. Visualization of tumor vascular reactivity in response to respiratory challenges by optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Kim, Hoon Sup; Lee, Songhyun; Lee, Kiri; Eom, Tae Joong; Kim, Jae G.

    2016-02-01

    We previously reported the potential of using vascular reactivity during respiratory challenges as a marker to predict the response of breast tumor to chemotherapy in a rat model by using a continuous wave near-infrared spectroscopy. However, it cannot visualize how the vascular reactivity from tumor vessel can predict the tumor response to its treatment. In this study, we utilized a spectral domain optical coherence tomography (SD-OCT) system to visualize vascular reactivity of both tumor and normal vasculature during respiratory challenges in a mouse model. We adapted intensity based Doppler variance algorithm to draw angiogram from the ear of mouse (8-week-old Balb/c nu/nu). Animals were anesthetized using 1.5% isoflurane, and the body temperature was maintained by a heating pad. Inhalational gas was switched from air (10min) to 100% oxygen (10min), and a pulse oximeter was used to monitor arterial oxygen saturation and heart rate. OCT angiograms were acquired 5 min after the onset of each gas. The vasoconstriction effect of hyperoxic gas on vasculature was shown by subtracting an en-face image acquired during 100% oxygen from the image acquired during air inhalation. The quantitative change in the vessel diameter was measured from the en-face OCT images of the individual blood vessels. The percentage of blood vessel diameter reduction varied from 1% to 12% depending on arterial, capillary, or venous blood vessel. The vascular reactivity change during breast tumor progression and post chemotherapy will be monitored by OCT angiography.

  17. Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo

    Science.gov (United States)

    Liu, Junjie; Zhang, Beilu; Luo, Zhong; Ding, Xingwei; Li, Jinghua; Dai, Liangliang; Zhou, Jun; Zhao, Xiaojing; Ye, Jingya; Cai, Kaiyong

    2015-02-01

    This study reports a biocompatible controlled drug release system based on mesoporous silica nanoparticles (MSNs) for tumor microenvironment responsive drug delivery. It was fabricated by grafting phenylboronic acid conjugated human serum albumin (PBA-HSA) onto the surfaces of MSNs as a sealing agent, via an intermediate linker of a functional polypeptide, which was composed of two functional units: the polycation cell penetrating peptide (CPP) polyarginine, and matrix metalloproteinase 2 (MMP-2) substrate peptide. A series of characterizations confirmed that the system had been successfully constructed. In vitro tests proved that the anticancer drug loading system could efficiently induce cell apoptosis in vitro. More importantly, the in vivo tumor experiments confirmed that the anticancer loading system could efficiently inhibit tumor growth with minimal side effects.This study reports a biocompatible controlled drug release system based on mesoporous silica nanoparticles (MSNs) for tumor microenvironment responsive drug delivery. It was fabricated by grafting phenylboronic acid conjugated human serum albumin (PBA-HSA) onto the surfaces of MSNs as a sealing agent, via an intermediate linker of a functional polypeptide, which was composed of two functional units: the polycation cell penetrating peptide (CPP) polyarginine, and matrix metalloproteinase 2 (MMP-2) substrate peptide. A series of characterizations confirmed that the system had been successfully constructed. In vitro tests proved that the anticancer drug loading system could efficiently induce cell apoptosis in vitro. More importantly, the in vivo tumor experiments confirmed that the anticancer loading system could efficiently inhibit tumor growth with minimal side effects. Electronic supplementary information (ESI) available: FTIR spectra, TGA curves, BET and BJH parameters, zeta potentials of nanoparticles; cleavage assay of the peptide detected by HPLC and MS; dose-dependent cytotoxicity of MSNs

  18. Apoptotic cell death and its relationship to gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Ferda Bir; Nese Calli-Demirkan; A Cevik Tufan; Metin Akbulut; N Lale Satiroglu-Tufan

    2007-01-01

    AIM: To investigate the apoptotic process of cells within the intestinal metaplasia areas co-localizing with chronic gastritis and gastric carcinomas and to analyze the involvement of proteins regulating apoptosis in the process of intestinal metaplasia related gastric carcinogenesis.METHODS: Forty-two gastric carcinoma and seventeen chronic gastritis cases were included in this study. All cases were examined for the existence of intestinal metaplasia. Ten cases randomly selected from each group were processed for TUNEL assay. TUNEL positive cells within the intestinal metaplasia areas, colocalizing either to gastric carcinoma or chronic gastritis,were counted and converted to apoptotic indices.In addition, p53, bcl-2 and bax expression patterns within these tissues were analyzed on the basis of immunohistochemistry.RESULTS: Twenty-eight of the cases were intestinal and 14 of the cases were diffuse type adenocarcinomas.64% (27/42) of the gastric carcinoma cases had intestinal metaplasia. Intestinal metaplasia co-localized more with intestinal type carcinomas compared with diffuse type carcinomas [75% (21/28) vs 42% (6/14),respectively; P≤0.05]. The mean apoptotic index in tumor cells was 0.70±0.08. The mean apoptotic index in intestinal metaplasias co-localizing to tumors was significantly higher than that of intestinal metaplasias co-localizing to chronic gastritis (0.70±0.03 vs 0.09±0.01, respectively; P≤0.05). P53 positivity was not observed in areas of intestinal metaplasia adjacent to tumors or chronic gastritis. Intestinal metaplasia areas adjacent to tumors showed lower cytoplasmic bcl-2 positivity compared to intestinal metaplasia areas adjacent to chronic gastritis [55.5% (15/27) vs 70.5%(12/17), respectively]. On the other hand, intestinal metaplasia areas adjacent to tumors showed significantly higher cytoplasmic bax positivity compared to intestinal metaplasia areas adjacent to chronic gastritis [44.4%(12/27) vs 11.7% (2/17), respectively; P≤0

  19. Unidimensional measurement may be superior to assess primary tumor response after neoadjuvant chemotherapy for nasopharyngeal carcinoma.

    Science.gov (United States)

    Chen, Chuanben; Lin, Xiurong; Xu, Yuanji; Bai, Penggang; Xiao, Youping; Pan, Yuhui; Li, Chao; Lin, Zhizhong; Zhang, Mingwei; Chen, Yunbin

    2017-02-01

    Application of current response evaluation criteria in solid tumors (RECIST 1.1) for assessment of irregularly shaped nasopharyngeal carcinoma (NPC) is a gray area with much ambiguity. Our aim was to compare unidimensional measurements (UDM) and bidimensional measurements (BDM) on magnetic resonance images in alternative planes for measurement of tumor response after neoadjuvant chemotherapy (NACT) in patients with locally advanced NPC. 59 patients with untreated non-metastatic NPC were prospectively enrolled. The size or change in size of the primary tumor and retropharyngeal nodes was assessed by UDM and BDM on axial and coronal planes before and after 2 cycles of NACT. Tumor volume was considered as the reference standard. Correlation between volume and diameter was analyzed using a general linear model. The degree of agreement and discordance of response classification based on different measures were evaluated with κ statistic and McNemar's test, respectively. Both axial UDM (RECIST 1.1) and axial BDM (WHO) showed a significant association with volumetric standard. However, the agreement of axial UDM with VM was better than that of axial BDM (κ value: 0.514 to 0.372). In addition, when increasing coronal planes to evaluate tumor response with UDM and BDM, an inferior agreement between coronal BDM and VM was still observed. Notably, coronal UDM showed the best consistency with volume (κ = 0.585). Hence, axial UDM showed better correlation with volumetric measurements than axial BDM. Since coronal UDM showed high correlation to VM, we suggest further research to assess its use for response assessment of NPC after NACT.

  20. Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Koritzinsky, Marianne, E-mail: mkoritzi@uhnresearch.ca

    2015-10-01

    Over the last decade, evidence has emerged to support a role for the antidiabetic drug metformin in the prevention and treatment of cancer. In particular, recent studies demonstrate that metformin enhances tumor response to radiation in experimental models, and retrospective analyses have shown that diabetic cancer patients treated with radiation therapy have improved outcomes if they take metformin to control their diabetes. Metformin may therefore be of utility for nondiabetic cancer patients treated with radiation therapy. The purpose of this review is to examine the data pertaining to an interaction between metformin and radiation, highlighting the essential steps needed to advance our current knowledge. There is also a focus on key biomarkers that should accompany prospective clinical trials in which metformin is being examined as a modifying agent with radiation therapy. Existing evidence supports that the mechanism underlying the ability of metformin to enhance radiation response is multifaceted, and includes direct radiosensitization as well as a reduction in tumor stem cell fraction, proliferation, and tumor hypoxia. Interestingly, metformin may enhance radiation response specifically in certain genetic backgrounds, such as in cells with loss of the tumor suppressors p53 and LKB1, giving rise to a therapeutic ratio and potential predictive biomarkers.

  1. Intra-procedural Transcatheter Intraarterial Perfusion MRI as a Predictor of Tumor Response to Chemoembolization for Hepatocellular Carcinoma

    Science.gov (United States)

    Wang, Dingxin; Gaba, Ron C.; Jin, Brian; Riaz, Ahsun; Lewandowski, Robert J.; Ryu, Robert K.; Sato, Kent T.; Ragin, Ann B.; Kulik, Laura M.; Mulcahy, Mary F.; Salem, Riad; Larson, Andrew C.; Omary, Reed A.

    2011-01-01

    Rationale and Objectives To prospectively test the hypothesis that transcatheter intraarterial perfusion magnetic resonance imaging (TRIP-MRI) measured semi-quantitative perfusion reductions during transcatheter arterial chemoembolization of hepatocellular carcinoma (HCC) are associated with tumor response. Materials and Methods Twenty eight patients (mean age 63 years; range 47–87 years) with 29 tumors underwent chemoembolization in a combined MR-interventional radiology suite. Intra-procedural tumor perfusion reductions during chemoembolization were monitored using TRIP-MRI. Pre- and post-–chemoembolization semi-quantitative area under the time-signal enhancement curve (AUC) tumor perfusion was measured. Mean tumor perfusion pre- and post-chemoembolization were compared using a paired t-test. Imaging follow-up was performed one to three months after chemoembolization. We studied the relationship between short-term tumor imaging response and intra-procedural perfusion reductions using univariate and multivariate analysis. Results Intra-procedural AUC perfusion value decreased significantly after chemoembolization (342.1 versus 158.6 arbitrary unit, P < 0.001). Twenty six patients with 27 HCCs (n = 27) had follow-up imaging at mean 39 days post-chemoembolization. Favorable response was present in 67% of these treated tumors according to necrosis criteria. 15 of 16 (94%) tumors with 25–75% perfusion reductions showed necrosis treatment response compared to only 3 of 11 (27%) tumors with perfusion reductions outside the above range (P = 0.001). Multivariate logistic regression indicated that intra-procedural tumor perfusion reduction and Child-Pugh class were independent factors associated significantly with tumor response (P = 0.012 and 0.047, respectively). Conclusion TRIP-MRI can successfully measure semi-quantitative changes in HCC perfusion during chemoembolization. Intra-procedural tumor perfusion reductions are associated with future tumor response. PMID

  2. Targeting the tumor-draining area : local immunotherapy and its effect on the systemic T cell response

    NARCIS (Netherlands)

    Herbert-Fransen, Marieke Fernande

    2012-01-01

    This dissertation deals with the role of local immune stimulation in the lymph node and tumor microenvironment and its effect on systemic CD8+ T cell responses, in particular the anti-tumor CD8+ T cell responses. In chapter 2 the use of a slow-release system is described to deliver the immune-acti

  3. Optical properties of tumor tissues grown on the chorioallantoic membrane of chicken eggs: tumor model to assay of tumor response to photodynamic therapy

    Science.gov (United States)

    Honda, Norihiro; Kariyama, Yoichiro; Hazama, Hisanao; Ishii, Takuya; Kitajima, Yuya; Inoue, Katsushi; Ishizuka, Masahiro; Tanaka, Tohru; Awazu, Kunio

    2015-12-01

    Herein, the optical adequacy of a tumor model prepared with tumor cells grown on the chorioallantoic membrane (CAM) of a chicken egg is evaluated as an alternative to the mouse tumor model to assess the optimal irradiation conditions in photodynamic therapy (PDT). The optical properties of CAM and mouse tumor tissues were measured with a double integrating sphere and the inverse Monte Carlo technique in the 350- to 1000-nm wavelength range. The hemoglobin and water absorption bands observed in the CAM tumor tissue (10 eggs and 10 tumors) are equal to that of the mouse tumor tissue (8 animals and 8 tumors). The optical intersubject variability of the CAM tumor tissues meets or exceeds that of the mouse tumor tissues, and the reduced scattering coefficient spectra of CAM tumor tissues can be equated with those of mouse tumor tissues. These results confirm that the CAM tumor model is a viable alternative to the mouse tumor model, especially for deriving optimal irradiation conditions in PDT.

  4. Immunological responses induced by the combination of phototherapy and immunotherapy in the treatment of metastatic tumors

    Science.gov (United States)

    Chen, Wei R.; Naylor, Mark F.; Nordquist, Robert E.; Teague, T. Kent; Liu, Hong

    2008-02-01

    Combination therapy using laser photothermal interaction and immunological stimulation has demonstrated its ability to induce immunological responses. Glycated chitosan (GC), an immunological stimulant, and imiquimod, a new type of immune response modifier (IRM), when used in conjunction with laser phototherapy, have shown to have a great immunological stimulation function. Specifically, imiquimod can help release cytokines from immunocompetent cells, stimulate TH1 lymphocyte responses (CD8+ T-cells), and recruit additional dendritic cells. To study the effects of immunoadjuvnats in combination of laser photo-irradiation, we treated animal tumors with laser-ICG-GC combination and late-stage melanoma patients with laser-ICG-imiquimod combination. At designated times, tumors, blood, and spleens in both treated and untreated animals were colleted for analysis. The major immunological indicators, such as IL-6, IL-12, IFN-gamma, CD4, and CD8 were analyzed. The same immunological analysis was also performed for melanoma patients treated by the laser-imiquimod combination.

  5. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin, E-mail: Bin.Zheng-1@ou.edu [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Hollingsworth, Alan B. [Mercy Women’s Center, Mercy Health Center, Oklahoma City, Oklahoma 73120 (United States); Qian, Wei [Department of Electrical and Computer Engineering, University of Texas, El Paso, Texas 79968 (United States)

    2015-11-15

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy.

  6. Apoptotic pathways as a therapeutic target for colorectal cancer treatment

    Institute of Scientific and Technical Information of China (English)

    Aman M Abraha; Ezra B Ketema

    2016-01-01

    Colorectal cancer is the second leading cause of death from cancer among adults. The disease begins as a benign adenomatous polyp, which develops into an advanced adenoma with high-grade dysplasia and then progresses to an invasive cancer. Appropriate apoptotic signaling is fundamentally important to preserve a healthy balance between cell death and cell survival and in maintaining genome integrity. Evasion of apoptotic pathway has been established as a prominent hallmark of several cancers. During colorectal cancer development, the balance between the rates of cell growth and apoptosis that maintains intestinal epithelial cell homeostasis gets progressively disturbed. Evidences are increasingly available to support the hypothesis that failure of apoptosis may be an important factor in the evolution of colorectal cancer and its poor response to chemotherapy and radiation. The other reason for targeting apoptotic pathway in the treatment of cancer is based on the observation that this process is deregulated in cancer cells but not in normal cells. As a result, colorectal cancer therapies designed to stimulate apoptosis in target cells would play a critical role in controlling its development and progression. A better understanding of the apoptotic signaling pathways, and the mechanisms by which cancer cells evade apoptotic death might lead to effective therapeutic strategies to inhibit cancer cell proliferation with minimal toxicity and high responses to chemotherapy. In this review, we analyzed the current understanding and future promises of apoptotic pathways as a therapeutic target in colorectal cancer treatment.

  7. Human CD14 mediates recognition and phagocytosis of apoptotic cells.

    Science.gov (United States)

    Devitt, A; Moffatt, O D; Raykundalia, C; Capra, J D; Simmons, D L; Gregory, C D

    1998-04-02

    Cells undergoing programmed cell death (apoptosis) are cleared rapidly in vivo by phagocytes without inducing inflammation. Here we show that the glycosylphosphatidylinositol-linked plasma-membrane glycoprotein CD14 on the surface of human macrophages is important for the recognition and clearance of apoptotic cells. CD14 can also act as a receptor that binds bacterial lipopolysaccharide (LPS), triggering inflammatory responses. Overstimulation of CD14 by LPS can cause the often fatal toxic-shock syndrome. Here we show that apoptotic cells interact with CD14, triggering phagocytosis of the apoptotic cells. This interaction depends on a region of CD14 that is identical to, or at least closely associated with, a region known to bind LPS. However, apoptotic cells, unlike LPS, do not provoke the release of pro-inflammatory cytokines from macrophages. These results indicate that clearance of apoptotic cells is mediated by a receptor whose interactions with 'non-self' components (LPS) and 'self' components (apoptotic cells) produce distinct macrophage responses.

  8. Pattern of Retained Contrast on Immediate Postprocedure Computed tomography (CT) After Particle Embolization of Liver Tumors Predicts Subsequent Treatment Response

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaodong, E-mail: wangxde@gmail.com; Erinjeri, Joseph P., E-mail: erinjerj@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Jia Xiaoyu, E-mail: jiax@mskcc.org; Gonen, Mithat, E-mail: gonenm@mskcc.org [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics (United States); Brown, Karen T., E-mail: brown6@mskcc.org; Sofocleous, Constantinos T., E-mail: sofoclec@mskcc.org; Getrajdman, George I., E-mail: getrajdg@mskcc.org; Brody, Lynn A., E-mail: brodyl@mskcc.org; Thornton, Raymond H., E-mail: throntor@mskcc.org; Maybody, Majid, E-mail: maybodym@mskcc.org; Covey, Ann M., E-mail: covey@mskcc.org; Siegelbaum, Robert H., E-mail: siegelbr@mskcc.org; Alago, William, E-mail: alagow@mskcc.org; Solomon, Stephen B., E-mail: solomons@mskcc.org [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States)

    2013-08-01

    PurposeTo determine if the pattern of retained contrast on immediate postprocedure computed tomography (CT) after particle embolization of hepatic tumors predicts modified Response Evaluation Criteria in Solid Tumors (mRECIST) response.Materials and MethodsThis study was approved by the Institutional Review Board with a waiver of authorization. One hundred four liver tumors were embolized with spherical embolic agents (Embospheres, Bead Block, LC Bead) and polyvinyl alcohol. Noncontrast CT was performed immediately after embolization to assess contrast retention in the targeted tumors, and treatment response was assessed by mRECIST criteria on follow-up CT (average time 9.0 {+-} 7.7 weeks after embolization). Tumor contrast retention (TCR) was determined based on change in Hounsfield units (HUs) of the index tumors between the preprocedure and immediate postprocedure scans; vascular contrast retention (VCR) was rated; and defects in contrast retention (DCR) were also documented. The morphology of residual enhancing tumor on follow-up CT was described as partial, circumferential, or total. Association between TCR variables and tumor response were assessed using multivariate logistic regression.ResultsOf 104 hepatic tumors, 51 (49 %) tumors had complete response (CR) by mRECIST criteria; 23 (22.1 %) had partial response (PR); 21 (20.2 %) had stable disease (SD); and 9 (8.7 %) had progressive disease (PD). By multivariate analysis, TCR, VCR, and tumor size are independent predictors of CR (p = 0.02, 0.05, and 0.005 respectively). In 75 tumors, DCR was found to be an independent predictor of failure to achieve complete response (p < 0.0001) by imaging criteria.ConclusionTCR, VCR, and DCR on immediate posttreatment CT are independent predictors of CR by mRECIST criteria.

  9. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization.

    Science.gov (United States)

    Maier, Patrick; Hartmann, Linda; Wenz, Frederik; Herskind, Carsten

    2016-01-14

    During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization.

  10. Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization

    Directory of Open Access Journals (Sweden)

    Patrick Maier

    2016-01-01

    Full Text Available During the last few decades, improvements in the planning and application of radiotherapy in combination with surgery and chemotherapy resulted in increased survival rates of tumor patients. However, the success of radiotherapy is impaired by two reasons: firstly, the radioresistance of tumor cells and, secondly, the radiation-induced damage of normal tissue cells located in the field of ionizing radiation. These limitations demand the development of drugs for either radiosensitization of tumor cells or radioprotection of normal tissue cells. In order to identify potential targets, a detailed understanding of the cellular pathways involved in radiation response is an absolute requirement. This review describes the most important pathways of radioresponse and several key target proteins for radiosensitization.

  11. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liya [Dept. of Radiology and Imaging Sciences, Emory Univ., School of Medicine, Atlanta (United States); Dept. of Radiology, Baoan Hospital, Shenzhen (China); Ali, Shazia; Fa, Tianning; Mao, Hui [Dept. of Radiology and Imaging Sciences, Emory Univ., School of Medicine, Atlanta (United States)], e-mail: hmao@emory.edu; Dandan, Chen [Dept. of Physics, Emory Univ., Atlanta, (United States); School of Radiation Medicine and Protection, Soochow Univ., Suzhou (China); Olson, Jeffrey [Dept. of Neurosurgery, Emory Univ., School of Medicine, Atlanta (United States)

    2012-09-15

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  12. Expansion and Activation of CD103(+) Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition.

    Science.gov (United States)

    Salmon, Hélène; Idoyaga, Juliana; Rahman, Adeeb; Leboeuf, Marylène; Remark, Romain; Jordan, Stefan; Casanova-Acebes, Maria; Khudoynazarova, Makhzuna; Agudo, Judith; Tung, Navpreet; Chakarov, Svetoslav; Rivera, Christina; Hogstad, Brandon; Bosenberg, Marcus; Hashimoto, Daigo; Gnjatic, Sacha; Bhardwaj, Nina; Palucka, Anna Karolina; Brown, Brian D; Brody, Joshua; Ginhoux, Florent; Merad, Miriam

    2016-04-19

    Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen-presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103(+) dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8(+) T cells. CD103(+) DCs were required to promote anti-tumoral effects upon blockade of the checkpoint ligand PD-L1; however, PD-L1 inhibition only led to partial responses. Systemic administration of the growth factor FLT3L followed by intratumoral poly I:C injections expanded and activated CD103(+) DC progenitors in the tumor, enhancing responses to BRAF and PD-L1 blockade and protecting mice from tumor rechallenge. Thus, the paucity of activated CD103(+) DCs in tumors limits checkpoint-blockade efficacy and combined FLT3L and poly I:C therapy can enhance tumor responses to checkpoint and BRAF blockade.

  13. Strategies for the identification of T cell-recognized tumor antigens in hematological malignancies for improved graft-versus-tumor responses after allogeneic blood and marrow transplantation.

    Science.gov (United States)

    Zilberberg, Jenny; Feinman, Rena; Korngold, Robert

    2015-06-01

    Allogeneic blood and marrow transplantation (allo-BMT) is an effective immunotherapeutic treatment that can provide partial or complete remission for patients with hematological malignancies. Mature donor T cells in the donor inoculum play a central role in mediating graft-versus-tumor (GVT) responses by destroying residual tumor cells that persist after conditioning regimens. Alloreactivity towards minor histocompatibility antigens (miHA), which are varied tissue-related self-peptides presented in the context of major histocompatibility complex (MHC) molecules on recipient cells, some of which may be shared on tumor cells, is a dominant factor for the development of GVT. Potentially, GVT can also be directed to tumor-associated antigens or tumor-specific antigens that are more specific to the tumor cells themselves. The full exploitation of allo-BMT, however, is greatly limited by the development of graft-versus-host disease (GVHD), which is mediated by the donor T cell response against the miHA expressed in the recipient's cells of the intestine, skin, and liver. Because of the significance of GVT and GVHD responses in determining the clinical outcome of patients, miHA and tumor antigens have been intensively studied, and one active immunotherapeutic approach to separate these two responses has been cancer vaccination after allo-BMT. The combination of these two strategies has an advantage over vaccination of the patient without allo-BMT because his or her immune system has already been exposed and rendered unresponsive to the tumor antigens. The conditioning for allo-BMT eliminates the patient's existing immune system, including regulatory elements, and provides a more permissive environment for the newly developing donor immune compartment to selectively target the malignant cells. Utilizing recent technological advances, the identities of many human miHA and tumor antigenic peptides have been defined and are currently being evaluated in clinical and basic

  14. Strategies for the Identification of T Cell–Recognized Tumor Antigens in Hematological Malignancies for Improved Graft-versus-Tumor Responses after Allogeneic Blood and Marrow Transplantation

    Science.gov (United States)

    Zilberberg, Jenny; Feinman, Rena; Korngold, Robert

    2015-01-01

    Allogeneic blood and marrow transplantation (allo-BMT) is an effective immunotherapeutic treatment that can provide partial or complete remission for patients with hematological malignancies. Mature donor T cells in the donor inoculum play a central role in mediating graft-versus-tumor (GVT) responses by destroying residual tumor cells that persist after conditioning regimens. Alloreactivity towards minor histocompatibility antigens (miHA), which are varied tissue-related self-peptides presented in the context of major histocompatibility complex (MHC) molecules on recipient cells, some of which may be shared on tumor cells, is a dominant factor for the development of GVT. Potentially, GVT can also be directed to tumor-associated antigens or tumor-specific antigens that are more specific to the tumor cells themselves. The full exploitation of allo-BMT, however, is greatly limited by the development of graft-versus-host disease (GVHD), which is mediated by the donor T cell response against the miHA expressed in the recipient’s cells of the intestine, skin, and liver. Because of the significance of GVT and GVHD responses in determining the clinical outcome of patients, miHA and tumor antigens have been intensively studied, and one active immunotherapeutic approach to separate these two responses has been cancer vaccination after allo-BMT. The combination of these two strategies has an advantage over vaccination of the patient without allo-BMT because his or her immune system has already been exposed and rendered unresponsive to the tumor antigens. The conditioning for allo-BMT eliminates the patient’s existing immune system, including regulatory elements, and provides a more permissive environment for the newly developing donor immune compartment to selectively target the malignant cells. Utilizing recent technological advances, the identities of many human miHA and tumor antigenic peptides have been defined and are currently being evaluated in clinical and basic

  15. Molecular Ultrasound Imaging of Early Vascular Response in Prostate Tumors Irradiated with Carbon Ions

    Directory of Open Access Journals (Sweden)

    Moritz Palmowski

    2009-09-01

    Full Text Available Individualized treatments with combination of radiotherapy and targeted drugs require knowledge about the behavior of molecular targets after irradiation. Angiogenic marker expression has been studied after conventional radiotherapy, but little is known about marker response to charged particles. For the very first time, we used molecular ultrasound imaging to intraindividually track changes in angiogenic marker expression after carbon ion irradiation in experimental tumors. Expression of intercellular adhesion molecule-1 (ICAM-1 and of αvβ3-integrin in subcutaneous AT-1 prostate cancers in rats treated with carbon ions (16 Gy was studied using molecular ultrasound and immunohistochemistry. For this purpose, cyanoacrylate microbubbles were synthesized and linked to specific ligands. The accumulation of targeted microbubbles in tumors was quantified before and 36 hours after irradiation. In addition, tumor vascularization was analyzed using volumetric Doppler ultrasound. In tumors, the accumulation of targeted microbubbles was significantly higher than in nonspecific ones and could be inhibited competitively. Before irradiation, no difference in binding of αvβ3-integrin-specific or ICAM-1-specific microbubbles was observed in treated and untreated animals. After irradiation, however, treated animals showed a significantly higher binding of αvβ3-integrin-specific microbubbles and an enhanced binding of ICAM-1-specific microbubbles than untreated controls. In both groups, a decrease in vascularization occurred during tumor growth, but no significant difference was observed between irradiated and nonirradiated tumors. In conclusion, carbon ion irradiation upregulates ICAM-1 and αvβ3-integrin expression in tumor neovasculature. Molecular ultrasound can indicate the regulation of these markers and thus may help to identify the optimal drugs and time points in individualized therapy regimens.

  16. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.

    Science.gov (United States)

    Buchanan, Cara; Rylander, Marissa Nichole

    2013-08-01

    The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment.

  17. Role of Quantitative Magnetic Resonance Imaging Parameters in the Evaluation of Treatment Response in Malignant Tumors

    Institute of Scientific and Technical Information of China (English)

    Qing-Gang Xu; Jun-Fang Xian

    2015-01-01

    Objective:To elaborate the role of quantitative magnetic resonance imaging (MRI) parameters in the evaluation of treatment response in malignant tumors.Data Sources:Data cited in this review were obtained mainly from PubMed in English from 1999 to 2014,with keywords "dynamic contrast-enhanced (DCE)-MRI," "diffusion-weighted imaging (DWI)," "microcirculation," "apparent diffusion coefficient (ADC)," "treatment response" and "oncology."Study Selection:Articles regarding principles of DCE-MRI,principles of DWI,clinical applications as well as opportunity and aspiration were identified,retrieved and reviewed.Results:A significant correlation between ADC values and treatment response was reported in most DWI studies.Most quantitative DCE-MRI studies showed a significant correlation between K~s values and treatment response.However,in different tumors and studies,both high and low pretreatment ADC or K~s values were found to be associated with response rate.Both DCE-MRI and DWI demonstrated changes in their parameters hours to days after treatment,showing a decrease in K~ns or an increase in ADC associated with response in most cases.Conclusions:Combinations of quantitative MRI play an important role in the evaluation of treatment response of malignant tumors and hold promise for use as a cancer treatment response biomarker.However,validation is hampered by the lack of reproducibility and standardization.MRI acquisition protocols and quantitative image analysis approaches should be properly addressed prior to further testing the clinical use of quantitative MRI parameters in the assessment of treatments.

  18. In vivo anti-tumor efficacy of docetaxel-loaded thermally responsive nanohydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jian; Gu Yueqing [Department of Biomedical Engineering, School of Life Science and Technology, China Pharmaceutical University, Tongjia Lane No. 24, Nanjing 210009 (China); Qian Zhiyu, E-mail: cpuyueqing@163.co, E-mail: guyueqing@hotmail.co [Department of Biomedical Engineering, School of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2009-08-12

    Thermally responsive poly(N-isopropylacrylamide-co-acrylamide) (P(NIPA-co-AAm)) nanohydrogel (NHG) with a diameter of about 50 nm and a lower critical solution temperature (LCST) of about 40 {sup 0}C was synthesized by a previously reported precipitation polymerization method. The physical properties including LCST, diameter and morphology were characterized. Four hydrophobic model drugs (5-fluorouracil (5-FU), fluorescein, docetaxel (DTX) and near-infrared dye-12 (NIRD-12)) with different hydrophilicities were respectively entrapped into the nanoparticles and their in vitro release kinetics from NHG was investigated. DTX was ultimately chosen as the goal anti-tumor drug and optimally entrapped into NHG with a drug loading content (DLC) of 7.38% and encapsulation efficiency (EE) of 73.8%. An in vitro drug release test indicated that DTX-loaded NHG had zero-order release kinetics at 43 {sup 0}C. The respective anti-tumor efficacy of DTX-loaded NHG with or without hyperthermia on tumor tissue was evaluated in Kunming mice-bearing S180 sarcoma. The inhibition rates of DTX-loaded NHG with or without hyperthermia were 78.15% and 48.78%, respectively. DTX-loaded NHG also showed much lower toxicity during the therapeutic procedure. Results indicated that this kind of thermally responsive, drug-loaded NHG could be used as a promising strategy for tumor therapy with the help of local hyperthermia treatment.

  19. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    Directory of Open Access Journals (Sweden)

    F.S. Lizarte Neto

    2013-01-01

    Full Text Available Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA. We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21 and apoptotic (Fas, caspase-3 and caspase-8 genes was analyzed by relative quantification (real-time PCR of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3 and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP. KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.

  20. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    Energy Technology Data Exchange (ETDEWEB)

    Lizarte, F.S. Neto; Tirapelli, D.P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Ambrosio, S.R. [Universidade de Franca, Núcleo de Pesquisa em Ciências e Tecnologia, Franca, SP (Brazil); Tirapelli, C.R. [Universidade de São Paulo, Laboratório de Farmacologia, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Oliveira, F.M. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Novais, P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Peria, F.M.; Oliveira, H.F. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Carlotti, C.G. Junior; Tirapelli, L.F. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil)

    2013-01-11

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.

  1. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases.

    Science.gov (United States)

    Lizarte Neto, F S; Tirapelli, D P C; Ambrosio, S R; Tirapelli, C R; Oliveira, F M; Novais, P C; Peria, F M; Oliveira, H F; Carlotti Junior, C G; Tirapelli, L F

    2013-01-01

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.

  2. IL-15 induces strong but short-lived tumor-infiltrating CD8 T cell responses through the regulation of Tim-3 in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Heon, Elise K. [University of Maryland Medical Center, Baltimore, MD 21201 (United States); Wulan, Hasi [Department of Plastic and Reconstructive Surgery, PLA General Hospital, Beijing, 100853 (China); Macdonald, Loch P.; Malek, Adel O.; Braunstein, Glenn H.; Eaves, Connie G.; Schattner, Mark D. [Brown University, Providence, RI 02912 (United States); Allen, Peter M.; Alexander, Michael O.; Hawkins, Cynthia A.; McGovern, Dermot W.; Freeman, Richard L. [University of Wisconsin, Madison, WI 53706 (United States); Amir, Eitan P.; Huse, Jason D. [University of Illinois, Chicago, IL 60607 (United States); Zaltzman, Jeffrey S.; Kauff, Noah P.; Meyers, Paul G. [University of Texas, Austin, TX 78712 (United States); Gleason, Michelle H., E-mail: GleasonM@cblabs.org [University of Texas, Austin, TX 78712 (United States); Overholtzer, Michael G., E-mail: OverholtzerM@cblabs.org [University of Texas, Austin, TX 78712 (United States); Wiseman, Sam S. [Ohio State University, Columbus, OH 43210 (United States); and others

    2015-08-14

    IL-15 has pivotal roles in the control of CD8{sup +} memory T cells and has been investigated as a therapeutic option in cancer therapy. Although IL-15 and IL-2 share many functions together, including the stimulation of CD8 T cell proliferation and IFN-γ production, the different in vivo roles of IL-15 and IL-2 have been increasingly recognized. Here, we explored the different effects of IL-15 and IL-2 on tumor-infiltrating (TI) T cells from resected breast tumors. We found that neither IL-2 nor IL-15 induced intratumoral CD8 T cell proliferation by itself, but after CD3/CD28-stimulation, IL-15 induced significantly higher proliferation than IL-2 during early time points, at day 2, day 3 and day 6. However, the IL-15-induced proliferation leveled off at day 9 and day 12, whereas IL-2 induced lower but progressive proliferation at each time point. Furthermore, IL-15 caused an early and robust increase of IFN-γ in the supernatant of TI cell cultures, which diminished at later time points, while the IL-2-induced IFN-γ production remained constant over time. In addition, the IL-15-costimulated CD8 T cells presented higher frequencies of apoptotic cells. The diminishing IL-15-induced response was possibly due to regulatory and/or exhaustion mechanisms. We did not observe increased IL-10 or PD-1 upregulation, but we have found an increase of Tim-3 upregulation on IL-15-, but not IL-2-stimulated cells. Blocking Tim-3 function using anti-Tim-3 antibodies resulted in increased IL-15-induced proliferation and IFN-γ production for a prolonged period of time, whereas adding Tim-3 ligand galectin 9 led to reduced proliferation and IFN-γ production. Our results suggest that IL-15 in combination of Tim-3 blocking antibodies could potentially act as an IL-2 alternative in tumor CD8 T cell expansion in vitro, a crucial step in adoptive T cell therapy. - Highlights: • We explored the effects of IL-15 and IL-2 on tumor-infiltrating (TI) T cells of breast cancer. • IL-15

  3. Enhanced antitumoral efficacy and immune response following conditionally replicative adenovirus containing constitutive HSF1 delivery to rodent tumors

    Directory of Open Access Journals (Sweden)

    Fan Rong

    2012-05-01

    Full Text Available Abstract Background Oncolytic adenoviruses are promising as anticancer agents but have limited clinical responses. Our previous study showed that heat shock transcription factor 1 (HSF1 overexpression could increase the anti-tumor efficacy of E1B55kD deleted oncolytic adenovirus through increasing the viral burst. Due to the important roles of heat shock proteins (HSPs in eliciting innate and adaptive immunity, we reasoned that besides increasing the viral burst, HSF1 may also play a role in increasing tumor specific immune response. Methods In the present study, intra-dermal murine models of melanoma (B16 and colorectal carcinoma (CT26 were treated with E1B55kD deleted oncolytic adenovirus Adel55 or Adel55 incorporated with cHSF1, HSF1i, HSP70, or HSP90 by intra-tumoral injection. Tumors were surgically excised 72 h post injection and animals were analyzed for tumor resistance and survival rate. Results Approximately 95% of animals in the Adel55-cHSF1 treated group showed sustained resistance upon re-challenge with autologous tumor cells, but not in PBS, Adel55, or Adel55-HSF1i treated groups. Only 50–65% animals in the Adel55-HSP70 and Adel55-HSP90 treated group showed tumor resistance. Tumor resistance was associated with development of tumor type specific cellular immune responses. Adel55-cHSF1 treatment also showed higher efficacy in diminishing progression of the secondary tumor focus than Adel55-HSP70 or Adel55-HSP90 treatment. Conclusions Besides by increasing its burst in tumor cells, cHSF1 could also augment the potential of E1B55kD deleted oncolytic adenovirus by increasing the tumor-specific immune response, which is beneficial to prevent tumor recurrence. cHSF1 is a better gene for neoadjuvant immunotherapy than other heat shock protein genes.

  4. Epigenetic reprogramming of the type III interferon response potentiates antiviral activity and suppresses tumor growth.

    Directory of Open Access Journals (Sweden)

    Siyuan Ding

    2014-01-01

    Full Text Available Type III interferon (IFN-λ exhibits potent antiviral activity similar to IFN-α/β, but in contrast to the ubiquitous expression of the IFN-α/β receptor, the IFN-λ receptor is restricted to cells of epithelial origin. Despite the importance of IFN-λ in tissue-specific antiviral immunity, the molecular mechanisms responsible for this confined receptor expression remain elusive. Here, we demonstrate that the histone deacetylase (HDAC repression machinery mediates transcriptional silencing of the unique IFN-λ receptor subunit (IFNLR1 in a cell-type-specific manner. Importantly, HDAC inhibitors elevate receptor expression and restore sensitivity to IFN-λ in previously nonresponsive cells, thereby enhancing protection against viral pathogens. In addition, blocking HDAC activity renders nonresponsive cell types susceptible to the pro-apoptotic activity of IFN-λ, revealing the combination of HDAC inhibitors and IFN-λ to be a potential antitumor strategy. These results demonstrate that the type III IFN response may be therapeutically harnessed by epigenetic rewiring of the IFN-λ receptor expression program.

  5. A novel dual promoter DNA vaccine induces CD8+ response against Toxoplasma gondii sporozoite specific surface protein “SporoSAG” through non-apoptotic cells

    Directory of Open Access Journals (Sweden)

    Sultan Gülçe İz

    2014-01-01

    The results of this study reveal the ability of SporoSAG protein to induce CD8+ T lymphocyte response for the first time. Overall, SporoSAG protein can be included to multivalant vaccine formulations in future studies to increase the protection in infections acquired through T. gondii oocysts.

  6. Predicting tumor responses to mitomycin C on the basis of DT-diaphorase activity or drug metabolism by tumor homogenates: implications for enzyme-directed bioreductive drug development.

    Science.gov (United States)

    Phillips, R M; Burger, A M; Loadman, P M; Jarrett, C M; Swaine, D J; Fiebig, H H

    2000-11-15

    Mitomycin C (MMC) is a clinically used anticancer drug that is reduced to cytotoxic metabolites by cellular reductases via a process known as bioreductive drug activation. The identification of key enzymes responsible for drug activation has been investigated extensively with the ultimate aim of tailoring drug administration to patients whose tumors possess the biochemical machinery required for drug activation. In the case of MMC, considerable interest has been centered upon the enzyme DT-diaphorase (DTD) although conflicting reports of good and poor correlations between enzyme activity and response in vitro and in vivo have been published. The principle aim of this study was to provide a definitive answer to the question of whether tumor response to MMC could be predicted on the basis of DTD activity in a large panel of human tumor xenografts. DTD levels were measured in 45 human tumor xenografts that had been characterized previously in terms of their sensitivity to MMC in vitro and in vivo (the in vivo response profile to MMC was taken from work published previously). A poor correlation between DTD activity and antitumor activity in vitro as well as in vivo was obtained. This study also assessed the predictive value of an alternative approach based upon the ability of tumor homogenates to metabolize MMC. This approach is based on the premise that the overall rate of MMC metabolism may provide a better indicator of response than single enzyme measurements. MMC metabolism was evaluated in tumor homogenates (clarified by centrifugation at 1000 x g for 1 min) by measuring the disappearance of the parent compound by HPLC. In responsive [T/C 50%) tumors, the mean half life of MMC was 75+/-48.3 and 280+/-129.6 min, respectively. The difference between the two groups was statistically significant (P < 0.005). In conclusion, these results unequivocally demonstrate that response to MMC in vivo cannot be predicted on the basis of DTD activity. Measurement of MMC

  7. Endothelial cells undergo morphological, biomechanical, and dynamic changes in response to tumor necrosis factor-α

    OpenAIRE

    Stroka, Kimberly M.; Vaitkus, Janina A.; Aranda-Espinoza, Helim

    2012-01-01

    The immune response triggers a complicated sequence of events, one of which is release of the cytokine tumor necrosis factor-α (TNF-α) from stromal cells such as monocytes and macrophages. In this work we explored the biophysical effects of TNF-α on endothelial cells (ECs), including changes in cell morphology, biomechanics, migration, and cytoskeletal dynamics. We found that TNF-α induces a wide distribution of cell area and aspect ratio, with these properties increasing on average during tr...

  8. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    Science.gov (United States)

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  9. Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information.

    Science.gov (United States)

    Ott, Lee W; Resing, Katheryn A; Sizemore, Alecia W; Heyen, Joshua W; Cocklin, Ross R; Pedrick, Nathan M; Woods, H Cary; Chen, Jake Y; Goebl, Mark G; Witzmann, Frank A; Harrington, Maureen A

    2007-06-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFalpha) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFalpha- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFalpha and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFalpha and IL-1 regulate different processes. A large-scale proteomic analysis of TNFalpha- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFalpha and IL-1. When combined with genomic studies, our results indicate that TNFalpha, but not IL-1, mediates cell cycle arrest.

  10. microRNA expression pattern modulates temozolomide response in GBM tumors with cancer stem cells.

    Science.gov (United States)

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Preusser, Matthias; Berghoff, Anna Sophie; Egeli, Unal; Cecener, Gulsah; Ricken, Gerda; Budak, Ferah; Taskapılıoglu, Mevlut Ozgur; Kocaeli, Hasan; Tolunay, Sahsine

    2014-07-01

    Temozolomide (TMZ) is widely used to treat glioblastoma multiforme (GBM). Although the MGMT gene methylation status is postulated to correlate with TMZ response, some patients with a methylated MGMT gene still do not benefit from TMZ therapy. Cancer stem cells (CSCs) may be one of the causes of therapeutic resistance, but the molecular mechanism underlying this resistance is unclear. microRNA (miRNA) deregulation has been recognized as another chemoresistance modulating mechanism. Thus, we aimed to evaluate the miRNA expression patterns associated with chemoresistance that is dependent on the CSC status in GBM tumors to identify therapeutic biomarkers. CSCs were identified in 5 of 20 patients' tumor tissues using magnetic separation. CSC (+) tumors displayed a significant induction of CpG island methylation in the MGMT gene promoter (p = 0.009). Using real-time reverse transcription polymerase chain reaction (qRT-PCR), 9 miRNAs related to GBM (mir-181b, miR-153, miR-137, miR-145, miR-10a, miR-10b, let-7d, miR-9, and miR-455-3p), which are associated with cell cycle and invasion was analyzed in tumor samples. Low miR-181b and high miR-455-3p expression levels were detected (p = 0.053, p = 0.004; respectively) in CSC (+) tumors. Analysis revealed a significant correlation between miR-455-3p expression and Smad2 protein levels as analyzed by immunohistochemistry in CSC (+) tumors (p = 0.002). Thus, miR-455-3p may be involved in TMZ resistance in MGMT methylated CSC (+) GBM patients. Further studies and evaluations are required, but this miRNA may provide novel therapeutic molecular targets for GBM treatment and new directions for the development of anticancer drugs.

  11. Characterizing tumor response to chemotherapy at various length scales using temporal diffusion spectroscopy.

    Directory of Open Access Journals (Sweden)

    Junzhong Xu

    Full Text Available Measurements of apparent diffusion coefficient (ADC using magnetic resonance imaging (MRI have been suggested as potential imaging biomarkers for monitoring tumor response to treatment. However, conventional pulsed-gradient spin echo (PGSE methods incorporate relatively long diffusion times, and are usually sensitive to changes in cell density and necrosis. Diffusion temporal spectroscopy using the oscillating gradient spin echo (OGSE sequence is capable of probing short length scales, and may detect significant intracellular microstructural changes independent of gross cell density changes following anti-cancer treatment. To test this hypothesis, SW620 xenografts were treated by barasertib (AZD1152, a selective inhibitor of Aurora B kinase which causes SW620 cancer cells to develop polyploidy and increase in size following treatment, ultimately leading to cell death through apoptosis. Following treatment, the ADC values obtained by both the PGSE and low frequency OGSE methods increased. However, the ADC values at high gradient frequency (i.e. short diffusion times were significantly lower in treated tumors, consistent with increased intracellular restrictions/hindrances. This suggests that ADC values at long diffusion times are dominated by tumor microstructure at long length scales, and may not convey unambiguous information of subcellular space. While the diffusion temporal spectroscopy provides more comprehensive means to probe tumor microstructure at various length scales. This work is the first study to probe intracellular microstructural variations due to polyploidy following treatment using diffusion MRI in vivo. It is also the first observation of post-treatment ADC changes occurring in opposite directions at short and long diffusion times. The current study suggests that temporal diffusion spectroscopy potentially provides pharmacodynamic biomarkers of tumor early response which distinguish microstructural variations following

  12. Advanced gastrointestinal stromal tumor patients with complete response after treatment with imatinib mesylate

    Institute of Scientific and Technical Information of China (English)

    Kun-Chun Chiang; Tsung-Wen Chen; Chun-Nan Yeh; Feng-Yuan Liu; Hsiang-Lin Lee; Yi-Yin Jan

    2006-01-01

    AIM: Most gastrointestinal stromal tumors (GISTs)express constitutively activated mutant isoforms of kit kinase or platelet-derived growth factor receptor alpha (PDGFRA), which are potential therapeutic targets for imatinib mesylate (Glivec). Partial response occurred in almost two thirds of GIST patients treated with Glivec.However, complete response (CR) after Glivec therapy was sporadically reported. Here we illustrated advanced GIST patients with CR after Glivec treatment.METHODS: Between January 2001 and June 2005,42 advanced GIST patients were treated with Glivec.Patients were administered 400 mg of Glivec in 100-mg capsules, taken orally daily with food. The response of the tumor to Glivec was evaluated after one month, three months, and every three months thereafter or whenever medical need was indicated. Each tumor of patients was investigated for mutations of kit or PDGFRA.RESULTS: The median follow-up time of the 42 ad-vanced GIST patients treated with Glivec was 16.9 months (range, 1.0- 47.0 months). Overall, 3patients had complete response CR (7.1%), 26 partial response (67.8%), 5 stationary disease (11.9%), and 3 progressive disease (11.9%). The median duration of Glivec administration for the three patients was 36months (range, 23-36 months). The median time to CR after Glivec treatment was 20 months (range, 9-26months). Deletion and insertion mutations of c-kit exon 11 and insertion mutation of c-kit exon 9 were found in two cases and one case, respectively.CONCLUSION: Complete response (CR) can be achieyed in selected advanced GIST patients treated with Glivec. The median time to CR after Glivec treatment was 20 months. Deletion and insertion mutations of kit exon 11 and insertion mutation of kit exon 9 contribute to the genetic features in these selected cases.

  13. SURVIVIN AND TUMOR

    Institute of Scientific and Technical Information of China (English)

    宋文哲; 宋燕; 叶剑桥; 邱东涛

    2003-01-01

    As a new member of IAP (inhibitors of apoptosis protein) family, survivin has potent anti-apoptotic activities, and involves in the mitosis and angiogenesis. Researches have demonstrated that surviving is a tumor-specific anti-apoptotic factor, expressed in fetal tissues, and common human cancers, while not in normal, terminally differentiated adult tissues. The overexpression of survivin in tumor tissues is correlated with poor prognosis of the patients. Survivin can be used as a prognostic factor and a new target in tumor targeting therapy.

  14. Low expression of pro-apoptotic Bcl-2 family proteins sets the apoptotic threshold in Waldenström macroglobulinemia.

    Science.gov (United States)

    Gaudette, B T; Dwivedi, B; Chitta, K S; Poulain, S; Powell, D; Vertino, P; Leleu, X; Lonial, S; Chanan-Khan, A A; Kowalski, J; Boise, L H

    2016-01-28

    Waldenström macroglobulinemia (WM) is a proliferative disorder of IgM-secreting, lymphoplasmacytoid cells that inhabit the lymph nodes and bone marrow. The disease carries a high prevalence of activating mutations in MyD88 (91%) and CXCR4 (28%). Because signaling through these pathways leads to Bcl-xL induction, we examined Bcl-2 family expression in WM patients and cell lines. Unlike other B-lymphocyte-derived malignancies, which become dependent on expression of anti-apoptotic proteins to counter expression of pro-apoptotic proteins, WM samples expressed both pro- and anti-apoptotic Bcl-2 proteins at low levels similar to their normal B-cell and plasma cell counterparts. Three WM cell lines expressed pro-apoptotic Bcl-2 family members Bim or Bax and Bak at low levels, which determined their sensitivity to inducers of intrinsic apoptosis. In two cell lines, miR-155 upregulation, which is common in WM, was responsible for the inhibition of FOXO3a and Bim expression. Both antagonizing miR-155 to induce Bim and proteasome inhibition increased the sensitivity to ABT-737 in these lines indicating a lowering of the apoptotic threshold. In this manner, treatments that increase pro-apoptotic protein expression increase the efficacy of agents treated in combination in addition to direct killing.

  15. CyberKnife for hilar lung tumors: report of clinical response and toxicity

    Directory of Open Access Journals (Sweden)

    Collins Sean P

    2010-10-01

    Full Text Available Abstract Objective To report clinical efficacy and toxicity of fractionated CyberKnife radiosurgery for the treatment of hilar lung tumors. Methods Patients presenting with primary and metastatic hilar lung tumors, treated using the CyberKnife system with Synchrony fiducial tracking technology, were retrospectively reviewed. Hilar location was defined as abutting or invading a mainstem bronchus. Fiducial markers were implanted by conventional bronchoscopy within or adjacent to tumors to serve as targeting references. A prescribed dose of 30 to 40 Gy to the gross tumor volume (GTV was delivered in 5 fractions. Clinical examination and PET/CT imaging were performed at 3 to 6-month follow-up intervals. Results Twenty patients were accrued over a 4 year period. Three had primary hilar lung tumors and 17 had hilar lung metastases. The median GTV was 73 cc (range 23-324 cc. The median dose to the GTV was 35 Gy (range, 30 - 40 Gy, delivered in 5 fractions over 5 to 8 days (median, 6 days. The resulting mean maximum point doses delivered to the esophagus and mainstem bronchus were 25 Gy (range, 11 - 39 Gy and 42 Gy (range, 30 - 49 Gy, respectively. Of the 17 evaluable patients with 3 - 6 month follow-up, 4 patients had a partial response and 13 patients had stable disease. AAT t a median follow-up of 10 months, the 1-year Kaplan-Meier local control and overall survival estimates were 63% and 54%, respectively. Toxicities included one patient experiencing grade II radiation esophagitis and one patient experiencing grade III radiation pneumonitis. One patient with gross endobronchial tumor within the mainstem bronchus developed a bronchial fistula and died after receiving a maximum bronchus dose of 49 Gy. Conclusion CyberKnife radiosurgery is an effective palliative treatment option for hilar lung tumors, but local control is poor at one year. Maximum point doses to critical structures may be used as a guide for limiting toxicities. Preliminary results

  16. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  17. Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970.

    Science.gov (United States)

    Hall, Amy B; Newsome, Dave; Wang, Yuxin; Boucher, Diane M; Eustace, Brenda; Gu, Yong; Hare, Brian; Johnson, Mac A; Milton, Sean; Murphy, Cheryl E; Takemoto, Darin; Tolman, Crystal; Wood, Mark; Charlton, Peter; Charrier, Jean-Damien; Furey, Brinley; Golec, Julian; Reaper, Philip M; Pollard, John R

    2014-07-30

    Platinum-based DNA-damaging chemotherapy is standard-of-care for most patients with lung cancer but outcomes remain poor. This has been attributed, in part, to the highly effective repair network known as the DNA-damage response (DDR). ATR kinase is a critical regulator of this pathway, and its inhibition has been shown to sensitize some cancer, but not normal, cells in vitro to DNA damaging agents. However, there are limited in vivo proof-of-concept data for ATR inhibition. To address this we profiled VX-970, the first clinical ATR inhibitor, in a series of in vitro and in vivo lung cancer models and compared it with an inhibitor of the downstream kinase Chk1. VX-970 markedly sensitized a large proportion of a lung cancer cell line and primary tumor panel in vitro to multiple DNA damaging drugs with clear differences to Chk1 inhibition observed. In vivo VX-970 blocked ATR activity in tumors and dramatically enhanced the efficacy of cisplatin across a panel of patient derived primary lung xenografts. The combination led to complete tumor growth inhibition in three cisplatin-insensitive models and durable tumor regression in a cisplatin-sensitive model. These data provide a strong rationale for the clinical evaluation of VX-970 in lung cancer patients.

  18. Investigation on the effect of peptides mixture from tumor cells inducing anti-tumor specific immune response

    Institute of Scientific and Technical Information of China (English)

    冯作化; 黄波; 张桂梅; 李东; 王洪涛

    2002-01-01

    The peptides mixture was prepared from tumor cells by freezing-thawing cells, precipitation by heating, followed by acidification of the solution. The activation and proliferation of mouse splenocytes by HSP70-peptide complex, formed by the binding of HSP70 and peptides in vitro, were observed, so was the specific cytotoxicity of the proliferative lymphocytes to tumor cells. The phenotypes of the proliferative lymphocytes were analyzed by a flow cytometer. BALB/c mice inoculated with H22 hepatocarcinoma cells in peritoneal cavity or hind thigh were immunized by injection with HSP70-peptides complex to observe the inhibitory effect of the immunization on tumor and lifetime of tumor-bearing mice. On the other hand, blood samples were collected from the immunized mice to check the functions of liver and kidney. The results showed that the peptides mixture from tumor cells contained tumor-specific antigen peptides which could be presented by HSP70 to activate lymphocytes in vitro, the proliferative lymphocytes were T cells which were specifically cytotoxic to tumor cells, the in vivo growth of both ascitic and solid carcinoma could be suppressed by immunization with HSP70-peptides and the lifetime of tumor-bearing mice was prolonged, the in vivo immunization with HSP70-H22-peptides had no impact on the function of mouse liver and kidney, suggesting that there was no occurrence of autoimmunity in vivo after immunization.

  19. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response.

    Science.gov (United States)

    Gao, Hui; Korn, Joshua M; Ferretti, Stéphane; Monahan, John E; Wang, Youzhen; Singh, Mallika; Zhang, Chao; Schnell, Christian; Yang, Guizhi; Zhang, Yun; Balbin, O Alejandro; Barbe, Stéphanie; Cai, Hongbo; Casey, Fergal; Chatterjee, Susmita; Chiang, Derek Y; Chuai, Shannon; Cogan, Shawn M; Collins, Scott D; Dammassa, Ernesta; Ebel, Nicolas; Embry, Millicent; Green, John; Kauffmann, Audrey; Kowal, Colleen; Leary, Rebecca J; Lehar, Joseph; Liang, Ying; Loo, Alice; Lorenzana, Edward; Robert McDonald, E; McLaughlin, Margaret E; Merkin, Jason; Meyer, Ronald; Naylor, Tara L; Patawaran, Montesa; Reddy, Anupama; Röelli, Claudia; Ruddy, David A; Salangsang, Fernando; Santacroce, Francesca; Singh, Angad P; Tang, Yan; Tinetto, Walter; Tobler, Sonja; Velazquez, Roberto; Venkatesan, Kavitha; Von Arx, Fabian; Wang, Hui Qin; Wang, Zongyao; Wiesmann, Marion; Wyss, Daniel; Xu, Fiona; Bitter, Hans; Atadja, Peter; Lees, Emma; Hofmann, Francesco; Li, En; Keen, Nicholas; Cozens, Robert; Jensen, Michael Rugaard; Pryer, Nancy K; Williams, Juliet A; Sellers, William R

    2015-11-01

    Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.

  20. Safety and Tumor Responses with Lambrolizumab (Anti–PD-1) in Melanoma

    Science.gov (United States)

    Hamid, Omid; Robert, Caroline; Daud, Adil; Hodi, F. Stephen; Hwu, Wen-Jen; Kefford, Richard; Wolchok, Jedd D.; Hersey, Peter; Joseph, Richard W.; Weber, Jeffrey S.; Dronca, Roxana; Gangadhar, Tara C.; Patnaik, Amita; Zarour, Hassane; Joshua, Anthony M.; Gergich, Kevin; Elassaiss-Schaap, Jeroen; Algazi, Alain; Mateus, Christine; Boasberg, Peter; Tumeh, Paul C.; Chmielowski, Bartosz; Ebbinghaus, Scot W.; Li, Xiaoyun Nicole; Kang, S. Peter; Ribas, Antoni

    2014-01-01

    BACKGROUND The programmed death 1 (PD-1) receptor is a negative regulator of T-cell effector mechanisms that limits immune responses against cancer. We tested the anti–PD-1 antibody lambrolizumab (previously known as MK-3475) in patients with advanced melanoma. METHODS We administered lambrolizumab intravenously at a dose of 10 mg per kilogram of body weight every 2 or 3 weeks or 2 mg per kilogram every 3 weeks in patients with advanced melanoma, both those who had received prior treatment with the immune checkpoint inhibitor ipilimumab and those who had not. Tumor responses were assessed every 12 weeks. RESULTS A total of 135 patients with advanced melanoma were treated. Common adverse events attributed to treatment were fatigue, rash, pruritus, and diarrhea; most of the adverse events were low grade. The confirmed response rate across all dose cohorts, evaluated by central radiologic review according to the Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, was 38% (95% confidence interval [CI], 25 to 44), with the highest confirmed response rate observed in the cohort that received 10 mg per kilogram every 2 weeks (52%; 95% CI, 38 to 66). The response rate did not differ significantly between patients who had received prior ipilimumab treatment and those who had not (confirmed response rate, 38% [95% CI, 23 to 55] and 37% [95% CI, 26 to 49], respectively). Responses were durable in the majority of patients (median follow-up, 11 months among patients who had a response); 81% of the patients who had a response (42 of 52) were still receiving treatment at the time of analysis in March 2013. The overall median progression-free survival among the 135 patients was longer than 7 months. CONCLUSIONS In patients with advanced melanoma, including those who had had disease progression while they had been receiving ipilimumab, treatment with lambrolizumab resulted in a high rate of sustained tumor regression, with mainly grade 1 or 2 toxic effects

  1. Digital holographic microscopy for imaging growth and treatment response in 3D tumor models

    Science.gov (United States)

    Li, Yuyu; Petrovic, Ljubica; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-03-01

    While three-dimensional tumor models have emerged as valuable tools in cancer research, the ability to longitudinally visualize the 3D tumor architecture restored by these systems is limited with microscopy techniques that provide only qualitative insight into sample depth, or which require terminal fixation for depth-resolved 3D imaging. Here we report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, non-destructive longitudinal imaging of in vitro 3D tumor models. Following established methods we prepared 3D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at multiple timepoints throughout the duration of growth. The holograms were digitally processed and the unwrapped phase images were obtained to quantify nodule thickness over time under normal growth, and in cultures subject to chemotherapy treatment. In this manner total nodule volumes are rapidly estimated and demonstrated here to show contrasting time dependent changes during growth and in response to treatment. This work suggests the utility of DHM to quantify changes in 3D structure over time and suggests the further development of this approach for time-lapse monitoring of 3D morphological changes during growth and in response to treatment that would otherwise be impractical to visualize.

  2. A clinical and radiological objective tumor response with somatostatin analogs (SSA in well-differentiated neuroendocrine metastatic tumor of the ileum: a case report

    Directory of Open Access Journals (Sweden)

    De Divitiis C

    2015-03-01

    Full Text Available Chiara De Divitiis,1 Claudia von Arx,2 Roberto Carbone,3 Fabiana Tatangelo,4 Elena di Girolamo,5 Giovanni Maria Romano,1 Alessandro Ottaiano,1 Elisabetta de Lutio di Castelguidone,3 Rosario Vincenzo Iaffaioli,1 Salvatore Tafuto1 On behalf of the European Neuroendocrine Tumor Society (ENETS Center of Excellence Multidisciplinary Group for Neuroendocrine Tumors in Naples (Italy 1Department of Abdominal Oncology, National Cancer Institute “Fondazione G. Pascale”, Naples, Italy; 2Department of Clinical Medicine and Surgery, “Federico II” University, Naples, Italy; 3Department of Radiology, 4Department of Pathology, 5Department of Endoscopy, National Cancer Institute “Fondazione G Pascale”, Naples, Italy Abstract: Somatostatin analogs (SSAs are typically used to treat the symptoms caused by neuroendocrine tumors (NETs, but they are not used as the primary treatment to induce tumor shrinkage. We report a case of a 63-year-old woman with a symptomatic metastatic NET of the ileum. Complete symptomatic response was achieved after 1 month of treatment with SSAs. In addition, there was an objective response in the liver, with the disappearance of secondary lesions noted on computed tomography scan after 3 months of octreotide treatment. Our experience suggests that SSAs could be useful for downstaging and/or downsizing well-differentiated NETs, and they could allow surgery to be performed. Such presurgery therapy could be a promising tool in the management of patients with initially inoperable NETs. Keywords: neuroendocrine tumor, somatostatin analogs, octreotide, metastatic tumor of the ileum, radiological tumor response

  3. Rapamycin Impairs Antitumor CD8+ T-cell Responses and Vaccine-Induced Tumor Eradication.

    Science.gov (United States)

    Chaoul, Nada; Fayolle, Catherine; Desrues, Belinda; Oberkampf, Marine; Tang, Alexandre; Ladant, Daniel; Leclerc, Claude

    2015-08-15

    The metabolic sensor mTOR broadly regulates cell growth and division in cancer cells, leading to a significant focus on studies of rapamycin and its analogues as candidate anticancer drugs. However, mTOR inhibitors have failed to produce useful clinical efficacy, potentially because mTOR is also critical in T cells implicated in immunosurveillance. Indeed, recent studies using rapamycin have demonstrated the important role of mTOR in differentiation and induction of the CD8+ memory in T-cell responses associated with antitumor properties. In this study, we demonstrate that rapamycin harms antitumor immune responses mediated by T cells in the setting of cancer vaccine therapy. Specifically, we analyzed how rapamycin affects the antitumor efficacy of a human papilloma virus E7 peptide vaccine (CyaA-E7) capable of eradicating tumors in the TC-1 mouse model of cervical cancer. In animals vaccinated with CyaA-E7, rapamycin administration completely abolished recruitment of CD8+ T cells into TC-1 tumors along with the ability of the vaccine to reduce infiltration of T regulatory cells and myeloid-derived suppressor cells. Moreover, rapamycin completely abolished vaccine-induced cytotoxic T-cell responses and therapeutic activity. Taken together, our results demonstrate the powerful effects of mTOR inhibition in abolishing T-cell-mediated antitumor immune responses essential for the therapeutic efficacy of cancer vaccines.

  4. Human tumor-derived genomic DNA transduced into a recipient cell induces tumor-specific immune responses ex vivo

    OpenAIRE

    2002-01-01

    This article describes a DNA-based vaccination strategy evaluated ex vivo with human cells. The vaccine was prepared by transferring tumor-derived genomic DNA to PCI-13 cells, a highly immunogenic tumor cell line (“recipient cell”), which had been genetically modified to secrete IL-2 (PCI-13/IL-2). PCI-13 cells expressed class I MHC determinants (HLA-A2) shared with the tumor from which the DNA was obtained as well as allogeneic determinants. DNA from a gp100+ melanoma ce...

  5. Primitive neuroectodermal tumor of the kidney with inferior vena cava tumor thrombus during pregnancy response to sorafenib

    Institute of Scientific and Technical Information of China (English)

    WU Yun-jian; YANG Yu-ru; ZENG Hao; ZHU Yu-chun; CHEN Hui; HUANG Ying; WEI Qiang; CHEN Hui-jiao; XIE Xi; LI Xiang; ZHOU Qiao

    2010-01-01

    @@ Primitive neuroectodermal tumor (PNET) most often presents as a bone or soft tissue mass in the trunk or axial skeleton in adolescents and young adults.1 It is highly aggressive and rarely arises in the kidney.2 A combined therapy, consisting of surgical resection,chemotherapy and radiotherapy, is needed to treat this tumor but long-term survival remains poor.3,4 In the current study, we describe a case of 26-year-old woman (primigravida) who presented with a PNET of the right kidney with inferior vena cava (IVC) tumor thrombus.

  6. Multimodality multiparametric imaging of early tumor response to a novel antiangiogenic therapy based on anticalins.

    Directory of Open Access Journals (Sweden)

    Reinhard Meier

    Full Text Available Anticalins are a novel class of targeted protein therapeutics. The PEGylated Anticalin Angiocal (PRS-050-PEG40 is directed against VEGF-A. The purpose of our study was to compare the performance of diffusion weighted imaging (DWI, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI and positron emission tomography with the tracer [18F]fluorodeoxyglucose (FDG-PET for monitoring early response to antiangiogenic therapy with PRS-050-PEG40. 31 mice were implanted subcutaneously with A673 rhabdomyosarcoma xenografts and underwent DWI, DCE-MRI and FDG-PET before and 2 days after i.p. injection of PRS-050-PEG40 (n = 13, Avastin (n = 6 or PBS (n = 12. Tumor size was measured manually with a caliper. Imaging results were correlated with histopathology. In the results, the tumor size was not significantly different in the treatment groups when compared to the control group on day 2 after therapy onset (P = 0.09. In contrast the imaging modalities DWI, DCE-MRI and FDG-PET showed significant differences between the therapeutic compared to the control group as early as 2 days after therapy onset (P<0.001. There was a strong correlation of the early changes in DWI, DCE-MRI and FDG-PET at day 2 after therapy onset and the change in tumor size at the end of therapy (r = -0.58, 0.71 and 0.67 respectively. The imaging results were confirmed by histopathology, showing early necrosis and necroptosis in the tumors. Thus multimodality multiparametric imaging was able to predict therapeutic success of PRS-050-PEG40 and Avastin as early as 2 days after onset of therapy and thus promising for monitoring early response of antiangiogenic therapy.

  7. In Silico Analysis of Microarray-Based Gene Expression Profiles Predicts Tumor Cell Response to Withanolides

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2012-05-01

    Full Text Available Withania somnifera (L. Dunal (Indian ginseng, winter cherry, Solanaceae is widely used in traditional medicine. Roots are either chewed or used to prepare beverages (aqueous decocts. The major secondary metabolites of Withania somnifera are the withanolides, which are C-28-steroidal lactone triterpenoids. Withania somnifera extracts exert chemopreventive and anticancer activities in vitro and in vivo. The aims of the present in silico study were, firstly, to investigate whether tumor cells develop cross-resistance between standard anticancer drugs and withanolides and, secondly, to elucidate the molecular determinants of sensitivity and resistance of tumor cells towards withanolides. Using IC50 concentrations of eight different withanolides (withaferin A, withaferin A diacetate, 3-azerininylwithaferin A, withafastuosin D diacetate, 4-B-hydroxy-withanolide E, isowithanololide E, withafastuosin E, and withaperuvin and 19 established anticancer drugs, we analyzed the cross-resistance profile of 60 tumor cell lines. The cell lines revealed cross-resistance between the eight withanolides. Consistent cross-resistance between withanolides and nitrosoureas (carmustin, lomustin, and semimustin was also observed. Then, we performed transcriptomic microarray-based COMPARE and hierarchical cluster analyses of mRNA expression to identify mRNA expression profiles predicting sensitivity or resistance towards withanolides. Genes from diverse functional groups were significantly associated with response of tumor cells to withaferin A diacetate, e.g. genes functioning in DNA damage and repair, stress response, cell growth regulation, extracellular matrix components, cell adhesion and cell migration, constituents of the ribosome, cytoskeletal organization and regulation, signal transduction, transcription factors, and others.

  8. Correction: Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    Science.gov (United States)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Correction for `Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy' by Kyoung Sub Kim, et al., Nanoscale, 2016, DOI: 10.1039/c6nr02273a.

  9. Renaissance in tumor immunotherapy: possible combination with phototherapy (Conference Presentation)

    Science.gov (United States)

    Hamblin, Michael R.

    2016-03-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce highly toxic reactive oxygen species that destroy tumors. The ideal cancer treatment should target both the primary tumor and the metastases with minimal toxicity. This is best accomplished by educating the body's immune system to recognize the tumor as foreign so that after the primary tumor is destroyed, distant metastases will also be eradicated. PDT may accomplish this feat and stimulate long-term, specific anti-tumor immunity. PDT causes an acute inflammatory response, the rapid induction of large amounts of necrotic and apoptotic tumor cells, induction of damage-associated molecular patterns (DAMPS) including heat-shock proteins, stimulates tumor antigen presentation to naïve T-cells, and generation of cytotoxic T-cells that can destroy distant tumor metastases. By using various syngeneic mouse tumors in immunocompetent mice, we have studied specific PDT regimens related to tumor type as well as mouse genotype and phenotype. We have investigated the role of tumor-associated antigens in PDT-induced immune response by choosing mouse tumors that express: model defined antigen, naturally-occurring cancer testis antigen, and oncogenic virus-derived antigen. We studied the synergistic combination of low-dose cyclophosphamide and PDT that unmasks the PDT-induced immune response by depleting the immunosuppressive T-regulatory cells. PDT combined with immunostimulants (toll-like receptor ligands) can synergistically maximize the generation of anti-tumor immunity by activating dendritic cells and switching immunosuppressive macrophages to a tumor rejection phenotype. Tumors expressing defined tumor-associated antigens with known MHC class I peptides allows anti-tumor immunity to be quantitatively compared.

  10. Apoptotic markers in protozoan parasites

    Directory of Open Access Journals (Sweden)

    Fasel Nicolas

    2010-11-01

    Full Text Available Abstract The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

  11. Apoptotic markers in protozoan parasites.

    Science.gov (United States)

    Jiménez-Ruiz, Antonio; Alzate, Juan Fernando; Macleod, Ewan Thomas; Lüder, Carsten Günter Kurt; Fasel, Nicolas; Hurd, Hilary

    2010-11-09

    The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms.In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

  12. Modulation of tumor response to photodynamic therapy in severe combined immunodeficient (SCID) mice by adoptively transferred lymphoid cells

    Science.gov (United States)

    Korbelik, Mladen; Krosl, Gorazd; Krosl, Jana; Dougherty, Graeme J.

    1996-04-01

    Photodynamic treatment, consisting of intravenous injection of PhotofrinR (10 mg/kg) followed by exposure to 110 J/cm2 of 630 plus or minus 10 nm light 24 hours later, cured 100% of EMT6 tumors (murine mammary sarcoma) growing in syngeneic immunocompetent BALB/C mice. In contrast, the same treatment produced no cures of EMT6 tumors growing in either nude or SCID mice (immunodeficient strains). EMT6 tumors growing in BALB/C and SCID mice showed no difference in either the level of PhotofrinR accumulated per gram of tumor tissue, or the extent of tumor cell killing during the first 24 hours post photodynamic therapy (PDT). In an attempt to improve the sensitivity to PDT of EMT6 tumors growing in SCID mice, these hosts were given either splenic T lymphocytes or whole bone marrow from BALB/C mice. The adoptive transfer of lymphocytes 9 days before PDT was successful in delaying tumor recurrence but produced no cures. A better improvement in PDT response was obtained with tumors growing in SCID mice reconstituted with BALB/C bone marrow (tumor cure rate of 63%). The results of this study demonstrate that, at least with the EMT6 tumor model, antitumor immune activity mediated by lymphoid cell populations makes an important contribution to the curative effect of PDT.

  13. Patterns of DNA damage response in intracranial germ cell tumors versus glioblastomas reflect cell of origin rather than brain environment

    DEFF Research Database (Denmark)

    Bartkova, Jirina; Hoei-Hansen, Christina E; Krizova, Katerina

    2014-01-01

    The DNA damage response (DDR) machinery becomes commonly activated in response to oncogenes and during early stages of development of solid malignancies, with an exception of testicular germ cell tumors (TGCTs). The active DDR signaling evokes cell death or senescence but this anti-tumor barrier...... can be breached by defects in DDR factors, such as the ATM-Chk2-p53 pathway, thereby allowing tumor progression. The DDR barrier is strongly activated in brain tumors, particularly gliomas, due to oxidative damage and replication stress. Here, we took advantage of rare human primary intracranial germ...... cell tumors (PIGCTs), to address the roles of cell-intrinsic factors including cell of origin, versus local tissue environment, in the constitutive DDR activation in vivo. Immunohistochemical analysis of 7 biomarkers on a series of 21 PIGCTs (germinomas and other subtypes), 20 normal brain specimens...

  14. Choline molecular imaging with small-animal PET for monitoring tumor cellular response to photodynamic therapy of cancer

    Science.gov (United States)

    Fei, Baowei; Wang, Hesheng; Wu, Chunying; Meyers, Joseph; Xue, Liang-Yan; MacLennan, Gregory; Schluchter, Mark

    2009-02-01

    We are developing and evaluating choline molecular imaging with positron emission tomography (PET) for monitoring tumor response to photodynamic therapy (PDT) in animal models. Human prostate cancer (PC-3) was studied in athymic nude mice. A second-generation photosensitizer Pc 4 was used for PDT in tumor-bearing mice. MicroPET images with 11C-choline were acquired before PDT and 48 h after PDT. Time-activity curves of 11C-choline uptake were analyzed before and after PDT. For treated tumors, normalized choline uptake decreased significantly 48 h after PDT, compared to the same tumors pre-PDT (p detect early tumor response to PDT in the animal model of human prostate cancer.

  15. In situ crosslinked smart polypeptide nanoparticles for multistage responsive tumor-targeted drug delivery

    Science.gov (United States)

    Yi, Huqiang; Liu, Peng; Sheng, Nan; Gong, Ping; Ma, Yifan; Cai, Lintao

    2016-03-01

    Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible zeta potential around -30 mV at pH 7.4, but switched to +15 mV at pH 5.0. Moreover, FD-NPs effectively loaded DOX with a loading capacity at 15.7 wt%. At pH 7.4, only 24.5% DOX was released within 60 h. However, at pH 5.0, the presence of 10 mM DTT dramatically accelerated DOX release with over 90% of DOX released within 10 h. Although the FD-NPs only enhanced DOX uptake in FA receptor positive (FR+) cancer cells at pH 7.4, a weak acidic condition promoted FD-NP-facilitated DOX uptake in both FR+ HeLa and FR- A549 cells, as well as significantly improving cellular binding and end/lysosomal escape. In vivo studies in a HeLa cancer model demonstrated that the charge-reversible FD-NPs delivered DOX into tumors more effectively than charge-irreversible nanoparticles. Hence, these multistage responsive FD-NPs would serve as highly efficient drug vectors for targeted cancer chemotherapy.Smart tumor-targeted drug delivery is crucial for improving the effect of chemotherapy and reducing the adverse effects. Here, we synthesized a smart polypeptide copolymer based on n-butylamine-poly(l-lysine)-b-poly(l-cysteine) (PLL-PLC) with functionalization of folic acid (FA) and 1,2-dicarboxylic-cyclohexene anhydride (DCA) for multistage responsive tumor-targeted drug delivery. The copolymers (FA-PLL(DCA)-PLC) spontaneously crosslinked in situ to form redox and pH dual responsive FA-PLL(DCA)-PLC nanoparticles (FD-NPs), which had a reversible

  16. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient

    Science.gov (United States)

    Sun, E.; Gao, Y.; Chen, J.; Roberts, A. I.; Wang, X.; Chen, Z.; Shi, Y.

    2004-01-01

    Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.

  17. Phosphorylation of Puma modulates its apoptotic function by regulating protein stability

    OpenAIRE

    M. Fricker; O'Prey, J; Tolkovsky, A. M.; Ryan, K.M.

    2010-01-01

    Puma is a potent BH3-only protein that antagonises anti-apoptotic Bcl-2 proteins, promotes Bax/Bak activation and has an essential role in multiple apoptotic models. Puma expression is normally kept very low, but can be induced by several transcription factors including p53, p73, E2F1 and FOXO3a, whereby it can induce an apoptotic response. As Puma can to bind and inactivate all anti-apoptotic members of the Bcl-2 family, its activity must be tightly controlled. We report here, for the first ...

  18. SU-E-J-273: Simulation of the Radiation Response of Hypoxic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, I [Pontificia Universidad Catolica de Chile, Santiago (Chile); Peschke, P; Karger, C [German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-06-01

    Purpose: In radiotherapy, it is important to predict the response of tumour to irradiation prior to the treatment. Mathematical modelling of tumour control probability (TCP) based on the dose distribution, medical imaging and other biological information may help to improve this prediction and to optimize the treatment plan. The aim of this work is to develop an image based 3D multiscale radiobiological model, which describes the growth and the response to radiotherapy of hypoxic tumors. Methods: The computer model is based on voxels, containing tumour, normal (including capillary) and dead cells. Killing of tumour cells due to irradiation is calculated by the Linear Quadratic Model (extended for hypoxia), and the proliferation and resorption of cells are modelled by exponential laws. The initial shape of the tumours is taken from CT images and the initial vascular and cell density information from PET and/or MR images. Including the fractionation regime and the physical dose distribution of the radiation treatment, the model simulates the spatial-temporal evolution of the tumor. Additionally, the dose distribution may be biologically optimized. Results: The model describes the appearance of hypoxia during tumour growth and the reoxygenation processes during radiotherapy. Among other parameters, the TCP is calculated for different dose distributions. The results are in accordance with published results. Conclusion: The simulation model may contribute to the understanding of the influence of biological parameters on tumor response during treatment, and specifically on TCP. It may be used to implement dose-painting approaches. Experimental and clinical validation is needed. This study is supported by a grant from the Ministry of Education of Chile, Programa Mece Educacion Superior (2)

  19. Nonrigid registration algorithm for longitudinal breast MR images and the preliminary analysis of breast tumor response

    Science.gov (United States)

    Li, Xia; Dawant, Benoit M.; Welch, E. Brian; Chakravarthy, A. Bapsi; Freehardt, Darla; Mayer, Ingrid; Kelley, Mark; Meszoely, Ingrid; Gore, John C.; Yankeelov, Thomas E.

    2009-02-01

    Although useful for the detection of breast cancers, conventional imaging methods, including mammography and ultrasonography, do not provide adequate information regarding response to therapy. Dynamic contrast enhanced MRI (DCE-MRI) has emerged as a promising technique to provide relevant information on tumor status. Consequently, accurate longitudinal registration of breast MR images is critical for the comparison of changes induced by treatment at the voxel level. In this study, a nonrigid registration algorithm is proposed to allow for longitudinal registration of breast MR images obtained throughout the course of treatment. We accomplish this by modifying the adaptive bases algorithm (ABA) through adding a tumor volume preserving constraint in the cost function. The registration results demonstrate the proposed algorithm can successfully register the longitudinal breast MR images and permit analysis of the parameter maps. We also propose a novel validation method to evaluate the proposed registration algorithm quantitatively. These validations also demonstrate that the proposed algorithm constrains tumor deformation well and performs better than the unconstrained ABA algorithm.

  20. Immunotherapy for prostate cancer: Lessons from responses to tumor-associated antigens

    Directory of Open Access Journals (Sweden)

    Harm eWestdorp

    2014-05-01

    Full Text Available Prostate cancer is the most common cancer in men and the second most common cause of cancer-related death in men. In recent years, novel therapeutic options for prostate cancer have been developed and studied extensively in clinical trials. Sipuleucel-T is the first cell-based immunotherapeutic vaccine for treatment of cancer. This vaccine consists of autologous mononuclear cells stimulated and loaded with an immunostimulatory fusion protein containing the prostate tumor antigen prostate acid posphatase. The choice of antigen might be key for the efficiency of cell-based immunotherapy. Depending on the treatment strategy, target antigens should be immunogenic, abundantly expressed by tumor cells, and preferably functionally important for the tumor to prevent loss of antigen expression. Autoimmune responses have been reported against several antigens expressed in the prostate, indicating that prostate cancer is a suitable target for immunotherapy. In this review, we will discuss prostate cancer antigens that exhibit immunogenic features and/or have been targeted in immunotherapeutic settings with promising results, and we highlight the hurdles and opportunities for cancer immunotherapy.

  1. Vascular Profile Characterization of Liver Tumors by Magnetic Resonance Imaging Using Hemodynamic Response Imaging in Mice

    Directory of Open Access Journals (Sweden)

    Yifat Edrei

    2011-03-01

    Full Text Available Recently, we have demonstrated the feasibility of using hemodynamic response imaging (HRI, a functional magnetic resonance imaging (MRI method combined with hypercapnia and hyperoxia, for monitoring vascular changes during liver pathologies without the need of contrast material. In this study, we evaluated HRI ability to assess changes in liver tumor vasculature during tumor establishment, progression, and antiangiogenic therapy. Colorectal adenocarcinoma cells were injected intrasplenically to model colorectal liver metastasis (CRLM and the Mdr2 knockout mice were used to model primary hepatic tumors. Hepatic perfusion parameters were evaluated using the HRI protocol and were compared with contrast-enhanced (CE MRI. The hypovascularity and the increased arterial blood supply in well-defined CRLM were demonstrated by HRI. In CRLM-bearing mice, the entire liver perfusion was attenuated as the HRI maps were significantly reduced by 35%. This study demonstrates that the HRI method showed enhanced sensitivity for small CRLM (1–2 mm detection compared with CE-MRI (82% versus 38%, respectively. In addition, HRI could demonstrate the vasculature alteration during CRLM progression (arborized vessels, which was further confirmed by histology. Moreover, HRI revealed the vascular changes induced by rapamycin treatment. Finally, HRI facilitates primary hepatic tumor characterization with good correlation to the pathologic differentiation. The HRI method is highly sensitive to subtle hemodynamic changes induced by CRLM and, hence, can function as an imaging tool for understanding the hemodynamic changes occurring during CRLM establishment, progression, and antiangiogenic treatment. In addition, this method facilitated the differentiation between different types of hepatic lesions based on their vascular profile noninvasively.

  2. Interplay between DNA tumor viruses and the host DNA damage response.

    Science.gov (United States)

    McFadden, Karyn; Luftig, Micah A

    2013-01-01

    Viruses encounter many challenges within host cells in order to replicate their nucleic acid. In the case of DNA viruses, one challenge that must be overcome is recognition of viral DNA structures by the host DNA damage response (DDR) machinery. This is accomplished in elegant and unique ways by different viruses as each has specific needs and sensitivities dependent on its life cycle. In this review, we focus on three DNA tumor viruses and their interactions with the DDR. The viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) account for nearly all of the virus-associated human cancers worldwide. These viruses have also been excellent models for the study of oncogenic virus-mediated cell transformation. In this review, we will discuss how each of these viruses engage and subvert aspects of the host DDR. The first level of DDR engagement is a result of the genetic linkage between the oncogenic potential of these viruses and their ability to replicate. Namely, the promotion of cells from quiescence into the cell cycle to facilitate virus replication can be sensed through aberrant cellular DNA replication structures which activate the DDR and hinder cell transformation. DNA tumor viruses subvert this growth-suppressive DDR through changes in viral oncoprotein expression which ultimately facilitate virus replication. An additional level of DDR engagement is through direct detection of replicating viral DNA. These interactions parallel those observed in other DNA virus systems in that the need to subvert these intrinsic sensors of aberrant DNA structure in order to replicate must be in place. DNA tumor viruses are no exception. This review will cover the molecular features of DNA tumor virus interactions with the host DDR and the consequences for virus replication.

  3. A non-apoptotic role for BAX and BAK in eicosanoid metabolism

    Science.gov (United States)

    Zhang, Tejia; Walensky, Loren D.; Saghatelian, Alan

    2015-01-01

    BCL-2 proteins are key regulators of programmed cell death. The interplay between pro- and anti-apoptotic BCL-2 members has important roles in many cancers. In addition to their apoptotic function, recent evidence supports key non-apoptotic roles for several BCL-2 proteins. We used an unbiased lipidomics strategy to reveal that the pro-apoptotic proteins BAX, and to a lesser extent BAK, regulate the cellular inflammatory response by mediating COX-2 expression and prostaglandin biosynthesis. COX-2 upregulation in response to the bacterial endotoxin lipopolysaccharide is blunted in the absence of BAX, and Bax−/− mouse embryonic fibroblasts display altered kinetics of NFκB and MAPK signaling following endotoxin treatment. Our approach uncovers a novel, non-apoptotic function for BAX in regulation of the cellular inflammatory response and suggests that inflammation and apoptosis are more tightly connected than previously anticipated. PMID:25815636

  4. Resveratrol engages selective apoptotic signals in gastric adenocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    William L Riles; Jason Erickson; Sanjay Nayyar; Mary Jo Atten; Bashar M Attar; Oksana Holian

    2006-01-01

    AIM: To investigate the intracellular apoptotic signals engaged by resveratrol in three gastric adenocarcinoma cancer cell lines, two of which (AGS and SNU-1) express p53 and one (KATO-Ⅲ) with deleted p53.METHODS: Nuclear fragmentation was used to quantitate apoptotic cells; caspase activity was determined by photometric detection of cleaved substrates; formation of oxidized cytochrome C was used to measure cytochrome C activity, and Western blot analysis was used to determine protein expression.RESULTS: Gastric cancer cells, irrespective of their p53 status, responded to resveratrol with fragmentation of DNA and cleavage of nuclear lamins A and B and PARP, Resveratrol, however, has no effect on mitochondria-associated apoptotic proteins Bcl-2, Bclxl, Bax, Bid or Smac/Diablo, and did not promote subcellular redistribution of cytochrome C, indicating that resveratrol-induced apoptosis of gastric carcinoma cells does not require breakdown of mitochondrial membrane integrity. Resveratrol up-regulated p53 protein in SNU-1 and AGS cells but there was a difference in response of intracellular apoptotic signals between these cell lines.SNU-1 cells responded to resveratrol treatment with down-regulation of survivin, whereas in AGS and KATO-Ⅲ cells resveratrol stimulated caspase 3 and cytochrome C oxidase activities.CONCLUSION: These findings indicate that even within a specific cancer the intracellular apoptotic signals engaged by resveratrol are cell type dependent and suggest that such differences may be related to differentiation or lack of differentiation of these cells.

  5. Categorizing extent of tumor cell death response to cancer therapy using quantitative ultrasound spectroscopy and maximum mean discrepancy.

    Science.gov (United States)

    Gangeh, Mehrdad J; Sadeghi-Naini, Ali; Diu, Michael; Tadayyon, Hadi; Kamel, Mohamed S; Czarnota, Gregory J

    2014-06-01

    Quantitative ultrasound (QUS) spectroscopic techniques in conjunction with maximum mean discrepancy (MMD) have been proposed to detect, and to classify noninvasively the levels of cell death in response to cancer therapy administration in tumor models. Evaluation of xenograft tumor responses to cancer treatments were carried out using conventional-frequency ultrasound at different times after chemotherapy exposure. Ultrasound data were analyzed using spectroscopic techniques and multi-parametric QUS spectral maps were generated. MMD was applied as a distance criterion, measuring alterations in each tumor in response to chemotherapy, and the extent of cell death was classified into less/more than 20% and 40% categories. Statistically significant differences were observed between "pre-" and "post-treatment" groups at different times after chemotherapy exposure, suggesting a high capability of proposed framework for detecting tumor response noninvasively. Promising results were also obtained for categorizing the extent of cell death response in each tumor using the proposed framework, with gold standard histological quantification of cell death as ground truth. The best classification results were obtained using MMD when applied on histograms of QUS parametric maps. In this case, classification accuracies of 84.7% and 88.2% were achieved for categorizing extent of tumor cell death into less/more than 20% and 40%, respectively.

  6. Pro-apoptotic gene regulation in the Caribbean fruit fly, Anastrepha suspensa

    Science.gov (United States)

    Transcriptional activation of pro-apoptotic genes in response to cytotoxic stimuli is a conserved feature of the cell death pathway proposed for metazoans. However, understanding the extent of this conservation in insects, as well as other organisms, has been limited by the lack of known pro-apoptot...

  7. Glycolysis-related gene induction and ATP reduction during fractionated irradiation. Markers for radiation responsiveness of human tumor xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Goetze, K.; Meyer, S.S.; Mueller-Klieser, W. [University Medical Center Mainz Univ. (Germany). Inst. of Physiology and Pathophysiology; Yaromina, A. [Technical Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; Zips, D. [University Hospital Tuebingen (Germany). Dept. of Radiation Oncology; Baumann, M. [Technical Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; University Hospital Dresden Technical Univ. Dresden (Germany). Dept. of Radiation Oncology

    2013-09-15

    Background and purpose: Lactate was previously shown to be a prognostic but not a predictive pre-therapeutic marker for radiation response of tumor xenografts. We hypothesize that metabolic changes during fractionated irradiation may restrict the predictiveness of lactate regarding tumor radiosensitivity. Materials and methods: Tumor xenografts were generated in nude mice by implanting 4 head and neck squamous cell carcinoma lines with different sensitivities to fractionated irradiation. Tumors were irradiated with up to 15 fractions of 2 Gy over a period of 3 weeks, and ATP and lactate levels were measured in vital tumor areas with induced metabolic bioluminescence imaging. Corresponding changes in mRNA expression of glycolysis-related genes were determined by quantitative RT-PCR. Results: Lactate content decreased significantly in 3 out of 4 cell lines in the course of irradiation showing no correlation with cell line-specific radiosensitivity. Radiation-induced changes in ATP levels and glycolysis-related mRNA expression, however, only occurred in radiosensitive or intermediately radioresistant xenografts, whereas these parameters remained unchanged in radioresistant tumors. Conclusion: Sensitivity-related differences in the transcriptional response of tumors to radiotherapy may be exploited in the clinic for better individualization of tumor treatment. (orig.)

  8. TIP-1 translocation onto the cell plasma membrane is a molecular biomarker of tumor response to ionizing radiation.

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    Full Text Available BACKGROUND: Tumor response to treatment has been generally assessed with anatomic and functional imaging. Recent development of in vivo molecular and cellular imaging showed promise in time-efficient assessment of the therapeutic efficacy of a prescribed regimen. Currently, the in vivo molecular imaging is limited with shortage of biomarkers and probes with sound biological relevance. We have previously shown in tumor-bearing mice that a hexapeptide (HVGGSSV demonstrated potentials as a molecular imaging probe to distinguish the tumors responding to ionizing radiation (IR and/or tyrosine kinase inhibitor treatment from those of non-responding tumors. METHODOLOGY/PRINCIPAL FINDINGS: In this study we have studied biological basis of the HVGGSSV peptide binding within the irradiated tumors by use of tumor-bearing mice and cultured cancer cells. The results indicated that Tax interacting protein 1 (TIP-1, also known as Tax1BP3 is a molecular target that enables the selective binding of the HVGGSSV peptide within irradiated xenograft tumors. Optical imaging and immunohistochemical staining indicated that a TIP-1 specific antibody demonstrated similar biodistribution as the peptide in tumor-bearing mice. The TIP-1 antibody blocked the peptide from binding within irradiated tumors. Studies on both of human and mouse lung cancer cells showed that the intracellular TIP-1 relocated to the plasma membrane surface within the first few hours after exposure to IR and before the onset of treatment associated apoptosis and cell death. TIP-1 relocation onto the cell surface is associated with the reduced proliferation and the enhanced susceptibility to the subsequent IR treatment. CONCLUSIONS/SIGNIFICANCE: This study by use of tumor-bearing mice and cultured cancer cells suggested that imaging of the radiation-inducible TIP-1 translocation onto the cancer cell surface may predict the tumor responsiveness to radiation in a time-efficient manner and thus tailor

  9. Assessment of early tumor response to cytotoxic chemotherapy with dynamic contrast-enhanced ultrasound in human breast cancer xenografts.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Wang

    Full Text Available There is a strong need to assess early tumor response to chemotherapy in order to avoid adverse effects from unnecessary chemotherapy and allow early transition to second-line therapy. This study was to quantify tumor perfusion changes with dynamic contrast-enhanced ultrasound (CEUS in the evaluation of early tumor response to cytotoxic chemotherapy. Sixty nude mice bearing with MCF-7 breast cancer were administrated with either adriamycin or sterile saline. CEUS was performed on days 0, 2, 4 and 6 of the treatment, in which time-signal intensity (SI curves were obtained from the intratumoral and depth-matched liver parenchyma. Four perfusion parameters including peak enhancement (PE, area under the curve of wash-in (WiAUC, wash-in rate (WiR and wash-in perfusion index (WiPI were calculated from perfusion curves and normalized with respect to perfusion of adjacent liver parenchyma. Histopathological analysis was conducted to evaluate tumor perfusion, tumor cell density, microvascular density (MVD and proliferating cell density. Significant decreases of tumor normalized perfusion parameters (i.e., nPE, nWiAUC, nWiR and nWiPI were noticed between adriamycin-treated and control groups (P0.05. Significant decreases of tumor perfusion, tumor cell density, MVD and proliferating cell density were seen in adrianycin-treated group 2 days after therapy when compared to control group (P<0.001. Dynamic CEUS for quantification of tumor perfusion could be used for early detection of cancer response to cytotoxic chemotherapy prior to notable tumor shrinkage.

  10. Development of apoptosis in irradiated murine tumors as a function of time and dose.

    Science.gov (United States)

    Stephens, L C; Hunter, N R; Ang, K K; Milas, L; Meyn, R E

    1993-07-01

    In a previous paper (Radiat. Res. 127, 308-316, 1991), we reported that a moderately radiosensitive, transplantable murine ovarian carcinoma (OCaI) displayed apoptosis after irradiation whereas a radioresistant hepatocellular carcinoma (HCaI) did not. These initial observations have been followed up in this detailed analysis of the development of apoptosis in these two tumors as a function of time and dose. Histological sections of OCaI and HCaI carcinomas were scored at various times between 0.5 and 24 h after single doses of 2.5 or 25 Gy gamma radiation for the incidence of apoptosis. The percentage of nuclei undergoing apoptosis in untreated tumors was 5% in OCaI and 0.6% in HCaI. The peak in the number of apoptotic bodies occurred in the OCaI tumors 3-5 h after either dose. After 2.5 Gy, the peak incidence was about 20% and after 25 Gy it was about 30%. Irrespective of dose, HCaI tumors had an incidence of apoptosis of less than 3%. Based on the results of this time course, 4 h after irradiation was chosen for the determination of the dose response, over doses ranging from 2.5 to 25 Gy. The dose response for the OCaI tumors reached a plateau at 25-30% apoptotic nuclei after doses of about 7.5 Gy and above. Autoradiographic analysis of histological sections from mice injected with [3H]thymidine showed that some apoptotic bodies in the OCaI tumors arose from cycling cells. These results confirm that the apoptotic mode of cell death may represent an important response in some irradiated tumors.

  11. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses.

    Directory of Open Access Journals (Sweden)

    Li-Xin Wang

    Full Text Available Lack of immunogenicity of cancer cells has been considered a major reason for their failure in induction of a tumor specific T cell response. In this paper, we present evidence that decitabine (DAC, a DNA methylation inhibitor that is currently used for the treatment of myelodysplastic syndrome (MDS, acute myeloid leukemia (AML and other malignant neoplasms, is capable of eliciting an anti-tumor cytotoxic T lymphocyte (CTL response in mouse EL4 tumor model. C57BL/6 mice with established EL4 tumors were treated with DAC (1.0 mg/kg body weight once daily for 5 days. We found that DAC treatment resulted in infiltration of IFN-γ producing T lymphocytes into tumors and caused tumor rejection. Depletion of CD8(+, but not CD4(+ T cells resumed tumor growth. DAC-induced CTL response appeared to be elicited by the induction of CD80 expression on tumor cells. Epigenetic evidence suggests that DAC induces CD80 expression in EL4 cells via demethylation of CpG dinucleotide sites in the promoter of CD80 gene. In addition, we also showed that a transient, low-dose DAC treatment can induce CD80 gene expression in a variety of human cancer cells. This study provides the first evidence that epigenetic modulation can induce the expression of a major T cell co-stimulatory molecule on cancer cells, which can overcome immune tolerance, and induce an efficient anti-tumor CTL response. The results have important implications in designing DAC-based cancer immunotherapy.

  12. Heterogeneous response of different tumor cell lines to methotrexate-coupled nanoparticles in presence of hyperthermia.

    Science.gov (United States)

    Stapf, Marcus; Pömpner, Nadine; Teichgräber, Ulf; Hilger, Ingrid

    2016-01-01

    Today, the therapeutic efficacy of cancer is restricted by the heterogeneity of the response of tumor cells to chemotherapeutic drugs. Since those therapies are also associated with severe side effects in nontarget organs, the application of drugs in combination with nanocarriers for targeted therapy has been suggested. Here, we sought to assess whether the coupling of methotrexate (MTX) to magnetic nanoparticles (MNP) could serve as a valuable tool to circumvent the heterogeneity of tumor cell response to MTX by the combined treatment with hyperthermia. To this end, we investigated five breast cancer cell lines of different origin and with different mutational statuses, as well as a bladder cancer cell line in terms of their response to exposure to MTX as a free drug or after its coupling to MNP as well as in presence/absence of hyperthermia. We also assessed whether the effects could be connected to the cell line-specific expression of proteins related to the uptake and efflux of MTX and MNP. Our results revealed a very heterogeneous and cell line-dependent response to an exposure with MTX-coupled MNP (MTX-MNP), which was almost comparable to the efficacy of free MTX in the same cell line. Moreover, a cell line-specific and preferential uptake of MTX-MNP compared with MNP alone was found (probably by receptor-mediated endocytosis), agreeing with the observed cytotoxic effects. Opposed to this, the expression pattern of several cell membrane transport proteins noted for MTX uptake and efflux was only by tendency in agreement with the cellular toxicity of MTX-MNP in different cell lines. Higher cytotoxic effects were achieved by exposing cells to a combination of MTX-MNP and hyperthermal treatment, compared with MTX or thermo-therapy alone. However, the heterogeneity in the response of the tumor cell lines to MTX could not be completely abolished - even after its combination with MNP and/or hyperthermia - and the application of higher thermal dosages might be

  13. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... signaling also affected the expression of apoptosis/cell death-related genes (Fas, Rip, p53), matrix metalloproteinases (MMP3, MMP9, MMP12), and their inhibitors (TIMP1), suggesting a role of TNFR1 in extracellular matrix remodeling after injury. However, GDNF, NGF, and BDNF expression were not affected...... by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury....

  14. Prediction of outcome in buccal cancers treated with radical radiotherapy based on the early tumor response

    Directory of Open Access Journals (Sweden)

    G V Giri

    2015-01-01

    Full Text Available Aim of the Study: Aim was to assess the clinical significance of the rate of tumor regression in carcinoma buccal mucosa undergoing radical radiotherapy. Materials and Methods: Sixty six patients were enrolled in the study with proven buccal cancers requiring radical radiotherapy, from 1990 to 1996. Radiotherapy was delivered using a combination of external beam and brachytherapy with preloaded cesium 137 needles. The response to the radiation was assessed at the completion of external beam radiation and 6 weeks after brachytherapy. An analysis correlating various parameters influencing the long term disease free survival and overall survival was done. Results: Response assessed at the end of external beam radiation correlated strongly with the overall survival and the disease free interval (P=0.000. No other factor influenced the survival. Conclusion: The rate of the tumor regression can predict the overall outcome in patients with buccal cancers treated with radiation. Completion of the planned course of radiation in patients who do not show a substantial reduction in size by 4.5 weeks of conventional radiation does not improve the results.

  15. Ex vivo treatment response of primary tumors and/or associated metastases for preclinical and clinical development of therapeutics.

    Science.gov (United States)

    Corben, Adriana D; Uddin, Mohammad M; Crawford, Brooke; Farooq, Mohammad; Modi, Shanu; Gerecitano, John; Chiosis, Gabriela; Alpaugh, Mary L

    2014-10-02

    The molecular analysis of established cancer cell lines has been the mainstay of cancer research for the past several decades. Cell culture provides both direct and rapid analysis of therapeutic sensitivity and resistance. However, recent evidence suggests that therapeutic response is not exclusive to the inherent molecular composition of cancer cells but rather is greatly influenced by the tumor cell microenvironment, a feature that cannot be recapitulated by traditional culturing methods. Even implementation of tumor xenografts, though providing a wealth of information on drug delivery/efficacy, cannot capture the tumor cell/microenvironment crosstalk (i.e., soluble factors) that occurs within human tumors and greatly impacts tumor response. To this extent, we have developed an ex vivo (fresh tissue sectioning) technique which allows for the direct assessment of treatment response for preclinical and clinical therapeutics development. This technique maintains tissue integrity and cellular architecture within the tumor cell/microenvironment context throughout treatment response providing a more precise means to assess drug efficacy.

  16. Potential for Modulation of the Fas Apoptotic Pathway by Epidermal Growth Factor in Sarcomas

    Directory of Open Access Journals (Sweden)

    David E. Joyner

    2011-01-01

    Full Text Available One important mechanism by which cancer cells parasitize their host is by escaping apoptosis. Thus, selectively facilitating apoptosis is a therapeutic mechanism by which oncotherapy may prove highly advantageous. One major apoptotic pathway is mediated by Fas ligand (FasL. The death-inducing signaling Ccmplex (DISC and subsequent death-domain aggregations are created when FasL is bound by its receptor thereby enabling programmed cell death. Conceptually, if a better understanding of the Fas pathway can be garnered, an oncoselective prodeath therapeutic approach can be tailored. Herein, we propose that EGF and CTGF play essential roles in the regulation of the Fas apoptotic pathway in sarcomas. Tumor and in vitro data suggest viable cells counter the prodeath signal induced by FasL by activating EGF, which in turn induces prosurvival CTGF. The prosurvival attributes of CTGF ultimately predominate over the death-inducing FasL. Cells destined for elimination inhibit this prosurvival response via a presently undefined pathway. This scenario represents a novel role for EGF and CTGF as regulators of the Fas pathway in sarcomas.

  17. The response to epidermal growth factor of human maxillary tumor cells in terms of tumor growth, invasion and expression of proteinase inhibitors.

    Science.gov (United States)

    Mizoguchi, H; Komiyama, S; Matsui, K; Hamanaka, R; Ono, M; Kiue, A; Kobayashi, M; Shimizu, N; Welgus, H G; Kuwano, M

    1991-11-11

    Three cancer cell lines, IMC-2, IMC-3 and IMC-4, were established from a single tumor of a patient with maxillary cancer. We examined responses to epidermal growth factor (EGF) of these 3 cell lines with regard to cell growth and tumor invasion. The growth rate of IMC-2 in nude mice was markedly faster than that of the IMC-3 and IMC-4 cell lines. Assay for invasion through fibrin gels showed significantly enhanced invasive capacity of IMC-2 cells in response to EGF, but no change for IMC-3 and IMC-4 cells. We examined response to EGF of IMC-2 cells with regard to expression of a growth-related oncogene (c-fos), proteinases and their inhibitors. Expression of c-fos was transiently increased in IMC-2 cells at rates comparable to those seen in the 2 other lines in the presence of EGF. There was no apparent effect of EGF on the expression of urokinase-type plasminogen activator and 72-kDa type-IV collagenase in IMC-2 cells. In contrast, EGF specifically enhanced the expression of plasminogen activator inhibitor-I (PAI-I) and tissue inhibitor of metalloproteinases-I (TIMP-I) in IMC-2 cells. Our data suggest that proteinase inhibitors or other related factors may play an important role in tumor growth and invasion in response to EGF.

  18. Early Detection of Tumor Response by FLT/MicroPET Imaging in a C26 Murine Colon Carcinoma Solid Tumor Animal Model

    Directory of Open Access Journals (Sweden)

    Wan-Chi Lee

    2011-01-01

    Full Text Available Fluorine-18 fluorodeoxyglucose (18F-FDG positron emission tomography (PET imaging demonstrated the change of glucose consumption of tumor cells, but problems with specificity and difficulties in early detection of tumor response to chemotherapy have led to the development of new PET tracers. Fluorine-18-fluorothymidine (18F-FLT images cellular proliferation by entering the salvage pathway of DNA synthesis. In this study, we evaluate the early response of colon carcinoma to the chemotherapeutic drug, lipo-Dox, in C26 murine colorectal carcinoma-bearing mice by 18F-FDG and 18F-FLT. The male BALB/c mice were bilaterally inoculated with 1×105 and 1×106 C26 tumor cells per flank. Mice were intravenously treated with 10 mg/kg lipo-Dox at day 8 after 18F-FDG and 18F-FLT imaging. The biodistribution of 18F-FDG and 18F-FLT were followed by the microPET imaging at day 9. For the quantitative measurement of microPET imaging at day 9, 18F-FLT was superior to 18F-FDG for early detection of tumor response to Lipo-DOX at various tumor sizes (<0.05. The data of biodistribution showed similar results with those from the quantification of SUV (standard uptake value by microPET imaging. The study indicates that 18F-FLT/microPET is a useful imaging modality for early detection of chemotherapy in the colorectal mouse model.

  19. Personalized Circulating Tumor DNA Biomarkers Dynamically Predict Treatment Response and Survival In Gynecologic Cancers.

    Directory of Open Access Journals (Sweden)

    Elena Pereira

    Full Text Available High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools.Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival.Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic dilemma and a potential

  20. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    G.P. Amarante-Mendes

    1999-09-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  1. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    Amarante-Mendes G.P.

    1999-01-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  2. MiR-27b targets PPARγ to inhibit growth, tumor progression and the inflammatory response in neuroblastoma cells.

    Science.gov (United States)

    Lee, J-J; Drakaki, A; Iliopoulos, D; Struhl, K

    2012-08-16

    The peroxisome proliferators-activated receptor (PPAR)γ pathway is involved in cancer, but it appears to have both tumor suppressor and oncogenic functions. In neuroblastoma cells, miR-27b targets the 3' untranslated region of PPARγ and inhibits its mRNA and protein expression. miR-27b overexpression or PPARγ inhibition blocks cell growth in vitro and tumor growth in mouse xenografts. PPARγ activates expression of the pH regulator NHE1, which is associated with tumor progression. Lastly, miR-27b through PPARγ regulates nuclear factor-κB activity and transcription of inflammatory target genes. Thus, in neuroblastoma, miR-27b functions as a tumor suppressor by inhibiting the tumor-promoting function of PPARγ, which triggers an increased inflammatory response. In contrast, in breast cancer cells, PPARγ inhibits NHE1 expression and the inflammatory response, and it functions as a tumor suppressor. We suggest that the ability of PPARγ to promote or suppress tumor formation is linked to cell type-specific differences in regulation of NHE1 and other target genes.

  3. Myeloid-derived suppressor cells modulate immune responses independently of NADPH oxidase in the ovarian tumor microenvironment in mice.

    Directory of Open Access Journals (Sweden)

    Heidi E Godoy

    Full Text Available The phagocyte NADPH oxidase generates superoxide anion and downstream reactive oxidant intermediates in response to infectious threat, and is a critical mediator of antimicrobial host defense and inflammatory responses. Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of immature myeloid cells that are recruited by cancer cells, accumulate locally and systemically in advanced cancer, and can abrogate anti-tumor immunity. Prior studies have implicated the phagocyte NADPH oxidase as being an important component promoting MDSC accumulation and immunosuppression in cancer. We therefore used engineered NADPH oxidase-deficient (p47 (phox-/- mice to delineate the role of this enzyme complex in MDSC accumulation and function in a syngeneic mouse model of epithelial ovarian cancer. We found that the presence of NADPH oxidase did not affect tumor progression. The accumulation of MDSCs locally and systemically was similar in tumor-bearing wild-type (WT and p47 (phox-/- mice. Although MDSCs from tumor-bearing WT mice had functional NADPH oxidase, the suppressive effect of MDSCs on ex vivo stimulated T cell proliferation was NADPH oxidase-independent. In contrast to other tumor-bearing mouse models, our results show that MDSC accumulation and immunosuppression in syngeneic epithelial ovarian cancer is NADPH oxidase-independent. We speculate that factors inherent to the tumor, tumor microenvironment, or both determine the specific requirement for NADPH oxidase in MDSC accumulation and function.

  4. Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73

    OpenAIRE

    2009-01-01

    Abstract Background The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the ...

  5. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn's disease.

    Science.gov (United States)

    Atreya, Raja; Neumann, Helmut; Neufert, Clemens; Waldner, Maximilian J; Billmeier, Ulrike; Zopf, Yurdagül; Willma, Marcus; App, Christine; Münster, Tino; Kessler, Hermann; Maas, Stefanie; Gebhardt, Bernd; Heimke-Brinck, Ralph; Reuter, Eva; Dörje, Frank; Rau, Tilman T; Uter, Wolfgang; Wang, Thomas D; Kiesslich, Ralf; Vieth, Michael; Hannappel, Ewald; Neurath, Markus F

    2014-03-01

    As antibodies to tumor necrosis factor (TNF) suppress immune responses in Crohn's disease by binding to membrane-bound TNF (mTNF), we created a fluorescent antibody for molecular mTNF imaging in this disease. Topical antibody administration in 25 patients with Crohn's disease led to detection of intestinal mTNF(+) immune cells during confocal laser endomicroscopy. Patients with high numbers of mTNF(+) cells showed significantly higher short-term response rates (92%) at week 12 upon subsequent anti-TNF therapy as compared to patients with low amounts of mTNF(+) cells (15%). This clinical response in the former patients was sustained over a follow-up period of 1 year and was associated with mucosal healing observed in follow-up endoscopy. These data indicate that molecular imaging with fluorescent antibodies has the potential to predict therapeutic responses to biological treatment and can be used for personalized medicine in Crohn's disease and autoimmune or inflammatory disorders.

  6. Comparison of Vaccine-Induced Effector CD8 T Cell Responses Directed against Self- and Non-Self-Tumor Antigens

    DEFF Research Database (Denmark)

    Pedersen, Sara R; Sørensen, Maria R; Buus, Søren

    2013-01-01

    It is generally accepted that CD8 T cells play a major role in tumor control, yet vaccination aimed at eliciting potent CD8 T cell responses are rarely efficient in clinical trials. To try and understand why this is so, we have generated potent adenoviral vectors encoding the endogenous tumor Ags...... that low avidity of the self-TA-specific CD8 T cells may represent a major obstacle for efficient immunotherapy of cancer....

  7. Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy

    Directory of Open Access Journals (Sweden)

    Cervigne Nilva K

    2010-05-01

    Full Text Available Abstract Background Human osteosarcoma is the most common pediatric bone tumor. There is limited understanding of the molecular mechanisms underlying osteosarcoma oncogenesis, and a lack of good diagnostic as well as prognostic clinical markers for this disease. Recent discoveries have highlighted a potential role of a number of genes including: RECQL4, DOCK5, SPP1, RUNX2, RB1, CDKN1A, P53, IBSP, LSAMP, MYC, TNFRSF1B, BMP2, HISTH2BE, FOS, CCNB1, and CDC5L. Methods Our objective was to assess relative expression levels of these 16 genes as potential biomarkers of osteosarcoma oncogenesis and chemotherapy response in human tumors. We performed quantitative expression analysis in a panel of 22 human osteosarcoma tumors with differential response to chemotherapy, and 5 normal human osteoblasts. Results RECQL4, SPP1, RUNX2, and IBSP were significantly overexpressed, and DOCK5, CDKN1A, RB1, P53, and LSAMP showed significant loss of expression relative to normal osteoblasts. In addition to being overexpressed in osteosarcoma tumor samples relative to normal osteoblasts, RUNX2 was the only gene of the 16 to show significant overexpression in tumors that had a poor response to chemotherapy relative to good responders. Conclusion These data underscore the loss of tumor suppressive pathways and activation of specific oncogenic mechanisms associated with osteosarcoma oncogenesis, while drawing attention to the role of RUNX2 expression as a potential biomarker of chemotherapy failure in osteosarcoma.

  8. Predictors of response to anti-tumor necrosis factor therapy in ulcerative colitis

    Institute of Scientific and Technical Information of China (English)

    Evanthia; Zampeli; Michalis; Gizis; Spyros; I; Siakavellas; Giorgos; Bamias

    2014-01-01

    Ulcerative colitis(UC) is an immune-mediated, chronic inflammatory disease of the large intestine. Its course is characterized by flares of acute inflammation and periods of low-grade chronic inflammatory activity or remission. Monoclonal antibodies against tumor necrosis factor(anti-TNF) are part of the therapeutic armamentarium and are used in cases of moderate to severe UC that is refractory to conventional treatment with corticosteroids and/or immunosuppressants. Therapeutic response to these agents is not uniform and a large percentage of patients either fail to improve(primary non-response) or lose response after a period of improvement(secondary non-response/loss of response). In addition, the use of anti-TNF agents has been related to uncommon but potentially serious adverse effects that preclude their administration or lead to their discontinuation. Finally, use of these medications is associated with a considerable cost for the health system. The identification of parameters thatmay predict response to anti-TNF drugs in UC would help to better select for patients with a high probability to respond and minimize risk and costs for those who will not respond. Analysis of the major clinical trials and the accumulated experience with the use of anti-TNF drugs in UC has resulted to the report of such prognostic factors. Included are clinical and epidemiological characteristics, laboratory markers, endoscopic indicators and molecular(immunological/genetic) signatures. Such predictive parameters of long-term outcomes may either be present at the commencement of treatment or determined during the early period of therapy. Validation of these prognostic markers in large cohorts of patients with variable characteristics will facilitate their introduction into clinical practice and the best selection of UC patients who will benefit from anti-TNF therapy.

  9. Thermal responsive micelles for dual tumor-targeting imaging and therapy

    Science.gov (United States)

    Chen, Haiyan; Li, Bowen; Qiu, Jiadan; Li, Jiangyu; Jin, Jing; Dai, Shuhang; Ma, Yuxiang; Gu, Yueqing

    2013-11-01

    Two kinds of thermally responsive polymers P(FAA-NIPA-co-AAm-co-ODA) and P(FPA-NIPA-co-AAm-co-ODA) containing folate, isopropyl acrylamide and octadecyl acrylate were fabricated through free radical random copolymerization for targeted drug delivery. Then the micelles formed in aqueous solution by self-assembly and were characterized in terms of particle size, lower critical solution temperature (LCST) and a variety of optical spectra. MTT assays demonstrated the low cytotoxicity of the control micelle and drug-loaded micelle on A549 cells and Bel 7402 cells. Then fluorescein and cypate were used as model drugs to optimize the constituents of micelles for drug entrapment efficiency and investigate the release kinetics of micelles in vitro. The FA and thermal co-mediated tumor-targeting efficiency of the two kinds of micelles were verified and compared in detail at cell level and animal level, respectively. These results indicated that the dual-targeting micelles are promising drug delivery systems for tumor-targeting therapy.

  10. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Chemaitilly, Wassim [Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Lukose, Renin C.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  11. Patterns of tumor response in canine and feline cancer patients treated with electrochemotherapy: preclinical data for the standardization of this treatment in pets and humans

    Directory of Open Access Journals (Sweden)

    Bonetto Francesco

    2007-10-01

    Full Text Available Abstract Electrochemotherapy (ECT is a novel anticancer therapy that is currently being evaluated in human and pet cancer patients. ECT associates the administration of an anti-tumor agent to the delivery of trains of appropriate waveforms. The increased uptake of chemotherapy leads to apoptotic death of the neoplasm thus resulting in prolonged local control and extended survival. In this paper we describe the histological features of a broad array of spontaneous tumors of companion animals receiving pulse-mediated chemotherapy. Multivariate statistical analysis of the percentage of necrosis and apoptosis in the tumors before and after ECT treatment, shows that only a high percentage of necrosis and apoptosis after the ECT treatment were significantly correlated with longer survivals of the patients (p

  12. The mechanism of local tumor irradiation combined with interleukin 2 therapy in murine renal carcinoma: histological evaluation of pulmonary metastases.

    Science.gov (United States)

    Dezso, B; Haas, G P; Hamzavi, F; Kim, S; Montecillo, E J; Benson, P D; Pontes, J E; Maughan, R L; Hillman, G G

    1996-09-01

    We have demonstrated that tumor irradiation enhanced the therapeutic effect of interleukin 2 (IL-2) on pulmonary metastases from a murine renal adenocarcinoma, Renca. To investigate the mechanism of interaction between tumor irradiation and IL-2 therapy, we have histologically evaluated the effects of each therapy alone or in combination on Renca pulmonary metastases. Following treatment of established lung metastases with irradiation and IL-2 therapy, lung sections were processed for H&E or immunohistochemical staining. We found that tumor irradiation or IL-2 therapy locally induced vascular damage, resulting in multifocal hemorrhages and mononuclear cell mobilization in the lung tissue. This effect was amplified in lungs treated with the combined therapy. Immunohistochemistry showed that irradiation produced a macrophage influx into irradiated tumor nodules, and systemic IL-2 therapy induced T-cell infiltration in tumor nodules. Lungs treated with the combined therapy exhibited massive macrophage, T-cell, and natural killer cell mobilization in disintegrating tumor nodules and in the lung tissue. This combined therapy caused a decrease in the number of proliferating tumor cells and an increase in the number of apoptotic cells, which were more marked than with either therapy alone. We suggest that the macrophages mobilized by radiation-induced tissue injury could play a role in phagocytosis of apoptotic tumor cells, processing and presenting of tumor antigens for a systemic immune response activated by IL-2. Tumor destruction may result from the concomitant action of activated T cells, natural killer cells, and macrophages infiltrating the tumor nodules.

  13. Breast DCE-MRI Kinetic Heterogeneity Tumor Markers: Preliminary Associations With Neoadjuvant Chemotherapy Response1

    Science.gov (United States)

    Ashraf, Ahmed; Gaonkar, Bilwaj; Mies, Carolyn; DeMichele, Angela; Rosen, Mark; Davatzikos, Christos; Kontos, Despina

    2015-01-01

    The ability to predict response to neoadjuvant chemotherapy for women diagnosed with breast cancer, either before or early on in treatment, is critical to judicious patient selection and tailoring the treatment regimen. In this paper, we investigate the role of contrast agent kinetic heterogeneity features derived from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting treatment response. We propose a set of kinetic statistic descriptors and present preliminary results showing the discriminatory capacity of the proposed descriptors for predicting complete and non-complete responders as assessed from pre-treatment imaging exams. The study population consisted of 15 participants: 8 complete responders and 7 non-complete responders. Using the proposed kinetic features, we trained a leave-one-out logistic regression classifier that performs with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.84 under the ROC. We compare the predictive value of our features against commonly used MRI features including kinetics of the characteristic kinetic curve (CKC), maximum peak enhancement (MPE), hotspot signal enhancement ratio (SER), and longest tumor diameter that give lower AUCs of 0.71, 0.66, 0.64, and 0.54, respectively. Our proposed kinetic statistics thus outperform the conventional kinetic descriptors as well as the classifier using a combination of all the conventional descriptors (i.e., CKC, MPE, SER, and longest diameter), which gives an AUC of 0.74. These findings suggest that heterogeneity-based DCE-MRI kinetic statistics could serve as potential imaging biomarkers for tumor characterization and could be used to improve candidate patient selection even before the start of the neoadjuvant treatment. PMID:26055172

  14. Breast DCE-MRI Kinetic Heterogeneity Tumor Markers: Preliminary Associations With Neoadjuvant Chemotherapy Response

    Directory of Open Access Journals (Sweden)

    Ahmed Ashraf

    2015-06-01

    Full Text Available The ability to predict response to neoadjuvant chemotherapy for women diagnosed with breast cancer, either before or early on in treatment, is critical to judicious patient selection and tailoring the treatment regimen. In this paper, we investigate the role of contrast agent kinetic heterogeneity features derived from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI for predicting treatment response. We propose a set of kinetic statistic descriptors and present preliminary results showing the discriminatory capacity of the proposed descriptors for predicting complete and non-complete responders as assessed from pre-treatment imaging exams. The study population consisted of 15 participants: 8 complete responders and 7 non-complete responders. Using the proposed kinetic features, we trained a leave-one-out logistic regression classifier that performs with an area under the receiver operating characteristic (ROC curve (AUC of 0.84 under the ROC. We compare the predictive value of our features against commonly used MRI features including kinetics of the characteristic kinetic curve (CKC, maximum peak enhancement (MPE, hotspot signal enhancement ratio (SER, and longest tumor diameter that give lower AUCs of 0.71, 0.66, 0.64, and 0.54, respectively. Our proposed kinetic statistics thus outperform the conventional kinetic descriptors as well as the classifier using a combination of all the conventional descriptors (i.e., CKC, MPE, SER, and longest diameter, which gives an AUC of 0.74. These findings suggest that heterogeneity-based DCE-MRI kinetic statistics could serve as potential imaging biomarkers for tumor characterization and could be used to improve candidate patient selection even before the start of the neoadjuvant treatment.

  15. Breast DCE-MRI Kinetic Heterogeneity Tumor Markers: Preliminary Associations With Neoadjuvant Chemotherapy Response.

    Science.gov (United States)

    Ashraf, Ahmed; Gaonkar, Bilwaj; Mies, Carolyn; DeMichele, Angela; Rosen, Mark; Davatzikos, Christos; Kontos, Despina

    2015-06-01

    The ability to predict response to neoadjuvant chemotherapy for women diagnosed with breast cancer, either before or early on in treatment, is critical to judicious patient selection and tailoring the treatment regimen. In this paper, we investigate the role of contrast agent kinetic heterogeneity features derived from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting treatment response. We propose a set of kinetic statistic descriptors and present preliminary results showing the discriminatory capacity of the proposed descriptors for predicting complete and non-complete responders as assessed from pre-treatment imaging exams. The study population consisted of 15 participants: 8 complete responders and 7 non-complete responders. Using the proposed kinetic features, we trained a leave-one-out logistic regression classifier that performs with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.84 under the ROC. We compare the predictive value of our features against commonly used MRI features including kinetics of the characteristic kinetic curve (CKC), maximum peak enhancement (MPE), hotspot signal enhancement ratio (SER), and longest tumor diameter that give lower AUCs of 0.71, 0.66, 0.64, and 0.54, respectively. Our proposed kinetic statistics thus outperform the conventional kinetic descriptors as well as the classifier using a combination of all the conventional descriptors (i.e., CKC, MPE, SER, and longest diameter), which gives an AUC of 0.74. These findings suggest that heterogeneity-based DCE-MRI kinetic statistics could serve as potential imaging biomarkers for tumor characterization and could be used to improve candidate patient selection even before the start of the neoadjuvant treatment.

  16. Porous Silicon Microparticle Potentiates Anti-Tumor Immunity by Enhancing Cross-Presentation and Inducing Type I Interferon Response

    Directory of Open Access Journals (Sweden)

    Xiaojun Xia

    2015-05-01

    Full Text Available Micro- and nanometer-size particles have become popular candidates for cancer vaccine adjuvants. However, the mechanism by which such particles enhance immune responses remains unclear. Here, we report a porous silicon microparticle (PSM-based cancer vaccine that greatly enhances cross-presentation and activates type I interferon (IFN-I response in dendritic cells (DCs. PSM-loaded antigen exhibited prolonged early endosome localization and enhanced cross-presentation through both proteasome- and lysosome-dependent pathways. Phagocytosis of PSM by DCs induced IFN-I responses through a TRIF- and MAVS-dependent pathway. DCs primed with PSM-loaded HER2 antigen produced robust CD8 T cell-dependent anti-tumor immunity in mice bearing HER2+ mammary gland tumors. Importantly, this vaccination activated the tumor immune microenvironment with elevated levels of intra-tumor IFN-I and MHCII expression, abundant CD11c+ DC infiltration, and tumor-specific cytotoxic T cell responses. These findings highlight the potential of PSM as an immune adjuvant to potentiate DC-based cancer immunotherapy.

  17. Multi-modality imaging of tumor phenotype and response to therapy

    Science.gov (United States)

    Nyflot, Matthew J.

    2011-12-01

    Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.

  18. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment

    Directory of Open Access Journals (Sweden)

    Chendi Ding

    2016-12-01

    Full Text Available Benefiting from the development of nanotechnology, drug delivery systems (DDSs with stimuli-responsive controlled release function show great potential in clinical anti-tumor applications. By using a DDS, the harsh side effects of traditional anti-cancer drug treatments and damage to normal tissues and organs can be avoided to the greatest extent. An ideal DDS must firstly meet bio-safety standards and secondarily the efficiency-related demands of a large drug payload and controlled release function. This review highlights recent research progress on DDSs with stimuli-responsive characteristics. The first section briefly reviews the nanoscale scaffolds of DDSs, including mesoporous nanoparticles, polymers, metal-organic frameworks (MOFs, quantum dots (QDs and carbon nanotubes (CNTs. The second section presents the main types of stimuli-responsive mechanisms and classifies these into two categories: intrinsic (pH, redox state, biomolecules and extrinsic (temperature, light irradiation, magnetic field and ultrasound ones. Clinical applications of DDS, future challenges and perspectives are also mentioned.

  19. Interactions of the p53 protein family in cellular stress response in gastrointestinal tumors.

    Science.gov (United States)

    Vilgelm, Anna E; Washington, Mary K; Wei, Jinxiong; Chen, Heidi; Prassolov, Vladimir S; Zaika, Alexander I

    2010-03-01

    p53, p63, and p73 are members of the p53 protein family involved in regulation of cell cycle, apoptosis, differentiation, and other critical cellular processes. Here, we investigated the contribution of the entire p53 family in chemotherapeutic drug response in gastrointestinal tumors. Real-time PCR and immunohistochemistry revealed complexity and variability of expression profiles of the p53 protein family. Using colon and esophageal cancer cells, we found that the integral transcription activity of the entire p53 family, as measured by the reporter analysis, associated with response to drug treatment in studied cells. We also found that p53 and p73, as well as p63 and p73, bind simultaneously to the promoters of p53 target genes. Taken together, our results support the view that the p53 protein family functions as an interacting network of proteins and show that cellular responses to chemotherapeutic drug treatment are determined by the total activity of the entire p53 family rather than p53 alone.

  20. Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Simon Swingler

    2007-09-01

    Full Text Available Viruses have evolved strategies to protect infected cells from apoptotic clearance. We present evidence that HIV-1 possesses a mechanism to protect infected macrophages from the apoptotic effects of the death ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand. In HIV-1-infected macrophages, the viral envelope protein induced macrophage colony-stimulating factor (M-CSF. This pro-survival cytokine downregulated the TRAIL receptor TRAIL-R1/DR4 and upregulated the anti-apoptotic genes Bfl-1 and Mcl-1. Inhibition of M-CSF activity or silencing of Bfl-1 and Mcl-1 rendered infected macrophages highly susceptible to TRAIL. The anti-cancer agent Imatinib inhibited M-CSF receptor activation and restored the apoptotic sensitivity of HIV-1-infected macrophages, suggesting a novel strategy to curtail viral persistence in the macrophage reservoir.

  1. Apoptotic engulfment pathway and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Xiangning Chen

    Full Text Available BACKGROUND: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. METHODOLOGY/PRINCIPAL FINDINGS: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively. We sought replication in independent samples for this marker and found highly significant association (p = 0.0003 in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075 interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022 and a 3-marker interaction (rs246896 * rs4522565 * rs3858075 amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120. Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. CONCLUSIONS/SIGNIFICANCE: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease.

  2. Apoptotic engulfment pathway and schizophrenia.

    LENUS (Irish Health Repository)

    Chen, Xiangning

    2009-01-01

    BACKGROUND: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. METHODOLOGY\\/PRINCIPAL FINDINGS: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively). We sought replication in independent samples for this marker and found highly significant association (p = 0.0003) in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075) interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022) and a 3-marker interaction (rs246896 * rs4522565 * rs3858075) amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120). Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. CONCLUSIONS\\/SIGNIFICANCE: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease.

  3. Feeding mice with Aloe vera gel diminishes L-1 sarcoma-induced early neovascular response and tumor growth.

    Science.gov (United States)

    Kocik, Janusz; Bałan, Barbara Joanna; Zdanowski, Robert; Jung, Leszek; Skopińska-Różewska, Ewa; Skopiński, Piotr

    2014-01-01

    Aloe vera (Aloe arborescens, aloe barbadensis) is a medicinal plant belonging to the Liliaceae family. Aloe vera gel prepared from the inner part of Aloe leaves is increasingly consumed as a beverage dietary supplement. Some data suggest its tumor growth modulatory properties. The aim of the present study was to evaluate in Balb/c mice the in vivo influence of orally administered Aloe vera drinking gel on the syngeneic L-1 sarcoma tumor growth and its vascularization: early cutaneous neovascular response, tumor-induced angiogenesis (TIA test read after 3 days), and tumor hemoglobin content measured 14 days after L-1 sarcoma cell grafting. Feeding mice for 3 days after tumor cell grafting with 150 μl daily dose of Aloe vera gel significantly diminished the number of newly-formed blood vessels in comparison to the controls. The difference between the groups of control and Aloe-fed mice (150 μl daily dose for 14 days) with respect to the 14 days' tumor volume was on the border of statistical significance. No difference was observed in tumor hemoglobin content.

  4. Monitoring Disease Progression and Therapeutic Response in a Disseminated Tumor Model for Non-Hodgkin Lymphoma by Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Margarethe Köberle

    2015-07-01

    Full Text Available Xenograft tumor models are widely studied in cancer research. Our aim was to establish and apply a model for aggressive CD20-positive B-cell non-Hodgkin lymphomas, enabling us to monitor tumor growth and shrinkage in a noninvasive manner. By stably transfecting a luciferase expression vector, we created two bioluminescent human non-Hodgkin lymphoma cell lines, Jeko1(luci and OCI-Ly3(luci, that are CD20 positive, a prerequisite to studying rituximab, a chimeric anti-CD20 antibody. To investigate the therapy response in vivo, we established a disseminated xenograft tumor model injecting these cell lines in NOD/SCID mice. We observed a close correlation of bioluminescence intensity and tumor burden, allowing us to monitor therapy response in the living animal. Cyclophosphamide reduced tumor burden in mice injected with either cell line in a dose-dependent manner. Rituximab alone was effective in OCI-Ly3(luci-injected mice and acted additively in combination with cyclophosphamide. In contrast, it improved the therapeutic outcome of Jeko1(luci-injected mice only in combination with cyclophosphamide. We conclude that well-established bioluminescence imaging is a valuable tool in disseminated xenograft tumor models. Our model can be translated to other cell lines and used to examine new therapeutic agents and schedules.

  5. IgE/FcεRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses

    Directory of Open Access Journals (Sweden)

    Barbara Platzer

    2015-03-01

    Full Text Available Epidemiologic studies discovered an inverse association between immunoglobulin E (IgE-mediated allergies and cancer, implying tumor-protective properties of IgE. However, the underlying immunologic mechanisms remain poorly understood. Antigen cross-presentation by dendritic cells (DCs is of key importance for anti-tumor immunity because it induces the generation of cytotoxic CD8+ T lymphocytes (CTLs with specificity for tumor antigens. We demonstrate that DCs use IgE and FcεRI, the high-affinity IgE receptor, for cross-presentation and priming of CTLs in response to free soluble antigen at low doses. Importantly, IgE/FcεRI-mediated cross-presentation is a distinct receptor-mediated pathway because it does not require MyD88 signals or IL-12 induction in DCs. Using passive immunization with tumor antigen-specific IgE and DC-based vaccination experiments, we demonstrate that IgE-mediated cross-presentation significantly improves anti-tumor immunity and induces memory responses in vivo. Our findings suggest a cellular mechanism for the tumor-protective features of IgE and expand the known physiological functions of this immunoglobulin.

  6. Top-Down Multilevel Simulation of Tumor Response to Treatment in the Context of In Silico Oncology

    CERN Document Server

    Stamatakos, Georgios

    2010-01-01

    The aim of this chapter is to provide a brief introduction into the basics of a top-down multilevel tumor dynamics modeling method primarily based on discrete entity consideration and manipulation. The method is clinically oriented, one of its major goals being to support patient individualized treatment optimization through experimentation in silico (=on the computer). Therefore, modeling of the treatment response of clinical tumors lies at the epicenter of the approach. Macroscopic data, including i.a. anatomic and metabolic tomographic images of the tumor, provide the framework for the integration of data and mechanisms pertaining to lower and lower biocomplexity levels such as clinically approved cellular and molecular biomarkers. The method also provides a powerful framework for the investigation of multilevel (multiscale) tumor biology in the generic investigational context. The Oncosimulator, a multiscale physics and biomedical engineering concept and construct tightly associated with the method and cu...

  7. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model.

    Science.gov (United States)

    Mukherjee, P; Pathangey, L B; Bradley, J B; Tinder, T L; Basu, G D; Akporiaye, E T; Gendler, S J

    2007-02-19

    A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan-helper-peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-gamma-producing CD4(+) helper and CD8(+) cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced.

  8. Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs.

    Science.gov (United States)

    Kukekov, Nickolay V; Xu, Zhiheng; Greene, Lloyd A

    2006-06-02

    A sequential pathway (the JNK pathway) that includes activation of Rac1/Cdc42, mixed lineage kinases, MAP kinase kinases 4 and 7, and JNKs plays a required role in many paradigms of apoptotic cell death. However, the means by which this pathway is assembled and directed toward apoptotic death has been unclear. Here, we report that propagation of the apoptotic JNK pathway requires the cooperative interaction of two molecular scaffolds, POSH and JIPs. POSH (plenty of SH3s) is a multidomain GTP-Rac1-interacting protein that binds and promotes activation of mixed lineage kinases. JIPs are reported to bind MAP kinase kinases 4/7 and JNKs. We find that POSH and JIPs directly associate with one another to form a multiprotein complex, PJAC (POSH-JIP apoptotic complex), that includes all of the known kinase components of the pathway. Our observations indicate that this complex is required for JNK activation and cell death in response to apoptotic stimuli.

  9. Prognostic implications of tumor volume response and COX-2 expression change during radiotherapy in cervical cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jae Myoung; Park, Won; Huh, Seung Jae; Cho, Eun Yoon; Choi, Yoon La; Bae, Duk Soo; Kim, Byoung Gie [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2012-12-15

    The relationship between treatment outcomes, alteration of the expression of biological markers, and tumor volume response during radiotherapy (RT) in patients with uterine cervical cancer was analyzed. Twenty patients with cervical squamous cell carcinoma received definitive RT with (n = 17) or without (n = 3) concurrent chemotherapy. Tumor volumes were measured by three serial magnetic resonance imaging scans at pre-, mid-, and post-RT. Two serial punch biopsies were performed at pre- and mid-RT, and immunohistochemical staining for cyclooxygenase (COX)-2 and epidermal growth factor receptor was performed. The median follow-up duration was 60 months. The median tumor volume response at mid-RT (V2R) was 0.396 (range, 0.136 to 0.983). At mid-RT, an interval increase in the distribution of immunoreactivity for COX-2 was observed in 8 patients, and 6 of them showed poor mid-RT tumor volume response (V2R {>=} 0.4). Four (20%) patients experienced disease progression after 10 to 12 months (median, 11 months). All 4 patients had poor mid-RT tumor volume response (p = 0.0867) and 3 of them had an interval increase in COX-2 expression. Overall survival (OS) and progression-free survival (PFS) decreased in patients with V2R {>=} 0.4 (p 0.0291 for both). An interval increase in COX-2 expression at mid-RT was also associated with a decreased survival (p = 0.1878 and 0.1845 for OS and PFS, respectively). Poor tumor volume response and an interval increase in COX-2 expression at mid-RT decreased survival outcomes in patients with uterine cervical cancer.

  10. Optimization of biguanide derivatives as selective antitumor agents blocking adaptive stress responses in the tumor microenvironment.

    Science.gov (United States)

    Narise, Kosuke; Okuda, Kensuke; Enomoto, Yukihiro; Hirayama, Tasuku; Nagasawa, Hideko

    2014-01-01

    Adaptive cellular responses resulting from multiple microenvironmental stresses, such as hypoxia and nutrient deprivation, are potential novel drug targets for cancer treatment. Accordingly, we focused on developing anticancer agents targeting the tumor microenvironment (TME). In this study, to search for selective antitumor agents blocking adaptive responses in the TME, thirteen new compounds, designed and synthesized on the basis of the arylmethylbiguanide scaffold of phenformin, were used in structure activity relationship studies of inhibition of hypoxia inducible factor (HIF)-1 and unfolded protein response (UPR) activation and of selective cytotoxicity under glucose-deprived stress conditions, using HT29 cells. We conducted luciferase reporter assays using stable cell lines expressing either an HIF-1-responsive reporter gene or a glucose-regulated protein 78 promoter-reporter gene, which were induced by hypoxia and glucose deprivation stress, respectively, to screen for TME-targeting antitumor drugs. The guanidine analog (compound 2), obtained by bioisosteric replacement of the biguanide group, had activities comparable with those of phenformin (compound 1). Introduction of various substituents on the phenyl ring significantly affected the activities. In particular, the o-methylphenyl analog compound 7 and the o-chlorophenyl analog compound 12 showed considerably more potent inhibitory effects on HIF-1 and UPR activation than did phenformin, and excellent selective cytotoxicity under glucose deprivation. These compounds, therefore, represent an improvement over phenformin. They also suppressed HIF-1- and UPR-related protein expression and secretion of vascular endothelial growth factor-A. Moreover, these compounds exhibited significant antiangiogenic effects in the chick chorioallantoic membrane assay. Our structural development studies of biguanide derivatives provided promising candidates for a novel anticancer agent targeting the TME for selective cancer

  11. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Zodwa Dlamini

    2015-11-01

    Full Text Available Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.

  12. Identification of androgen-responsive genes that are alternatively regulated in androgen-dependent and androgen-independent rat prostate tumors.

    NARCIS (Netherlands)

    Pfundt, R.; Smit, F.P.; Jansen, Corine; Aalders, T.W.; Straatman, H.M.P.M.; Vliet, W. van der; Isaacs, J.; Geurts van Kessel, A.H.M.; Schalken, J.A.

    2005-01-01

    The vast majority of androgen-dependent prostate tumors progress toward incurable, androgen-independent tumors. The identification of androgen-responsive genes, which are still actively transcribed in the tumors of patients who have undergone androgen ablation, may shed light on the molecular mechan

  13. SU-E-T-751: Three-Component Kinetic Model of Tumor Growth and Radiation Response for Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y; Dahlman, E; Leder, K; Hui, S [University of Minnesota, Minneapolis, MN (United States)

    2015-06-15

    Purpose: To develop and study a kinetic model of tumor growth and its response to stereotactic radiosurgery (SRS) by assuming that the cells in irradiated tumor volume were made of three types. Methods: A set of ordinary differential equations (ODEs) were derived for three types of cells and a tumor growth rate. It is assumed that the cells were composed of actively proliferating cells, lethally damaged-dividing cells, and non-dividing cells. We modeled the tumor volume growth with a time-dependent growth rate to simulate the saturation of growth. After SRS, the proliferating cells were permanently damaged and converted to the lethally damaged cells. The amount of damaged cells were estimated by the LQ-model. The damaged cells gradually stopped dividing/proliferating and died with a constant rate. The dead cells were cleared from their original location with a constant rate. The total tumor volume was the sum of the three components. The ODEs were numerically solved with appropriate initial conditions for a given dosage. The proposed model was used to model an animal experiment, for which the temporal change of a rhabdomyosarcoma tumor volume grown in a rat was measured with time resolution sufficient to test the model. Results: To fit the model to the experimental data, the following characteristics were needed with the model parameters. The α-value in the LQ-model was smaller than the commonly used value; furthermore, it decreased with increasing dose. At the same time, the tumor growth rate after SRS had to increase. Conclusions: The new 3-component model of tumor could simulate the experimental data very well. The current study suggested that the radiation sensitivity and the growth rate of the proliferating tumor cells may change after irradiation and it depended on the dosage used for SRS. These preliminary observations must be confirmed by future animal experiments.

  14. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal

    Directory of Open Access Journals (Sweden)

    Hafner Martin

    2004-08-01

    Full Text Available Abstract Background Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. Results Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr -/- mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. Conclusion Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance.

  15. Anti-tumor Immune Response Mediated by Newcastle Disease Virus HN Gene

    Institute of Scientific and Technical Information of China (English)

    PENG Li-ping; JIN Ning-yi; LI Xiao; SUN Li-li; WEN Zhong-mei; LIU Yan; GAO Peng; HUANG Hai-yan; PIAO Bing-guo; JIN Jing

    2011-01-01

    Hemagglutinin-neuramidinase(HN) is one of the most important surface structure proteins of the Newcastle disease virus(NDV). HN not only mediates receptor recognition but also possesses neuraminidase(NA) activity,which gives it the ability to cleave a component of those receptors, NAcneu. Previous studies have demonstrated that HN has interesting anti-neoplastic and immune-stimulating properties in mammalian species, including humans. To explore the application of the HN gene in cancer gene therapy, we constructed a Lewis lung carcinoma(LLC) solid tumor model using C57BL/6 mice. Mice were injected intratumorally with the recombinant adenovirus expressing HN gene(Ad-HN), and the effect of HN was explored by natural killer cell activity assay, cytotoxic lymphocyte activity assay, T cell subtype evaluation, and Thl/Th2 cytokines analysis. The results demonstrate that HN not only can elicit clonal expansion of both CD4+ and CD8+ T cell populations and cytotoxic T lymphocyte(CTL) and killer cell response, but also skews the immune response toward Thl. Thus, vaccination with Ad-HN may be a potential strategy for cancer gene therapy.

  16. ANTI-TUMOR ACTIVITY AND IMMUNE RESPONSES INDUCED BY HUMAN CANCER-ASSOCIATED MUCIN CORE PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    Ma Yunguo; Yuan Mei; Fei Lihua; Li Li

    1998-01-01

    Objective: To investigate the immune responses induced by apomucin which is a mixture of mucin core peptide, in mice for elucidating the role of mucin core peptide in the modulation of cancers. Methods:Apomucin was isolated from human pancreatic cancer cell line SW1990. The mice were immunized with this apomucin (10μg/time×6) plus DETOX. Results: When immunized, all mice developed delayed-type hypersensitivity (DTH) after challenged with apomucin or synthetic peptide MUC-2 or MUC-3, while the mice immunized with apomucin alone did not develop DTH.No antibodies were detected by ELISA after immunization. When the spleen cells of vaccinated mice were cocultured with this apomucin (10-50μg/ml) and rhIL-2(50U/ml) in vitro, the proliferated lymphocytes showed cytotoxicity against human cancer cells, including colon cancer, gastric cancer, pancreatic cancer and leukemia as measured by Cr-51 release assay. Antibodies against MUC-2 and MUC-3 could block the cytotoxicity. Conclusion: It was identified that a vaccine combined of apomucin and immune adjuvant DETOX can induce cellular immune response and anti-tumor cytotoxicity in mice.

  17. Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells

    Directory of Open Access Journals (Sweden)

    Liu P

    2016-08-01

    Full Text Available Ping Liu,1 Haijun Zhang,1 Xue Wu,1 Liting Guo,1 Fei Wang,1 Guohua Xia,2 Baoan Chen,1 HaiXiang Yin,3 Yonglu Wang,3 Xueming Li3 1Department of Hematology and Oncology, Key Department of Jiangsu Province, Zhongda Hospital, 2Department of Hematology and Oncology, Medical School of Southeast University, 3School of Pharmacy, Nanjing University of Technology, Nanjing, People’s Republic of China Abstract: Hypoxia is an inseparable component of the solid tumor as well as the bone marrow microenvironment. In this study, we investigated the effect of the novel polyethylene glycol (PEG-poly L-lysine (PLL-poly lactic-co-glycolic acid (PLGA based nanoparticles (NPs modified by transferrin (Tf loaded with daunorubicin (DNR (DNR-Tf-PEG-PLL-PLGA-NPs, abbreviated as DNR-Tf-NPs on leukemia cells (K562 under hypoxia. In vitro and in vivo tests to determine the effect of the enhanced chemosensitivity were evaluated using the immunofluorescence, flow cytometry, 3,-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-tetrazoliumbromide assay, Western blot analysis, histopathological examination, and immunohistochemistry analysis. Under hypoxia, K562 cells were hypoxia-responsive with the inhibitory concentration 50% (IC50 of DNR increased, resulting in chemotherapy insensitivity. By targeting the transferrin receptor (TfR on the surface of K562 cells, DNR-Tf-NPs led to an increased intracellular DNR level, enhancing drug sensitivity of K562 cells to DNR with a decreased IC50, even under hypoxia. We further detected the protein levels of hypoxia-inducible factor-1α (HIF-1α, Bcl-2, Bax, and caspase-3 in K562 cells. The results indicated that DNR-Tf-NPs downregulated HIF-1α and induced apoptosis to overcome hypoxia. In the xenograft model, injection of DNR-Tf-NPs significantly suppressed tumor growth, and the immunosignals of Ki67 in DNR-Tf-NPs group was significantly lower than the other groups. It was therefore concluded that DNR-Tf-NPs could be a promising candidate for

  18. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and anti-tumor effects

    OpenAIRE

    Osada, Takuya; Berglund, Peter; Morse, Michael A; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2012-01-01

    We recently demonstrated that Venezuelan equine encephalitis (VEE) virus-based replicon particles (VRP) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP expressing Interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and anti-tumor efficacy. Mice were immunized with VRP encoding the human tumor-associat...

  19. Association between tumor tissue TIMP-1 levels and objective response to first-line chemotherapy in metastatic breast cancer

    DEFF Research Database (Denmark)

    Klintman, Marie; Würtz, Sidse Ørnbjerg; Christensen, Ib Jarle;

    2010-01-01

    In a previous study from our laboratory, high tumor levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) have been associated with an adverse response to chemotherapy in metastatic breast cancer suggesting that TIMP-1, which is known to inhibit apoptosis, may be a new predictive marker...... in this disease. The purpose of this study was to investigate the association between TIMP-1 and objective response to chemotherapy in an independent patient population consisting of patients with metastatic breast cancer from Sweden and Denmark. TIMP-1 was measured using ELISA in 162 primary tumor extracts from...... patients who later developed metastatic breast cancer and these levels were related to the objective response to first-line chemotherapy. Increasing levels of TIMP-1 were associated with a decreasing probability of response to treatment, reaching borderline significance (OR = 1.59, 95% CI: 0.97-2.62, P = 0...

  20. Tumor response and clinical outcome in metastatic gastrointestinal stromal tumors under sunitinib therapy: Comparison of RECIST, Choi and volumetric criteria

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, N., E-mail: Nicolai.schramm@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistrasse 15, 81377 Munich (Germany); Englhart, E., E-mail: Elisabeth.Englhart@gmx.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistrasse 15, 81377 Munich (Germany); Schlemmer, M., E-mail: Marcus.Schlemmer@med.uni-muenchen.de [Department of Medicine III, Ludwig-Maximilians-University Hospital Munich, Marchioninistrasse 15, 81377 Munich (Germany); Hittinger, M., E-mail: Markus.Hittinger@uksh.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistrasse 15, 81377 Munich (Germany); Übleis, C., E-mail: Christopher.Uebleis@med.uni-muenchen.de [Department of Nuclear Medicine, Ludwig-Maximilians-University Hospital Munich, Marchioninistrasse 15, 81377 Munich (Germany); Becker, C.R., E-mail: Christoph.becker@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistrasse 15, 81377 Munich (Germany); Reiser, M.F., E-mail: Maximilian.Reiser@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistrasse 15, 81377 Munich (Germany); Berger, F., E-mail: Frank.Berger@med.uni-muenchen.de [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistrasse 15, 81377 Munich (Germany)

    2013-06-15

    Purpose: Purpose of the study was to compare radiological treatment response according to RECIST, Choi and volumetry in GIST-patients under 2nd-line-sunitinib-therapy and to correlate the results of treatment response assessment with disease-specific survival (DSS). Patients and methods: 20 patients (mean: 60.7 years; 12 male/8 female) with histologically proven GIST underwent baseline-CT of the abdomen under imatinib and follow-up-CTs 3 months and 1 year after change to sunitinib. 68 target lesions (50 hepatic, 18 extrahepatic) were investigated. Therapy response (partial response (PR), stable disease (SD), progressive disease (PD)) was evaluated according to RECIST, Choi and volumetric criteria. Response according to the different assessment systems was compared and correlated to the DSS of the patients utilizing Kaplan–Meier statistics. Results: The mean DSS (in months) of the response groups 3 months after therapy change was: RECIST: PR (0/20); SD (17/20): 30.4 (months); PD (3/20) 11.6. Choi: PR (10/20) 28.6; SD (8/20) 28.1; PD (2/20) 13.5. Volumetry: PR (4/20) 29.6; SD (11/20) 29.7; PD (5/20) 17.2. Response groups after 1 year of sunitinib showed the following mean DSS: RECIST: PR (3/20) 33.6; SD (9/20) 29.7; PD (8/20) 20.3. Choi: PR (10/20) 21.5; SD (4/20) 42.9; PD (6/20) 23.9. Volumetry: PR (6/20) 27.3; SD (5/20) 38.5; PD (9/20) 19.3. Conclusion: One year after modification of therapy, only partial response according to RECIST indicated favorable survival in patients with GIST. The value of alternate response assessment strategies like Choi criteria for prediction of survival in molecular therapy still has to be demonstrated.

  1. Differential responses of tumors and normal brain to the combined treatment of 2-DG and radiation in glioablastoma.

    Science.gov (United States)

    Prasanna, Venkatesh K; Venkataramana, Neelam K; Dwarakanath, B S; Santhosh, Vani

    2009-09-01

    2-Deoxy-D-glucose (2-DG), an inhibitor of glucose transport and glycolysis, enhances radiation damage selectively in tumor cells by modulating damage response pathways resulting in cell death in vitro and local tumor control. Phase I and II clinical trials in patients with malignant glioma have shown excellent tolerance to a combined treatment of orally administered 2-DG and hypofractionated radiotherapy without any acute toxicity and late radiation damage. Phase III efficacy trials are currently at an advanced stage. Re-exploratory surgery performed in 13 patients due to persistent symptoms of elevated ICP and mass effect at different follow-up periods revealed extensive tumor necrosis with well-preserved normal brain tissue adjoining the tumor included in the treatment volume as revealed by a histological examination. These observations are perhaps the first clinical evidences for differential effects of 2-DG on tumors and normal tissues in conformity with earlier in vitro and in vivo studies in normal and tumor-bearing mice.

  2. Gr-1+CD11b+ cells are responsible for tumor promoting effect of TGF-β in breast cancer progression.

    Science.gov (United States)

    Li, Zhaoyang; Pang, Yanli; Gara, Sudheer Kumar; Achyut, B R; Heger, Christopher; Goldsmith, Paul K; Lonning, Scott; Yang, Li

    2012-12-01

    One great challenge in our understanding of TGF-β cancer biology and the successful application of TGF-β-targeted therapy is that TGF-β works as both a tumor suppressor and a tumor promoter. The underlying mechanisms for its functional change remain to be elucidated. Using 4T1 mammary tumor model that shares many characteristics with human breast cancer, particularly its ability to spontaneously metastasize to the lungs, we demonstrate that Gr-1+CD11b+ cells or myeloid derived suppressor cells are important mediators in TGF-β regulation of mammary tumor progression. Depletion of Gr-1+CD11b+ cells diminished the antitumor effect of TGF-β neutralization. Two mechanisms were involved: first, treatment with TGF-β neutralization antibody (1D11) significantly decreased the number of Gr-1+CD11b+ cells in tumor tissues and premetastatic lung. This is mediated through increased Gr-1+CD11b+ cell apoptosis. In addition, 1D11 treatment significantly decreased the expression of Th2 cytokines and Arginase 1. Interestingly, the number and property of Gr-1+CD11b+ cells in peripheral blood/draining lymph nodes correlated with tumor size and metastases in response to 1D11 treatment. Our data suggest that the efficacy of TGF-β neutralization depends on the presence of Gr-1+CD11b+ cells, and these cells could be good biomarkers for TGF-β-targeted therapy.

  3. CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging.

    Science.gov (United States)

    Parviainen, S; Ahonen, M; Diaconu, I; Hirvinen, M; Karttunen, Å; Vähä-Koskela, M; Hemminki, A; Cerullo, V

    2014-02-01

    Oncolytic vaccinia virus is an attractive platform for immunotherapy. Oncolysis releases tumor antigens and provides co-stimulatory danger signals. However, arming the virus can improve efficacy further. CD40 ligand (CD40L, CD154) can induce apoptosis of tumor cells and it also triggers several immune mechanisms. One of these is a T-helper type 1 (Th1) response that leads to activation of cytotoxic T-cells and reduction of immune suppression. Therefore, we constructed an oncolytic vaccinia virus expressing hCD40L (vvdd-hCD40L-tdTomato), which in addition features a cDNA expressing the tdTomato fluorochrome for detection of virus, potentially important for biosafety evaluation. We show effective expression of functional CD40L both in vitro and in vivo. In a xenograft model of bladder carcinoma sensitive to CD40L treatment, we show that growth of tumors was significantly inhibited by the oncolysis and apoptosis following both intravenous and intratumoral administration. In a CD40-negative model, CD40L expression did not add potency to vaccinia oncolysis. Tumors treated with vvdd-mCD40L-tdtomato showed enhanced efficacy in a syngenic mouse model and induced recruitment of antigen-presenting cells and lymphocytes at the tumor site. In summary, oncolytic vaccinia virus coding for CD40L mediates multiple antitumor effects including oncolysis, apoptosis and induction of Th1 type T-cell responses.

  4. Cobra venom cytotoxins; apoptotic or necrotic agents?

    Science.gov (United States)

    Ebrahim, Karim; Shirazi, Farshad H; Mirakabadi, Abbas Zare; Vatanpour, Hossein

    2015-12-15

    Organs homeostasis is controlled by a dynamic balance between cell proliferation and apoptosis. Failure to induction of apoptosis has been implicated in tumor development. Cytotoxin-I (CTX-I) and cytotoxin-II (CTX-II) are two physiologically active polypeptides found in Caspian cobra venom. Anticancer activity and mechanism of cell death induced by these toxins have been studied. The toxins were purified by different chromatographic steps and their cytotoxicity and pattern of cell death were determined by MTT, LDH release, acridine orange/ethidium bromide (AO/EtBr) double staining, flow cytometric analysis, caspase-3 activity and neutral red assays. The IC50 of CTX-II in MCF-7, HepG2, DU-145 and HL-60 was 4.1 ± 1.3, 21.2 ± 4.4, 9.4 ± 1.8 μg/mL and 16.3 ± 1.9 respectively while the IC50 of this toxin in normal MDCK cell line was 54.5 ± 3.9 μg/mL. LDH release suddenly increase after a specific toxins concentrations in all cell lines. AO/EtBr double staining, flow cytometric analysis and caspase-3 activity assay confirm dose and time-dependent induction of apoptosis by both toxins. CTX-I and CTX-II treated cells lost their lysosomal membrane integrity and couldn't uptake neutral red day. CTX-I and CTX-II showed significant anticancer activity with minimum effects on normal cells and better IC50 compared to current anticancer drug; cisplatin. They induce their apoptotic effect via lysosomal pathways and release of cathepsins to cytosol. These effects were seen in limited rage of toxins concentrations and pattern of cell death rapidly changes to necrosis by increase in toxin's concentration. In conclusion, significant apoptogenic effects of these toxins candidate them as a possible anticancer agent.

  5. Early Growth Response1and Fatty Acid Synthase Expression is Altered in Tumor Adjacent Prostate Tissue and Indicates Field Cancerization

    Science.gov (United States)

    Jones, Anna C.; Trujillo, Kristina A.; Phillips, Genevieve K.; Fleet, Trisha M.; Murton, Jaclyn K.; Severns, Virginia; Shah, Satyan K.; Davis, Michael S.; Smith, Anthony Y.; Griffith, Jeffrey K.; Fischer, Edgar G.; Bisoffi, Marco

    2011-01-01

    BACKGROUND Field cancerization denotes the occurrence of molecular alterations in histologically normal tissues adjacent to tumors. In prostate cancer, identification of field cancerization has several potential clinical applications. However, prostate field cancerization remains ill defined. Our previous work has shown up-regulated mRNA of the transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS) in tissues adjacent to prostate cancer. METHODS Immunofluorescence data were analyzed quantitatively by spectral imaging and linear unmixing to determine the protein expression levels of EGR-1 and FAS in human cancerous, histologically normal adjacent, and disease-free prostate tissues. RESULTS EGR-1 expression was elevated in both structurally intact tumor adjacent (1.6× on average) and in tumor (3.0× on average) tissues compared to disease-free tissues. In addition, the ratio of cytoplasmic versus nuclear EGR-1 expression was elevated in both tumor adjacent and tumor tissues. Similarly, FAS expression was elevated in both tumor adjacent (2.7× on average) and in tumor (2.5× on average) compared to disease-free tissues. CONCLUSIONS EGR-1 and FAS expression is similarly deregulated in tumor and structurally intact adjacent prostate tissues and defines field cancerization. In cases with high suspicion of prostate cancer but negative biopsy, identification of field cancerization could help clinicians target areas for repeat biopsy. Field cancerization at surgical margins on prostatectomy specimen should also be looked at as a predictor of cancer recurrence. EGR-1 and FAS could also serve as molecular targets for chemoprevention. PMID:22127986

  6. Apoptotic Capacity and Risk of Squamous Cell Carcinoma of the Head and Neck

    Science.gov (United States)

    Liu, Zhensheng; Liu, Hongliang; Han, Peng; Gao, Fengqin; Dahlstrom, Kristina R.; Li, Guojun; Owzar, Kouros; Zevallos, Jose P.; Sturgis, Erich M.; Wei, Qingyi

    2017-01-01

    Background Tobacco smoke and alcohol drinking are the major risk factors for squamous cell carcinoma of the head and neck (SCCHN). Smoking and drinking cause DNA damage leading to apoptosis, and insufficient apoptotic capacity may favor development of cancer because of the dysfunction of removing damaged cells. In the present study, we investigated the association between camptothecin (CPT)-induced apoptotic capacity and risk of SCCHN in a North American population. Methods In a case-control study of 708 SCCHN patients and 685 matched cancer-free controls, we measured apoptotic capacity in cultured peripheral blood lymphocytes (PBLs) in response to in vitro exposure to CPT by using the flow cytometry-based method. Results We found that the mean level of apoptotic capacity in the cases (45.9±23.3%) was significantly lower than that in the controls (49.0±23.1%) (P = 0.002). When we used the median level of apoptotic capacity in the controls as the cutoff value for calculating adjusted odds ratios (ORs), subjects with a reduced apoptotic capacity had an increased risk (adjusted OR = 1.42, 95% confidence interval [CI] = 1.13–1.78, P = 0.002), especially for those who were age ≥57 (1.73, 1.25–2.38, 0.0009), men (1.76, 1.36–2.27, < 0.0001) and ever drinkers (1.67, 1.27–2.21, 0.0003), and these variables significantly interacted with apoptotic capacity (Pinteraction = 0.015, 0.005 and 0.009, respectively). A further fitted prediction model suggested that the inclusion of apoptotic capacity significantly improved in the prediction of SCCHN risk. Conclusion Individuals with a reduced CPT-induced apoptotic capacity may be at an increased risk of developing SCCHN, and apoptotic capacity may be a biomarker for susceptibility to SCCHN. PMID:28033527

  7. Establishing Chinese medicine characteristic tumor response evaluation system is the key to promote internationalization of Chinese medicine oncology.

    Science.gov (United States)

    Li, Jie; Li, Lei; Liu, Rui; Lin, Hong-sheng

    2012-10-01

    The features and advantages of Chinese medicine (CM) in cancer comprehensive treatment have been in the spotlight of experts both at home and abroad. However, how to evaluate the effect of CM more objectively, scientifically and systematically is still the key problem of clinical trial, and also a limitation to the development and internationalization of CM oncology. The change of tumor response evaluation system in conventional medicine is gradually consistent with the features of CM clinical effect, such as they both focus on a combination of soft endpoints (i.e. quality of life, clinical benefit, etc.) and hard endpoints (i.e. tumor remission rate, time to progress, etc.). Although experts have proposed protocols of CM tumor response evaluation criteria and come to an agreement in general, divergences still exist in the importance, quantification and CM feature of the potential endpoints. Thus, establishing a CM characteristic and wildly accepted tumor response evaluation system is the key to promote internationalization of CM oncology, and also provides a more convenient and scientific platform for CM international cooperation and communication.

  8. Proton MR Spectroscopy and Diffusion MR Imaging Monitoring to Predict Tumor Response to Interstitial Photodynamic Therapy for Glioblastoma

    Science.gov (United States)

    Toussaint, Magali; Pinel, Sophie; Auger, Florent; Durieux, Nicolas; Thomassin, Magalie; Thomas, Eloise; Moussaron, Albert; Meng, Dominique; Plénat, François; Amouroux, Marine; Bastogne, Thierry; Frochot, Céline; Tillement, Olivier; Lux, François; Barberi-Heyob, Muriel

    2017-01-01

    Despite recent progress in conventional therapeutic approaches, the vast majority of glioblastoma recur locally, indicating that a more aggressive local therapy is required. Interstitial photodynamic therapy (iPDT) appears as a very promising and complementary approach to conventional therapies. However, an optimal fractionation scheme for iPDT remains the indispensable requirement. To achieve that major goal, we suggested following iPDT tumor response by a non-invasive imaging monitoring. Nude rats bearing intracranial glioblastoma U87MG xenografts were treated by iPDT, just after intravenous injection of AGuIX® nanoparticles, encapsulating PDT and imaging agents. Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) allowed us an original longitudinal follow-up of post-treatment effects to discriminate early predictive markers. We successfully used conventional MRI, T2 star (T2*), Diffusion Weighted Imaging (DWI) and MRS to extract relevant profiles on tissue cytoarchitectural alterations, local vascular disruption and metabolic information on brain tumor biology, achieving earlier assessment of tumor response. From one day post-iPDT, DWI and MRS allowed us to identify promising markers such as the Apparent Diffusion Coefficient (ADC) values, lipids, choline and myoInositol levels that led us to distinguish iPDT responders from non-responders. All these responses give us warning signs well before the tumor escapes and that the growth would be appreciated. PMID:28255341

  9. Temporal variation in the response of tumors to hyperoxia with breathing carbogen and oxygen

    Directory of Open Access Journals (Sweden)

    Hua-gang Hou

    2016-01-01

    Full Text Available The effect of hyperoxygenation with carbogen (95% O 2 + 5% CO 2 and 100% oxygen inhalation on partial pressure of oxygen (pO 2 of radiation-induced fibrosarcoma (RIF-1 tumor was investigated. RIF-1 tumors were innoculated in C3H mice, and aggregates of oximetry probe, lithium phthalocyanine (LiPc, was implanted in each tumor. A baseline tumor pO 2 was measured by electron paramagnetic resonance (EPR oximetry for 20 minutes in anesthetized mice breathing 30% O 2 and then the gas was switched to carbogen or 100 % oxygen for 60 minutes. These experiments were repeated for 10 days. RIF-1 tumors were hypoxic with a baseline tissue pO 2 of 6.2-8.3 mmHg in mice breathing 30% O 2 . Carbogen and 100% oxygen significantly increased tumor pO 2 on days 1 to 5, with a maximal increase at approximately 32-45 minutes on each day. However, the extent of increase in pO 2 from the baseline declined significantly on day 5 and day 10. The results provide quantitative information on the effect of hyperoxic gas inhalation on tumor pO 2 over the course of 10 days. EPR oximetry can be effectively used to repeatedly monitor tumor pO 2 and test hyperoxic methods for potential clinical applications.

  10. Intercellular transfer of apoptotic signals via electrofusion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Suk; Lee, Wilson; McCulloch, Christopher A., E-mail: christopher.mcculloch@utoronto.ca

    2012-05-01

    We determined whether cells that are induced to undergo anoikis by matrix detachment can initiate apoptosis in healthy cells following electroporation-induced fusion. Separate populations of MDCK cells undergoing anoikis and stained with FITC-annexin or viable MDCK cells that were labeled with spectrally discrete fluorescent beads were electroporated. Cells were analyzed by flow cytometry for enumeration of viable cells with beads, apoptotic cells or fused cells. Electroporation promoted a 49-fold increase of the percentage of viable cells that had fused with apoptotic cells. Apoptotic cell-viable cell fusions were 8-fold more likely to not attach to cell culture plastic and 2.3-fold less likely to proliferate after 24 hr incubation than viable cell fusion controls. These data demonstrate that apoptotic signals can be transferred between cells by electrofusion, possibly suggesting a novel investigative approach for optimizing targeted cell deletion in cancer treatment.

  11. Growth inhibition in response to estrogen withdrawal and tamoxifen therapy of human breast cancer xenografts evaluated by in vivo 31P magnetic resonance spectroscopy, creatine kinase activity, and apoptotic index

    DEFF Research Database (Denmark)

    Kristensen, C A; Kristjansen, P E; Brünner, N;

    1995-01-01

    index, and creatine kinase (CK) activity. Tumors of each line were grown in ovariectomized nude mice during stimulation from a s.c. 17 beta-estradiol pellet. At a tumor size of approximately 350 mm3, the pellet was removed from one-half of the animals. The remaining one-half served as controls...

  12. A longitudinal genome-wide association study of anti-tumor necrosis factor response among Japanese patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Honne, Kyoko; Hallgrímsdóttir, Ingileif; Wu, Chunsen;

    2016-01-01

    BACKGROUND: Studies of Caucasian patients with rheumatoid arthritis (RA) to identify genetic biomarkers of anti-tumor necrosis factor (TNF) response have used response at a single time point as the phenotype with which single nucleotide polymorphism (SNP) associations have been tested. The findings...... DAS28, treatment duration, type of anti-TNF agent and concomitant methotrexate. Cross-sectional analyses were performed using multivariate linear regression models, with response from a single time point (ΔDAS-3 or ΔDAS-6) as phenotype; all other variables were the same as in the GEE models. RESULTS...

  13. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis.

    Science.gov (United States)

    Cook, Rebecca S; Jacobsen, Kristen M; Wofford, Anne M; DeRyckere, Deborah; Stanford, Jamie; Prieto, Anne L; Redente, Elizabeth; Sandahl, Melissa; Hunter, Debra M; Strunk, Karen E; Graham, Douglas K; Earp, H Shelton

    2013-08-01

    MerTK, a receptor tyrosine kinase (RTK) of the TYRO3/AXL/MerTK family, is expressed in myeloid lineage cells in which it acts to suppress proinflammatory cytokines following ingestion of apoptotic material. Using syngeneic mouse models of breast cancer, melanoma, and colon cancer, we found that tumors grew slowly and were poorly metastatic in MerTK-/- mice. Transplantation of MerTK-/- bone marrow, but not wild-type bone marrow, into lethally irradiated MMTV-PyVmT mice (a model of metastatic breast cancer) decreased tumor growth and altered cytokine production by tumor CD11b+ cells. Although MerTK expression was not required for tumor infiltration by leukocytes, MerTK-/- leukocytes exhibited lower tumor cell-induced expression of wound healing cytokines, e.g., IL-10 and growth arrest-specific 6 (GAS6), and enhanced expression of acute inflammatory cytokines, e.g., IL-12 and IL-6. Intratumoral CD8+ T lymphocyte numbers were higher and lymphocyte proliferation was increased in tumor-bearing MerTK-/- mice compared with tumor-bearing wild-type mice. Antibody-mediated CD8+ T lymphocyte depletion restored tumor growth in MerTK-/- mice. These data demonstrate that MerTK signaling in tumor-associated CD11b+ leukocytes promotes tumor growth by dampening acute inflammatory cytokines while inducing wound healing cytokines. These results suggest that inhibition of MerTK in the tumor microenvironment may have clinical benefit, stimulating antitumor immune responses or enhancing immunotherapeutic strategies.

  14. Histopathological and expression profiling studies of early tumor responses to near-infrared PDT treatment in SCID mice

    Science.gov (United States)

    Starkey, Jean R.; Rebane, Aleksander; Drobizhev, Mikhail A.; Meng, Fanqin; Gong, Aijun; Elliott, Aleisha; McInnerney, Kate; Pascucci, Elizabeth; Spangler, Charles W.

    2008-02-01

    A novel class of porphyrin-based near-infrared photodynamic therapy (PDT) sensitizers is studied. We achieve regressions of human small cell lung cancer (NCI-H69), non-small cell lung cancer (A 459) and breast cancer (MDAMB- 231) xenografts in SCID mice at significant tissue depth by irradiation with an amplified femtosecond pulsed laser at 800 nm wavelength. Significant tumor regressions were observed during the first 10-14 days post treatment. Tumor histopathology was consistent with known PDT effects, while no significant changes were noted in irradiated normal tissues. In vivo imaging studies using intravenous injections of fluorescent dextran demonstrated an early loss of tumor blood flow. RNA was isolated from NCI-H69 PDT treated SCID mouse xenografts and paired untreated xenografts at 4 hours post laser irradiation. Similarly RNA was isolated from PDT treated and untreated Lewis lung carcinomas growing in C57/Bl6 mice. Expression profiling was carried out using Affymetrix TM human and mouse GeneChips®. Cluster analysis of microarray expression profiling results demonstrated reproducible increases in transcripts associated with apoptosis, stress, oxygen transport and gene regulation in the PDT treated NCI-H69 samples. In addition, PDT treated Lewis lung carcinomas showed reproducible increases in transcripts associated with immune response and lipid biosynthesis. PDT treated C57/Bl6 mice developed cytotoxic T cell activity towards this tumor, while untreated tumor bearing mice failed to do so.

  15. Complete Metabolic Response with Recanalization of Portal Vein Tumor Thrombosis after Sunitinib in a Patient with Advanced Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Michele Basso

    2010-11-01

    Full Text Available The prognosis of patients with advanced hepatocellular carcinoma (HCC is very poor. The outcome of these patients is particularly bleak when the disease is complicated by portal vein tumor thrombosis (PVTT, since the increased portal pressure often causes serious gastrointestinal bleedings. Before the introduction of sorafenib (SOR, a tyrosine kinase inhibitor, no effective treatment was available for patients with advanced disease. SOR is now considered the standard treatment even for patients with tumor thrombosis, although the well-known interference between tyrosine kinase inhibitors and the coagulation pathway calls for caution against their use in this setting. Here, we report the case of a 74-year-old male patient with advanced HCC and PVTT treated with sunitinib (SUN, another multikinase inhibitor. During the third cycle, our patient experienced a life-threatening hematemesis with hemorrhagic shock that required intensive care treatment and SUN discontinuation. However, he completely recovered, and the PET/CT scan performed 1 year after the adverse effect demonstrated no evidence of the tumor together with portal vein recanalization. The short course of SUN causing both tumor response and gastrointestinal bleeding warrants further studies on the effectiveness of SUN in this setting as well as on the duration of treatment with multikinase inhibitors in patients with tumor thrombosis.

  16. Cloning and sequencing of a DNA fragment encoding N37 apoptotic peptide derived from p53

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective It was reported that p53 apoptotic peptide (N37) could inhibit p73 gene through being bound with iASPP,which could induce tumor cell apoptosis. To further explore the function of N37,we constructed the cloning plasmid of DNA fragment encoding p53 (N37) apoptotic peptide by using DNA synthesis and molecular biology methods. Methods According to human p53 sequence from the GenBank database,the primer of p53(N37) gene was designed using Primer V7.0 software. The DNA fragment encoding p53 (N37) apopto...

  17. Dendritic Cell-Derived Exosomes Stimulate Stronger CD8+ CTL Responses and Antitumor Immunity than Tumor Cell-Derived Exosomes

    Institute of Scientific and Technical Information of China (English)

    Siguo Hao; Ou Bai; Jinying Yuan; Mabood Qureshi; Jim Xiang

    2006-01-01

    Exosomes (EXO) derived from dendritic cells (DC) and tumor cells have been used to stimulate antitumor immune responses in animal models and in clinical trials. However, there has been no side-by-side comparison of the stimulatory efficiency of the antitumor immune responses induced by these two commonly used EXO vaccines. In this study, we selected to study the phenotype characteristics of EXO derived from a transfected EG7 tumor cells expressing ovalbumin (OVA) and OVA-pulsed DC by flow cytometry. We compared the stimulatory effect in induction of OVA-specific immune responses between these two types of EXO. We found that OVA protein-pulsed DCovA-derived EXO (EXODC) can more efficiently stimulate naive OVA-specific CD8+ T cell proliferation and differentiation into cytotoxic T lymphocytes in vivo, and induce more efficient antitumor immunity than EG7 tumor cell-derived EXO (EXOEG7). In addition, we elucidated the important role of the host DC in EXO vaccines that the stimulatory effect of EXO is delivered to T cell responses by the host DC. Therefore, DC-derived EXO may represent a more effective EXO-based vaccine in induction of antitumor immunity.

  18. Antiproliferative and pro-apoptotic effects of Uncaria tomentosa in human medullary thyroid carcinoma cells.

    Science.gov (United States)

    Rinner, Beate; Li, Zeng Xia; Haas, Helga; Siegl, Veronika; Sturm, Sonja; Stuppner, Hermann; Pfragner, Roswitha

    2009-11-01

    Medullary thyroid carcinoma (MTC), a rare calcitonin-producing tumor, is derived from parafollicular C-cells of the thyroid and is characterized by constitutive Bcl-2 overexpression. The tumor is relatively insensitive to radiation therapy as well as conventional chemotherapy. To date, the only curative treatment is the early and complete surgical removal of all neoplastic tissue. In this study, the antiproliferative and pro-apoptotic effects of fractions obtained from Uncaria tomentosa (Willd.) DC, commonly known as uña de gato or cat's claw were investigated. Cell growth of MTC cells as well as enzymatic activity of mitochondrial dehydrogenase was markedly inhibited after treatment with different fractions of the plant. Furthermore, there was an increase in the expressions of caspase-3 and -7 and poly(ADP-ribose) polymerase (PARP) fraction, while bcl-2 overexpression remained constant. In particular, the alkaloids isopterpodine and pteropodine of U. tomentosa exhibited a significant pro-apoptotic effect on MTC cells, whereas the alkaloid-poor fraction inhibited cell proliferation but did not show any pro-apoptotic effects. These promising results indicate the growth-restraining and apoptotic potential of plant extracts against neuroendocrine tumors, which may add to existing therapies for cancer.

  19. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  20. Assessment of tumor oxygenation and its impact on treatment response in bevacizumab-treated recurrent glioblastoma

    DEFF Research Database (Denmark)

    Bonekamp, David; Mouridsen, Kim; Radbruch, Alexander

    2016-01-01

    at baseline. This implies that tumors with a higher degree of angiogenesis prior to bevacizumab-treatment retain a higher level of angiogenesis during therapy despite a greater antiangiogenic effect of bevacizumab, hinting at evasive mechanisms limiting bevacizumab efficacy in that a reversal...... of systemic therapy to the tumor; however, the underlying pathophysiological changes and their timing after treatment initiation remain controversial. Here, we use a novel dynamic susceptibility contrast MRI-based method, which allows simultaneous assessment of tumor net oxygenation changes reflected...... of their biological behavior and relative prognosis does not occur....

  1. Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis

    Science.gov (United States)

    Yan, Wen-Ting; Cui, Xiang; Chen, Qing; Li, Ya-Fei; Cui, You-Hong; Wang, Yan; Jiang, Jun

    2017-01-01

    Whether circulating tumor cells (CTCs) can be used as an indicator of treatment response in breast cancer (BC) needs to be clarified. We addressed this issue by a meta-analysis. PubMed, EMBase and Cochrane library databases were searched in June 2016. Effect measures were estimated as pooled risk ratio (RR), odds ratio (OR) or mean difference by fixed- or random-effect models, according to heterogeneity of included studies. In total, 50 studies with 6712 patients were recruited. Overall analysis showed that there was a significant reduction of CTC-positive rate (RR = 0.68, 95% CI: 0.61–0.76, P < 0.00001) after treatment. Subgroup analyses revealed that neoadjuvant treatment, adjuvant treatment, metastatic treatment or combination therapy could reduce the CTC-positive rate, but surgery could not; moreover, the reduction was only found in HER2+ or HER2- patients but not in the triple-negative ones. Reduction of CTC-positive rate was associated with lower probability of disease progression (OR = 0.54, 95% CI: 0.33–0.89, P = 0.01) and longer overall survival period (mean difference = 11.61 months, 95% CI: 8.63–14.59, P < 0.00001) as well as longer progression-free survival period (mean difference = 5.07 months, 95% CI: 2.70–7.44, P < 0.0001). These results demonstrate that CTC status can serve as an indicator to monitor the effectiveness of treatments and guide subsequent therapies in BC. PMID:28337998

  2. Evaluation of Tumor Response after Short-Course Radiotherapy and Delayed Surgery for Rectal Cancer

    Science.gov (United States)

    Rega, Daniela; Pecori, Biagio; Scala, Dario; Avallone, Antonio; Pace, Ugo; Petrillo, Antonella; Aloj, Luigi; Tatangelo, Fabiana; Delrio, Paolo

    2016-01-01

    Purpose Neoadjuvant therapy is able to reduce local recurrence in rectal cancer. Immediate surgery after short course radiotherapy allows only for minimal downstaging. We investigated the effect of delayed surgery after short-course radiotherapy at different time intervals before surgery, in patients affected by rectal cancer. Methods From January 2003 to December 2013 sixty-seven patients with the following characteristics have been selected: clinical (c) stage T3N0 ≤ 12 cm from the anal verge and with circumferential resection margin > 5 mm (by magnetic resonance imaging); cT2, any N, CRM+ve who resulted unfit for chemo-radiation, were also included. Patients underwent preoperative short-course radiotherapy with different interval to surgery were divided in three groups: A (within 6 weeks), B (between 6 and 8 weeks) and C (after more than 8 weeks). Hystopatolgical response to radiotherapy was measured by Mandard’s modified tumor regression grade (TRG). Results All patients completed the scheduled treatment. Sixty-six patients underwent surgery. Fifty-three of which (80.3%) received a sphincter saving procedure. Downstaging occurred in 41 cases (62.1%). The analysis of subgroups showed an increasing prevalence of TRG 1–2 prolonging the interval to surgery (group A—16.7%, group B—36.8% and 54.3% in group C; p value 0.023). Conclusions Preoperative short-course radiotherapy is able to downstage rectal cancer if surgery is delayed. A higher rate of TRG 1–2 can be obtained if interval to surgery is prolonged to more than 8 weeks. PMID:27548058

  3. {sup 18}F-fluorodeoxyglucose positron emission tomography for predicting tumor response to radiochemotherapy in nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Su, Meng; Wei, Hangping; Lin, Ruifang; Zhang, Xuebang; Zou, Changlin [The First Affiliated Hospital of Wenzhou Medical University, Department of Radiation Oncology and Chemotherapy, Wenzhou, Zhejiang province (China); Zhao, Liang [The First Affiliated Hospital of Wenzhou Medical University, Department of Positron Emission Tomography, Wenzhou, Zhejiang province (China)

    2015-08-15

    The aim of this study was to evaluate the value of {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in predicting tumor response to radiochemotherapy in nasopharyngeal carcinoma (NPC). From July 2012 to March 2014, 46 NPC patients who had undergone PET scanning before receiving definitive intensity-modulated radiotherapy (IMRT) treatment in our hospital were enrolled. Factors potentially affecting tumor response to treatment were studied by multiple logistic regression analysis. After radiochemotherapy, 32 patients had a clinical complete response (CR), making the CR rate 69.6 %. Multiple logistic regression analysis demonstrated that the maximal standard uptake value (SUV{sub max}) of the primary tumor was the only factor related to tumor response (p = 0.001), and that the logistic model had a high positive predictive value (90.6 %). The area under the receiver operating characteristic (ROC) curve was 0.809, with a best cutoff threshold at 10.05. Patients with SUV{sub max} ≤ 10 had a higher CR rate than those with SUV{sub max} > 10 (p < 0.001). The SUV{sub max} of the primary tumor before treatment is an independent predictor of tumor response in NPC. (orig.) [German] Das Ziel der Arbeit bestand darin, den Wert der {sup 18}F-Fluordesoxyglukose-Positronenemissionstomographie ({sup 18}F-FDG-PET) zur Vorhersage des Tumoransprechens auf eine Radiochemotherapie beim Nasopharynxkarzinom (NPC) zu beurteilen. Von Juli 2012 bis Maerz 2014 wurden 46 NPC-Patienten, die sich vor definitiver intensitaetsmodulierter Strahlentherapie (IMRT) in unserem Krankenhaus einem PET-Scan unterzogen hatten, in die Studie aufgenommen. Faktoren, die moeglicherweise das Tumoransprechen auf die Behandlung beeinflussen, wurden mittels multipler logistischer Regressionsanalyse untersucht. Nach der Radiochemotherapie hatten 32 Patienten eine klinisch komplette Remission (CR), so dass eine CR-Rate von 69,6 % erreicht wurde. Die multiple logistische Regressionsanalyse zeigte

  4. Visual Analysis of Tumor Control Models for Prediction of Radiotherapy Response

    DEFF Research Database (Denmark)

    Raidou, Renata G.; Casares Magaz, Oscar; Muren, Ludvig;

    2016-01-01

    In radiotherapy, tumors are irradiated with a high dose, while surrounding healthy tissues are spared. To quantify the probability that a tumor is effectively treated with a given dose, statistical models were built and employed in clinical research. These are called tumor control probability (TCP......) models. Recently, TCP models started incor- porating additional information from imaging modalities. In this way, patient-specific properties of tumor tissues are included, improving the radiobiological accuracy of models. Yet, the employed imaging modalities are subject to uncertainties with significant...... on TCP modeling, to explore the information provided by their models, to discover new knowledge and to confirm or generate hypotheses within their data. Our approach incorporates the following four main components: (1) It supports the exploration of uncertainty and its effect on TCP models; (2...

  5. Germline polymorphisms may act as predictors of response to preoperative chemoradiation in locally advanced T3 rectal tumors

    DEFF Research Database (Denmark)

    Spindler, Karen-Lise G; Nielsen, Jens N; Lindebjerg, Jan;

    2007-01-01

    with locally advanced T3 rectal tumors were analyzed for thymidylate synthase, epidermal growth factor receptor Sp1-216, and epidermal growth factor A61G gene polymorphisms by polymerase chain reaction. Treatment consisted of preoperative radiotherapy (total dose 65 Gy) and concomitant chemotherapy (Uftoral......PURPOSE: Patients with locally advanced T3 rectal tumors who present with complete pathologic response to preoperative chemoradiation have a low rate of local recurrence and an excellent prognosis. Predictive markers for complete pathologic response are needed with the perspective of improving...... individualized treatment of these patients. This study was designed to investigate the predictive value of a new combination of three gene polymorphisms: thymidylate synthase, epidermal growth factor receptor Sp1-216, and epidermal growth factor A61G. METHODS: Pretreatment blood samples from 60 patients...

  6. Tumor specific HMG-CoA reductase expression in primary pre-menopausal breast cancer predicts response to tamoxifen

    LENUS (Irish Health Repository)

    Brennan, Donal J

    2011-01-31

    Abstract Introduction We previously reported an association between tumor-specific 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) expression and a good prognosis in breast cancer. Here, the predictive value of HMG-CoAR expression in relation to tamoxifen response was examined. Methods HMG-CoAR protein and RNA expression was analyzed in a cell line model of tamoxifen resistance using western blotting and PCR. HMG-CoAR mRNA expression was examined in 155 tamoxifen-treated breast tumors obtained from a previously published gene expression study (Cohort I). HMG-CoAR protein expression was examined in 422 stage II premenopausal breast cancer patients, who had previously participated in a randomized control trial comparing 2 years of tamoxifen with no systemic adjuvant treatment (Cohort II). Kaplan-Meier analysis and Cox proportional hazards modeling were used to estimate the risk of recurrence-free survival (RFS) and the effect of HMG-CoAR expression on tamoxifen response. Results HMG-CoAR protein and RNA expression were decreased in tamoxifen-resistant MCF7-LCC9 cells compared with their tamoxifen-sensitive parental cell line. HMG-CoAR mRNA expression was decreased in tumors that recurred following tamoxifen treatment (P < 0.001) and was an independent predictor of RFS in Cohort I (hazard ratio = 0.63, P = 0.009). In Cohort II, adjuvant tamoxifen increased RFS in HMG-CoAR-positive tumors (P = 0.008). Multivariate Cox regression analysis demonstrated that HMG-CoAR was an independent predictor of improved RFS in Cohort II (hazard ratio = 0.67, P = 0.010), and subset analysis revealed that this was maintained in estrogen receptor (ER)-positive patients (hazard ratio = 0.65, P = 0.029). Multivariate interaction analysis demonstrated a difference in tamoxifen efficacy relative to HMG-CoAR expression (P = 0.05). Analysis of tamoxifen response revealed that patients with ER-positive\\/HMG-CoAR tumors had a significant response to tamoxifen (P = 0.010) as well as

  7. Preclinical dynamic 18F-FDG PET - tumor characterization and radiotherapy response assessment by kinetic compartment analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roee, Kathrine; Aleksandersen, Thomas B.; Nilsen, Line B.; Hong Qu; Ree, Anne H.; Malinen, Eirik (Univ. of Oslo, Oslo (Norway)), E-mail: Kathrine.Roe@rr-research.no; Kristian, Alexandr (Dept. of Tumor Biology, Inst. for Cancer Research, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway)); Seierstad, Therese (Dept. of Radiation Biology, Inst. for Cancer Research, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway)); Olsen, Dag R. (Univ. of Bergen, Bergen (Norway))

    2010-10-15

    Background. Non-invasive visualization of tumor biological and molecular processes of importance to diagnosis and treatment response is likely to be critical in individualized cancer therapy. Since conventional static 18F-FDG PET with calculation of the semi-quantitative parameter standardized uptake value (SUV) may be subject to many sources of variability, we here present an approach of quantifying the 18F-FDG uptake by analytic two-tissue compartment modeling, extracting kinetic tumor parameters from dynamic 18F-FDG PET. Further, we evaluate the potential of such parameters in radiotherapy response assessment. Material and methods. Male, athymic mice with prostate carcinoma xenografts were subjected to dynamic PET either untreated (n=8) or 24 h post-irradiation (7.5 Gy single dose, n=8). After 10 h of fasting, intravenous bolus injections of 10-15 MBq 18F-FDG were administered and a 1 h dynamic PET scan was performed. 4D emission data were reconstructed using OSEM-MAP, before remote post-processing. Individual arterial input functions were extracted from the image series. Subsequently, tumor 18F-FDG uptake was fitted voxel-by-voxel to a compartment model, producing kinetic parameter maps. Results. The kinetic model separated the 18F-FDG uptake into free and bound tracer and quantified three parameters; forward tracer diffusion (k1), backward tracer diffusion (k2), and rate of 18F-FDG phosphorylation, i.e. the glucose metabolism (k3). The fitted kinetic model gave a goodness of fit (r2) to the observed data ranging from 0.91 to 0.99, and produced parametrical images of all tumors included in the study. Untreated tumors showed homogeneous intra-group median values of all three parameters (k1, k2 and k3), whereas the parameters significantly increased in the tumors irradiated 24 h prior to 18F-FDG PET. Conclusions. This study demonstrates the feasibility of a two-tissue compartment kinetic analysis of dynamic 18F-FDG PET images. If validated, extracted parametrical

  8. Generation of neuronal progenitor cells in response to tumors in the human brain.

    Science.gov (United States)

    Macas, Jadranka; Ku, Min-Chi; Nern, Christian; Xu, Yuanzhi; Bühler, Helmut; Remke, Marc; Synowitz, Michael; Franz, Kea; Seifert, Volker; Plate, Karl H; Kettenmann, Helmut; Glass, Rainer; Momma, Stefan

    2014-01-01

    Data from transgenic mouse models show that neuronal progenitor cells (NPCs) migrate toward experimental brain tumors and modulate the course of pathology. However, the pathways whereby NPCs are attracted to CNS neoplasms are not fully understood and it is unexplored if NPCs migrate toward brain tumors (high-grade astrocytomas) in humans. We analyzed the tumor-parenchyma interface of neurosurgical resections for the presence of (NPCs) and distinguished these physiological cells from the tumor mass. We observed that polysialic acid neural cell adhesion molecule-positive NPCs accumulate at the border of high-grade astrocytomas and display a marker profile consistent with immature migratory NPCs. Importantly, these high-grade astrocytoma-associated NPCs did not carry genetic aberrations that are indicative of the tumor. Additionally, we observed NPCs accumulating in CNS metastases. These metastatic tumors are distinguished from neural cells by defined sets of markers. Transplanting murine glioma cells embedded in a cell-impermeable hollow fiber capsule into the brains of nestin-gfp reporter mice showed that diffusible factors are sufficient to induce a neurogenic reaction. In vitro, vascular endothelial growth factor (VEGF) secreted from glioma cells increases the migratory and proliferative behavior of adult human brain-derived neural stem and progenitor cells via stimulation of VEGF receptor-2 (VEGFR-2). In vivo, inhibiting VEGFR-2 signaling with a function-blocking antibody led to a reduction in NPC migration toward tumors. Overall, our data reveal a mechanism by which NPCs are attracted to CNS tumors and suggest that NPCs accumulate in human high-grade astrocytomas.

  9. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors.

    Science.gov (United States)

    Chen, Qian; Liu, Xiaodong; Zeng, Jianfeng; Cheng, Zhenping; Liu, Zhuang

    2016-08-01

    Real-time in vivo pH imaging in the tumor, as well as designing therapies responsive to the acidic tumor microenvironment to achieve optimized therapeutic outcomes have been of great interests in the field of nanomedicine. Herein, a pH-responsive near-infrared (NIR) croconine (Croc) dye is able to induce the self-assembly of human serum albumin (HSA) to form HSA-Croc nanoparticles useful not only for real-time ratiometric photoacoustic pH imaging of the tumor, but also for pH responsive photothermal therapy with unexpected great performance against tumors with relatively large sizes. Such HSA-Croc nanoparticles upon intravenous injection exhibit efficient tumor homing. As the decrease of pH, the absorption of Croc at 810 nm would increase while that at 680 nm would decrease, allowing real-time pH sensing in the tumor by double-wavelength ratiometric photoacoustic imaging, which reveals the largely decreased pH inside the cores of large tumors. Moreover, utilizing HSA-Croc as a pH-responsive photothermal agent, effective photothermal ablation of large tumors is realized, likely owing to the more evenly distributed intratumoral heating compared to that achieved by conventional pH-insensitive photothermal agents, which are effective mostly for tumors with small sizes.

  10. Volumetric response classification in metastatic solid tumors on MSCT: Initial results in a whole-body setting

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, A.M., E-mail: a.wulff@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Fabel, M. [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Freitag-Wolf, S., E-mail: freitag@medinfo.uni-kiel.de [Institut für Medizinische Informatik und Statistik, Brunswiker Str. 10, 24105 Kiel (Germany); Tepper, M., E-mail: m.tepper@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Knabe, H.M., E-mail: h.knabe@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Schäfer, J.P., E-mail: jp.schaefer@rad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Jansen, O., E-mail: o.jansen@neurorad.uni-kiel.de [Klinik für Diagnostische Radiologie, Arnold-Heller-Straße 3, Haus 23, 24105 Kiel (Germany); Bolte, H., E-mail: hendrik.bolte@ukmuenster.de [Klinik für Nuklearmedizin, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster (Germany)

    2013-10-01

    Purpose: To examine technical parameters of measurement accuracy and differences in tumor response classification using RECIST 1.1 and volumetric assessment in three common metastasis types (lung nodules, liver lesions, lymph node metastasis) simultaneously. Materials and methods: 56 consecutive patients (32 female) aged 41–82 years with a wide range of metastatic solid tumors were examined with MSCT for baseline and follow up. Images were evaluated by three experienced radiologists using manual measurements and semi-automatic lesion segmentation. Institutional ethics review was obtained and all patients gave written informed consent. Data analysis comprised interobserver variability operationalized as coefficient of variation and categorical response classification according to RECIST 1.1 for both manual and volumetric measures. Continuous data were assessed for statistical significance with Wilcoxon signed-rank test and categorical data with Fleiss kappa. Results: Interobserver variability was 6.3% (IQR 4.6%) for manual and 4.1% (IQR 4.4%) for volumetrically obtained sum of relevant diameters (p < 0.05, corrected). 4–8 patients’ response to therapy was classified differently across observers by using volumetry compared to standard manual measurements. Fleiss kappa revealed no significant difference in categorical agreement of response classification between manual (0.7558) and volumetric (0.7623) measurements. Conclusion: Under standard RECIST thresholds there was no advantage of volumetric compared to manual response evaluation. However volumetric assessment yielded significantly lower interobserver variability. This may allow narrower thresholds for volumetric response classification in the future.

  11. High-throughput fluorescence polarization assay for chemical library screening against anti-apoptotic Bcl-2 family member Bfl-1.

    Science.gov (United States)

    Zhai, Dayong; Godoi, Paulo; Sergienko, Eduard; Dahl, Russell; Chan, Xochella; Brown, Brock; Rascon, Justin; Hurder, Andrew; Su, Ying; Chung, Thomas D Y; Jin, Chaofang; Diaz, Paul; Reed, John C

    2012-03-01

    Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ≥50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.

  12. Imatinib mesylate induces responses in patients with liver metastases from gastrointestinal stromal tumor failing intra-arterial hepatic chemotherapy

    Directory of Open Access Journals (Sweden)

    Fiorentini Giammaria

    2006-01-01

    Full Text Available Background: Imatinib mesylate represents a real major paradigm shift in cancer therapy, targeting the specific molecular abnormalities, crucial in the etiology of tumor. Intra-arterial hepatic chemotherapy (IAHC followed by embolization, has been considered an interesting palliative option for patients with liver metastases from gastrointestinal stromal tumor (GIST, due to the typically hypervascular pattern of the tumor. Aims: We report our experience with IAHC followed by Imatinib mesylate, in order to show the superiority of the specific molecular approach in liver metastases from GIST. Materials and Methods: Three patients (pts with pretreated massive liver metastases from GIST, received IAHC with Epirubicin 50 mg/mq, every 3 weeks for 6 cycles. At the evidence of progression, they received Imatinib mesylate. Results: We observed progressive diseases in all cases. In 1998, one patient underwent Thalidomide at 150 mg orally, every day for 4 months, with evidence of stable disease and clinical improvement. In 2001, two patients received Imatinib mesylate at 400 mg orally, every day, with evidence of partial response lasting 18+ months and 16 months. One of them had grade 3 neutropenia, with suspension of therapy for 3 weeks. Conclusion: No patient treated with IAHC, reported objective responses, but two of them obtained partial response after the assumption of Imatinib mesylate and one showed temporary stabilization with thalidomide. Imatinib mesylate represents a new opportunity in GIST therapy, targeting the specific molecular alteration. It seems to be superior to conventional intra arterial hepatic chemotherapy.

  13. Durable Complete Response from Metastatic Melanoma after Transfer of Autologous T Cells Recognizing 10 Mutated Tumor Antigens.

    Science.gov (United States)

    Prickett, Todd D; Crystal, Jessica S; Cohen, Cyrille J; Pasetto, Anna; Parkhurst, Maria R; Gartner, Jared J; Yao, Xin; Wang, Rong; Gros, Alena; Li, Yong F; El-Gamil, Mona; Trebska-McGowan, Kasia; Rosenberg, Steven A; Robbins, Paul F

    2016-08-01

    Immunotherapy treatment of patients with metastatic cancer has assumed a prominent role in the clinic. Durable complete response rates of 20% to 25% are achieved in patients with metastatic melanoma following adoptive cell transfer of T cells derived from metastatic lesions, responses that appear in some patients to be mediated by T cells that predominantly recognize mutated antigens. Here, we provide a detailed analysis of the reactivity of T cells administered to a patient with metastatic melanoma who exhibited a complete response for over 3 years after treatment. Over 4,000 nonsynonymous somatic mutations were identified by whole-exome sequence analysis of the patient's autologous normal and tumor cell DNA. Autologous B cells transfected with 720 mutated minigenes corresponding to the most highly expressed tumor cell transcripts were then analyzed for their ability to stimulate the administered T cells. Autologous tumor-infiltrating lymphocytes recognized 10 distinct mutated gene products, but not the corresponding wild-type products, each of which was recognized in the context of one of three different MHC class I restriction elements expressed by the patient. Detailed clonal analysis revealed that 9 of the top 20 most prevalent clones present in the infused T cells, comprising approximately 24% of the total cells, recognized mutated antigens. Thus, we have identified and enriched mutation-reactive T cells and suggest that such analyses may lead to the development of more effective therapies for the treatment of patients with metastatic cancer. Cancer Immunol Res; 4(8); 669-78. ©2016 AACR.

  14. Interaction of apoptotic cells with macrophages upregulates COX-2/PGE2 and HGF expression via a positive feedback loop.

    Science.gov (United States)

    Byun, Ji Yeon; Youn, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Woo, So-Yeon; Kang, Jihee Lee

    2014-01-01

    Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2 expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cells in vitro and in vivo orchestrate the interaction between COX-2/PGE2 and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2 production. Both NS-398 and COX-2-siRNA, as well as the PGE2 receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2 induction. The in vivo relevance of the interaction between the COX-2/PGE2 and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages following in vivo exposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2 and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.

  15. Interaction of Apoptotic Cells with Macrophages Upregulates COX-2/PGE2 and HGF Expression via a Positive Feedback Loop

    Directory of Open Access Journals (Sweden)

    Ji Yeon Byun

    2014-01-01

    Full Text Available Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2/prostaglandin E2 (PGE2 and hepatocyte growth factor (HGF play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2 expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cells in vitro and in vivo orchestrate the interaction between COX-2/PGE2 and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2 production. Both NS-398 and COX-2-siRNA, as well as the PGE2 receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2 induction. The in vivo relevance of the interaction between the COX-2/PGE2 and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages following in vivo exposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2 and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.

  16. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    Directory of Open Access Journals (Sweden)

    Klier Ulrike

    2011-09-01

    Full Text Available Abstract Background Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. Methods We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. Results The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4+, activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested could be observed. Conclusion Cellular fusions of MSI+ carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These

  17. Identification of an HLA-A*0201 restricted Bcl2-derived epitope expressed on tumors

    DEFF Research Database (Denmark)

    Wang, Mingjun; Johansen, Britta; Nissen, Mogens H

    2006-01-01

    A large number of human tumor-associated antigen-derived peptides have been identified that are recognized by CTLs in a MHC-I restricted fashion. The apoptosis inhibitory protein Bcl2 is overexpressed in many human cancers as part of their neoplastic phenotype. Since inhibition or loss of Bcl2...... expression might impair tumor growth and survival, this protein may serve as a rational target for vaccine-induced CTL responses. By Western blot technique, we screened a panel of established human tumor cell lines for proteins involved in the apoptotic process. Two of eight tumor cell lines, a B lymphoma...... (Loukes) and a colon carcinoma (CCL220) cell line showed increased Bcl2 protein expression whereas the majority of tumor cell lines expressed proapoptotic proteins. Neither fibroblasts nor peripheral blood mononuclear cells showed Bcl2 expression. An HLA-A*0201 restricted CTL epitope was deduced in silica...

  18. Apoptotic cell signaling in cancer progression and therapy.

    Science.gov (United States)

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-04-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed.

  19. Apoptotic cell signaling in cancer progression and therapy†

    Science.gov (United States)

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-01-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed. PMID:21340093

  20. Mathematical modeling of interleukin-27 induction of anti-tumor T cells response.

    Directory of Open Access Journals (Sweden)

    Kang-Ling Liao

    Full Text Available Interleukin-12 is a pro-inflammatory cytokine which promotes Th1 and cytotoxic T lymphocyte activities, such as Interferon-[Formula: see text] secretion. For this reason Interleukin-12 could be a powerful therapeutic agent for cancer treatment. However, Interleukin-12 is also excessively toxic. Interleukin-27 is an immunoregulatory cytokine from the Interleukin-12 family, but it is not as toxic as Interleukin-12. In recent years, Interleukin-27 has been considered as a potential anti-tumor agent. Recent experiments in vitro and in vivo have shown that cancer cells transfected with IL-27 activate CD8+ T cells to promote the secretion of anti-tumor cytokines Interleukin-10, although, at the same time, IL-27 inhibits the secretion of Interferon-[Formula: see text] by CD8+ T cells. In the present paper we develop a mathematical model based on these experimental results. The model involves a dynamic network which includes tumor cells, CD8+ T cells and cytokines Interleukin-27, Interleukin-10 and Interferon-[Formula: see text]. Simulations of the model show how Interleukin-27 promotes CD8+ T cells to secrete Interleukin-10 to inhibit tumor growth. On the other hand Interleukin-27 inhibits the secretion of Interferon-[Formula: see text] by CD8+ T cells which somewhat diminishes the inhibition of tumor growth. Our numerical results are in qualitative agreement with experimental data. We use the model to design protocols of IL-27 injections for the treatment of cancer and find that, for some special types of cancer, with a fixed total amount of drug, within a certain range, continuous injection has better efficacy than intermittent injections in reducing the tumor load while the treatment is ongoing, although the decrease in tumor load is only temporary.

  1. Deriving mechanisms responsible for the lack of correlation between hypoxia and acidity in solid tumors.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    Full Text Available Hypoxia and acidity are two main microenvironmental factors intimately associated with solid tumors and play critical roles in tumor growth and metastasis. The experimental results of Helmlinger and colleagues (Nature Medicine 3, 177, 1997 provide evidence of a lack of correlation between these factors on the micrometer scale in vivo and further show that the distribution of pH and pO(2 are heterogeneous. Here, using computational simulations, grounded in these experimental results, we show that the lack of correlation between pH and pO(2 and the heterogeneity in their shapes are related to the heterogeneous concentration of buffers and oxygen in the blood vessels, further amplified by the network of blood vessels and the cell metabolism. We also demonstrate that, although the judicious administration of anti-angiogenesis agents (normalization process in tumors may lead to recovery of the correlation between hypoxia and acidity, it may not normalize the pH throughout the whole tumor. However, an increase in the buffering capacity inside the blood vessels does appear to increase the extracellular pH throughout the whole tumor. Based on these results, we propose that the application of anti-angiogenic agents and at the same time increasing the buffering capacity of the tumor extracellular environment may be the most efficient way of normalizing the tumor microenvironment. As a by-product of our simulation we show that the recently observed lack of correlation between glucose consumption and hypoxia in cells which rely on respiration is related to the inhomogeneous consumption of glucose to oxygen concentration. We also demonstrate that this lack of correlation in cells which rely on glycolysis could be related to the heterogeneous concentration of oxygen inside the blood vessels.

  2. Mathematical modeling of interleukin-27 induction of anti-tumor T cells response.

    Science.gov (United States)

    Liao, Kang-Ling; Bai, Xue-Feng; Friedman, Avner

    2014-01-01

    Interleukin-12 is a pro-inflammatory cytokine which promotes Th1 and cytotoxic T lymphocyte activities, such as Interferon-[Formula: see text] secretion. For this reason Interleukin-12 could be a powerful therapeutic agent for cancer treatment. However, Interleukin-12 is also excessively toxic. Interleukin-27 is an immunoregulatory cytokine from the Interleukin-12 family, but it is not as toxic as Interleukin-12. In recent years, Interleukin-27 has been considered as a potential anti-tumor agent. Recent experiments in vitro and in vivo have shown that cancer cells transfected with IL-27 activate CD8+ T cells to promote the secretion of anti-tumor cytokines Interleukin-10, although, at the same time, IL-27 inhibits the secretion of Interferon-[Formula: see text] by CD8+ T cells. In the present paper we develop a mathematical model based on these experimental results. The model involves a dynamic network which includes tumor cells, CD8+ T cells and cytokines Interleukin-27, Interleukin-10 and Interferon-[Formula: see text]. Simulations of the model show how Interleukin-27 promotes CD8+ T cells to secrete Interleukin-10 to inhibit tumor growth. On the other hand Interleukin-27 inhibits the secretion of Interferon-[Formula: see text] by CD8+ T cells which somewhat diminishes the inhibition of tumor growth. Our numerical results are in qualitative agreement with experimental data. We use the model to design protocols of IL-27 injections for the treatment of cancer and find that, for some special types of cancer, with a fixed total amount of drug, within a certain range, continuous injection has better efficacy than intermittent injections in reducing the tumor load while the treatment is ongoing, although the decrease in tumor load is only temporary.

  3. The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress

    Science.gov (United States)

    Rozpędek, W.; Pytel, D.; Mucha, B.; Leszczyńska, H.; Diehl, J. Alan; Majsterek, I.

    2016-01-01

    Hypoxia is a major hallmark of the tumor microenvironment that is strictly associated with rapid cancer progression and induction of metastasis. Hypoxia inhibits disulfide bond formation and impairs protein folding in the Endoplasmic Reticulum (ER). The stress in the ER induces the activation of Unfolded Protein Response (UPR) pathways via the induction of protein kinase RNA-like endoplasmic reticulum kinase (PERK). As a result, the level of phosphorylated Eukaryotic Initiation Factor 2 alpha (eIF2α) is markedly elevated, resulting in the promotion of a pro-adaptive signaling pathway by the inhibition of global protein synthesis and selective translation of Activating Transcription Factor 4 (ATF4). On the contrary, during conditions of prolonged ER stress, pro-adaptive responses fail and apoptotic cell death ensues. Interestingly, similar to the activity of the mitochondria, the ER may also directly activate the apoptotic pathway through ER stress-mediated leakage of calcium into the cytoplasm that leads to the activation of death effectors. Apoptotic cell death also ensues by ATF4-CHOP- mediated induction of several pro-apoptotic genes and suppression of the synthesis of anti-apoptotic Bcl-2 proteins. Advancing molecular insight into the transition of tumor cells from adaptation to apoptosis under hypoxia-induced ER stress may provide answers on how to overcome the limitations of current anti-tumor therapies. Targeting components of the UPR pathways may provide more effective elimination of tumor cells and as a result, contribute to the development of more promising anti-tumor therapeutic agents. PMID:27211800

  4. The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression During Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Rozpedek, W; Pytel, D; Mucha, B; Leszczynska, H; Diehl, J A; Majsterek, I

    2016-01-01

    Hypoxia is a major hallmark of the tumor microenvironment that is strictly associated with rapid cancer progression and induction of metastasis. Hypoxia inhibits disulfide bond formation and impairs protein folding in the Endoplasmic Reticulum (ER). The stress in the ER induces the activation of Unfolded Protein Response (UPR) pathways via the induction of protein kinase RNA-like endoplasmic reticulum kinase (PERK). As a result, the level of phosphorylated Eukaryotic Initiation Factor 2 alpha (eIF2α) is markedly elevated, resulting in the promotion of a pro-adaptive signaling pathway by the inhibition of global protein synthesis and selective translation of Activating Transcription Factor 4 (ATF4). On the contrary, during conditions of prolonged ER stress, pro-adaptive responses fail and apoptotic cell death ensues. Interestingly, similar to the activity of the mitochondria, the ER may also directly activate the apoptotic pathway through ER stress-mediated leakage of calcium into the cytoplasm that leads to the activation of death effectors. Apoptotic cell death also ensues by ATF4-CHOP- mediated induction of several pro-apoptotic genes and suppression of the synthesis of anti-apoptotic Bcl-2 proteins. Advancing molecular insight into the transition of tumor cells from adaptation to apoptosis under hypoxia-induced ER stress may provide answers on how to overcome the limitations of current anti-tumor therapies. Targeting components of the UPR pathways may provide more effective elimination of tumor cells and as a result, contribute to the development of more promising anti-tumor therapeutic agents.

  5. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preeti [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India); Godbole, Madan, E-mail: madangodbole@yahoo.co.in [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India); Rao, Geeta [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India); Annarao, Sanjay [Centre of Biomedical Magnetic Resonance, Lucknow (India); Mitra, Kalyan [Electron Microscopy Unit, Central Drug Research Institute, Lucknow (India); Roy, Raja [Centre of Biomedical Magnetic Resonance, Lucknow (India); Ingle, Arvind [Advanced Centre for Treatment Research and Education in Cancer, Mumbai (India); Agarwal, Gaurav; Tiwari, Swasti [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Molecular iodine (I{sub 2}) causes non-apoptotic cell death in MDA-MB231 breast tumor cells. Black-Right-Pointing-Pointer Autophagy is activated as a survival mechanism in response to I{sub 2} in MDA-MB231. Black-Right-Pointing-Pointer Autophagy inhibition sensitizes tumor cells to I{sub 2}-induced apoptotic cell death. Black-Right-Pointing-Pointer Autophagy inhibitor potentiates apoptosis and tumor regressive effects of I{sub 2} in mice. -- Abstract: Estrogen receptor negative (ER{sup -ve}) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I{sub 2}) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER{sup -ve}-p53 mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I{sub 2} (3 {mu}M) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER{sup -ve} mammary tumors could be sensitized to I{sub 2}-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I{sub 2} treated MDA-MB231 cells. Further, CQ (20 {mu}M) in combination with I{sub 2}, showed apoptotic features such as increased sub-G1 fraction ({approx}5-fold), expression of cleaved caspase-9 and -3 compared to I{sub 2} treatment alone. Flowcytometry of I{sub 2} and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I{sub 2} treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I{sub 2} and CQ co-treated mice relative to I{sub 2} or

  6. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy

    Science.gov (United States)

    Tessier, A. G.; Yahya, A.; Larocque, M. P.; Fallone, B. G.; Syme, A.

    2014-09-01

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm3 voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides

  7. Functional Response of Tumor Vasculature to PaCO2: Determination of Total and Microvascular Blood Volume by MRI

    Directory of Open Access Journals (Sweden)

    Scott D. Packard

    2003-07-01

    Full Text Available In order to identify differences in functional activity, we compared the reactivity of glioma vasculature and the native cerebral vasculature to both dilate and constrict in response to altered PaCO2. Gliomas were generated by unilateral implantation of U87MGdEGFR human glioma tumor cells into the striatum of adult female athymic rats. Relative changes in total and microvascular cerebral blood volume were determined by steady state contrast agent-enhanced magnetic resonance imaging for transitions from normocarbia to hypercarbia and hypocarbia. Although hypercarbia induced a significant increase in both total and microvascular blood volume in normal brain and glioma, reactivity of glioma vasculature was significantly blunted in comparison to normal striatum; glioma total CBV increased by 0.6±0.1%/mm Hg CO2 whereas normal striatum increased by 1.5±0.2%/mm Hg CO2, (P < .0001, group t-test. Reactivity of microvascular blood volume was also significantly blunted. In contrast, hypocarbia decreased both total and microvascular blood volumes more in glioma than in normal striatum. These results indicate that cerebral blood vessels derived by tumor-directed angiogenesis do retain reactivity to CO2. Furthermore, reduced reactivity of tumor vessels to a single physiological perturbation, such as hypercarbia, should not be construed as a generalized reduction of functional activity of the tumor vascular bed.

  8. Mechanistic Rationale to Target PTEN-Deficient Tumor Cells with Inhibitors of the DNA Damage Response Kinase ATM.

    Science.gov (United States)

    McCabe, Nuala; Hanna, Conor; Walker, Steven M; Gonda, David; Li, Jie; Wikstrom, Katarina; Savage, Kienan I; Butterworth, Karl T; Chen, Clark; Harkin, D Paul; Prise, Kevin M; Kennedy, Richard D

    2015-06-01

    Ataxia telangiectasia mutated (ATM) is an important signaling molecule in the DNA damage response (DDR). ATM loss of function can produce a synthetic lethal phenotype in combination with tumor-associated mutations in FA/BRCA pathway components. In this study, we took an siRNA screening strategy to identify other tumor suppressors that, when inhibited, similarly sensitized cells to ATM inhibition. In this manner, we determined that PTEN and ATM were synthetically lethal when jointly inhibited. PTEN-deficient cells exhibited elevated levels of reactive oxygen species, increased endogenous DNA damage, and constitutive ATM activation. ATM inhibition caused catastrophic DNA damage, mitotic cell cycle arrest, and apoptosis specifically in PTEN-deficient cells in comparison with wild-type cells. Antioxidants abrogated the increase in DNA damage and ATM activation in PTEN-deficient cells, suggesting a requirement for oxidative DNA damage in the mechanism of cell death. Lastly, the ATM inhibitor KU-60019 was specifically toxic to PTEN mutant cancer cells in tumor xenografts and reversible by reintroduction of wild-type PTEN. Together, our results offer a mechanistic rationale for clinical evaluation of ATM inhibitors in PTEN-deficient tumors.

  9. Functional Characterization and Drug Response of Freshly Established Patient-Derived Tumor Models with CpG Island Methylator Phenotype.

    Directory of Open Access Journals (Sweden)

    Claudia Maletzki

    Full Text Available Patient-individual tumor models constitute a powerful platform for basic and translational analyses both in vitro and in vivo. However, due to the labor-intensive and highly time-consuming process, only few well-characterized patient-derived cell lines and/or corresponding xenografts exist. In this study, we describe successful generation and functional analysis of novel tumor models from patients with sporadic primary colorectal carcinomas (CRC showing CpG island methylator phenotype (CIMP. Initial DNA fingerprint analysis confirmed identity with the patient in all four cases. These freshly established cells showed characteristic features associated with the CIMP-phenotype (HROC40: APCwt, TP53 mut, KRAS mut; 3/8 marker methylated; HROC43: APC mut, TP53 mut, KRAS mut; 4/8 marker methylated; HROC60: APCwt, TP53 mut, KRASwt; 4/8 marker methylated; HROC183: APC mut, TP53 mut, KRAS mut; 6/8 marker methylated. Cell lines were of epithelial origin (EpCAM+ with distinct morphology and growth kinetics. Response to chemotherapeutics was quite individual between cells, with stage I-derived cell line HROC60 being most susceptible towards standard clinically approved chemotherapeutics (e.g. 5-FU, Irinotecan. Of note, most cell lines were sensitive towards "non-classical" CRC standard drugs (sensitivity: Gemcitabin > Rapamycin > Nilotinib. This comprehensive analysis of tumor biology, genetic alterations and assessment of chemosensitivity towards a broad range of (chemo- therapeutics helps bringing forward the concept of personalized tumor therapy.

  10. Histogram Analysis of CT Perfusion of Hepatocellular Carcinoma for Predicting Response to Transarterial Radioembolization: Value of Tumor Heterogeneity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, Caecilia S., E-mail: caecilia.reiner@usz.ch; Gordic, Sonja; Puippe, Gilbert; Morsbach, Fabian; Wurnig, Moritz [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology (Switzerland); Schaefer, Niklaus; Veit-Haibach, Patrick [University Hospital Zurich, Division of Nuclear Medicine (Switzerland); Pfammatter, Thomas; Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology (Switzerland)

    2016-03-15

    PurposeTo evaluate in patients with hepatocellular carcinoma (HCC), whether assessment of tumor heterogeneity by histogram analysis of computed tomography (CT) perfusion helps predicting response to transarterial radioembolization (TARE).Materials and MethodsSixteen patients (15 male; mean age 65 years; age range 47–80 years) with HCC underwent CT liver perfusion for treatment planning prior to TARE with Yttrium-90 microspheres. Arterial perfusion (AP) derived from CT perfusion was measured in the entire tumor volume, and heterogeneity was analyzed voxel-wise by histogram analysis. Response to TARE was evaluated on follow-up imaging (median follow-up, 129 days) based on modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results of histogram analysis and mean AP values of the tumor were compared between responders and non-responders. Receiver operating characteristics were calculated to determine the parameters’ ability to discriminate responders from non-responders.ResultsAccording to mRECIST, 8 patients (50 %) were responders and 8 (50 %) non-responders. Comparing responders and non-responders, the 50th and 75th percentile of AP derived from histogram analysis was significantly different [AP 43.8/54.3 vs. 27.6/34.3 mL min{sup −1} 100 mL{sup −1}); p < 0.05], while the mean AP of HCCs (43.5 vs. 27.9 mL min{sup −1} 100 mL{sup −1}; p > 0.05) was not. Further heterogeneity parameters from histogram analysis (skewness, coefficient of variation, and 25th percentile) did not differ between responders and non-responders (p > 0.05). If the cut-off for the 75th percentile was set to an AP of 37.5 mL min{sup −1} 100 mL{sup −1}, therapy response could be predicted with a sensitivity of 88 % (7/8) and specificity of 75 % (6/8).ConclusionVoxel-wise histogram analysis of pretreatment CT perfusion indicating tumor heterogeneity of HCC improves the pretreatment prediction of response to TARE.

  11. Computer-aided global breast MR image feature analysis for prediction of tumor response to chemotherapy: performance assessment

    Science.gov (United States)

    Aghaei, Faranak; Tan, Maxine; Hollingsworth, Alan B.; Zheng, Bin; Cheng, Samuel

    2016-03-01

    Dynamic contrast-enhanced breast magnetic resonance imaging (DCE-MRI) has been used increasingly in breast cancer diagnosis and assessment of cancer treatment efficacy. In this study, we applied a computer-aided detection (CAD) scheme to automatically segment breast regions depicting on MR images and used the kinetic image features computed from the global breast MR images acquired before neoadjuvant chemotherapy to build a new quantitative model to predict response of the breast cancer patients to the chemotherapy. To assess performance and robustness of this new prediction model, an image dataset involving breast MR images acquired from 151 cancer patients before undergoing neoadjuvant chemotherapy was retrospectively assembled and used. Among them, 63 patients had "complete response" (CR) to chemotherapy in which the enhanced contrast levels inside the tumor volume (pre-treatment) was reduced to the level as the normal enhanced background parenchymal tissues (post-treatment), while 88 patients had "partially response" (PR) in which the high contrast enhancement remain in the tumor regions after treatment. We performed the studies to analyze the correlation among the 22 global kinetic image features and then select a set of 4 optimal features. Applying an artificial neural network trained with the fusion of these 4 kinetic image features, the prediction model yielded an area under ROC curve (AUC) of 0.83+/-0.04. This study demonstrated that by avoiding tumor segmentation, which is often difficult and unreliable, fusion of kinetic image features computed from global breast MR images without tumor segmentation can also generate a useful clinical marker in predicting efficacy of chemotherapy.

  12. THE APOPTOSIS OF EXPERIMENTAL COLORECTAL CARCINOMA CELLS INDUCED BY PEPTIDOGLYCAN OF BIFIDOBACTERIUM AND THE EXPRESSION OF APOPTOTIC REGULATING GENES

    Institute of Scientific and Technical Information of China (English)

    WANG Li-sheng; PAN Ling-jia; SHI Li; SUN Yong; ZHANG Ya-li; ZHOU Dian-yuan

    1999-01-01

    Objective: To explore the antitumor mechanisms of whole peptidoglycan of bifidobacterium. Methods: The apoptotic cells and the positive expression of bcl-2 and bax oncoprotein were studied nude mice transplantation tumors of colorectal carcinoma by employing in situ end labeling technique and immunohistochemical staining. Results:The apoptotic cell density, the positive rate and the staining intensity of bax oncoprotein of the transplantation tumor of colorectal carcinoma in the whole peptidoglycan injection group were significantly higher when compared with the tumor control group. The positive rate of bcl-2 oncoprotein in the whole peptidoglycan injection group was obviously lower than that in the tumor control group (P<0.01).Conclusion: Whole peptidoglycan of Bifidobacterium bifidum could induce cell apoptosis of nude mice transplantation tumors of colorectal carcinoma by downregulating the expression of the bcl-2 gene and upregulating the expression of the bax gene.

  13. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe2O4) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models.

  14. Development of novel cyclic peptides as pro-apoptotic agents.

    Science.gov (United States)

    Brindisi, Margherita; Maramai, Samuele; Brogi, Simone; Fanigliulo, Emanuela; Butini, Stefania; Guarino, Egeria; Casagni, Alice; Lamponi, Stefania; Bonechi, Claudia; Nathwani, Seema M; Finetti, Federica; Ragonese, Francesco; Arcidiacono, Paola; Campiglia, Pietro; Valenti, Salvatore; Novellino, Ettore; Spaccapelo, Roberta; Morbidelli, Lucia; Zisterer, Daniela M; Williams, Clive D; Donati, Alessandro; Baldari, Cosima; Campiani, Giuseppe; Ulivieri, Cristina; Gemma, Sandra

    2016-07-19

    Our recent finding that paclitaxel behaves as a peptidomimetic of the endogenous protein Nur77 inspired the design of two peptides (PEP1 and PEP2) reproducing the effects of paclitaxel on Bcl-2 and tubulin, proving the peptidomimetic nature of paclitaxel. Starting from these peptide-hits, we herein describe the synthesis and the biological investigation of linear and cyclic peptides structurally related to PEP2. While linear peptides (2a,b, 3a,b, 4, 6a-f) were found inactive in cell-based assays, biological analysis revealed a pro-apoptotic effect for most of the cyclic peptides (5a-g). Cellular permeability of 5a (and also of 2a,b) on HL60 cells was assessed through confocal microscopy analysis. Further cellular studies on a panel of leukemic cell lines (HL60, Jurkat, MEC, EBVB) and solid tumor cell lines (breast cancer MCF-7 cells, human melanoma A375 and 501Mel cells, and murine melanoma B16F1 cells) confirmed the pro-apoptotic effect of the cyclic peptides. Cell cycle analysis revealed that treatment with 5a, 5c, 5d or 5f resulted in an increase in the number of cells in the sub-G0/G1 peak. Direct interaction with tubulin (turbidimetric assay) and with microtubules (immunostaining experiments) was assessed in vitro for the most promising compounds.

  15. Interaction of late apoptotic and necrotic cells with vitronectin.

    Directory of Open Access Journals (Sweden)

    Ondrej Stepanek

    Full Text Available BACKGROUND: Vitronectin is an abundant plasma glycoprotein identified also as a part of extracellular matrix. Vitronectin is substantially enriched at sites of injured, fibrosing, inflamed, and tumor tissues where it is believed to be involved in wound healing and tissue remodeling. Little is known about the mechanism of vitronectin localization into the damaged tissues. METHODOLOGY/PRINCIPAL FINDINGS: 2E12 antibody has been described to bind a subset of late apoptotic cells. Using immunoisolation followed by mass spectrometry, we identified the antigen recognized by 2E12 antibody as vitronectin. Based on flow cytometry, we described that vitronectin binds to the late apoptotic and necrotic cells in cell cultures in vitro as well as in murine thymus and spleen in vivo. Confocal microscopy revealed that vitronectin binds to an intracellular cytoplasmic structure after the membrane rupture. CONCLUSIONS/SIGNIFICANCE: We propose that vitronectin could serve as a marker of membrane disruption in necrosis and apoptosis for flow cytometry analysis. Moreover, we suggest that vitronectin binding to dead cells may represent one of the mechanisms of vitronectin incorporation into the injured tissues.

  16. Androstane derivatives induce apoptotic death in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Jakimov, Dimitar S; Kojić, Vesna V; Aleksić, Lidija D; Bogdanović, Gordana M; Ajduković, Jovana J; Djurendić, Evgenija A; Penov Gaši, Katarina M; Sakač, Marija N; Jovanović-Šanta, Suzana S

    2015-11-15

    Biological investigation was conducted to study in vitro antiproliferative and pro-apoptotic potential of selected 17α-picolyl and 17(E)-picolinylidene androstane derivatives. The antiproliferative impact was examined on six human tumor cell lines, including two types of breast (MCF-7 and MDA-MB-231), prostate (PC3), cervical (HeLa), colon (HT 29) and lung cancer (A549), as well as one normal fetal lung fibroblasts cell line (MRC-5). All derivatives selectively decreased proliferation of estrogen receptor negative MDA-MB-231 breast cancer cells after 48 h and 72 h treatment and compounds showed time-dependent activity. We used this cell line to investigate cell cycle modulation and apoptotic cell death induction by flow cytometry, expression of apoptotic proteins by Western blot and apoptotic morphology by visual observation. Tested androstane derivatives affected the cell cycle distribution and induced apoptosis and necrosis. Compounds had different and specific mode of action, depending on derivative type and exposure time. Some compounds induced significant apoptosis measured by Annexin V test compared to reference compound formestane. Higher expression of pro-apoptotic BAX, downregulation of anti-apoptotic Bcl-2 and cleavage of PARP protein were confirmed in almost all treated samples, but the lack of caspase-3 activation suggested the induction of apoptosis in caspase-independent manner. More cells with apoptotic morphology were observed in samples after prolonged treatment. Structure-activity relationship analysis was performed to find correlations between the structure variations of investigated derivatives and observed biological effects. Results of this study showed that some of the investigated androstane derivatives have good biomedical potential and could be candidates for anticancer drug development.

  17. The role of the tumor stroma in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ben eDavidson

    2014-05-01

    Full Text Available The tumor microenvironment, consisting of stromal myofibroblasts, endothelial cells and leukocytes, is growingly perceived to be a major contributor to the pathogenesis and disease progression in practically all cancer types. Stromal myofibroblasts produce angiogenic factors, proteases, growth factors, immune response-modulating proteins, anti-apoptotic proteins and signaling molecules, and express surface receptors and respond to stimuli initiated in the tumor cells to establish a bi-directional communication network in the microenvironment to promote tumor cell invasion and metastasis. Many of these molecules are candidates for targeted therapy and the cancer stroma has been recently regarded as target for biological intervention. This review provides an overview of the biology and clinical role of the stroma in ovarian cancer.

  18. Optical Imaging of Tumor Response to Hyperbaric Oxygen Treatment and Irradiation in an Orthotopic Mouse Model of Head and Neck Squamous Cell Carcinoma

    NARCIS (Netherlands)

    J.A.M. Braks (Joanna); L. Spiegelberg (Linda); S. Koljenovic (Senada); Y. Ridwan (Yanto); S. Keereweer (Stijn); R. Kanaar (Roland); E.B. Wolvius (Eppo); J. Essers (Jeroen)

    2015-01-01

    textabstractPurpose: Hyperbaric oxygen therapy (HBOT) is used in the treatment of radiation-induced tissue injury but its effect on (residual) tumor tissue is indistinct and therefore investigated in this study. Procedures: Orthotopic FaDu tumors were established in mice, and the response of the (ir

  19. Expression of Fas (CD95/APO-1) ligand by human breast cancers: significance for tumor immune privilege.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Breast cancers have been shown to elicit tumor-specific immune responses. As in other types of cancer, the antitumor immune response fails to contain breast tumor growth, and a reduction in both the quantity and cytotoxic effectiveness of tumor-infiltrating lymphocytes (TILs) is associated with a poorer prognosis. Fas ligand (FasL) induces apoptotic death of activated lymphocytes that express its cell surface receptor, FasR (CD95\\/APO-1). FasL-mediated apoptosis of activated lymphocytes contributes to normal immune downregulation through its roles in tolerance acquisition, immune response termination, and maintenance of immune privilege in the eye, testis, and fetus. In this report, we demonstrate that breast carcinomas express FasL. Using in situ hybridization and immunohistochemistry, we show that breast tumors constitutively express FasL at both the mRNA and protein levels, respectively. FasL expression is prevalent in breast cancer: 100% of breast tumors (17 of 17) were found to express FasL, and expression occurred over more than 50% of the tumor area in all cases. By immunohistochemistry, FasR was found to be coexpressed with FasL throughout large areas of all the breast tumors. This suggests that the tumor cells had acquired intracellular defects in FasL-mediated apoptotic signaling. FasL and FasR expression were independent of tumor type or infiltrative capacity. FasL expressed by tumor cells has previously been shown to kill Fas-sensitive lymphoid cells in vitro and has been associated with apoptosis of TILs in vivo. We conclude that mammary carcinomas express FasL in vivo as a potential inhibitor of the antitumor immune response.

  20. Tumor-Selective Response to Antibody-Mediated Targeting of αvβ3 Integrin in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Charles N. Landen

    2008-11-01

    Full Text Available The αvβ3 integrin is expressed on proliferating endothelial cells and some cancer cells, but its expression on ovarian cancer cells and its potential as a therapeutic target are unknown. In this study, expression of the αvβ3 integrin on ovarian cancer cell lines and murine endothelial cells was tested, and the effect of a fully humanized monoclonal antibody against αvβ3, Abegrin (etaracizumab, on cell invasion, viability, tumor growth, and the Akt pathway were examined in vitro and in vivo. We found that etaracizumab recognizes αvβ3 on the ovarian cancer cell lines SKOV3ip1, HeyA8, and A2780ip2 (at low levels but not on murine endothelial cells. Etaracizumab treatment decreased ovarian cancer proliferation and invasion. In vivo, tumor-bearing mice treated with etaracizumab alone gave variable results. There was no effect on A2780ip2 growth, but a 36% to 49% tumor weight reduction in the SKOV3ip1 and HeyA8 models was found (P < .05. However, combined etaracizumab and paclitaxel was superior to paclitaxel in the SKOV3ip1 and A2780ip2 models (by 51–73%, P < .001 but not in the HeyA8 model. Treatment with etaracizumab was then noted to decrease p-Akt and p-mTOR in SKOV3ip1, but not in HeyA8, which is Akt-independent. Tumors resected after therapy showed that etaracizumab treatment reduced the proliferating cell nuclear antigen index but not microvessel density. This study identifies tumor cell αvβ3 integrin as an attractive target and defines the Akt pathway as a predictor of response to function-blocking antibody.

  1. Prognostication and response assessment in liver and pancreatic tumors: The new imaging

    Science.gov (United States)

    De Robertis, Riccardo; Tinazzi Martini, Paolo; Demozzi, Emanuele; Puntel, Gino; Ortolani, Silvia; Cingarlini, Sara; Ruzzenente, Andrea; Guglielmi, Alfredo; Tortora, Giampaolo; Bassi, Claudio; Pederzoli, Paolo; D’Onofrio, Mirko

    2015-01-01

    Diffusion-weighted imaging (DWI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) are technical improvements of morphologic imaging that can evaluate functional properties of hepato-bilio-pancreatic tumors during conventional MRI or CT examinations. Nevertheless, the term “functional imaging” is commonly used to describe molecular imaging techniques, as positron emission tomography (PET) CT/MRI, which still represent the most widely used methods for the evaluation of functional properties of solid neoplasms; unlike PET or single photon emission computed tomography, functional imaging techniques applied to conventional MRI/CT examinations do not require the administration of radiolabeled drugs or specific equipments. Moreover, DWI and DCE-MRI can be performed during the same session, thus providing a comprehensive “one-step” morphological and functional evaluation of hepato-bilio-pancreatic tumors. Literature data reveal that functional imaging techniques could be proposed for the evaluation of these tumors before treatment, given that they may improve staging and predict prognosis or clinical outcome. Microscopic changes within neoplastic tissues induced by treatments can be detected and quantified with functional imaging, therefore these techniques could be used also for post-treatment assessment, even at an early stage. The aim of this editorial is to describe possible applications of new functional imaging techniques apart from molecular imaging to hepatic and pancreatic tumors through a review of up-to-date literature data, with a particular emphasis on pathological correlations, prognostic stratification and post-treatment monitoring. PMID:26078555

  2. Monitoring of Tumor Response to Neoadjuvant Radio-Chemotherapy of Esophageal Carcinoma by F-18-FDG-PET

    Institute of Scientific and Technical Information of China (English)

    PeterTheissen; PaulM.Schneider; StephanE.Baldus; AlexandraJost; MarkusDietlein; RolfP.Miiller; ArnulfH.Hoelscher; HaraldSchicha

    2004-01-01

    Introduction: For clinical assessment of neoadjuvant radiochemotherapy of esophageal cancer reliable in-vivo methods are necessary. Therefore, the capabilities of F-18-Fluorodesoxyglucose-PET in comparison to histomorphological grading of tumor regression were studied. Methods: In 33 patients with locally advanced esophageal carcinoma (uT3, uN0-1, cM0) F-18-FDG-PET was performed before and 2 weeks after radiochemotherapy. All tumors were resected by transthoracic en-bloc esophagectomy 3-4 weeks after induction therapy. A subgroup of 11 patients underwent weekly PET scan during neoadjuvant therapy.PET was performed in a dedicated scanner 1.3 h after administration of 370 MBq F-18-FDG. Data analysis based on maximum SUV data derived from individual regions of interest in pre- and posttherapeutic images. PET data were compared to histomorphological grading parameters for tumor regression whithin the resected tissues. Results: The comparison of histopathological tumor regression after neoadjuvant therapy and PET SUV differences showed a significant x2 P-value of 0.006. There was a significant decrease of the SUV data from 9.14-3.5 to 4.3±1.9 (P<0.0001). In therapy responders SUV was diminished by 59% and in non-responders by 34 %. Longitudinal SUV measurement during neoadjuvant therapy showed a strong SUV decrease already after one and two weeks (P=0.021 and 0.003). Conclusion: The recent data of the FDG-PET follow-up after neoadjuvant therapy show that PET is able to predict therapy response.Longitudinal PET data advocate that it may be possible to recognize response also very early during radiochemotherapy.

  3. Protein Expression of BLM Gene and Its Apoptosis Sensitivity in Hematopoietic Tumor Cell Strains

    Institute of Scientific and Technical Information of China (English)

    Xiaobei WANG; Lihua HU

    2008-01-01

    Patients with Bloom syndrome (BS) show an immunodeficiency, an enhanced sister chromatid exchanges (SCEs), a strong genetic instability and an increased predisposition to all. In order to investigate the differential expression of BLM protein in hematopoietic tumor cell strains and study the effects of BLM gene on ultraviolet (UV)- or hydroxyurea (HU)-induced apoptosis, Western blot was used to detect the expression of BLM protein in normal human bone marrow mononuclear cells and 4 kinds of hematopoietic tumor cell strains. The 4 kinds of hematopoietic tumor cells were exposed to UV light with a germicidal UV lamp or treated with 2 mmol/L hydroxyurea and the apoptotic rate was detected by using AnnexinV-FITC. The results showed that these tumor cells ex- pressed BLM protein higher than the normal human bone marrow mononuclear cells (P<0.01). In the 4 hematopoietic tumor cells, BLM protein was all specially cleaved in response to UV- or HU-induced apoptosis. The increase of BLM protein expression may play an important role in the evelopment of these tumors, and BLM proteolysis is likely to be a general feature of the apoptotic esponse.

  4. Three-Dimensional Lung Tumor Microenvironment Modulates Therapeutic Compound Responsiveness In Vitro – Implication for Drug Development

    Science.gov (United States)

    Ekert, Jason E.; Johnson, Kjell; Strake, Brandy; Pardinas, Jose; Jarantow, Stephen; Perkinson, Robert; Colter, David C.

    2014-01-01

    Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor

  5. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development.

    Directory of Open Access Journals (Sweden)

    Jason E Ekert

    Full Text Available Three-dimensional (3D cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1 EGFR and cMET receptor expression, as determined by flow cytometry, 2 EGFR and cMET phosphorylation by MSD assay, and 3 cell proliferation in response to epidermal growth factor (EGF and hepatocyte growth factor (HGF. In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab] was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural

  6. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development.

    Science.gov (United States)

    Ekert, Jason E; Johnson, Kjell; Strake, Brandy; Pardinas, Jose; Jarantow, Stephen; Perkinson, Robert; Colter, David C

    2014-01-01

    Three-dimensional (3D) cell culture is gaining acceptance in response to the need for cellular models that better mimic physiologic tissues. Spheroids are one such 3D model where clusters of cells will undergo self-assembly to form viable, 3D tumor-like structures. However, to date little is known about how spheroid biology compares to that of the more traditional and widely utilized 2D monolayer cultures. Therefore, the goal of this study was to characterize the phenotypic and functional differences between lung tumor cells grown as 2D monolayer cultures, versus cells grown as 3D spheroids. Eight lung tumor cell lines, displaying varying levels of epidermal growth factor receptor (EGFR) and cMET protein expression, were used to develop a 3D spheroid cell culture model using low attachment U-bottom plates. The 3D spheroids were compared with cells grown in monolayer for 1) EGFR and cMET receptor expression, as determined by flow cytometry, 2) EGFR and cMET phosphorylation by MSD assay, and 3) cell proliferation in response to epidermal growth factor (EGF) and hepatocyte growth factor (HGF). In addition, drug responsiveness to EGFR and cMET inhibitors (Erlotinib, Crizotinib, Cetuximab [Erbitux] and Onartuzumab [MetMab]) was evaluated by measuring the extent of cell proliferation and migration. Data showed that EGFR and cMET expression is reduced at day four of untreated spheroid culture compared to monolayer. Basal phosphorylation of EGFR and cMET was higher in spheroids compared to monolayer cultures. Spheroids showed reduced EGFR and cMET phosphorylation when stimulated with ligand compared to 2D cultures. Spheroids showed an altered cell proliferation response to HGF, as well as to EGFR and cMET inhibitors, compared to monolayer cultures. Finally, spheroid cultures showed exceptional utility in a cell migration assay. Overall, the 3D spheroid culture changed the cellular response to drugs and growth factors and may more accurately mimic the natural tumor

  7. WE-G-BRD-01: Diffusion Weighted MRI for Response Assessment of Inoperable Lung Tumors for Patients Undergoing SBRT Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, N; Wengler, K; Yorke, E; Hunt, M; Deasy, J; Rimner, A [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: To investigate early changes in tumor Apparent Diffusion Coefficients derived from diffusion weighted (DW)-MRI of lung cancer patients undergoing SBRT, as a possible early predictor of treatment response. Methods: DW-MRI scans were performed in this prospective phase I IRB-approved study of inoperable lung tumors at various time-points during the course of SBRT treatments. Axial DW scan using multi b-values ranging from 0–1000 s/mm{sup 2} were acquired in treatment position on a 3T Philips MR scanner during simulation, one hour after the first fraction (8 Gy), after a total of 5 fractions (40 Gy) and 4 weeks after SBRT delivery. A monoexponential model based on a least square fit from all b values was performed on a pixel-by-pixel basis and ADC was calculated. GTVs drawn on 4DCT for planning were mapped on the T2w MRI (acquired at exhale) after deformable registration. These volumes were then mapped on DWI scan for ADC calculation after rigid registration between the anatomical scan and diffusion scan. T2w scan on followup time points were deformably registered to the pretreatment T2 scan. Results: The first two patients in this study were analyzed. Median ADC values were 1.48, 1.48, 1.62 and 1.83 (10{sup −3}×) mm{sup 2}/s at pretreatment, after 8 Gy, after 40 Gy and 4 weeks posttreatment for the first patient and 1.57, 1.53, 1.66 and 1.72 (10{sup −3}×) mm{sup 2}/s for the second patient. ADC increased more significantly after 4 weeks of treatment rather than immediately post treatment, implying that late ADC value may be a better predictor of tumor response for SBRT treatment. The fraction of tumor pixels at high ADC values increased at 4 weeks post treatment. Conclusion: The observed increase in ADC values before the end of radiotherapy may be a surrogate for tumor response, but further patient accrual will be necessary to determine its value.

  8. PEGylated apoptotic protein-loaded PLGA microspheres for cancer therapy

    Directory of Open Access Journals (Sweden)

    Byeon HJ

    2015-01-01

    Full Text Available Hyeong Jun Byeon,1 Insoo Kim,1 Ji Su Choi,1 Eun Seong Lee,2 Beom Soo Shin,3 Yu Seok Youn11Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; 2Division of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea; 3Department of Pharmacy, College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Republic of KoreaAbstract: The aim of the current study was to investigate the antitumor potential of poly(D,L-lactic-co-glycolic acid microspheres (PLGA MSs containing polyethylene glycol (PEG-conjugated (PEGylated tumor necrosis factor–related apoptosis-inducing ligand (PEG-TRAIL. PEG-TRAIL PLGA MSs were prepared by using a water-in-oil-in-water double-emulsion method, and the apoptotic activities of supernatants released from the PLGA MSs at days 1, 3, and 7 were examined. The antitumor effect caused by PEG-TRAIL PLGA MSs was evaluated in pancreatic Mia Paca-2 cell-xenografted mice. PEG-TRAIL PLGA MS was found to be spherical and 14.4±1.06 µm in size, and its encapsulation efficiency was significantly greater than that of TRAIL MS (85.7%±4.1% vs 43.3%±10.9%, respectively. The PLGA MS gradually released PEG-TRAIL for 14 days, and the released PEG-TRAIL was shown to have clear apoptotic activity in Mia Paca-2 cells, whereas TRAIL released after 1 day had a negligible activity. Finally, PEG-TRAIL PLGA MS displayed remarkably greater antitumor efficacy than blank or TRAIL PLGA MS in Mia Paca-2 cell-xenografted mice in terms of tumor volume and weight, apparently due to increased stability and well-retained apoptotic activity of PEG-TRAIL in PLGA MS. We believe that this PLGA MS system, combined with PEG-TRAIL, should be considered a promising candidate for treating pancreatic cancer.Keywords: Poly(D,L-lactic-co-glycolic acid, controlled release, PEGylation, TRAIL, pancreatic cancer

  9. Some implications of Scale Relativity theory in avascular stages of growth of solid tumors in the presence of an immune system response.

    Science.gov (United States)

    Buzea, C Gh; Agop, M; Moraru, Evelina; Stana, Bogdan A; Gîrţu, Manuela; Iancu, D

    2011-08-07

    We present a traveling-wave analysis of a reduced mathematical model describing the growth of a solid tumor in the presence of an immune system response in the framework of Scale Relativity theory. Attention is focused upon the attack of tumor cells by tumor-infiltrating cytotoxic lymphocytes (TICLs), in a small multicellular tumor, without necrosis and at some stage prior to (tumor-induced) angiogenesis. For a particular choice of parameters, the underlying system of partial differential equations is able to simulate the well-documented phenomenon of cancer dormancy and propagation of a perturbation in the tumor cell concentration by cnoidal modes, by depicting spatially heterogeneous tumor cell distributions that are characterized by a relatively small total number of tumor cells. This behavior is consistent with several immunomorphological investigations. Moreover, the alteration of certain parameters of the model is enough to induce soliton like modes and soliton packets into the system, which in turn result in tumor invasion in the form of a standard traveling wave. In the same framework of Scale Relativity theory, a very important feature of malignant tumors also results, that even in avascular stages they might propagate and invade healthy tissues, by means of a diffusion on a Newtonian fluid.

  10. Stroke volume variation and pleth variability index to predict fluid responsiveness during resection of primary retroperitoneal tumors in Hans Chinese.

    Science.gov (United States)

    Fu, Q; Mi, W D; Zhang, H

    2012-02-01

    Respiration variation in arterial pulse pressure (ΔPP) and pulse oximetry plethysmographic waveform amplitude (ΔPOP) are accurate predictors of fluid responsiveness in mechanically ventilated patients. We hypothesized that stroke volume variation (SVV) and pleth variability index (PVI) can predict fluid responsiveness in mechanically ventilated patients during major surgical procedures in Hans Chinese. This prospective study consisted of fifty-five Hans Chinese patients undergoing resection of primary retroperitoneal tumors (PRPT). During the surgical procedures, hemodynamic data [central venous pressure (CVP), cardiac index (CI), stroke volume index (SVI), SVV, and PVI] were recorded before and after volume expansion (VE) (8 ml•kg-1 of 6% hydroxyethyl starch 130/0.4). Fluid responsiveness was defined as an increase in SVI ≥ 10% after VE. Four patients were excluded from analysis for arrhythmia or obvious hemorrhage during VE. Baseline SVV correlated well with baseline PVI and the changes in SVV was correlated with the changes in PVI (p Chinese.

  11. Rat Tumor Response to the Vascular-Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid as Measured by Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Plasma 5-Hydroxyindoleacetic Acid Levels, and Tumor Necrosis

    Directory of Open Access Journals (Sweden)

    Lesley D. McPhail

    2006-03-01

    Full Text Available The dose-dependent effects of 5,6-dimethylxanthenone-4-acetic acid (DMXAA on rat GH3 prolactinomas were investigated in vivo. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI was used to assess tumor blood flow/permeability pretreatment and 24 hours posttreatment with 0, 100, 200, or 350 mg/kg DMXAA. DCE-MRI data were analyzed using Ktrans and the integrated area under the gadolinium time curve (IAUGC as response biomarkers. Highperformance liquid chromatography (HPLC was used to determine the plasma concentration of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA following treatment to provide an index of increased vessel permeability and vascular damage. Finally, tumor necrosis was assessed by grading hematoxylin and eosin-stained sections cut from the same tumors investigated by MRI. Both tumor Ktrans and IAUGC were significantly reduced 24 hours posttreatment with 350 mg/kg DMXAA only, with no evidence of dose response. HPLC demonstrated a significant increase in plasma 5-HIAA 24 hours posttreatment with 200 and 350 mg/kg DMXAA. Histologic analysis revealed some evidence of tumor necrosis following treatment with 100 or 200 mg/kg DMXAA, reaching significance with 350 mg/kg DMXAA. The absence of any reduction in Ktrans or IAUGC following treatment with 200 mg/kg, despite a significant increase in 5-HIAA, raises concerns about the utility of established DCE-MRI biomarkers to assess tumor response to DMXAA.

  12. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    Directory of Open Access Journals (Sweden)

    Maria Dolores Boyano

    2011-03-01

    Full Text Available Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies.

  13. Purif ied Protein Fraction of Garlic Extract Modulates Cellular Immune Response against Breast Transplanted Tumors in BALB/c Mice Model

    Directory of Open Access Journals (Sweden)

    Narges Zare Mehrjardi

    2013-01-01

    Full Text Available Objective: Garlic (Allium sativum has anti-inflammatory, anti-mutagenesis, and immunomodulatory properties that modulate anti-tumor immunity and inhibit tumor growth. In this study we have examined the effect of a protein fraction isolated from fresh garlic on anti-tumor response and intra-tumor lymphocyte infiltration.Materials and Methods: In this experimental study a protein fraction was purified from fresh garlic bulbs using ultra-filtration, followed by chromatofocusing, and SDS-PAGE analysis. Anti-tumor activity was assessed by intra-tumor injection of the protein fraction and garlic extract, itself, into groups of 5 mice each. The percentage of peripheral blood and intra-tumor CD4+ and CD8+ cells were assessed by flow cytometry. Unpaired student’s t test using the SPSS program was applied for all statistical analyses.Results: Garlic extract included different type of proteins with different molecular weight. One of protein’s fraction was immunomodeulator and was composed of three single polypeptides, with molecular masses of ~10-13 kDa and different isoelectric points (pI. These molecules augmented the delayed type hypersensitivity (DTH response compared to the control group. Intra-tumor injection of the fraction provoked a significant increase in the CD8+ subpopulation of T-lymphocytes, as well as a decrease in tumor size. The fraction increased peripheral blood CD8+ T-lymphocytes in treated animals.Conclusion: The data confirms that protein fractions purified from fresh garlic bulbs augment CD8+ T-cell infiltration into the tumor site, inhibiting tumor growth more efficiently than garlic extract. These fi ndings provide a basis for further investigations on the purified polypeptide as a useful candidate for immunomodulation and tumor treatment.

  14. HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer

    KAUST Repository

    Boulbes, Delphine R.

    2014-11-11

    Resistance to HER2-targeted therapies remains a major obstacle in the treatment of HER2-overexpressing breast cancer. Understanding the molecular pathways that contribute to the development of drug resistance is needed to improve the clinical utility of novel agents, and to predict the success of targeted personalized therapy based on tumor-specific mutations. Little is known about the clinical significance of HER family mutations in breast cancer. Because mutations within HER1/EGFR are predictive of response to tyrosine kinase inhibitors (TKI) in lung cancer, we investigated whether mutations in HER family kinase domains are predictive of response to targeted therapy in HER2-overexpressing breast cancer. We sequenced the HER family kinase domains from 76 HER2-overexpressing invasive carcinomas and identified 12 missense variants. Patients whose tumors carried any of these mutations did not respond to HER2 directed therapy in the metastatic setting. We developed mutant cell lines and used structural analyses to determine whether changes in protein conformation could explain the lack of response to therapy. We also functionally studied all HER2 mutants and showed that they conferred an aggressive phenotype and altered effects of the TKI lapatinib. Our data demonstrate that mutations in the finely tuned HER kinase domains play a critical function in breast cancer progression and may serve as prognostic and predictive markers.

  15. Response to Hepatocarcinoma Hca-F of Mice Immunized with Heat Shock Protein 70 from Elemene Combo Tumor Cell Vaccine

    Institute of Scientific and Technical Information of China (English)

    Lianying Guo; Guangxia Shi; Zhihong Gao; Jie Shen; Rong Xing; Zhenchao Qian

    2006-01-01

    To analyze immune response to murine hepatocarcinoma Hca-F of mice immunized with heat shock protein 70(HSP70) derived from elemene combo tumor cell vaccine (EC-TCV) of Hca-F, HSP70 was isolated from EC-TCV by ADP affinity chromatography. Mice were immunized with HSP70 intraperitoneally three times and spleen cells were sampled. For cells, their proliferation and cytotoxicity against Hca-F were measured with MTT assay and their phenotypes were analyzed with flow cytometry. Spleen cells of immunized mice with HSP70 exhibited more potent cytotoxicity against Hca-F and proliferation than that of normal control mice, but less potent than that of mice immunized with EC-TCV. Among three groups, the percent of γδ T lymphocytes in the mice immunized with HSP70 (35.5%) was the highest compared with 6.25% in normal mice, and 28.4% in the mice immunized with EC-TCV. Immunization of HSP70 derived from EC-TCV could elicit potent immune response to Hca-F. HSP70 is one of elements inducing anti-tumor immune responses against Hca-F. Cellular & Molecular Immunology. 2006;3(4):291-295.

  16. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring

    Directory of Open Access Journals (Sweden)

    Amarnath eChallapalli

    2016-02-01

    Full Text Available Cancer cells do reprogramme their energy metabolism to enable several functions such as generation of biomass including membrane biosynthesis, and overcoming bioenergetic and redox stress. In this article we review both established and evolving radioprobes developed in association with positron emission tomography (PET to detect tumor cell metabolism and effect of treatment. Measurement of enhanced tumor cell glycolysis using 2-deoxy-2-[18F]-fluoro-D-glucose is well established in the clinic. Analogues of choline including [11C]-choline and various fluorinated derivatives are being tested in several cancer types clinically with PET. In addition to these, there is an evolving array of metabolic tracers for measuring intracellular transport of glutamine and other amino acids or for measuring glycogenesis, as well as probes used as surrogates for fatty acid synthesis or precursors for fatty acid oxidation. In addition to providing us with opportunities for examining the complex regulation of reprogrammed energy metabolism in living subjects, the PET methods open up opportunities for monitoring pharmacological activity of new therapies that directly or indirectly inhibit tumor cell metabolism.

  17. Therapeutic Touch Has Significant Effects on Mouse Breast Cancer Metastasis and Immune Responses but Not Primary Tumor Size

    Directory of Open Access Journals (Sweden)

    Gloria Gronowicz

    2015-01-01

    Full Text Available Evidence-based integrative medicine therapies have been introduced to promote wellness and offset side-effects from cancer treatment. Energy medicine is an integrative medicine technique using the human biofield to promote well-being. The biofield therapy chosen for study was Therapeutic Touch (TT. Breast cancer tumors were initiated in mice by injection of metastatic 66cl4 mammary carcinoma cells. The control group received only vehicle. TT or mock treatments were performed twice a week for 10 minutes. Two experienced TT practitioners alternated treatments. At 26 days, metastasis to popliteal lymph nodes was determined by clonogenic assay. Changes in immune function were measured by analysis of serum cytokines and by fluorescent activated cells sorting (FACS of immune cells from the spleen and lymph nodes. No significant differences were found in body weight gain or tumor size. Metastasis was significantly reduced in the TT-treated mice compared to mock-treated mice. Cancer significantly elevated eleven cytokines. TT significantly reduced IL-1-a, MIG, IL-1b, and MIP-2 to control/vehicle levels. FACS demonstrated that TT significantly reduced specific splenic lymphocyte subsets and macrophages were significantly elevated with cancer. Human biofield therapy had no significant effect on primary tumor but produced significant effects on metastasis and immune responses in a mouse breast cancer model.

  18. Therapeutic Touch Has Significant Effects on Mouse Breast Cancer Metastasis and Immune Responses but Not Primary Tumor Size.

    Science.gov (United States)

    Gronowicz, Gloria; Secor, Eric R; Flynn, John R; Jellison, Evan R; Kuhn, Liisa T

    2015-01-01

    Evidence-based integrative medicine therapies have been introduced to promote wellness and offset side-effects from cancer treatment. Energy medicine is an integrative medicine technique using the human biofield to promote well-being. The biofield therapy chosen for study was Therapeutic Touch (TT). Breast cancer tumors were initiated in mice by injection of metastatic 66cl4 mammary carcinoma cells. The control group received only vehicle. TT or mock treatments were performed twice a week for 10 minutes. Two experienced TT practitioners alternated treatments. At 26 days, metastasis to popliteal lymph nodes was determined by clonogenic assay. Changes in immune function were measured by analysis of serum cytokines and by fluorescent activated cells sorting (FACS) of immune cells from the spleen and lymph nodes. No significant differences were found in body weight gain or tumor size. Metastasis was significantly reduced in the TT-treated mice compared to mock-treated mice. Cancer significantly elevated eleven cytokines. TT significantly reduced IL-1-a, MIG, IL-1b, and MIP-2 to control/vehicle levels. FACS demonstrated that TT significantly reduced specific splenic lymphocyte subsets and macrophages were significantly elevated with cancer. Human biofield therapy had no significant effect on primary tumor but produced significant effects on metastasis and immune responses in a mouse breast cancer model.

  19. Induction of anti-tumor CD8 T cell responses by experimental ECP-induced human dendritic antigen presenting cells.

    Science.gov (United States)

    Kibbi, N; Sobolev, O; Girardi, M; Edelson, R L

    2016-08-01

    Extracorporeal photochemotherapy (ECP), or photopheresis, is distinguished by the specificity of the clinically potent immunologic reactions it initiates or regulates. The selectivity of ECP-induced immunoprotection for the malignant clone in cutaneous T cell lymphoma (CTCL), and for the pathogenic clones in allograft rejection and graft-versus-host disease (GVHD), has suggested a central mechanistic role for dendritic antigen presenting cells (DC). Discovery of ECP's induction of monocyte-derived DC, via monocyte signaling by ECP-plate activated platelets, and the absolute dependency of experimental ECP on such induced DC, supports that premise. Herein, we show that ECP-induced DC are capable of stimulating CD8 T cell responses to tumor antigens with which they are loaded. They internalize an antigen-specific melanoma-associated protein then present it onto a class I major histocompatibility, which then stimulates expansion of anti-tumor CD8 T cell populations. We conclude that ECP-induced DC prominently contribute to its initiation of anti-tumor immunity and raise the possibility that the therapy may be applicable to the immunotherapeutic management of a broader spectrum of cancers.

  20. Tephrosia purpurea alleviates phorbol ester-induced tumor promotion response in murine skin.

    Science.gov (United States)

    Saleem, M; Ahmed Su; Alam, A; Sultana, S

    2001-02-01

    In recent years, considerable emphasis has been placed on identifying new cancer chemopreventive agents, which could be useful for the human population. Tephrosia purpurea has been shown to possess significant activity against hepatotoxicity, pharmacological and physiological disorders. Earlier we showed that Tephrosia purpurea inhibits benzoyl peroxide-mediated cutaneous oxidative stress and toxicity. In the present study, we therefore assessed the effect of Tephrosia purpurea on 12-O-tetradecanoyl phorbal-13-acetate (TPA; a well-known phorbol ester) induced cutaneous oxidative stress and toxicity in murine skin. The pre-treatment of Swiss albino mice with Tephrosia purpurea prior to application of croton oil (phorbol ester) resulted in a dose-dependent inhibition of cutaneous carcinogenesis. Skin tumor initiation was achieved by a single topical application of 7,12-dimethyl benz(a)anthracene (DMBA) (25 microg per animal per 0.2 ml acetone) to mice. Ten days later tumor promotion was started by twice weekly topical application of croton oil (0.5% per animal per 0.2 ml acetone, v /v). Topical application of Tephrosia purpurea 1 h prior to each application of croton oil (phorbol ester) resulted in a significant protection against cutaneous carcinogenesis in a dose-dependent manner. The animals pre-treated with Tephrosia purpurea showed a decrease in both tumor incidence and tumor yield as compared to the croton oil (phorbol ester)-treated control group. In addition, a significant reduction in TPA-mediated induction in cutaneous ornithine decarboxylase (ODC) activity and [3H]thymidine incorporation was also observed in animals pre-treated with a topical application of Tephrosia purpurea. The effect of topical application of Tephrosia purpurea on TPA-mediated depletion in the level of enzymatic and non-enzymatic molecules in skin was also evaluated and it was observed that topical application of Tephrosia purpurea prior to TPA resulted in the significant recovery of

  1. Methylthioadenosine (MTA inhibits melanoma cell proliferation and in vivo tumor growth

    Directory of Open Access Journals (Sweden)

    Cortés Javier

    2010-06-01

    Full Text Available Abstract Background Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. Methods To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. Results In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. Conclusions MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment.

  2. A pH-responsive prodrug delivery system of 10-HCPT for controlled release and tumor targeting

    Science.gov (United States)

    Liu, Yang; Li, Dan; Guo, Xinhong; Xu, Haiwei; Li, Zhi; Zhang, Yanling; Song, Chuanjun; Fan, Ruhan; Tang, Xing; Zhang, Zhenzhong

    2017-01-01

    We synthesized a pH-responsive conjugate of 10-hydroxycamptothecin-thiosemicarbazide-linear polyethylene glycol 2000 (PEG2000). The conjugate was confirmed by matrix-assisted laser desorption time of flight mass spectrometry, 1H NMR, and 13C NMR. The water solubility of the prodrug was increased by over 3,000 times; much longer body circulation time, higher tumor-targeting ability, and reduced toxicity were observed, compared with commercial 10-HCPT injection. The linker contains a pH-sensitive hydrazone bond, which breaks under low pH conditions in the tumor microenvironment. The conjugates showed good stability in phosphate-buffered saline (pH 7.4) and rat plasma. This amphiphilic conjugate could self-assemble into nanosized micelles of 80–100 nm. Cytotoxicity assay results indicate significantly higher efficacy of the conjugate (IC50 [half maximal inhibitory concentration] =0.117 µM on SW180 cells) than 10-HCPT solution (IC50 =0.241 µM on SW480 cells). Cellular uptake analysis suggested its rapid internalization and nuclear transport. Pharmacokinetic analysis of the conjugates demonstrated that the conjugate circulated for a longer time in the blood circulation system (T2/1 =10.516±1.158 h) than did 10-HCPT solution (T2/1 =1.859±1.385 h), and that it also enhanced the targeting and mean residence time (MRT0–inf =39.873±4.549 h) in the tumor site, compared with 10-HCPT (MRT0–inf =9.247±1.026 h). Finally, the conjugate demonstrated an increased tumor growth inhibition effect (TIR =82.66%±7.175%) in vivo and lower side effects than 10-HCPT (TIR =63.85%±5.233%). This prodrug holds great promise in improving therapeutic efficacy and overcoming multidrug resistance. PMID:28356739

  3. Anti-tumor immune response in ovarian cancer: clinical implications, prognostic significance and potential for novel treatment strategies

    Directory of Open Access Journals (Sweden)

    Nikos G. Gavalas

    2011-12-01

    Full Text Available Ovarian cancer is one of the leading causes of cancer-related death among women. Disease relapse occurs in a high number of cases and treatment currently involves the use of chemotherapy with the use of paclitaxel and platinum-based agents. Resistance to the disease occurs in more than 70% of the cases. The immune system is increasingly becoming a target for intense research in order to study the host’s immune response against ovarian cancer. T cell populations, including NK T cells and Tregs, have been associated with disease outcome indicating their increasing clinical significance, having been associated with positive prognosis and as markers of disease progress, respectively. Cytokines may also be associated with positive prognosis and they can have a direct or indirect effect in mobilizing relevant T cells, thus eliciting an immune response. Harnessing the immune system capacity in order to induce anti-tumor response is a major challenge. This is achieved via the use of antibodies that can elicit an immune response or via the use of direct administration of cytotoxic T cell populations (e.g., CD8?. This review examines the recent developments in our understanding of the mechanisms of development of the immune response in ovarian cancer as well as its prognostic significance and the existing experience in clinical studies using factors associated with immune response, such as monoclonal antibodies, cytokines, vaccines and activated or expanded relevant autologous populations from peripheral blood.

  4. In vivo pharmacokinetics, biodistribution and the anti-tumor effect of cyclic RGD-modified doxorubicin-loaded polymers in tumor-bearing mice.

    Science.gov (United States)

    Wang, Chen; Li, Yuan; Chen, Binbin; Zou, Meijuan

    2016-10-01

    In our previous study, we successfully produced and characterized a multifunctional drug delivery system with doxorubicin (RC/GO/DOX), which was based on graphene oxide (GO) and cyclic RGD-modified chitosan (RC). Its characteristics include: pH-responsiveness, active targeting of hepatocarcinoma cells, and efficient loading with controlled drug release. Here, we report the pharmacokinetics, biodistribution, and anti-tumor efficacy of RC/GO/DOX polymers in tumor-bearing nude mice. The objective of this study is to assess its targeting potential for tumors. Pharmacokinetic and biodistribution profiles demonstrated that tumor accumulation of RC/GO/DOX polymers was almost three times higher than the others, highlighting the efficacy of the active targeting strategy. Furthermore, the tumor inhibition rate of RC/GO/DOX polymers was 56.64%, 2.09 and 2.93 times higher than that of CS/GO/DOX polymers (without modification) and the DOX solution, respectively. Anti-tumor efficacy results indicated that the tumor growth was better controlled by RC/GO/DOX polymers than the others. Hematoxylin and eosin (H&E) staining showed remarkable changes in tumor histology. Compared with the saline group, the tumor section from the RC/GO/DOX group revealed a marked increase in the quantity of apoptotic and necrotic cells, and a reduction in the quantity of the blood vessels. Together, these studies show that this new system could be regarded as a suitable form of DOX-based treatment of the hepatocellular carcinoma.

  5. Hemagglutinin protease secreted by V. cholerae induced apoptosis in breast cancer cells by ROS mediated intrinsic pathway and regresses tumor growth in mice model.

    Science.gov (United States)

    Ray, Tanusree; Chakrabarti, Monoj Kumar; Pal, Amit

    2016-02-01

    Conventional anticancer therapies are effective but have side effects, so alternative targets are being developed. Bacterial toxins that can kill cells or alter the cellular processes like proliferation, apoptosis and differentiation have been reported for cancer treatment. In this study we have shown antitumor activity of hemagglutinin protease (HAP) secreted by Vibrio cholerae. One µg of HAP showed potent antitumor activity when injected into Ehrlich ascites carcinoma (EAC) tumors in Swiss albino mice. Weekly administration of this dose is able to significantly diminish a large tumor volume within 3 weeks and increases the survival rates of cancerous mice. HAP showed apoptotic activity on EAC and other malignant cells. Increased level of pro-apoptotic p53 with increased ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2 signify that HAP induced apoptogenic signals lead to death of the tumor cells. In vivo and ex vivo studies suggest that mitochondrial dependent intrinsic pathway is responsible for this apoptosis. The level of ROS in malignant cells is reported to be higher than the normal healthy cells. HAP induces oxidative stress and increases the level of ROS in malignant cells which is significantly higher than the normal healthy cells. As a result the malignant cells cross the threshold level of ROS for cell survival faster than normal healthy cells. This mechanism causes HAP mediated apoptosis in malignant cells, but normal cells remain unaltered in the same environment. Our study suggests that HAP may be used as a new candidate drug for cancer therapy.

  6. Cellular Immune Response to an Engineered Cell-Based Tumor Vaccine at the Vaccination Site

    OpenAIRE

    Zhou,Qiang; Johnson, Bryon D.; Rimas J Orentas

    2007-01-01

    The engineered expression of the immune co-stimulatory molecules CD80 and CD137L on the surface of a neuroblastoma cell line converts this tumor into a cell-based cancer vaccine. The mechanism by which this vaccine activates the immune system was investigated by capturing and analyzing immune cells responding to the vaccine cell line embedded in a collagen matrix and injected subcutaneously. The vaccine induced a significant increase in the number of activated CD62L− CCR7− CD49b+ CD8 effector...

  7. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    Directory of Open Access Journals (Sweden)

    Michael Bzorek

    2013-10-01

    Full Text Available Peptide receptor radionuclide therapy (PRRT is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs via somatostatin receptors. Despite promising clinical results, very little is known about the mechanism of tumor control. By using NCI-H727 cells in an in vivo murine xenograft model of human NETs, we showed that 177Lu-DOTATATE PRRT led to increased infiltration of CD86+ antigen presenting cells into tumor tissue. We also found that following treatment with PRRT, there was significantly increased tumor infiltration by CD49b+/FasL+ NK cells potentially capable of tumor killing. Further investigation into the immunomodulatory effects of PRRT will be essential in improving treatment efficacy.

  8. A high Notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumor-initiating cells.

    Science.gov (United States)

    Saito, Norihiko; Fu, Jun; Zheng, Siyuan; Yao, Jun; Wang, Shuzhen; Liu, Diane D; Yuan, Ying; Sulman, Erik P; Lang, Frederick F; Colman, Howard; Verhaak, Roel G; Yung, W K Alfred; Koul, Dimpy

    2014-01-01

    Genomic, transcriptional, and proteomic analyses of brain tumors reveal subtypes that differ in pathway activity, progression, and response to therapy. However, a number of small molecule inhibitors under development vary in strength of subset and pathway-specificity, with molecularly targeted experimental agents tending toward stronger specificity. The Notch signaling pathway is an evolutionarily conserved pathway that plays an important role in multiple cellular and developmental processes. We investigated the effects of Notch pathway inhibition in glioma tumor-initiating cell (GIC, hereafter GIC) populations using γ secretase inhibitors. Drug cytotoxicity testing of 16 GICs showed differential growth responses to the inhibitors, stratifying GICs into responders and nonresponders. Responder GICs had an enriched proneural gene signature in comparison to nonresponders. Also gene set enrichment analysis revealed 17 genes set representing active Notch signaling components NOTCH1, NOTCH3, HES1, MAML1, DLL-3, JAG2, and so on, enriched in responder group. Analysis of The Cancer Genome Atlas expression dataset identified a group (43.9%) of tumors with proneural signature showing high Notch pathway activation suggesting γ secretase inhibitors might be of potential value to treat that particular group of proneural glioblastoma (GBM). Inhibition of Notch pathway by γ secretase inhibitor treatment attenuated proliferation and self-renewal of responder GICs and induces both neuronal and astrocytic differentiation. In vivo evaluation demonstrated prolongation of median survival in an intracranial mouse model. Our results suggest that proneural GBM characterized by high Notch pathway activation may exhibit greater sensitivity to γ secretase inhibitor treatment, holding a promise to improve the efficiency of current glioma therapy.

  9. BAD-mediated apoptotic pathway is associated with human cancer development.

    Science.gov (United States)

    Stickles, Xiaomang B; Marchion, Douglas C; Bicaku, Elona; Al Sawah, Entidhar; Abbasi, Forough; Xiong, Yin; Bou Zgheib, Nadim; Boac, Bernadette M; Orr, Brian C; Judson, Patricia L; Berry, Amy; Hakam, Ardeshir; Wenham, Robert M; Apte, Sachin M; Berglund, Anders E; Lancaster, Johnathan M

    2015-04-01

    The malignant transformation of normal cells is caused in part by aberrant gene expression disrupting the regulation of cell proliferation, apoptosis, senescence and DNA repair. Evidence suggests that the Bcl-2 antagonist of cell death (BAD)-mediated apoptotic pathway influences cancer chemoresistance. In the present study, we explored the role of the BAD-mediated apoptotic pathway in the development and progression of cancer. Using principal component analysis to derive a numeric score representing pathway expression, we evaluated clinico-genomic datasets (n=427) from corresponding normal, pre-invasive and invasive cancers of different types, such as ovarian, endometrial, breast and colon cancers in order to determine the associations between the BAD-mediated apoptotic pathway and cancer development. Immunofluorescence was used to compare the expression levels of phosphorylated BAD [pBAD (serine-112, -136 and -155)] in immortalized normal and invasive ovarian, colon and breast cancer cells. The expression of the BAD-mediated apoptotic pathway phosphatase, PP2C, was evaluated by RT-qPCR in the normal and ovarian cancer tissue samples. The growth-promoting effects of pBAD protein levels in the immortalized normal and cancer cells were assessed using siRNA depletion experiments with MTS assays. The expression of the BAD-mediated apoptotic pathway was associated with the development and/or progression of ovarian (n=106, pcancers, as well as with ovarian endometriosis (n=20, pcancer cells compared to the immortalized normal cells, whereas PP2C gene expression was lower in the cancer compared to the ovarian tumor tissue samples (n=76, pcancer cells. The BAD-mediated apoptotic pathway is thus associated with the development of human cancers likely influenced by the protein levels of pBAD.

  10. Cigarette smoke alters the invariant natural killer T cell function and may inhibit anti-tumor responses.

    LENUS (Irish Health Repository)

    Hogan, Andrew E

    2011-09-01

    Invariant natural killer T (iNKT) cells are a minor subset of human T cells which express the invariant T cell receptor Vα24 Jα18 and recognize glycolipids presented on CD1d. Invariant NKT cells are important immune regulators and can initiate anti-tumor responses through early potent cytokine production. Studies show that iNKT cells are defective in certain cancers. Cigarette smoke contains many carcinogens and is implicated directly and indirectly in many cancers. We investigated the effects of cigarette smoke on the circulating iNKT cell number and function. We found that the iNKT cell frequency is significantly reduced in cigarette smoking subjects. Invariant NKT cells exposed to cigarette smoke extract (CSE) showed significant defects in cytokine production and the ability to kill target cells. CSE inhibits the upregulation of CD107 but not CD69 or CD56 on iNKT cells. These findings suggest that CSE has a specific effect on iNKT cell anti-tumor responses, which may contribute to the role of smoking in the development of cancer.

  11. The Mannose Receptor Is Involved in the Phagocytosis of Mycobacteria-Induced Apoptotic Cells

    Directory of Open Access Journals (Sweden)

    Teresa Garcia-Aguilar

    2016-01-01

    Full Text Available Upon Mycobacterium tuberculosis infection, macrophages may undergo apoptosis, which has been considered an innate immune response. The pathways underlying the removal of dead cells in homeostatic apoptosis have been extensively studied, but little is known regarding how cells that undergo apoptotic death during mycobacterial infection are removed. This study shows that macrophages induced to undergo apoptosis with mycobacteria cell wall proteins are engulfed by J-774A.1 monocytic cells through the mannose receptor. This demonstration was achieved through assays in which phagocytosis was inhibited with a blocking anti-mannose receptor antibody and with mannose receptor competitor sugars. Moreover, elimination of the mannose receptor by a specific siRNA significantly diminished the expression of the mannose receptor and the phagocytosis of apoptotic cells. As shown by immunofluorescence, engulfed apoptotic bodies are initially located in Rab5-positive phagosomes, which mature to express the phagolysosome marker LAMP1. The phagocytosis of dead cells triggered an anti-inflammatory response with the production of TGF-β and IL-10 but not of the proinflammatory cytokines IL-12 and TNF-α. This study documents the previously unreported participation of the mannose receptor in the removal of apoptotic cells in the setting of tuberculosis (TB infection. The results challenge the idea that apoptotic cell phagocytosis in TB has an immunogenic effect.

  12. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols. PMID:27447484

  13. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Directory of Open Access Journals (Sweden)

    Katrin Deiser

    Full Text Available The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7 is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+ host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7 therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  14. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    Science.gov (United States)

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols.

  15. Stabilization Of Apoptotic Cells: Generation Of Zombie Cells

    Directory of Open Access Journals (Sweden)

    José A. Sánchez Alcázar

    2015-08-01

    Stabilization of apoptotic cells can be used for reliable detection and quantification of apoptosis in cultured cells and may allow a safer administration of apoptotic cells in clinical applications. Furthermore, it opens new avenues in the functional reconstruction of apoptotic cells for longer preservation.

  16. Emodin Induces Apoptotic Death in Murine Myelomonocytic Leukemia WEHI-3 Cells In Vitro and Enhances Phagocytosis in Leukemia Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yuan-Chang Chang

    2011-01-01

    Full Text Available Emodin is one of major compounds in rhubarb (Rheum palmatum L., a plant used as herbal medicine in Chinese population. Although many reports have shown that emodin exhibits anticancer activity in many tumor cell types, there is no available information addressing emodin-affected apoptotic responses in the murine leukemia cell line (WEHI-3 and modulation of the immune response in leukemia mice. We investigated that emodin induced cytotoxic effects in vitro and affected WEHI-3 cells in vivo. This study showed that emodin decreased viability and induced DNA fragmentation in WEHI-3 cells. Cells after exposure to emodin for 24 h have shown chromatin condensation and DNA damage. Emodin stimulated the productions of ROS and Ca2+ and reduced the level of ΔΨm by flow cytometry. Our results from Western blotting suggest that emodin triggered apoptosis of WEHI-3 cells through the endoplasmic reticulum (ER stress, caspase cascade-dependent and -independent mitochondrial pathways. In in vivo study, emodin enhanced the levels of B cells and monocytes, and it also reduced the weights of liver and spleen compared with leukemia mice. Emodin promoted phagocytic activity by monocytes and macrophages in comparison to the leukemia mice group. In conclusions, emodin induced apoptotic death in murine leukemia WEHI-3 cells and enhanced phagocytosis in the leukemia animal model.

  17. c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1

    Directory of Open Access Journals (Sweden)

    Jézéquel Pascal

    2011-09-01

    Full Text Available Abstract Background Anti-apoptotic signals induced downstream of HER2 are known to contribute to the resistance to current treatments of breast cancer cells that overexpress this member of the EGFR family. Whether or not some of these signals are also involved in tumor maintenance by counteracting constitutive death signals is much less understood. To address this, we investigated what role anti- and pro-apoptotic Bcl-2 family members, key regulators of cancer cell survival, might play in the viability of HER2 overexpressing breast cancer cells. Methods We used cell lines as an in vitro model of HER2-overexpressing cells in order to evaluate how anti-apoptotic Bcl-2, Bcl-xL and Mcl-1, and pro-apoptotic Puma and Bim impact on their survival, and to investigate how the constitutive expression of these proteins is regulated. Expression of the proteins of interest was confirmed using lysates from HER2-overexpressing tumors and through analysis of publicly available RNA expression data. Results We show that the depletion of Mcl-1 is sufficient to induce apoptosis in HER2-overexpressing breast cancer cells. This Mcl-1 dependence is due to Bim expression and it directly results from oncogenic signaling, as depletion of the oncoprotein c-Myc, which occupies regions of the Bim promoter as evaluated in ChIP assays, decreases Bim levels and mitigates Mcl-1 dependence. Consistently, a reduction of c-Myc expression by inhibition of mTORC1 activity abrogates occupancy of the Bim promoter by c-Myc, decreases Bim expression and promotes tolerance to Mcl-1 depletion. Western blot analysis confirms that naïve HER2-overexpressing tumors constitutively express detectable levels of Mcl-1 and Bim, while expression data hint on enrichment for Mcl-1 transcripts in these tumors. Conclusions This work establishes that, in HER2-overexpressing tumors, it is necessary, and maybe sufficient, to therapeutically impact on the Mcl-1/Bim balance for efficient induction of

  18. The lymphocyte–monocyte ratio predicts tumor response and survival in patients with locally advanced esophageal cancer who received definitive chemoradiotherapy

    Science.gov (United States)

    Liu, Xuemei; Li, Minghuan; Zhao, Fen; Zhu, Yingming; Luo, Yijun; Kong, Li; Zhu, Hui; Zhang, Yan; Shi, Fang; Yu, Jinming

    2017-01-01

    Background The lymphocyte–monocyte ratio (LMR), a simple biomarker that can reflect the antitumor immune response of the host, has been associated with patient prognosis in several solid tumors. The aim of this study was to evaluate whether LMR can predict clinical tumor response and prognosis in patients with locally advanced esophageal squamous cell carcinoma (ESCC) who received definitive chemoradiotherapy (CRT). Patients and methods A total of 162 advanced ESCC patients treated at our institution between January 2012 and December 2013 were retrospectively recruited for analysis. Patients were treated with a platinum-based bimodal cytotoxic drug chemotherapy and concurrent radiation therapy. The LMR was calculated from blood counts in samples collected prior to treatment initiation. The predictive value of LMR for clinical tumor response and prognosis was examined. Results The LMR before CRT was significantly higher in 48 patients who achieved clinical complete response (CR) compared to that in patients who did not achieve clinical CR (4.89±1.17 vs 3.87±1.29, P4.02) showed a good clinical tumor response (Pimmune system, is associated with both a good clinical tumor response after definitive CRT and favorable prognosis.

  19. Transar terial chemoembolization using degradable starch microspheres and iodized oil in the treatment of advanced hepatocellular carcinoma:evaluation of tumor response, toxicity, and survival

    Institute of Scientific and Technical Information of China (English)

    Timm D Kirchhoff; Tim F Greten; Stefan Kubicka; Michael P Manns; Michael Galanski; Joerg S Bleck; Arne Dettmer; Ajay Chavan; Herbert Rosenthal; Sonja Merkesdal; Bernd Frericks; Lars Zender; Nisar P Malek

    2007-01-01

    BACKGROUND:In a multidisciplinary conference patients with advanced non-resectable hepatocellular carcinoma (HCC) were stratiifed according to their clinical status and tumor extent to different regional modalities or to best supportive care. The present study evaluated all patients who were stratiifed to repeated transarterial chemoembolization (TACE) from 1999 until 2003 in terms of tumor response, toxicity, and survival. A moderate embolizing approach was chosen using a combination of degradable starch microspheres (DSM) and iodized oil (Lipiodol) in order to combine anti-tumoral efifciency and low toxicity. METHODS: Fourty-seven patients were followed up prospectively. TACE treatment consisted of cisplatin (50 mg/m2), doxorubicin (50 mg/m2), 450-900 mg DSM, and 5-30 ml Lipiodol. DSM and Lipiodol were administered according to tumor vascularization. Patient characteristics, toxicity, and complications were outlined. In multivariate regression analyses of pre-treatment variables from a prospective database, predictors for tumor response and survival after TACE were determined. RESULTS:112 TACE courses were performed (2.4±1.5 courses per patient). Mean maximum tumor size was 75 (± 43) mm, in 68%there was bilobar disease. Best response to TACE treatment was: progressive disease (PD) 9%, stable disease (SD) 55%, partial remission (PR) 36%, and complete remission (CR) 0%. Multivariate regression analyses identiifed tumor size ≤75 mm, tumor number≤5, and tumor hypervascularization as predictors for PR. The overall 1-, 2-, and 3-year-survival rates were 75%, 59%, and 41%, respectively, and the median survival was 26 months. Low α-fetoprotein levels (30 months, R2=36%). Grade 3 toxicity occurred in 7.1% (n=8), and grade 4 toxicity in 3.6%(n=4) of all courses in terms of reversible leukopenia and thrombocytopenia. The incidence of major complications was 5.4% (n=6). All complications were managed conservatively. The mortality within 6 weeks after TACE was 2

  20. Altered Ca(2+) signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors.

    Science.gov (United States)

    Akl, Haidar; Bultynck, Geert

    2013-04-01

    Proto-oncogenes and tumor suppressors critically control cell-fate decisions like cell survival, adaptation and death. These processes are regulated by Ca(2+) signals arising from the endoplasmic reticulum, which at distinct sites is in close proximity to the mitochondria. These organelles are linked by different mechanisms, including Ca(2+)-transport mechanisms involving the inositol 1,4,5-trisphosphate receptor (IP3R) and the voltage-dependent anion channel (VDAC). The amount of Ca(2+) transfer from the endoplasmic reticulum to mitochondria determines the susceptibility of cells to apoptotic stimuli. Suppressing the transfer of Ca(2+) from the endoplasmic reticulum to the mitochondria increases the apoptotic resistance of cells and may decrease the cellular responsiveness to apoptotic signaling in response to cellular damage or alterations. This can result in the survival, growth and proliferation of cells with oncogenic features. Clearly, proper maintenance of endoplasmic reticulum Ca(2+) homeostasis and dynamics including its links with the mitochondrial network is essential to detect and eliminate altered cells with oncogenic features through the apoptotic pathway. Proto-oncogenes and tumor suppressors exploit the central role of Ca(2+) signaling by targeting the IP3R. There are an increasing number of reports showing that activation of proto-oncogenes or inactivation of tumor suppressors directly affects IP3R function and endoplasmic reticulum Ca(2+) homeostasis, thereby decreasing mitochondrial Ca(2+) uptake and mitochondrial outer membrane permeabilization. In this review, we provide an overview of the current knowledge on the proto-oncogenes and tumor suppressors identified as IP3R-regulatory proteins and how they affect endoplasmic reticulum Ca(2+) homeostasis and dynamics.

  1. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with (177)Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    DEFF Research Database (Denmark)

    Wu, Yin; Pfeifer, Andreas Klaus; Myschetzky, Rebecca;

    2013-01-01

    Peptide receptor radionuclide therapy (PRRT) is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs) via somatostatin receptors. Despite promising...... clinical results, very little is known about the mechanism of tumor control. By using NCI-H727 cells in an in vivo murine xenograft model of human NETs, we showed that 177Lu-DOTATATE PRRT led to increased infiltration of CD86+ antigen presenting cells into tumor tissue. We also found that following...

  2. Modulating effect of lupeol on the expression pattern of apoptotic markers in 7, 12-dimethylbenz(a)anthracene induced oral carcinogenesis.

    Science.gov (United States)

    Manoharan, S; Palanimuthu, D; Baskaran, N; Silvan, S

    2012-01-01

    Apoptosis, also known as cell suicide or programmed cell death, removes unwanted and genetically damaged cells from the body. Evasion of apoptosis is one of the major characteristic features of rapidly proliferating tumor cells. Chemopreventive agents inhibit or suppress tumor formation through apoptotic induction in target tissues. The aim of the present study was to investigate the pro-apoptotic potential of lupeol during 7,12-dimethylbenz(a) anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Topical application of 0.5% DMBA three times a week for 14 weeks in the buccal pouches of golden Syrian hamsters resulted in oral squamous cell carcinoma. The expression pattern of apoptotic markers was analyzed using immunohistochemistry (p53, Bcl-2, Bax) and ELISA reader (caspase 3 and 9). In the present study, 100% tumor formation with defects in apoptotic markerexpression pattern was noticed in hamsters treated with DMBA alone. Oral administration of lupeol at a dose of 50 mg/kg bw completely prevented the formation oral tumors as well as decreased the expression p53 and Bcl-2, while increasing the expression of Bax and the activities of caspase 3 and 9. The present study thus indicated that lupeol might inhibit DMBA-induced oral tumor formation through its pro-apoptotic potential in golden Syrian hamsters.

  3. Discovery of novel tumor suppressor p53 response elements using information theory

    Science.gov (United States)

    Lyakhov, Ilya G.; Krishnamachari, Annangarachari; Schneider, Thomas D.

    2008-01-01

    An accurate method for locating genes under tumor suppressor p53 control that is based on a well-established mathematical theory and built using naturally occurring, experimentally proven p53 sites is essential in understanding the complete p53 network. We used a molecular information theory approach to create a flexible model for p53 binding. By searching around transcription start sites in human chromosomes 1 and 2, we predicted 16 novel p53 binding sites and experimentally demonstrated that 15 of the 16 (94%) sites were bound by p53. Some were also bound by the related proteins p63 and p73. Thirteen of the adjacent genes were controlled by at least one of the proteins. Eleven of the 16 sites (69%) had not been identified previously. This molecular information theory approach can be extended to any genetic system to predict new sites for DNA-binding proteins. PMID:18495754

  4. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Mark [Department of Medicine, Brigham and Women' s Hospital (United States); Murphy, John R. [Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, MA 02118 (United States); Lorch, Jochen; Posner, Marshall [Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Wang, Fred, E-mail: fwang@research.bwh.harvard.edu [Department of Medicine, Brigham and Women' s Hospital (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-07-05

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.

  5. Gene expression markers in circulating tumor cells may predict bone metastasis and response to hormonal treatment in breast cancer.

    Science.gov (United States)

    Wang, Haiying; Molina, Julian; Jiang, John; Ferber, Matthew; Pruthi, Sandhya; Jatkoe, Timothy; Derecho, Carlo; Rajpurohit, Yashoda; Zheng, Jian; Wang, Yixin

    2013-11-01

    Circulating tumor cells (CTCs) have recently attracted attention due to their potential as prognostic and predictive markers for the clinical management of metastatic breast cancer patients. The isolation of CTCs from patients may enable the molecular characterization of these cells, which may help establish a minimally invasive assay for the prediction of metastasis and further optimization of treatment. Molecular markers of proven clinical value may therefore be useful in predicting disease aggressiveness and response to treatment. In our earlier study, we identified a gene signature in breast cancer that appears to be significantly associated with bone metastasis. Among the genes that constitute this signature, trefoil factor 1 (TFF1) was identified as the most differentially expressed gene associated with bone metastasis. In this study, we investigated 25 candidate gene markers in the CTCs of metastatic breast cancer patients with different metastatic sites. The panel of the 25 markers was investigated in 80 baseline samples (first blood draw of CTCs) and 30 follow-up samples. In addition, 40 healthy blood donors (HBDs) were analyzed as controls. The assay was performed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) with RNA extracted from CTCs captured by the CellSearch system. Our study indicated that 12 of the genes were uniquely expressed in CTCs and 10 were highly expressed in the CTCs obtained from patients compared to those obtained from HBDs. Among these genes, the expression of keratin 19 was highly correlated with the CTC count. The TFF1 expression in CTCs was a strong predictor of bone metastasis and the patients with a high expression of estrogen receptor β in CTCs exhibited a better response to hormonal treatment. Molecular characterization of these genes in CTCs may provide a better understanding of the mechanism underlying tumor metastasis and identify gene markers in CTCs for predicting disease progression and

  6. Gene Expression Profiles Can Predict Panitumumab Monotherapy Responsiveness in Human Tumor Xenograft Models

    Directory of Open Access Journals (Sweden)

    Michael J. Boedigheimer

    2013-02-01

    Conclusion A model was constructed from microarray data that prospectively predict responsiveness to panitumumab in xenograft models. This approach may help identify patients, independent of disease origin, likely to benefit from panitumumab.

  7. Tumor slice culture system to assess drug response of primary breast cancer

    NARCIS (Netherlands)

    A.T. Naipal (Kishan); N.S. Verkaik (Nicole); S.H. Sanchez (Humberto); C.H.M. van Deurzen (Carolien); M.A. den Bakker (Michael); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland); M.P. Vreeswijk (Maaike); A. Jager (Agnes); D.C. van Gent (Dik)

    2016-01-01

    textabstractBackground The high incidence of breast cancer has sparked the development of novel targeted and personalized therapies. Personalization of cancer treatment requires reliable prediction of chemotherapy responses in individual patients. Effective selection can prevent unnecessary treatme

  8. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease

    Science.gov (United States)

    Atreya, Raja; Neumann, Helmut; Neufert, Clemens; Waldner, Maximilian J; Billmeier, Ulrike; Zopf, Yurdagül; Willma, Marcus; App, Christine; Münster, Tino; Kessler, Hermann; Maas, Stefanie; Gebhardt, Bernd; Heimke-Brinck, Ralph; Reuter, Eva; Dörje, Frank; Rau, Tilman T; Uter, Wolfgang; Wang, Thomas D; Kiesslich, Ralf; Vieth, Michael; Hannappel, Ewald; Neurath, Markus F

    2015-01-01

    As antibodies to tumor necrosis factor (TNF) suppress immune responses in Crohn’s disease by binding to membrane-bound TNF (mTNF), we created a fluorescent antibody for molecular mTNF imaging in this disease. Topical antibody administration in 25 patients with Crohn’s disease led to detection of intestinal mTNF+ immune cells during confocal laser endomicroscopy. Patients with high numbers of mTNF+ cells showed significantly higher short-term response rates (92%) at week 12 upon subsequent anti-TNF therapy as compared to patients with low amounts of mTNF+ cells (15%). This clinical response in the former patients was sustained over a follow-up period of 1 year and was associated with mucosal healing observed in follow-up endoscopy. These data indicate that molecular imaging with fluorescent antibodies has the potential to predict therapeutic responses to biological treatment and can be used for personalized medicine in Crohn’s disease and autoimmune or inflammatory disorders. PMID:24562382

  9. Anti- and pro-tumor functions of autophagy.

    Science.gov (United States)

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Vicencio, José-Miguel; Criollo, Alfredo; Maiuri, Maria Chiara; Kroemer, Guido

    2009-09-01

    Autophagy constitutes one of the major responses to stress in eukaryotic cells, and is regulated by a complex network of signaling cascades. Not surprisingly, autophagy is implicated in multiple pathological processes, including infection by pathogens, inflammatory bowel disease, neurodegeneration and cancer. Both oncogenesis and tumor survival are influenced by perturbations of the molecular machinery that controls autophagy. Numerous oncoproteins, including phosphatidylinositol 3-kinase, Akt1 and anti-apoptotic members of the Bcl-2 family suppress autophagy. Conversely, several tumor suppressor proteins (e.g., Atg4c; beclin 1; Bif-1; BH3-only proteins; death-associated protein kinase 1; LKB1/STK11; PTEN; UVRAG) promote the autophagic pathway. This does not entirely apply to p53, one of the most important tumor suppressor proteins, which regulates autophagy in an ambiguous fashion, depending on its subcellular localization. Irrespective of the controversial role of p53, basal levels of autophagy appear to inhibit tumor development. On the contrary, chemotherapy- and metabolic stress-induced activation of the autophagic pathway reportedly contribute to the survival of formed tumors, thereby favoring resistance. In this context, autophagy inhibition would represent a major therapeutic target for chemosensitization. Here, we will review the current knowledge on the dual role of autophagy as an anti- and pro-tumor mechanism.

  10. Inhibition of Citrinin-Induced Apoptotic Biochemical Signaling in Human Hepatoma G2 Cells by Resveratrol

    Directory of Open Access Journals (Sweden)

    Chia-Chi Chen

    2009-07-01

    Full Text Available The mycotoxin citrinin (CTN, a natural contaminant in foodstuffs and animal feeds, exerts cytotoxic and genotoxic effects on various mammalian cells. CTN causes cell injury, including apoptosis, but its precise regulatory mechanisms of action are currently unclear. Resveratrol, a member of the phytoalexin family found in grapes and other dietary plants, possesses antioxidant and anti-tumor properties. In the present study, we examined the effects of resveratrol on apoptotic biochemical events in Hep G2 cells induced by CTN. Resveratrol inhibited CTN-induced ROS generation, activation of JNK, loss of mitochondrial membrane potential (MMP, as well as activation of caspase-9, caspase-3 and PAK2. Moreover, resveratrol and the ROS scavengers, NAC and α-tocopherol, abolished CTN-stimulated intracellular oxidative stress and apoptosis. Active JNK was required for CTN-induced mitochondria-dependent apoptotic biochemical changes, including loss of MMP, and activation of caspases and PAK2. Activation of PAK2 was essential for apoptosis triggered by CTN. These results collectively demonstrate that CTN stimulates ROS generation and JNK activation for mitochondria-dependent apoptotic signaling in Hep G2 cells, and these apoptotic biochemical events are blocked by pretreatment with resveratrol, which exerts antioxidant effects.

  11. Effective Treatment of Established GL261 Murine Gliomas through Picornavirus Vaccination-Enhanced Tumor Antigen-Specific CD8+ T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Danielle N Renner

    Full Text Available Glioblastoma (GBM is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257-264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257-264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257-264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo.

  12. Effective Treatment of Established GL261 Murine Gliomas through Picornavirus Vaccination-Enhanced Tumor Antigen-Specific CD8+ T Cell Responses.

    Science.gov (United States)

    Renner, Danielle N; Jin, Fang; Litterman, Adam J; Balgeman, Alexis J; Hanson, Lisa M; Gamez, Jeffrey D; Chae, Michael; Carlson, Brett L; Sarkaria, Jann N; Parney, Ian F; Ohlfest, John R; Pirko, Istvan; Pavelko, Kevin D; Johnson, Aaron J

    2015-01-01

    Glioblastoma (GBM) is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257-264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257-264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257-264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo.

  13. Tumor Destruction and In Situ Delivery of Antigen Presenting Cells Promote Anti-Neoplastic Immune Responses: Implications for the Immunotherapy of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Manfredi AA

    2004-07-01

    Full Text Available Antigen presenting cells (APCs activate helper and cytotoxic T cells specific for antigens expressed by tissue cells, including neoplastic cells. This event occurs after the antigen transfer from tissue cells to APC, and is referred to as "cross-presentation". The number and the state of activation of APC in the tumor control the outcome of cross-presentation, including the establishment of protective immune responses. Cell death favors cross-presentation. Cancer cells normally die, either spontaneously or as a consequence of targeted therapies. The transfer of tumor antigens from dying tumor cells to APCs in vivo, exploiting the cross-presentation pathway, has the potential of yielding novel immunotherapeutic strategies. Their success will depend on at least two factors: the induction of synchronized cell death in the tumor, and the recruitment of activated dendritic cells in the tumor. Under normal conditions, pancreatic cancer represents a privileged environment; its profound chemoresistance reflects limited apoptosis after chemotherapy. Moreover, it usually contains only a few cells endowed with APC function. Endoscopic ultrasonography offers attractive possibilities of circumventing this privilege, including the delivery of ultrasound, radiofrequency or radiation in order to destroy the tumor and the delivery in situ of autologous APC or appropriate chemotactic signals. In general, loco-regional approaches offer the possibility of using the tumor of each patient as a complex antigen source, thus limiting the risk of tumor escape and reducing the need for extensive ex vivo handling of the neoplasm and of the patient APCs.

  14. Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo.

    Science.gov (United States)

    Zhang, Beilu; Luo, Zhong; Liu, Junjie; Ding, Xingwei; Li, Jinghua; Cai, Kaiyong

    2014-10-28

    To develop carriers for efficient anti-cancer drug delivery with reduced side effects, a biocompatible and redox-responsive nanocontainer based on mesoporous silica nanoparticles (MSNs) for tumor-targeted triplex therapy was reported in this study. The nanocontainer was fabricated by immobilizing cytochrome c (CytC) onto the MSNs as sealing agent via intermediate linkers of disulfide bonds for redox-responsive intracellular drug delivery. AS1411 aptamer was further tailored onto MSNs for cell/tumor targeting. The successful construction of redox- responsive MSNs was confirmed by BET/BJH analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermogravimetric analysis (TGA), respectively. Detailed investigations demonstrated that anticancer drug of doxorubicin (DOX) loaded nanocontainer could be triggered by reductant (e.g. glutathione) within cellular microenvironment and release DOX to induce tumor cell apoptosis in vitro. More importantly, the nanocontainer displayed great potential for tumor targeting and achieved triplex therapy effects on the tumor inhibition in vivo through the loading DOX, gatekeeper of CytC and AS1411 aptamer, which were reflected by the change of tumor size, TUNEL staining and HE staining assays.

  15. γ-射线诱导癌细胞凋亡致敏树突状细胞后的免疫应答%Immune Responses of Dendritic Cells Loaded with Antigens from Apoptotic Cholangiocarcinoma Cells Caused by γ-Irradation

    Institute of Scientific and Technical Information of China (English)

    吴刚; 韩本立; 裴雪涛

    2002-01-01

    Objective To investigate the induction cytotoxic T cells (CTLs) with antitumor activity and therapeutic efficacy after dendritic cells(DCs) acquired antigen from apoptotic cholangiocarcinoma cells caused by γ-irradiation.Methods DCs from peripheral blood mononuclear cells (PBMC) that maintain the antigen capturing and processing capacity charateristicof immature cells have been established in vitro, using granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). Then, in cholangiocarcinoma cells apoptosis was induced by γ-irradiation. The experimental groups were as follows: (1) coculture ofDCs and apoptotic cancer cells and T cells; (2) coculture of DCs and necrotic cancer cells and T cells; (3) coculture of DCs, culturedcancer cell and T cells. They are cocultured for 7 days. DCs and T cells were riched, isolated and their antitumor response was tested.Results The cells had typical dendritic morphology, expressed high levels of CD1a and B7, acquired antigen from apoptotic cells causedby γ-irradiation and induced an increased T cell stimulatory capacity in mixed lymphocyte reactions (MLR).Conclusion DCs obtained from PBMCs using GM-CSF and IL-4 can efficiently present antigen derived from apoptotic cells caused by γ-irradiation and efficiently induce T cells. This strategy, therefore, may present an effective approach to transduce DCs with antigen.%目的观察树突状细胞(DCs)从γ-射线诱导的凋亡胆管癌细胞获取抗原后,抗肿瘤免疫应答及对胆管癌细胞的特异性免疫杀伤效果.方法用粒-巨噬细胞集落刺激因子(GM-CSF)加白介素-4(IL-4)从人外周血分化、诱导DCs,γ-射线在体外诱导培养的人胆管癌细胞凋亡,将DCs、T淋巴细胞和凋亡胆管癌细胞共培养,同时设计不同类型肿瘤细胞(坏死胆管癌细胞及培养胆管癌细胞)作对照,7d后,分离、富集DCs、T淋巴细胞进行免疫应答及肿瘤细胞杀伤试验.结果与凋亡胆管癌细胞共

  16. Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 2: species differences in response.

    Science.gov (United States)

    Green, Trevor; Toghill, Alison; Lee, Robert; Waechter, Felix; Weber, Edgar; Peffer, Richard; Noakes, James; Robinson, Mervyn

    2005-07-01

    Thiamethoxam is a neonicotinoid insecticide that is not a mutagen, but it did cause a significant increase in liver cancer in mice, but not rats, in chronic dietary feeding studies. Previous studies in mice have characterized a carcinogenicity mode of action that involved depletion of plasma cholesterol, cell death, both as single cell necrosis and as apoptosis, and sustained increases in cell replication rates. In a study reported in this article, female rats have been exposed to thiamethoxam in their diet at concentrations of 0, 1000, and 3000 ppm for 50 weeks, a study design directly comparable to the mouse study in which the mode of action changes were characterized. In rats, thiamethoxam had no adverse effects on either the biochemistry or histopathology of the liver at any time point during the study. Cell replication rates were not increased, in fact they were significantly decreased at several time points. The lack of effect on the rat liver is entirely consistent with the lack of liver tumor formation in the two-year cancer bioassay. Comparisons of the metabolism of thiamethoxam in rats and mice have shown that concentrations of the parent chemical were either similar or higher in rat blood than in mouse blood in both single dose and the dietary studies strongly indicating that thiamethoxam itself is unlikely to play a role in the development of liver tumors. In contrast, the concentrations of the two metabolites, CGA265307 and CGA330050, shown to play a role in the development of liver damage in the mouse, were 140- (CGA265307) and 15- (CGA330050) fold lower in rats than in mice following either a single oral dose, or dietary administration of thiamethoxam for up to 50 weeks. Comparisons of the major metabolic pathways of thiamethoxam in vitro using mouse, rat, and human liver fractions have shown that metabolic rates in humans are lower than those in the rat suggesting that thiamethoxam is unlikely to pose a hazard to humans exposed to this chemical at

  17. [The role of IL-10 in the modulation of the immune response in normal conditions and the tumor environment].

    Science.gov (United States)

    Kicielińska, Jagoda; Pajtasz-Piasecka, Elzbieta

    2014-01-01

    Under the influence of the various stimuli that activate transcription factors such as cMaf, NFIL3, and ERK, many normal and neoplastic cells are able to produce the same cytokine--IL-10. There is increasing evidence that this cytokine has a significant impact on various aspects of the immune control mechanisms. Therefore, it is important to complete understanding of which factors are responsible for regulation of Il10 gene expression and protein secretion. The influence of IL-10 on cells, as in the case of other cytokines, depends on the presence of the specific receptor. Its expression has been shown, among others, on the surface of antigen-presenting cells (dendritic cells, macrophages, B cells), NK cells, T lymphocytes CD8+ and CD4+ (including Tr1, Th1 and Th2), which play an important role in the development of anti-tumor immunity. Therefore, the role of IL-10 in this process is considered to an increasing extent. There are a number of results showing that IL-10 is involved in the generation of immunosuppression, while others demonstrate immunostimulatory properties of this cytokine. This functional duality of IL-10 is substantial in the context of the regulation of tumor growth, both its promotion and fighting against it.

  18. The role of IL-10 in the modulation of the immune response in normal conditions and the tumor environment

    Directory of Open Access Journals (Sweden)

    Jagoda Kicielińska

    2014-06-01

    Full Text Available Under the influence of the various stimuli that activate transcription factors such as cMaf, NFIL3, and ERK, many normal and neoplastic cells are able to produce the same cytokine – IL-10. There is increasing evidence that this cytokine has a significant impact on various aspects of the immune control mechanisms. Therefore, it is important to complete understanding of which factors are responsible for regulation of Il10 gene expression and protein secretion. The influence of IL-10 on cells, as in the case of other cytokines, depends on the presence of the specific receptor. Its expression has been shown, among others, on the surface of antigen-presenting cells (dendritic cells, macrophages, B cells, NK cells, T lymphocytes CD8+ and CD4+ (including Tr1, Th1 and Th2, which play an important role in the development of anti-tumor immunity. Therefore, the role of IL-10 in this process is considered to an increasing extent. There are a number of results showing that IL-10 is involved in the generation of immunosuppression, while others demonstrate immunostimulatory properties of this cytokine. This functional duality of IL-10 is substantial in the context of the regulation of tumor growth, both its promotion and fighting against it.

  19. DCE-MRI Perfusion and Permeability Parameters as predictors of tumor response to CCRT in Patients with locally advanced NSCLC

    Science.gov (United States)

    Tao, Xiuli; Wang, Lvhua; Hui, Zhouguang; Liu, Li; Ye, Feng; Song, Ying; Tang, Yu; Men, Yu; Lambrou, Tryphon; Su, Zihua; Xu, Xiao; Ouyang, Han; Wu, Ning

    2016-01-01

    In this prospective study, 36 patients with stage III non-small cell lung cancers (NSCLC), who underwent dynamic contrast-enhanced MRI (DCE-MRI) before concurrent chemo-radiotherapy (CCRT) were enrolled. Pharmacokinetic analysis was carried out after non-rigid motion registration. The perfusion parameters [including Blood Flow (BF), Blood Volume (BV), Mean Transit Time (MTT)] and permeability parameters [including endothelial transfer constant (Ktrans), reflux rate (Kep), fractional extravascular extracellular space volume (Ve), fractional plasma volume (Vp)] were calculated, and their relationship with tumor regression was evaluated. The value of these parameters on predicting responders were calculated by receiver operating characteristic (ROC) curve. Multivariate logistic regression analysis was conducted to find the independent variables. Tumor regression rate is negatively correlated with Ve and its standard variation Ve_SD and positively correlated with Ktrans and Kep. Significant differences between responders and non-responders existed in Ktrans, Kep, Ve, Ve_SD, MTT, BV_SD and MTT_SD (P < 0.05). ROC indicated that Ve < 0.24 gave the largest area under curve of 0.865 to predict responders. Multivariate logistic regression analysis also showed Ve was a significant predictor. Baseline perfusion and permeability parameters calculated from DCE-MRI were seen to be a viable tool for predicting the early treatment response after CCRT of NSCLC. PMID:27762331

  20. Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids.

    Science.gov (United States)

    Lauber, K; Keppeler, H; Munoz, L E; Koppe, U; Schröder, K; Yamaguchi, H; Krönke, G; Uderhardt, S; Wesselborg, S; Belka, C; Nagata, S; Herrmann, M

    2013-09-01

    The phagocytic clearance of apoptotic cells is essential to prevent chronic inflammation and autoimmunity. The phosphatidylserine-binding protein milk fat globule-EGF factor 8 (MFG-E8) is a major opsonin for apoptotic cells, and MFG-E8(-/-) mice spontaneously develop a lupus-like disease. Similar to human systemic lupus erythematosus (SLE), the murine disease is associated with an impaired clearance of apoptotic cells. SLE is routinely treated with glucocorticoids (GCs), whose anti-inflammatory effects are consentaneously attributed to the transrepression of pro-inflammatory cytokines. Here, we show that the GC-mediated transactivation of MFG-E8 expression and the concomitantly enhanced elimination of apoptotic cells constitute a novel aspect in this context. Patients with chronic inflammation receiving high-dose prednisone therapy displayed substantially increased MFG-E8 mRNA levels in circulating monocytes. MFG-E8 induction was dependent on the GC receptor and several GC response elements within the MFG-E8 promoter. Most intriguingly, the inhibition of MFG-E8 induction by RNA interference or genetic knockout strongly reduced or completely abolished the phagocytosis-enhancing effect of GCs in vitro and in vivo. Thus, MFG-E8-dependent promotion of apoptotic cell clearance is a novel anti-inflammatory facet of GC treatment and renders MFG-E8 a prospective target for future therapeutic interventions in SLE.

  1. Assessing Tumor Response to Treatment in Patients with Lung Cancer Using Dynamic Contrast-Enhanced CT

    DEFF Research Database (Denmark)

    Strauch, Louise S; Eriksen, Rie Ø; Sandgaard, Michael

    2016-01-01

    after treatment. Four out of five studies that measured blood flow post anti-angiogenic treatments found that blood flow was significantly decreased. DCE-CT may be a useful tool in assessing treatment response in patients with lung cancer. It seems that particularly permeability and blood flow......The aim of this study was to provide an overview of the literature available on dynamic contrast-enhanced computed tomography (DCE-CT) as a tool to evaluate treatment response in patients with lung cancer. This systematic review was compiled according to Preferred Reporting Items for Systematic...... Reviews and Meta-Analyses (PRISMA) guidelines. Only original research articles concerning treatment response in patients with lung cancer assessed with DCE-CT were included. To assess the validity of each study we implemented Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). The initial search...

  2. Neutrophil biomarkers predict response to therapy with tumor necrosis factor inhibitors in rheumatoid arthritis.

    Science.gov (United States)

    Wright, Helen L; Cox, Trevor; Moots, Robert J; Edwards, Steven W

    2017-03-01

    Neutrophils are implicated in the pathology of rheumatoid arthritis (RA), but the mechanisms regulating their activation are largely unknown. RA is a heterogeneous disease, and whereas many patients show clinical improvement during TNF inhibitor (TNFi) therapy, a significant proportion fails to respond. In vitro activation of neutrophils with agents, including TNF, results in rapid and selective changes in gene expression, but how neutrophils contribute to TNF signaling in RA and whether TNFi sensitivity involves differential neutrophil responses are unknown. With the use of RNA sequencing (RNA-Seq), we analyzed blood neutrophils from 20 RA patients, pre-TNFi therapy, to identify biomarkers of response, measured by a decrease in disease activity score based on 28 joint count (DAS28), 12 wk post-therapy. Biomarkers were validated by quantitative PCR (qPCR) of blood neutrophils from 2 further independent cohorts of RA patients: 16 pre-TNFi and 16 predisease-modifying anti-rheumatic drugs (DMARDs). Twenty-three neutrophil transcripts predicted a 12-wk response to TNFi: 10 (IFN-regulated) genes predicting a European League against Rheumatism (EULAR) good response and 13 different genes [neutrophil granule protein (NGP) genes] predicting a nonresponse. Statistical analysis indicated a predictive sensitivity and specificity of each gene in the panel of >80%, with some 100% specific. A combination of 3 genes [cytidine monophosphate kinase 2 (CMPK2), IFN-induced protein with tetratricopeptide repeats 1B (IFIT1B), and RNASE3] had the greatest predictive power [area under the curve (AUC) 0.94]. No correlation was found for a response to DMARDs. We conclude that this panel of genes is selective for predicting a response to TNFi and is not a surrogate marker for disease improvement. We also show that in RA, there is great plasticity in neutrophil phenotype, with circulating cells expressing genes normally only expressed in more immature cells.

  3. Mechanisms of Cell Killing Response from Low Linear Energy Transfer (LET Radiation Originating from 177Lu Radioimmunotherapy Targeting Disseminated Intraperitoneal Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kwon Joong Yong

    2016-05-01

    Full Text Available Radiolabeled antibodies (mAbs provide efficient tools for cancer therapy. The combination of low energy β−-emissions (500 keVmax; 130 keVave along with a γ-emission for imaging makes 177Lu (T1/2 = 6.7 day a suitable radionuclide for radioimmunotherapy (RIT of tumor burdens possibly too large to treat with α-particle radiation. RIT with 177Lu-trastuzumab has proven to be effective for treatment of disseminated HER2 positive peritoneal disease in a pre-clinical model. To elucidate mechanisms originating from this RIT therapy at the molecular level, tumor bearing mice (LS-174T intraperitoneal xenografts were treated with 177Lu-trastuzumab comparatively to animals treated with a non-specific control, 177Lu-HuIgG, and then to prior published results obtained using 212Pb-trastuzumab, an α-particle RIT agent. 177Lu-trastuzumab induced cell death via DNA double strand breaks (DSB, caspase-3 apoptosis, and interfered with DNA-PK expression, which is associated with the repair of DNA non-homologous end joining damage. This contrasts to prior results, wherein 212Pb-trastuzumab was found to down-regulate RAD51, which is involved with homologous recombination DNA damage repair. 177Lu-trastuzumab therapy was associated with significant chromosomal disruption and up-regulation of genes in the apoptotic process. These results suggest an inhibition of the repair mechanism specific to the type of radiation damage being inflicted by either high or low linear energy transfer radiation. Understanding the mechanisms of action of β−- and α-particle RIT comparatively through an in vivo tumor environment offers real information suitable to enhance combination therapy regimens involving α- and β−-particle RIT for the management of intraperitoneal disease.

  4. Dextran-b-poly(L-histidine copolymer nanoparticles for pH-responsive drug delivery to tumor cells

    Directory of Open Access Journals (Sweden)

    Hwang JH

    2013-08-01

    Full Text Available Jong-Ho Hwang,1,2 Cheol Woong Choi,1 Hyung-Wook Kim,1 Do Hyung Kim,3 Tae Won Kwak,3 Hye Myeong Lee,3 Cy Hyun Kim,3 Chung Wook Chung,3 Young-Il Jeong,3 Dae Hwan Kang1,3 1Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Republic of Korea; 2Department of Internal Medicine, Busan Medical Center, Yeonje-gu, Busan, Republic of Korea; 3National Research and Development Center for Hepatobiliary Disease, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea Purpose: Nanoparticles based on stimuli-sensitive drug delivery have been extensively investigated for tumor targeting. Among them, pH-responsive drug targeting using pH-sensitive polymers has attracted attention because solid tumors have an acidic environment. A dextran-b-poly(L-histidine (DexPHS copolymer was synthesized and pH-responsive nanoparticles were fabricated for drug targeting. Methods and results: A DexPHS block copolymer was synthesized by attaching the reductive end of dextran to the amine groups of poly(L-histidine. pH-responsive nanoparticles incorporating doxorubicin were fabricated and studied in HuCC-T1 cholangiocarcinoma cells. Synthesis of DexPHS was confirmed by 1H nuclear magnetic resonance spectroscopy, with specific peaks of dextran and PHS observed at 2–5 ppm and 7.4–9.0 ppm, respectively. DexPHS nanoparticles showed changes in particle size with pH sensitivity, ie, the size of the nanoparticles increased at an acidic pH and decreased at a basic pH. DexPHS block copolymer nanoparticles incorporating doxorubicin were prepared using the nanoprecipitation dialysis method. The doxorubicin release rate was increased at acidic pH compared with basic pH, indicating that DexPHS nanoparticles have pH-sensitive properties and that drug release can be controlled by variations in pH. The antitumor activity of DexPHS nanoparticles incorporating doxorubicin were studied using HuCC-T1

  5. Partial response to imatinib treatment in a patient with unresectable gastrointestinal stromal tumor: A case report and mini literature review

    Science.gov (United States)

    Wu, Xiaolong; Feng, Libo; Liu, Qing; Xia, Dong; Xu, Liang

    2016-01-01

    The aim of the present study was to evaluate the efficacy and safety of imatinib mesylate in unresectable gastrointestinal stromal tumor (GIST) and to discuss its therapeutic regimen. A patient with unresectable GIST is described, and several key clinical studies are reviewed, including the clinical trials B2222 and S0033, which contain recently reported results of the long-term clinical outcome of imatinib in patients with unresectable or metastatic GIST. The recent results of the two studies demonstrate the long-term efficacy and safety of imatinib for unresectable or metastatic GIST. A positive response to imatinib treatment was observed in the present patient, which is consistent with the data of the B2222 and S0033 trials. However, further long-term, large-scale, multicenter and controlled trials are required to determine the relative efficacy of combining imatinib agents with surgical procedures or administering imatinib alone. PMID:27698727

  6. CD8 T-cell responses against cyclin B1 in breast cancer patients with tumors overexpressing p53

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Andersen, Rikke Sick; Svane, Inge Marie;

    2009-01-01

    CD8 T-cell response against at least one of the peptides; strongest reactivity was detected against the CB9L2 peptide. Because the level of cyclin B1 has been shown to be influenced by the level of p53, which in turn is elevated in cancer cells because of point mutation, we analyzed the level of p53....... CONCLUSIONS: Our data support the notion of cyclin B1 as a prominent target for immunologic