WorldWideScience

Sample records for apoptotic dna degradation

  1. Apoptotic DNA Degradation into Oligonucleosomal Fragments, but Not Apoptotic Nuclear Morphology, Relies on a Cytosolic Pool of DFF40/CAD Endonuclease*

    Science.gov (United States)

    Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Gabernet, Gisela; García-Belinchón, Mercè; Sánchez-Osuna, María; Casanelles, Elisenda; Comella, Joan X.; Yuste, Victor J.

    2012-01-01

    Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation. PMID:22253444

  2. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    Science.gov (United States)

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Single gene retrieval from thermally degraded DNA

    Indian Academy of Sciences (India)

    Unknown

    DNA thermal degradation was shown to occur via a singlet oxygen pathway. A comparative study of the ther- mal degradation of cellular DNA and isolated DNA showed that cellular ..... definite level of energy (e.g. depurination active energy,.

  4. Single gene retrieval from thermally degraded DNA

    Indian Academy of Sciences (India)

    To simulate single gene retrieval from ancient DNA, several related factors have been investigated. By monitoring a 889 bp polymerase chain reaction (PCR) product and genomic DNA degradation, we find that heat and oxygen (especially heat) are both crucial factors influencing DNA degradation. The heat influence ...

  5. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomita, Masanori

    2010-01-01

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death. (author)

  6. Radiation induced degradation of DNA in photodynamic therapy of cancer

    International Nuclear Information System (INIS)

    Ion, Rodica; Scarlat, F.; Niculescu, V.I.R.; Scarlat, Fl.; Gunaydin, Keriman

    2001-01-01

    DNA is a critical cellular target for oxidative processes induced by physical and chemical stresses. It is known that the direct effect of ionizing radiation on DNA results mainly in base ionization and may lead to mutation, carcinogenesis and cell death. The degradation of DNA induced by laser and ionizing radiation (electron and photon beam) is analyzed in this paper. The ionizing radiation degradation of DNA is a radical process. A series of lesions among the major base degradation product has been measured in isolated DNA exposed to gamma radiation in aerated aqueous solution. Degradation can be accounted for by the formation of hydroxyl radicals upon radiolysis of water (indirect effect). The production of DNA damage by ionizing radiation involves two mechanisms, direct and indirect effects. Direct effect leads to ionization and excitation of DNA molecules, while indirect effect is due to the interaction of reactive species, in particular of OH radicals produced by water radiolysis, with targets in DNA. The relative contribution of the two mechanisms in damaging DNA depends on the type of radiation. Single strand breaks and base damage seem to be mainly produced by the attack of hydroxyl radicals on DNA, whereas double strand breaks result predominantly of direct energy deposition. The four bases are degraded in high yield. Direct effect has been mimicked by photo-induced electron abstraction from the bases producing their radical cation. The base damage may also occur from the formation of radical cation of purine and pyrimidine components. When DNA is irradiated in solution, single strand breaks are mainly due to the abstraction of an H atom from the 4 ' position of 2 ' -deoxyribose by the attack of OH radicals produced by water radiolysis. Quantification of the modified bases showed the guanine is the preferential target. Ionizing radiation induces several types of DNA modifications, including chain breaks, DNA-protein cross-links, oxidized DNA bases

  7. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    International Nuclear Information System (INIS)

    Al-Gubory, Kais H.

    2005-01-01

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals

  8. X-ray induced degradation of DNA in Aspergillus nidulans cells comparative analysis of UV- and X-ray induced DNA degradation

    International Nuclear Information System (INIS)

    Zinchenko, V.V.; Babykin, M.M.

    1980-01-01

    Irradiating cells of Aspergillus nidulans of the wild type in the logarythmical growth phase with X-rays leads to a certain retention in DNA synthesis. This period is characterized by an insignificant fermentative DNA degradation connected with a process of its repair. There is no direct dependence between the radiation dose and the level of DNA degradation. The investigation of X-ray induced DNA degradation in a number of UVS-mutants permits to show the existence of two branches of DNA degradation - dependent and independent of the exogenic energy source. The dependence of DNA degradation on albumen synthesis prior to irradiation and after it, is demonstrated. It is supposed that the level of X-ray induced DNA degradation is determined by two albumen systems, one of which initiates degradation and the other terminates it. The comparative analysis of UV and X-ray induced DNA degradation is carried out

  9. Direct uptake and degradation of DNA by lysosomes

    Science.gov (United States)

    Fujiwara, Yuuki; Kikuchi, Hisae; Aizawa, Shu; Furuta, Akiko; Hatanaka, Yusuke; Konya, Chiho; Uchida, Kenko; Wada, Keiji; Kabuta, Tomohiro

    2013-01-01

    Lysosomes contain various hydrolases that can degrade proteins, lipids, nucleic acids and carbohydrates. We recently discovered “RNautophagy,” an autophagic pathway in which RNA is directly taken up by lysosomes and degraded. A lysosomal membrane protein, LAMP2C, a splice variant of LAMP2, binds to RNA and acts as a receptor for this pathway. In the present study, we show that DNA is also directly taken up by lysosomes and degraded. Like RNautophagy, this autophagic pathway, which we term “DNautophagy,” is dependent on ATP. The cytosolic sequence of LAMP2C also directly interacts with DNA, and LAMP2C functions as a receptor for DNautophagy, in addition to RNautophagy. Similarly to RNA, DNA binds to the cytosolic sequences of fly and nematode LAMP orthologs. Together with the findings of our previous study, our present findings suggest that RNautophagy and DNautophagy are evolutionarily conserved systems in Metazoa. PMID:23839276

  10. Using long ssDNA polynucleotides to amplify STRs loci in degraded DNA samples

    Science.gov (United States)

    Pérez Santángelo, Agustín; Corti Bielsa, Rodrigo M.; Sala, Andrea; Ginart, Santiago; Corach, Daniel

    2017-01-01

    Obtaining informative short tandem repeat (STR) profiles from degraded DNA samples is a challenging task usually undermined by locus or allele dropouts and peak-high imbalances observed in capillary electrophoresis (CE) electropherograms, especially for those markers with large amplicon sizes. We hereby show that the current STR assays may be greatly improved for the detection of genetic markers in degraded DNA samples by using long single stranded DNA polynucleotides (ssDNA polynucleotides) as surrogates for PCR primers. These long primers allow a closer annealing to the repeat sequences, thereby reducing the length of the template required for the amplification in fragmented DNA samples, while at the same time rendering amplicons of larger sizes suitable for multiplex assays. We also demonstrate that the annealing of long ssDNA polynucleotides does not need to be fully complementary in the 5’ region of the primers, thus allowing for the design of practically any long primer sequence for developing new multiplex assays. Furthermore, genotyping of intact DNA samples could also benefit from utilizing long primers since their close annealing to the target STR sequences may overcome wrong profiling generated by insertions/deletions present between the STR region and the annealing site of the primers. Additionally, long ssDNA polynucleotides might be utilized in multiplex PCR assays for other types of degraded or fragmented DNA, e.g. circulating, cell-free DNA (ccfDNA). PMID:29099837

  11. [Cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy].

    Science.gov (United States)

    Tan, Jiao; Wang, Ya-Ping; Wang, Hui-Xin; Liang, Jian-Ming; Zhang, Meng; Sun, Xun; Huang, Yong-Zhuo

    2014-12-01

    To develop a cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy, we prepared the AVPI-LMWP/pTRAIL self-assembled complexes containing a therapeutic combination of peptide drug AVPI and DNA drug TRAIL. The chimeric apoptotic peptide AVPI-LMWP was synthesized using the standard solid-phase synthesis. The cationic AVPI-LMWP could condense pTRAIL by electrostatic interaction. The physical-chemical properties of the AVPI-LMWP/pTRAIL complexes were characterized. The cellular uptake efficiency and the inhibitory activity of the AVPI-LMWP/pTRAIL complexes on tumor cell were also performed. The results showed that the AVPI-LMWP/pTRAIL complexes were successfully prepared by co-incubation. With the increase of mass ratio (AVPI-LMWP/DNA), the particle size was decreased and the zeta potential had few change. Agarose gel electrophoresis showed that AVPI-LMWP could fully bind and condense pTRAIL at a mass ratio above 15:1. Cellular uptake efficiency was improved along with the increased ratio of W(AVPI-LMWP)/WpTRAIL. The in vitro cytotoxicity experiments demonstrated that the AVPI-LMWP/pTRAIL (W:W = 20:1) complexes was significantly more effective than the pTRAIL, AVPI-LMWP alone or LMWP/pTRAIL complexes on inhibition of HeLa cell growth. Our studies indicated that the AVPI-LMWP/pTRAIL co-delivery system could deliver plasmid into HeLa cell and induce tumor cell apoptosis efficiently, which showed its potential in cancer therapy using combination of apoptoic peptide and gene drugs.

  12. Flow cytofluorometric assay of human whole blood leukocyte DNA degradation in response to Yersinia pestis and Staphylococcus aureus

    Science.gov (United States)

    Kravtsov, Alexander L.; Grebenyukova, Tatyana P.; Bobyleva, Elena V.; Golovko, Elena M.; Malyukova, Tatyana A.; Lyapin, Mikhail N.; Kostyukova, Tatyana A.; Yezhov, Igor N.; Kuznetsov, Oleg S.

    2001-05-01

    Human leukocytes containing less than 2C DNA per cell (damaged or dead cells) were detected and quantified by flow cytometry and DNA-specific staining with ethidium bromide and mithramycin in whole blood infected with Staphylococcus aureus or Yersinia pestis. Addition of live S. aureus to the blood (100 microbe cells per one leukocyte) resulted in rapid degradation of leukocyte DNA within 3 to 6 hours of incubation at 37 degree(s)C. However, only about 50 percent cells were damaged and the leukocytes with the intact genetic apparatus could be found in the blood for a period up to 24 hours. The leukocyte injury was preceded by an increase of DNA per cell content (as compared to the normal one) that was likely to be connected with the active phagocytosis of S. aureus by granulocytes (2C DNA of diploid phagocytes plus the all bacterial DNA absorbed). In response to the same dose of actively growing (at 37 degree(s)C) virulent Y. pestis cells, no increase in DNA content per cell could be observed in the human blood leukocytes. The process of the leukocyte DNA degradation started after a 6-hour incubation, and between 18 to 24 hours of incubation about 90 percent leukocytes (phagocytes and lymphocytes) lost their specific DNA fluorescence. These results demonstrated a high potential of flow cytometry in comparative analysis in vitro of the leukocyte DNA degradation process in human blood in response to bacteria with various pathogenic properties. They agree with the modern idea of an apoptotic mechanism of immunosuppression in plague.

  13. Next-generation sequencing offers new insights into DNA degradation

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Orlando, Ludovic Antoine Alexandre; Willerslev, Eske

    2012-01-01

    The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation...... rates that previously were obtained only from extrapolations of results from in vitro kinetic experiments performed over short timescales. For example, recent next-generation sequencing of ancient DNA reveals purine bases as one of the main targets of postmortem hydrolytic damage, through base...... elimination and strand breakage. It also shows substantially increased rates of DNA base-loss at guanosine. In this review, we argue that the latter results from an electron resonance structure unique to guanosine rather than adenosine having an extra resonance structure over guanosine as previously suggested....

  14. Single-tube library preparation for degraded DNA

    DEFF Research Database (Denmark)

    Carøe, Christian; Gopalakrishnan, Shyam; Vinner, Lasse

    2018-01-01

    these obstacles and enable higher throughput are therefore of interest to researchers working with degraded DNA. 2.In this study, we compare four Illumina library preparation protocols, including two “single-tube” methods developed for this study with the explicit aim of improving data quality and reducing...... of chemically damaged and highly fragmented DNA molecules. In particular, the enzymatic reactions and DNA purification steps during library preparation can result in DNA template loss and sequencing biases, affecting downstream analyses. The development of library preparation methods that circumvent...... preparation time and expenses. The methods are tested on grey wolf (Canis lupus) museum specimens. 3.We found single-tube protocols increase library complexity, yield more reads that map uniquely to the reference genome, reduce processing time, and may decrease laboratory costs by 90%. 4.Given the advantages...

  15. Critical involvement of the ATM-dependent DNA damage response in the apoptotic demise of HIV-1-elicited syncytia.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Perfettini

    Full Text Available DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM, which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env of human immunodeficiency virus-1 (HIV-1 in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein, as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.

  16. DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.

    Science.gov (United States)

    Johnston, Emma; Stephenson, Mishel

    2016-07-01

    No data are available regarding the success of DNA Short Tandem Repeat (STR) profiling from degraded skeletal remains in Guatemala. Therefore, DNA profiling success rates relating to 2595 skeletons from eleven cases at the Forensic Anthropology Foundation of Guatemala (FAFG) are presented. The typical postmortem interval was 30 years. DNA was extracted from bone powder and amplified using Identifiler and Minifler. DNA profiling success rates differed between cases, ranging from 50.8% to 7.0%, the overall success rate for samples was 36.3%. The best DNA profiling success rates were obtained from femur (36.2%) and tooth (33.7%) samples. DNA profiles were significantly better from lower body bones than upper body bones (p = <0.0001). Bone samples from males gave significantly better profiles than samples from females (p = <0.0001). These results are believed to be related to bone density. The findings are important for designing forensic DNA sampling strategies in future victim recovery investigations. © 2016 American Academy of Forensic Sciences.

  17. Quantification of apoptotic DNA fragmentation in a transformed uterine epithelial cell line, HRE-H9, using capillary electrophoresis with laser-induced fluorescence detector (CE-LIF).

    Science.gov (United States)

    Fiscus, R R; Leung, C P; Yuen, J P; Chan, H C

    2001-01-01

    Apoptotic cell death of uterine epithelial cells is thought to play an important role in the onset of menstruation and the successful implantation of an embryo during early pregnancy. Abnormal apoptosis in these cells can result in dysmenorrhoea and infertility. In addition, decreased rate of epithelial apoptosis likely contributes to endometriosis. A key step in the onset of apoptosis in these cells is cleavage of the genomic DNA between nucleosomes, resulting in polynucleosomal-sized fragments of DNA. The conventional technique for assessing apoptotic DNA fragmentation uses agarose (slab) gel electrophoresis (i.e. DNA laddering). However, recent technological advances in the use of capillary electrophoresis (CE), particularly the introduction of the laser-induced fluorescence detector (LIF), has made it possible to perform DNA laddering with improved automation and much greater sensitivity. In the present study, we have further developed the CE-LIF technique by using a DNA standard curve to quantify accurately the amount of DNA in the apoptotic DNA fragments and have applied this new quantitative technique to study apoptosis in a transformed uterine epithelial cell line, the HRE-H9 cells. Apoptosis was induced in the HRE-H9 cells by serum deprivation for 5, 7 and 24 h, resulting in increased DNA fragmentation of 2.2-, 3.1- and 6.2-fold, respectively, above the 0 h or plus-serum controls. This ultrasensitive CE-LIF technique provides a novel method for accurately measuring the actions of pro- or anti-apoptotic agents or conditions on uterine epithelial cell lines. Copyright 2001 Academic Press.

  18. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling.

    Directory of Open Access Journals (Sweden)

    Chad R Sethman

    Full Text Available Sterile alpha and armadillo-motif containing protein (SARM, a highly conserved and structurally unique member of the MyD88 family of Toll-like receptor adaptors, plays an important role in innate immunity signaling and apoptosis. Its exact mechanism of intracellular action remains unclear. Apoptosis is an ancient and ubiquitous process of programmed cell death that results in disruption of the nuclear lamina and, ultimately, dismantling of the nucleus. In addition to supporting the nuclear membrane, lamins serve important roles in chromatin organization, epigenetic regulation, transcription, nuclear transport, and mitosis. Mutations and other damage that destabilize nuclear lamins (laminopathies underlie a number of intractable human diseases. Here, we report that SARM translocates to the nucleus of human embryonic kidney cells by using its amino-terminal Armadillo repeat region. Within the nucleus, SARM forms a previously unreported lattice akin to the nuclear lamina scaffold. Moreover, we show that SARM protects lamins from apoptotic degradation and reduces internucleosomal DNA fragmentation in response to signaling induced by the proinflammatory cytokine Tumor Necrosis Factor alpha. These findings indicate an important link between the innate immunity adaptor SARM and stabilization of nuclear lamins during inflammation-driven apoptosis in human cells.

  19. Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt

    2012-01-01

    Abstract DNA samples found at a scene of crime or obtained from the debris of a mass disaster accident are often subject to degradation. When using the STR DNA technology, the DNA profile is observed via a so-called electropherogram (EPG), where the alleles are identified as signal peaks above...... data from degraded DNA, where cases with varying amounts of DNA and levels of degradation are investigated....

  20. Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Mogensen, Helle Smidt

    2012-01-01

    DNA samples found at a scene of crime or obtained from the debris of a mass disaster accident are often subject to degradation. When using the STR DNA technology, the DNA profile is observed via a so-called electropherogram (EPG), where the alleles are identified as signal peaks above a certain...... data from degraded DNA, where cases with varying amounts of DNA and levels of degradation are investigated....

  1. Interaction of DNA-lesions induced by sodium fluoride and radiation and its influence in apoptotic induction in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Santosh Podder

    2015-01-01

    Full Text Available Fluoride is an essential trace element but also an environmental contaminant with major sources of exposure being drinking water, food and pesticides. Previous studies showed that sodium fluoride (NaF at 5 mM or more is required to induce apoptosis and chromosome aberrations and proposed that DNA damage and apoptosis play an important role in toxicity of excessive fluoride. The aim of this study is directed to understand the nature of DNA-lesions induced by NaF by allowing its interaction with radiation induced DNA-lesions. NaF 5 mM was used after observing inability to induce DNA damages and apoptosis by single exposure with 50 μM or 1 mM NaF. Co-exposure to NaF and radiation significantly increased the frequency of aberrant metaphases and exchange aberrations in human lymphocytes and arrested the cells in G1 stage instead of apoptotic death. Flow cytometric analysis, DNA fragmentation and PARP-cleavage analysis clearly indicated that 5 mM NaF together with radiation (1 Gy induced apoptosis in both U87 and K562 cells due to down regulation of expression of anti-apoptotic proteins, like Bcl2 in U87 and inhibitors of apoptotic proteins like survivin and cIAP in K562 cells. This study herein suggested that single exposure with extremely low concentration of NaF unable to induce DNA lesions whereas higher concentration induced DNA lesions interact with the radiation-induced DNA lesions. Both are probably repaired rapidly thus showed increased interactive effect. Coexposure to NaF and radiation induces more apoptosis in cancer cell lines which could be due to increased exchange aberrations through lesions interaction and downregulating anti-apoptotic genes.

  2. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina; Henninger, Christian [Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf (Germany); Thomale, Jürgen [Institute of Cell Biology, University Duisburg-Essen, 45122 Essen (Germany); Schupp, Nicole [Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf (Germany); Fritz, Gerhard, E-mail: fritz@uni-duesseldorf.de [Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf (Germany)

    2016-02-01

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model. The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury. - Highlights: • Lovastatin blocks ATM/ATR-regulated DDR of tubular cells following CisPt treatment. • Lovastatin attenuates CisPt-induced activation of protein kinase ATM in vitro. • Statin-mediated DDR inhibition is independent of initial DNA damage formation. • Statin-mediated blockage of Cis

  3. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina; Henninger, Christian; Thomale, Jürgen; Schupp, Nicole; Fritz, Gerhard

    2016-01-01

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model. The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury. - Highlights: • Lovastatin blocks ATM/ATR-regulated DDR of tubular cells following CisPt treatment. • Lovastatin attenuates CisPt-induced activation of protein kinase ATM in vitro. • Statin-mediated DDR inhibition is independent of initial DNA damage formation. • Statin-mediated blockage of Cis

  4. Effects of highly ripened cheeses on HL-60 human leukemia cells: antiproliferative activity and induction of apoptotic DNA damage.

    Science.gov (United States)

    Yasuda, S; Ohkura, N; Suzuki, K; Yamasaki, M; Nishiyama, K; Kobayashi, H; Hoshi, Y; Kadooka, Y; Igoshi, K

    2010-04-01

    To establish cheese as a dairy product with health benefits, we examined the multifunctional role of cheeses. In this report, we clarify whether different types of commercial cheeses may possess antiproliferative activity using HL-60 human promyelocytic leukemia cell lines as a cancer model. Among 12 cheese extracts tested, 6 (Montagnard, Pont-l'Eveque, Brie, Camembert, Danablue, and Blue) revealed strong growth inhibition activity and induction of DNA fragmentation in HL-60 cells. Based on the quantification of nitrogen contents in different cheese samples, a positive correlation between the ripeness of various cheeses and their antiproliferative activity tested in HL-60 cells was displayed. Four varieties of Blue cheese ripened for 0, 1, 2, or 3 mo demonstrated that the Blue cheese ripened for a long term was capable of causing the strong suppression of the cell growth and the induction of apoptotic DNA damage as well as nucleic morphological change in HL-60 cells. Collectively, these results obtained suggest a potential role of highly ripened cheeses in the prevention of leukemic cell proliferation. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Catalase inhibition in diabetic rats potentiates DNA damage and apoptotic cell death setting the stage for cardiomyopathy.

    Science.gov (United States)

    Ivanović-Matić, Svetlana; Bogojević, Desanka; Martinović, Vesna; Petrović, Anja; Jovanović-Stojanov, Sofija; Poznanović, Goran; Grigorov, Ilijana

    2014-12-01

    Diabetes is a risk factor for cardiovascular disease that has a multifactorial etiology, with oxidative stress as an important component. Our previous observation of a significant diabetes-related increase in rat cardiac catalase (CAT) activity suggested that CAT could play a major role in delaying the development of diabetic cardiomyopathy. Thus, in the present work, we examined the effects of the daily administration of the CAT inhibitor, 3-amino-1,2,4-triazole (1 mg/g), on the hearts of streptozotocin (STZ)-induced diabetic rats. Administration of CAT inhibitor was started from the 15th day after the last STZ treatment (40 mg/kg/5 days), and maintained until the end of the 4th or 6th weeks of diabetes. Compared to untreated diabetic rats, at the end of the observation period, CAT inhibition lowered the induced level of cardiac CAT activity to the basal level and decreased CAT protein expression, mediated through a decline in the nuclear factor erythroid-derived 2-like 2 /nuclear factor-kappa B p65 (Nrf2/NF-κB p65) subunit ratio. The perturbed antioxidant defenses resulting from CAT inhibition promoted increased H₂O₂production (P < 0.05) and lipid peroxidation (P < 0.05). Generated cytotoxic stimuli increased DNA damage (P < 0.05) and activated pro-apoptotic events, observed as a decrease (P < 0.05) in the ratio of the apoptosis regulator proteins Bcl-2/Bax, increased (P < 0.05) presence of the poly(ADP-ribose) polymerase-1 (PARP-1) 85 kDa apoptotic fragment and cytoplasmic levels of cytochrome C. These findings confirm an important function of CAT in the suppression of events leading to diabetes-promoted cardiac dysfunction and cardiomyopathy.

  6. Duplex Alu Screening for Degraded DNA of Skeletal Human Remains

    Directory of Open Access Journals (Sweden)

    Fabian Haß

    2017-10-01

    Full Text Available The human-specific Alu elements, belonging to the class of Short INterspersed Elements (SINEs, have been shown to be a powerful tool for population genetic studies. An earlier study in this department showed that it was possible to analyze Alu presence/absence in 3000-year-old skeletal human remains from the Bronze Age Lichtenstein cave in Lower Saxony, Germany. We developed duplex Alu screening PCRs with flanking primers for two Alu elements, each combined with a single internal Alu primer. By adding an internal primer, the approximately 400–500 bp presence signals of Alu elements can be detected within a range of less than 200 bp. Thus, our PCR approach is suited for highly fragmented ancient DNA samples, whereas NGS analyses frequently are unable to handle repetitive elements. With this analysis system, we examined remains of 12 individuals from the Lichtenstein cave with different degrees of DNA degradation. The duplex PCRs showed fully informative amplification results for all of the chosen Alu loci in eight of the 12 samples. Our analysis system showed that Alu presence/absence analysis is possible in samples with different degrees of DNA degradation and it reduces the amount of valuable skeletal material needed by a factor of four, as compared with a singleplex approach.

  7. Relationships between sperm DNA fragmentation, sperm apoptotic markers and serum levels of CB-153 and p,p'-DDE in European and Inuit populations

    DEFF Research Database (Denmark)

    Stronati, A; Manicardi, G C; Cecati, M

    2006-01-01

    Persistent organochlorine pollutants (POPs) are suspected to interfere with hormone activity and the normal homeostasis of spermatogenesis. We investigated the relationships between sperm DNA fragmentation, apoptotic markers identified on ejaculated spermatozoa and POP levels in the blood of 652...... adult males (200 Inuits from Greenland, 166 Swedish, 134 Polish and 152 Ukrainian). Serum levels of 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (CB-153), as a proxy of the total POP burden, and of 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p'-DDE), as a proxy of the total DDT exposure were determined...... neither sperm DNA fragmentation nor apoptotic sperm parameters and the large variations in POPs exposure was observed for the separate study groups. However, considering the European populations taken together, we showed that both %TUNEL positivity and Bcl-xL were related to CB-153 serum levels, whereas...

  8. DNA-membrane complex restoration in Micrococcus radiodurans after X-irradiation: relation to repair, DNA synthesis and DNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Dardalhon-Samsonoff, M; Averbeck, D [Institut du Radium, 75 - Paris (France). Lab. Curie

    1980-07-01

    The DNA-membrane complex in Micrococcus radiodurans was shown to be essentially constituted of proteins, lipids and DNA. The complex was dissociated immediately after X-irradiation of cells and restored during post-incubation in complete medium. In X-irradiated protoplasts some DNA remained associated with the complex. Restoration of the complex during post-incubation was only seen in a medium favouring DNA polymerase and ligase activities. Under this condition no DNA synthesis occurred, suggesting that complex restoration may involve ligase activity. The complex restoration in the wild type and the X-ray sensitive mutant UV17 of M. radiodurans was strictly dependent on the X-ray dose. It was correlated with survival and DNA degradation but always preceded the onset of DNA synthesis after X-irradiation. At the same dose the complex restoration was about 2 fold lower in mutant than in wild type cells indicating that the restoration of the complex is related to repair capacity. The results are consistent with the idea that the complex protects X-irradiated DNA of M. radiodurans from further breakdown and, subsequently, permits DNA synthesis and repair to occur.

  9. The co-repressor SMRT delays DNA damage-induced caspase activation by repressing pro-apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation.

    Directory of Open Access Journals (Sweden)

    Claudio Scafoglio

    Full Text Available Checkpoint kinase 2 (Chk2 is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of Wip1, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.

  10. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    International Nuclear Information System (INIS)

    Ji Lili; Chen Ying; Liu Tianyu; Wang Zhengtao

    2008-01-01

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 μM)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability. Polyubiquitination of Bcl-xL was detected after incubation with 100 μM clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 μM) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway

  11. Studies on Post-Irradiation DNA Degradation in Micrococcus Radiodurans, Strain RII51

    DEFF Research Database (Denmark)

    Auda, H.; Emborg, C.

    1973-01-01

    The influence of irradiation condition on post-irradiation DNA degradation was studied in a radiation resistant mutant of M. radiodurans, strain ${\\rm R}_{{\\rm II}}5$. After irradiation with 1 Mrad or higher more DNA is degraded in cells irradiated in wet condition than in cells irradiated with t...

  12. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  13. Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces

    Directory of Open Access Journals (Sweden)

    Eveson J Paige

    2006-08-01

    Full Text Available Abstract Background Poorly preserved biological tissues have become an important source of DNA for a wide range of zoological studies. Measuring the quality of DNA obtained from these samples is often desired; however, there are no widely used techniques available for quantifying damage in highly degraded DNA samples. We present a general method that can be used to determine the frequency of polymerase blocking DNA damage in specific gene-regions in such samples. The approach uses quantitative PCR to measure the amount of DNA present at several fragment sizes within a sample. According to a model of random degradation the amount of available template will decline exponentially with increasing fragment size in damaged samples, and the frequency of DNA damage (λ can be estimated by determining the rate of decline. Results The method is illustrated through the analysis of DNA extracted from sea lion faecal samples. Faeces contain a complex mixture of DNA from several sources and different components are expected to be differentially degraded. We estimated the frequency of DNA damage in both predator and prey DNA within individual faecal samples. The distribution of fragment lengths for each target fit well with the assumption of a random degradation process and, in keeping with our expectations, the estimated frequency of damage was always less in predator DNA than in prey DNA within the same sample (mean λpredator = 0.0106 per nucleotide; mean λprey = 0.0176 per nucleotide. This study is the first to explicitly define the amount of template damage in any DNA extracted from faeces and the first to quantify the amount of predator and prey DNA present within individual faecal samples. Conclusion We present an approach for characterizing mixed, highly degraded PCR templates such as those often encountered in ecological studies using non-invasive samples as a source of DNA, wildlife forensics investigations and ancient DNA research. This method will

  14. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    Science.gov (United States)

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  15. MiniX-STR multiplex system population study in Japan and application to degraded DNA analysis.

    Science.gov (United States)

    Asamura, H; Sakai, H; Kobayashi, K; Ota, M; Fukushima, H

    2006-05-01

    We sought to evaluate a more effective system for analyzing X-chromosomal short tandem repeats (X-STRs) in highly degraded DNA. To generate smaller amplicon lengths, we designed new polymerase chain reaction (PCR) primers for DXS7423, DXS6789, DXS101, GATA31E08, DXS8378, DXS7133, DXS7424, and GATA165B12 at X-linked short tandem repeat (STR) loci, devising two miniX-multiplex PCR systems. Among 333 Japanese individuals, these X-linked loci were detected in amplification products ranging in length from 76 to 169 bp, and statistical analyses of the eight loci indicated a high usefulness for the Japanese forensic practice. Results of tests on highly degraded DNA indicated the miniX-STR multiplex strategies to be an effective system for analyzing degraded DNA. We conclude that analysis by the current miniX-STR multiplex systems offers high effectiveness for personal identification from degraded DNA samples.

  16. STR analysis of artificially degraded DNA-results of a collaborative European exercise

    DEFF Research Database (Denmark)

    Schneider, Peter M; Bender, Klaus; Mayr, Wolfgang R

    2004-01-01

    Degradation of human DNA extracted from forensic stains is, in most cases, the result of a natural process due to the exposure of the stain samples to the environment. Experiences with degraded DNA from casework samples show that every sample may exhibit different properties in this respect......, and that it is difficult to systematically assess the performance of routinely used typing systems for the analysis of degraded DNA samples. Using a batch of artificially degraded DNA with an average fragment size of approx. 200 bp a collaborative exercise was carried out among 38 forensic laboratories from 17 European...... countries. The results were assessed according to correct allele detection, peak height and balance as well as the occurrence of artefacts. A number of common problems were identified based on these results such as strong peak imbalance in heterozygous genotypes for the larger short tandem repeat (STR...

  17. [Correlation between PMI and DNA degradation of costicartilage and dental pulp cells in human being].

    Science.gov (United States)

    Long, Ren; Wang, Wei-ping; Xiong, Ping

    2005-08-01

    To probe the correlation between the postmortem interval (PMI) and the DNA degradation of costicartilage and dental pulp cells in human being after death, and to seek a new method for estimating PMI. The image cytometry was used to measure the DNA degradation under different ambient temperatures (30-35 degrees C, 15-20 degrees C) in 0-15 days after death. The average DNA content of two kinds of tissue was degradated with the prolongation of PMI. But there was a plateau period of 0-4 days for dental pulp cells of human being in 15-20 degrees C. There was a high negative correlativity PPMI. PMI could be estimated accurately according to the DNA degradation of costicartilage and dental pulp cells in human being after death.

  18. Technical improvement to prevent DNA degradation of Leptospira spp. in pulsed field gel electrophoresis.

    Science.gov (United States)

    Ribeiro, R L; Machry, L; Brazil, J M V; Ramos, T M V; Avelar, K E S; Pereira, M M

    2009-08-01

    Leptospirosis is a public health problem. Infection with pathogenic Leptospira occurs by exposure to many environments and is traditionally associated with occupational risk activities. Pulsed-field gel electrophoresis was used to investigate the epidemiological relatedness among Leptospira isolates. However, analysis by PFGE yielded inconclusive data as a result of extensive DNA degradation. This degradation can be significantly reduced by the inclusion of thiourea in the electrophoresis buffer, improving the analysis of DNA banding patterns.

  19. Microbial Degradation of Forensic Samples of Biological Origin: Potential Threat to Human DNA Typing.

    Science.gov (United States)

    Dash, Hirak Ranjan; Das, Surajit

    2018-02-01

    Forensic biology is a sub-discipline of biological science with an amalgam of other branches of science used in the criminal justice system. Any nucleated cell/tissue harbouring DNA, either live or dead, can be used as forensic exhibits, a source of investigation through DNA typing. These biological materials of human origin are rich source of proteins, carbohydrates, lipids, trace elements as well as water and, thus, provide a virtuous milieu for the growth of microbes. The obstinate microbial growth augments the degradation process and is amplified with the passage of time and improper storage of the biological materials. Degradation of these biological materials carriages a huge challenge in the downstream processes of forensic DNA typing technique, such as short tandem repeats (STR) DNA typing. Microbial degradation yields improper or no PCR amplification, heterozygous peak imbalance, DNA contamination from non-human sources, degradation of DNA by microbial by-products, etc. Consequently, the most precise STR DNA typing technique is nullified and definite opinion can be hardly given with degraded forensic exhibits. Thus, suitable precautionary measures should be taken for proper storage and processing of the biological exhibits to minimize their decaying process by micro-organisms.

  20. TEMPORAL MODELING OF DNA DEGRADATION IN BONE REMAINS

    Directory of Open Access Journals (Sweden)

    Andrei Stefan

    2012-06-01

    Full Text Available The aim of this study is to follow the changes that occur, in time, at DNA level and to establish an efficient and reliable protocol for ancestral DNA extraction from bones found in archaeological sites. To test whether the protocol is efficient and capable of yielding good quality DNA, extraction was first performed on fresh bones. The material consists of fresh pig (Sus scrofa and cow (Bos taurus bones that were grounded by using a drill operating at low speed. The bone powder was then incubated in lysis buffer in the presence of proteinase K. DNA isolation and purification were done by using the phenol:chloroform protocol and DNA was precipitated with absolute ethanol stored at -20oC. The extractions were carried out once every month for a total of four extractions

  1. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  2. Analysis of DNA vulnerability to damage, repair and degradation in tissues of irradiated animals

    International Nuclear Information System (INIS)

    Ryabchenko, N.I.; Ivannik, B.P.

    1982-01-01

    Single-strand and paired ruptures of DNA were found to result in appearance of locally denaturated areas in its secondary structure and to disordered protein-DNA interaction. It was shown with the use of the viscosimeter method of measuring the molecular mass of single stranded high-polymeric DNA that cells of various tissues by the intensity of DNA repair can be divided into two groups, rapid- and slow-repair ones. Tissue specificity of enzyme function of the repair systems and systems responsible for post-irradiation DNA degradation depends on the activity of endonucleases synthesized by the cells both in health and in their irradiation-induced synthesis

  3. Two PI 3-kinases and one PI 3-phosphatase together establish the cyclic waves of phagosomal PtdIns(3P critical for the degradation of apoptotic cells.

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2012-01-01

    Full Text Available Phosphatidylinositol 3-phosphate (PtdIns(3P is a signaling molecule important for many membrane trafficking events, including phagosome maturation. The level of PtdIns(3P on phagosomes oscillates in two waves during phagosome maturation. However, the physiological significance of such oscillation remains unknown. Currently, the Class III PI 3-kinase (PI3K Vps34 is regarded as the only kinase that produces PtdIns(3P in phagosomal membranes. We report here that, in the nematode C. elegans, the Class II PI3K PIKI-1 plays a novel and crucial role in producing phagosomal PtdIns(3P. PIKI-1 is recruited to extending pseudopods and nascent phagosomes prior to the appearance of PtdIns(3P in a manner dependent on the large GTPase dynamin (DYN-1. PIKI-1 and VPS-34 act in sequence to provide overlapping pools of PtdIns(3P on phagosomes. Inactivating both piki-1 and vps-34 completely abolishes the production of phagosomal PtdIns(3P and disables phagosomes from recruiting multiple essential maturation factors, resulting in a complete arrest of apoptotic-cell degradation. We have further identified MTM-1, a PI 3-phosphatase that antagonizes the activities of PIKI-1 and VPS-34 by down-regulating PtdIns(3P on phagosomes. Remarkably, persistent appearance of phagosomal PtdIns(3P, as a result of inactivating mtm-1, blocks phagosome maturation. Our findings demonstrate that the proper oscillation pattern of PtdIns(3P on phagosomes, programmed by the coordinated activities of two PI3Ks and one PI 3-phosphatase, is critical for phagosome maturation. They further shed light on how the temporally controlled reversible phosphorylation of phosphoinositides regulates the progression of multi-step cellular events.

  4. DNA degradation and reduced recombination following UV irradiation during meiosis in yeast (Saccharomyces cerevisiae)

    International Nuclear Information System (INIS)

    Salts, Y.; Pinon, R.; Simchen, G.

    1976-01-01

    Irradiation of meiotic yeast cells with moderate doses of ultraviolet irradiation (1,600 erg/mm 2 ) leads to the arrest of premeiotic DNA synthesis, massive (5-40%) DNA degradation, and a 40-50% loss of cell viability. In contrast, such doses of UV irradiation had a minor effect on viability (15-20% loss) of logarithmically growing cells, and no comparable DNA degradation was observed in irradiated synchronized vegetative cells. Meiotic recombination is also affected by UV irradiation. When administered at a stage comparable to meiotic prophase, low doses of irradiation result in a reduction in recombination frequency without significantly affecting cell viability. (orig.) [de

  5. Degradation of transgene DNA in genetically modified herbicide-tolerant rice during food processing.

    Science.gov (United States)

    Song, Shangxin; Zhou, Guanghong; Gao, Feng; Zhang, Wei; Qiu, Liangyan; Dai, Sifa; Xu, Xinglian; Xiao, Hongmei

    2011-12-01

    In order to assess the effect of food processing on the degradation of exogenous DNA components in sweet rice wine and rice crackers made from genetically modified (GM) rice (Oryza sativa L.), we developed genomic DNA extraction methods and compared the effect of different food processing procedures on DNA degradation. It was found that the purity, quantity and quality of DNA by alkaline lysis method were higher than by CTAB (cetyltrimethylammonium bromide) method. For sweet rice wine, CAMV35S (cauliflower mosaic virus 35S) promoter and NOS (nopaline synthase) terminator were degraded by the third day, whereas the exogenous gene Bar (bialaphos resistance) remained unaffected. For rice crackers, boiling, drying and microwaving contributed to the initial degradations of DNA. Baking resulted in further degradations, and frying led to the most severe changes. These results indicated that the stability of DNA in GM rice was different under different processing conditions. For sweet rice wine, Bar was most stable, followed by NOS, CAMV35S, and SPS. For rice crackers, CAMV35S was most stable, followed by SPS, NOS, and Bar. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Pre-apoptotic response to therapeutic DNA damage involves protein modulation of Mcl-1, Hdm2 and Flt3 in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Hovland Randi

    2007-05-01

    Full Text Available Abstract Background Acute myeloid leukemia (AML cells are characterized by non-mutated TP53, high levels of Hdm2, and frequent mutation of the Flt3 receptor tyrosine kinase. The juxtamembrane mutation of FLT3 is the strongest independent marker for disease relapse and is associated with elevated Bcl-2 protein and p53 hyper-phosphorylation in AML. DNA damage forms the basic mechanism of cancer cell eradication in current therapy of AML. Hdm2 and pro-apoptotic Bcl-2 members are among the most intensely induced genes immediately after chemotherapy and Hdm2 is proposed a role in receptor tyrosine kinase regulation. Thus we examined the DNA damage related modulation of these proteins in relation to FLT3 mutational status and induction of apoptosis. Results Within one hour after exposure to ionizing radiation (IR, the AML cells (NB4, MV4-11, HL-60, primary AML cells showed an increase in Flt3 protein independent of mRNA levels, while the Hdm2 protein decreased. The FLT3 mutant MV4-11 cells were resistant to IR accompanied by presence of both Mcl-1 and Hdm2 protein three hours after IR. In contrast, the FLT3 wild type NB4 cells responded to IR with apoptosis and pre-apoptotic Mcl-1 down regulation. Daunorubicin (DNR induced continuing down regulation of Hdm2 and Mcl-1 in both cell lines followed by apoptosis. Conclusion Both IR and DNR treatment resulted in concerted protein modulations of Mcl-1, Hdm2 and Flt3. Cell death induction was associated with persistent attenuation of Mcl-1 and Hdm2. These observations suggest that defining the pathway(s modulating Flt3, Hdm2 and Mcl-1 may propose new strategies to optimize therapy for the relapse prone FLT3 mutated AML patients.

  7. Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples.

    Science.gov (United States)

    Westen, Antoinette A; Matai, Anuska S; Laros, Jeroen F J; Meiland, Hugo C; Jasper, Mandy; de Leeuw, Wiljo J F; de Knijff, Peter; Sijen, Titia

    2009-09-01

    For the analysis of degraded DNA in disaster victim identification (DVI) and criminal investigations, single nucleotide polymorphisms (SNPs) have been recognized as promising markers mainly because they can be analyzed in short sized amplicons. Most SNPs are bi-allelic and are thereby ineffective to detect mixtures, which may lead to incorrect genotyping. We developed an algorithm to find non-binary (i.e. tri-allelic or tetra-allelic) SNPs in the NCBI dbSNP database. We selected 31 potential tri-allelic SNPs with a minor allele frequency of at least 10%. The tri-allelic nature was confirmed for 15 SNPs residing on 14 different chromosomes. Multiplex SNaPshot assays were developed, and the allele frequencies of 16 SNPs were determined among 153 Dutch and 111 Netherlands Antilles reference samples. Using these multiplex SNP assays, the presence of a mixture of two DNA samples in a ratio up to 1:8 could be recognized reliably. Furthermore, we compared the genotyping efficiency of the tri-allelic SNP markers and short tandem repeat (STR) markers by analyzing artificially degraded DNA and DNA from 30 approximately 500-year-old bone and molar samples. In both types of degraded DNA samples, the larger sized STR amplicons failed to amplify whereas the tri-allelic SNP markers still provided valuable information. In conclusion, tri-allelic SNP markers are suited for the analysis of degraded DNA and enable the detection of a second DNA source in a sample.

  8. X-ray induced degradation of DNA in radiosensitive mutants of Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Zhukas, K I; Vorontsova, G V; Groshev, V V; Shestakov, S V [Moskovskij Gosudarstvennyj Univ. (USSR). Biologo-Pochvennyj Fakul' tet

    1975-01-01

    In irradiated Cyanophyceae (Anacystis nidulans) cells there occurs a process of DNA degeneration to acid-soluble products which is linked with protein synthesis and stimulated by caffeine and acriflavine. The degree of DNA degeneration increases with x-ray dose, is not very dependent on the composition of the incubation medium and is weakly linked with photosynthesis. In the cells of a radiation-resistant mutant the degree of DNA degeneration is slighter, and in the cells of radiosensitive mutants larger, than in ordinary cells. The role of DNA degradation in the radiation detruction of cells is discussed.

  9. X-ray induced degradation of DNA in radiosensitive mutants of Anacystis nidulans x-rays

    International Nuclear Information System (INIS)

    Zhukas, K.I.; Vorontsova, G.V.; Groshev, V.V.; Shestakov, S.V.

    1975-01-01

    In irradiated Cyanophyceae (Anacystis nidulans) cells there occurs a process of DNA degeneration to acid-soluble products which is linked with protein synthesis and stimulated by caffeine and acriflavine. The degree of DNA degeneration increases with X-ray dose, is not very dependent on the composition of the incubation medium and is weakly linked with photosynthesis. In the cells of a radiation-resistant mutant the degree of DNA degeneration is slighter, and in the cells of radiosensitive mutants larger, than in ordinary cells. The role of DNA degradation in the radiation detruction of cells is discussed. (author)

  10. Relation between serum xenobiotic induced receptor activities and sperm DNA damage and sperm apoptotic markers in European and Inuit populations

    DEFF Research Database (Denmark)

    Long, Manhai; Stronati, Alessanda; Bizzaro, Davide

    2007-01-01

    Persistent organic pollutants (POPs) can interfere with hormone activities and are suspected as endocrine disrupters involved in disorders, e.g. reproductive disorders. We investigated the possible relation between the actual integrated serum xenoestrogenic, xenoandrogenic and aryl hydrocarbon......, but higher xenoandrogenic activity. In contrast, in the European groups, xenobiotic-induced receptor activities were found to be positively correlated with the DNA damage. Further research must elucidate whether altered receptor activities in concerted action with genetic and/or nutrient factors may have...... protecting effect on sperm DNA damage of the Inuit population....

  11. Detection of apoptotic DNA ladder in pig leukocytes and its precision using LM - PCR (ligation mediated polymerase chain reaction)

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Španová, A.

    2002-01-01

    Roč. 71, č. 3 (2002), s. 163-168 ISSN 0001-7213 R&D Projects: GA ČR GA304/01/0850; GA AV ČR KSK6005114 Keywords : apoptosis * phagocytosis * DNA ladder Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.370, year: 2002

  12. ZnO Nanoparticles Protect RNA from Degradation Better than DNA

    Directory of Open Access Journals (Sweden)

    Jayden McCall

    2017-11-01

    Full Text Available Gene therapy and RNA delivery require a nanoparticle (NP to stabilize these nucleic acids when administered in vivo. The presence of degradative hydrolytic enzymes within these environments limits the nucleic acids’ pharmacologic activity. This study compared the effects of nanoscale ZnO and MgO in the protection afforded to DNA and RNA from degradation by DNase, serum or tumor homogenate. For double-stranded plasmid DNA degradation by DNase, our results suggest that the presence of MgO NP can protect DNA from DNase digestion at an elevated temperature (65 °C, a biochemical activity not present in ZnO NP-containing samples at any temperature. In this case, intact DNA was remarkably present for MgO NP after ethidium bromide staining and agarose gel electrophoresis where these same stained DNA bands were notably absent for ZnO NP. Anticancer RNA, polyinosinic-polycytidylic acid (poly I:C is now considered an anti-metastatic RNA targeting agent and as such there is great interest in its delivery by NP. For it to function, the NP must protect it from degradation in serum and the tumor environment. Surprisingly, ZnO NP protected the RNA from degradation in either serum-containing media or melanoma tumor homogenate after gel electrophoretic analysis, whereas the band was much more diminished in the presence of MgO. For both MgO and ZnO NP, buffer-dependent rescue from degradation occurred. These data suggest a fundamental difference in the ability of MgO and ZnO NP to stabilize nucleic acids with implications for DNA and RNA delivery and therapy.

  13. Optically degradable dendrons for temporary adhesion of proteins to DNA.

    Science.gov (United States)

    Kostiainen, Mauri A; Kotimaa, Juha; Laukkanen, Marja-Leena; Pavan, Giovanni M

    2010-06-18

    Experimental studies and molecular dynamics modeling demonstrate that multivalent dendrons can be used to temporarily glue proteins and DNA together with high affinity. We describe N-maleimide-cored polyamine dendrons that can be conjugated with free cysteine residues on protein surfaces through 1,4-conjugate addition to give one-to-one protein-polymer conjugates. We used a genetically engineered cysteine mutant of class II hydrophobin (HFBI) and a single-chain Fragment variable (scFv) antibody as model proteins for the conjugation reactions. The binding affinity of the protein-dendron conjugates towards DNA was experimentally assessed by using the ethidium bromide displacement assay. The binding was found to depend on the generation of the dendron, with the second generation having a stronger affinity than the first generation. Thermodynamic parameters of the binding were obtained from molecular dynamics modeling, which showed that the high binding affinity for each system is almost completely driven by a strong favorable binding enthalpy that is opposed by unfavorable binding entropy. A short exposure to UV (lambda approximately 350 nm) can cleave the photolabile o-nitrobenzyl-linked binding ligands from the surface of the dendron, which results in loss of the multivalent binding interactions and triggers the release of the DNA and protein. The timescale of the release is very rapid and the binding partners can be efficiently released after 3 min of UV exposure.

  14. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection.

    Science.gov (United States)

    Diner, Benjamin A; Lum, Krystal K; Toettcher, Jared E; Cristea, Ileana M

    2016-11-15

    The human interferon-inducible protein IFI16 is an important antiviral factor that binds nuclear viral DNA and promotes antiviral responses. Here, we define IFI16 dynamics in space and time and its distinct functions from the DNA sensor cyclic dinucleotide GMP-AMP synthase (cGAS). Live-cell imaging reveals a multiphasic IFI16 redistribution, first to viral entry sites at the nuclear periphery and then to nucleoplasmic puncta upon herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) infections. Optogenetics and live-cell microscopy establish the IFI16 pyrin domain as required for nuclear periphery localization and oligomerization. Furthermore, using proteomics, we define the signature protein interactions of the IFI16 pyrin and HIN200 domains and demonstrate the necessity of pyrin for IFI16 interactions with antiviral proteins PML and cGAS. We probe signaling pathways engaged by IFI16, cGAS, and PML using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated knockouts in primary fibroblasts. While IFI16 induces cytokines, only cGAS activates STING/TBK-1/IRF3 and apoptotic responses upon HSV-1 and HCMV infections. cGAS-dependent apoptosis upon DNA stimulation requires both the enzymatic production of cyclic dinucleotides and STING. We show that IFI16, not cGAS or PML, represses HSV-1 gene expression, reducing virus titers. This indicates that regulation of viral gene expression may function as a greater barrier to viral replication than the induction of antiviral cytokines. Altogether, our findings establish coordinated and distinct antiviral functions for IFI16 and cGAS against herpesviruses. How mammalian cells detect and respond to DNA viruses that replicate in the nucleus is poorly understood. Here, we decipher the distinct functions of two viral DNA sensors, IFI16 and cGAS, during active immune signaling upon infection with two herpesviruses, herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV). We show that IFI16

  15. Viral DNA Sensors IFI16 and Cyclic GMP-AMP Synthase Possess Distinct Functions in Regulating Viral Gene Expression, Immune Defenses, and Apoptotic Responses during Herpesvirus Infection

    Directory of Open Access Journals (Sweden)

    Benjamin A. Diner

    2016-11-01

    Full Text Available The human interferon-inducible protein IFI16 is an important antiviral factor that binds nuclear viral DNA and promotes antiviral responses. Here, we define IFI16 dynamics in space and time and its distinct functions from the DNA sensor cyclic dinucleotide GMP-AMP synthase (cGAS. Live-cell imaging reveals a multiphasic IFI16 redistribution, first to viral entry sites at the nuclear periphery and then to nucleoplasmic puncta upon herpes simplex virus 1 (HSV-1 and human cytomegalovirus (HCMV infections. Optogenetics and live-cell microscopy establish the IFI16 pyrin domain as required for nuclear periphery localization and oligomerization. Furthermore, using proteomics, we define the signature protein interactions of the IFI16 pyrin and HIN200 domains and demonstrate the necessity of pyrin for IFI16 interactions with antiviral proteins PML and cGAS. We probe signaling pathways engaged by IFI16, cGAS, and PML using clustered regularly interspaced short palindromic repeat (CRISPR/Cas9-mediated knockouts in primary fibroblasts. While IFI16 induces cytokines, only cGAS activates STING/TBK-1/IRF3 and apoptotic responses upon HSV-1 and HCMV infections. cGAS-dependent apoptosis upon DNA stimulation requires both the enzymatic production of cyclic dinucleotides and STING. We show that IFI16, not cGAS or PML, represses HSV-1 gene expression, reducing virus titers. This indicates that regulation of viral gene expression may function as a greater barrier to viral replication than the induction of antiviral cytokines. Altogether, our findings establish coordinated and distinct antiviral functions for IFI16 and cGAS against herpesviruses.

  16. APOMAB, a La-specific monoclonal antibody, detects the apoptotic tumor response to life-prolonging and DNA-damaging chemotherapy.

    Directory of Open Access Journals (Sweden)

    Fares Al-Ejeh

    Full Text Available BACKGROUND: Antineoplastic therapy may impair the survival of malignant cells to produce cell death. Consequently, direct measurement of tumor cell death in vivo is a highly desirable component of therapy response monitoring. We have previously shown that APOMAB representing the DAB4 clone of a La/SSB-specific murine monoclonal autoantibody is a malignant cell-death ligand, which accumulates preferentially in tumors in an antigen-specific and dose-dependent manner after DNA-damaging chemotherapy. Here, we aim to image tumor uptake of APOMAB (DAB4 and to define its biological correlates. METHODOLOGY/PRINCIPAL FINDINGS: Brisk tumor cell apoptosis is induced in the syngeneic EL4 lymphoma model after treatment of tumor-bearing mice with DNA-damaging cyclophosphamide/etoposide chemotherapy. Tumor and normal organ accumulation of Indium 111 ((111In-labeled La-specific DAB4 mAb as whole IgG or IgG fragments was quantified by whole-body static imaging and organ assay in tumor-bearing mice. Immunohistochemical measurements of tumor caspase-3 activation and PARP-1 cleavage, which are indicators of early and late apoptosis, respectively, were correlated with tumor accumulation of DAB4. Increased tumor accumulation of DAB4 was associated directly with both the extent of chemotherapy-induced tumor cell death and DAB4 binding per dead tumor cell. Tumor DAB4 accumulation correlated with cumulative caspase-3 activation and PARP-1 cleavage as tumor biomarkers of apoptosis and was directly related to the extended median survival time of tumor-bearing mice. CONCLUSIONS/SIGNIFICANCE: Radiolabeled La-specific monoclonal antibody, DAB4, detected dead tumor cells after chemotherapy, rather than chemosensitive normal tissues of gut and bone marrow. DAB4 identified late apoptotic tumor cells in vivo. Hence, radiolabeled DAB4 may usefully image responses to human carcinoma therapy because DAB4 would capture the protracted cell death of carcinoma. We believe that the

  17. DNA degrades during storage in formalin-fixed and paraffin-embedded tissue blocks.

    Science.gov (United States)

    Guyard, Alice; Boyez, Alice; Pujals, Anaïs; Robe, Cyrielle; Tran Van Nhieu, Jeanne; Allory, Yves; Moroch, Julien; Georges, Odette; Fournet, Jean-Christophe; Zafrani, Elie-Serge; Leroy, Karen

    2017-10-01

    Formalin-fixed paraffin-embedded (FFPE) tissue blocks are widely used to identify clinically actionable molecular alterations or perform retrospective molecular studies. Our goal was to quantify degradation of DNA occurring during mid to long-term storage of samples in usual conditions. We selected 46 FFPE samples of surgically resected carcinomas of lung, colon, and urothelial tract, of which DNA had been previously extracted. We performed a second DNA extraction on the same blocks under identical conditions after a median period of storage of 5.5 years. Quantitation of DNA by fluorimetry showed a 53% decrease in DNA quantity after storage. Quantitative PCR (qPCR) targeting KRAS exon 2 showed delayed amplification of DNA extracted after storage in all samples but one. The qPCR/fluorimetry quantification ratio decreased from 56 to 15% after storage (p DNA analyzable by qPCR represented only 11% of the amount obtained at first extraction. Maximal length of amplifiable DNA fragments assessed with a multiplex PCR was reduced in DNA extracted from stored tissue, indicating that DNA fragmentation had increased in the paraffin blocks during storage. Next-generation sequencing was performed on 12 samples and showed a mean 3.3-fold decrease in library yield and a mean 4.5-fold increase in the number of single-nucleotide variants detected after storage. In conclusion, we observed significant degradation of DNA extracted from the same FFPE block after 4 to 6 years of storage. Better preservation strategies should be considered for storage of FFPE biopsy specimens.

  18. Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis

    Science.gov (United States)

    Qian, Min-Xian; Pang, Ye; Liu, Cui Hua; Haratake, Kousuke; Du, Bo-Yu; Ji, Dan-Yang; Wang, Guang-Fei; Zhu, Qian-Qian; Song, Wei; Yu, Yadong; Zhang, Xiao-Xu; Huang, Hai-Tao; Miao, Shiying; Chen, Lian-Bin; Zhang, Zi-Hui; Liang, Ya-Nan; Liu, Shan; Cha, Hwangho; Yang, Dong; Zhai, Yonggong; Komatsu, Takuo; Tsuruta, Fuminori; Li, Haitao; Cao, Cheng; Li, Wei; Li, Guo-Hong; Cheng, Yifan; Chiba, Tomoki; Wang, Linfang; Goldberg, Alfred L.; Shen, Yan; Qiu, Xiao-Bo

    2013-01-01

    SUMMARY Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes (“spermatoproteasomes”) contain a spermatid/sperm-specific α-subunit α4s/PSMA8 and/or the catalytic β-subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks, and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis. PMID:23706739

  19. Ethanol and sodium acetate as a preservation method to delay degradation of environmental DNA

    Science.gov (United States)

    Ladell, Bridget A.; Walleser, Liza R.; McCalla, S. Grace; Erickson, Richard A.; Amberg, Jon J.

    2018-01-01

    Environmental DNA (eDNA) samples that are collected from remote locations depend on rapid stabilization of the DNA. The degradation of eDNA in water samples is minimized when samples are stored at ≤ 4 °C. Developing a preservation technique to maintain eDNA integrity at room temperature would allow a wider range of locations to be sampled. We evaluated an ethanol and sodium acetate solution to maintain the integrity of the DNA samples for the time between collection and lab testing. For this evaluation, replicate water samples taken from a tank housing Asian carp were placed on ice or held at room temperature. At both temperatures, water samples were left untreated or were preserved with an ethanol and sodium acetate solution (EtOH–NaAc). Every day for 6 days following collection, a subset of the samples was removed from each preservation method and DNA was extracted and nuclear and mitochondrial markers were assayed with qPCR. Results showed comparable persistence of DNA between iced samples without the EtOH–NaAc treatment and samples that received EtOH–NaAc treatment that were kept at room temperature. We found that DNA can be amplified from preserved samples using an EtOH–NaAc solution after up to 7 days at room temperature.

  20. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Fujita, Ken-Ichi; Tatsumi, Miki; Ogita, Akira; Kubo, Isao; Tanaka, Toshio

    2014-02-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae. © 2014 FEBS.

  1. An investigation of the effects of Cinnamomum cassia bark extracts on oxidative DNA damage and possible cytotoxic and apoptotic activities in transformed/untransformed cell lines from Type 1 diabetic patients, in vitro.

    Directory of Open Access Journals (Sweden)

    Ferzan Lermioglu Erciyas

    2015-05-01

    Full Text Available It was shown that patients with Type 1 diabetes mellitus (T1DM had increased level of oxidative DNA damage and decreased efficacy of DNA repair. These changes were implicated in the increased cancer risk in patients with diabetes mellitus. Cinnamon bark extracts have diverse biological activities including antidiabetic and anti-tumor properties. Cinnamomum cassia (C. cassia is a common used cinnamon species present in commercial cinnamon preparations. We aimed to investigate the effects of cinnamon extracts prepared from C. cassia bark on endogenous and hydrogen peroxide (H2O2-induced oxidative DNA damage, as well as cytotoxic and apoptotic activities in this study. Type 1 diabetic (T1DM lymphocytes (GM02765, GM01838 and fibroblasts (GM01837 were obtained from NIGMS Human Genetic Cell Repository of Coriell Institute, New Jersey, USA. Cytotoxicity analysis were performed by using a tetrazolium salt, 4-[3-(4-iodophenyl 2-(4-nitrophenyl 2H-5-tetrazolio] 1,3-benzene disulfonate (WST-1. The effects of extracts on endogenous and H2O2-induced oxidative DNA damage were studied using the single cell gel electrophoresis (SCGE; Comet Assay, a technique allowing DNA damage in a single cell. Apoptotic activities of extracts were investigated by TUNEL and Annexin V/PI assays. using flow cytometry. IC50 and IC20 values of the extracts varied and the effects on endogenous and H2O2-induced DNA damage were different regarding cell lines and extracts. Although their protective effects at some doses against to H2O2-induced oxidative damage, our results suggested DNA damaging and apoptotic potential of cinnamon bark extracts on Type 1 diabetic cell lines, in vitro.

  2. The effect of DNA degradation bias in passive sampling devices on metabarcoding studies of arthropod communities and their associated microbiota.

    Science.gov (United States)

    Krehenwinkel, Henrik; Fong, Marisa; Kennedy, Susan; Huang, Edward Greg; Noriyuki, Suzuki; Cayetano, Luis; Gillespie, Rosemary

    2018-01-01

    PCR amplification bias is a well-known problem in metagenomic analysis of arthropod communities. In contrast, variation of DNA degradation rates is a largely neglected source of bias. Differential degradation of DNA molecules could cause underrepresentation of taxa in a community sequencing sample. Arthropods are often collected by passive sampling devices, like malaise traps. Specimens in such a trap are exposed to varying periods of suboptimal storage and possibly different rates of DNA degradation. Degradation bias could thus be a significant issue, skewing diversity estimates. Here, we estimate the effect of differential DNA degradation on the recovery of community diversity of Hawaiian arthropods and their associated microbiota. We use a simple DNA size selection protocol to test for degradation bias in mock communities, as well as passively collected samples from actual Malaise traps. We compare the effect of DNA degradation to that of varying PCR conditions, including primer choice, annealing temperature and cycle number. Our results show that DNA degradation does indeed bias community analyses. However, the effect of this bias is of minor importance compared to that induced by changes in PCR conditions. Analyses of the macro and microbiome from passively collected arthropod samples are thus well worth pursuing.

  3. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology

    Directory of Open Access Journals (Sweden)

    Nguyen-Hieu Tung

    2012-09-01

    Full Text Available Abstract Background Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing. Findings The cycle threshold (Ct values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p  Conclusion In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.

  4. Phosphorylation-dependent signaling controls degradation of DNA mismatch repair protein PMS2.

    Science.gov (United States)

    Hinrichsen, Inga; Weßbecher, Isabel M; Huhn, Meik; Passmann, Sandra; Zeuzem, Stefan; Plotz, Guido; Biondi, Ricardo M; Brieger, Angela

    2017-12-01

    MutLα, a heterodimer consisting of MLH1 and PMS2, plays an important role in DNA mismatch repair and has been shown to be additionally involved in several other important cellular mechanisms. Previous work indicated that AKT could modulate PMS2 stability by phosphorylation. Still, the mechanisms of regulation of MutLα remain unclear. The stability of MutLα subunits was investigated by transiently overexpression of wild type and mutant forms of MLH1 and PMS2 using immunoblotting for measuring the protein levels after treatment. We found that treatment with the cell-permeable serine/threonine phosphatase inhibitor, Calyculin, leads to degradation of PMS2 when MLH1 or its C-terminal domain is missing or if amino acids of MLH1 essential for PMS2 interaction are mutated. In addition, we discovered that the C-terminal tail of PMS2 is relevant for this Calyculin-dependent degradation. A direct involvement of AKT, which was previously described to be responsible for PMS2 degradation, could not be detected. The multi-kinase inhibitor Sorafenib, in contrast, was able to avoid the degradation of PMS2 which postulates that cellular phosphorylation is involved in this process. Together, we show that pharmacologically induced phosphorylation by Calyculin can induce the selective proteasome-dependent degradation of PMS2 but not of MLH1 and that the PMS2 degradation could be blocked by Sorafenib treatment. Curiously, the C-terminal Lynch Syndrome-variants MLH1 L749P and MLH1 Y750X make PMS2 prone to Calyculin induced degradation. Therefore, we conclude that the specific degradation of PMS2 may represent a new mechanism to regulate MutLα. © 2017 Wiley Periodicals, Inc.

  5. Comparison of Quantifiler(®) Trio and InnoQuant™ human DNA quantification kits for detection of DNA degradation in developed and aged fingerprints.

    Science.gov (United States)

    Goecker, Zachary C; Swiontek, Stephen E; Lakhtakia, Akhlesh; Roy, Reena

    2016-06-01

    The development techniques employed to visualize fingerprints collected from crime scenes as well as post-development ageing may result in the degradation of the DNA present in low quantities in such evidence samples. Amplification of the DNA samples with short tandem repeat (STR) amplification kits may result in partial DNA profiles. A comparative study of two commercially available quantification kits, Quantifiler(®) Trio and InnoQuant™, was performed on latent fingerprint samples that were either (i) developed using one of three different techniques and then aged in ambient conditions or (ii) undeveloped and then aged in ambient conditions. The three fingerprint development techniques used were: cyanoacrylate fuming, dusting with black powder, and the columnar-thin-film (CTF) technique. In order to determine the differences between the expected quantities and actual quantities of DNA, manually degraded samples generated by controlled exposure of DNA standards to ultraviolet radiation were also analyzed. A total of 144 fingerprint and 42 manually degraded DNA samples were processed in this study. The results indicate that the InnoQuant™ kit is capable of producing higher degradation ratios compared to the Quantifiler(®) Trio kit. This was an expected result since the degradation ratio is a relative value specific for a kit based on the length and extent of amplification of the two amplicons that vary from one kit to the other. Additionally, samples with lower concentrations of DNA yielded non-linear relationships of degradation ratio with the duration of aging, whereas samples with higher concentrations of DNA yielded quasi-linear relationships. None of the three development techniques produced a noticeably different degradation pattern when compared to undeveloped fingerprints, and therefore do not impede downstream DNA analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage.

    Science.gov (United States)

    Barker, Catherine R; McNamara, Anne V; Rackstraw, Stephen A; Nelson, David E; White, Mike R; Watson, Alastair J M; Jenkins, John R

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90-topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.

  7. The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA

    International Nuclear Information System (INIS)

    Hanif, Sarmad; Shamim, Uzma; Ullah, M.F.; Azmi, Asfar S.; Bhat, Showket H.; Hadi, S.M.

    2008-01-01

    Epidemiological and experimental evidence exists to suggest that pomegranate and its juice possess chemopreventive and anticancer properties. The anthocyanidin delphinidin is a major polyphenol present in pomegranates and has been shown to be responsible for these effects. Plant polyphenols are recognized as naturally occurring antioxidants but also catalyze oxidative DNA degradation of cellular DNA either alone or in the presence of transition metal ions such as copper. In this paper we show that similar to various other classes of polyphenols, delphinidin is also capable of causing oxidative degradation of cellular DNA. Lymphocytes were exposed to various concentrations of delphinidin (10, 20, 50 μM) for 1 h and the DNA breakage was assessed using single cell alkaline gel electrophoresis (Comet assay). Inhibition of DNA breakage by several scavengers of reactive oxygen species (ROS) indicated that it is caused by the formation of ROS. Incubation of lymphocytes with neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation in intact lymphocytes in a dose dependent manner. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. We have further shown that delphinidin is able to degrade DNA in cell nuclei and that such DNA degradation is also inhibited by neocuproine suggesting that nuclear copper is mobilized in this reaction. These results indicate that the generation of ROS possibly occurs through mobilization of endogenous copper ions. The results are in support of our hypothesis that the prooxidant activity of plant polyphenols may be an important mechanism for their anticancer properties

  8. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments

    International Nuclear Information System (INIS)

    Walia, S.; Khan, A.; Rosenthal, N.

    1990-01-01

    Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community

  9. A LDR-PCR approach for multiplex polymorphisms genotyping of severely degraded DNA with fragment sizes <100 bp.

    Science.gov (United States)

    Zhang, Zhen; Wang, Bao-Jie; Guan, Hong-Yu; Pang, Hao; Xuan, Jin-Feng

    2009-11-01

    Reducing amplicon sizes has become a major strategy for analyzing degraded DNA typical of forensic samples. However, amplicon sizes in current mini-short tandem repeat-polymerase chain reaction (PCR) and mini-sequencing assays are still not suitable for analysis of severely degraded DNA. In this study, we present a multiplex typing method that couples ligase detection reaction with PCR that can be used to identify single nucleotide polymorphisms and small-scale insertion/deletions in a sample of severely fragmented DNA. This method adopts thermostable ligation for allele discrimination and subsequent PCR for signal enhancement. In this study, four polymorphic loci were used to assess the ability of this technique to discriminate alleles in an artificially degraded sample of DNA with fragment sizes <100 bp. Our results showed clear allelic discrimination of single or multiple loci, suggesting that this method might aid in the analysis of extremely degraded samples in which allelic drop out of larger fragments is observed.

  10. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    International Nuclear Information System (INIS)

    Megeed, A.A.

    2011-01-01

    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  11. ssDNA degradation along capillary electrophoresis process using a Tris buffer.

    Science.gov (United States)

    Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François

    2017-06-01

    Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Insights into the processes behind the contamination of degraded human teeth and bone samples with exogenous sources of DNA

    DEFF Research Database (Denmark)

    Gilbert, M. T. P.; Hansen, Anders J.; Willerslev, E.

    2006-01-01

    A principal problem facing human DNA studies that use old and degraded remains is contamination from other sources of human DNA. In this study we have attempted to contaminate deliberately bones and teeth sampled from a medieval collection excavated in Trondheim, Norway, in order to investigate......, prior to assaying for the residual presence of the handler's DNA. Surprisingly, although our results suggest that a large proportion of the teeth were contaminated with multiple sources of human DNA prior to our investigation, we were unable to contaminate the samples with further human DNA. One...

  13. The effect of heat on DNA degradation by the 1, 10-phenanthroline-cuprous ion complex

    International Nuclear Information System (INIS)

    Nagle, W.A.; Henle, K.J.; Willingham, W.M.; Sorenson, J.R.J.; McClellan, J.L.; Moss, A.J.

    1987-01-01

    The 1, 10-phenanthroline-cuprous ion complex (OP)/sub 2/Cu/sup +/ exhibits artificial DNase activity which closely parallels micrococcal nuclease. Using cell-free systems and in situ generated (OP)/sub 2/Cu/sup +/, other studies have shown a requirement for a reducing agent as well as O/sub 2/ or H/sub 2/O/sub 2/ to degrade DNA to acid-soluble fragments. The authors investigated the influence of hyperthermia on the degradation of V79 cell DNA using the (OP)/sub 2/Cu/sup +/-ascorbate system. The (OP)/sub 2/Cu/sup +/ complex was synthesized and characterized prior to cell treatment. Cells were prelabeled with /sup 3/H-TdR (control) or /sup 14/C-TdR (treated) and exposed 10 minutes at 45 0 C, followed by a 30 minute incubation with lμM (OP)/sub 2/Cu/sup +/ and 10μM as corbate in balanced salts solution. Cellular DNA was assayed using the alkaline elution technique. Heated cells incubated with lμM (OP)/sub 2/Cu/sup +/ or 10μM ascorbate exhibited a 300 rad equivalent increase in strand breaks over the unheated control. Incubation of cells with either lμM (OP)/sub 2/Cu/sup +/ or 10μM ascorbate alone did not induce strand breaks. These results suggests that heating initially increases the susceptibility of DNA to attack by the (OP)/sub 2/Cu/sup +/-ascorbate system

  14. Assessment of DNA degradation induced by thermal and UV radiation processing: implications for quantification of genetically modified organisms.

    Science.gov (United States)

    Ballari, Rajashekhar V; Martin, Asha

    2013-12-01

    DNA quality is an important parameter for the detection and quantification of genetically modified organisms (GMO's) using the polymerase chain reaction (PCR). Food processing leads to degradation of DNA, which may impair GMO detection and quantification. This study evaluated the effect of various processing treatments such as heating, baking, microwaving, autoclaving and ultraviolet (UV) irradiation on the relative transgenic content of MON 810 maize using pRSETMON-02, a dual target plasmid as a model system. Amongst all the processing treatments examined, autoclaving and UV irradiation resulted in the least recovery of the transgenic (CaMV 35S promoter) and taxon-specific (zein) target DNA sequences. Although a profound impact on DNA degradation was seen during the processing, DNA could still be reliably quantified by Real-time PCR. The measured mean DNA copy number ratios of the processed samples were in agreement with the expected values. Our study confirms the premise that the final analytical value assigned to a particular sample is independent of the degree of DNA degradation since the transgenic and the taxon-specific target sequences possessing approximately similar lengths degrade in parallel. The results of our study demonstrate that food processing does not alter the relative quantification of the transgenic content provided the quantitative assays target shorter amplicons and the difference in the amplicon size between the transgenic and taxon-specific genes is minimal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of mercaptoethylamine on DNA degradation in thermophilic bacteria Bac. stearothermophilus exposed to. gamma. -, UV-radiation or methylnitrosourea

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, L A; Kuznetsovea, E A; Gaziev, A I

    1984-07-01

    The effect of mercaptoethylamine (MEA) on degradation of DNA in thermophilic bacteria Bac. stear. exposed to ..gamma..-, UV-rays or methylnitrosourea (MNU) was studied. Using centrifugation on alkaline and neutral sucrose gradients, it was shown that MEA inhibits the accumulation of breaks in the DNA of Bac. stear. It also lowers the level of DNA degradation in toluene-treated cells of Bac. stear. under the action of the intrinsic nuclease, reduces the activity of the endonuclease specific for apurinic DNA, as well as that of S/sub 1/-nuclease and DNase-I in vitro. The inhibition in the accumulation of DNA breaks is assumed to be due to a decrease of the endonuclease activity in the cells of thermophilic bacteria.

  16. Effect of mercaptoethylamine on DNA degradation in thermophilic bacteria Bac. stearothermophilus exposed to γ-, UV-radiation or methylnitrosourea

    International Nuclear Information System (INIS)

    Fomenko, L.A.; Kuznetsovea, E.A.; Gaziev, A.I.

    1984-01-01

    The effect of mercaptoethylamine (MEA) on degradation of DNA in thermophilic bacteria Bac. stear. exposed to γ-, UV-rays or methylnitrosourea (MNU) was studied. Using centrifugation on alkaline and neutral sucrose gradients, it was shown that MEA inhibits the accumulation of breaks in the DNA of Bac. stear. It also lowers the level of DNA degradation in toluene-treated cells of Bac. stear. under the action of the intrinsic nuclease, reduces the activity of the endonuclease specific for apurinic DNA, as well as that of S 1 -nuclease and DNase-I in vitro. The inhibition in the accumulation of DNA breaks is assumed to be due to a decrease of the endonuclease activity in the cells of thermophilic bacteria. (orig.)

  17. DNA-SIP identifies sulfate-reducing Clostridia as important toluene degraders in tar-oil-contaminated aquifer sediment

    Energy Technology Data Exchange (ETDEWEB)

    Winderl, C.; Penning, H.; von Netzer, F.; Meckenstock, R.U.; Lueders, T. [Helmholtz Zentrum Munchen, Neuherberg (Germany)

    2010-10-15

    Global groundwater resources are constantly challenged by a multitude of contaminants such as aromatic hydrocarbons. Especially in anaerobic habitats, a large diversity of unrecognized microbial populations may be responsible for their degradation. Still, our present understanding of the respective microbiota and their ecophysiology is almost exclusively based on a small number of cultured organisms, mostly within the Proteobacteria. Here, by DNA-based stable isotope probing (SIP), we directly identified the most active sulfate-reducing toluene degraders in a diverse sedimentary microbial community originating from a tar-oil-contaminated aquifer at a former coal gasification plant. On incubation of fresh sediments with {sup 13}C{sub 7}-toluene, the production of both sulfide and (CS{sub 2}){sup 13}CO{sub 2} was clearly coupled to the {sup 13}Clabeling of DNA of microbes related to Desulfosporosinus spp. within the Peptococcaceae (Clostridia). The screening of labeled DNA fractions also suggested a novel benzylsuccinate synthase alpha-subunit (bssA) sequence type previously only detected in the environment to be tentatively affiliated with these degraders. However, carbon flow from the contaminant into degrader DNA was only similar to 50%, pointing toward high ratios of heterotrophic CS{sub 2}-fixation during assimilation of acetyl-CoA originating from the contaminant by these degraders. These findings demonstrate that the importance of non-proteobacterial populations in anaerobic aromatics degradation, as well as their specific ecophysiology in the subsurface may still be largely ungrasped.

  18. Nanobiosensor for Detection and Quantification of DNA Sequences in Degraded Mixed Meats

    Directory of Open Access Journals (Sweden)

    M. E. Ali

    2011-01-01

    Full Text Available A novel class of nanobiosensor was developed by integrating a 27-nucleotide AluI fragment of swine cytochrome b (cytb gene to a 3-nm diameter citrate-tannate coated gold nanoparticle (GNP. The biosensor detected 0.5% and 1% pork in raw and 2.5-h autoclaved pork-beef binary admixtures in a single step without any separation or washing. The hybridization kinetics of the hybrid sensor was studied with synthetic and AluI digested real pork targets from moderate to extreme target concentrations and a sigmoidal relationship was found. Using the kinetic curve, a convenient method for quantifying and counting target DNA copy number was developed. The accuracy of the method was over 90% and 80% for raw and autoclaved pork-beef binary admixtures in the range of 5–100% pork adulteration. The biosensor probe identified a target DNA sequence that was several-folds shorter than a typical PCR-template. This offered the detection and quantitation of potential targets in highly processed or degraded samples where PCR amplification was not possible due to template crisis. The assay was a viable alternative approach of qPCR for detecting, quantifying and counting copy number of shorter size DNA sequences to address a wide ranging biological problem in food industry, diagnostic laboratories and forensic medicine.

  19. Deficient repair and degradation of DNA in X-irradiated L5178Y S/S cells: cell-cycle and temperature dependence

    International Nuclear Information System (INIS)

    Ueno, A.M.; Goldin, E.M.; Cox, A.B.; Lett, J.T.

    1979-01-01

    The rejoining of DNA strand breaks induced by X rays in the radiosensitive S/S variant of the L5178Y murine leukemic lymphoblast has been studied by alkaline-EDTA-sucrose sedimentation using swinging-bucket and zonal rotors. After irradiation, incubation resulted in an increase in DNA size, but the DNA structures were not restored in all cells, even when the x-ray dose was only 50 rad. Subsequently, 10 to 20 h after irradiation, heavily degraded DNA began to appear. When cells were irradiated at different parts of the cycle, the extent of DNA degradation varied in a fashion similar to survival: Least DNA degradation was found after irradiation at the most radioresistant stage (G 1 + 8 h), and most DNA degradation occurred after irradiation at the radiosensitive stage (G 1 ). Changes in cell survival caused by postirradiation hypothermia were also reflected in the extent of DNA degradation. Populations of G 1 cells, which show marked increases in survival after postirradiation hypothermic exposure, exhibited a lower level of DNA degradation, whereas populations of G 1 + 8 h cells, whose survival is affected little by postirradiation hypothermia, showed limited changes in DNA degradation. The onset of degradation was delayed by hypothermia in all cases

  20. Hyperthermia enhances mapatumumab-induced apoptotic death through ubiquitin-mediated degradation of cellular FLIP(long) in human colon cancer cells.

    Science.gov (United States)

    Song, X; Kim, S-Y; Zhou, Z; Lagasse, E; Kwon, Y T; Lee, Y J

    2013-04-04

    Colorectal cancer is the third leading cause of cancer-related mortality in the world; the main cause of death of colorectal cancer is hepatic metastases, which can be treated with hyperthermia using isolated hepatic perfusion (IHP). In this study, we report that mild hyperthermia potently reduced cellular FLIP(long), (c-FLIP(L)), a major regulator of the death receptor (DR) pathway of apoptosis, thereby enhancing humanized anti-DR4 antibody mapatumumab (Mapa)-mediated mitochondria-independent apoptosis. We observed that overexpression of c-FLIP(L) in CX-1 cells abrogated the synergistic effect of Mapa and hyperthermia, whereas silencing of c-FLIP in CX-1 cells enhanced Mapa-induced apoptosis. Hyperthermia altered c-FLIP(L) protein stability without concomitant reductions in FLIP mRNA. Ubiquitination of c-FLIP(L) was increased by hyperthermia, and proteasome inhibitor MG132 prevented heat-induced downregulation of c-FLIP(L). These results suggest the involvement of the ubiquitin-proteasome system in this process. We also found lysine residue 195 (K195) to be essential for c-FLIP(L) ubiquitination and proteolysis, as mutant c-FLIP(L) lysine 195 arginine (arginine replacing lysine) was left virtually un-ubiquitinated and was refractory to hyperthermia-triggered degradation, and thus partially blocked the synergistic effect of Mapa and hyperthermia. Our observations reveal that hyperthermia transiently reduced c-FLIP(L) by proteolysis linked to K195 ubiquitination, which contributed to the synergistic effect between Mapa and hyperthermia. This study supports the application of hyperthermia combined with other regimens to treat colorectal hepatic metastases.

  1. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology.

    Science.gov (United States)

    Mazzanti, Morena; Alessandrini, Federica; Tagliabracci, Adriano; Wells, Jeffrey D; Campobasso, Carlo P

    2010-02-25

    Puparial cases are common remnants of necrophagous flies in crime investigations. They usually represent the longest developmental time and, therefore, they can be very useful for the estimation of the post-mortem interval (PMI). However, before any PMI estimate, it is crucial to identify the species of fly eclosed from each puparium associated with the corpse. Morphological characteristics of the puparium are often distinctive enough to permit a species identification. But, even an accurate morphological analysis of empty puparia cannot discriminate among different species of closely related flies. Furthermore, morphological identification may be impossible if the fly puparia are poorly preserved or in fragments. This study explores the applicability of biomolecular techniques on empty puparia and their fragments for identification purposes. A total of 63 empty puparia of necrophagous Diptera resulting from forensic casework were examined. Samples were divided into three groups according to size, type and time of eclosion in order to verify whether the physical characteristics and puparia weathering can influence the amount of DNA extraction. The results suggest that a reliable genetic identification of forensically important flies may also be performed from empty puparia and/or their fragments. However, DNA degradation can deeply compromise the genetic analysis since the older the fly puparia, the smaller are the amplified fragments. 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Antigenotoxic and Apoptotic Activity of Green Tea Polyphenol Extracts on Hexavalent Chromium-Induced DNA Damage in Peripheral Blood of CD-1 Mice: Analysis with Differential Acridine Orange/Ethidium Bromide Staining

    Directory of Open Access Journals (Sweden)

    María del Carmen García-Rodríguez

    2013-01-01

    Full Text Available This study was conducted to investigate the modulating effects of green tea polyphenols on genotoxic damage and apoptotic activity induced by hexavalent chromium [Cr (VI] in CD-1 mice. Animals were divided into the following groups: (i injected with vehicle; (ii treated with green tea polyphenols (30 mg/kg via gavage; (iii injected with CrO3 (20 mg/kg intraperitoneally; (iv treated with green tea polyphenols in addition to CrO3. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCEs obtained from peripheral blood at 0, 24, 48, and 72 h after treatment. Induction of apoptosis and cell viability were assessed by differential acridine orange/ethidium bromide (AO/EB staining. Treatment of green tea polyphenols led to no significant changes in the MN-PCEs. However, CrO3 treatment significantly increased MN-PCEs at 24 and 48 h after injection. Green tea polyphenols treatment prior to CrO3 injection led to a decrease in MN-PCEs compared to the group treated with CrO3 only. The average of apoptotic cells was increased at 48 h after treatment compared to control mice, suggesting that apoptosis could contribute to eliminate the DNA damaged cells induced by Cr (VI. Our findings support the proposed protective effects of green tea polyphenols against the genotoxic damage induced by Cr (VI.

  3. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing.

    Science.gov (United States)

    Portune, Kevin J; Pérez, M Carmen; Álvarez-Hornos, F Javier; Gabaldón, Carmen

    2015-01-01

    Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.

  4. Multicolor fluorescence technique to detect apoptotic cells in advanced coronary atherosclerotic plaques

    Directory of Open Access Journals (Sweden)

    C Soldani

    2009-06-01

    Full Text Available Apoptosis occurring in atherosclerotic lesions has been suggested to be involved in the evolution and the structural stability of the plaques. It is still a matter of debate whether apoptosis mainly involves vascular smooth muscle cells (vSMCs in the fibrous tissue or inflammatory (namely foam cells, thus preferentially affecting the cell-poor lipid core of the atherosclerotic plaques. The aim of the present investigation was to detect the presence of apoptotic cells and to estimate their percentage in a series of atherosclerotic plaques obtained either by autopsy or during surgical atherectomy. Apoptotic cells were identified on paraffinembedded sections on the basis of cell nuclear morphology after DNA staining and/or by cytochemical reactions (TUNEL assay, immunodetection of the proteolytic poly (ADP-ribose polymerase-1 [PARP-1] fragment; biochemical procedures (identifying DNA fragmentation or PARP-1 proteolysis were also used. Indirect immunofluorescence techniques were performed to label specific antigens for either vSMCs or macrophages (i.e., the cells which are most likely prone to apoptosis in atherosclerotic lesions: the proper selection of fluorochrome labeling allowed the simultaneous detection of the cell phenotype and the apoptotic characteristics, by multicolor fluorescence techniques. Apoptotic cells proved to be less than 5% of the whole cell population, in atherosclerotic plaque sections: this is, in fact, a too low cell fraction to be detected by widely used biochemical methods, such as agarose gel electrophoresis of low-molecular-weight DNA or Western-blot analysis of PARP-1 degradation. Most apoptotic cells were of macrophage origin, and clustered in the tunica media, near or within the lipid-rich core; only a few TUNEL-positive cells were labeled for antigens specific for vSMCs. These results confirm that, among the cell populations in atherosclerotic plaques, macrophage foam-cells are preferentially involved in apoptosis

  5. Using DNA-Stable Isotope Probing to Identify MTBE- and TBA-Degrading Microorganisms in Contaminated Groundwater.

    Science.gov (United States)

    Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora

    2013-01-01

    Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.

  6. DNA synthesis and degradation in UV-irradiated toluene treated cells of E. coli K12: the role of polynucleotide ligase

    International Nuclear Information System (INIS)

    Strike, P.

    1977-01-01

    Toluene treated cells have been used to study the processes of DNA synthesis and DNA degradation in ultra-violet irradiated Escherichia coli K12. Synthesis and degradation are both shown to occur extensively if polynucleotide ligase is inhibited, and to occur to a much lesser extent if ligase activity is optimal. Extensive UV-induced DNA synthesis in toluene-treated cells requires ATP for the initial incision step, and DNA polymerase I. Extensive degradation also depends on the early ATP-dependent incision step, and the subsequent degradation shows a partial requirement for ATP. Curtailment of degradation by ligase requires DNA polymerase activity, but is not dependent upon DNA polymerase I. Apparently this process can be carried out with equal facility by either DNA polymerase II or polymerase III. These observations suggest that extensive DNA polymerase I-dependent repair synthesis and extensive DNA degradation are facets of two divergent pathways of excision repair, both of which depend upon the early uvrABC determined ATP-dependent incision step. (orig.) [de

  7. Degradation and half-life of DNA present in biomass from a genetically-modified organism during land application.

    Science.gov (United States)

    Halter, Mathew C; Zahn, James A

    2017-02-01

    White biotechnology has made a positive impact on the chemical industry by providing safer, more efficient chemical manufacturing processes that have reduced the use of toxic chemicals, harsh reaction conditions, and expensive metal catalysts, which has improved alignment with the principles of Green Chemistry. The genetically-modified (GM) biocatalysts that are utilized in these processes are typically separated from high-value products and then recycled, or eliminated. Elimination routes include disposal in sanitary landfills, incineration, use as a fuel, animal feed, or reuse as an agricultural soil amendment or other value-added products. Elimination routes that have the potential to impact the food chain or environment have been more heavily scrutinized for the fate and persistence of biological products. In this study, we developed and optimized a method for monitoring the degradation of strain-specific DNA markers from a genetically-modified organism (GMO) used for the commercial production of 1,3-propanediol. Laboratory and field tests showed that a marker for heterologous DNA in the GM organism was no longer detectable by end-point polymerase chain reaction (PCR) after 14 days. The half-life of heterologous DNA was increased by 17% (from 42.4 to 49.7 h) after sterilization of the soil from a field plot, which indicated that abiotic factors were important in degradation of DNA under field conditions. There was no evidence for horizontal transfer of DNA target sequences from the GMO to viable organisms present in the soil.

  8. DNA degradation in minicells of Escherichia coli K-12. Pt. 2. Effect of recA1 and recB21 mutations on DNA degradation in minicells and detection of exonuclease V activity

    Energy Technology Data Exchange (ETDEWEB)

    Khachatourians, G G [Saskatchewan Univ., Saskatoon (Canada). Dept. of Microbiology; Oak Ridge National Lab., Tenn. (USA). Biology Div.); Paterson, M C [Tennessee Univ., Oak Ridge (USA). Graduate School of Biomedical Sciences; Rijksuniversiteit Leiden (Netherlands). Lab. voor Stralengenetica); Sheehy, R J [Tennessee Univ., Oak Ridge (USA). Graduate School of Biomedical Sciences; Dorp, B Van [Rijksuniversiteit Leiden (Netherlands). Lab. voor Stralengenetica; Worthy, T E [Tennessee Univ., Knoxville (USA). Inst. of Radiation Biology

    1975-06-01

    The properties of minicell producing mutants of Escherichia coli deficient in genetic recombination were examined. Experiments were designed to test recombinant formation in conjugal crosses, survival following UV-irradiation in cells, and the state of DNA metabolism in minicells. The REC-phenotypes are unaffected by min/sup +///sup -/ genotypes in whole cells. In contrast to minicells produced by rec/sup +/ parental cells, minicells from a recB21 strain have limited capacity to degrade linear, Hfr transferred DNA. The lack of a functional recA gene product, presumably involved in inhibiting the recBC nuclease action(s), permits unrestricted Hfr DNA breakdown in minicells produced by a recA1 strain. This results in an increase in TGA soluble products and in the formation of small DNA molecules that sediment near the top of an alkaline sucrose gradient. Unlike the linear DNA, circular duplex DNA from plasmids R64-11 or lambdadv, segregated into the minicells, is resistant to breakdown. By using in vitro criteria, and (/sup 32/P)-labelled linear DNA from bacteriophage T/sub 7/ for substrate, we found that the ATP-dependent exonuclease of the recBC complex (exo V) is present in rec/sup +/ and recA/sup -/ minicells, and is lacking in the recB21 mutant. In fact, the absence of a functional exo V in recBC/sup -/ minicells results in isolation of larger than average Hfr DNA from minicells. We suggest that recombination (REC) enzymes segregate into the polar minicells at the time of minicell biogenesis. This system should be useful for studies on DNA metabolism and functions of the recBC and recA gene products.

  9. Hematoporphyrin-sensitized degradation of deoxyribose and DNA in high intensity near-UV picosecond pulsed laser photolysis

    International Nuclear Information System (INIS)

    Gantchev, T.G.; Lier, J.E. van; Grabner, G.; Keskinova, E.; Angelov, D.

    1995-01-01

    The photosensitized degradation of deoxyribose and DNA, using hematoporphyrin (HP) and picosecond laser pulses at high intensities was studied. Aldehyde formation from 2-deoxy-D-ribose and long-chain double-stranded DNA, when analyzed as a function of light intensity, followed a non-linear dependence, suggesting the involvement of multiphoton light absorption by HP. The degradation mechanism was studied by analysis of the yield dependence on excitation intensity and the effect of added radical scavengers. The participation of OH radicals in the degradation process was confirmed by spin trapping techniques. At low light intensities, added N 2 O largely increased product formation, suggesting that HP photoionization predominates under these conditions. At higher intensities (I ≥ 3 GW/cm 2 ) the product yield was not affected by N 2 O which, combined with spin trapping data, suggested that OH radical formation occurred, but that neither HP photoionization nor peroxy formation was involved. Single and double strand breaks in supercoiled plasmid DNA (pBR 322) confirmed the generation of OH or OH-like radicals during high-intensity excitation of HP. A mechanism involving a multistep excitation of HP, followed by resonance energy transfer to H 2 O resulting in dissociation to yield OH and H atoms, is proposed. (author)

  10. Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples

    DEFF Research Database (Denmark)

    Børsting, Claus; Mogensen, Helle Smidt; Morling, Niels

    2013-01-01

    the heterozygote balance. Allele drop-ins were only observed in experiments with 25 pg of DNA and not in experiments with 50 and 100 pg of DNA. The allele drop-in rate in the 25 pg experiments was 0.06% or 100 times lower than what was previously reported for STR typing of LtDNA. A composite model and two......Heterozygote imbalances leading to allele drop-outs and disproportionally large stutters leading to allele drop-ins are known stochastic phenomena related to STR typing of low-template DNA (LtDNA). The large stutters and the many drop-ins in typical STR stutter positions are artifacts from the PCR...... amplification of tandem repeats. These artifacts may be avoided by typing bi-allelic markers instead of STRs. In this work, the SNPforID multiplex assay was used to type LtDNA. A sensitized SNP typing protocol was introduced, that increased signal strengths without increasing noise and without affecting...

  11. Effect of X-irradiation and vitamin C on DNA degradation and endogenous DNAase in embryonic chick lens cells

    International Nuclear Information System (INIS)

    Trevithick, J.R.; Chaudun, E.; Muel, A.S.; Courtois, Y.; Counis, M.F.

    1987-01-01

    The lens is an organ in which epithelial cells become elongated fibers. During this process, nuclei are transformed and the DNA is degraded. In previous studies, we described an autodigestion of the chromatin in isolated fiber nuclei but not in epithelial nuclei, but the level of DNAase activity was found to be identical in both epithelial and fiber nuclei of lenses at 11 days of development. In this study, we have investigated the possibility that x-irradiation might stimulate the nuclear endogenous activity responsible for chromatin breakdown or epithelial cells to a level comparable to that observed in fiber cells. We have observed that x-irradiation does not increase the nuclear epithelial DNAase activity. Conversely, vitamin C, suspected to prevent cataract formation by protecting DNA against free radical formation, has a damaging effect on the DNA of the lens of chick embryo in vitro. (author)

  12. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Uriel Trahtemberg

    2017-10-01

    Full Text Available Inefficient and abnormal clearance of apoptotic cells (efferocytosis contributes to systemic autoimmune disease in humans and mice, and inefficient chromosomal DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By contrast, efficient clearance allows immune homeostasis, generally leads to a non-inflammatory state for both macrophages and dendritic cells (DCs, and contributes to maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic cells is phosphatidylserine (PtdSer. Apoptotic cells themselves are major contributors to the “anti-inflammatory” nature of the engulfment process, some by secreting thrombospondin-1 (TSP-1 or adenosine monophosphate and possibly other immune modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic cells also produce “find me” and “tolerate me” signals to attract and immune modulate macrophages and DCs that express specific receptors for some of these signals. Neither macrophages nor DCs are uniform, and each cell type may variably express membrane proteins that function as receptors for PtdSer or for opsonins like complement or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. Macrophages and DCs also express scavenger receptors, CD36, and integrins that function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein and that differentially engage in various multi-ligand interactions between apoptotic cells and phagocytes. In this review, we describe the anti-inflammatory and pro-homeostatic nature of apoptotic cell interaction with the immune system. We do not review some forms of immunogenic cell death. We summarize the known apoptotic cell signaling events in macrophages and DCs that are related to toll-like receptors, nuclear factor kappa B, inflammasome, the lipid

  13. Degradation and repair of DNA from rat hepatoma cells after treatments with γ-rays and N-methyl-N-nitrosourea

    International Nuclear Information System (INIS)

    Zakrzhevskaya, D.G.; Kulagina, T.P.; Petrov, S.I.; Fomenko, L.A.; Gaziev, A.I.

    1977-01-01

    It has been shown, that DNA single-strand breaks induced in the cells of ascite hepatoma with γ-rays and metylnitrosourea (MNM) are effectively repaired. DNA two-strand breaks of hepatoma cells, treated with MNM are effectively repaired in situ as well. Only insignificant part of two-strand gamma-induced breaks in DNA of these cells is repaired during postirradiation period. Under combined effect of gamma rays and MNM on hepatoma cells a delay of DNA reparation and its further degradation as well as inhibition of nonplanned DNA synthesis and the suppression of DNA-polymerase 1 activity are observed

  14. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    Science.gov (United States)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  15. Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples.

    Science.gov (United States)

    Børsting, Claus; Mogensen, Helle Smidt; Morling, Niels

    2013-05-01

    Heterozygote imbalances leading to allele drop-outs and disproportionally large stutters leading to allele drop-ins are known stochastic phenomena related to STR typing of low-template DNA (LtDNA). The large stutters and the many drop-ins in typical STR stutter positions are artifacts from the PCR amplification of tandem repeats. These artifacts may be avoided by typing bi-allelic markers instead of STRs. In this work, the SNPforID multiplex assay was used to type LtDNA. A sensitized SNP typing protocol was introduced, that increased signal strengths without increasing noise and without affecting the heterozygote balance. Allele drop-ins were only observed in experiments with 25 pg of DNA and not in experiments with 50 and 100 pg of DNA. The allele drop-in rate in the 25 pg experiments was 0.06% or 100 times lower than what was previously reported for STR typing of LtDNA. A composite model and two different consensus models were used to interpret the SNP data. Correct profiles with 42-49 SNPs were generated from the 50 and 100 pg experiments, whereas a few incorrect genotypes were included in the generated profiles from the 25 pg experiments. With the strict consensus model, between 35 and 48 SNPs were correctly typed in the 25 pg experiments and only one allele drop-out (error rate: 0.07%) was observed in the consensus profiles. A total of 28 crime case samples were selected for typing with the sensitized SNPforID protocol. The samples were previously typed with old STR kits during the crime case investigation and only partial profiles (0-6 STRs) were obtained. Eleven of the samples could not be quantified with the Quantifiler™ Human DNA Quantification kit because of partial or complete inhibition of the PCR. For eight of these samples, SNP typing was only possible when the buffer and DNA polymerase used in the original protocol was replaced with the AmpFℓSTR(®) SEfiler Plus™ Master Mix, which was developed specifically for challenging forensic samples. All

  16. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mengke [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jiang, Longfei [College of Life Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Dayi [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Yan [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Yu, Zhiqiang [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Yin, Hua [College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2016-05-05

    Highlights: • Investigate PAHs degraders in forest carbon-rich soils via DNA-SIP. • Rhodanobacter is identified to metabolite anthracene for the first time. • The first fluoranthene degrader belongs to Acidobacteria. • Different functions of PAHs degraders in forest soils from contaminated soils. - Abstract: Information on microorganisms possessing the ability to metabolize different polycyclic aromatic hydrocarbons (PAHs) in complex environments helps in understanding PAHs behavior in natural environment and developing bioremediation strategies. In the present study, stable-isotope probing (SIP) was applied to investigate degraders of PAHs in a forest soil with the addition of individually {sup 13}C-labeled phenanthrene, anthracene, and fluoranthene. Three distinct phylotypes were identified as the active phenanthrene-, anthracene- and fluoranthene-degrading bacteria. The putative phenanthrene degraders were classified as belonging to the genus Sphingomona. For anthracene, bacteria of the genus Rhodanobacter were the putative degraders, and in the microcosm amended with fluoranthene, the putative degraders were identified as belonging to the phylum Acidobacteria. Our results from DNA-SIP are the first to directly link Rhodanobacter- and Acidobacteria-related bacteria with anthracene and fluoranthene degradation, respectively. The results also illustrate the specificity and diversity of three- and four-ring PAHs degraders in forest soil, contributes to our understanding on natural PAHs biodegradation processes, and also proves the feasibility and practicality of DNA-based SIP for linking functions with identity especially uncultured microorganisms in complex microbial biota.

  17. E2F1 interactions with hHR23A inhibit its degradation and promote DNA repair.

    Science.gov (United States)

    Singh, Randeep K; Dagnino, Lina

    2016-05-03

    Nucleotide excision repair (NER) is a major mechanism for removal of DNA lesions induced by exposure to UV radiation in the epidermis. Recognition of damaged DNA sites is the initial step in their repair, and requires multiprotein complexes that contain XPC and hHR23 proteins, or their orthologues. A variety of transcription factors are also involved in NER, including E2F1. In epidermal keratinocytes, UV exposure induces E2F1 phosphorylation, which allows it to recruit various NER factors to sites of DNA damage. However, the relationship between E2F1 and hHR23 proteins vis-à-vis NER has remained unexplored. We now show that E2F1 and hHR23 proteins can interact, and this interaction stabilizes E2F1, inhibiting its proteasomal degradation. Reciprocally, E2F1 regulates hHR23A subcellular localization, recruiting it to sites of DNA photodamage. As a result, E2F1 and hHR23A enhance DNA repair following exposure to UV radiation, contributing to genomic stability in the epidermis.

  18. Interferon antagonist NSs of La Crosse virus triggers a DNA damage response-like degradation of transcribing RNA polymerase II.

    Science.gov (United States)

    Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann

    2011-02-04

    La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.

  19. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa)

    International Nuclear Information System (INIS)

    Jeyaraj, M.; Arun, R.; Sathishkumar, G.; MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A.

    2014-01-01

    Highlights: • Gold nanoparticles (AuNPs) have been synthesized using Podophyllum hexandrum L. • AuNPs induces the oxidative stress to cell death in human cervical carcinoma cells. • It activates the caspase-cascade to cellular death. • It is actively blocks G2/M phase of cell cycle. - Abstract: Current prospect of nanobiotechnology involves in the greener synthesis of nanostructured materials particularly noble metal nanoparticles for various biomedical applications. In this study, biologically (Podophyllum hexandrum L.) synthesized crystalline gold nanoparticles (AuNPs) with the size range between 5 and 35 nm were screened for its anticancereous potential against human cervical carcinoma cells (HeLa). Stoichiometric proportion of the reaction mixture and conditions were optimized to attain stable nanoparticles with narrow size range. Different high throughput techniques like transmission electron microscope (TEM), X-ray diffraction (XRD) and UV–vis spectroscopy were adopted for the physio-chemical characterization of AuNPs. Additionally, Fourier transform infrared spectroscopy (FTIR) study revealed that the water soluble fractions present in the plant extract solely influences the reduction of AuNPs. Sublimely, synthesized AuNPs exhibits an effective in vitro anticancer activity against HeLa cells via induction of cell cycle arrest and DNA damage. Furthermore, it was evidenced that AuNPs treated cells are undergone apoptosis through the activation of caspase cascade which subsequently leads to mitochondrial dysfunction. Thereby, this study proves that biogenic colloidal AuNPs can be developed as a promising drug candidature for human cervical cancer therapy

  20. Sequencing historical specimens: successful preparation of small specimens with low amounts of degraded DNA.

    Science.gov (United States)

    Sproul, John S; Maddison, David R

    2017-11-01

    Despite advances that allow DNA sequencing of old museum specimens, sequencing small-bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small-bodied (3-6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58-159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1-10 ng). We also explored low-cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low-input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens. © 2017 John Wiley & Sons Ltd.

  1. Role of complex formation in the photosensitized degradation of DNA induced by N'-formylkynurenine

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Charlier, M.

    1976-01-01

    N'-Formylkynurenine derivatives efficiently bind to DNA or polynucleotides. Homopolynucleotides and DNA displayed marked differences in the binding process. Association constants were derived which indicated that the oxidized indole ring is more strongly bound to DNA than the unoxidized one. Irradiation of such complexes with wavelengths greater than 320 nm induced pyrimidine dimer formation as well as DNA chain breaks. Complex formation is shown to play an important role in these photosensitized reactions. The photodynamic action of N-formylkynurenine on DNA constituents was negligible at neutral pH but guanine and xanthine derivatives were sensitizable at higher pH. Thymine dimer splitting can occur in aggregated frozen aqueous solutions of N'-formylkynurenine and thymine dimer but this photosensitized splitting was negligible in liquid solutions at room temperature. (author)

  2. Distortion of genetically modified organism quantification in processed foods: influence of particle size compositions and heat-induced DNA degradation.

    Science.gov (United States)

    Moreano, Francisco; Busch, Ulrich; Engel, Karl-Heinz

    2005-12-28

    Milling fractions from conventional and transgenic corn were prepared at laboratory scale and used to study the influence of sample composition and heat-induced DNA degradation on the relative quantification of genetically modified organisms (GMO) in food products. Particle size distributions of the obtained fractions (coarse grits, regular grits, meal, and flour) were characterized using a laser diffraction system. The application of two DNA isolation protocols revealed a strong correlation between the degree of comminution of the milling fractions and the DNA yield in the extracts. Mixtures of milling fractions from conventional and transgenic material (1%) were prepared and analyzed via real-time polymerase chain reaction. Accurate quantification of the adjusted GMO content was only possible in mixtures containing conventional and transgenic material in the form of analogous milling fractions, whereas mixtures of fractions exhibiting different particle size distributions delivered significantly over- and underestimated GMO contents depending on their compositions. The process of heat-induced nucleic acid degradation was followed by applying two established quantitative assays showing differences between the lengths of the recombinant and reference target sequences (A, deltal(A) = -25 bp; B, deltal(B) = +16 bp; values related to the amplicon length of the reference gene). Data obtained by the application of method A resulted in underestimated recoveries of GMO contents in the samples of heat-treated products, reflecting the favored degradation of the longer target sequence used for the detection of the transgene. In contrast, data yielded by the application of method B resulted in increasingly overestimated recoveries of GMO contents. The results show how commonly used food technological processes may lead to distortions in the results of quantitative GMO analyses.

  3. DNA-based and culture-based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Lacroix, E. J. M.; Reimer, K. J. [Royal Military College, Dept. of Chemistry and Chemical Engineering, Kingston, On (Canada); Yu, Z.; Mohn, W. W. [British Columbia Univ., Dept. of Microbiology and Immunology, Vancouver, BC (Canada); Eriksson, M. [Royal Inst. of Technology, Dept. of Biotechnology, Stockholm (Sweden)

    2001-12-01

    Oil spills are fairly common in polar tundra regions, including remote locations, and are a threat to the relatively fragile ecosystem. Remediation must be done economically and with minimum additional damage. Bioremediation is considered to be the appropriate technology, although its application in polar tundra regions is not well documented. Most studies of hydrocarbon remediation in polar regions have concerned marine oil spills, while a few studies have demonstrated on-site polar tundra soil remediation. A few of these demonstrated the presence of psychrotolerant hydrocarbon-degrading bacteria in polar tundra soils. Because fuels are complex mixtures of hydrocarbons, microbial consortia rather than pure cultures may be the most effective agents in degrading fuels. Despite their potential advantages for bioaugmentation applications, consortia are difficult to characterize and monitor. Molecular methods based on DNA analysis partially address these difficulties. One such approach is to randomly clone rRNA gene (rDNA) fragments and to sequence as a set of clones. The relative abundance of individual sequences in the clone library is related to the relative abundance of the corresponding organism in the community. In this study a psychrotolerant, fuel-degrading consortium was enriched with Arctic tundra soil. The enrichment substrate for the consortium was Jet A-1 fuel, which is very similar to Arctic diesel fuel, a common contaminant in the region. The objectives of the study were to (1) characterize thr consortium by DNA- and culture-based methods, (2) develop quantitative polymerase chain reaction assays for populations of predominant consortium members, and (3) determine the dynamics of those populations during incubation of the consortium. Result showed that is possible to quantitatively monitor members of a microbial consortium, with potential application for bioremediation of Arctic tundra soil. The relative abundance of consortium members was found to vary

  4. Correlative analysis on the relationship between PMI and DNA degradation of cell nucleus in human different tissues.

    Science.gov (United States)

    Shu, Xiji; Liu, Yaling; Ren, Liang; He, Fanggang; Zhou, Hongyan; Liu, Lijiang; Liu, Liang

    2005-01-01

    To determining the postmortem interval (PMI) through quantitative analysis of the DNA degradation of cell nucleus in human brain and spleen by using image analysis technique (IAT). The brain and spleen tissues from 32 cadavers with known PMI were collected, subjected to cell smear every 1 h within the first 5-36 h after death, stained by Feulgen-Van's staining, Three indices reflecting DNA in brain cells (astrocytes) and splenic lymphocytes, including integral optical density (IOD), average optical density (AOD), average gray (AG) were measured by employing the mage analysis instrument. The results showed that IOD and AOD declined and AG increased with the prolongation of dead time within 5-36 h. A correlation between the PMI and gray parameters (IOD, AOD and AG) was identified and the corresponding regression equation was obtained. The parameters (IOD, AOD and AG) were proved to be effective quantitative indicators for accurate estimation of PMI within 5-36 h after death.

  5. Purification of Single-Stranded cDNA Based on RNA Degradation Treatment and Adsorption Chromatography.

    Science.gov (United States)

    Trujillo-Esquivel, Elías; Franco, Bernardo; Flores-Martínez, Alberto; Ponce-Noyola, Patricia; Mora-Montes, Héctor M

    2016-08-02

    Analysis of gene expression is a common research tool to study networks controlling gene expression, the role of genes with unknown function, and environmentally induced responses of organisms. Most of the analytical tools used to analyze gene expression rely on accurate cDNA synthesis and quantification to obtain reproducible and quantifiable results. Thus far, most commercial kits for isolation and purification of cDNA target double-stranded molecules, which do not accurately represent the abundance of transcripts. In the present report, we provide a simple and fast method to purify single-stranded cDNA, exhibiting high purity and yield. This method is based on the treatment with RNase H and RNase A after cDNA synthesis, followed by separation in silica spin-columns and ethanol precipitation. In addition, our method avoids the use of DNase I to eliminate genomic DNA from RNA preparations, which improves cDNA yield. As a case report, our method proved to be useful in the purification of single-stranded cDNA from the pathogenic fungus Sporothrix schenckii.

  6. Sliding window analyses for optimal selection of mini-barcodes, and application to 454-pyrosequencing for specimen identification from degraded DNA.

    Science.gov (United States)

    Boyer, Stephane; Brown, Samuel D J; Collins, Rupert A; Cruickshank, Robert H; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Wratten, Stephen D

    2012-01-01

    DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential 'mini-barcodes' for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation.

  7. Sliding window analyses for optimal selection of mini-barcodes, and application to 454-pyrosequencing for specimen identification from degraded DNA.

    Directory of Open Access Journals (Sweden)

    Stephane Boyer

    Full Text Available DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI is over 600 base pairs (bp, amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential 'mini-barcodes' for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R. This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey DNA from 46 landsnail (predator faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1 when dealing with degraded DNA for which only small fragments can be amplified, (2 for cases where no consensus has yet been reached on the appropriate barcode gene, or (3 to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation.

  8. Post-irradiation degradation of DNA in electron and neutron-irradiated E. coli B/r; the effect of the radiation sensitizer metronidazole

    Energy Technology Data Exchange (ETDEWEB)

    Cramp, W A; George, A M; Howlett, J [Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit

    1976-04-01

    Suspensions of E.coli B/r were irradiated under aerobic and anoxic conditions with electrons (7 to 8 MeV, 2 and 20 krad/min, MRC linear accelerator), or with neutrons (average energy 7.5 MeV, 2 krad/min, MRC cyclotron) in an investigation of the effects of the radiosensitizer, metronidazole (Flagyl, 5 or 10 mM) on survival and DNA degradation. These results are compared with those for another electron affinic radiosensitizer, indane trione. Survival studies yielded enhancement ratios, for anoxic irradiation only, of 1.7 (5mM) and 1.9 (10mM) for electrons, and 1.2 (5mM and 10mM) for neutrons. Unlike indane trione, metronidazole had no pronounced inhibitory effect on post-irradiation DNA degradation, either when incubated with the bacteria before irradiation or when present during irradiation. When present under anoxic conditions of irradiation with electrons, some enhancement of degradation was observed. DNA degradation was reduced at higher doses, with a pronounced maxiumum effect, for neutrons as well as for electrons. Metronidazole allowed this degradation to continue and showed some sensitizing action, but did not prevent the decrease in total degradation at high doses. It is therefore difficult to correlate DNA degradation with cell-depth.

  9. Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction.

    Science.gov (United States)

    Overballe-Petersen, Søren; Willerslev, Eske

    2014-10-01

    Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction. © 2014 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  10. Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP

    Science.gov (United States)

    Gutierrez, Tony; Singleton, David R; Berry, David; Yang, Tingting; Aitken, Michael D; Teske, Andreas

    2013-01-01

    The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil. PMID:23788333

  11. SYTO probes: markers of apoptotic cell demise.

    Science.gov (United States)

    Wlodkowic, Donald; Skommer, Joanna

    2007-10-01

    As mechanistic studies on tumor cell death advance towards their ultimate translational goal, there is a need for specific, rapid, and high-throughput analytical tools to detect diverse cell demise modes. Patented DNA-binding SYTO probes, for example, are gaining increasing interest as easy-to-use markers of caspase-dependent apoptotic cell death. They are proving convenient for tracking apoptosis in diverse hematopoietic cell lines and primary tumor samples, and, due to their spectral characteristics, appear to be useful for the development of multiparameter flow cytometry assays. Herein, several protocols for multiparametric assessment of apoptotic events using SYTO probes are provided. There are protocols describing the use of green fluorescent SYTO 16 and red fluorescent SYTO 17 dyes in combination with plasma membrane permeability markers. Another protocol highlights the multiparametric use of SYTO 16 dye in conjunction with the mitochondrial membrane potential sensitive probe, tetramethylrhodamine methyl ester (TMRM), and the plasma membrane permeability marker, 7-aminoactinomycin D (7-AAD).

  12. The involvement of nuclear nucleases in rat thymocyte DNA degradation after γ-irradiation

    International Nuclear Information System (INIS)

    Nikonova, L.V.; Nelipovich, P.A.; Umansky, S.R.

    1982-01-01

    Possible mechanisms of internucleosomal DNA fragmentation in thymocytes of irradiated rats were studied. It was shown that thymocyte nuclei contain at least two nucleases that cleave DNA between nucleosomes - a Ca 2+ /Mg 2+ -dependent nuclease and an acidic one which does not depend on bivalent ions. 2 and 3 h after irradiation at a dose of 10 Gy the initial rate of DNA cleavage by Ca 2+ /Mg 2+ -dependent nuclease in isolated nuclei increased three and seven times, respectively, but the kinetics of DNA digestion by acidic nuclease did not change. The experiments with cycloheximide indicated that Ca 2+ /Mg 2+ -dependent endonuclease turns over at a high rate. The activity of the cytoplasmic acidic and Mg 2+ -dependent nucleases was shown to increase (by 40 and 50%, respectively) 3h after irradiation. The effect is caused by the de novo synthesis of the nucleases. At the same time the activity of nuclear nucleases did not essentially change. The chromatin isolated from rat thymocytes 3 h after irradiation did not differ in its sensitivity to some exogenic nucleases (DNAase I, micrococcal nuclease and nuclease from Serratia marcescens) from the control. Thus, Ca 2+ /Mg 2+ -dependent endonuclease seems to be responsible for the postirradiation internucleosomal DNA fragmentation in dying thymocytes. (Auth.)

  13. Qualitative evaluation of the DNA degradation in plague insects exposed to gamma radiation

    International Nuclear Information System (INIS)

    Ortega, Yuriko; Agapito, Juan; Vargas, Johnny; Vivanco, Monica; Martinez, Norberta

    2014-01-01

    Insects produce large losses in stored grain depending on the type of cereal and storage time and other factors. The rice weevil Sitophilus oryzae L and the false flour beetle Tribolium confusum are important pests of stored grain. The study aimed to qualitatively evaluate the effect of gamma radiation on the DNA of two species of insect pests from samples stored Chullpi and white corn infested with adult weevils. Samples were treated with radiation doses of 100, 400, 1000 and 2000 Gy and DNA extraction was obtained by three methods: TNES-urea, CTAB and NaOH. The DNA damage induced by gamma radiation in weevils was determined by gel electrophoresis. As a result, it was found that exposure of adult weevils to a radiation dose of 100 Gy and 400 caused an average mortality of the insects, showing a degree of resistance to gamma radiation. However, radiation doses of 1000 and 2000 Gy caused 100 % mortality of insects. Preliminary results show that DNA damage is proportional to the amount of gamma radiation. (authors).

  14. Development and validation of InnoQuant™, a sensitive human DNA quantitation and degradation assessment method for forensic samples using high copy number mobile elements Alu and SVA.

    Science.gov (United States)

    Pineda, Gina M; Montgomery, Anne H; Thompson, Robyn; Indest, Brooke; Carroll, Marion; Sinha, Sudhir K

    2014-11-01

    There is a constant need in forensic casework laboratories for an improved way to increase the first-pass success rate of forensic samples. The recent advances in mini STR analysis, SNP, and Alu marker systems have now made it possible to analyze highly compromised samples, yet few tools are available that can simultaneously provide an assessment of quantity, inhibition, and degradation in a sample prior to genotyping. Currently there are several different approaches used for fluorescence-based quantification assays which provide a measure of quantity and inhibition. However, a system which can also assess the extent of degradation in a forensic sample will be a useful tool for DNA analysts. Possessing this information prior to genotyping will allow an analyst to more informatively make downstream decisions for the successful typing of a forensic sample without unnecessarily consuming DNA extract. Real-time PCR provides a reliable method for determining the amount and quality of amplifiable DNA in a biological sample. Alu are Short Interspersed Elements (SINE), approximately 300bp insertions which are distributed throughout the human genome in large copy number. The use of an internal primer to amplify a segment of an Alu element allows for human specificity as well as high sensitivity when compared to a single copy target. The advantage of an Alu system is the presence of a large number (>1000) of fixed insertions in every human genome, which minimizes the individual specific variation possible when using a multi-copy target quantification system. This study utilizes two independent retrotransposon genomic targets to obtain quantification of an 80bp "short" DNA fragment and a 207bp "long" DNA fragment in a degraded DNA sample in the multiplex system InnoQuant™. The ratio of the two quantitation values provides a "Degradation Index", or a qualitative measure of a sample's extent of degradation. The Degradation Index was found to be predictive of the observed loss

  15. Phleomycin-induced lethality and DNA degradation in Escherichia coli K12

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, H

    1975-01-01

    The cell lethality and DNA fragmentation caused by phleomycin (PM) were studied in E. coli K12 strains with special reference to the effects of repair or recombination deficiencies and metabolic inhibitors. Unlike excision-defective derivatives of E. coli B, uvrA, uvrB, and uvrC mutants of strain K12 showed no peculiarities compared with wild type in regard to cell survival. Likewise, mutant alleles at uvrD and polA loci had no effect. In contrast, rec mutants were more sensitive to PM-killing than were rec/sup +/ strains. PM-induced strand breakage in DNA was observed in all strains tested including the above-mentioned mutants. There was no significant distinction between the uvr mutants and the wild type strain, indicating that the uvr-endonuclease was not responsible for the strand breaks. Involvement of endonuclease I was also ruled out. At least some of the PM-induced strand breaks were repairable. PM-induced lethality and strand breakage were totally dependent on energy supply. Inhibition of protein synthesis resulted in a partial and parallel suppression of the two effects. Our results suggest that the lethality is due to DNA strand breakage and the repair of such damage is postulated to be controlled by rec genes.

  16. Development and validation of a multiplex reaction analyzing eight miniSTRs of the X chromosome for identity and kinship testing with degraded DNA.

    Science.gov (United States)

    Castañeda, María; Odriozola, Adrián; Gómez, Javier; Zarrabeitia, María T

    2013-07-01

    We report the development of an effective system for analyzing X chromosome-linked mini short tandem repeat loci with reduced-size amplicons (less than 220 bp), useful for analyzing highly degraded DNA samples. To generate smaller amplicons, we redesigned primers for eight X-linked microsatellites (DXS7132, DXS10079, DXS10074, DXS10075, DXS6801, DXS6809, DXS6789, and DXS6799) and established efficient conditions for a multiplex PCR system (miniX). The validation tests confirmed that it has good sensitivity, requiring as little as 20 pg of DNA, and performs well with DNA from paraffin-embedded tissues, thus showing potential for improved analysis and identification of highly degraded and/or very limited DNA samples. Consequently, this system may help to solve complex forensic cases, particularly when autosomal markers convey insufficient information.

  17. In vitro assays for predicting tumor cell response to radiation by apoptotic pathways

    International Nuclear Information System (INIS)

    Algan, Oe.; Hanks, G.E.; Biade, S.; Chapman, J.D.

    1995-01-01

    Purpose: We had previously shown that the rate of spontaneous and radiation-induced apoptosis was significantly greater in well-differentiated compared to anaplastic Dunning prostate carcinomas. The goal of this study was to define the most useful assay for quantifying radiation-induced apoptotic cell death and to determine if measured rates of radiation-induced apoptosis in tumor cell populations can predict treatment outcome. Materials and Methods: The time course and extent of radiation-induced apoptosis after single doses of Cesium-137 gamma-rays were measured by five different assays. These included gross DNA degradation, nucleosome ladder formation, labeling of 3'-OH ends in DNA with an immunofluorescence probe, immunofluorescence vital stains (LIVE/DEAD[reg] EUKOLIGHT TM ) and trypan blue. The majority of these studies were performed with DU-145 human prostate cells. Data was analyzed to determine the component of cell inactivation resulting from apoptosis with the modified linear quadratic equation, -1n (SF) = (α a + α p ) D + β p D 2 , were α a represents cell inactivation by radiation-induced apoptosis, α p and β p represent cell death by proliferative mechanisms and D represents radiation dose. Results: These studies indicated that DU-145 cell death after radiation occurs over two distinct time periods. The first phase of death begins shortly after irradiation and plateaus within 16-24 hr. This process of cell death has properties consistent with apoptosis as determined by 3'-OH DNA end-labeling and nucleosome ladder assays. The second phase of cell death (determined by viability staining) begins approximately 48 hr after irradiation and continues until the remainder of inactivated cells express their death. This longer phase of cell inactivation probably represents proliferative cell death and other non-apoptotic mechanisms. The five different assays were performed on DU-145 cells 24 hr after irradiation with 10 Gy. Significant nucleosome ladders

  18. Mechanism of the alkali degradation of (6-4) photoproduct-containing DNA.

    Science.gov (United States)

    Arichi, Norihito; Inase, Aki; Eto, Sachise; Mizukoshi, Toshimi; Yamamoto, Junpei; Iwai, Shigenori

    2012-03-21

    The (6-4) photoproduct is one of the major damaged bases produced by ultraviolet light in DNA. This lesion is known to be alkali-labile, and strand breaks occur at its sites when UV-irradiated DNA is treated with hot alkali. We have analyzed the product obtained by the alkali treatment of a dinucleoside monophosphate containing the (6-4) photoproduct, by HPLC, NMR spectroscopy, and mass spectrometry. We previously found that the N3-C4 bond of the 5' component was hydrolyzed by a mild alkali treatment, and the present study revealed that the following reaction was the hydrolysis of the glycosidic bond at the 3' component. The sugar moiety of this component was lost, even when a 3'-flanking nucleotide was not present. Glycosidic bond hydrolysis was also observed for a dimer and a trimer containing 5-methyl-2-pyrimidinone, which was used as an analog of the 3' component of the (6-4) photoproduct, and its mechanism was elucidated. Finally, the alkali treatment of a tetramer, d(GT(6-4)TC), yielded 2'-deoxycytidine 5'-monophosphate, while 2'-deoxyguanosine 3'-monophosphate was not detected. This result demonstrated the hydrolysis of the glycosidic bond at the 3' component of the (6-4) photoproduct and the subsequent strand break by β-elimination. It was also shown that the glycosidic bond at the 3' component of the Dewar valence isomer was more alkali-labile than that of the (6-4) photoproduct.

  19. Comparative studies on the effect of ionizing and nonionizing radiations on the kinetics of DNA synthesis and postirradiation degradation in Micrococcus radiodurans R/sub 11/5

    Energy Technology Data Exchange (ETDEWEB)

    Auda, H; Khalef, Z [Nuclear Centre Tuwaitha, Baghdad (Iraq)

    1982-06-01

    The kinetics of degradation and synthesis of DNA and the nature of radioactive substances released from M. radiodurans R/sub 11/5 labeled with thymidine-methyl-/sup 3/H after UV and gamma irradiations were investigated. The release of labeled material from the DNA began immediately upon incubation and terminated in due time 90 min and 180 min for UV and gamma irradiations, respectively. When acriflavine was added to the medium, post-irradiation degradation process did not terminate even after 9 h in the case of UV exposure. However, it terminated after 6 h in the case of gamma irradiation. In the presence of acriflavine, DNA synthesis resumed after termination of DNA degradation in the case of gamma irradiation and this was not observed in the case of UV irradiation. Degradation products were chromatographed and it was found that they were located in one major radioactive peak. However their locations were different for UV and gamma radiations. For UV irradiation, the peak fell in the thymine region, while for gamma irradiation it fell in the thymidine region.

  20. Comparative studies on the effect of ionizing and nonionizing radiations on the kinetics of DNA synthesis and postirradiation degradation in Micrococcus radiodurans R115

    International Nuclear Information System (INIS)

    Auda, H.; Khalef, Z.

    1982-01-01

    The kinetics of degradation and synthesis of DNA and the nature of radioactive substances released from M. radiodurans R 11 5 labeled with thymidine-methyl- 3 H after UV and gamma irradiations were investigated. The release of labeled material from the DNA began immediately upon incubation and terminated in due time 90 min and 180 min for UV and gamma irradiations, respectively. When acriflavine was added to the medium, post-irradiation degradation process did not terminate even after 9 h in the case of UV exposure. However, it terminated after 6 h in the case of gamma irradiation. In the presence of acriflavine, DNA synthesis resumed after termination of DNA degradation in the case of gamma irradiation and this was not observed in the case of UV irradiation. Degradation products were chromatographed and it was found that they were located in one major radioactive peak. However their locations were different for UV and gamma radiations. For UV irradiation, the peak fell in the thymine region, while for gamma irradiation it fell in the thymidine region. (author)

  1. The influence of DNA degradation in formalin-fixed, paraffin-embedded (FFPE) tissue on locus-specific methylation assessment by MS-HRM.

    Science.gov (United States)

    Daugaard, Iben; Kjeldsen, Tina E; Hager, Henrik; Hansen, Lise Lotte; Wojdacz, Tomasz K

    2015-12-01

    Readily accessible formalin-fixed paraffin embedded (FFPE) tissues are a highly valuable source of genetic material for molecular analyses in both research and in vitro diagnostics but frequently genetic material in those samples is highly degraded. With locus-specific methylation changes being widely investigated for use as biomarkers in various aspects of clinical disease management, we aimed to evaluate to what extent standard laboratory procedures can approximate the quality of the DNA extracted from FFPE samples prior to methylation analyses. DNA quality in 107 FFPE non-small cell lung cancer (NSCLC) samples was evaluated using spectrophotometry and gel electrophoresis. Subsequently, the quality assessment results were correlated with the results of locus specific methylation assessment with methylation sensitive high resolution melting (MS-HRM). The correlation of template quality with PCR amplification performance and HRM based methylation detection indicated a significant influence of DNA quality on PCR amplification but not on methylation assessment. In conclusion, standard laboratory procedures fairly well approximate DNA degradation of FFPE samples and DNA degradation does not seem to considerably affect locus-specific methylation assessment by MS-HRM. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Membrane Protected Apoptotic Trophoblast Microparticles Contain Nucleic Acids

    Science.gov (United States)

    Orozco, Aaron F.; Jorgez, Carolina J.; Horne, Cassandra; Marquez-Do, Deborah A.; Chapman, Matthew R.; Rodgers, John R.; Bischoff, Farideh Z.; Lewis, Dorothy E.

    2008-01-01

    Microparticles (MPs) that circulate in blood may be a source of DNA for molecular analyses, including prenatal genetic diagnoses. Because MPs are heterogeneous in nature, however, further characterization is important before use in clinical settings. One key question is whether DNA is either bound to aggregates of blood proteins and lipid micelles or intrinsically associated with MPs from dying cells. To test the latter hypothesis, we asked whether MPs derived in vitro from dying cells were similar to those in maternal plasma. JEG-3 cells model extravillous trophoblasts, which predominate during the first trimester of pregnancy when prenatal diagnosis is most relevant. MPs were derived from apoptosis and increased over 48 hours. Compared with necrotic MPs, DNA in apoptotic MPs was more fragmented and resistant to plasma DNases. Membrane-specific dyes indicated that apoptotic MPs had more membranous material, which protects nucleic acids, including RNA. Flow cytometry showed that MPs derived from dying cells displayed light scatter and DNA staining similar to MPs found in maternal plasma. Quantification of maternal MPs using characteristics defined by MPs generated in vitro revealed a significant increase of DNA+ MPs in the plasma of women with preeclampsia compared with plasma from women with normal pregnancies. Apoptotic MPs are therefore a likely source of stable DNA that could be enriched for both early genetic diagnosis and monitoring of pathological pregnancies. PMID:18974299

  3. Degradation and detection of transgenic Bacillus thuringiensis DNA and proteins in flour of three genetically modified rice events submitted to a set of thermal processes.

    Science.gov (United States)

    Wang, Xiaofu; Chen, Xiaoyun; Xu, Junfeng; Dai, Chen; Shen, Wenbiao

    2015-10-01

    This study aimed to investigate the degradation of three transgenic Bacillus thuringiensis (Bt) genes (Cry1Ab, Cry1Ac, and Cry1Ab/Ac) and the corresponding encoded Bt proteins in KMD1, KF6, and TT51-1 rice powder, respectively, following autoclaving, cooking, baking, or microwaving. Exogenous Bt genes were more stable than the endogenous sucrose phosphate synthase (SPS) gene, and short DNA fragments were detected more frequently than long DNA fragments in both the Bt and SPS genes. Autoclaving, cooking (boiling in water, 30 min), and baking (200 °C, 30 min) induced the most severe Bt protein degradation effects, and Cry1Ab protein was more stable than Cry1Ac and Cry1Ab/Ac protein, which was further confirmed by baking samples at 180 °C for different periods of time. Microwaving induced mild degradation of the Bt and SPS genes, and Bt proteins, whereas baking (180 °C, 15 min), cooking and autoclaving led to further degradation, and baking (200 °C, 30 min) induced the most severe degradation. The findings of the study indicated that degradation of the Bt genes and proteins somewhat correlated with the treatment intensity. Polymerase chain reaction, enzyme-linked immunosorbent assay, and lateral flow tests were used to detect the corresponding transgenic components. Strategies for detecting transgenic ingredients in highly processed foods are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA.

    Science.gov (United States)

    De Barba, M; Miquel, C; Lobréaux, S; Quenette, P Y; Swenson, J E; Taberlet, P

    2017-05-01

    Microsatellite markers have played a major role in ecological, evolutionary and conservation research during the past 20 years. However, technical constrains related to the use of capillary electrophoresis and a recent technological revolution that has impacted other marker types have brought to question the continued use of microsatellites for certain applications. We present a study for improving microsatellite genotyping in ecology using high-throughput sequencing (HTS). This approach entails selection of short markers suitable for HTS, sequencing PCR-amplified microsatellites on an Illumina platform and bioinformatic treatment of the sequence data to obtain multilocus genotypes. It takes advantage of the fact that HTS gives direct access to microsatellite sequences, allowing unambiguous allele identification and enabling automation of the genotyping process through bioinformatics. In addition, the massive parallel sequencing abilities expand the information content of single experimental runs far beyond capillary electrophoresis. We illustrated the method by genotyping brown bear samples amplified with a multiplex PCR of 13 new microsatellite markers and a sex marker. HTS of microsatellites provided accurate individual identification and parentage assignment and resulted in a significant improvement of genotyping success (84%) of faecal degraded DNA and costs reduction compared to capillary electrophoresis. The HTS approach holds vast potential for improving success, accuracy, efficiency and standardization of microsatellite genotyping in ecological and conservation applications, especially those that rely on profiling of low-quantity/quality DNA and on the construction of genetic databases. We discuss and give perspectives for the implementation of the method in the light of the challenges encountered in wildlife studies. © 2016 John Wiley & Sons Ltd.

  5. DNA degradation, UV sensitivity and SOS-mediated mutagenesis in strains of Escherichia coli deficient in single-strand DNA binding protein: Effects of mutations and treatments that alter levels of exonuclease V or RecA protein

    International Nuclear Information System (INIS)

    Lieberman, H.B.; Witkin, E.M.

    1983-01-01

    Certain strains suppress the temperature-sensitivity caused by ssb-1, which encodes a mutant ssDNA binding protein (SSB). At 42 0 C, such strains are extremely UV-sensitive, degrade their DNA extensively after UV irradiation, and are defficient in UV mutability and UV induction of recA protein synthesis. We transduced recC22, which eliminates Exonuclease V activity, and recAo281, which causes operator-constitutive synthesis of recA protein, into such an ssb-1 strain. Both double mutants degraded their DNA extensively at 42 0 C after UV irradiation, and both were even more UV-sensitive than the ssb-1 single mutant. We conclude that one or more nucleases other than Exonuclease V degrades DNA in the ssb recC strain, and that recA protein, even if synthesized copiously, can function efficiently in recombinational DNA repair and in control of post-UV DNA degradation only if normal SSB is also present. Pretreatment with nalidixic acid at 30 0 C restored normal UV mutability at 42 0 C, but did not increase UV resistance, in an ssb-1 strain. Another ssb allele, ssb-113, which blocks SOS induction at 30 0 C, increases spontaneous mutability more than tenfold. The ssb-113 allele was transduced into the SOS-constitutive recA730 strain SC30. This double mutant expressed the same elevated spontaneous and UV-induced mutability at 30 0 C as the ssb + recA730 strain, and was three times more UV-resistant than its ssb-113 recA + parent. We conclude that ssb-1 at 42 0 C and ssb-113 at 30 0 C block UV-induced activation of recA protease, but that neither allele interferes with subsequent steps in SOS-mediated mutagenesis. (orig.)

  6. Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles.

    Science.gov (United States)

    Bilyy, Rostyslav O; Shkandina, Tanya; Tomin, Andriy; Muñoz, Luis E; Franz, Sandra; Antonyuk, Volodymyr; Kit, Yuriy Ya; Zirngibl, Matthias; Fürnrohr, Barbara G; Janko, Christina; Lauber, Kirsten; Schiller, Martin; Schett, Georg; Stoika, Rostyslav S; Herrmann, Martin

    2012-01-02

    Inappropriate clearance of apoptotic remnants is considered to be the primary cause of systemic autoimmune diseases, like systemic lupus erythematosus. Here we demonstrate that apoptotic cells release distinct types of subcellular membranous particles (scMP) derived from the endoplasmic reticulum (ER) or the plasma membrane. Both types of scMP exhibit desialylated glycotopes resulting from surface exposure of immature ER-derived glycoproteins or from surface-borne sialidase activity, respectively. Sialidase activity is activated by caspase-dependent mechanisms during apoptosis. Cleavage of sialidase Neu1 by caspase 3 was shown to be directly involved in apoptosis-related increase of surface sialidase activity. ER-derived blebs possess immature mannosidic glycoepitopes and are prioritized by macrophages during clearance. Plasma membrane-derived blebs contain nuclear chromatin (DNA and histones) but not components of the nuclear envelope. Existence of two immunologically distinct types of apoptotic blebs may provide new insights into clearance-related diseases.

  7. Immunosuppressive effects of apoptotic cells

    Science.gov (United States)

    Voll, Reinhard E.; Herrmann, Martin; Roth, Edith A.; Stach, Christian; Kalden, Joachim R.; Girkontaite, Irute

    1997-11-01

    Apoptotic cell death is important in the development and homeostasis of multicellular organisms and is a highly controlled means of eliminating dangerous, damaged or unnecessary cells without causing an inflammatory response or tissue damage,. We now show that the presence of apoptotic cells during monocyte activation increases their secretion of the anti-inflammatory and immunoregulatory cytokine interleukin 10 (IL-10) and decreases secretion of the proinflammatory cytokines tumour necrosis factor-α (TNF-α), IL-1 and IL-12. This may inhibit inflammation and contribute to impaired cell-mediated immunity in conditions associated with increased apoptosis, such as viral infections, pregnancy, cancer and exposure to radiation.

  8. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis.

    Science.gov (United States)

    Binet, François; Cavalli, Hélène; Moisan, Eliane; Girard, Denis

    2006-02-01

    The anti-cancer drug arsenic trioxide (AT) induces apoptosis in a variety of transformed or proliferating cells. However, little is known regarding its ability to induce apoptosis in terminally differentiated cells, such as neutrophils. Because neutropenia has been reported in some cancer patients after AT treatment, we hypothesised that AT could induce neutrophil apoptosis, an issue that has never been investigated. Herein, we found that AT-induced neutrophil apoptosis and gelsolin degradation via caspases. AT did not increase neutrophil superoxide production and did not induce mitochondrial generation of reactive oxygen species. AT-induced apoptosis in PLB-985 and X-linked chronic granulomatous disease (CGD) cells (PLB-985 cells deficient in gp91(phox) mimicking CGD) at the same potency. Addition of catalase, an inhibitor of H2O2, reversed AT-induced apoptosis and degradation of the cytoskeletal proteins gelsolin, alpha-tubulin and lamin B1. Unexpectedly, AT-induced de novo protein synthesis, which was reversed by catalase. Cycloheximide partially reversed AT-induced apoptosis. We conclude that AT induces neutrophil apoptosis by a caspase-dependent mechanism and via de novo protein synthesis. H2O2 is of major importance in AT-induced neutrophil apoptosis but its production does not originate from nicotinamide adenine dinucleotide phosphate dehydrogenase activation and mitochondria. Cytoskeletal structures other than microtubules can now be considered as novel targets of AT.

  9. Induction of apoptotic cell death by putrescine

    DEFF Research Database (Denmark)

    Takao, Koichi; Rickhag, Karl Mattias; Hegardt, Cecilia

    2006-01-01

    that overexpression of a metabolically stable ODC in CHO cells induced a massive cell death unless the cells were grown in the presence of the ODC inhibitor alpha-difluoromethylornithine (DFMO). Cells overexpressing wild-type (unstable) ODC, on the other hand, were not dependent on the presence of DFMO...... for their growth. The induction of cell death was correlated with a dramatic increase in cellular putrescine levels. Analysis using flow cytometry revealed perturbed cell cycle kinetics, with a large accumulation of cells with sub-G1 amounts of DNA, which is a typical sign of apoptosis. Another strong indication...... of apoptosis was the finding that one of the key enzymes in the apoptotic process, caspase-3, was induced when DFMO was omitted from the growth medium. Furthermore, inhibition of the caspase activity significantly reduced the recruitment of cells to the sub-G1 fraction. In conclusion, deregulation of polyamine...

  10. Detection of apoptotic cells in tumour paraffin sections

    International Nuclear Information System (INIS)

    Pizem, J.; Coer, A.

    2003-01-01

    Apoptosis is a distinct form of cell death characterised by specific morphological features and regulated by complex molecular mechanisms. Its deregulation is fundamental for tumour growth and progression and, moreover, anticancer therapies suppress tumour growth mainly by induction of apoptosis. Since the extent of apoptosis in a tumour may have prognostic as well as therapeutic implications, much effort has been invested in developing specific methods that can be routinely used to detect apoptotic cells in archival formalin- fixed paraffin-embedded tissue. Complex molecular pathways are involved in the regulation of apoptosis. Pro-apoptotic signals trigger activation of caspases that specifically cleave target proteins. Cleavage of proteins (caspase substrates) is responsible for morphological changes of apoptotic cells and DNA fragmentation. In the last decade, detection of apoptotic cells in formalin-fixed tumour tissue sections has been based mainly on morphology and characteristic DNA fragmentation. Recently, specific antibodies to activated caspases and cleaved target proteins (including cytokeratin 18, actin and PARP) have been produced that enable accurate detection of apoptosis in paraffin sections. (author)

  11. Spectral, thermal, kinetic, molecular modeling and eukaryotic DNA degradation studies for a new series of albendazole (HABZ) complexes

    Science.gov (United States)

    El-Metwaly, Nashwa M.; Refat, Moamen S.

    2011-01-01

    This work represents the elaborated investigation for the ligational behavior of the albendazole ligand through its coordination with, Cu(II), Mn(II), Ni(II), Co(II) and Cr(III) ions. Elemental analysis, molar conductance, magnetic moment, spectral studies (IR, UV-Vis and ESR) and thermogravimetric analysis (TG and DTG) have been used to characterize the isolated complexes. A deliberate comparison for the IR spectra reveals that the ligand coordinated with all mentioned metal ions by the same manner as a neutral bidentate through carbonyl of ester moiety and NH groups. The proposed chelation form for such complexes is expected through out the preparation conditions in a relatively acidic medium. The powder XRD study reflects the amorphous nature for the investigated complexes except Mn(II). The conductivity measurements reflect the non-electrolytic feature for all complexes. In comparing with the constants for the magnetic measurements as well as the electronic spectral data, the octahedral structure was proposed strongly for Cr(III) and Ni(II), the tetrahedral for Co(II) and Mn(II) complexes but the square-pyramidal for the Cu(II) one. The thermogravimetric analysis confirms the presence or absence of water molecules by any type of attachments. Also, the kinetic parameters are estimated from DTG and TG curves. ESR spectrum data for Cu(II) solid complex confirms the square-pyramidal state is the most fitted one for the coordinated structure. The albendazole ligand and its complexes are biologically investigated against two bacteria as well as their effective effect on degradation of calf thymus DNA.

  12. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    Science.gov (United States)

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  13. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Directory of Open Access Journals (Sweden)

    Takehara Tadamichi

    2006-03-01

    Full Text Available Abstract Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h, P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.

  14. Apoptotic markers in protozoan parasites

    Directory of Open Access Journals (Sweden)

    Fasel Nicolas

    2010-11-01

    Full Text Available Abstract The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

  15. Wnt1 Neuroprotection Translates into Improved Neurological Function during Oxidant Stress and Cerebral Ischemia Through AKT1 and Mitochondrial Apoptotic Pathways

    Directory of Open Access Journals (Sweden)

    Zhao Zhong Chong

    2010-01-01

    Full Text Available Although essential for the development of the nervous system, Wnt1 also has been associated with neurodegenerative disease and cognitive loss during periods of oxidative stress. Here we show that endogenous expression of Wnt1 is suppressed during oxidative stress in both in vitro and in vivo experimental models. Loss of endogenous Wnt1 signaling directly correlates with neuronal demise and increased functional deficit, illustrating that endogenous neuronal Wnt1 offers a vital level of intrinsic cellular protection against oxidative stress. Furthermore, transient overexpression of Wnt1 or application of exogenous Wnt1 recombinant protein is necessary to preserve neurological function and rescue neurons from apoptotic membrane phosphatidylserine externalization and genomic DNA degradation, since blockade of Wnt1 signaling with a Wnt1 antibody or dickkopf related protein 1 abrogates neuronal protection by Wnt1. Wnt1 ultimately relies upon the activation of Akt1, the modulation of mitochondrial membrane permeability, and the release of cytochrome c to control the apoptotic cascade, since inhibition of Wnt1 signaling, the phosphatidylinositol 3-kinase pathway, or Akt1 activity abrogates the ability of Wnt1 to block these apoptotic components. Our work identifies Wnt1 and its downstream signaling as cellular targets with high clinical potential for novel treatment strategies for multiple disorders precipitated by oxidative stress.

  16. C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint

    Science.gov (United States)

    Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C

    2014-01-01

    The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090

  17. SCFCyclin F-dependent degradation of CDC6 suppresses DNA re-replication

    DEFF Research Database (Denmark)

    Walter, David; Hoffmann, Saskia; Komseli, Eirini-Stavroula

    2016-01-01

    interact through defined sequence motifs that promote CDC6 ubiquitylation and degradation. Absence of Cyclin F or expression of a stable mutant of CDC6 promotes re-replication and genome instability in cells lacking the CDT1 inhibitor Geminin. Together, our work reveals a novel SCF(Cyclin F...

  18. Apoptotic engulfment pathway and schizophrenia.

    LENUS (Irish Health Repository)

    Chen, Xiangning

    2009-01-01

    BACKGROUND: Apoptosis has been speculated to be involved in schizophrenia. In a previously study, we reported the association of the MEGF10 gene with the disease. In this study, we followed the apoptotic engulfment pathway involving the MEGF10, GULP1, ABCA1 and ABCA7 genes and tested their association with the disease. METHODOLOGY\\/PRINCIPAL FINDINGS: Ten, eleven and five SNPs were genotyped in the GULP1, ABCA1 and ABCA7 genes respectively for the ISHDSF and ICCSS samples. In all 3 genes, we observed nominally significant associations. Rs2004888 at GULP1 was significant in both ISHDSF and ICCSS samples (p = 0.0083 and 0.0437 respectively). We sought replication in independent samples for this marker and found highly significant association (p = 0.0003) in 3 Caucasian replication samples. But it was not significant in the 2 Chinese replication samples. In addition, we found a significant 2-marker (rs2242436 * rs3858075) interaction between the ABCA1 and ABCA7 genes in the ISHDSF sample (p = 0.0022) and a 3-marker interaction (rs246896 * rs4522565 * rs3858075) amongst the MEGF10, GULP1 and ABCA1 genes in the ICCSS sample (p = 0.0120). Rs3858075 in the ABCA1 gene was involved in both 2- and 3-marker interactions in the two samples. CONCLUSIONS\\/SIGNIFICANCE: From these data, we concluded that the GULP1 gene and the apoptotic engulfment pathway are involved in schizophrenia in subjects of European ancestry and multiple genes in the pathway may interactively increase the risks to the disease.

  19. To the nucleolar density and size in apoptotic human leukemic myeloblasts produced in vitro by Trichostatin A

    Directory of Open Access Journals (Sweden)

    K Smetana

    2009-08-01

    Full Text Available The present study was designed to provide more information on nucleoli in apoptotic cells, which were represented in the present study by cultured leukemic myeloblasts (Kasumi-1 cells. The apoptotic process in these cells was produced by trichostatin A (TSA that is a histone deacetylase inhibitor with strong cytostatic effects. The selected TSA concentration added to cultures facilitated to study apoptotic and notapoptotic cells in one and the same specimen. The nucleolar diameter and density were determined using computer assisted measurement and densitometry in specimens stained for RNA. In comparison with not-apoptotic cells, in apoptotic cells, nucleolar mean diameter did not change significantly and nucleolar RNA density was also not apparently different. On the other hand, the cytoplasmic RNA density in apoptotic cells was markedly reduced. Thus it seemed to be possible that the transcribed RNA remained “frozen” within the nucleolus but its transport to the cytoplasm decreased or stopped. However, the possibility of the RNA degradation in the cytoplasm of apoptotic cells based on the present study cannot be eliminated. At this occasion it should be added that AgNORs reflecting nucleolar biosynthetic and cell proliferation activity in apoptotic cells decreased in number or disappeared. The presented results also indicated that large nucleoli intensely stained for RNA need not be necessarily related to the high nucleolar biosynthetic or cell proliferation activity and may be also present in apoptotic cells responding to the cytostatic treatment.

  20. Studying apoptotic cell death by flow cytometry

    International Nuclear Information System (INIS)

    Ormerod, Michael G.

    1998-01-01

    Full text: Programmed cell death (PCD) is of fundamental importance in the normal development of an animal and also in tumour biology and radiation biology. During PCD a sequence of changes occurs in cells giving rise to an apoptotic cascade of events. The main elements of this cascade are rapidly being elucidated. Flow cytometry has been used to follow many of these changes. It also has been used to quantify the number of apoptotic cells in a culture and, more recently, in clinical samples. In this review, the properties of apoptotic cells and the main feature of apoptotic cascade will be described. How flow cytometry can be used to follow changes during the apoptotic cascade will be discussed

  1. Early-stage apoptosis is associated with DNA-damage-independent ATM phosphorylation and chromatin decondensation in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Schou, Kenneth Bødtker; Schneider, Linda; Christensen, Søren Tvorup

    2008-01-01

    Chromatin condensation and degradation of DNA into internucleosomal DNA fragments are key hallmarks of apoptosis. The phosphorylation of protein kinase ataxia telangiectasia mutated (ATM) and histone H2A.X was recently shown to occur concurrently with apoptotic DNA fragmentation. We have used...... necrosis factor-alpha mixed with cycloheximide (TNF-alpha/CHX). In extension to previous findings, ATM phosphorylation was associated with chromatin decondensation, i.e., by loss of dense foci of constitutive heterochromatin. These results suggest that chromatin is decondensed and that ATM is activated...

  2. VRK1 phosphorylates and protects NBS1 from ubiquitination and proteasomal degradation in response to DNA damage.

    Science.gov (United States)

    Monsalve, Diana M; Campillo-Marcos, Ignacio; Salzano, Marcella; Sanz-García, Marta; Cantarero, Lara; Lazo, Pedro A

    2016-04-01

    NBS1 is an early component in DNA-Damage Response (DDR) that participates in the initiation of the responses aiming to repair double-strand breaks caused by different mechanisms. Early steps in DDR have to react to local alterations in chromatin that are induced by DNA damage. NBS1 participates in the early detection of DNA damage and functions as a platform for the recruitment and assembly of components that are sequentially required for the repair process. In this work we have studied whether the VRK1 chromatin kinase can affect the activation of NBS1 in response to DNA damage induced by ionizing radiation. VRK1 is forming a basal preassembled complex with NBS1 in non-damaged cells. Knockdown of VRK1 resulted in the loss of NBS1 foci induced by ionizing radiation, an effect that was also detected in cell-cycle arrested cells and in ATM (-/-) cells. The phosphorylation of NBS1 in Ser343 by VRK1 is induced by either doxorubicin or IR in ATM (-/-) cells. Phosphorylated NBS1 is also complexed with VRK1. NBS1 phosphorylation by VRK1 cooperates with ATM. This phosphorylation of NBS1 by VRK1 contributes to the stability of NBS1 in ATM (-/-) cells, and the consequence of its loss can be prevented by treatment with the MG132 proteasome inhibitor of RNF8. We conclude that VRK1 regulation of NBS1 contributes to the stability of the repair complex and permits the sequential steps in DDR. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Photo-degradation of CT-DNA with a series of carbothioamide ruthenium (II) complexes - Synthesis and structural analysis

    Science.gov (United States)

    Muthuraj, V.; Umadevi, M.

    2018-04-01

    The present research article is related with the method of preparation, structure and spectroscopic properties of a series of carbothioamide ruthenium (II) complexes with N and S donor ligands namely, 2-((6-chloro-4-oxo-4H-chromen-3-yl)methylene) hydrazine carbothioamide (ClChrTs)/2-((6-methoxy-4-oxo-4H-chromen-3-yl)methylene)hydrazine carbothioamide (MeOChrTS). The synthesized complexes were characterized by several techniques using analytical methods as well as by spectral techniques such as FT-IR, 1HNMR, 13CNMR, ESI mass and thermogravimetry/differential thermal analysis (TG-DTA). The IR spectra shows that the ligand acts as a neutral bidentate with N and S donor atoms. The biological activity of the prepared compounds and metal complexes were tested against cell line of calf-thymus DNA via an intercalation mechanism (MCF-7). In addition, the interaction of Ru(II) complexes and its free ligands with CT-DNA were also investigated by titration with UV-Vis spectra, fluorescence spectra, and Circular dichroism studies. Results suggest that both of the two Ru(II) complexes can bind with calf-thymus DNA via an intercalation mechanism.

  4. DNA degradation in genetically modified rice with Cry1Ab by food processing methods: implications for the quantification of genetically modified organisms.

    Science.gov (United States)

    Xing, Fuguo; Zhang, Wei; Selvaraj, Jonathan Nimal; Liu, Yang

    2015-05-01

    Food processing methods contribute to DNA degradation, thereby affecting genetically modified organism detection and quantification. This study evaluated the effect of food processing methods on the relative transgenic content of genetically modified rice with Cry1Ab. In steamed rice and rice noodles, the levels of Cry1Ab were ⩾ 100% and <83%, respectively. Frying and baking in rice crackers contributed to a reduction in Pubi and Cry1Ab, while microwaving caused a decrease in Pubi and an increase in Cry1Ab. The processing methods of sweet rice wine had the most severe degradation effects on Pubi and Cry1Ab. In steamed rice and rice noodles, Cry1Ab was the most stable, followed by SPS and Pubi. However, in rice crackers and sweet rice wine, SPS was the most stable, followed by Cry1Ab and Pubi. Therefore, Cry1Ab is a better representative of transgenic components than is Pubi because the levels of Cry1Ab were less affected compared to Pubi. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Pt(O,O'-acac)(gamma-acac)(DMS)], a new Pt compound exerting fast cytotoxicity in MCF-7 breast cancer cells via the mitochondrial apoptotic pathway.

    Science.gov (United States)

    Muscella, A; Calabriso, N; Fanizzi, F P; De Pascali, S A; Urso, L; Ciccarese, A; Migoni, D; Marsigliante, S

    2008-01-01

    We showed previously that a new Pt complex containing an O,O'-chelated acetylacetonate ligand (acac) and a dimethylsulphide in the Pt coordination sphere, [Pt(O,O'-acac)(gamma-acac)(DMS)], induces apoptosis in HeLa cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also cytotoxic in a MCF-7 breast cancer cell line relatively insensitive to cisplatin, and to gain a more detailed analysis of the cell death pathways. Cells were treated with Pt compounds and cytotoxicity tests were performed, together with Western blotting of various proteins involved in apoptosis. The mitochondrial membrane potential was assessed by fluorescence microscopy and spectrofluorometry and the Pt bound to cell fractions was measured by atomic absorption spectrometry. In contrast to cisplatin, the cytotoxicity of [Pt(O,O'-acac)(gamma-acac)(DMS)] correlated with cellular accumulation but not with DNA binding. Also, the Pt content in DNA bases was considerably higher for cisplatin than for [Pt(O,O'-acac)(gamma-acac)(DMS)], thus excluding DNA as a target of [Pt(O,O'-acac)(gamma-acac)(DMS)]. [Pt(O,O'-acac)(gamma-acac)(DMS)] exerted high and fast apoptotic processes in MCF-7 cells since it provoked: (a) mitochondria depolarization; (b) cytochrome c accumulation in the cytosol; (c) translocation of Bax and truncated-Bid from cytosol to mitochondria and decreased expression of Bcl-2; (d) cleavage of caspases -7 and -9, and PARP degradation; (e) chromatin condensation and DNA fragmentation. [Pt(O,O'-acac)(gamma-acac)(DMS)] is highly cytotoxic for MCF-7 cells, cells relatively resistant to many chemotherapeutic agents, as it activates the mitochondrial apoptotic pathway. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] has the potential to provide us with new opportunities for therapeutic intervention.

  6. BAD-mediated apoptotic pathway is associated with human cancer development.

    Science.gov (United States)

    Stickles, Xiaomang B; Marchion, Douglas C; Bicaku, Elona; Al Sawah, Entidhar; Abbasi, Forough; Xiong, Yin; Bou Zgheib, Nadim; Boac, Bernadette M; Orr, Brian C; Judson, Patricia L; Berry, Amy; Hakam, Ardeshir; Wenham, Robert M; Apte, Sachin M; Berglund, Anders E; Lancaster, Johnathan M

    2015-04-01

    The malignant transformation of normal cells is caused in part by aberrant gene expression disrupting the regulation of cell proliferation, apoptosis, senescence and DNA repair. Evidence suggests that the Bcl-2 antagonist of cell death (BAD)-mediated apoptotic pathway influences cancer chemoresistance. In the present study, we explored the role of the BAD-mediated apoptotic pathway in the development and progression of cancer. Using principal component analysis to derive a numeric score representing pathway expression, we evaluated clinico-genomic datasets (n=427) from corresponding normal, pre-invasive and invasive cancers of different types, such as ovarian, endometrial, breast and colon cancers in order to determine the associations between the BAD-mediated apoptotic pathway and cancer development. Immunofluorescence was used to compare the expression levels of phosphorylated BAD [pBAD (serine-112, -136 and -155)] in immortalized normal and invasive ovarian, colon and breast cancer cells. The expression of the BAD-mediated apoptotic pathway phosphatase, PP2C, was evaluated by RT-qPCR in the normal and ovarian cancer tissue samples. The growth-promoting effects of pBAD protein levels in the immortalized normal and cancer cells were assessed using siRNA depletion experiments with MTS assays. The expression of the BAD-mediated apoptotic pathway was associated with the development and/or progression of ovarian (n=106, pBAD-mediated apoptotic pathway is thus associated with the development of human cancers likely influenced by the protein levels of pBAD.

  7. Mitotic and apoptotic activity in colorectal neoplasia.

    Science.gov (United States)

    Kohoutova, Darina; Pejchal, Jaroslav; Bures, Jan

    2018-05-18

    Colorectal cancer (CRC) is third most commonly diagnosed cancer worldwide. The aim of the prospective study was to evaluate mitosis and apoptosis of epithelial cells at each stage of colorectal neoplasia. A total of 61 persons were enrolled into the study: 18 patients with non-advanced colorectal adenoma (non-a-A), 13 patients with advanced colorectal adenoma (a-A), 13 patients with CRC and 17 controls: individuals with normal findings on colonoscopy. Biopsy samples were taken from pathology (patients) and healthy mucosa (patients and healthy controls). Samples were formalin-fixed paraffin-embedded and stained with haematoxylin-eosin. Mitotic and apoptotic activity were evaluated in lower and upper part of the crypts and in the superficial compartment. Apoptotic activity was also assessed using detection of activated caspase-3. In controls, mitotic activity was present in lower part of crypts, accompanied with low apoptotic activity. Mitotic and apoptotic activity decreased (to almost zero) in upper part of crypts. In superficial compartment, increase in apoptotic activity was observed. Transformation of healthy mucosa into non-a-A was associated with significant increase of mitotic activity in lower and upper part of the crypts and with significant increase of apoptotic activity in all three compartments; p colorectal neoplasia were observed. Detection of activated caspase-3 confirmed the above findings in apoptotic activity. Significant dysregulation of mitosis and apoptosis during the progression of colorectal neoplasia, corresponding with histology, was confirmed. In patients with sporadic colorectal neoplasia, healthy mucosa does not display different mitotic and apoptotic activity compared to mucosa in healthy controls and therefore adequate endoscopic/surgical removal of colorectal neoplasia is sufficient.

  8. In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer.

    LENUS (Irish Health Repository)

    Murphy, Therese M

    2011-01-01

    Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC).

  9. Pro-apoptotic activity of new analog of anthracyclines--WP 631 in advanced ovarian cancer cell line.

    Science.gov (United States)

    Gajek, Arkadiusz; Denel, Marta; Bukowska, Barbara; Rogalska, Aneta; Marczak, Agnieszka

    2014-03-01

    In this work we investigated the mode of cell death induced by WP 631, a novel anthracycline antibiotic, in the ovarian cancer cell line (OV-90) derived from the malignant ascites of a patient diagnosed with advanced disease. The effects were compared with those of doxorubicin (DOX), a first generation anthracycline. The ability of WP 631 to induce apoptosis and necrosis was examined by double staining with Annexin V and propidium iodide, measurements of the level of intracellular calcium ions and cytochrome c, PARP cleavage. We also investigated the possible involvement of the caspases activation, DNA degradation (comet assay) and intracellular reactive oxygen species (ROS) production in the development of the apoptotic events and their significance for drug efficiency. The results obtained clearly demonstrate that antiproliferative capacity of WP 631 in tested cell line was a few times greater than that of DOX. Furthermore, ovarian cancer cells treated with WP 631 showed a higher mean level of basal DNA damage in comparison to DOX. In conclusion, WP 631 is able to induce caspase - dependent apoptosis in human ovarian cancer cells. Obtained results suggested that WP 631 may be a candidate for further evaluation as chemotherapeutic agents for human cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. DNA degradation by bleomycin: evidence for 2'R-proton abstraction and for C-O bond cleavage accompanying base propenal formation

    International Nuclear Information System (INIS)

    Ajmera, S.; Wu, J.C.; Worth, L. Jr.; Rabow, L.E.; Stubbe, J.; Kozarich, J.W.

    1986-01-01

    Reaction of poly(dA-[2'S- 3 H]dU) with activated bleomycin yields [ 3 H] uracil propenal that completely retains the tritium label. In contrast, the authors have previously shown that reaction of poly(dA-[2'R- 3 H]dU) with activated bleomycin affords unlabeled uracil propenal. They have also prepared both cis- and trans-thymine propenals by chemical synthesis and have observed that the trans isomer is the exclusive product of the bleomycin reaction. Moreover, the cis isomer was found to be stable to the conditions of bleomycin-induced DNA degradation. Taken together, these results establish that the formation of trans-uracil propenal occurs via an anti-elimination mechanism with the stereospecific abstraction of the 2R proton. The question of phosphodiester bond cleavage during base propenal formation has also been addressed by the analysis of the fate of oxygen-18 in poly(dA-[3'- 18 O]dT) upon reaction with activated bleomycin. The 5'-monophosphate oligonucleotide ends produced from thymine propenal formation have been converted to inorganic phosphate by the action of alkaline phosphatase, and the phosphate has been analyzed for 18 O content by 31 P NMR spectroscopy. The oxygen-18 is retained in the inorganic phosphate, establishing that the formation of thymine propenal by activated bleomycin proceeds with C-O bond cleavage at the 3-position

  11. Apoptotic function of human PMS2 compromised by the nonsynonymous single-nucleotide polymorphic variant R20Q

    OpenAIRE

    Marinovic-Terzic, Ivana; Yoshioka-Yamashita, Atsuko; Shimodaira, Hideki; Avdievich, Elena; Hunton, Irina C.; Kolodner, Richard D.; Edelmann, Winfried; Wang, Jean Y. J.

    2008-01-01

    Mismatch repair (MMR) corrects replication errors during DNA synthesis. The mammalian MMR proteins also activate cell cycle checkpoints and apoptosis in response to persistent DNA damage. MMR-deficient cells are resistant to cisplatin, a DNA cross-linking agent used in chemotherapy, because of impaired activation of apoptotic pathways. It is shown that postmeiotic segregation 2 (PMS2), an MMR protein, is required for cisplatin-induced activation of p73, a member of the p53 family of transcrip...

  12. Androgen receptor in early apoptotic follicles in the porcine ovary at pregnancy.

    Directory of Open Access Journals (Sweden)

    Zbigniew Tabarowski

    2006-09-01

    Full Text Available Localization of androgen receptor (AR was investigated in ovarian follicles developing and undergoing atresia during pregnancy in the pig. Immunohistochemical staining was conducted on ovarian antral follicles isolated on different days of gestation: 10, 18, 32, 50, 70, and 90. Paraffin sections were also subjected to in situ DNA labeling. TUNEL staining revealed the presence of positive follicles on all days of pregnancy but the amount of atretic follicles increased with time. However, even on day 90 of gestation many follicles were normal, with no signs of atresia. In atretic follicles, apoptotic cells were localized predominantly in the granulosa while theca was much less affected. Atretic follicles with many apoptotic cells were negative for AR. Nuclear immunostaining for AR was positive in follicles with limited amount of apoptotic cells. The same relationship was observed in ovarian follicles isolated at various days of pregnancy.

  13. Enhanced tolerance against early and late apoptotic oxidative stress in mammalian neurons through nicotinamidase and sirtuin mediated pathways.

    Science.gov (United States)

    Chong, Zhao Zhong; Maiese, Kenneth

    2008-08-01

    Focus upon therapeutic strategies that intersect between pathways that govern cellular metabolism and cellular survival may offer the greatest impact for the treatment of a number of neurodegenerative and metabolic disorders, such as diabetes mellitus. In this regard, we investigated the role of a Drosophila nicotinamidase (DN) in mammalian SH-SY5Y neuronal cells during oxidative stress. We demonstrate that during free radical exposure to nitric oxide generators DN neuronal expression significantly increased cell survival and blocked cellular membrane injury. Furthermore, DN neuronal expression prevented both apoptotic late DNA degradation and early phosphatidylserine exposure that may serve to modulate inflammatory cell activation in vivo. Nicotinamidase activity that limited nicotinamide cellular concentrations appeared to be necessary for DN neuroprotection, since application of progressive nicotinamide concentrations could abrogate the benefits of DN expression during oxidative stress. Pathways that involved sirtuin activation and SIRT1 were suggested to be vital, at least in part, for DN to confer protection through a series of studies. First, application of resveratrol increased cell survival during oxidative stress either alone or in conjunction with the expression of DN to a similar degree, suggesting that DN may rely upon SIRT1 activation to foster neuronal protection. Second, the overexpression of either SIRT1 or DN in neurons prevented apoptotic injury specifically in neurons expressing these proteins during oxidative stress, advancing the premise that DN and SIRT1 may employ similar pathways for neuronal protection. Third, inhibition of sirtuin activity with sirtinol was detrimental to neuronal survival during oxidative stress and prevented neuronal protection during overexpression of DN or SIRT1, further supporting that SIRT1 activity may be necessary for DN neuroprotection during oxidative stress. Implementation of further work to elucidate the

  14. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun-Ah [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From

  15. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of ...

    African Journals Online (AJOL)

    Purpose: To determine and compare the antioxidant, antiproliferative and apoptotic effects of leaf infusions of Ilex laurina ... Both plant infusions inhibited viability and cell growth of SW480 and SW620 cells. .... 100 g of dry extract, from a gallic acid calibration curve [9]. ..... antioxidant capacity and in vitro inhibition of colon.

  16. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of ...

    African Journals Online (AJOL)

    Purpose: To determine and compare the antioxidant, antiproliferative and apoptotic effects of leaf infusions of Ilex laurina and Ilex paraguariensis in colon cancer cells. Methods: Antioxidant activity was determined by ORAC (Oxygen Radical Absorbance Capacity) and FRAP (Ferric Reducing Antioxidant Power). Cytotoxic ...

  17. Detection of apoptotic cells using immunohistochemistry

    NARCIS (Netherlands)

    Newbold, Andrea; Martin, Ben P.; Cullinane, Carleen; Bots, Michael

    2014-01-01

    Immunohistochemistry is commonly used to show the presence of apoptotic cells in situ. In this protocol, B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples are

  18. Proposed Pharmacological Countermeasures Against Apoptotic Cell Death in Experimental Models Mimicking Space Environment Damage

    Science.gov (United States)

    Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio

    2008-06-01

    Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.

  19. Stabilization Of Apoptotic Cells: Generation Of Zombie Cells

    Directory of Open Access Journals (Sweden)

    José A. Sánchez Alcázar

    2015-08-01

    Stabilization of apoptotic cells can be used for reliable detection and quantification of apoptosis in cultured cells and may allow a safer administration of apoptotic cells in clinical applications. Furthermore, it opens new avenues in the functional reconstruction of apoptotic cells for longer preservation.

  20. Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.

    Science.gov (United States)

    Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A

    2002-01-01

    We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.

  1. Effects of combined prenatal stress and toluene exposure on apoptotic neurodegeneration in cerebellum and hippocampus of rats

    DEFF Research Database (Denmark)

    Ladefoged, Ole; Hougaard, Karin Sørig; Hass, Ulla

    2004-01-01

    the offspring for developmental neurotoxicity and level of apoptosis in the brain. The number of apoptotic cells in cerebellum postnatal day 22, 24, and 27 and in hippocampus (postnatal day 22, 24, and 27) were counted after visualization by the TUNEL staining or measured by DNA-laddering technique. Caspase-3...

  2. The stability and degradation of dietary DNA in the gastrointestinal tract of mammals: implications for horizontal gene transfer and the biosafety of GMOs.

    Science.gov (United States)

    Rizzi, Aurora; Raddadi, Noura; Sorlini, Claudia; Nordgrd, Lise; Nielsen, Kaare Magne; Daffonchio, Daniele

    2012-01-01

    The fate of dietary DNA in the gastrointestinal tract (GIT) of animals has gained renewed interest after the commercial introduction of genetically modified organisms (GMO). Among the concerns regarding GM food, are the possible consequences of horizontal gene transfer (HGT) of recombinant dietary DNA to bacteria or animal cells. The exposure of the GIT to dietary DNA is related to the extent of food processing, food composition, and to the level of intake. Animal feeding studies have demonstrated that a minor amount of fragmented dietary DNA may resist the digestive process. Mammals have been shown to take up dietary DNA from the GIT, but stable integration and expression of internalized DNA has not been demonstrated. Despite the ability of several bacterial species to acquire external DNA by natural transformation, in vivo transfer of dietary DNA to bacteria in the intestine has not been detected in the few experimental studies conducted so far. However, major methodological limitations and knowledge gaps of the mechanistic aspects of HGT calls for methodological improvements and further studies to understand the fate of various types of dietary DNA in the GIT.

  3. PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma

    Science.gov (United States)

    Karpel-Massler, Georg; Pareja, Fresia; Aimé, Pascaline; Shu, Chang; Chau, Lily; Westhoff, Mike-Andrew; Halatsch, Marc-Eric; Crary, John F.; Canoll, Peter; Siegelin, Markus D.

    2014-01-01

    Background Resistance to apoptosis is a paramount issue in the treatment of Glioblastoma (GBM). We show that targeting PARP by the small molecule inhibitors, Olaparib (AZD-2281) or PJ34, reduces proliferation and lowers the apoptotic threshold of GBM cells in vitro and in vivo. Methods The sensitizing effects of PARP inhibition on TRAIL-mediated apoptosis and potential toxicity were analyzed using viability assays and flow cytometry in established GBM cell lines, low-passage neurospheres and astrocytes in vitro. Molecular analyses included western blots and gene silencing. In vivo, effects on tumor growth were examined in a murine subcutaneous xenograft model. Results The combination treatment of PARP inhibitors and TRAIL led to an increased cell death with activation of caspases and inhibition of formation of neurospheres when compared to single-agent treatment. Mechanistically, pharmacological PARP inhibition elicited a nuclear stress response with up-regulation of down-stream DNA-stress response proteins, e.g., CCAAT enhancer binding protein (C/EBP) homology protein (CHOP). Furthermore, Olaparib and PJ34 increased protein levels of DR5 in a concentration and time-dependent manner. In turn, siRNA-mediated suppression of DR5 mitigated the effects of TRAIL/PARP inhibitor-mediated apoptosis. In addition, suppression of PARP-1 levels enhanced TRAIL-mediated apoptosis in malignant glioma cells. Treatment of human astrocytes with the combination of TRAIL/PARP inhibitors did not cause toxicity. Finally, the combination treatment of TRAIL and PJ34 significantly reduced tumor growth in vivo when compared to treatment with each agent alone. Conclusions PARP inhibition represents a promising avenue to overcome apoptotic resistance in GBM. PMID:25531448

  4. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis

    International Nuclear Information System (INIS)

    Reich, Charles F.; Pisetsky, David S.

    2009-01-01

    Microparticles are small membrane-bound vesicles that are released from apoptotic cells during blebbing. These particles contain DNA and RNA and display important functional activities, including immune system activation. Furthermore, nucleic acids inside the particle can be analyzed as biomarkers in a variety of disease states. To elucidate the nature of microparticle nucleic acids, DNA and RNA released in microparticles from the Jurkat T and HL-60 promyelocytic cell lines undergoing apoptosis in vitro were studied. Microparticles were isolated from culture media by differential centrifugation and characterized by flow cytometry and molecular approaches. In these particles, DNA showed laddering by gel electrophoresis and was present in a form that allowed direct binding by a monoclonal anti-DNA antibody, suggesting antigen accessibility even without fixation. Analysis of RNA by gel electrophoresis showed intact 18s and 28s ribosomal RNA bands, although lower molecular bands consistent with 28s ribosomal RNA degradation products were also present. Particles also contained messenger RNA as shown by RT-PCR amplification of sequences for β-actin and GAPDH. In addition, gel electrophoresis showed the presence of low molecular weight RNA in the size range of microRNA. Together, these results indicate that microparticles from apoptotic Jurkat and HL-60 cells contain diverse nucleic acid species, indicating translocation of both nuclear and cytoplasmic DNA and RNA as particle release occurs during death

  5. Scutellarein antagonizes the tumorigenesis by modulating cytokine VEGF mediated neoangiogenesis and DFF-40 actuated nucleosomal degradation

    International Nuclear Information System (INIS)

    Thirusangu, Prabhu; Vigneshwaran, V.; Vijay Avin, B.R.; Rakesh, H.; Vikas, H.M.; Prabhakar, B.T.

    2017-01-01

    Neoplastic cells often reside in distinctive tumor hypoxia armed with a series of adaptive responses including oxidative stress, defective apoptotic machinery and neoangiogenesis, through that further confer cell survival improvement. Plants still acts as reservoir of natural chemicals to provide newer active pharmacophores. Scutellarein is flavones which has wide range of pharmacophoral effects. In our current research, scutellarein employed for targeting oxidative stress mediated tumor angiogenesis and apoptotic nuclear fragmentation. Experimental results revealed that scutellarein has antiproliferative index against multiple cancer cell lines and diminished the oxidative stress and tumor development of murine ascitic lymphoma & inflammatory hepatocellular carcinoma. Eventual consequences lead to reduced neovessel formation by abrogating angiogeneic factors cytokine-VEGF-A, Flt-1, HIF-1α, MMP-2 and MMP-9 and reversing of evading apoptosis by activating caspase-3 activated DNA fragmentation factor (DFF-40) mediated nucleosomal degradation. In summary, our experimental evidences suggest that scutellarein has strong potentiality to attenuate the tumor development by modulating sprouting neovasculature and DFF-40 mediated apoptosis. - Highlights: • Scutellarein exhibits potent neoplastic effect against ascitic and DEN-induced liver carcinoma in-vivo. • Scutellarein reticence the oxidative stress and angiogenesis on tumor and non-tumor models. • Scutellarein modulates tumor vasculature by altering tumor angiogenic factor’s expressions. • Scutellarein actuates the DFF-40 mediated nucleosomal degradation in DLA tumor.

  6. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    Science.gov (United States)

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-01-01

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075

  7. Differential regulation of caspase-9 by ionizing radiation- and UV-induced apoptotic pathways in thymic cells

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Mayumi; Koga, Satomi [Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023 (Japan); Tatsuka, Masaaki, E-mail: tatsuka@pu-hiroshima.ac.jp [Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023 (Japan)

    2010-06-01

    In mouse thymic lymphoma 3SB cells bearing wild type p53, ionizing radiation (IR) and UV light are potent triggers of caspase-3-dependent apoptosis. Although cytochrome c was released from mitochondria as expected, caspase-9 activation was not observed in UV-exposed cells. Laser scanning confocal microscopy analysis showed that caspase-9 is localized in an unusual punctuated pattern in UV-induced apoptotic cells. In agreement with differences in the status of caspase-9 activation between IR and UV, subcellular protein fractionation experiments showed that pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1), normally a part of the apoptosome assembled in response to the release of cytochrome c from mitochondria, and B-cell lymphoma extra long (Bcl-xL), an inhibitor of the change in mitochondrial membrane permeability, were redistributed by the IR-exposure but not by the UV-exposure. Instead of the sequestration of the capase-9/apoptosome activation in UV-induced apoptotic cells, the extrinsic apoptotic signaling generated by caspase-8 activation and consequent activation of B-cell lymphoma extra long (Bid) to release cytochrome c from mitochondria was observed. Thus, the post-mitochondrial apoptotic pathway downstream of cytochrome c release cannot operate the apoptosome function in UV-induced apoptosis in thymic 3SB cells. The intracellular redistribution and sequestration of apoptosis-related proteins upon mitochondrion-based apoptotic signaling was identified as a novel cellular mechanism to respond to DNA damage in an agent type-specific manner. This finding suggests that the kind of the critical ultimate apoptosis-inducing DNA lesion complex form resulting from the agent-specific DNA damage responses is important to determine which of apoptosis signals would be activated.

  8. Apoptotic pathways as regulators of recombination

    International Nuclear Information System (INIS)

    Gauny, S.S.; Kronenberg, A.; Liu, W.-C.

    2003-01-01

    Apoptosis, or programmed cell death (PCD), is a fundamental process that protects organismal integrity. In earlier work, we demonstrated that over-expression of either of two anti-apoptotic members of the BCL-2 family (BCL-2 or BCL-X L could elevate the frequency of radiation-induced mutations at the autosomal TK1 locus in human TK6 lymphoblasts that express wild-type TP53. Ectopic expression of BCL-X L also elevated the frequencies of double-strand break-induced gene conversion. The purpose of this study is to determine if BCL-2 family proteins promote radiation mutagenesis indirectly through their suppression of PCD, or whether the 'pro-mutagenic' function of these proteins can be separated from their anti-apoptotic function. We developed stable transfectants of TK6 cells that express a mutated form of BCL-X L with a single amino acid substitution in the BH1 domain that is known to interfere with the ability to suppress PCD (BCL-X L gly159ala). We also developed stable transfectants of TK6 cells that express a dominant negative caspase-9 that suppresses PCD. The results to date indicate that the mutated form of BCL-X L (gly159ala) does not suppress x-ray-induced PCD in TK6 cells, but it elevates radiation-induced TK1 mutant frequencies to the same extent as high level expression of wild-type BCL-X L . These data suggest that the anti-apoptotic function of BCL-2 family proteins is not required to elevate radiation mutagenesis. Separate experiments using TK6 cells that express a dominant negative caspase-9 indicate that this protein inhibits x-ray-induced PCD but TK1 mutant frequencies are not elevated. Taken together, the results suggest there is a separate function of BCL-2 family proteins that elevates radiation-induced mutagenesis independent of the well-known anti-apoptotic effect of these proteins of importance in human carcinogenesis

  9. Interaction of Ddc1 and RPA with single-stranded/double-stranded DNA junctions in yeast whole cell extracts: Proteolytic degradation of the large subunit of replication protein A in ddc1Δ strains.

    Science.gov (United States)

    Sukhanova, Maria V; D'Herin, Claudine; Boiteux, Serge; Lavrik, Olga I

    2014-10-01

    To characterize proteins that interact with single-stranded/double-stranded (ss/ds) DNA junctions in whole cell free extracts of Saccharomyces cerevisiae, we used [(32)P]-labeled photoreactive partial DNA duplexes containing a 3'-ss/ds-junction (3'-junction) or a 5'-ss/ds-junction (5'-junction). Identification of labeled proteins was achieved by MALDI-TOF mass spectrometry peptide mass fingerprinting and genetic analysis. In wild-type extract, one of the components of the Ddc1-Rad17-Mec3 complex, Ddc1, was found to be preferentially photocrosslinked at a 3'-junction. On the other hand, RPAp70, the large subunit of the replication protein A (RPA), was the predominant crosslinking product at a 5'-junction. Interestingly, ddc1Δ extracts did not display photocrosslinking of RPAp70 at a 5'-junction. The results show that RPAp70 crosslinked to DNA with a 5'-junction is subject to limited proteolysis in ddc1Δ extracts, whereas it is stable in WT, rad17Δ, mec3Δ and mec1Δ extracts. The degradation of the RPAp70-DNA adduct in ddc1Δ extract is strongly reduced in the presence of the proteasome inhibitor MG 132. We also addressed the question of the stability of free RPA, using anti-RPA antibodies. The results show that RPAp70 is also subject to proteolysis without photocrosslinking to DNA upon incubation in ddc1Δ extract. The data point to a novel property of Ddc1, modulating the turnover of DNA binding proteins such as RPAp70 by the proteasome. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Foveolar cells phagocytose apoptotic neutrophils in chronic active Helicobacter pylori gastritis.

    Science.gov (United States)

    Caruso, R A; Fedele, F; Di Bella, C; Mazzon, E; Rigoli, L

    2012-11-01

    The recognition and removal of apoptotic inflammatory cells by tissue macrophages and non-professional phagocytes, in a process called efferocytosis, is required for resolution of inflammation and is actively anti-inflammatory. We have previously demonstrated phagocytosis of apoptotic neutrophils by tumor cells in human gastric carcinoma, but to date, there have been no studies investigating this process in chronic active Helicobacter pylori gastritis. Biopsy specimens from 28 subjects with or without H. pylori infection and active inflammation were examined and graded according to the updated Sydney system. Light microscopy, electron microscopy, and Terminal Deoxynucleotidyltransferase-Mediated UTP End Labeling staining were used to identify apoptosis. H. pylori infection was detected by histology and by molecular assay in 16 out of 28 cases. DNA from paraffin-embedded gastric biopsies was amplified using primers specific for cagA, for the cag "empty site" as well as for the s and m alleles of vacA. The more virulent cagA-positive strains were found in five out of nine patients with chronic active gastritis. The vacA s1/m1 and s2/m1 genotypes were more common in nine patients with chronic active gastritis, while the vacA s2/m2 genotype was more frequent in seven patients with chronic inactive gastritis. Apoptotic neutrophils were also detected within the cytoplasmic vacuoles of the foveolar cells of nine cases with chronic active gastritis. Transmission electron micrographs revealed further apoptotic neutrophils within spacious phagosomes of foveolar cells in a similar manner to those described in late-phase efferocytosis both in vivo and in vitro. These new observations expand the morphological spectrum of gastritis in patients infected with more virulent H. pylori strains, compatible with an anti-inflammatory role for the gastric epithelial cells in their removal of apoptotic neutrophils during active chronic gastritis.

  11. On the effect of oxygen or copper(II) in radiation-induced degradation of DNA in the presence of thiols

    International Nuclear Information System (INIS)

    Pruetz, W.A.; Moenig, Hans

    1987-01-01

    Degradiation of DNA when γ-irradiated in aqueous solutions containing cysteine can be efficiently enhanced not only with oxygen, but to the same extent also with Cu 2+ ions under hypoxic conditions. The result can be explained by 'self-repair' in this sytem due to recombination of DNA radical with RSS radical - R intermediates, and repair inhibition by oxygen or copper involving RSS radical - R scavenging. It is emphasized that oxygen enhancement in DNA-thiol systems may occur not only by peroxidation, via defect fixation (DNA-O radical 2 ) or thiol activation (RS-O radical 2 ), but also by the well-established inactivation of RSS radical - R by oxygen. There is evidence also from literature data for a correlation between oxygen enhancement and RSS radical - R stability, which varies with thiol concentration, pH and thiol structure. (author)

  12. Single Nucleotide Polymorphisms in Selected Apoptotic Genes and BPDE-Induced Apoptotic Capacity in Apparently Normal Primary Lymphocytes: A Genotype-Phenotype Correlation Analysis

    International Nuclear Information System (INIS)

    Hu, Z.; Li, Ch.; Chen, K.; Wang, L.E.; Sturgis, E.M.; Spitz, M.R.; Wei, Q.; Sturgis, E.M.

    2008-01-01

    Apoptotic capacity (AC) in primary lymphocytes may be a marker for cancer susceptibility, and functional single nucleotide polymorphisms (SNPs) in genes involved in apoptotic pathways may modulate cellular AC in response to DNA damage. To further examine the correlation between apoptotic genotypes and phenotype, we geno typed 14 published SNPs in 11 apoptosis-related genes (i.e., p53, Bcl-2, BAX, CASP9, DR4, Fas, FasL, CASP8, CASP10, CASP3, and CASP7) and assessed the AC in response to benzo[a]pyrene-7,8-9,10-diol epoxide (BPDE) in cultured primary lymphocytes from 172 cancer-free subjects. We found that among these 14 SNPs, R72P, intron 3 16-bp del/ins, and intron 6 G>A in , −938C>A in Bcl-2, and I522L in CASP10 were significant predictors of the BPDE-induced lymphocytic AC in single-locus analysis. In the combined analysis of the three variants, we found that the individuals with the diplotypes carrying 0-1 copy of the common R-del-G haplotype had higher AC values compared to other genotypes. Although the study size may not have the statistical power to detect the role of other SNPs in AC, our findings suggest that some SNPs in genes involved in the intrinsic apoptotic pathway may modulate lymphocytic AC in response to BPDE exposure in the general population. Larger studies are needed to validate these findings for further studying individual susceptibility to cancer and other apoptosis-related diseases

  13. Mis-targeting of the mitochondrial protein LIPT2 leads to apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Emanuele Bernardinelli

    Full Text Available Lipoyl(Octanoyl Transferase 2 (LIPT2 is a protein involved in the post-translational modification of key energy metabolism enzymes in humans. Defects of lipoic acid synthesis and transfer start to emerge as causes of fatal or severe early-onset disease. We show that the first 31 amino acids of the N-terminus of LIPT2 represent a mitochondrial targeting sequence and inhibition of the transit of LIPT2 to the mitochondrion results in apoptotic cell death associated with activation of the apoptotic volume decrease (AVD current in normotonic conditions, as well as over-activation of the swelling-activated chloride current (IClswell, mitochondrial membrane potential collapse, caspase-3 cleavage and nuclear DNA fragmentation. The findings presented here may help elucidate the molecular mechanisms underlying derangements of lipoic acid biosynthesis.

  14. Protective effects of melittin on transforming growth factor-β1 injury to hepatocytes via anti-apoptotic mechanism

    International Nuclear Information System (INIS)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun; Park, Yoon-Yub; Han, Sang-Mi; Park, Kwan-kyu

    2011-01-01

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-β1-induced apoptosis in hepatocytes. TGF-β1-treated hepatocytes were exposed to low doses (0.5 and 1 μg/mL) and high dose (2 μg/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-β1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-β1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-β1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-β1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-β1-mediated injury. - Highlights: → We investigated the anti-apoptotic effect of melittin on TGF-β1-induced hepatocyte. → TGF-β1 induces hepatocyte apoptosis. → TGF-β1-treated hepatocytes were exposed to low doses and high dose of melittin. → Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

  15. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    Science.gov (United States)

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  16. Genotoxic and apoptotic effects of Goeckerman therapy for psoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Borska, L.; Andrys, C.; Krejsek, J.; Hamakova, K.; Kremlacek, J.; Palicka, V.; Ranna, D.; Fiala, Z. [Charles University Prague, Prague (Czech Republic). Faculty of Medicine

    2010-03-15

    Goeckerman therapy (GT) for psoriasis is based on cutaneous application of crude coal tar (polycyclic aromatic hydrocarbons (PAH)) and exposure to ultraviolet radiation (UVR). PAH and UVR are mutagenic, carcinogenic and immunotoxic agents that promote apoptosis. We evaluated dermal absorption of PAH as well as the genotoxic and apoptotic effects of GT in 20 patients with psoriasis, by determining numbers of chromosomal abnormalities in peripheral lymphocytes, and levels of 1-hydroxypyrene (1-OHP), p53 protein and soluble FasL (sFasL) in urine and/or blood, before and after GT. Psoriasis Area and Severity Index (PASI) score was used to evaluate clinical efficacy of GT. Compared with pre-treatment levels, there was a significant increase in urine 1-OHP, indicating a high degree of dermal absorption of PAH (P <0.01). We also found a significant increase in the number of chromosomal abnormalities in peripheral blood lymphocytes (P <0.001), suggesting that GT is genotoxic; significantly increased p53 protein in plasma (P <0.05), an indicator of cell response to DNA damage; and significantly increased sFasL in serum (P <0.01), an indicator of apoptosis. The PASI score was significantly decreased after GT (P <0.001), confirming clinical benefit of this treatment. Our results demonstrate high dermal absorption of PAH during GT and provide evidence that GT promotes genotoxicity and apoptosis.

  17. Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Noelia Estévez-Calvar

    Full Text Available Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress.

  18. Apoptosis Triggers Specific, Rapid, and Global mRNA Decay with 3′ Uridylated Intermediates Degraded by DIS3L2

    Directory of Open Access Journals (Sweden)

    Marshall P. Thomas

    2015-05-01

    Full Text Available Apoptosis is a tightly coordinated cell death program that damages mitochondria, DNA, proteins, and membrane lipids. Little is known about the fate of RNA as cells die. Here, we show that mRNAs, but not noncoding RNAs, are rapidly and globally degraded during apoptosis. mRNA decay is triggered early in apoptosis, preceding membrane lipid scrambling, genomic DNA fragmentation, and apoptotic changes to translation initiation factors. mRNA decay depends on mitochondrial outer membrane permeabilization and is amplified by caspase activation. 3′ truncated mRNA decay intermediates with nontemplated uridylate-rich tails are generated during apoptosis. These tails are added by the terminal uridylyl transferases (TUTases ZCCHC6 and ZCCHC11, and the uridylated transcript intermediates are degraded by the 3′ to 5′ exonuclease DIS3L2. Knockdown of DIS3L2 or the TUTases inhibits apoptotic mRNA decay, translation arrest, and cell death, whereas DIS3L2 overexpression enhances cell death. Our results suggest that global mRNA decay is an overlooked hallmark of apoptosis.

  19. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    Amarante-Mendes G.P.

    1999-01-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  20. BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Sanja Aveic

    Full Text Available BCL2 associated Athano-Gene 1 (BAG1 is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.

  1. p53 dependent apoptotic cell death induces embryonic malformation in Carassius auratus under chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Paramita Banerjee Sawant

    Full Text Available Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD, leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD, ultimately resulting in significant (p<0.05 embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos.

  2. Apoptotic intrinsic pathway proteins predict survival in canine cutaneous mast cell tumours.

    Science.gov (United States)

    Barra, C N; Macedo, B M; Cadrobbi, K G; Pulz, L H; Huete, G C; Kleeb, S R; Xavier, J G; Catão-Dias, J L; Nishiya, A T; Fukumasu, H; Strefezzi, R F

    2018-03-01

    Mast cell tumours (MCTs) are the most frequent canine round cell neoplasms and show variable biological behaviours with high metastatic and recurrence rates. The disease is treated surgically and wide margins are recommended. Adjuvant chemotherapy and radiotherapy used in this disease cause DNA damage in neoplastic cells, which is aimed to induce apoptotic cell death. Resisting cell death is a hallmark of cancer, which contributes to the development and progression of tumours. The aim of this study was to investigate the expression of the proteins involved in the apoptotic intrinsic pathway and to evaluate their potential use as prognostic markers for canine cutaneous MCTs. Immunohistochemistry for BAX, BCL2, APAF1, Caspase-9, and Caspase-3 was performed in 50 canine cases of MCTs. High BAX expression was associated with higher mortality rate and shorter survival. BCL2 and APAF1 expressions offered additional prognostic information to the histopathological grading systems. The present results indicate that variations in the expression of apoptotic proteins are related to malignancy of cutaneous MCTs in dogs. © 2017 John Wiley & Sons Ltd.

  3. Significance of apoptotic cell death after γ-irradiation

    International Nuclear Information System (INIS)

    Wu, H.G.; Kim, I.H.; Ha, S.W.; Park, C.I.

    2003-01-01

    Full text: The objectives of this study are to investigate the significance of apoptotic death compared to total cell death after γ-ray irradiation in human Hand N cancer cell lines and to find out correlation between apoptosis and radiation sensitivity. Materials and Method: Head and neck cancer cell lines (PCI-1, PCI-13, and SNU-1066), leukemia cell line (CCRF-CEM), and fibroblast cell line (LM217) as a normal control were used for this study. Cells were irradiated using Cs-137 animal experiment irradiator. Total cell death was measured by clonogenic assay. Annexin-V staining was used to detect the fraction of apoptotic death. The resulting data was analyzed with two parameters, apoptotic index (AI) and apoptotic fraction(AF). AI is ratio of apoptotic cells to total cells, and AF is ration of apoptotic cell death to mutant frequencytion ex(Number of apoptotic cells) / (Number of total cells counted) AF = {(AI) / (1-survival fraction)} x 100 (%) Results. Surviving fraction at 2 Gy (SF2) were 0.741, 0.544, 0.313, 0.302, and 0.100 for PCI-1, PCI-13, SNU-1066, CCRF-CEM, and LM217 cell lines, respectively. Apoptosis was detected in all cell lines. Apoptotic index reached peak value at 72 hours after irradiation in head and neck cancer cell lines, and that was at 24 hours in CCRF-CEM and LM217. Total cell death increased exponentially with increasing radiation dose from 0 Gy to 8 Gy, but the change was minimal in apoptotic index (Fig. 1.). Apoptotic fractions at 2 Gy were 46%, 48%, 46%, 24%, and 19% and at 6 Gy were 20%, 33%, 35%, 17%, and 20% for PCI-1, PCI-13, SNU-1066, CCRF-CEM, and LM217, respectively. The radioresistant cell lines showed more higher apoptotic fraction at 2 Gy (Table 1.), but there was not such correlation at 6 Gy. Conclusion: All cell lines used in this study showed apoptosis after irradiation, but time course of apoptosis was different from that of leukemia cell line and normal fibroblast cell line. Reproductive cell death was more important

  4. Tamoxifen induces apoptotic neutrophil efferocytosis in horses.

    Science.gov (United States)

    Olave, C; Morales, N; Uberti, B; Henriquez, C; Sarmiento, J; Ortloff, A; Folch, H; Moran, G

    2018-03-01

    Macrophages and neutrophils are important cellular components in the process of acute inflammation and its subsequent resolution, and evidence increasingly suggests that they play important functions during the resolution of chronic, adaptive inflammatory processes. Exacerbated neutrophil activity can be harmful to surrounding tissues; this is important in a range of diseases, including allergic asthma and chronic obstructive pulmonary disease in humans, and equine asthma (also known as recurrent airway obstruction (RAO). Tamoxifen (TX) is a non-steroidal estrogen receptor modulator with effects on cell growth and survival. Previous studies showed that TX treatment in horses with induced acute pulmonary inflammation promoted early apoptosis of blood and BALF neutrophils, reduction of BALF neutrophils, and improvement in animals' clinical status. The aim of this study was to describe if TX induces in vitro efferocytosis of neutrophils by alveolar macrophages. Efferocytosis assay, myeloperoxidase (MPO) detection and translocation phosphatidylserine (PS) were performed on neutrophils isolated from peripheral blood samples from five healthy horses. In in vitro samples from heathy horses, TX treatment increases the phenomenon of efferocytosis of peripheral neutrophils by alveolar macrophages. Similar increases in supernatant MPO concentration and PS translocation were observed in TX-treated neutrophils, compared to control cells. In conclusion, these results confirm that tamoxifen has a direct effect on equine peripheral blood neutrophils, through stimulation of the engulfment of apoptotic neutrophils by alveolar macrophages.

  5. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    Science.gov (United States)

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  6. TAM receptors in apoptotic cell clearance, autoimmunity, and cancer.

    Science.gov (United States)

    Nguyen, Khanh-Quynh; Tsou, Wen-I; Kotenko, Sergei; Birge, Raymond B

    2013-08-01

    Receptor tyrosine kinases, Tyro-3, Axl and Mer, collectively designated as TAM, are involved in the clearance of apoptotic cells. TAM ligands, Gas6 and Protein S, bind to the surfaces of apoptotic cells, and at the same time, interact directly with TAM expressed on phagocytes, impacting the engulfment and clearance of apoptotic cells and debris. The well-tuned and balanced actions of TAM may affect a variety of human pathologies including autoimmunity, retinal degeneration, and cancer. This article emphasizes some of the emerging findings and mechanistic insights into TAM functions that are clinically relevant and possibly therapeutically targeted.

  7. Apoptotic function of human PMS2 compromised by the nonsynonymous single-nucleotide polymorphic variant R20Q.

    Science.gov (United States)

    Marinovic-Terzic, Ivana; Yoshioka-Yamashita, Atsuko; Shimodaira, Hideki; Avdievich, Elena; Hunton, Irina C; Kolodner, Richard D; Edelmann, Winfried; Wang, Jean Y J

    2008-09-16

    Mismatch repair (MMR) corrects replication errors during DNA synthesis. The mammalian MMR proteins also activate cell cycle checkpoints and apoptosis in response to persistent DNA damage. MMR-deficient cells are resistant to cisplatin, a DNA cross-linking agent used in chemotherapy, because of impaired activation of apoptotic pathways. It is shown that postmeiotic segregation 2 (PMS2), an MMR protein, is required for cisplatin-induced activation of p73, a member of the p53 family of transcription factors with proapoptotic activity. The human PMS2 is highly polymorphic, with at least 12 known nonsynonymous codon changes identified. We show here that the PMS2(R20Q) variant is defective in activating p73-dependent apoptotic response to cisplatin. When expressed in Pms2-deficient mouse fibroblasts, human PMS2(R20Q) but not PMS2 interfered with the apoptotic response to cisplatin. Correspondingly, PMS2 but not PMS2(R20Q) enhanced the cytotoxic effect of cisplatin measured by clonogenic survival. Because PMS2(R20Q) lacks proapoptotic activity, this polymorphic allele may modulate tumor responses to cisplatin among cancer patients.

  8. An assessment of Wx microsatellite allele, alkali degradation and differentiation of chloroplast DNA in traditional black rice (Oryza sativa L.) from Thailand and Lao PDR.

    Science.gov (United States)

    Prathepha, Preecha

    2007-01-15

    Thailand and Lao PDR are the country's rich rice diversity. To contribute a significant knowledge for development new rice varieties, a collection of 142 black rice (Oryza sativa) accessions were determined for variation of physico-chemical properties, Wx microsatellite allele, Wx allele and chloroplast DNA type. The results showed that amylose content of black rice accessions were ranged from 1.9 to 6.8%. All of the alkali disintegration types (high, intermediate and low) was observed in these rice with average of 1.75 on the 1-3 digestibility scale. The unique Wx microsatellite allele (CT)17 was found in these samples and all black rice strains carried Wx(b) allele. In addition, all black rice accessions were found the duplication of the 23 bp sequence motif in the exon 2 of the wx gene. This evidence is a common phenomenon in glutinous rice. Based on two growing condition for black rice, rainfed lowland and rainfed upland, chloroplast DNA type was distinct from each other. All rice strains from rainfed lowland was deletion plastotype, but all other rainfed upland strains were non-deletion types.

  9. faloabi@uniben.edu Antiproliferative and Pro-apoptotic activities

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Keyword: Persea americana, antiproliferative activity, apoptotic effect, flow ... of the stem bark of Persea americana in MCF-7 cell line by flow cytometer. .... of an electric milling machine. ... Flow Cytometric Measurement Of Cell Proliferation:.

  10. On the use of an appropriate TdT-mediated dUTP-biotin nick end labeling assay to identify apoptotic cells.

    OpenAIRE

    Lebon, C.; Rodriguez, G.V.; Zaoui, I.E.; Jaadane, I.; Behar-Cohen, F.; Torriglia, A.

    2015-01-01

    Apoptosis is an essential cellular mechanism involved in many processes such as embryogenesis, metamorphosis, and tissue homeostasis. DNA fragmentation is one of the key markers of this form of cell death. DNA fragmentation is executed by endogenous endonucleases such as caspase-activated DNase (CAD) in caspase-dependent apoptosis. The TUNEL (TdT-mediated dUTP-biotin nick end labeling) technique is the most widely used method to identify apoptotic cells in a tissue or culture and to assess dr...

  11. EXTRACELLULAR DNA AND THE LEVEL OF ITS METHYLATION IN DIFFERENT RHEUMATIC DISEASES

    Directory of Open Access Journals (Sweden)

    N O Shubayeva

    2012-01-01

    Conclusion. RDs are characterized by the higher concentration of apoptotic and necrotic DNA, impaired exDNA methylation, varying complexification of exDNA with monometinic proteins, which is associated with the hyperproduction of autoantibodies (including anti-exDNA antibodies and inflammatory markers.

  12. Detection of Reaction Intermediates in Mg2+-Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography.

    Science.gov (United States)

    Samara, Nadine L; Gao, Yang; Wu, Jinjun; Yang, Wei

    2017-01-01

    Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates. Here we present protocols used for successful studies of Mg 2+ -dependent DNA polymerases and ribonucleases that are applicable to analyses of a variety of metal ion-dependent reactions. © 2017 Elsevier Inc. All rights reserved.

  13. Radiation and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Riabchenko, N I

    1979-01-01

    Consideration is given to the effects of ionizing radiation on the structure of DNA. Physical and chemical methods of determining radiation damage to the primary (polynucleotide chain and nitrogenous base) and secondary (helical) structure of DNA are discussed, and the effects of ionizing radiation on deoxyribonucleoprotein complexes are considered. The radiolysis of DNA in vitro and in bacterial and mammalian cells is examined and cellular mechanisms for the repair of radiation-damaged DNA are considered, taking into account single-strand and double-strand breaks, gamma-radiation damage and deoxyribonucleoprotein-membrane complex damage. Postradiation DNA degradation in bacteria and lymphatic cells is also discussed.

  14. Harnessing Apoptotic Cell Clearance to Treat Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Philippe Saas

    2017-10-01

    Full Text Available Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell clearance during homeostasis has been shown to limit subsequent immune responses. Based on these observations, early-stage apoptotic cell infusion has been used to prevent unwanted inflammatory responses in different experimental models of autoimmune diseases or transplantation. Moreover, this approach has been shown to be feasible without any toxicity in patients undergoing allogeneic hematopoietic cell transplantation to prevent graft-versus-host disease. However, whether early-stage apoptotic cell infusion can be used to treat ongoing inflammatory disorders has not been reported extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial therapeutic effect is associated with the modulation of antigen-presenting cell functions mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of collagen-specific regulatory CD4+ T cells (Treg. Furthermore, the efficacy of this approach is not altered by the association with two standard treatments of rheumatoid arthritis (RA, methotrexate and tumor necrosis factor (TNF inhibition. Here, in the light of these observations and recent data of the literature, we discuss the mechanisms of early-stage apoptotic cell infusion and how this therapeutic approach can be transposed to patients with RA.

  15. The Acetone Extract of Sclerocarya birrea (Anacardiaceae) Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7)

    Science.gov (United States)

    Tanih, Nicoline Fri; Ndip, Roland Ndip

    2013-01-01

    Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913

  16. Pro-apoptotic effects of the flavonoid luteolin in rat H4IIE cells

    International Nuclear Information System (INIS)

    Michels, G.; Waetjen, W.; Niering, P.; Steffan, B.; Thi, Q.-H. Tran; Chovolou, Y.; Kampkoetter, A.; Bast, A.; Proksch, P.; Kahl, R.

    2005-01-01

    Polyphenols are ubiquitous substances in the diet. Their anti-oxidative, anti-inflammatory and anti-viral effects are of interest for human health, and polyphenols such as luteolin are used at high concentrations in food supplements. The aim of this project was to determine the intrinsic effects of luteolin in H4IIE rat hepatoma cells. Luteolin is relatively toxic, cell death was caused via induction of apoptosis as detected by DNA-ladder formation, by nuclear fragmentation and activation of apoptotic enzymes (caspase-2, -3/7, -9 and -8/10). Luteolin (250 μM, 24 h) increased the caspase-3/7 activity four-fold and the caspase-9 activity six-fold. In a time course experiment caspase-9 is activated after 6 h, while caspase-2 and -3/7 are activated after 12 h. After 24 h, caspase-8/10 also displays activation. We found a concentration-dependent increase in malondialdehyde release suggesting a prooxidative effect of luteolin. Furthermore, we analysed DNA strand break formation by luteolin and found a distinct increase of DNA strand breaks after incubation for 3 h with 100 μM luteolin, a concentration which induces oligonucleosomal DNA cleavage at 24 h. In conclusion, the sequence of events is compatible with the assumption that luteolin triggers the mitochondrial pathway of apoptosis, probably by inducing DNA damage

  17. Externalization and recognition by macrophages of large subunit of eukaryotic translation initiation factor 3 in apoptotic cells

    International Nuclear Information System (INIS)

    Nakai, Yuji; Shiratsuchi, Akiko; Manaka, Junko; Nakayama, Hiroshi; Takio, Koji; Zhang Jianting; Suganuma, Tatsuo; Nakanishi, Yoshinobu

    2005-01-01

    We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages [C. Fujii, A. Shiratsuchi, J. Manaka, S. Yonehara, Y. Nakanishi. Cell Death Differ. 8 (2001) 1113-1122]. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis

  18. Surface code—biophysical signals for apoptotic cell clearance

    International Nuclear Information System (INIS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M; Chaurio, Ricardo; Herrmann, Martin; Muñoz, Luis E; Janko, Christina

    2013-01-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes. (paper)

  19. The role of baculovirus apoptotic suppressors in AcMNPV-mediated translation arrest in Ld652Y cells

    International Nuclear Information System (INIS)

    Thiem, Suzanne M.; Chejanovsky, Nor

    2004-01-01

    Infecting the insect cell line IPLB-Ld652Y with the baculovirus Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) results in global translation arrest, which correlates with the presence of the AcMNPV apoptotic suppressor, p35. In this study, we investigated the role of apoptotic suppression on AcMNPV-induced translation arrest. Infecting cells with AcMNPV bearing nonfunctional mutant p35 did not result in global translation arrest. In contrast, global translation arrest was observed in cells infected with AcMNPV in which p35 was replaced with Opiap, Cpiap, or p49, baculovirus apoptotic suppressors that block apoptosis by different mechanisms than p35. These results indicated that suppressing apoptosis triggered translation arrest in AcMNPV-infected Ld652Y cells. Experiments using the DNA synthesis inhibitor aphidicolin and temperature shift experiments, using the AcMNPV replication mutants ts8 and ts8Δp35, indicated that translation arrest initiated during the early phase of infection, but events during the late phase were required for global translation arrest. Peptide caspase inhibitors could not substitute for baculovirus apoptotic suppressors to induce translation arrest in Ld652Y cells infected with a p35-null virus. However, if the p35-null-AcMNPV also carried hrf-1, a novel baculovirus host range gene, progeny virus was produced and treatment with peptide caspase inhibitors enhanced translation of a late viral gene transcript. Together, these results indicate that translation arrest in AcMNPV-infected Ld652Y cells is due to the anti-apoptotic function of p35, but suggests that rather than simply preventing caspase activation, its activity enhances signaling to a separate translation arrest pathway, possibly by stimulating the late stages of the baculovirus infection cycle

  20. Detection and quantification of live, apoptotic, and necrotic human peripheral lymphocytes by single-laser flow cytometry.

    Science.gov (United States)

    Liegler, T J; Hyun, W; Yen, T S; Stites, D P

    1995-05-01

    Regulation of peripheral lymphocyte number involves a poorly understood balance between cell renewal and loss. Disrupting this balance leads to a large number of disease states. Methods which allow qualitative and quantitative measurements of cell viability are increasingly valuable to studies directed at revealing the mechanisms underlying apoptotic and necrotic cell death. Here, we have characterized a method using single-laser flow cytometry that differentiates and quantifies the relative number of live, apoptotic, and late-stage apoptotic and necrotic peripheral lymphocytes. Following in vitro gamma irradiation and staining with acridine orange in combination with ethidium bromide, three distinct populations were seen by bivariate analysis of green versus red fluorescence. The identity of each distinct fluorescent population (whether live, apoptotic, or necrotic) was determined by sorting and examination of cellular morphology by electron microscopy. This flow cytometric method is directly compared with the techniques of trypan blue exclusion and DNA fragmentation to quantify cell death following exposure to various doses of in vitro gamma irradiation and postirradiation incubation times. We extend our findings to illustrate the utility of this method beyond analyzing radiation-induced apoptotic peripheral blood mononuclear cells (PBMC); similar fluorescent patterns are shown for radiation- and corticosteroid-treated murine thymocytes, activated human PBMC, and PBMC from human immunodeficiency virus-infected individuals. Our results demonstrate that dual-parameter flow cytometric analysis of acridine orange-ethidium bromide-stained lymphocytes is overall a superior method with increased sensitivity, greater accuracy, and decreased subjectivity in comparison with the other methods tested. By using standard laser and filter settings commonly available to flow cytometric laboratories, this method allows rapid measurement of a large number of cells from a

  1. PURIFICATION AND FRACTIONAL ANALYSIS OF METHANOLIC EXTRACT OF WEDELIA TRILOBATA POSSESSING APOPTOTIC AND ANTI-LEUKEMIC ACTIVITY

    Science.gov (United States)

    Venkatesh, Uday; Javarasetty, Chethan; Murari, Satish Kumar

    2017-01-01

    Background: Wedelia trilobata (L.) Hitch (WT), commonly known as yellow dots or creeping daisy, is a shrub possessing potent biological activities, and is traditionally used a medicinal plant in Ayurveda, Siddha and Unani systems of medicines, and it has also been tried against leukemia cell line MEG- 01. In the present study, purification and screening of the plant was done for bioactive compounds in methanolic extract of WT for apoptotic and anti-leukemia activity. Materials and methods: The methanolic extract of WT was initially purified through thin layer chromatography (TLC) and screened for the apoptotic and anti-leukemia activities. The positive band of TLC was subjected to silica gel column chromatography for further purification and the fractions obtained from it were screened again for anti-leukemia activity through thymidine uptake assay and apoptotic activity by DNA fragmentation, nuclear staining and flow cytometry assays. The fraction with positive result was subjected to HPLC for analysis of bioactive components. Results: Out of many combinations of solvents, the methanol and dichloromethane combination in the ratio 6:4 has revealed two bands in TLC, among which the second band showed positive results for apoptotic and anti-leukemic activities. Further purification of second band through silica gel chromatography gave five fractions in which the 3rd fraction gave positive results and it shows single peak during compositional analysis through HPLC. Conclusion: The single peak revealed through HPLC indicates the presence of pure compound with apoptotic and anti-leukemia activities encouraging for further structural analysis. PMID:28480428

  2. Apoptotic role of natural isothiocyanate from broccoli (Brassica oleracea italica) in experimental chemical lung carcinogenesis.

    Science.gov (United States)

    Kalpana Deepa Priya, D; Gayathri, R; Gunassekaran, G R; Murugan, S; Sakthisekaran, D

    2013-05-01

    Sulforaphane (SFN) [1-isothiocyanato-4-(methylsulfinyl)butane] is a naturally occurring isothiocyanate found in cruciferous vegetables such as broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)]. Since it is among the most potent bioactive components with antioxidant and antitumor properties, it has received intense attention in the recent years for its chemopreventive properties. The present work determined the rehabilitating role in alleviating the oxidative damage caused by benzo(a)pyrene [B(a)P] to biomolecules and the apoptotic cascade mediated by orally administered isothiocyanate-SFN (9 µmol/mouse/day) against B(a)P (100 mg/kg body weight, i.p.) induced pulmonary carcinogenesis in Swiss albino mice. Oxidative damage was assessed by measuring lipid peroxidation, 8-hydroxydeoxyguanosine, hydrogen peroxide (H2O2) production, glycoprotein components, protein carbonyl levels and DNA-protein crosslinks. DNA fragmentation by agarose gel electrophoresis and caspase-3 activity by ELISA proved apoptotic induction by SFN along with the protein expression of Bcl-2, Bax and Cyt c. SFN treatment was found to decrease the H2O2 production (p < 0.001) in cancer induced animals, proving its antioxidant potential. Apoptosis was induced by increasing the release of Cyt c (p < 0.001) from mitochondria, decreasing and increasing the expression of Bcl-2 (p < 0.01) and Bax (p < 0.001), respectively. Caspase-3 activity was also enhanced (p < 0.001) which leads to DNA fragmentation in SFN treated groups. Our results reflect the rehabilitating role of SFN in B(a)P induced lung carcinogenesis.

  3. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  4. A study on apoptotic signaling pathway in HL-60 cells induced by radiation

    International Nuclear Information System (INIS)

    Kim, Hye Jung; Moon, Sung Keun; Lee, Jae Hoon; Moon, Sun Rock

    2001-01-01

    The mechanical insights of death at cancer cells by ionizing radiation are not yet clearly defined. Recent evidences have demonstrated that radiation therapy may induce cell death via activation of signaling pathway for apoptosis in target cells. This study is designed whether ionizing radiation may activate the signaling cascades of apoptosis including caspase family cysteine proteases, Bcl2/Bax, cytochrome c and Fas/Fas-L in target cells. HL-60 cells were irradiated in vitro with 6 MV X-ray at dose ranges from 2 Gy to 32 Gy. The cell viability was tested by MTT assay and the extent of apoptosis was determined using agarose gel electrophoresis. The activities of caspase proteases were measured by proteolytic cleavages of substrates. Western blot analysis was used to monitor PARP, caspase-3, Cytochrome-c, BcI-2, Bax, Fas and Fas-L. Ionizing radiation decreases the viability of HL -60 cells in a time and dose dependent manner. Ionizing radiation-induced death in HL- 60 cells is an apoptotic death which is revealed as characteristic ladder-pattern fragmentation at genomic DNA over 16 Gy at 4 hours. Ionizing radiation induces the activation of caspase-2, 3, 6, 8 and 9 of HL --60 cells in a time-dependent manner. The activation of caspase- 3 protease is also evidenced by the digestion of poly (ADP-ribose) polymerase and procaspase 3 with 16Gy ionizing irradiation. Anti-apoptotic Bcl2 expression is decreased but apoptotic Bax expression is increased with mitochondrial cytochrome c release in a time- dependent manner. In addition, expression of Fas and Fas-L is also increased in a time dependent manner. These data suggest that ionizing radiation-induced apoptosis is mediated by the activation of various signaling pathways including caspase family cysteine proteases, BcI 2 /Bax, Fas and Fas-L in a time and dose dependent manner

  5. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid

    NARCIS (Netherlands)

    Copani, Agata; Hoozemans, Jeroen J. M.; Caraci, Filippo; Calafiore, Marco; van Haastert, Elise S.; Veerhuis, Robert; Rozemuller, Annemieke J. M.; Aronica, Eleonora; Sortino, Maria Angela; Nicoletti, Ferdinando

    2006-01-01

    Cultured neurons exposed to synthetic beta-amyloid (Abeta) fragments reenter the cell cycle and initiate a pathway of DNA replication that involves the repair enzyme DNA polymerase-beta (DNA pol-beta) before undergoing apoptotic death. In this study, by performing coimmunoprecipitation experiments

  6. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  7. Apoptotic activity and gene responses in Drosophila melanogaster S2 cells, induced by azadirachtin A.

    Science.gov (United States)

    Xu, Lin; Li, Sheng; Ran, Xueqin; Liu, Chang; Lin, Rutao; Wang, Jiafu

    2016-09-01

    Azadirachtin has been used as an antifeedant and growth disruption agent for many insect species. Previous investigations have reported the apoptotic effects of azadirachtin on some insect cells, but the molecular mechanisms are still not clear. This study investigated the underlying molecular mechanisms for the apoptotic effects induced by azadirachtin on Drosophila melanogaster S2 cells in vitro. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay demonstrated that azadirachtin exhibited significant cytotoxicity to S2 cells in a time- and dose-dependent manner. The changes in cellular morphology and the DNA fragmentation demonstrated that azadirachtin induced remarkable apoptosis of S2 cells. Expression levels of 276 genes were found to be significantly changed in S2 cells after exposure to azadirachtin, as detected by Drosophila genome array. Among these genes, calmodulin (CaM) was the most highly upregulated gene. Azadirachtin was further demonstrated to trigger intracellular Ca(2+) release in S2 cells. The genes related to the apoptosis pathway, determined from chip data, were validated by the real-time quantitative polymerase chain reaction method. The results showed that azadirachtin-mediated intracellular Ca(2+) release was the primary event that triggered apoptosis in Drosophila S2 cells through both pathways of the Ca(2+) -CaM and EcR/Usp signalling cascade. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Breast Carcinoma Progression and Tumour Vascular Markers Related to Apoptotic Mechanisms

    Directory of Open Access Journals (Sweden)

    Miroslava Bilecova-Rabajdova

    2014-01-01

    Full Text Available Background. In the last few years, the cancer research had tried to identify and characterize new biochemical and molecular pathways in which the inhibition induces prosurvival mechanisms. Our work describes the expression of two different members of apoptotic regulatory pathway and their relationship with a progression of breast carcinoma. Materials and Methods. We compared expression of genes related to apoptosis (DR6 and Gpm6B in the blood of patients suffering from stage I of breast cancer in different grades (I–IV, with healthy controls. After isolation of mRNA, transcription of mRNA into the cDNA was performed. The quantification of gene expression changes in DR6 and Gpm6B was detected by RT-PCR method. Analysis at the protein level was performed by the Western blot.Results. In statistical analysis of Dr6 mRNA level changes we detected significant increase starting in Grading 1 (G1 and reached maximal level in G3.This expression on mRNA levels was similar to protein levels, which copy rising tendency with maximal value in G3. The results of Gpm6B were significantly lower.Conclusion. This result showed that antiapoptotic signalling during neovascularization is increased significantly. It would be advisable in the future to study the influence of cytostatic treatment on the expression of genes related to apoptotic pathways and their relationship with progression of breast cancer tumours.

  9. Primula auriculata Extracts Exert Cytotoxic and Apoptotic Effects against HT-29 Human Colon Adenocarcinoma Cells.

    Science.gov (United States)

    Behzad, Sahar; Ebrahim, Karim; Mosaddegh, Mahmoud; Haeri, Ali

    2016-01-01

    Primula auriculata (Tootia) is one of the most important local medicinal plants in Hamedan district, Iran. To investigate cytotoxicity and apoptosis induction of crude methanolic extract and different fraction of it, we compared several methods on HT-29 human colon Adenocarcinoma cells. Cancer cell proliferation was measured by 3-(4, 5‑dimethylthiazolyl)2, 5‑diphenyl‑tetrazolium bromide (MTT) assay and apoptosis induction was analyzed by fluorescence microscopy (acridin orange/ethidium bromide, annexin V/propidium iodide staining, TUNEL assay and Caspase-3 activity assay). Crude methanolic extract (CM) inhibited the growth of malignant cells in a dose-dependent manner. Among solvent fractions, the dichloromethane fraction (CF) was found to be the most toxic compared to other fractions. With double staining methods, high percentage of 40 µg/mL of (CM) and (CF) treated cells exhibited typical characteristics of apoptotic cells. Apoptosis induction was also revealed by apoptotic fragmentation of nuclear DNA and activation of caspas-3 in treated cells. These findings indicate that crude methanolic extract and dichloromethan fraction of P.auriculata induced apoptosis and inhibited proliferation in colon cancer cells and could be used as a source for new lead structures in drug design to combat colon cancer.

  10. DNA damage in plant herbarium tissue.

    NARCIS (Netherlands)

    Staats, M.; Cuenca, A.; Richardson, J.E.; Ginkel, R.V.; Petersen, G.; Seberg, O.; Bakker, F.T.

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of

  11. A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    International Nuclear Information System (INIS)

    Serrano, Fabiana A; Machado, Joel Jr; Santos, Edson L; Pesquero, João B; Martins, Rafael M; Travassos, Luiz R; Caires, Antonio CF; Rodrigues, Elaine G; Matsuo, Alisson L; Monteforte, Priscila T; Bechara, Alexandre; Smaili, Soraya S; Santana, Débora P; Rodrigues, Tiago; Pereira, Felipe V; Silva, Luis S

    2011-01-01

    Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd 2 [S (-) C 2 , N-dmpa] 2 (μ-dppe)Cl 2 } named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. The cyclopalladated C7a complex is

  12. Cynodon dactylon (L) Pers (Poaceae) root extract induces apoptotic ...

    African Journals Online (AJOL)

    has also been used for the treatment of weak vision, urinary tract infection, .... with an alternating 12 h dark/light cycle in ... detected by Western blot analysis as described previously .... the cyclin signaling pathways, induced apoptotic cell death ...

  13. Different apoptotic responses to Plasmodium chabaudi malaria in ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-08

    Nov 8, 2010 ... The purpose of this study is to determine whether the apoptotic responses to Plasmodium chabaudi malaria in spleen and liver via mRNA expression of three genes involved in apoptosis (Bax, Bcl-2 and. Caspase-3) are similar or not and to detect if these genes could be a good marker for apoptosis due to.

  14. Growth inhibitory, apoptotic and anti-inflammatory activities ...

    Indian Academy of Sciences (India)

    naturally abundant oleanolic acid, displayed diverse biolog- ical activities ... triterpenoids and natural products. CDDO and its .... ration was determined by treating with anti-BrdU antibody and Texas red ..... apoptotic and necrotic in the tumour tissue. Thus .... Palmer RM, Ashton DS and Moncada S 1988 Vascular endothelial.

  15. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Zodwa Dlamini

    2015-11-01

    Full Text Available Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.

  16. Detection of apoptotic cells using propidium iodide staining

    NARCIS (Netherlands)

    Newbold, Andrea; Martin, Ben P.; Cullinane, Carleen; Bots, Michael

    2014-01-01

    Flow cytometry assays are often used to detect apoptotic cells in in vitro cultures. Depending on the experimental model, these assays can also be useful in evaluating apoptosis in vivo. In this protocol, we describe a propidium iodide (PI) flow cytometry assay to evaluate B-cell lymphomas that have

  17. Prediction of localization and interactions of apoptotic proteins

    Directory of Open Access Journals (Sweden)

    Matula Pavel

    2009-07-01

    Full Text Available Abstract During apoptosis several mitochondrial proteins are released. Some of them participate in caspase-independent nuclear DNA degradation, especially apoptosis-inducing factor (AIF and endonuclease G (endoG. Another interesting protein, which was expected to act similarly as AIF due to the high sequence homology with AIF is AIF-homologous mitochondrion-associated inducer of death (AMID. We studied the structure, cellular localization, and interactions of several proteins in silico and also in cells using fluorescent microscopy. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the lipid membranes. Bioinformatic predictions were conducted to analyze the interactions of the studied proteins with each other and with other possible partners. We conducted molecular modeling of proteins with unknown 3D structures. These models were then refined by MolProbity server and employed in molecular docking simulations of interactions. Our results show data acquired using a combination of modern in silico methods and image analysis to understand the localization, interactions and functions of proteins AMID, AIF, endonuclease G, and other apoptosis-related proteins.

  18. Upregulation of intrinsic apoptotic pathway in NSAIDs mediated chemoprevention of experimental lung carcinogenesis.

    Science.gov (United States)

    Setia, Shruti; Sanyal, Sankar N

    2012-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) act by inhibition of cyclooxygenase-2 (COX-2), which is overexpressed in cancer. The role of COX-2 and apoptosis were evaluated in 9,10-dimethylbenz(a)anthracene (DMBA)-induced lung cancer in rat and chemoprevention with indomethacin, a traditional NSAID and etoricoxib, a selective COX-2 inhibitor. The animals were divided into Control, DMBA, DMBA+ indomethacin and DMBA+ etoricoxib groups. They received a single intratracheal instillation of DMBA while NSAIDs were given orally daily for 32 weeks. Besides morphology and histology of lungs, RT-PCR, western blots and immunohistochemistry were performed for the expression of apoptotic proteins and COX enzymes. Apoptosis was studied by DNA fragmentation and fluorescent staining. The occurrence of tumors and lesions was noted in the DMBA animals, besides constricted alveolar spaces and hyperplasia. COX-1 was found to be uniformly expressed while COX-2 level was raised significantly in DMBA group. The apoptotic proteins, apaf-1, caspase-9 and caspase-3 were highly diminished in DMBA group but restored to normal level in NSAIDs groups. Also, apoptosis was suppressed in carcinogen group by DNA fragmentation analysis and fluorescent staining of the lung cells while co-administration of NSAIDs along with DMBA led to the restoration of apoptosis. DMBA administration to the rats led to tumorigenesis in the lungs, had no effects on COX-1 expression, while elevating the COX-2 levels and suppressing apoptosis. The treatment with NSAIDs led to the amelioration of these effects. However, etoricoxib which is a COX-2 specific inhibitor, was found to be more effective than the traditional NSAID, indomethacin.

  19. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells.

    Science.gov (United States)

    Han, Cho Rong; Jun, Do Youn; Kim, Yoon Hee; Lee, Ji Young; Kim, Young Ho

    2013-10-01

    In Jurkat T cell clone (JT/Neo), G2/M arrest, apoptotic sub-G1 peak, mitochondrial membrane potential (Δψm) loss, and TUNEL-positive DNA fragmentation were induced following exposure to 17α-estradiol (17α-E2), whereas none of these events (except for G2/M arrest) were induced in Jurkat cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, phosphorylation at Thr161 and dephosphorylation at Tyr15 of Cdk1, upregulation of cyclin B1 level, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation, and Bim phosphorylation were detected in the presence of Bcl-2 overexpression. However, the 17α-E2-induced upregulation of Bak levels, activation of Bak, activation of caspase-3, and PARP degradation were abrogated by Bcl-2 overexpression. In the presence of the G1/S blocking agent hydroxyurea, 17α-E2 failed to induce G2/M arrest and all apoptotic events including Cdk1 activation and phosphorylation of Bcl-2, Mcl-1 and Bim. The 17α-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor but not by aurora A and aurora B kinase inhibitors. Immunofluorescence microscopic analysis showed that an aberrant bipolar microtubule array, incomplete chromosome congression at the metaphase plate, and prometaphase arrest, which was reversible, were the underlying factors for 17α-E2-induced mitotic arrest. The in vitro microtubule polymerization assay showed that 17α-E2 could directly inhibit microtubule formation. These results show that the apoptogenic activity of 17α-E2 was due to the impaired mitotic spindle assembly causing prometaphase arrest and prolonged Cdk1 activation, the phosphorylation of Bcl-2, Mcl-1 and Bim, and the activation of Bak and mitochondria-dependent caspase cascade. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Non-apoptotic function of apoptotic proteins in the development of ...

    Indian Academy of Sciences (India)

    Figure 2. Expression of proapoptotic protein in saliary gland using c42. Apoptosis is induced in c42/UAS-Rpr (B), c42/UAS-hid14 (C) and c42/UAS-Grim wt9.8 (D) at the 1st instar, while in wild type, AO staining did not show DNA fragmentation indicating there is no apoptosis induction in SG at the 1st instar stage in the wild ...

  1. Withaferin A Suppresses Anti-apoptotic BCL2, Bcl-xL, XIAP and ...

    African Journals Online (AJOL)

    apoptotic ... Quantitative real-time polymerase chain reaction (qPCR) was performed using Taq PCR Master ... Keywords: Anti-apoptotic genes, Cervical cancer, Apoptosis, Cell viability, BCL2, .... polyclonal anti-rabbit immunoglobulin HRP-linked.

  2. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Ali, Daoud; Alhadlaq, Hisham A; Akhtar, Mohd Javed

    2013-11-01

    Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apoptotic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death) and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial and industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. RACK1 downregulates levels of the pro-apoptotic protein Fem1b in apoptosis-resistant colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Ventura-Holman, Tereza; Du, Liqin; Subauste, Jose S; Chan, Shing-Leng; Yu, Victor C; Maher, Joseph F

    2009-12-01

    Evasion of apoptosis plays an important role in colon cancer progression. Following loss of the Apc tumor suppressor gene in mice, the gene encoding Fem1b is upregulated early in neoplastic intestinal epithelium. Fem1b is a pro-apoptotic protein that interacts with Fas, TNFR1 and Apaf-1, and increased expression of Fem1b induces apoptosis of cancer cells. Fem1b is a homolog of FEM-1, a protein in Caenorhabditis elegans that is negatively regulated by ubiquitination and proteasomal degradation. To study Fem1b regulation in colon cancer progression, we used apoptotis-sensitive SW480 cells, derived from a primary colon cancer, and their isogenic, apoptosis-resistant counterparts SW620 cells, derived from a subsequent metastatic lesion in the same patient. Treatment with proteasome inhibitor increased Fem1b protein levels in SW620 cells, but not in SW480 cells. In SW620 cells we found that endogenous Fem1b co-immunoprecipitates in complexes with RACK1, a protein known to mediate ubiquitination and proteasomal degradation of other pro-apoptotic proteins and to be upregulated in colon cancer. Full-length Fem1b, or the N-terminal region of Fem1b, associated with RACK1 when co-expressed in HEK293T cells, and RACK1 stimulated ubiquitination of Fem1b. RACK1 overexpression in SW620 cells led to downregulation of Fem1b protein levels. Conversely, downregulation of RACK1 led to upregulation of Fem1b protein levels, associated with induction of apoptosis, and this apoptosis was inhibited by blocking Fem1b protein upregulation. In conclusion, RACK1 downregulates levels of the pro-apoptotic protein Fem1b in metastatic, apoptosis-resistant colon cancer cells, which may promote apoptosis-resistance during progression of colon cancer.

  4. Ultrastructural apoptotic lesions induced in rat thymocytes after borax ingestion.

    Science.gov (United States)

    Sylvain, I C; Berry, J P; Galle, P

    1998-01-01

    Apoptosis has gained increasing attention in recent years. Several chemical compounds induce apoptotic lesions in the thymus. Male Wistar rats received 2000 ppm of borax (Na2B4O7.10H2O) in their food for 16 days. The rats were sacrificed 2, 5, 9, 12, 19, 21, 26 and 28 days after the beginning of treatment. Thymus samples of all rats were taken. A Philips EM 300 electron microscopy was used to study the ultrastructural morphology. Serious nuclear and cytoplasmic lesions were observed. Moreover, numerous macrophages containing apoptotic cells were present in the thymus. The alterations were observed from the 2nd to the 28th day. The extent of damage was much more important in the rats sacrificed 21, 26 and 28 days after borax ingestion.

  5. Macrophage Clearance of Apoptotic Cells: A Critical Assessment

    Directory of Open Access Journals (Sweden)

    Siamon Gordon

    2018-01-01

    Full Text Available As the body continues to grow and age, it becomes essential to maintain a balance between living and dying cells. Macrophages and dendritic cells play a central role in discriminating among viable, apoptotic, and necrotic cells, as selective and efficient phagocytes, without inducing inappropriate inflammation or immune responses. A great deal has been learnt concerning clearance receptors for modified and non-self-ligands on potential targets, mediating their eventual uptake, disposal, and replacement. In this essay, we assess current understanding of the phagocytic recognition of apoptotic cells within their tissue environment; we conclude that efferocytosis constitutes a more complex process than simply removal of corpses, with regulatory interactions between the target and effector cells, which determine the outcome of this homeostatic process.

  6. Histopathological, Ultrastructural and Apoptotic Changes in Diabetic Rat Placenta

    Directory of Open Access Journals (Sweden)

    Mehmet Gül

    2015-09-01

    Full Text Available Background: The exchange of substances between mother and fetus via the placenta plays a vital role during development. A number of developmental disorders in the fetus and placenta are observed during diabetic pregnancies. Diabetes, together with placental apoptosis, can lead to developmental and functional disorders. Aims: Histological, ultrastructural and apoptotic changes were investigated in the placenta of streptozotocin (STZ induced diabetic rats. Study Design: Animal experimentation. Methods: In this study, a total of 12 female Wistar Albino rats (control (n=6 and diabetic (n=6 were used. Rats in the diabetic group, following the administration of a single dose of STZ, showed blood glucose levels higher than 200 mg/dL after 72 hours. When pregnancy was detected after the rats were bred, two pieces of placenta and the fetuses were collected on the 20th day of pregnancy by cesarean incision under ketamine/xylazine anesthesia from in four rats from the control and diabetic groups. Placenta tissues were processed for light microscopy and transmission electron microscopy (TEM. Hematoxylin-eosin (HE and periodic acid Schiff-diastase (PAS-D staining for light microscopic and caspase-3 staining for immunohistochemical investigations were performed for each placenta. Electron microscopy was performed on thin sections contrasted with uranyl acetate and lead nitrate. Results: Weight gain in the placenta and fetuses of diabetic rats and thinning of the decidual layer, thickening of the hemal membrane, apoptotic bodies, congestion in intervillous spaces, increased PAS-D staining in decidual cells and caspase-3 immunoreactivity were observed in the diabetic group. After the ultrastructural examination, the apoptotic appearance of the nuclei of trophoblastic cells, edema and intracytoplasmic vacuolization, glycogen accumulation, dilation of the endoplasmic reticulum and myelin figures were observed. In addition, capillary basement membrane thickening

  7. Cell shape and organelle modification in apoptotic U937 cells

    Directory of Open Access Journals (Sweden)

    MR Montinari

    2009-12-01

    Full Text Available U937 cells induced to apoptosis, progressively and dramatically modified their cell shape by intense blebbing formation, leading to the production of apoptotic bodies. The blebs evolved with time; milder forms of blebbing involving only a region or just the cortical part of the cytoplasm were observed within the first hour of incubation with puromycin; blebbing involving the whole cell body with very deep constrictions is the most frequent event observed during late times of incubation. The ultrastructural analysis of apoptotic cells revealed characteristic features of nuclear fragmentation (budding and cleavage mode and cytoplasmatic modifications. The cytoplasm of blebs does not contain organelles, such as ribosomes or mitochondria. Scarce presence of endoplasmic reticulum can be observed at the site of bleb detachment. However, blebbing is a dispensable event as evaluated by using inhibitor of actin polymerization. In the present study, the progressive modifications of the nucleus, mitochondria, nuclear fragmentation, cytoplasmic blebs formation and production of apoptotic bodies in U937 monocytic cells induced to apoptosis by puromycin (an inhibitor of protein synthesis were simultaneously analyzed.

  8. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Science.gov (United States)

    Pernice, Mathieu; Dunn, Simon R; Miard, Thomas; Dufour, Sylvie; Dove, Sophie; Hoegh-Guldberg, Ove

    2011-01-24

    Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts. The PRESENT study reports the impacts of different stressors (colchicine and heat stress) on three phases of apoptosis: (i) the potential initiation by differential expression of Bcl-2 members, (ii) the execution of apoptotic events by activation of caspase 3-like proteases and (iii) and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity. In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes.

  9. Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Fattahi, Sadegh; Ardekani, Ali Motevalizadeh; Zabihi, Ebrahim; Abedian, Zeinab; Mostafazadeh, Amrollah; Pourbagher, Roghayeh; Akhavan-Niaki, Haleh

    2013-01-01

    Breast cancer is the most prevalent cancer and one of the leading causes of death among women in the world. Plants and herbs may play an important role in complementary or alternative treatment. The aim of this study was to evaluate the antioxidant and anti-proliferative potential of Urtica dioica. The anti oxidant activity of an aqueous extract of Urtica dioica leaf was measured by MTT assay and the FRAP method while its anti-proliferative activity on the human breast cancer cell line (MCF-7) and fibroblasts isolated from foreskin tissue was evaluated using MTT assay. Mechanisms leading to apoptosis were also investigated at the molecular level by measuring the amount of anti and pro-apoptotic proteins and at the cellular level by studying DNA fragmentation and annexin V staining by flow cytometry. The aqueous extract of Urtica dioica showed antioxidant effects with a correlation coefficient of r(2)=0.997. Dose-dependent and anti-proliferative effects of the extract were observed only on MCF-7 cells after 72 hrs with an IC50 value of 2 mg/ml. This anti proliferative activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation, the appearance of apoptotic cells in flow cytometry analysis and an increase of the amount of calpain 1, calpastatin, caspase 3, caspase 9, Bax and Bcl-2, all proteins involved in the apoptotic pathway. This is the first time such in vitro antiproliferative effect of aqueous extract of Urtica dioica leaf has been described for a breast cancer cell line. Our findings warrant further research on Urtica dioica as a potential chemotherapeutic agent for breast cancer.

  10. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Mathieu Pernice

    2011-01-01

    Full Text Available Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts.The PRESENT study reports the impacts of different stressors (colchicine and heat stress on three phases of apoptosis: (i the potential initiation by differential expression of Bcl-2 members, (ii the execution of apoptotic events by activation of caspase 3-like proteases and (iii and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity.In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in corals exposed to sudden environmental changes.

  11. Anti-Apoptotic Signature in Thymic Squamous Cell Carcinomas - Functional Relevance of Anti-Apoptotic BIRC3 Expression in the Thymic Carcinoma Cell Line 1889c.

    Science.gov (United States)

    Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A; Rieker, Ralf J; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander

    2013-01-01

    The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

  12. Anti-Apoptotic Signature in Thymic Squamous Cell Carcinomas – Functional Relevance of Anti-Apoptotic BIRC3 Expression in the Thymic Carcinoma Cell Line 1889c

    Science.gov (United States)

    Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A.; Rieker, Ralf J.; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander

    2013-01-01

    The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC. PMID:24427739

  13. Anti-apoptotic signature in thymic squamous cell carcinomas - functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c

    Directory of Open Access Journals (Sweden)

    Bei eHuang

    2013-12-01

    Full Text Available The molecular pathogenesis of thymomas and thymic carcinomas (TCs is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and thymic carcinomas, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCC with a custom made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

  14. Apoptotic Effect of the Urtica Dioica Plant Extracts on Breast Cancer Cell Line (MDA- MB- 468

    Directory of Open Access Journals (Sweden)

    A Mohammadi

    2015-09-01

    Full Text Available Background & objectives: Cancer is one of the most causes of mortality in worldwide. Components derived from natural plants that induce apoptosis are used for cancer treatment. Therefore investigation of different herbal components for new anti-cancer drug is one of the main research activities throughout the world. According to low cost, oral consumption and easy access to the public extracts of Urtica dioica, in this study we aimed to investigate the effectiveness of this herb on MDA-MB-468 breast cancer cells.   Methods: Cytotoxic effect of Urtica dioica extract was measured using MTT assays. To show induction of apoptosis by this plant TUNEL and DNA Fragmentation test were performed.   Results: In the present study dichloromethane extracts noticeably killed cancer cells. IC50 values related to human breast adenocarcinoma cell line MDA-MB-468 were 29.46±1.05 µg/ml in 24 hours and 15.54±1.04 µg/ml in 48 hours. TUNEL test and DNA Fragmentation assay showed apoptotic characteristic in the extract treated cells.   Conclusion: The results showed that MDA-MB-468 cells after treatment with dichloromethane extract of Urtica dioica, induces apoptosis in MDA-MB-468 cancer cells which may be useful in the treatment of cancer.

  15. Endoplasmic Reticulum Stress Induces the Early Appearance of Pro-apoptotic and Anti-apoptotic Proteins in Neurons of Five Familial Alzheimer′s Disease Mice

    Directory of Open Access Journals (Sweden)

    Hui Shen

    2016-01-01

    Conclusions: These findings suggest that compared with those of age-matched WT mice, ERS-associated pro-apoptotic and anti-apoptotic proteins are upregulated in 2-month-old 5×FAD mice, consistent with intracellular Aβ aggregation in neurons.

  16. Fragile DNA Repair Mechanism Reduces Ageing in Multicellular Model

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss; Juul, Jeppe Søgaard; Trusina, Ala

    2012-01-01

    increases the amount of unrepaired DNA damage. Despite this vicious circle, we ask, can cells maintain a high DNA repair capacity for some time or is repair capacity bound to continuously decline with age? We here present a simple mathematical model for ageing in multicellular systems where cells subjected...... to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity......DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn...

  17. Increase in the fraction of necrotic, not apoptotic, cells in SiHa xenograft tumours shortly after irradiation

    International Nuclear Information System (INIS)

    Olive, P.L.; Vikse, C.M.; Vanderbyl, S.

    1999-01-01

    Background and purpose: Approximately 18% of the cells recovered by rapid mechanical dissociation of SiHa xenograft tumours contain large numbers of DNA strand breaks. The number of damaged cells increases to 30-40% 4-6 h after exposure to 5 or 15 Gy, returning to normal levels by 12 h. This observation is reminiscent of the rate of production of apoptotic cells in other murine and human xenograft tumours. The nature of this damage, rate of development and relation to cell proliferation rate were therefore examined in detail.Materials and methods: SiHa human cervical carcinoma cells were grown as xenograft tumours in SCID mice. Single-cell suspensions were prepared as a function of time after irradiation of the mouse and examined for DNA damage using the alkaline comet assay. Cell cycle progression was measured by flow cytometry evaluation of anti-bromodeoxyuridine-labelled tumour cells.Results: Significant numbers of apoptotic cells could not be detected in irradiated SiHa tumours using an end-labelling assay, electron microscopy, or histological examination of thin sections. Instead, xenograft cells exhibiting extensive DNA damage in the comet assay were predominantly necrotic cells. The increase in the proportion of heavily damaged cells 4-6 h after irradiation could be the result of an interplay between several factors including loss of viable cells and change in production or loss of necrotic cells. Analysis of the progression of BrdUrd-labelled cells confirmed that while 35% of cells from untreated SiHa tumours had divided and entered G 1 phase by 6 h after BrdUrd injection, none of the labelled cells from tumours exposed to 5 or 15 Gy had progressed to G 1 .Conclusions: The increase in the percentage of SiHa tumour cells with extensive DNA damage 4-6 h after irradiation is attributable to necrosis, not apoptosis. Cell cycle progression and cell loss are likely to influence the kinetics of appearance of both apoptotic and necrotic cells in irradiated tumours

  18. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1

    Directory of Open Access Journals (Sweden)

    Dong L

    2015-12-01

    Full Text Available Liwei Dong,1 Hongge Wang,1 Jiajing Niu,1 Mingwei Zou,2 Nuoting Wu,1 Debin Yu,1 Ye Wang,1 Zhihua Zou11Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People’s Republic of China; 2Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA Abstract: Inhibition of the nucleotide pool sanitizing enzyme MTH1 causes extensive oxidative DNA damages and apoptosis in cancer cells and hence may be used as an anticancer strategy. As natural products have been a rich source of medicinal chemicals, in the present study, we used the MTH1-catalyzed enzymatic reaction as a high-throughput in vitro screening assay to search for natural compounds capable of inhibiting MTH1. Echinacoside, a compound derived from the medicinal plants Cistanche and Echinacea, effectively inhibited the catalytic activity of MTH1 in an in vitro assay. Treatment of various human cancer cell lines with Echinacoside resulted in a significant increase in the cellular level of oxidized guanine (8-oxoguanine, while cellular reactive oxygen species level remained unchanged, indicating that Echinacoside also inhibited the activity of cellular MTH1. Consequently, Echinacoside treatment induced an immediate and dramatic increase in DNA damage markers and upregulation of the G1/S-CDK inhibitor p21, which were followed by marked apoptotic cell death and cell cycle arrest in cancer but not in noncancer cells. Taken together, these studies identified a natural compound as an MTH1 inhibitor and suggest that natural products can be an important source of anticancer agents. Keywords: Echinacoside, MTH1, 8-oxoG, DNA damage, apoptosis, cell cycle arrest

  19. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  20. DNA from keratinous tissue

    DEFF Research Database (Denmark)

    Bengtsson, Camilla F.; Olsen, Maja E.; Brandt, Luise Ørsted

    2011-01-01

    Keratinous tissues such as nail, hair, horn, scales and feather have been used as a source of DNA for over 20 years. Particular benefits of such tissues include the ease with which they can be sampled, the relative stability of DNA in such tissues once sampled, and, in the context of ancient...... genetic analyses, the fact that sampling generally causes minimal visual damage to valuable specimens. Even when freshly sampled, however, the DNA quantity and quality in the fully keratinized parts of such tissues is extremely poor in comparison to other tissues such as blood and muscle – although little...... systematic research has been undertaken to characterize how such degradation may relate to sample source. In this review paper we present the current understanding of the quality and limitations of DNA in two key keratinous tissues, nail and hair. The findings indicate that although some fragments of nuclear...

  1. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells.

    Science.gov (United States)

    Choi, Doo Jin; Kim, Sun-Lim; Choi, Ji Won; Park, Yong Il

    2014-07-25

    Neuroprotective effects of maysin, which is a flavone glycoside that was isolated from the corn silk (CS, Zea mays L.) of a Korean hybrid corn Kwangpyeongok, against oxidative stress (H2O2)-induced apoptotic cell death of human neuroblastoma SK-N-MC cells were investigated. Maysin cytotoxicity was determined by measuring cell viability using MTT and lactate dehydrogenase (LDH) assays. Intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels were determined by real-time PCR. The cleavage of poly (ADP-ribose) polymerase (PARP) was measured by western blotting. Maysin pretreatment reduced the cytotoxic effect of H2O2 on SK-N-MC cells, as shown by the increase in cell viability and by reduced LDH release. Maysin pretreatment also dose-dependently reduced the intracellular ROS level and inhibited PARP cleavage. In addition, DNA damage and H2O2-induced apoptotic cell death were significantly attenuated by maysin pretreatment. Moreover, maysin pretreatment (5-50 μg/ml) for 2h significantly and dose-dependently increased the mRNA levels of antioxidant enzymes (CAT, GPx-1, SOD-1, SOD-2 and HO-1) in H2O2 (200 μM)-insulted cells. These results suggest that CS maysin has neuroprotective effects against oxidative stress (H2O2)-induced apoptotic death of human brain SK-N-MC cells through its antioxidative action. This report is the first regarding neuroprotective health benefits of corn silk maysin by its anti-apoptotic action and by triggering the expression of intracellular antioxidant enzyme systems in SK-N-MC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells.

    Science.gov (United States)

    Overmeyer, Jean H; Young, Ashley M; Bhanot, Haymanti; Maltese, William A

    2011-06-06

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP) that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1), they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6) are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  3. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Bhanot Haymanti

    2011-06-01

    Full Text Available Abstract Background Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Results Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl-1-(4-pyridinyl-2-propen-1-one (MIPP that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1, they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6 are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. Conclusions MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  4. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams

    Science.gov (United States)

    Stephen F. Jane; Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Michael K. Schwartz; Winsor H. Lowe; Benjamin H. Letcher; Andrew R. Whiteley

    2014-01-01

    Environmental DNA (eDNA) detection has emerged as a powerful tool for monitoring aquatic organisms, but much remains unknown about the dynamics of aquatic eDNA over a range of environmental conditions. DNA concentrations in streams and rivers will depend not only on the equilibrium between DNA entering the water and DNA leaving the system through degradation, but also...

  5. Andrographolide induces degradation of mutant p53 via activation of Hsp70.

    Science.gov (United States)

    Sato, Hirofumi; Hiraki, Masatsugu; Namba, Takushi; Egawa, Noriyuki; Baba, Koichi; Tanaka, Tomokazu; Noshiro, Hirokazu

    2018-05-22

    The tumor suppressor gene p53 encodes a transcription factor that regulates various cellular functions, including DNA repair, apoptosis and cell cycle progression. Approximately half of all human cancers carry mutations in p53 that lead to loss of tumor suppressor function or gain of functions that promote the cancer phenotype. Thus, targeting mutant p53 as an anticancer therapy has attracted considerable attention. In the current study, a small-molecule screen identified andrographlide (ANDRO) as a mutant p53 suppressor. The effects of ANDRO, a small molecule isolated from the Chinese herb Andrographis paniculata, on tumor cells carrying wild-type or mutant p53 were examined. ANDRO suppressed expression of mutant p53, induced expression of the cyclin-dependent kinase inhibitor p21 and pro-apoptotic proteins genes, and inhibited the growth of cancer cells harboring mutant p53. ANDRO also induced expression of the heat-shock protein (Hsp70) and increased binding between Hsp70 and mutant p53 protein, thus promoting proteasomal degradation of p53. These results provide novel insights into the mechanisms regulating the function of mutant p53 and suggest that activation of Hsp70 may be a new strategy for the treatment of cancers harboring mutant p53.

  6. Apoptotic potential and cell sensitivity to fractionated radiotherapy

    International Nuclear Information System (INIS)

    Rupnow, Brent A.; Murtha, Albert D.; Alarcon, Rodolfo M.; Giaccia, Amato J.; Knox, Susan J.

    1997-01-01

    Purpose/Objective: At present, the relationship between sensitivity to radiation-induced apoptosis and overall cellular radiosensitivity remains unclear. In particular, the relationship of apoptotic sensitivity to the survival of cells following fractionated irradiation has not been well studied. The purpose of the present study was to determine if increasing cell sensitivity to radiation-induced apoptosis would result in decreased clonogenic survival following single dose and fractionated irradiation in vitro. Materials and Methods: To address this, we chose a cell line (Rat-1MycER) in which the sensitivity to radiation-induced apoptosis could be altered by switching on or off the activity of a conditional c-Myc allele (c-MycER). The c-MycER construct expresses a full length c-Myc protein fused to a modified hormone binding domain of the estrogen receptor. Only in the presence of the estrogen analog 4-hydroxytamoxifen (4HT), does the conditional c-MycER become active. Apoptosis following irradiation in these cells (with and without c-MycER activation) was analyzed by flow cytometry to determine the percentage of cells undergoing apoptosis following various radiation doses and at different times after irradiation. Additionally, clonogenic survival analysis was performed following single radiation doses from 0 to 10 Gy and following five fractions of 2 or 4 Gy each. Survival of cells with and without c-MycER activation was compared. Furthermore, the effect of overexpressing the anti-apoptotic Bcl-2 gene on apoptosis induction and clonogenic survival of these cells was examined. Results: Rat-1MycER cells were strongly sensitized to radiation-induced apoptosis in a dose and time dependent manner when MycER was activated relative to cells treated without c-MycER activation. This c-Myc-mediated sensitivity to radiation-induced apoptosis was suppressed by overexpression of the anti-apoptotic protein Bcl-2. In addition to increasing apoptosis, activating c-MycER prior to

  7. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    International Nuclear Information System (INIS)

    Jackson, Christopher B.; Gallati, Sabina; Schaller, André

    2012-01-01

    Highlights: ► Serial qPCR accurately determines fragmentation state of any given DNA sample. ► Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. ► Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. ► Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze–thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA (λ nDNA ) and mtDNA (λ mtDNA ) we present an approach to possibly correct measurements in degraded samples in the future. To our knowledge this is the first time different degradation impact of the two

  8. qPCR-based mitochondrial DNA quantification: Influence of template DNA fragmentation on accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Christopher B., E-mail: Christopher.jackson@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Gallati, Sabina, E-mail: sabina.gallati@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland); Schaller, Andre, E-mail: andre.schaller@insel.ch [Division of Human Genetics, Departements of Pediatrics and Clinical Research, Inselspital, University of Berne, Freiburgstrasse, CH-3010 Berne (Switzerland)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Serial qPCR accurately determines fragmentation state of any given DNA sample. Black-Right-Pointing-Pointer Serial qPCR demonstrates different preservation of the nuclear and mitochondrial genome. Black-Right-Pointing-Pointer Serial qPCR provides a diagnostic tool to validate the integrity of bioptic material. Black-Right-Pointing-Pointer Serial qPCR excludes degradation-induced erroneous quantification. -- Abstract: Real-time PCR (qPCR) is the method of choice for quantification of mitochondrial DNA (mtDNA) by relative comparison of a nuclear to a mitochondrial locus. Quantitative abnormal mtDNA content is indicative of mitochondrial disorders and mostly confines in a tissue-specific manner. Thus handling of degradation-prone bioptic material is inevitable. We established a serial qPCR assay based on increasing amplicon size to measure degradation status of any DNA sample. Using this approach we can exclude erroneous mtDNA quantification due to degraded samples (e.g. long post-exicision time, autolytic processus, freeze-thaw cycles) and ensure abnormal DNA content measurements (e.g. depletion) in non-degraded patient material. By preparation of degraded DNA under controlled conditions using sonification and DNaseI digestion we show that erroneous quantification is due to the different preservation qualities of the nuclear and the mitochondrial genome. This disparate degradation of the two genomes results in over- or underestimation of mtDNA copy number in degraded samples. Moreover, as analysis of defined archival tissue would allow to precise the molecular pathomechanism of mitochondrial disorders presenting with abnormal mtDNA content, we compared fresh frozen (FF) with formalin-fixed paraffin-embedded (FFPE) skeletal muscle tissue of the same sample. By extrapolation of measured decay constants for nuclear DNA ({lambda}{sub nDNA}) and mtDNA ({lambda}{sub mtDNA}) we present an approach to possibly correct measurements in

  9. Anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), SOD or catalase on antimycin A-induced HeLa cell death.

    Science.gov (United States)

    Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2009-01-01

    Antimycin A (AMA) is an inhibitor of the electron transport chain in mitochondria. In this study, we investigated the anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), superoxide dismutase (SOD) or catalase on AMA-induced HeLa cell death in relation to the cell cycle. Treatment with Z-VAD, SOD or catalase rescued some HeLa cells from AMA-induced apoptosis, but did not prevent the growth inhibition of HeLa cells by AMA. DNA flow cytometric analysis indicated that treatment with AMA significantly induced an S-phase arrest of the cell cycle at 72 h. Interestingly, Z-VAD, SOD and catalase intensified S-phase arrest in AMA-treated cells. In conclusion, treatment with Z-VAD, SOD or catalase decreased apoptotic levels in AMA-treated cells, which was associated with the enhancement of the S-phase arrest of the cell cycle in these cells.

  10. Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway.

    Science.gov (United States)

    Lee, Jisun; Lee, Seul; Kim, Sun-Lim; Choi, Ji Won; Seo, Jeong Yeon; Choi, Doo Jin; Park, Yong Il

    2014-12-05

    Despite recent advances in prostate cancer diagnostics and therapeutics, the overall survival rate still remains low. This study was aimed to assess potential anti-cancer activity of maysin, a major flavonoid of corn silk (CS, Zea mays L.), in androgen-independent human prostate cancer cells (PC-3). Maysin was isolated from CS of Kwangpyeongok, a Korean hybrid corn, via methanol extraction and preparative C18 reverse phase column chromatography. Maysin cytotoxicity was determined by either monitoring cell viability in various cancer cell lines by MTT assay or morphological changes. Apoptotic cell death was assessed by annexin V-FITC/PI double staining, depolarization of mitochondrial membrane potential (MMP), expression levels of Bcl-2 and pro-caspase-3 and by terminal transferase mediated dUTP-fluorescein nick end labeling (TUNEL) staining. Underlying mechanism in maysin-induced apoptosis of PC-3 cells was explored by evaluating its effects on Akt and ERK pathway. Maysin dose-dependently reduced the PC-3 cell viability, with an 87% reduction at 200 μg/ml. Maysin treatment significantly induced apoptotic cell death, DNA fragmentation, depolarization of MMP, and reduction in Bcl-2 and pro-caspase-3 expression levels. Maysin also significantly attenuated phosphorylation of Akt and ERK. A combined treatment with maysin and other known anti-cancer agents, including 5-FU, etoposide, cisplatin, or camptothecin, synergistically enhanced PC-3 cell death. These results suggested for the first time that maysin inhibits the PC-3 cancer cell growth via stimulation of mitochondria-dependent apoptotic cell death and may have a strong therapeutic potential for the treatment of either chemo-resistant or androgen-independent human prostate cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    Science.gov (United States)

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.

  12. 5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells.

    Science.gov (United States)

    von Knethen, Andreas; Sha, Lisa K; Kuchler, Laura; Heeg, Annika K; Fuhrmann, Dominik; Heide, Heinrich; Wittig, Ilka; Maier, Thorsten J; Steinhilber, Dieter; Brüne, Bernhard

    2013-12-01

    Macrophage polarization to an anti-inflammatory phenotype upon contact with apoptotic cells is a contributing hallmark to immune suppression during the late phase of sepsis. Although the peroxisome proliferator-activated receptor γ (PPARγ) supports this macrophage phenotype switch, it remains elusive how apoptotic cells activate PPARγ. Assuming that a molecule causing PPARγ activation in macrophages originates in the cell membrane of apoptotic cells we analyzed lipid rafts from apoptotic, necrotic, and living human Jurkat T cells which showed the presence of 5-lipoxygenase (5-LO) in lipid rafts of apoptotic cells only. Incubating macrophages with lipid rafts of apoptotic, but not necrotic or living cells, induced PPAR responsive element (PPRE)-driven mRuby reporter gene expression in RAW 264.7 macrophages stably transduced with a 4xPPRE containing vector. Experiments with lipid rafts of apoptotic murine EL4 T cells revealed similar results. To verify the involvement of 5-LO in activating PPARγ in macrophages, Jurkat T cells were incubated with the 5-LO inhibitor MK-866 prior to induction of apoptosis, which failed to induce mRuby expression. Similar results were obtained with lipid rafts of apoptotic EL4 T cells preexposed to the 5-LO inhibitors zileuton and CJ-13610. Interestingly, Jurkat T cells overexpressing 5-LO failed to activate PPARγ in macrophages, while their 5-LO overexpressing apoptotic counterparts did. Our results suggest that during apoptosis 5-LO gets associated with lipid rafts and synthesizes ligands that in turn stimulate PPARγ in macrophages. © 2013.

  13. The Anti-Apoptotic Properties of APEX1 in the Endothelium Require the First 20 Amino Acids and Converge on Thioredoxin-1.

    Science.gov (United States)

    Dyballa-Rukes, Nadine; Jakobs, Philipp; Eckers, Anna; Ale-Agha, Niloofar; Serbulea, Vlad; Aufenvenne, Karin; Zschauer, Tim-Christian; Rabanter, Lothar L; Jakob, Sascha; von Ameln, Florian; Eckermann, Olaf; Leitinger, Norbert; Goy, Christine; Altschmied, Joachim; Haendeler, Judith

    2017-04-20

    The APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1) has a disordered N-terminus, a redox, and a DNA repair domain. APEX1 has anti-apoptotic properties, which have been linked to both domains depending on cell type and experimental conditions. As protection against apoptosis is a hallmark of vessel integrity, we wanted to elucidate whether APEX1 acts anti-apoptotic in primary human endothelial cells and, if so, what the underlying mechanisms are. APEX1 inhibits apoptosis in endothelial cells by reducing Cathepsin D (CatD) cleavage, potentially by binding to the unprocessed form. Diminished CatD activation results in increased Thioredoxin-1 protein levels leading to reduced Caspase 3 activation. Consequently, apoptosis rates are decreased. This depends on the first twenty amino acids in APEX1, because APEX1 (21-318) induces CatD activity, decreases Thioredoxin-1 protein levels, and, thus, increases Caspase 3 activity and apoptosis. Along the same lines, APEX1 (1-20) inhibits Caspase 3 cleavage and apoptosis. Furthermore, re-expression of Thioredoxin-1 via lentiviral transduction rescues endothelial cells from APEX1 (21-318)-induced apoptosis. In an in vivo model of restenosis, which is characterized by oxidative stress, endothelial activation, and smooth muscle cell proliferation, Thioredoxin-1 protein levels are reduced in the endothelium of the carotids. APEX1 acts anti-apoptotic in endothelial cells. This anti-apoptotic effect depends on the first 20 amino acids of APEX1. As proper function of the endothelium during life span is a hallmark for individual health span, a detailed characterization of the functions of the APEX1N-terminus is required to understand all its cellular properties. Antioxid. Redox Signal. 26, 616-629.

  14. Host cell killing by the West Nile Virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway

    International Nuclear Information System (INIS)

    Ramanathan, Mathura P.; Chambers, Jerome A.; Pankhong, Panyupa; Chattergoon, Michael; Attatippaholkun, Watcharee; Dang, Kesen; Shah, Neelima; Weiner, David B.

    2006-01-01

    The West Nile Virus (WNV) non-structural proteins 2B and 3 (NS2B-NS3) constitute the proteolytic complex that mediates the cleavage and processing of the viral polyprotein. NS3 recruits NS2B and NS5 proteins to direct protease and replication activities. In an effort to investigate the biology of the viral protease, we cloned cDNA encoding the NS2B-NS3 proteolytic complex from brain tissue of a WNV-infected dead crow, collected from the Lower Merion area (Merion strain). Expression of the NS2B-NS3 gene cassette induced apoptosis within 48 h of transfection. Electron microscopic analysis of NS2B-NS3-transfected cells revealed ultra-structural changes that are typical of apoptotic cells including membrane blebbing, nuclear disintegration and cytoplasmic vacuolations. The role of NS3 or NS2B in contributing to host cell apoptosis was examined. NS3 alone triggers the apoptotic pathways involving caspases-8 and -3. Experimental results from the use of caspase-specific inhibitors and caspase-8 siRNA demonstrated that the activation of caspase-8 was essential to initiate apoptotic signaling in NS3-expressing cells. Downstream of caspase-3 activation, we observed nuclear membrane ruptures and cleavage of the DNA-repair enzyme, PARP in NS3-expressing cells. Nuclear herniations due to NS3 expression were absent in the cells treated with a caspase-3 inhibitor. Expression of protease and helicase domains themselves was sufficient to trigger apoptosis generating insight into the apoptotic pathways triggered by NS3 from WNV

  15. Leaf storage conditions and genomic DNA isolation efficiency in ...

    African Journals Online (AJOL)

    Storage of plant tissues for DNA is important to avoid degradation of DNA. Preliminary studies were conducted on Ocimum gratissimum L. in order to establish the storage conditions for the collected samples before DNA extraction. Secondly, the aim was to determine the best protocol for the extraction of high quality DNA, ...

  16. PEGylated apoptotic protein-loaded PLGA microspheres for cancer therapy

    Directory of Open Access Journals (Sweden)

    Byeon HJ

    2015-01-01

    Full Text Available Hyeong Jun Byeon,1 Insoo Kim,1 Ji Su Choi,1 Eun Seong Lee,2 Beom Soo Shin,3 Yu Seok Youn11Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; 2Division of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea; 3Department of Pharmacy, College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Republic of KoreaAbstract: The aim of the current study was to investigate the antitumor potential of poly(D,L-lactic-co-glycolic acid microspheres (PLGA MSs containing polyethylene glycol (PEG-conjugated (PEGylated tumor necrosis factor–related apoptosis-inducing ligand (PEG-TRAIL. PEG-TRAIL PLGA MSs were prepared by using a water-in-oil-in-water double-emulsion method, and the apoptotic activities of supernatants released from the PLGA MSs at days 1, 3, and 7 were examined. The antitumor effect caused by PEG-TRAIL PLGA MSs was evaluated in pancreatic Mia Paca-2 cell-xenografted mice. PEG-TRAIL PLGA MS was found to be spherical and 14.4±1.06 µm in size, and its encapsulation efficiency was significantly greater than that of TRAIL MS (85.7%±4.1% vs 43.3%±10.9%, respectively. The PLGA MS gradually released PEG-TRAIL for 14 days, and the released PEG-TRAIL was shown to have clear apoptotic activity in Mia Paca-2 cells, whereas TRAIL released after 1 day had a negligible activity. Finally, PEG-TRAIL PLGA MS displayed remarkably greater antitumor efficacy than blank or TRAIL PLGA MS in Mia Paca-2 cell-xenografted mice in terms of tumor volume and weight, apparently due to increased stability and well-retained apoptotic activity of PEG-TRAIL in PLGA MS. We believe that this PLGA MS system, combined with PEG-TRAIL, should be considered a promising candidate for treating pancreatic cancer.Keywords: Poly(D,L-lactic-co-glycolic acid, controlled release, PEGylation, TRAIL, pancreatic cancer

  17. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum

    International Nuclear Information System (INIS)

    Inouye, Minoru; Yamamura, Hideki; Nakano, Atsuhiro.

    1995-01-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 μmol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 μg/g at the time of irradiation and remaining at more than 40 μg/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositide-mediated signaling systems regulate radiation-induced apoptosis. (author)

  18. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum.

    Science.gov (United States)

    Inouye, M; Yamamura, H; Nakano, A

    1995-09-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 mumol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 micrograms/g at the time of irradiation and remaining at more than 40 micrograms/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositidemediated signaling systems regulate radiation-induced apoptosis.

  19. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Inouye, Minoru; Yamamura, Hideki [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine; Nakano, Atsuhiro

    1995-09-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 {mu}mol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 {mu}g/g at the time of irradiation and remaining at more than 40 {mu}g/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositide-mediated signaling systems regulate radiation-induced apoptosis. (author).

  20. Application of TMA (Tissue micro-array) in the observation of apoptotic cascade in postradiation damage in avian medicine

    International Nuclear Information System (INIS)

    Fridman, E.; Skarda, J.; Skardova, I.

    2006-01-01

    The study of apoptotic cascade by the use of relatively new technique in avian medicine: TMA may help in early detection and prevention of acquired immunodeficiency caused by the influence of a variety of pathogenic and non-pathogenic environmental factors, which may result in severe economical losses in conditions of intensive poultry farming. There has not been any report of applying this method in veterinary medicine. Tissue micro-array (TMA) technology allows rapid visualization of molecular targets in thousands of tissue specimens at a time, either at the DNA, RNA or protein level. The technique facilitates rapid translation of molecular discoveries to clinical applications. This technology has a number of advantages compared with conventional techniques: speed and high throughput, standardization and experimental uniformity, ease of use, all histochemical and molecular detection techniques can be used, decreased assay volume, preservation of original block, and conservation of valuable tissue etc. The aim of the present work were the study of immunosuppression and apoptotic cascade and possibilities of application of tissue micro-array in chicken in experimental condition and diagnostics in avian medicine in general. The selection of samples from avian primary immune organs: thymus and Bursa Fabric was done after gamma irradiation and infectious bursal virus infection (IBDV). (authors)

  1. PKCη confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    International Nuclear Information System (INIS)

    Rotem-Dai, Noa; Oberkovitz, Galia; Abu-Ghanem, Sara; Livneh, Etta

    2009-01-01

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKCη, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKCη in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKCη. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKCη expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKCη is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKCη could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  2. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    2018-01-01

    Full Text Available Cancer is a major cause of death. The outcomes of current therapeutic strategies against cancer often ironically lead to even increased mortality due to the subsequent drug resistance and to metastatic recurrence. Alternative medicines are thus urgently needed. Cumulative evidence has pointed out that pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, PS has excellent pharmacological benefits for the prevention and treatment for various types of cancer in their different stages of progression by evoking apoptotic or nonapoptotic anti-cancer activities. In this review article, we first update current knowledge regarding tumor progression toward accomplishment of metastasis. Subsequently, we review current literature regarding the anti-cancer activities of PS. Finally, we provide future perspectives to clinically utilize PS as novel cancer therapeutic remedies. We, therefore, conclude and propose that PS is one ideal alternative medicine to be administered in the diet as a nutritional supplement.

  3. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  4. Evaluation of chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effects of Aloysia citrodora extract on colon cancer cell line

    Directory of Open Access Journals (Sweden)

    Amir Mirzaie

    2016-06-01

    Full Text Available Background: Aloysia citrodora belongs to the Verbenaceae family of plants, a well-known herbal medicine in Iran. The aim of the present study was to investigate the chemical composition, antioxidant, antibacterial, cytotoxic and apoptotic effect of A. citrodora extract against human colon cancer (HT29 cells by using real-time polymerase chain reaction and flow-cytometry methods. Methods: This experimental study was carried out in Islamic Azad University, East Tehran Branch, from March to September of 2014. At first, the A. citrodora chemical constituents were analyzed by gas chromatography-mass spectrometry (GC-MS technique. In addition, antioxidant assay, antibacterial and anti-cancer effect was performed using 1,1-diphenyl-2-picrylhydrazyl (DPPH, disk diffusion and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT methods, respectively. The half maximal inhibitory concentration (IC50 value was calculated. We extracted total RNA molecules by using RNX solution, after which cDNA was synthesized. Finally, the pro-apoptotic (Bax and anti-apoptotic (Bcl2 gene expression was performed by real-time polymerase chain reaction and apoptotic effects were analyzed using Flow-cytometry method. Results: GC-MS analysis of Aloysia citrodora extract was shown 37 major components and the most frequent component was belonged to Spathulenol (17.57% and Caryophyllene oxide (15.15% The antioxidant activity of the extract was IC50= 0.6±0.03 mg/ml. The maximum and minimum antibacterial effects of extract were belonged to gram-negative and gram-positive bacteria, respectively. Cytotoxic results revealed that the A.citrodora extract have IC50= 20.1±0.78 mg/ml against colon cancer (HT29 cell line and real-time polymerase chain reaction results showed the expression level of Bax and Bcl2 was increased and decreased respectively in colon cancer cell line (3.470±0.72 (P< 0.05, 0.43±0.35 (P< 0.05. In addition, the flow-cytometry results indicated the 38

  5. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens

    DEFF Research Database (Denmark)

    Straten, Per thor; Andersen, Mads Hald; Andersen, Mads Hald

    2010-01-01

    Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal regulators of apoptotic cell death. They are all highly overexpressed in cancers of different origin in which they enhance the survival of the cancer cells. Consequently, they represent prime candidates for anti-ca...

  6. The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal

    Directory of Open Access Journals (Sweden)

    Hafner Martin

    2004-08-01

    Full Text Available Abstract Background Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. Results Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr -/- mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. Conclusion Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance.

  7. Relationship between apoptotic markers in semen from fertile men and demographic, hormonal and seminal characteristics

    DEFF Research Database (Denmark)

    Specht, Ina; Spanò, Marcello; Hougaard, Karin S

    2012-01-01

    and biological correlates of the pro-apoptotic marker Fas and the anti-apoptotic marker Bcl-xL in sperm cells of fertile men. Six hundred and four men from Greenland, Poland and Ukraine were consecutively enrolled during their pregnant wife's antenatal visits. Semen analysis was performed as recommended...

  8. Damage and repair of ancient DNA

    DEFF Research Database (Denmark)

    Mitchell, David; Willerslev, Eske; Hansen, Anders

    2005-01-01

    degradation, these studies are limited to species that lived within the past 10(4)-10(5) years (Late Pleistocene), although DNA sequences from 10(6) years have been reported. Ancient DNA (aDNA) has been used to study phylogenetic relationships of protists, fungi, algae, plants, and higher eukaryotes...... such as extinct horses, cave bears, the marsupial wolf, the moa, and Neanderthal. In the past few years, this technology has been extended to the study of infectious disease in ancient Egyptian and South American mummies, the dietary habits of ancient animals, and agricultural practices and population dynamics......, and extensive degradation. In the course of this review, we will discuss the current aDNA literature describing the importance of aDNA studies as they relate to important biological questions and the difficulties associated with extracting useful information from highly degraded and damaged substrates derived...

  9. DNA repair mechanisms in cancer development and therapy.

    Science.gov (United States)

    Torgovnick, Alessandro; Schumacher, Björn

    2015-01-01

    DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents that trigger DNA damage checkpoints have been applied to halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.

  10. DNA Repair Mechanisms in Cancer Development and Therapy

    Directory of Open Access Journals (Sweden)

    Alessandro eTorgovnick

    2015-04-01

    Full Text Available DNA damage has been long recognized as causal factor for cancer development. When erroneous DNA repair leads to mutations or chromosomal aberrations affecting oncogenes and tumor suppressor genes, cells undergo malignant transformation resulting in cancerous growth. Genetic defects can predispose to cancer: Mutations in distinct DNA repair systems elevate the susceptibility to various cancer types. However, DNA damage not only comprises a root cause for cancer development but also continues to provide an important avenue for chemo- and radiotherapy. Since the beginning of cancer therapy, genotoxic agents have been applied that trigger DNA damage checkpoints that halt the growth and trigger the apoptotic demise of cancer cells. We provide an overview about the involvement of DNA repair systems in cancer prevention and the classes of genotoxins that are commonly used for the treatment of cancer. A better understanding of the roles and interactions of the highly complex DNA repair machineries will lead to important improvements in cancer therapy.

  11. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2

    Science.gov (United States)

    Yue, Wen; Zheng, Xi; Lin, Yong; Yang, Chung S.; Xu, Qing; Carpizo, Darren; Huang, Huarong; DiPaola, Robert S.; Tan, Xiang-Lin

    2015-01-01

    Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer. PMID:26056043

  12. Association of sperm apoptosis and DNA ploidy with sperm chromatin quality in human spermatozoa.

    Science.gov (United States)

    Mahfouz, Reda Z; Sharma, Rakesh K; Said, Tamer M; Erenpreiss, Juris; Agarwal, Ashok

    2009-04-01

    To examine the relationship among sperm apoptosis, sperm chromatin status, and DNA ploidy in different sperm fractions. Prospective study. Reproductive research center in a tertiary care hospital. Sperm prepared by density gradient were evaluated for sperm count, motility, apoptosis, and sperm chromatin assessment. Sperm count, sperm motility, toluidine blue (TB) results, DNA fragmentation index (%DFI), high DNA stainability, DNA cytometry, and early and late apoptosis. Sperm motility was related to late apoptotic and subhaploid apoptotic sperm (r = -0.56 and -0.53, respectively). The sperm %DFI showed significant correlation with late apoptotic and subhaploid sperm (r = 0.62 and 0.68). TB-stained sperm were significantly correlated with late apoptotic sperm (r = 0.51). Significantly higher proportions of haploid sperm and light blue TB-stained sperm were seen in mature compared with immature fractions. Even in semen samples with low %DFI, semen processing results in a lower incidence of nuclear immaturity and subhaploidy, but the incidence of late apoptotic sperm remains unchanged. Therefore, simultaneous evaluation of apoptosis and sperm chromatin status is important for processing sperm in assisted reproductive procedures.

  13. β3 integrin promotes chemoresistance to epirubicin in MDA-MB-231 through repression of the pro-apoptotic protein, BAD

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Madhumathy G.; Desai, Krisha; Prabhu, Jyothi S.; Hari, P.S.; Remacle, Jose; Sridhar, T.S., E-mail: tssridhar@sjri.res.in

    2016-08-01

    Resistance to anthracycline based chemotherapy is a major limitation in the treatment of breast cancer, particularly of the triple negative sub-type that lacks targeted therapies. Resistance that arises from tumor-stromal interaction facilitated by integrins provides the possibility of targeted disruption. In the present study, we demonstrate that integrin β3 signaling inhibits apoptosis induced by a DNA-damaging chemotherapeutic agent, epirubicin, in MDA-MB-231 breast cancer cells. Drug efflux based mechanisms do not contribute to this effect. We show that integrin β3 employs the PI3K-Akt and the MAPK pathway for enabling cell survival and proliferation. Further, our results indicate that integrin β3 helps inhibit epirubicin induced cytotoxicity by repression of the pro-apoptotic protein BAD, thus promoting an anti-apoptotic response. Myristoylated RGT peptide and a monoclonal antibody against integrin β3 brought about a reversal of this effect and chemosensitized the cells. These results identify β3 integrin signaling via repression of BAD as an important survival pathway used by breast cancer cells to evade chemotherapy induced stress. - Highlights: • Integrin β3 signaling promotes chemoresistance to epirubicin in breast cancer cells. • Integrin β3 promotes cell survival and proliferation in drug treated cells through the PI3K and MAPK pathways. • Integrin signaling helps evade drug induced cytotoxicity by repression of pro-apoptotic molecule; BAD.

  14. Comparative studies of cytotoxic and apoptotic properties of different extracts and the essential oil of Lavandula angustifolia on malignant and normal cells.

    Science.gov (United States)

    Tayarani-Najaran, Zahra; Amiri, Atefeh; Karimi, Gholamreza; Emami, Seyed Ahmad; Asili, Javad; Mousavi, Seyed Hadi

    2014-01-01

    Lavender (Lavandula angustifolia Mill.) is a bush-like shrub from Lamiaceae. The herb has been used in alternative medicine for several centuries. In this study, the cytotoxicity and the mechanisms of cell death induced by 3 different extracts of aerial parts and the essential oil of L. angustifolia were compared in normal and cancerous human cells. Malignant (HeLa and MCF-7 cell lines) and nonmalignant (human fibroblasts) cells were incubated with different concentrations of the plant extracts. Cell viability was quantified by MTS assay. Apoptotic cells were determined using propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1 peak). The molecules as apoptotic signal translation, including Bax and cleaved PARP, were identified by Western blot. Ethanol and n-hexane extracts and essential oil exhibited significant cytotoxicity to malignant cells but marginal cytotoxicity to human fibroblasts in vitro and induced a sub-G1 peak in flow cytometry histogram of treated cells compared to the control. Western blot analysis demonstrated that EtOH and n-hexane extracts upregulated Bax expression, also it induced cleavage of PARP in HeLa cells compared to the control. In conclusion, L. angustifolia has cytotoxic and apoptotic effects in HeLa and MCF-7 cell lines, and apoptosis is proposed as the possible mechanism of action.

  15. Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.

    Science.gov (United States)

    Doo, Ah-Reum; Kim, Seung-Nam; Kim, Seung-Tae; Park, Ji-Yeun; Chung, Sung-Hyun; Choe, Bo-Young; Chae, Younbyoung; Lee, Hyejung; Yin, Chang-Shik; Park, Hi-Joon

    2012-01-06

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by progressive selective loss of dopaminergic neurons in the substantia nigra. Recently, bee venom was reported to protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced mice PD model, however, the underlying mechanism is not fully understood. The objective of the present study is to investigate the neuroprotective mechanism of bee venom against Parkinsonian toxin, 1-methyl-4-phenylpyridine (MPP(+)), in SH-SY5Y human neuroblastoma cells. Our results revealed that bee venom pretreatment (1-100 ng/ml) increased the cell viability and decreased apoptosis assessed by DNA fragmentation and caspase-3 activity assays in MPP(+)-induced cytotoxicity in SH-SY5Y cells. Bee venom increased the anti-apoptotic Bcl-2 expression and decreased the pro-apoptotic Bax, cleaved PARP expressions. In addition, bee venom prevented the MPP(+)-induced suppression of Akt phosphorylation, and the neuroprotective effect of bee venom against MPP(+)-induced cytotoxicity was inhibited by a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002. These results suggest that the anti-apoptotic effect of bee venom is mediated by the cell survival signaling, the PI3K/Akt pathway. These results provide new evidence for elucidating the mechanism of neuroprotection of bee venom against PD. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

    Directory of Open Access Journals (Sweden)

    Anita Thakur

    2015-08-01

    Full Text Available Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses.

  17. Apoptotic activities of cardenolide glycosides from Asclepias subulata.

    Science.gov (United States)

    Rascón-Valenzuela, L A; Velázquez, C; Garibay-Escobar, A; Vilegas, W; Medina-Juárez, L A; Gámez-Meza, N; Robles-Zepeda, R E

    2016-12-04

    Asclepias subulata Decne. (Apocynaceae) is a shrub occurring in Sonora-Arizona desert. The ethnic groups of Sonora, Mexico, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To determine the cell death pathways that the cardenolide glycosides with antiproliferative activity found in the methanol extract of A. subulata are able to activate. The effect of cardenolide glycosides isolated of A. subulata on induction of apoptosis in cancer cells was evaluated through the measuring of several key events of apoptosis. A549 cells were treated for 12h with doses of 3.0, 0.2, 3.0 and 1.0µM of 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively. Apoptotic and necrotic cell levels were measured by double staining with annexin V-FITC/PI. Mitochondrial membrane depolarization was examined through JC-1 staining. Apoptosis cell death and the apoptosis pathways activated by cardenolide glycosides isolated of A. subulata were further characterized by the measurement of caspase-3, caspase-8 and caspase-9 activity. Apoptotic assays showed that the four cardenolide glycosides isolated of A. subulata induced apoptosis in A549 cells, which was evidencing by phosphatidylserine externalization in 18.2%, 17.0%, 23.9% and 22.0% for 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, respectively, compared with 4.6% of control cells. Cell death was also associated with a decrease in mitochondrial membrane potential, which was more than 75% in the treated cultures respect to control. The activation of caspase-3 was observed in all cardenolide glycosides-treated cancer cells indicating the caspase-dependent apoptosis of A549 cells. Extrinsic and intrinsic apoptosis pathways were activated by cardenolide glycosides treatment at the doses tested. In this study was found that cardenolide glycosides, 12, 16-dihydroxicalotropin, calotropin

  18. Fate of exogenously supplied bacterial DNA in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Ndiku, Luyindula [Commissariat des Sciences Nucleaires, Kinshasa (Zaire). Centre Regional d' Etudes Nucleaires

    1980-01-01

    The fate of exogenously supplied radiolabelled DNA from agrobacterium tumefaciens and micrococcus lysodeikticus was investigated in soybean tissues growing under various physiological conditions. The following observations are made: (a) Rapid degradation and reutilization of the donor DNA was observed in callus tissue culture. (b) Germinating seeds and five-day old seedlings were shown to degrade DNA in the incubation medium and to ultilize these degradation products for their own DNA synthesis. Reutilization could be almost totally suppressed the addition of unlabelled thymidine as a competitor. This allowed a detection of significant amounts of residuel donor closely but transiently associated with the plant tissues. (c) In soybean shoots dipped into a solution of donor DNA, partly this DNA was found to first migrate to the leaves where mostly labelled endogenous DNA was later found. Very large amounts of polymerized exogenous DNA were found in the regenerated roots after 12 days of culture.

  19. On the fate of exogenously supplied bacterial DNA in soybean

    International Nuclear Information System (INIS)

    Luyindula Ndiku

    1980-01-01

    The fate of exogenously supplied radiolabelled DNA from agrobacterium tumefaciens and micrococcus lysodeikticus was investigated in soybean tissues growing under various physiological conditions. The following observations are made: a) Rapid degradation and reutilization of the donor DNA was observed in callus tissue culture. b) Germinating seeds and five-day old seedlings were shown to degrade DNA in the incubation medium and to ultilize these degradation products for their own DNA synthesis. Reutilization could be almost totally suppressed the addition of unlabelled thymidine as a competitor. This allowed a detection of significant amounts of residuel donor closely but transiently associated with the plant tissues. c) In soybean shoots dipped into a solution of donor DNA, partly this DNA was found to first migrate to the leaves where mostly labelled endogenous DNA was later found. Very large amounts of polymerized exogenous DNA were found in the regenerated roots after 12 days of culture. (author)

  20. Evaluating Ethanol-based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates

    Science.gov (United States)

    Molecular methods, such as DNA barcoding, have the potential in enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biom...

  1. Non-apoptotic cell death associated with perturbations of macropinocytosis.

    Science.gov (United States)

    Maltese, William A; Overmeyer, Jean H

    2015-01-01

    Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed "methuosis," from the Greek methuo (to drink to intoxication). It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  2. Non-apoptotic cell death associated with perturbations of macropinocytosis

    Directory of Open Access Journals (Sweden)

    William A. Maltese

    2015-02-01

    Full Text Available Although macropinocytosis is widely recognized as a distinct form of fluid-phase endocytosis in antigen-presenting dendritic cells, it also occurs constitutively in many other normal and transformed cell types. Recent studies have established that various genetic or pharmacological manipulations can hyperstimulate macropinocytosis or disrupt normal macropinosome trafficking pathways, leading to accumulation of greatly enlarged cytoplasmic vacuoles. In some cases, this extreme vacuolization is associated with a unique form of non-apoptotic cell death termed ‘methuosis’, from the Greek methuo (to drink to intoxication. It remains unclear whether cell death related to dysfunctional macropinocytosis occurs in normal physiological contexts. However, the finding that some types of cancer cells are particularly vulnerable to this unusual form of cell death has raised the possibility that small molecules capable of altering macropinosome trafficking or function might be useful as therapeutic agents against cancers that are resistant to drugs that work by inducing apoptosis. Herein we review examples of cell death associated with dysfunctional macropinocytosis and summarize what is known about the underlying mechanisms.

  3. Calcein+/PI- as an early apoptotic feature in Leishmania.

    Science.gov (United States)

    Basmaciyan, Louise; Azas, Nadine; Casanova, Magali

    2017-01-01

    Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i) to better understand the role of apoptosis in unicellular organisms, (ii) to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii) to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites.

  4. Calcein+/PI- as an early apoptotic feature in Leishmania.

    Directory of Open Access Journals (Sweden)

    Louise Basmaciyan

    Full Text Available Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i to better understand the role of apoptosis in unicellular organisms, (ii to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites.

  5. Apoptotic induction of skin cancer cell death by plant extracts.

    Science.gov (United States)

    Thuncharoen, Walairat; Chulasiri, Malin; Nilwarangkoon, Sirinun; Nakamura, Yukio; Watanapokasin, Ramida

    2013-01-01

    The aim of the present study was to investigate the effects of plant extracts on cancer apoptotic induction. Human epidermoid carcinoma A431 cell line, obtained from the American Type Culture Collection (ATCC, Manassas, VA), was maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37 degrees C, 5% carbon dioxide (CO2). Plant extract solutions were obtained from S & J international enterprises public company limited. These plant extracts include 50% hydroglycol extracts from Etlingera elatior (Jack) R.M.Smith (torch ginger; EE), Rosa damascene (damask rose; DR) and Rafflesia kerrii Meijer (bua phut; RM). The cell viability, time and dose dependency were determined by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. A431 cells were treated with the plant extracts and stained with Hoechst 33342 fluorescent staining dye. Cell viability was demonstrated by the inhibitory concentration 50% (IC50). The anti-proliferative effects were shown to be dependent on time and dose. Typical characteristics of apoptosis which are cell morphological changes and chromatin condensation were clearly observed. The plant extracts was shown to be effective for anti-proliferation and induction of apoptosis cell death in skin cancer cells. Therefore, mechanisms underlying the cell death and its potential use for treatment of skin cancer will be further studied.

  6. Apoptotic study in Graves disease treated with thyroid arterial embolization

    International Nuclear Information System (INIS)

    Zhao Wei; Gao Bulang; Yi Genfa

    2009-01-01

    The objective of this study was to investigate apoptosis in the thyroid of Graves disease (GD) induced by thyroid arterial embolization. Forty one patients with clinically and laboratorily ascertained GD were treated with thyroid arterial embolization and followed up for 3-54 months following embolization. Prior to embolization and at 1, 3, 6, 12 and 36 months following embolization, thyroid autoimmune antibodies were tested respectively, including thyroid stimulating antibody (TSAb), thyroglobulin antibody (TGAb) and thyroid microsomal antibody (TMAb). Thyroid biopsy was performed under the guidance of computed tomography for immunohistochemistry examination using semi-quantity analysis. The positive staining of Fas and FasL was mostly in the cytoplasma and cell membrane, the positive expression of Bax was mainly in the cytoplasma, and no positive expression of P53 was detected in the thyroid cells before embolization. After arterial embolziation, the positive cell number and staining degree of these genes were both greater than before embolization. The treatment method of thyroid arterial embolization can effectively enhance the positive expression of pro-apoptotic genes of Fas, FasL, Bax, Bcl-2 and P53 in GD thyroid, thus promoting apoptosis of GD thyroid and helping restore the thyroid size and function to normal conditions. (author)

  7. The antiproliferative and apoptotic effects of apigenin on glioblastoma cells.

    Science.gov (United States)

    Stump, Trevor A; Santee, Brittany N; Williams, Lauren P; Kunze, Rachel A; Heinze, Chelsae E; Huseman, Eric D; Gryka, Rebecca J; Simpson, Denise S; Amos, Samson

    2017-07-01

    Glioblastoma (GBM) is highly proliferative, infiltrative, malignant and the most deadly form of brain tumour. The epidermal growth factor receptor (EGFR) is overexpressed, amplified and mutated in GBM and has been shown to play key and important roles in the proliferation, growth and survival of this tumour. The goal of our study was to investigate the antiproliferative, apoptotic and molecular effects of apigenin in GBM. Proliferation and viability tests were carried out using the trypan blue exclusion, MTT and lactate dehydrogenase (LDH) assays. Flow cytometry was used to examine the effects of apigenin on the cell cycle check-points. In addition, we determined the effects of apigenin on EGFR-mediated signalling pathways by Western blot analyses. Our results showed that apigenin reduced cell viability and proliferation in a dose- and time-dependent manner while increasing cytotoxicity in GBM cells. Treatment with apigenin-induced is poly ADP-ribose polymerase (PARP) cleavage and caused cell cycle arrest at the G2M checkpoint. Furthermore, our data revealed that apigenin inhibited EGFR-mediated phosphorylation of mitogen-activated protein kinase (MAPK), AKT and mammalian target of rapamycin (mTOR) signalling pathways and attenuated the expression of Bcl-xL. Our results demonstrated that apigenin has potent inhibitory effects on pathways involved in GBM proliferation and survival and could potentially be used as a therapeutic agent for GBM. © 2017 Royal Pharmaceutical Society.

  8. Uptake of apoptotic leukocytes by synovial lining macrophages inhibits immune complex-mediated arthritis.

    Science.gov (United States)

    van Lent, P L; Licht, R; Dijkman, H; Holthuysen, A E; Berden, J H; van den Berg, W B

    2001-11-01

    Previously we have shown that synovial lining macrophages (SLMs) determine the onset of experimental immune complex-mediated arthritis (ICA). During joint inflammation, many leukocytes undergo apoptosis, and removal of leukocytes by SLMs may regulate resolution of inflammation. In this study we investigated binding and uptake of apoptotic leukocytes by SLMs and its impact on the onset of murine experimental arthritis. We used an in vitro model to evaluate phagocytosis of apoptotic cells on chemotaxis. Phagocytosis of apoptotic thymocytes resulted in a significant decrease (58%) of chemotactic activity for polymorphonuclear neutrophils (PMNs). If apoptotic cells were injected directly into a normal murine knee joint, SLMs resulted in a prominent uptake of cells. After ICA induction, electron micrographs showed that apoptotic leukocytes were evidently present in SLMs on days 1 and 2. Injection of apoptotic leukocytes into the knee joint 1 h before induction of ICA significantly inhibited PMN infiltration into the knee joint at 24 h (61% decrease). This study indicates that uptake of apoptotic leukocytes by SLM reduces chemotactic activity and inhibits the onset of experimental arthritis. These findings indicate an important mechanism in the resolution of joint inflammation.

  9. Systems analysis of apoptotic priming in ovarian cancer identifies vulnerabilities and predictors of drug response.

    Science.gov (United States)

    Zervantonakis, Ioannis K; Iavarone, Claudia; Chen, Hsing-Yu; Selfors, Laura M; Palakurthi, Sangeetha; Liu, Joyce F; Drapkin, Ronny; Matulonis, Ursula; Leverson, Joel D; Sampath, Deepak; Mills, Gordon B; Brugge, Joan S

    2017-08-28

    The lack of effective chemotherapies for high-grade serous ovarian cancers (HGS-OvCa) has motivated a search for alternative treatment strategies. Here, we present an unbiased systems-approach to interrogate a panel of 14 well-annotated HGS-OvCa patient-derived xenografts for sensitivity to PI3K and PI3K/mTOR inhibitors and uncover cell death vulnerabilities. Proteomic analysis reveals that PI3K/mTOR inhibition in HGS-OvCa patient-derived xenografts induces both pro-apoptotic and anti-apoptotic signaling responses that limit cell killing, but also primes cells for inhibitors of anti-apoptotic proteins. In-depth quantitative analysis of BCL-2 family proteins and other apoptotic regulators, together with computational modeling and selective anti-apoptotic protein inhibitors, uncovers new mechanistic details about apoptotic regulators that are predictive of drug sensitivity (BIM, caspase-3, BCL-X L ) and resistance (MCL-1, XIAP). Our systems-approach presents a strategy for systematic analysis of the mechanisms that limit effective tumor cell killing and the identification of apoptotic vulnerabilities to overcome drug resistance in ovarian and other cancers.High-grade serous ovarian cancers (HGS-OvCa) frequently develop chemotherapy resistance. Here, the authors through a systematic analysis of proteomic and drug response data of 14 HGS-OvCa PDXs demonstrate that targeting apoptosis regulators can improve response of these tumors to inhibitors of the PI3K/mTOR pathway.

  10. Cytotoxic activity and apoptotic induction of some edible Thai local ...

    African Journals Online (AJOL)

    inverted microscopy and DNA fragmentation using agarose gel electrophoresis. Results: P. ... However, further studies are needed to isolate the active compounds responsible for the cytotoxic ..... D-E: TL at 500 and 4,000 μg/mL. Arrows ...

  11. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums

    Science.gov (United States)

    2010-01-01

    Everyday we turnover billions of cells. The quick, efficient, and immunologically silent disposal of the dying cells requires a coordinated orchestration of multiple steps, through which phagocytes selectively recognize and engulf apoptotic cells. Recent studies have suggested an important role for soluble mediators released by apoptotic cells that attract phagocytes (“find-me” signals). New information has also emerged on multiple receptors that can recognize phosphatidylserine, the key “eat-me” signal exposed on the surface of apoptotic cells. This perspective discusses recent exciting progress, gaps in our understanding, and the conflicting issues that arise from the newly acquired knowledge. PMID:20805564

  12. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  13. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  14. SATB2 participates in regulation of menadione-induced apoptotic insults to osteoblasts.

    Science.gov (United States)

    Wei, Jyh-Ding; Lin, Yi-Ling; Tsai, Cheng-Hsiu; Shieh, Hui-Shan; Lin, Pei-I; Ho, Wei-Pin; Chen, Ruei-Ming

    2012-07-01

    Special AT-rich sequence binding protein 2 (SATB2), a nuclear matrix attachment region-binding protein, can regulate embryonic development, cell differentiation, and cell survival. Previous studies showed that SATB2 is involved in osteoblast differentiation and skeletal development. In this study, we evaluated the role of SATB2 in oxidative stress-induced apoptotic insults to human osteoblast-like MG63 cells and mouse MC3T3-E1 cells. Exposure of MG63 cells to menadione increased intracellular reactive oxygen species levels in a concentration- and time-dependent manner. Simultaneously, menadione-induced oxidative stress triggered cell shrinkage and decreased cell viability. In addition, treatment of MG63 cells with menadione time-dependently decreased the mitochondrial membrane potential but enhanced caspase-3 activity. As a result, menadione-induced DNA fragmentation and cell apoptosis. As to the mechanism, exposure of MG63 cells to menadione amplified SATB2 messenger (m)RNA and protein expression in a time-dependent manner. Knockdown of translation of SATB2 mRNA using RNA interference led to chromatin disruption and nuclear damage. When MG63 cells and MC3T3-E1 cells were treated with SATB2 small interfering RNA, menadione-induced cell apoptosis was increased. We conclude that menadione causes oxidative stress in human osteoblasts and induces cellular apoptosis via a mitochondrion-caspase protease pathway. In addition, SATB2 may play a crucial role in protecting against oxidative stress-induced osteoblast apoptosis. Copyright © 2012 Orthopaedic Research Society.

  15. Autophagy in DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Piotr Czarny

    2015-01-01

    Full Text Available DNA damage response (DDR involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1. mTORC1 represses autophagy via phosphorylation of the ULK1/2–Atg13–FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADPribose polymerase 1 (PARP-1, Mre11–Rad50–Nbs1 (MRN complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  16. DNA damage in plant herbarium tissue.

    Science.gov (United States)

    Staats, Martijn; Cuenca, Argelia; Richardson, James E; Vrielink-van Ginkel, Ria; Petersen, Gitte; Seberg, Ole; Bakker, Freek T

    2011-01-01

    Dried plant herbarium specimens are potentially a valuable source of DNA. Efforts to obtain genetic information from this source are often hindered by an inability to obtain amplifiable DNA as herbarium DNA is typically highly degraded. DNA post-mortem damage may not only reduce the number of amplifiable template molecules, but may also lead to the generation of erroneous sequence information. A qualitative and quantitative assessment of DNA post-mortem damage is essential to determine the accuracy of molecular data from herbarium specimens. In this study we present an assessment of DNA damage as miscoding lesions in herbarium specimens using 454-sequencing of amplicons derived from plastid, mitochondrial, and nuclear DNA. In addition, we assess DNA degradation as a result of strand breaks and other types of polymerase non-bypassable damage by quantitative real-time PCR. Comparing four pairs of fresh and herbarium specimens of the same individuals we quantitatively assess post-mortem DNA damage, directly after specimen preparation, as well as after long-term herbarium storage. After specimen preparation we estimate the proportion of gene copy numbers of plastid, mitochondrial, and nuclear DNA to be 2.4-3.8% of fresh control DNA and 1.0-1.3% after long-term herbarium storage, indicating that nearly all DNA damage occurs on specimen preparation. In addition, there is no evidence of preferential degradation of organelle versus nuclear genomes. Increased levels of C→T/G→A transitions were observed in old herbarium plastid DNA, representing 21.8% of observed miscoding lesions. We interpret this type of post-mortem DNA damage-derived modification to have arisen from the hydrolytic deamination of cytosine during long-term herbarium storage. Our results suggest that reliable sequence data can be obtained from herbarium specimens.

  17. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    International Nuclear Information System (INIS)

    Ahmed, Maha A.E.

    2015-01-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  18. Amelioration of nandrolone decanoate-induced testicular and sperm toxicity in rats by taurine: Effects on steroidogenesis, redox and inflammatory cascades, and intrinsic apoptotic pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Maha A.E., E-mail: mahapharm@yahoo.com

    2015-02-01

    The wide abuse of the anabolic steroid nandrolone decanoate by athletes and adolescents for enhancement of sporting performance and physical appearance may be associated with testicular toxicity and infertility. On the other hand, taurine; a free β-amino acid with remarkable antioxidant activity, is used in taurine-enriched beverages to boost the muscular power of athletes. Therefore, the purpose of this study was to investigate the mechanisms of the possible protective effects of taurine on nandrolone decanoate-induced testicular and sperm toxicity in rats. To achieve this aim, male Wistar rats were randomly distributed into four groups and administered either vehicle, nandrolone decanoate (10 mg/kg/week, I.M.), taurine (100 mg/kg/day, p.o.) or combination of taurine and nandrolone decanoate, for 8 successive weeks. Results of the present study showed that taurine reversed nandrolone decanoate-induced perturbations in sperm characteristics, normalized serum testosterone level, and restored the activities of the key steroidogenic enzymes; 3β-HSD, and 17β-HSD. Moreover, taurine prevented nandrolone decanoate-induced testicular toxicity and DNA damage by virtue of its antioxidant, anti-inflammatory, and anti-apoptotic effects. This was evidenced by taurine-induced modulation of testicular LDH-x activity, redox markers (MDA, NO, GSH contents, and SOD activity), inflammatory indices (TNF-α, ICAM-1 levels, and MMP-9 gene expression), intrinsic apoptotic pathway (cytochrome c gene expression and caspase-3 content), and oxidative DNA damage markers (8-OHdG level and comet assay). In conclusion, at the biochemical and histological levels, taurine attenuated nandrolone decanoate-induced poor sperm quality and testicular toxicity in rats. - Highlights: • Nandrolone decanoate (ND) disrupts sperm profile and steroidogenesis in rats. • ND upregulates gene expression of inflammatory and apoptotic markers. • Taurine normalizes sperm profile and serum testosterone level

  19. IFN-γ Induces Mimic Extracellular Trap Cell Death in Lung Epithelial Cells Through Autophagy-Regulated DNA Damage.

    Science.gov (United States)

    Lin, Chiou-Feng; Chien, Shun-Yi; Chen, Chia-Ling; Hsieh, Chia-Yuan; Tseng, Po-Chun; Wang, Yu-Chih

    2016-02-01

    Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.

  20. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Yao Dai

    Full Text Available Celastrol is a natural proteasome inhibitor that exhibits promising anti-tumor effects in human malignancies, especially the androgen-independent prostate cancer (AIPC with constitutive NF-κB activation. Celastrol induces apoptosis by means of proteasome inhibition and suppresses prostate tumor growth. However, the detailed mechanism of action remains elusive. In the current study, we aim to test the hypothesis that celastrol suppresses AIPC progression via inhibiting the constitutive NF-κB activity as well as modulating the Bcl-2 family proteins.We examined the efficacy of celastrol both in vitro and in vivo, and evaluated the role of NF-κB in celastrol-mediated AIPC regression. We found that celastrol inhibited cell proliferation in all three AIPC cell lines (PC-3, DU145 and CL1, with IC₅₀ in the range of 1-2 µM. Celastrol also suppressed cell migration and invasion. Celastrol significantly induced apoptosis as evidenced by increased sub-G1 population, caspase activation and PARP cleavage. Moreover, celastrol promoted cleavage of the anti-apoptotic protein Mcl-1 and activated the pro-apoptotic protein Noxa. In addition, celastrol rapidly blocked cytosolic IκBα degradation and nuclear translocation of RelA. Likewise, celastrol inhibited the expression of multiple NF-κB target genes that are involved in proliferation, invasion and anti-apoptosis. Celastrol suppressed AIPC tumor progression by inhibiting proliferation, increasing apoptosis and decreasing angiogenesis, in PC-3 xenograft model in nude mouse. Furthermore, increased cellular IκBα and inhibited expression of various NF-κB target genes were observed in tumor tissues.Our data suggest that, via targeting the proteasome, celastrol suppresses proliferation, invasion and angiogenesis by inducing the apoptotic machinery and attenuating constitutive NF-κB activity in AIPC both in vitro and in vivo. Celastrol as an active ingredient of traditional herbal medicine could thus be

  1. Antiproliferative and apoptotic activities of extracts of Asclepias subulata.

    Science.gov (United States)

    Rascón Valenzuela, Luisa Alondra; Jiménez Estrada, Manuel; Velázquez Contreras, Carlos Arturo; Garibay Escobar, Adriana; Medina Juárez, Luis Angel; Gámez Meza, Nohemi; Robles Zepeda, Ramón Enrique

    2015-01-01

    Asclepias subulata Decne. (Apocynaceae) is a shrub used in the Mexican traditional medicine for the treatment of cancer. The objective of this study was to evaluate the antiproliferative activity of methanol extract of aerial parts of A. subulata and its fractions against different cancer cell lines. Additionally, we analyzed the mechanism of action of the active fractions. Methanol extract fractions were prepared by serial extraction with n-hexane, ethyl acetate, and ethanol. The antiproliferative activity of methanol extract and its fractions was evaluated, against several murine (M12.C3.F6, RAW 264.7, and L929) and human (HeLa, A549, PC-3, LS 180, and ARPE-19) cell lines by the MTT assay, using concentrations of 0.4-400 µg/mL for 48 h. Ethanol and residual fractions were separated using silica gel column. Apoptosis induction of cancer cells was evaluated by Annexin and JC-1 staining using flow cytometry. Methanol extract and its fractions showed antiproliferative activity against all human cancer cell lines tested. Methanol extract had the highest antiproliferative activity on A549 and HeLa cells (IC50 values < 0.4 and 8.7 µg/mL, respectively). Ethanol and residual fractions exerted significant antiproliferative effect on A549 (IC50 < 0.4 µg/mL) and PC3 cells (IC50 1.4 and 5.1 µg/mL). Apoptotic assays showed that CEF7, CEF9, CRF6, and CRF5 fractions induced mitochondrial depolarization in A549 cells, 70, 73, 77, and 80%, respectively. Those fractions triggered the apoptosis mitochondrial pathway. Our data show that A. subulata extracts have potent antiproliferative properties on human cancer cell lines. This plant should be considered an important source of potent anticancer compounds.

  2. Indication of Horizontal DNA Gene Transfer by Extracellular Vesicles.

    Directory of Open Access Journals (Sweden)

    Stefanie Fischer

    Full Text Available The biological relevance of extracellular vesicles (EV in intercellular communication has been well established. Thus far, proteins and RNA were described as main cargo. Here, we show that EV released from human bone marrow derived mesenchymal stromal cells (BM-hMSC also carry high-molecular DNA in addition. Extensive EV characterization revealed this DNA mainly associated with the outer EV membrane and to a smaller degree also inside the EV. Our EV purification protocol secured that DNA is not derived from apoptotic or necrotic cells. To analyze the relevance of EV-associated DNA we lentivirally transduced Arabidopsis thaliana-DNA (A.t.-DNA as indicator into BM-hMSC and generated EV. Using quantitative polymerase chain reaction (qPCR techniques we detected high copy numbers of A.t.-DNA in EV. In recipient hMSC incubated with tagged EV for two weeks we identified A.t.-DNA transferred to recipient cells. Investigation of recipient cell DNA using quantitative PCR and verification of PCR-products by sequencing suggested stable integration of A.t.-DNA. In conclusion, for the first time our proof-of-principle experiments point to horizontal DNA transfer into recipient cells via EV. Based on our results we assume that eukaryotic cells are able to exchange genetic information in form of DNA extending the known cargo of EV by genomic DNA. This mechanism might be of relevance in cancer but also during cell evolution and development.

  3. Block Copolymer Micellization as a Protection Strategy for DNA Origami.

    Science.gov (United States)

    Agarwal, Nayan P; Matthies, Michael; Gür, Fatih N; Osada, Kensuke; Schmidt, Thorsten L

    2017-05-08

    DNA nanotechnology enables the synthesis of nanometer-sized objects that can be site-specifically functionalized with a large variety of materials. For these reasons, DNA-based devices such as DNA origami are being considered for applications in molecular biology and nanomedicine. However, many DNA structures need a higher ionic strength than that of common cell culture buffers or bodily fluids to maintain their integrity and can be degraded quickly by nucleases. To overcome these deficiencies, we coated several different DNA origami structures with a cationic poly(ethylene glycol)-polylysine block copolymer, which electrostatically covered the DNA nanostructures to form DNA origami polyplex micelles (DOPMs). This straightforward, cost-effective, and robust route to protect DNA-based structures could therefore enable applications in biology and nanomedicine where unprotected DNA origami would be degraded. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Novel Mitochondria-Dependent Apoptotic Pathway (MAP) in Prostate Cancer (Pca) Cells

    National Research Council Canada - National Science Library

    Chandra, Dhyan

    2004-01-01

    ...) are also up-regulated (Chandra et al., J. Biol. Chem., 277, 50842-54; 2002). Later, when the apoptotic machinery is activated, I notice that there is prominent localization of active caspase-9 and -3 in the mitochondria...

  5. Melipona quadrifasciata (Hymenoptera: Apidae) fat body persists through metamorphosis with a few apoptotic cells and an increased autophagy.

    Science.gov (United States)

    Santos, Douglas Elias; Azevedo, Dihego Oliveira; Campos, Lúcio Antônio Oliveira; Zanuncio, José Cola; Serrão, José Eduardo

    2015-03-01

    Fat body, typically comprising trophocytes, provides energy during metamorphosis. The fat body can be renewed once the larval phase is complete or recycled and relocated to form the fat body of the adult insect. This study aims to identify the class of programmed cell death that occurs within the fat body cells during the metamorphosis of the stingless bee Melipona quadrifasciata. Using immunodetection techniques, the fat body of the post-defecating larvae and the white-, pink-, brown-, and black-eyed pupae were tested for cleaved caspase-3 and DNA integrity, followed by ultrastructural analysis and identification of autophagy using RT-PCR for the Atg1 gene. The fat body of M. quadrifasciata showed some apoptotic cells positive for cleaved caspase-3, although without DNA fragmentation. During development, the fat body cells revealed an increased number of mitochondria and free ribosomes, in addition to higher amounts of autophagy Atg1 mRNA, than that of the pupae. The fat body of M. quadrifasciata showed few cells which underwent apoptosis, but there was evidence of increased autophagy at the completion of the larval stage. All together, these data show that some fat body cells persist during metamorphosis in the stingless bee M. quadrifasciata.

  6. Emodin Induces Apoptotic Death in Murine Myelomonocytic Leukemia WEHI-3 Cells In Vitro and Enhances Phagocytosis in Leukemia Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yuan-Chang Chang

    2011-01-01

    Full Text Available Emodin is one of major compounds in rhubarb (Rheum palmatum L., a plant used as herbal medicine in Chinese population. Although many reports have shown that emodin exhibits anticancer activity in many tumor cell types, there is no available information addressing emodin-affected apoptotic responses in the murine leukemia cell line (WEHI-3 and modulation of the immune response in leukemia mice. We investigated that emodin induced cytotoxic effects in vitro and affected WEHI-3 cells in vivo. This study showed that emodin decreased viability and induced DNA fragmentation in WEHI-3 cells. Cells after exposure to emodin for 24 h have shown chromatin condensation and DNA damage. Emodin stimulated the productions of ROS and Ca2+ and reduced the level of ΔΨm by flow cytometry. Our results from Western blotting suggest that emodin triggered apoptosis of WEHI-3 cells through the endoplasmic reticulum (ER stress, caspase cascade-dependent and -independent mitochondrial pathways. In in vivo study, emodin enhanced the levels of B cells and monocytes, and it also reduced the weights of liver and spleen compared with leukemia mice. Emodin promoted phagocytic activity by monocytes and macrophages in comparison to the leukemia mice group. In conclusions, emodin induced apoptotic death in murine leukemia WEHI-3 cells and enhanced phagocytosis in the leukemia animal model.

  7. Benzo(a)pyrene-DNA adduct formation in cells: time-dependent differences in the benzo(a)pyrene-DNA adducts present

    International Nuclear Information System (INIS)

    Baird, W.M.; Dumaswala, R.U.

    1980-01-01

    Procedures involving isolation of the DNA from tritium labelled hydrocarbon-treated cells are discussed. Enzymatic degradation of the DNA to deoxyribonucleosides, and chromatography of the adducts on columns of water gradients were covered as well

  8. Applications of DNA-Stable Isotope Probing in Bioremediation Studies

    Science.gov (United States)

    Chen, Yin; Vohra, Jyotsna; Murrell, J. Colin

    DNA-stable isotope probing, a method to identify active microorganisms without the prerequisite of cultivation, has been widely applied in the study of microorganisms involved in the degradation of environmental pollutants. Recent advances and technique considerations in applying DNA-SIP in bioremediation are highlighted. A detailed protocol of a DNA-SIP experiment is provided.

  9. Leaf storage conditions and genomic DNA isolation efficiency in ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... Storage of plant tissues for DNA is important to avoid degradation of DNA. Preliminary studies were conducted on Ocimum gratissimum L. in order to establish the storage conditions for the collected samples before DNA extraction. Secondly, the aim was to determine the best protocol for the extraction.

  10. DNA repair in proteus mirabilis. Pt. 4

    International Nuclear Information System (INIS)

    Hofemeister, J.

    1977-01-01

    Post-irradiation DNA degradation in P. mirabilis rec + strains after UV irradiation is found to be more extensive in starvation buffer than in growth medium. In growth medium restriction of protein synthesis, but not DNA synthesis, largely prevents the expression of 'breakdown limitation'. By the addition of chloramphenicol during post-irradiation incubation in growth medium the expression of breakdown limitation was followed and found to occur 20 to 40 min after UV irradiation. Pre-irradiation by a low dose of UV leads after a corresponding time of post-irradiation incubation to breakdown limitation even in starvation buffer after a second UV exposure. Post-irradiation DNA degradation is presumed to be initiated at the sites of DNA lesions which arise at replication points damaged by UV. While pre-starvation restricts the efficiency of postirradiation DNA degradation by the reduction of the number of replication points active at the time of irradiation, caffeine as well as 2.4-dinitrophenol inhibit DNA degradation even in rec - cells probably by the interference with nicking or exonucleoltytic events initiated at those sites in the absence of breakdown limitation. Breakdown limitation is postulated to be due to inducible derepression of REC-functions which lead to the protection and, probably, repair of DNA lesions arising at the replication points following UV exposure. (orig.) [de

  11. Analysis of Cellular DNA Content by Flow Cytometry.

    Science.gov (United States)

    Darzynkiewicz, Zbigniew; Huang, Xuan; Zhao, Hong

    2017-11-01

    Cellular DNA content can be measured by flow cytometry with the aim of : (1) revealing cell distribution within the major phases of the cell cycle, (2) estimating frequency of apoptotic cells with fractional DNA content, and/or (3) disclosing DNA ploidy of the measured cell population. In this unit, simple and universally applicable methods for staining fixed cells are presented, as are methods that utilize detergents and/or proteolytic treatment to permeabilize cells and make DNA accessible to fluorochrome. Additionally, supravital cell staining with Hoechst 33342, which is primarily used for sorting live cells based on DNA-content differences for their subsequent culturing, is described. Also presented are methods for staining cell nuclei isolated from paraffin-embedded tissues. Available algorithms are listed for deconvolution of DNA-content-frequency histograms to estimate percentage of cells in major phases of the cell cycle and frequency of apoptotic cells with fractional DNA content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  12. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms.

    Science.gov (United States)

    De Petrocellis, Luciano; Ligresti, Alessia; Schiano Moriello, Aniello; Iappelli, Mariagrazia; Verde, Roberta; Stott, Colin G; Cristino, Luigia; Orlando, Pierangelo; Di Marzo, Vincenzo

    2013-01-01

    Cannabinoid receptor activation induces prostate carcinoma cell (PCC) apoptosis, but cannabinoids other than Δ(9) -tetrahydrocannabinol (THC), which lack potency at cannabinoid receptors, have not been investigated. Some of these compounds antagonize transient receptor potential melastatin type-8 (TRPM8) channels, the expression of which is necessary for androgen receptor (AR)-dependent PCC survival. We tested pure cannabinoids and extracts from Cannabis strains enriched in particular cannabinoids (BDS), on AR-positive (LNCaP and 22RV1) and -negative (DU-145 and PC-3) cells, by evaluating cell viability (MTT test), cell cycle arrest and apoptosis induction, by FACS scans, caspase 3/7 assays, DNA fragmentation and TUNEL, and size of xenograft tumours induced by LNCaP and DU-145 cells. Cannabidiol (CBD) significantly inhibited cell viability. Other compounds became effective in cells deprived of serum for 24 h. Several BDS were more potent than the pure compounds in the presence of serum. CBD-BDS (i.p.) potentiated the effects of bicalutamide and docetaxel against LNCaP and DU-145 xenograft tumours and, given alone, reduced LNCaP xenograft size. CBD (1-10 µM) induced apoptosis and induced markers of intrinsic apoptotic pathways (PUMA and CHOP expression and intracellular Ca(2+)). In LNCaP cells, the pro-apoptotic effect of CBD was only partly due to TRPM8 antagonism and was accompanied by down-regulation of AR, p53 activation and elevation of reactive oxygen species. LNCaP cells differentiated to androgen-insensitive neuroendocrine-like cells were more sensitive to CBD-induced apoptosis. These data support the clinical testing of CBD against prostate carcinoma. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  13. Effect of linoleic acid supplementation on in vitro maturation, embryo development and apoptotic related gene expression in ovine

    Directory of Open Access Journals (Sweden)

    Ebrahim Amini

    2016-04-01

    Full Text Available Background: Linoleic acid (LA is a polyunsaturated fatty acid present in high concentrations in follicular fluid, when added to maturation culture media, it affects oocyte competence. Objective: In the present study, we investigated effect of linoleic acid supplementation on in vitro maturation, embryo development and apoptotic related gene expression in ovine Materials and Methods: The experiments conducted on 450 ovine Cumulus-oocyte complexes (COCs with homogenous ooplasm and more than two compact layers of cumulus cells. For in vitro maturation COCs were randomly allocated into four treatment groups for 24 hr period. Treatment groups were as follow: control maturation media, 0 μM LA, 50 μM LA, 100 μM LA and 200 μM LA. The cumulus cell expansion and blastocysts rates were recorded. Total RNA was isolated from embryo pools, reverse transcribed into cDNA, and subjected to apoptotic gene expression by real-time PCR. Results: Highest concentration (200 μM/mL of LA significantly decreased the rate of fully expanded cumulus cells 24 hr after in vitro maturation (IVM and the percentage of blastocyste rate compared with the control (p<0.05. These inhibitory effects were associated with an increased in relative mRNA expression of Bax (Bcl-2- associated X gene compared with controls. Conclusion: Data obtained in present study suggest that low concentration of LA used for maturation had no deleterious effect on subsequent embryonic development compared to high concentration of LA. Relative expression of Bcl-2 (B-cell lymphoma 2 and Bax in embryos seems to be associated with LA concentration.

  14. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons.

    Science.gov (United States)

    Ye, Weizhen; Blain, Stacy W

    2010-08-01

    A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad

  15. Effects of Malnutrition on Neutrophil/Mononuclear Cell Apoptotic Functions in Children with Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Cakir, Fatma Betul; Berrak, Su Gülsün; Aydogan, Gonul; Tulunay, Aysin; Timur, Cetin; Canpolat, Cengiz; Eksioglu Demiralp, Emel

    2017-04-01

    Recent studies claim that apoptosis may explain immune dysfunction observed in malnutrition. The objective of this study was to determine the effect of malnutrition on apoptotic functions of phagocytic cells in acute lymphoblastic leukemia (ALL). Twenty-eight ALL patients (13 with malnutrition) and thirty controls were enrolled. Neutrophil and mononuclear cell apoptosis of ALL patients and the control group were studied on admission before chemotherapy and repeated at a minimum of three months after induction of chemotherapy or when the nutritional status of leukemic children improved. The apoptotic functions of both ALL groups on admission were significantly lower than those of the control group. The apoptotic functions were lower in ALL patients with malnutrition than those in ALL patients without malnutrition, but this was not statistically significant. The repeated apoptotic functions of both ALL groups were increased to similar values with the control group. This increase was found to be statistically significant. The apoptotic functions in ALL patients were not found to be affected by malnutrition. However, after dietary intervention, increased apoptotic functions in both ALL patient groups deserve mentioning. Dietary intervention should always be recommended as malnutrition or cachexia leads to multiple complications. Enhanced apoptosis might originate also from remission state of cancer.

  16. Apoptotic Effect of Nigella sativa on Human Lymphoma U937 Cells.

    Science.gov (United States)

    Arslan, Belkis Atasever; Isik, Fatma Busra; Gur, Hazal; Ozen, Fatih; Catal, Tunc

    2017-10-01

    Nigella sativa is from botanical Ranunculaceae family and commonly known as black seed. Apoptotic effect of N. sativa and its apoptotic signaling pathways on U937 lymphoma cells are unknown. In this study, we investigated selective cytotoxic and apoptotic effects of N. sativa extract and its apoptotic mechanisms on U937 cells. In addition, we also studied selective cytotoxic activity of thymoquinone that is the most active essential oil of N. sativa . Our results showed that N. sativa extract has selective cytotoxicity and apoptotic effects on U937 cells but not ECV304 control cells. However, thymoquinone had no significant cytotoxicity against on both cells. N. sativa extract increased significantly caspase-3, BAD, and p53 gene expressions in U937 cells. N. sativa may have anticancer drug potential and trigger p53-induced apoptosis in U937 lymphoma cells. This is the first study showing the apoptotic effect of Nigella sativa extract on U937 cells. Abbreviations used: CI: Cytotoxicity index, DMEM: Dulbecco's Modified Eagle Medium, HL: Hodgkin's lymphoma, MTT: 3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl tetrazolium bromide, RPMI: Roswell Park Memorial Institute medium.

  17. Decidual activin: its role in the apoptotic process and its regulation by prolactin.

    Science.gov (United States)

    Tessier, Christian; Prigent-Tessier, Anne; Bao, Lei; Telleria, Carlos M; Ferguson-Gottschall, Susan; Gibori, Gil B; Gu, Yan; Bowen-Shauver, Jennifer M; Horseman, Nelson D; Gibori, Geula

    2003-05-01

    Successful pregnancy requires profound differentiation and reorganization of the uterine tissues including, as pregnancy progresses, extensive apoptosis of decidual tissue to accommodate the developing conceptus. We have previously shown a positive correlation between expression of activin A and apoptosis in the decidua and have also shown that expression of activin A occurs at the time when prolactin (PRL) receptors disappear from decidual cells. The goals of this study were to examine whether activin A plays a role in decidual apoptosis and whether expression of activin A in the decidua is regulated by PRL and placental lactogens. Studies were carried out using primary rat decidual cells, a decidual cell line (GG-AD), and PRL null mice. Treatment of decidual cells with activin A significantly increased DNA degradation, caspase 3 activity, and caspase 3 mRNA expression. However, this effect was observed only in the absence of endogenous activin production by these cells. Addition of follistatin to decidual cells that were producing activin A decreased both caspase 3 activity and mRNA expression. Similarly, addition of activin-blocking antibodies to cultures of GG-AD cells, which also produce activin A, caused a reduction in both DNA degradation and caspase 3 activity. PRL and placental lactogens caused an inhibition of activin A mRNA expression in primary decidual cells. Even more convincingly, decidua of PRL null mice expressed abundant activin A at a time when no expression of this hormone is detected in wild-type mice and treatment of PRL null mice with PRL caused a profound inhibition of activin A mRNA expression. In summary, our investigations into the role and regulation of decidual activin have revealed that activin A can induce cell death in the decidua and that its expression is under tight regulation by PRL and placental lactogens.

  18. DNA damage repair and radiosensitivity

    International Nuclear Information System (INIS)

    Suzuki, Norio

    2003-01-01

    Tailored treatment is not new in radiotherapy; it has been the major subject for the last 20-30 years. Radiation responses and RBE (relative biological effectiveness) depend on assay systems, endpoints, type of tissues and tumors, radiation quality, dose rate, dose fractionation, physiological and environmental factors etc, Latent times to develop damages also differ among tissues and endpoints depending on doses and radiation quality. Recent progress in clarification of radiation induced cell death, especially of apoptotic cell death, is quite important for understanding radiosensitivity of tumor cure process as well as of tumorigenesis. Apoptotic cell death as well as dormant cells had been unaccounted and missed into a part of reproductive cell death. Another area of major progress has been made in clarifying repair mechanisms of radiation damage, i.e., non-homologous end joining (NHEJ) and homologous recombinational repair (HRR). New approaches and developments such as cDNA or protein micro arrays and so called informatics in addition to basic molecular biological analysis are expected to aid identifying molecules and their roles in signal transduction pathways, which are multi-factorial and interactive each other being involved in radiation responses. (authors)

  19. Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation.

    Science.gov (United States)

    Kim, Ki Young; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2007-09-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit human lung cancers by inducing apoptosis and differentiation. In the present study, we elucidated the apoptotic mechanism of PPARgamma activation in human lung cancers by using a novel PPARgamma agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy)-3-phenyl-(1H-indene-2-carboxylic acid ethyl ester (KR-62980), and rosiglitazone. PPARgamma activation selectively inhibited cell viability of non-small-cell lung cancer with little effect on small-cell lung cancer and normal lung cells. The cell death induced by PPARgamma activation presented apoptotic features of oligonucleosomal DNA fragmentation in A549 human non-small-cell lung cancer cell line. Reactive oxygen species (ROS) production was accompanied by increased expression of proline oxidase (POX), a redox enzyme expressed in mitochondria, upon incubation with the agonists. POX RNA interference treatment blocked PPARgamma-induced ROS formation and cytotoxicity, suggesting that POX plays a functional role in apoptosis through ROS formation. The apoptotic effects by the agonists were antagonized by bisphenol A diglycidyl ether, a PPARgamma antagonist, and by knockdown of PPARgamma expression, indicating the involvement of PPARgamma in these actions. The results of the present study suggest that PPARgamma activation induces apoptotic cell death in non-small-cell lung carcinoma mainly through ROS formation via POX induction.

  20. DNA apoptosis and stability in B-cell chronic lymphoid leukaemia: implication of the DNA double-strand breaks repair system by non homologous recombination

    International Nuclear Information System (INIS)

    Deriano, L.

    2005-01-01

    After an introduction presenting the diagnosis and treatment of chronic lymphoid leukaemia, its molecular and genetic characteristics, and its cellular origin and clonal evolution, this research thesis describes the apoptosis (definition and characteristics, cancer and chemotherapy, apoptotic ways induced by gamma irradiation), the genotoxic stresses, the different repair mechanisms for different damages, and the DNA repair processes. It reports how human chronic lymphocytic leukaemia B cells can escape DNA damage-induced apoptosis through the non-homologous end-joining DNA repair pathway, and presents non-homologous end-joining DNA repair as a potent mutagenic process in human chronic lymphocytic leukaemia B cells

  1. DNA Camouflage

    Science.gov (United States)

    2016-01-08

    1 DNA Camouflage Supplementary Information Bijan Zakeri1,2*, Timothy K. Lu1,2*, Peter A. Carr2,3* 1Department of Electrical Engineering and...ll.mit.edu). Distribution A: Public Release   2 Supplementary Figure 1 DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[α...10 1 + Cre 1 500 1,000 length (bp) chromatogram alignment template − Cre   4 Supplementary Figure 3 DNA camouflage with a switchable

  2. Degradation Capability of n-hexadecane Degrading Bacteria from Petroleum Contaminated Soils

    Directory of Open Access Journals (Sweden)

    PENG Huai-li

    2017-05-01

    Full Text Available Samplings were performed in the petroleum contaminated soils of Dongying, Shandong Province of China. Degrading bacteria was isolated through enrichment in a Bushnel-Hass medium, with n-hexadecane as the sole source of carbon and energy. Then the isolated strains were identified by amplification of 16S rDNA gene and sequencing. The strain TZSX2 was selected as the powerful bacteria with stronger degradation ability, which was then identified as Rhodococcus hoagii genera based on the constructing results of the phylogenetic tree. The optimum temperature that allowed both high growth and efficient degradation ratio was in the scope of 28~36 ℃, and gas chromatography results showed that approximately more than 30% of n-hexadecane could be degraded in one week of incubation within the temperature range. Moreover, the strain TZSX2 was able to grow in high concentrations of n-hexadecane. The degradation rate reached 79% when the initial n-hexadecane concentration was 2 mL·L-1,while it still achieved 12% with n-hexadecane concentration of 20 mL·L-1. The optimal pH was 9 that allowed the highest growth and the greatest degradation rate of 91%. Above all, the screened strain TZSX2 showed high capabilities of alkali tolerance with excellent degradation efficiency for even high concentration of n-hexadecane, and thus it would be quite suitable for the remediation of petroleum contaminated soils especially in the extreme environment.

  3. Silymarin modulates doxorubicin-induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver

    International Nuclear Information System (INIS)

    Patel, Nirav; Joseph, Cecil; Corcoran, George B.; Ray, Sidhartha D.

    2010-01-01

    The emergence of silymarin (SMN) as a natural remedy for liver diseases, coupled with its entry into NIH clinical trial, signifies its hepatoprotective potential. SMN is noted for its ability to interfere with apoptotic signaling while acting as an antioxidant. This in vivo study was designed to explore the hepatotoxic potential of Doxorubicin (Dox), the well-known cardiotoxin, and in particular whether pre-exposures to SMN can prevent hepatotoxicity by reducing Dox-induced free radical mediated oxidative stress, by modulating expression of apoptotic signaling proteins like Bcl-xL, and by minimizing liver cell death occurring by apoptosis or necrosis. Groups of male ICR mice included Control, Dox alone, SMN alone, and Dox with SMN pre/co-treatment. Control and Dox groups received saline i.p. for 14 days. SMN was administered p.o. for 14 days at 16 mg/kg/day. An approximate LD 50 dose of Dox, 60 mg/kg, was administered i.p. on day 12 to animals receiving saline or SMN. Animals were euthanized 48 h later. Dox alone induced frank liver injury (> 50-fold increase in serum ALT) and oxidative stress (> 20-fold increase in malondialdehyde [MDA]), as well as direct damage to DNA (> 15-fold increase in DNA fragmentation). Coincident genomic damage and oxidative stress influenced genomic stability, reflected in increased PARP activity and p53 expression. Decreases in Bcl-xL protein coupled with enhanced accumulation of cytochrome c in the cytosol accompanied elevated indexes of apoptotic and necrotic cell death. Significantly, SMN exposure reduced Dox hepatotoxicity and associated apoptotic and necrotic cell death. The effects of SMN on Dox were broad, including the ability to modulate changes in both Bcl-xL and p53 expression. In animals treated with SMN, tissue Bcl-xL expression exceeded control values after Dox treatment. Taken together, these results demonstrated that SMN (i) reduced, delayed onset, or prevented toxic effects of Dox which are typically associated with

  4. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  5. Reverse gyrase functions in genome integrity maintenance by protecting DNA breaks in vivo

    DEFF Research Database (Denmark)

    Han, Wenyuan; Feng, Xu; She, Qunxin

    2017-01-01

    Reverse gyrase introduces positive supercoils to circular DNA and is implicated in genome stability maintenance in thermophiles. The extremely thermophilic crenarchaeon Sulfolobus encodes two reverse gyrase proteins, TopR1 (topoisomerase reverse gyrase 1) and TopR2, whose functions in thermophilic...... and subsequent DNA degradation. The former occurred immediately after drug treatment, leading to chromosomal DNA degradation that concurred with TopR1 degradation, followed by chromatin protein degradation and DNA-less cell formation. To gain a further insight into TopR1 function, the expression of the enzyme...

  6. Effect of Apoptotic Cell Recognition on Macrophage Polarization and Mycobacterial Persistence

    Science.gov (United States)

    de Oliveira Fulco, Tatiana; Andrade, Priscila Ribeiro; de Mattos Barbosa, Mayara Garcia; Pinto, Thiago Gomes Toledo; Ferreira, Paula Fernandez; Ferreira, Helen; da Costa Nery, José Augusto; Real, Suzana Côrte; Borges, Valéria Matos; Moraes, Milton Ozório; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2014-01-01

    Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection. PMID:25024361

  7. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Medina, V.F.O.

    1978-01-01

    Irradiation has been shown to depress DNA (deoxyribonucleic acid) synthesis resulting in deficient DNA synthesis. In one experiment, Hela S 3 cells completed the next division after a dose of 500 rads to 200 kw X-rays. Another experiment showed that the amount of DNA synthesized was dependent on the stage in the generation cycle at which the cells are irradiated (Giffites and Tolmach, 1975). DNA synthesis was measured by radioactive thymidine incorporation. The smallest deficiency (20-35%) after a dose of 500 rad X-ray was observed in Hela S 3 cells irradiated in early G 1 or early G 2 , while the greatest deficiency (55-70*) after 500 rad X-ray was found in cells irradiated at mitosis or at the Gsub(1)/S transition. Using velocity sedimentation in alkaline gradients of the DNA from hamster, Elkind, et al 1972, studied repair processes as a function of X-ray dose. DNA containing material released by alkaline lysis was found initially contained in a complex-containing lipid, the sedimentation of which was anomalous relative to denatured RNA from unirradated cells. Doses of X-rays small enough to be in the range that permits high survival (100-800 rads) speed the resolution of single-stranded DNA from this DNA complex, giving rise to a species having a number average molecular weight of 2 x 10 8 daltons. Larger doses greater than 1000 to 2000 rads resulted in a degradation of these DNA strands. Incubation after irradiation resulted in the rapid repair of damage, although the rate of repair of damage to the complex resulted in a reassociation of lipid and DNA. This evidence supports the possibility that a large DNA-membrane structure is a principal target of radiation

  8. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  9. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul

    2017-01-01

    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  10. DNA topology influences molecular machine lifetime in human serum

    Science.gov (United States)

    Goltry, Sara; Hallstrom, Natalya; Clark, Tyler; Kuang, Wan; Lee, Jeunghoon; Jorcyk, Cheryl; Knowlton, William B.; Yurke, Bernard; Hughes, William L.; Graugnard, Elton

    2015-06-01

    DNA nanotechnology holds the potential for enabling new tools for biomedical engineering, including diagnosis, prognosis, and therapeutics. However, applications for DNA devices are thought to be limited by rapid enzymatic degradation in serum and blood. Here, we demonstrate that a key aspect of DNA nanotechnology--programmable molecular shape--plays a substantial role in device lifetimes. These results establish the ability to operate synthetic DNA devices in the presence of endogenous enzymes and challenge the textbook view of near instantaneous degradation.DNA nanotechnology holds the potential for enabling new tools for biomedical engineering, including diagnosis, prognosis, and therapeutics. However, applications for DNA devices are thought to be limited by rapid enzymatic degradation in serum and blood. Here, we demonstrate that a key aspect of DNA nanotechnology--programmable molecular shape--plays a substantial role in device lifetimes. These results establish the ability to operate synthetic DNA devices in the presence of endogenous enzymes and challenge the textbook view of near instantaneous degradation. Electronic supplementary information (ESI) available: DNA sequences, fluorophore and quencher properties, equipment design, and degradation studies. See DOI: 10.1039/c5nr02283e

  11. Comparison of sucrose and trehalose media modification as an update of oocyte vitrification: A study of apoptotic level

    Science.gov (United States)

    Lestari, Silvia W.; Fitriyah, Nurin N.; Pangestu, Mulyoto; Pratama, Gita; Margiana, Ria

    2018-02-01

    Number of women who are not being able to have offspring in their reproductive life is increasing which might be influenced by several factors. As a consequence, oocyte cryopreservation could be an ensuring solution for women fertility preservation. A good vitrification could be conducted by combining an appropriate of type and concentration of cryoprotectants. One of the marks of successful vitrification is the vitrified oocytes could avoid apoptosis. This study aimed to evaluate the modification of cryoprotectant media as un update of oocyte vitrification as follow: the combination and the concentration of cryoprotectant media of oocytes vitrification, based on their effects on the apoptosis or DNA damage of oocytes. A total of 84 MII stage oocytes from adult female Deutschland, Denken and Yoken (DDY) mice (7-8 weeks old) were used in this study. Vitrification procedure was performed by using VS1 contained 15% EG, 15% DMSO, 0.5 mol/l sucrose (Merck, Darmstadt, Germany) and VS2 contained 15% EG, 15% DMSO, 0.5 mol/l trehalose (Merck, Darmstadt, Germany) in HM. Furthermore, warming solution (WS) was divided into four groups. There were: WS1a contained 0.3 mol/l sucrose, WS1b contained 0.15 mol/l sucrose, WS2a contained 0.3 mol/l trehalose, and WS2b contained 0.15 mol/l trehalose. Apoptotic level was performed by staining the oocytes with TUNEL and propidium iodide (PI) based on Brison and Schultz method then examined under confocal microscope. The rate of apoptosis in oocytes after vitrification and warming was higher compared to the fresh control oocytes. Furthermore, the rate of apoptosis in the vitrified oocytes by sucrose media (28%) was higher compared to the vitrified oocytes by trehalose media (16%). The results of this study indicated that vitrification increased apoptosis in the vitrified oocytes related to the oocyte injury after vitrification. Moreover, the vitrification increased apoptosis more in the vitrified oocytes by sucrose media than the vitrified

  12. Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy

    International Nuclear Information System (INIS)

    Safa, Ahmad R.; Pollok, Karen E.

    2011-01-01

    Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP L ), short (c-FLIP S ), and c-FLIP R splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP L and c-FLIP S are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP L in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP L and c-FLIP S splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function

  13. Towards next-generation biodiversity assessment using DNA metabarcoding

    DEFF Research Database (Denmark)

    Taberlet, Pierre; Coissac, Eric; Pompanon, Francois

    2012-01-01

    Virtually all empirical ecological studies require species identification during data collection. DNA metabarcoding refers to the automated identification of multiple species from a single bulk sample containing entire organisms or from a single environmental sample containing degraded DNA (soil......, water, faeces, etc.). It can be implemented for both modern and ancient environmental samples. The availability of next-generation sequencing platforms and the ecologists need for high-throughput taxon identification have facilitated the emergence of DNA metabarcoding. The potential power of DNA...

  14. RAD51 interconnects between DNA replication, DNA repair and immunity.

    Science.gov (United States)

    Bhattacharya, Souparno; Srinivasan, Kalayarasan; Abdisalaam, Salim; Su, Fengtao; Raj, Prithvi; Dozmorov, Igor; Mishra, Ritu; Wakeland, Edward K; Ghose, Subroto; Mukherjee, Shibani; Asaithamby, Aroumougame

    2017-05-05

    RAD51, a multifunctional protein, plays a central role in DNA replication and homologous recombination repair, and is known to be involved in cancer development. We identified a novel role for RAD51 in innate immune response signaling. Defects in RAD51 lead to the accumulation of self-DNA in the cytoplasm, triggering a STING-mediated innate immune response after replication stress and DNA damage. In the absence of RAD51, the unprotected newly replicated genome is degraded by the exonuclease activity of MRE11, and the fragmented nascent DNA accumulates in the cytosol, initiating an innate immune response. Our data suggest that in addition to playing roles in homologous recombination-mediated DNA double-strand break repair and replication fork processing, RAD51 is also implicated in the suppression of innate immunity. Thus, our study reveals a previously uncharacterized role of RAD51 in initiating immune signaling, placing it at the hub of new interconnections between DNA replication, DNA repair, and immunity. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Altered apoptotic profiles in irradiated patients with increased toxicity

    International Nuclear Information System (INIS)

    Crompton, Nigel E.A.; Miralbell, Raymond; Rutz, Hans-Peter; Ersoy, Fuegen; Sanal, Oezden; Wellmann, Danielle; Bieri, Sabine; Coucke, Philippe A.; Emery, Gillian C.; Shi Yuquan; Blattmann, Hans; Ozsahin, Mahmut

    1999-01-01

    Purpose: A retrospective study of radiation-induced apoptosis in CD4 and CD8 T-lymphocytes, from 12 cancer patients who displayed enhanced toxicity to radiation therapy and 9 ataxia telangiectasia patients, was performed to test for altered response compared to healthy blood-donors and normal cancer patients. Methods and Materials: Three milliliters of heparinized blood from each donor was sent via express post to the Paul Scherrer Institute (PSI) for subsequent examination. The blood was diluted 1:10 in RPMI medium, irradiated with 0-, 2-, or 9-Gy X-rays, and incubated for 48 h. CD4 and CD8 T-lymphocytes were then labeled using FITC-conjugated antibodies, erythrocytes were lysed, and the DNA stained with propidium iodide. Subsequently, cells were analyzed using a Becton Dickinson FACScan flow cytometer. Radiation-induced apoptosis was recognized in leukocytes as reduced DNA content attributed to apoptosis-associated changes in chromatin structure. Apoptosis was confirmed by light microscopy, electron microscopy, and by the use of commercially available apoptosis detection kits (in situ nick translation and Annexin V). Data from hypersensitive individuals were compared to a standard database of 105 healthy blood-donors, and a database of 48 cancer patient blood donors who displayed normal toxicity to radiation therapy. To integrate radiosensitivity results from CD4 and CD8 T-lymphocytes after 2 and 9 Gy, z-score analyses were performed. Results: A cohort of 12 hypersensitive patients was evaluated; 8 showed enhanced early toxicity, 3 showed enhanced late toxicity, and 1 showed both. The cohort displayed less radiation-induced apoptosis (-1.8 σ) than average age-matched donors. A cohort of 9 ataxia telangiectasia homozygotes displayed even less apoptosis (-3.6 σ). Conclusion: The leukocyte apoptosis assay appears to be a useful predictor of individuals likely to display increased toxicity to radiation therapy; however, validation of this requires a prospective

  16. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway

    Science.gov (United States)

    Pérez-Garijo, Ainhoa; Fuchs, Yaron; Steller, Hermann

    2013-01-01

    Apoptotic cells can produce signals to instruct cells in their local environment, including ones that stimulate engulfment and proliferation. We identified a novel mode of communication by which apoptotic cells induce additional apoptosis in the same tissue. Strong induction of apoptosis in one compartment of the Drosophila wing disc causes apoptosis of cells in the other compartment, indicating that dying cells can release long-range death factors. We identified Eiger, the Drosophila tumor necrosis factor (TNF) homolog, as the signal responsible for apoptosis-induced apoptosis (AiA). Eiger is produced in apoptotic cells and, through activation of the c-Jun N-terminal kinase (JNK) pathway, is able to propagate the initial apoptotic stimulus. We also show that during coordinated cell death of hair follicle cells in mice, TNF-α is expressed in apoptotic cells and is required for normal cell death. AiA provides a mechanism to explain cohort behavior of dying cells that is seen both in normal development and under pathological conditions. DOI: http://dx.doi.org/10.7554/eLife.01004.001 PMID:24066226

  17. Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum.

    Directory of Open Access Journals (Sweden)

    Mariana Raineri

    Full Text Available Methamphetamine is a drug of abuse that can cause neurotoxic damage in humans and animals. Modafinil, a wake-promoting compound approved for the treatment of sleeping disorders, is being prescribed off label for the treatment of methamphetamine dependence. The aim of the present study was to investigate if modafinil could counteract methamphetamine-induced neuroinflammatory processes, which occur in conjunction with degeneration of dopaminergic terminals in the mouse striatum. We evaluated the effect of a toxic methamphetamine binge in female C57BL/6 mice (4 × 5 mg/kg, i.p., 2 h apart and modafinil co-administration (2 × 90 mg/kg, i.p., 1 h before the first and fourth methamphetamine injections on glial cells (microglia and astroglia. We also evaluated the striatal expression of the pro-apoptotic BAX and anti-apoptotic Bcl-2 proteins, which are known to mediate methamphetamine-induced apoptotic effects. Modafinil by itself did not cause reactive gliosis and counteracted methamphetamine-induced microglial and astroglial activation. Modafinil also counteracted the decrease in tyrosine hydroxylase and dopamine transporter levels and prevented methamphetamine-induced increases in the pro-apoptotic BAX and decreases in the anti-apoptotic Bcl-2 protein expression. Our results indicate that modafinil can interfere with methamphetamine actions and provide protection against dopamine toxicity, cell death, and neuroinflammation in the mouse striatum.

  18. Intermittent degradation and schizotypy

    Directory of Open Access Journals (Sweden)

    Matthew W. Roché

    2015-06-01

    Full Text Available Intermittent degradation refers to transient detrimental disruptions in task performance. This phenomenon has been repeatedly observed in the performance data of patients with schizophrenia. Whether intermittent degradation is a feature of the liability for schizophrenia (i.e., schizotypy is an open question. Further, the specificity of intermittent degradation to schizotypy has yet to be investigated. To address these questions, 92 undergraduate participants completed a battery of self-report questionnaires assessing schizotypy and psychological state variables (e.g., anxiety, depression, and their reaction times were recorded as they did so. Intermittent degradation was defined as the number of times a subject’s reaction time for questionnaire items met or exceeded three standard deviations from his or her mean reaction time after controlling for each item’s information processing load. Intermittent degradation scores were correlated with questionnaire scores. Our results indicate that intermittent degradation is associated with total scores on measures of positive and disorganized schizotypy, but unrelated to total scores on measures of negative schizotypy and psychological state variables. Intermittent degradation is interpreted as potentially derivative of schizotypy and a candidate endophenotypic marker worthy of continued research.

  19. Functional Consequences of Intracellular Proline Levels Manipulation Affecting PRODH/POX-Dependent Pro-Apoptotic Pathways in a Novel in Vitro Cell Culture Model.

    Science.gov (United States)

    Zareba, Ilona; Surazynski, Arkadiusz; Chrusciel, Marcin; Miltyk, Wojciech; Doroszko, Milena; Rahman, Nafis; Palka, Jerzy

    2017-01-01

    The effect of impaired intracellular proline availability for proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied. We generated a constitutively knocked-down PRODH/POX MCF-7 breast cancer cell line (MCF-7shPRODH/POX) as a model to analyze the functional consequences of impaired intracellular proline levels. We have used inhibitor of proline utilization in collagen biosynthesis, 2-metoxyestradiol (MOE), inhibitor of prolidase that generate proline, rapamycin (Rap) and glycyl-proline (GlyPro), substrate for prolidase. Collagen and DNA biosynthesis were evaluated by radiometric assays. Cell viability was determined using Nucleo-Counter NC-3000. The activity of prolidase was determined by colorimetric assay. Expression of proteins was assessed by Western blot and immunofluorescence bioimaging. Concentration of proline was analyzed by liquid chromatography with mass spectrometry. PRODH/POX knockdown decreased DNA and collagen biosynthesis, whereas increased prolidase activity and intracellular proline level in MCF-7shPRODH/POX cells. All studied compounds decreased cell viability in MCF-7 and MCF-7shPRODH/POX cells. DNA biosynthesis was similarly inhibited by Rap and MOE in both cell lines, but GlyPro inhibited the process only in MCF-7shPRODH/POX and MOE+GlyPro only in MCF-7 cells. All the compounds inhibited collagen biosynthesis, increased prolidase activity and cytoplasmic proline level in MCF-7shPRODH/POX cells and contributed to the induction of pro-survival mode only in MCF-7shPRODH/POX cells. In contrast, all studied compounds upregulated expression of pro-apoptotic protein only in MCF-7 cells. PRODH/POX was confirmed as a driver of apoptosis and proved the eligibility of MCF-7shPRODH/POX cell line as a highly effective model to elucidate the different mechanisms underlying proline utilization or generation in PRODH/POX-dependent pro-apoptotic pathways. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. Studies on the effects of persistent RNA priming on DNA replication and genomic stability

    OpenAIRE

    Stuckey, Ruth

    2014-01-01

    [EN]: DNA replication and transcription take place on the same DNA template, and the correct interplay between these processes ensures faithful genome duplication. DNA replication must be highly coordinated with other cell cycle events, such as segregation of fully replicated DNA in order to maintain genomic integrity. Transcription generates RNA:DNA hybrids, transient intermediate structures that are degraded by the ribonuclease H (RNaseH) class of enzymes. RNA:DNA hybrids can form R-loops, ...

  1. Detection of parvovirus B19 DNA in blood: Viruses or DNA remnants?

    Science.gov (United States)

    Molenaar-de Backer, M W A; Russcher, A; Kroes, A C M; Koppelman, M H G M; Lanfermeijer, M; Zaaijer, H L

    2016-11-01

    Parvovirus B19 (B19V) DNA can be detected in blood over a long period after acute infection. Several reports associate the presence of B19V DNA with disease, irrespective of timing of the initial B19V infection. This study aims to analyze the properties of B19V DNA in blood, differentiating between bare, non-infectious strands of DNA and B19V DNA in viable virions. Ten blood donors with asymptomatic acute B19V infection were followed and sampled up to 22 months after infection. The samples were treated with and without an endonuclease and tested for B19V DNA, to distinguish between DNA in virions and naked DNA. In the acute phase of infection, high levels of B19V DNA were detected, concurrent with B19V IgM antibodies. B19V DNA apparently was encapsidated, as indicated by resistance to endonuclease degradation. Subsequently, B19V DNA remained detectable for more than one year in all donors at low levels (<10 5 IU/mL). Approximately 150days after infection B19V DNA became degradable by an endonuclease, indicating that this concerned naked DNA. In some donors a second endonuclease-resistant peak occurred. Detection of B19V DNA in blood by PCR does not necessarily imply that B19V replication takes place and that infectious B19V virions are present. We propose that remnant B19V DNA strands can be released from tissues without active replication. This finding urges to reconsider an assumed role of B19V infection mainly based on B19V DNA detection in blood, a much debated subject in clinical syndromes such as myocarditis and arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.

    Science.gov (United States)

    Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H

    2017-08-01

    Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  3. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  4. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  5. PDE2A2 regulates mitochondria morphology and apoptotic cell death via local modulation of cAMP/PKA signalling.

    Science.gov (United States)

    Monterisi, Stefania; Lobo, Miguel J; Livie, Craig; Castle, John C; Weinberger, Michael; Baillie, George; Surdo, Nicoletta C; Musheshe, Nshunge; Stangherlin, Alessandra; Gottlieb, Eyal; Maizels, Rory; Bortolozzi, Mario; Micaroni, Massimo; Zaccolo, Manuela

    2017-05-02

    cAMP/PKA signalling is compartmentalised with tight spatial and temporal control of signal propagation underpinning specificity of response. The cAMP-degrading enzymes, phosphodiesterases (PDEs), localise to specific subcellular domains within which they control local cAMP levels and are key regulators of signal compartmentalisation. Several components of the cAMP/PKA cascade are located to different mitochondrial sub-compartments, suggesting the presence of multiple cAMP/PKA signalling domains within the organelle. The function and regulation of these domains remain largely unknown. Here, we describe a novel cAMP/PKA signalling domain localised at mitochondrial membranes and regulated by PDE2A2. Using pharmacological and genetic approaches combined with real-time FRET imaging and high resolution microscopy, we demonstrate that in rat cardiac myocytes and other cell types mitochondrial PDE2A2 regulates local cAMP levels and PKA-dependent phosphorylation of Drp1. We further demonstrate that inhibition of PDE2A, by enhancing the hormone-dependent cAMP response locally, affects mitochondria dynamics and protects from apoptotic cell death.

  6. Bioactives in cactus (Opuntia ficus-indica) stems possess potent antioxidant and pro-apoptotic activities through COX-2 involvement.

    Science.gov (United States)

    Kim, Jinhee; Soh, Soon Yil; Shin, Juha; Cho, Chi-Woung; Choi, Young Hee; Nam, Sang-Yong

    2015-10-01

    Bioactives extracted from cactus (Opuntia ficus-indica) stems were investigated for their chemopreventive activities using human cancer cells in vitro. The bioactives present in crude extracts were detected and quantified using high-performance liquid chromatography. Among all the extracts, such as hexane, ethyl acetate (EtOAc), acetone, methanol (MeOH), and MeOH:water (80:20), the MeOH extract had the highest amount of polyphenolic compounds and the acetone extract exhibited the most potent effect at scavenging the 2,2,-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS(•+) ) radical. In addition, most of the extracts, with the exception of hexane, exhibited significant cytotoxicity in human SW480 colon and MCF7 breast cancer cells. Overall, the SW480 cells were more sensitive than the MCF7 cells to the cytotoxic effect of the O. ficus-indica extracts (OFEs). Cell death by OFE treatment caused significant inhibition of cyclooxygenase-2 and increased the Bax/Bcl2 ratio in both SW480 and MCF7 cell lines. However, degradation of poly (ADP-ribose) polymerase was significantly increased by OFE only in the MCF7 cells, thereby inducing apoptosis. These findings demonstrate the health-benefit roles, including anti-oxidative and anti-proliferative activities as well as pro-apoptotic effects, of bioactive compounds in OFEs, suggesting a chemopreventive role in human cancer cells. © 2014 Society of Chemical Industry.

  7. Cytotoxic and Apoptotic Effect of Structurally Similar Flavonoids on Parental and Drug-Resistant Cells of a Human Cervical Carcinoma

    Directory of Open Access Journals (Sweden)

    Ksenija Durgo

    2009-01-01

    Full Text Available Flavonoids are phytochemicals characterized by a wide range of biological activities, including antioxidant activity, the ability to modulate enzyme or cell receptor activity patterns, and to interfere with essential biochemical pathways. Using HeLa cells of a human cervical carcinoma, and their drug-resistant HeLa CK subline, the effects of three structurally related flavonoids (quercetin, fisetin and luteolin have been examined, in terms of their: (i cytotoxicity, (ii influence on intracellular glutathione (GSH level, (iii influence on glutathione S-transferase (GST activity, and (iv influence on the expression of apoptosis-related genes (PARP, Bcl-2, survivin. Fisetin was more toxic to resistant HeLa CK cell line than to parental cell line, causing decreased expression of survivin in the same cell line. Concentrations of 5 μM of the examined flavonoids caused PARP degradation in parental cell line, leading HeLa cell line into apoptotic cell death. The same event was not determined in the resistant cell line. Fisetin and luteolin induce glutathione and GST in the resistant cell line, pointing to complex cellular effects which could be responsible for higher sensitivity of the resistant cell line in comparison with the parental cell line. Prooxidative nature of the investigated flavonoids was not detected, so free radical formation is not responsible for the induction of GSH, GST and proapoptotic enzymes.

  8. FLASH knockdown sensitizes cells to Fas-mediated apoptosis via down-regulation of the anti-apoptotic proteins, MCL-1 and Cflip short.

    Directory of Open Access Journals (Sweden)

    Song Chen

    Full Text Available FLASH (FLICE-associated huge protein or CASP8AP2 is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis.

  9. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Directory of Open Access Journals (Sweden)

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  10. Exposure to apoptotic activated CD4+ T cells induces maturation and APOBEC3G-mediated inhibition of HIV-1 infection in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Venkatramanan Mohanram

    Full Text Available Dendritic cells (DCs are activated by signaling via pathogen-specific receptors or exposure to inflammatory mediators. Here we show that co-culturing DCs with apoptotic HIV-infected activated CD4(+ T cells (ApoInf or apoptotic uninfected activated CD4(+ T cells (ApoAct induced expression of co-stimulatory molecules and cytokine release. In addition, we measured a reduced HIV infection rate in DCs after co-culture with ApoAct. A prerequisite for reduced HIV infection in DCs was activation of CD4(+ T cells before apoptosis induction. DCs exposed to ApoAct or ApoInf secreted MIP-1α, MIP-1β, MCP-1, and TNF-α; this effect was retained in the presence of exogenous HIV. The ApoAct-mediated induction of co-stimulatory CD86 molecules and reduction of HIV infection in DCs were partially abrogated after blocking TNF-α using monoclonal antibodies. APOBEC3G expression in DCs was increased in co-cultures of DCs and ApoAct but not by apoptotic resting CD4(+ T cells (ApoRest. Silencing of APOBEC3G in DC abrogated the HIV inhibitory effect mediated by ApoAct. Sequence analyses of an env region revealed significant induction of G-to-A hypermutations in the context of GG or GA dinucleotides in DNA isolated from DCs exposed to HIV and ApoAct. Thus, ApoAct-mediated DC maturation resulted in induction of APOBEC3G that was important for inhibition of HIV-infection in DCs. These findings underscore the complexity of differential DC responses evoked upon interaction with resting as compared with activated dying cells during HIV infection.

  11. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    Science.gov (United States)

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.

  12. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins.

    Science.gov (United States)

    Colin, Didier J; Hain, Karolina O; Allan, Lindsey A; Clarke, Paul R

    2015-03-01

    Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.

  13. Targeting apoptotic machinery as approach for anticancer therapy: Smac mimetics as anticancer agents

    Directory of Open Access Journals (Sweden)

    Nevine M.Y. Elsayed

    2015-06-01

    Full Text Available Apoptosis is a chief regulator of cellular homeostasis. Impairment of apoptotic machinery is a main characteristic of several diseases such as cancer, where the evasion of apoptosis is a cardinal hallmark of cancer. Apoptosis is regulated by contribution of pro- and anti- apoptotic proteins, where caspases are the main executioners of the apoptotic machinery. IAP (inhibitors of apoptosis proteins is a family of endogenous inhibitors of apoptosis, which perform their function through interference with the function of caspases. Smac (second mitochondria-derived activator of caspases is endogenous inhibitor of IAPs, thus it is one of the major proapoptotic endogenous proteins. Thus, the development of Smac mimetics has evolved as an approach for anticancer therapy. Several Smac mimetic agents have been introduced to clinical trial such as birinapanet 12. Herein, the history of development of Smac mimetics along with the recent development in this field is briefly discussed.

  14. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Li Xiaoming; Song Tianbao

    1999-01-01

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  15. Anti-apoptotic peptides protect against radiation-induced cell death

    International Nuclear Information System (INIS)

    McConnell, Kevin W.; Muenzer, Jared T.; Chang, Kathy C.; Davis, Chris G.; McDunn, Jonathan E.; Coopersmith, Craig M.; Hilliard, Carolyn A.; Hotchkiss, Richard S.; Grigsby, Perry W.; Hunt, Clayton R.

    2007-01-01

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15 Gy radiation. In mice exposed to 5 Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues

  16. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  17. Purex diluent degradation

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO 3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO 2 ) molecule, not HNO 3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO 3 concentration and the temperature. The rate was decreased by argon sparging to remove NO 2 and by the addition of butanol, which probably acts as a NO 2 scavenger. 13 references, 11 figures

  18. Preparation of DNA/Gold Nanoparticle Encapsulated in Calcium Phosphate

    Directory of Open Access Journals (Sweden)

    Tomoko Ito

    2011-01-01

    Full Text Available Biocompatible DNA/gold nanoparticle complex with a protective calcium phosphate (CaP coating was prepared by incubating DNA/gold nanoparticle complex coated by hyaluronic acid in SBF (simulated body fluid with a Ca concentration above 2 mM. The CaP-coated DNA complex was revealed to have high compatibility with cells and resistance against enzymatic degradation. By immersion in acetate buffer (pH 4.5, the CaP capsule released the contained DNA complex. This CaP capsule including a DNA complex is promising as a sustained-release system of DNA complexes for gene therapy.

  19. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  20. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria

    International Nuclear Information System (INIS)

    Grondin, Melanie; Marion, Michel; Denizeau, Francine; Averill-Bates, Diana A.

    2007-01-01

    Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad from the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl - /HCO 3 - exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes

  1. The effect of bystander medium on the apoptotic process in HPV-G cells

    International Nuclear Information System (INIS)

    Maguire, P.; Lyng, F.; Seymour, C.; Mothersill, C.

    2003-01-01

    Full text: It has been shown in recent years that in both in vivo and in vitro situations irradiated cells cause what is known as the bystander effect. This presently unknown factor causes chromosomal aberrations, initiation of apoptosis and reduced clonogenic survival. Using the medium transfer method to study the bystander effect, this study investigated early events in the apoptotic cascade, which leads to cell death in cells receiving medium from irradiated cells but which were not themselves irradiated. Medium from irradiated ( 0.005Gy to 5Gy) human HPV G keratinocytes was harvested one hour after irradiation, sterile filtered and transferred on to unirradiated HPV-G cells. The appearance of apoptotic markers in the apoptotic cascade was monitored over a period of 48 hours following medium transfer. These apoptotic markers include loss of mitochondrial membrane potential, cytochrome c release and the activity of the death inducing caspase 3. Clonogenic survival of HPV-G cells over a nine day period was also monitored to assess the final survival of the cells. A TUNEL assay, which indicated the level of apoptosis over a 72 hour period after exposure to bystander medium was also performed. Data collected in this study indicates that for very low doses (0.005Gy) the appearance of well-characterised early 'apoptotic' markers such as changes in mitochondrial membrane potential doesn't mean the cell has committed to the apoptotic cascade leading to cell death. This has been illustrated for bystander medium from 0.005Gy irradiated cells, which causes mitochondrial membrane potential depolarisation after six-hour exposure but little difference has been noted for clonogenic survival for exposure to 0.005Gy bystander medium from that of the control. The results may help clarify how cells sector to death or survival following receipt of a signal from a radiation event

  2. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  3. DNA data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  4. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  5. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  6. Effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue

    Directory of Open Access Journals (Sweden)

    Min-Er Tang

    2016-09-01

    Full Text Available Objective: To study the effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue. Methods: A total of 56 patients with cervical cancer, 94 cases of patients with cervical intraepithelial neoplasia and 48 cases of patients with chronic cervicitis who were treated in our hospital from May 2013 to December 2015 were selected for study and included in malignant group, precancerous lesion group and benign group respectively. hrHPV infection as well as the expression of anti-apoptotic genes and proapoptotic genes in cervical tissue were detected. Results: hrHPV infection rate and viral load in cervical tissue of malignant group were significantly higher than those of precancerous lesion group and benign group; P27 and p16 levels in cervical tissue of malignant group were significantly lower than those of precancerous lesion group and benign group, and K-ras, c-myc, Prdx4 and TNFAIP8 levels were significantly higher than those of precancerous lesion group and benign group; the greater the HPV virus load, the lower the p27 and p16 levels and the higher the K-ras, c-myc, Prdx4 and TNFAIP8 levels in cervical tissue. Conclusions: hrHPV infection can result in tumor suppressor genes p27 and p16 expression deletion and increase the expression of proto-oncogene and apoptosis-inhibiting genes, and it is associated with the occurrence and development of cervical cancer.

  7. Different immunophenotypical apoptotic profiles characterise megakaryocytes of essential thrombocythaemia and primary myelofibrosis.

    Science.gov (United States)

    Florena, A M; Tripodo, C; Di Bernardo, A; Iannitto, E; Guarnotta, C; Porcasi, R; Ingrao, S; Abbadessa, V; Franco, V

    2009-04-01

    Essential thrombocythaemia (ET) and primary myelofibrosis (PMF) share some clinical and pathological features, but show different biological behaviour and prognosis. The latest contributions to understanding the nature of these disorders have focused on bone marrow microenvironment remodelling and proliferative stress, recognising megakaryocytes (MKCs) as "key-cells". The aim of this study was to investigate the apoptotic profile of ET and PMF MKCs in order to further characterise the biology of these disorders. Bone marrow biopsy samples from 30 patients with ET, and 30 patients with PMF, were immunophenotypically studied for the expression of pro-apoptotic (Fas, Fas-L, Bax, Bad) and anti-apoptotic (Bcl-2, Bcl-XL, hTERT (human telomerase reverse transcriptase)) molecules and the "executioner" molecule caspase-3. The fraction of MKCs undergoing apoptosis was assessed by deoxynucleotidyl transferase-mediated dUTP nick-end labelling. Only the mitochondrial pathway seemed to be involved in MKC apoptosis. The anti-apoptotic molecule Bcl-XL was predominantly found in ET MKCs (50.5% of ET MKCs versus 35% of PMF MKCs; p = 0.036), while pro-apoptotic molecules Bax and Bad showed a prevalent expression in PMF MKCs (30.5% of ET MKCs versus 55% of PMF MKCs; 41% of ET MKCs versus 52% of PMF MKCs; p = 0.001 and p = 0.068, respectively). A significant fraction of PMF MKCs were committed to apoptosis according to caspase-3 expression and TUNEL, while only few ET cells were committed to apoptosis. hTERT was significantly more expressed in PMF (32% of ET MKCs versus 46% of PMF MKCs; p = 0.022), in agreement with the proliferative nature of this disease. It was found that ET and PMF MKCs, which barely differ in terms of morphology and aggregation, are characterised by markedly different apoptotic profiles. The rather high apoptotic fraction of PMF was able to support the fibrotic nature of this process, while the anti-apoptotic profile of ET cells fits well with their "steady

  8. Recent Insights into the Control of Human Papillomavirus (HPV) Genome Stability, Loss, and Degradation.

    Science.gov (United States)

    Fisher, Chris

    2015-01-01

    Most human papillomavirus (HPV) antiviral strategies have focused upon inhibiting viral DNA replication, but it is increasingly apparent that viral DNA levels can be chemically controlled by approaches that promote its instability. HPVs and other DNA viruses have a tenuous relationship with their hosts. They must replicate and hide from the DNA damage response (DDR) and innate immune systems, which serve to protect cells from foreign or "non-self" DNA, and yet they draft these same systems to support their life cycles. DNA binding antiviral agents promoting massive viral DNA instability and elimination are reviewed. Mechanistic studies of these agents have identified genetic antiviral enhancers and repressors, antiviral sensitizers, and host cell elements that protect and stabilize HPV genomes. Viral DNA degradation appears to be an important means of controlling HPV DNA levels in some cases, but the underlying mechanisms remain poorly understood. These findings may prove useful not only for understanding viral DNA persistence but also in devising future antiviral strategies.

  9. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  10. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Ancient DNA Studies

    Science.gov (United States)

    Higgins, Denice; Rohrlach, Adam B.; Kaidonis, John; Townsend, Grant; Austin, Jeremy J.

    2015-01-01

    Major advances in genetic analysis of skeletal remains have been made over the last decade, primarily due to improvements in post-DNA-extraction techniques. Despite this, a key challenge for DNA analysis of skeletal remains is the limited yield of DNA recovered from these poorly preserved samples. Enhanced DNA recovery by improved sampling and extraction techniques would allow further advancements. However, little is known about the post-mortem kinetics of DNA degradation and whether the rate of degradation varies between nuclear and mitochondrial DNA or across different skeletal tissues. This knowledge, along with information regarding ante-mortem DNA distribution within skeletal elements, would inform sampling protocols facilitating development of improved extraction processes. Here we present a combined genetic and histological examination of DNA content and rates of DNA degradation in the different tooth tissues of 150 human molars over short-medium post-mortem intervals. DNA was extracted from coronal dentine, root dentine, cementum and pulp of 114 teeth via a silica column method and the remaining 36 teeth were examined histologically. Real time quantification assays based on two nuclear DNA fragments (67 bp and 156 bp) and one mitochondrial DNA fragment (77 bp) showed nuclear and mitochondrial DNA degraded exponentially, but at different rates, depending on post-mortem interval and soil temperature. In contrast to previous studies, we identified differential survival of nuclear and mtDNA in different tooth tissues. Futhermore histological examination showed pulp and dentine were rapidly affected by loss of structural integrity, and pulp was completely destroyed in a relatively short time period. Conversely, cementum showed little structural change over the same time period. Finally, we confirm that targeted sampling of cementum from teeth buried for up to 16 months can provide a reliable source of nuclear DNA for STR-based genotyping using standard

  11. Pterocarpans phaseollin and neorautenol isolated from Erythrina addisoniae induce apoptotic cell death accompanied by inhibition of ERK phosphorylation

    International Nuclear Information System (INIS)

    Waetjen, W.; Kulawik, A.; Suckow-Schnitker, A.K.; Chovolou, Y.; Rohrig, R.; Ruhl, S.; Kampkoetter, A.; Addae-Kyereme, J.; Wright, C.W.; Passreiter, C.M.

    2007-01-01

    The genus Erythrina (Leguminosae), consisting of over 100 different species, is distributed in tropical regions. In traditional medicine, Erythrina species are used to treat cancer, but little is known about the anticancer mechanisms. From the stem bark of Erythrina addisoniae Hutch. and Dalziel, six prenylated pterocarpans were isolated and analysed for pharmacological activity: While calopocarpin, cristacarpin, orientanol c, and isoneorautenol showed only a weak or moderate toxicity in H4IIE hepatoma cells (EC 50 -value > 25 μM), the toxicity of neorautenol and phaseollin was in the low micromolar range (EC 50 -value: 1 and 1.5 μM, respectively). We further focused on these two substances showing that both increased caspase 3/7 activity and nuclear fragmentation as markers for apoptotic cell death. Neorautenol (10 μM, 2 h), but not phaseollin induced the formation of DNA strand breaks (comet assay). Both substances showed no effect on NF-κB signalling (SEAP assay: basal activity and stimulation with TNF-α), on the other hand both pterocarpans (10 μM, 2 h) decreased the activation of the ERK kinase (p44/p42), an mitogen activated protein kinase which is associated with cell proliferation. We conclude that the pterocarpans phaseollin and neorautenol may be responsible for the anticarcinogenic actions of the plant extract reported in the literature. Further analysis of these substances may lead to new pharmacons to be used in cancer therapy

  12. De-novo NAD+ synthesis regulates SIRT1-FOXO1 apoptotic pathway in response to NQO1 substrates in lung cancer cells.

    Science.gov (United States)

    Liu, Huiying; Xing, Rong; Cheng, Xuefang; Li, Qingran; Liu, Fang; Ye, Hui; Zhao, Min; Wang, Hong; Wang, Guangji; Hao, Haiping

    2016-09-20

    Tryptophan metabolism is essential in diverse kinds of tumors via regulating tumor immunology. However, the direct role of tryptophan metabolism and its signaling pathway in cancer cells remain largely elusive. Here, we establish a mechanistic link from L-type amino acid transporter 1 (LAT1) mediated transport of tryptophan and the subsequent de-novo NAD+ synthesis to SIRT1-FOXO1 regulated apoptotic signaling in A549 cells in response to NQO1 activation. In response to NQO1 activation, SIRT1 is repressed leading to the increased cellular accumulation of acetylated FOXO1 that transcriptionally activates apoptotic signaling. Decreased uptake of tryptophan due to the downregulation of LAT1 coordinates with PARP-1 hyperactivation to induce rapid depletion of NAD+ pool. Particularly, the LAT1-NAD+-SIRT1 signaling is activated in tumor tissues of patients with non-small cell lung cancer. Because NQO1 activation is characterized with oxidative challenge induced DNA damage, these results suggest that LAT1 and de-novo NAD+ synthesis in NSCLC cells may play essential roles in sensing excessive oxidative stress.

  13. The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages.

    Science.gov (United States)

    Kim, Yong Chan; Song, Seok Bean; Lee, Sang Kyu; Park, Sang Min; Kim, Young Sang

    2014-04-01

    Macrophage death plays a role in several physiological and inflammatory pathologies such as sepsis and arthritis. In our previous work, we showed that simvastatin triggers cell death in LPS-activated RAW 264.7 mouse macrophage cells through both caspase-dependent and independent apoptotic pathways. Here, we show that the nuclear orphan receptor NR4A1 is involved in a caspase-independent apoptotic process induced by LPS and simvastatin. Simvastatin-induced NR4A1 expression in RAW 264.7 macrophages and ectopic expression of a dominant-negative mutant form of NR4A1 effectively suppressed both DNA fragmentation and the disruption of mitochondrial membrane potential (MMP) during LPS- and simvastatin-induced apoptosis. Furthermore, apoptosis was accompanied by Bcl-2-associated X protein (Bax) translocation to the mitochondria. Our findings suggest that NR4A1 expression and mitochondrial translocation of Bax are related to simvastatin-induced apoptosis in LPS-activated RAW 264.7 macrophages.

  14. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    International Nuclear Information System (INIS)

    Song, Shasha; Wang, Shuang; Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin; Zhu, Daling

    2013-01-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway

  15. Discovery of Novel Bromophenol Hybrids as Potential Anticancer Agents through the Ros-Mediated Apoptotic Pathway: Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Li-Jun Wang

    2017-11-01

    Full Text Available A series of bromophenol hybrids with N-containing heterocyclic moieties were designed, and their anticancer activities against a panel of five human cancer cell lines (A549, Bel7402, HepG2, HCT116 and Caco2 using MTT assay in vitro were explored. Among them, thirteen compounds (17a, 17b, 18a, 19a, 19b, 20a, 20b, 21a, 21b, 22a, 22b, 23a, and 23b exhibited significant inhibitory activity against the tested cancer cell lines. The structure-activity relationships (SARs of bromophenol derivatives were discussed. The promising candidate compound 17a could induce cell cycle arrest at G0/G1 phase and induce apoptosis in A549 cells, as well as caused DNA fragmentations, morphological changes and ROS generation by the mechanism studies. Furthermore, compound 17a suppression of Bcl-2 levels (decrease in the expression of the anti-apoptotic proteins Bcl-2 and down-regulation in the expression levels of Bcl-2 in A549 cells were observed, along with activation caspase-3 and PARP, which indicated that compound 17a induced A549 cells apoptosis in vitro through the ROS-mediated apoptotic pathway. These results might be useful for bromophenol derivatives to be explored and developed as novel anticancer drugs.

  16. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shasha [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Wang, Shuang [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081 (China); Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Zhu, Daling, E-mail: dalingz@yahoo.com [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081 (China)

    2013-08-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway.

  17. DNA Sequencing in Cultural Heritage.

    Science.gov (United States)

    Vai, Stefania; Lari, Martina; Caramelli, David

    2016-02-01

    During the last three decades, DNA analysis on degraded samples revealed itself as an important research tool in anthropology, archaeozoology, molecular evolution, and population genetics. Application on topics such as determination of species origin of prehistoric and historic objects, individual identification of famous personalities, characterization of particular samples important for historical, archeological, or evolutionary reconstructions, confers to the paleogenetics an important role also for the enhancement of cultural heritage. A really fast improvement in methodologies in recent years led to a revolution that permitted recovering even complete genomes from highly degraded samples with the possibility to go back in time 400,000 years for samples from temperate regions and 700,000 years for permafrozen remains and to analyze even more recent material that has been subjected to hard biochemical treatments. Here we propose a review on the different methodological approaches used so far for the molecular analysis of degraded samples and their application on some case studies.

  18. Determination of DNA profiling of siwak and toothbrush samples ...

    African Journals Online (AJOL)

    Nagy Alfadaly

    2016-06-01

    Jun 1, 2016 ... b Department of Forensic Biology, College of Forensic Sciences, Naif University, AlRiadh, Saudi ... tool in criminal investigation, disaster victim identification and ... with the forensic evidence, or a degraded DNA template due.

  19. Studies on DNA repair in Bacillus subtilis

    International Nuclear Information System (INIS)

    Inoue, Tadashi; Kada, Tsuneo

    1977-01-01

    An enzyme which enhances the priming activity of γ-irradiated DNA for type I DNA polymerase (EC 2.7.7.7) was identified and partially purified from extracts of Bacillus subtilis cells. The enzyme preferentially degraded γ-irradiated DNA into acid-soluble materials. DNA preparations treated with heat, ultraviolet light, pancreatic DNAase (EC 3.1.4.5) or micrococcal DNAase (EC 3.1.4.7) were not susceptible to the enzyme. However, sonication rendered DNA susceptible to the enzyme to some extent. From these results, it is supposed that this enzyme may function by 'cleaning' damaged terminals produced by γ-irradiation to serve as effective primer of sites for repair synthesis by the type I DNA polymerase

  20. Human Parvovirus B19 Induced Apoptotic Bodies Contain Altered Self-Antigens that are Phagocytosed by Antigen Presenting Cells

    Science.gov (United States)

    Thammasri, Kanoktip; Rauhamäki, Sanna; Wang, Liping; Filippou, Artemis; Kivovich, Violetta; Marjomäki, Varpu; Naides, Stanley J.; Gilbert, Leona

    2013-01-01

    Human parvovirus B19 (B19V) from the erythrovirus genus is known to be a pathogenic virus in humans. Prevalence of B19V infection has been reported worldwide in all seasons, with a high incidence in the spring. B19V is responsible for erythema infectiosum (fifth disease) commonly seen in children. Its other clinical presentations include arthralgia, arthritis, transient aplastic crisis, chronic anemia, congenital anemia, and hydrops fetalis. In addition, B19V infection has been reported to trigger autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. However, the mechanisms of B19V participation in autoimmunity are not fully understood. B19V induced chronic disease and persistent infection suggests B19V can serve as a model for viral host interactions and the role of viruses in the pathogenesis of autoimmune diseases. Here we investigate the involvement of B19V in the breakdown of immune tolerance. Previously, we demonstrated that the non-structural protein 1 (NS 1) of B19V induces apoptosis in non-permissive cells lines and that this protein can cleave host DNA as well as form NS1-DNA adducts. Here we provide evidence that through programmed cell death, apoptotic bodies (ApoBods) are generated by B19V NS1 expression in a non-permissive cell line. Characterization of purified ApoBods identified potential self-antigens within them. In particular, signature self-antigens such as Smith, ApoH, DNA, histone H4 and phosphatidylserine associated with autoimmunity were present in these ApoBods. In addition, when purified ApoBods were introduced to differentiated macrophages, recognition, engulfment and uptake occurred. This suggests that B19V can produce a source of self-antigens for immune cell processing. The results support our hypothesis that B19V NS1-DNA adducts, and nucleosomal and lysosomal antigens present in ApoBods created in non-permissive cell lines, are a source of self-antigens. PMID:23776709

  1. Intrinsic and extrinsic apoptotic pathways are involved in rat testis by cold water immersion-induced acute and chronic stress.

    Science.gov (United States)

    Juárez-Rojas, Adriana Lizbeth; García-Lorenzana, Mario; Aragón-Martínez, Andrés; Gómez-Quiroz, Luis Enrique; Retana-Márquez, María del Socorro

    2015-01-01

    Testicular apoptosis is activated by stress, but it is not clear which signaling pathway is activated in response to stress. The aim of this study was to investigate whether intrinsic, extrinsic, or both apoptotic signaling pathways are activated by acute and chronic stress. Adult male rats were subjected to cold water immersion-induced stress for 1, 20, 40, and 50 consecutive days. The seminiferous tubules:apoptotic cell ratio was assayed on acute (1 day) and chronic (20, 40, 50 days) stress. Apoptotic markers, including cleaved-caspase 3 and 8, the pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins were also determined after acute and chronic stress induction. Additionally, epididymal sperm quality was evaluated, as well as corticosterone and testosterone levels. An increase in tubule apoptotic cell count percentage after an hour of acute stress and during chronic stress induction was observed. The apoptotic cells rate per tubule increment was only detected one hour after acute stress, but not with chronic stress. Accordingly, there was an increase in Bax, cleaved caspase-8 and caspase-3 pro-apoptotic proteins with a decrease of anti-apoptotic Bcl-2 in both acutely and chronically stressed male testes. In addition, sperm count, viability, as well as total and progressive motility were low in chronically stressed males. Finally, the levels of corticosterone increased whereas testosterone levels decreased in chronically stressed males. Activation of the extrinsic apoptotic pathway was shown by cleaved caspase-8 increase whereas the intrinsic apoptotic pathway activation was determined by the increase of Bax, along with Bcl-2 decrease, making evident a cross-talk between these two pathways with the activation of caspase-3. These results suggest that both acute and chronic stress can potentially activate the intrinsic/extrinsic apoptosis pathways in testes. Chronic stress also reduces the quality of epididymal spermatozoa, possibly due to a decrease in testosterone.

  2. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  3. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice.

    Directory of Open Access Journals (Sweden)

    Francisco Altamirano

    Full Text Available Duchenne Muscular Dystrophy (DMD is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM decreased [Ca(2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox/p47(phox NOX2 subunits and pro-apoptotic (Bax genes in mdx diaphragm muscles and lowered serum creatine kinase (CK levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+]r in mdx skeletal muscle cells. The results in this work open new

  4. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    D. Kicker

    2004-01-01

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  5. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  6. DNA damages induced by Ar F laser

    Energy Technology Data Exchange (ETDEWEB)

    Chapel, C.; Rose, S.; Chevrier, L.; Cordier, E.; Courant, D. [CEA Fontenay-aux-Roses, 92 (France). Dept. de Radiobiologie et de Radiopathologie

    2006-07-01

    The photo ablation process used in corneal refractive surgery by the Argon Fluoride (Ar F) laser emitting in ultraviolet C at 193 nm, exposes viable cells round the irradiated zone to sub ablative doses (< 400 joules.m -2). Despite that DNA absorption is higher at 193 nm than 254 nm, cytotoxicity of 193 nm laser radiation is lower than radiation emitted by 254 nm UV-C lamps. In situ, DNA could be protected of laser radiation by cellular components. Consequently, some authors consider that this radiation does not induce genotoxic effect whereas others suspect it to be mutagenic. These lasers are used for fifteen years but many questions remain concerning the long term effects on adjacent cells to irradiated area. The purpose of this study is to describe the effect of 193 nm laser radiation on DNA of stromal keratocytes which are responsible of the corneal structure. The 193 nm laser irradiation induces directly DNA breakage in keratocytes as it has been shown by the comet assay under alkaline conditions. Two hours post irradiation, damages caused by the highest exposure (150 J.m-2) are not repaired as it has been measured with the Olive Tail Moment (product of tail length and tail DNA content). They give partly evidence of induction of an apoptotic process in cells where DNA could be too damaged. In order to characterize specifically double strand breaks, a comparative analysis by immunofluorescence of the H2 Ax histone phosphorylation (H2 Ax) has been performed on irradiated keratocytes and unirradiated keratocytes. Results show a dose dependent increase of the number of H2 Ax positive cells. Consequences of unrepaired DNA lesions could be observed by the generation of micronuclei in cells. Results show again an increase of micronuclei in laser irradiated cells. Chromosomal aberrations have been pointed out by cytogenetic methods 30 mn after irradiation. These aberrations are dose dependent (from 10 to 150 J.m-2). The number of breakage decreases in the long run

  7. Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis

    NARCIS (Netherlands)

    Frodermann, Vanessa; van Puijvelde, Gijs H M; Wierts, Laura; Lagraauw, H Maxime; Foks, Amanda C; van Santbrink, Peter J; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C A

    2015-01-01

    Modulation of immune responses may form a powerful approach to treat atherosclerosis. It was shown that clearance of apoptotic cells results in tolerance induction to cleared Ags by dendritic cells (DCs); however, this seems impaired in atherosclerosis because Ag-specific tolerance is lacking. This

  8. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells

    Directory of Open Access Journals (Sweden)

    Kezban Ada

    2010-04-01

    Full Text Available The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on humancervix epithelioid carcinoma cell line (HeLa. Nickel oxide precursors were synthesized by an nickel sulphate-excess ureareaction in boiling aqueous solution. The synthesized NiO nanoparticles (<200 nm were investigated by X-ray diffractionanalysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in50-500 μg/mL NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy.The cytotoxicity was observed low in 50-200 μg/mL concentration for 16 h, but high in 400-500 μg/mL concentration for2-6 h. HeLa cells' cytoplasm membrane was lysed and detached from the well surface in 400 μg/mL concentration NiOnanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in cultureon the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation.

  9. Expression of defender against apoptotic death (DAD-1) in iris and dianthus petals

    NARCIS (Netherlands)

    Kop, van der D.A.M.; Ruys, G.; Dees, D.; Schoot, van der C.; Boer, de A.D.; Doorn, van W.G.

    2003-01-01

    The gene defender against apoptotic death (DAD-1) prevents programmed cell death in animal cells. We investigated the expression pattern of DAD-1 in petals of iris (Iris x hollandica cv. Blue Magic) and carnation (Dianthus caryophyllus cv. Etarro). DAD-1 expression in Iris petals was strongly

  10. Antiproliferative and Pro-apoptotic activities of the stem bark of ...

    African Journals Online (AJOL)

    Persea americana (Lauraceae) have been used in traditional medicine for a wide range of illness and some of these uses have been proven scientifically. The aim of this present study is to screen for the phytochemical content, determine the proximate parameter and determine the antiproliferative and apoptotic effects of ...

  11. Apoptotic and free radical scavenging properties of the methanolic extract of Gentianella alborosea.

    Science.gov (United States)

    Acero, Nuria; Llinares, Francisco; Galán de Mera, Antonio; Oltra, Beatriz; Muñoz-Mingarro, Dolores

    2006-09-01

    Gentianella alborosea ("Hercampure") is a Peruvian species used in folk medicine for the treatment of a variety of health disorders. We tested the free radical scavenging (DPPH) and induction of apoptosis on a human uterus tumor cell line (HeLa) by its methanolic extract. The results showed a noticeable radical scavenging activity and a dose-dependent apoptotic effect.

  12. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  13. Antitumor and apoptotic effects of cucurbitacin a in A-549 lung ...

    African Journals Online (AJOL)

    Background: The main aim of this study was to demonstrate the antitumor potential of cucurbitacin A on A-549 NSCLC (non-small cell lung cancer cells). The effects of Cucurbitacin A on apoptotic induction, cell physic, cell cycle failure and m-TOR/PI3K/Akt signalling pathway were also investigated in the present study.

  14. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  15. Chlamydia pneumoniae hides inside apoptotic neutrophils to silently infect and propagate in macrophages.

    Directory of Open Access Journals (Sweden)

    Jan Rupp

    Full Text Available BACKGROUND: Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae. METHODOLOGY/PRINCIPAL FINDINGS: We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ss production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-alpha response. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.

  16. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    Science.gov (United States)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  17. Withaferin A Suppresses Anti-apoptotic BCL2, Bcl-xL, XIAP and ...

    African Journals Online (AJOL)

    apoptotic genes, BCL2, Bcl-xL, XIAP and Survivin), in cervical carcinoma cells. Methods: Annexin V-FITC/propidium iodide (PI) staining was used for the investigation of cell apoptosis. RNA RNeasy Kits was used to isolate RNA and Omniscript ...

  18. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  19. Developments in polymer degradation - 7

    International Nuclear Information System (INIS)

    Grassie, N.

    1987-01-01

    A selection of topics which are representative of the continually expanding area of polymer degradation is presented. The aspects emphasised include the products of degradation of specific polymers, degradation by high energy radiation and mechanical forces, fire retardant studies and the special role of small radicals in degradation processes. (author)

  20. The anti-apoptotic activity associated with phosphatidylinositol transfer protein α activates the MAPK and Akt/PKB pathway

    NARCIS (Netherlands)

    Schenning, M.; Goedhart, J.; Gadella (jr.), T.W.J.; Avram, D.; Wirtz, K.W.A.; Snoek, G.T.

    2008-01-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein α (PI-TPα; SPIα cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts

  1. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase.

    Science.gov (United States)

    Moss, David K; Wilde, Andrew; Lane, Jon D

    2009-03-01

    During apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule assembly is not understood. Here, we demonstrate that microtubule assembly depends upon the release of nuclear RanGTP into the apoptotic cytoplasm because this process is blocked in apoptotic cells overexpressing dominant-negative GDP-locked Ran (T24N). Actin-myosin-II contractility provides the impetus for Ran release and, consequently, microtubule assembly is blocked in blebbistatin- and Y27632-treated apoptotic cells. Importantly, the spindle-assembly factor TPX2 (targeting protein for Xklp2), colocalises with apoptotic microtubules, and siRNA silencing of TPX2, but not of the microtubule motors Mklp1 and Kid, abrogates apoptotic microtubule assembly. These data provide a molecular explanation for the assembly of the apoptotic microtubule network, and suggest important similarities with the process of RanGTP- and TPX2-mediated mitotic spindle formation.

  2. In vitro evidence for participation of DEC-205 expressed by thymic cortical epithelial cells in clearance of apoptotic thymocytes.

    NARCIS (Netherlands)

    Small, M; Kraal, G.

    2003-01-01

    Binding of apoptotic cells was compared after incubation of thymocytes with two clones of murine thymic stromal cells to which CD4(+)/CD8(+) thymocytes attach. With the BA/10, but not the BA/2, clone, thymocytes with apoptotic morphology were bound irreversibly. These tightly bound thymocytes were

  3. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  4. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  5. Degradation of fluorotelomer alcohols

    DEFF Research Database (Denmark)

    Ellis, David A; Martin, Jonathan W; De Silva, Amila O

    2004-01-01

    Human and animal tissues collected in urban and remote global locations contain persistent and bioaccumulative perfluorinated carboxylic acids (PFCAs). The source of PFCAs was previously unknown. Here we present smog chamber studies that indicate fluorotelomer alcohols (FTOHs) can degrade...... in the atmosphere to yield a homologous series of PFCAs. Atmospheric degradation of FTOHs is likely to contribute to the widespread dissemination of PFCAs. After their bioaccumulation potential is accounted for, the pattern of PFCAs yielded from FTOHs could account for the distinct contamination profile of PFCAs....... The significance of the gas-phase peroxy radical cross reactions that produce PFCAs has not been recognized previously. Such reactions are expected to occur during the atmospheric degradation of all polyfluorinated materials, necessitating a reexamination of the environmental fate and impact of this important...

  6. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  7. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  8. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  9. Effect of radiation and alkylating agents on chromatin degradation in normal and malignant lymphoid cells

    International Nuclear Information System (INIS)

    Ryabchenko, N.I.; Yurashkova, V.; Ivannik, B.P.; Konov, A.V.; Drashil, V.

    1991-01-01

    Regularities of chromatin degradation in thymocytes and LS/BL tumor cells have been investigated. It has been shown that the rate of DNA degradation by Ca/Mg-dependent endonuclease in LS/BL tumor cells is 25 times lower than that in thymocytes, and radiation does not induce chormatin degradation. The alkylating agent TS 160 causes chromatin degradation in both LS/Bl cells and thymocytes. In contrast to radiation TS 160 inhibits the endogenous chromatin degradation by Ca/Mg-dependent endonuclease in thymocytes

  10. Effect of dc and pulsed corona discharge on DNA and proteins

    International Nuclear Information System (INIS)

    Shvedchikov, A.P.; Polyakova, A.V.; Belousova, E.V.; Ponizovskii, A.Z.; Goncharov, V.A.

    1993-01-01

    The authors have investigated the effect of a d.c. and pulsed corona discharge in air and nitrogen on DNA and albumin films in the temperature range 77-298 K. The authors have shown that upon exposure to a corona discharge and O 3 , the biopolymers are degraded. With a reduction in temperature, the extent of degradation of DNA drops

  11. Berberine Induces Apoptotic Cell Death via Activation of Caspase-3 and -8 in HL-60 Human Leukemia Cells: Nuclear Localization and Structure-Activity Relationships.

    Science.gov (United States)

    Okubo, Shinya; Uto, Takuhiro; Goto, Aya; Tanaka, Hiroyuki; Nishioku, Tsuyoshi; Yamada, Katsushi; Shoyama, Yukihiro

    2017-01-01

    Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5[Formula: see text]min to 15[Formula: see text]min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an [Formula: see text]-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.

  12. Pro-Apoptotic Role of the Human YPEL5 Gene Identified by Functional Complementation of a Yeast moh1Δ Mutation.

    Science.gov (United States)

    Lee, Ji Young; Jun, Do Youn; Park, Ju Eun; Kwon, Gi Hyun; Kim, Jong-Sik; Kim, Young Ho

    2017-03-28

    To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1 , the yeast ortholog, was compared with that of the wild-type (WT)- MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The moh1 Δ mutant exhibited enhanced cell viability compared with the WT- MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, 100 µ CPT, heat shock at 50°C, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT- MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the moh1 Δ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2- YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT- MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (ΔΨm) loss, and metacaspase activation, occurred to a much lesser extent in the moh1 Δ mutant compared with the WT- MOH1 strain and the mutant strain bearing pYES2- MOH1 or pYES2- YPEL5 . These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.

  13. Role of the mitochondria in immune-mediated apoptotic death of the human pancreatic β cell line βLox5.

    Directory of Open Access Journals (Sweden)

    Yaíma L Lightfoot

    Full Text Available Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA depleted βLox5 cells, or βLox5 ρ(0 cells. βLox5 ρ(0 cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ(0 cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways.

  14. Antifoam degradation testing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Newell, D. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  15. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.A.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. These can generally be classified as: Mechanical; Hydraulic; Tribological; Chemical; and Other (including those associated with the pump driver). Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump

  16. New insights into the apoptotic process in mollusks: characterization of caspase genes in Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Alejandro Romero

    2011-02-01

    Full Text Available Apoptosis is an essential biological process in the development and maintenance of immune system homeostasis. Caspase proteins constitute the core of the apoptotic machinery and can be categorized as either initiators or effectors of apoptosis. Although the genes encoding caspase proteins have been described in vertebrates and in almost all invertebrate phyla, there are few reports describing the initiator and executioner caspases or the modulation of their expression by different stimuli in different apoptotic pathways in bivalves. In the present work, we characterized two initiator and four executioner caspases in the mussel Mytilus galloprovincialis. Both initiators and executioners showed structural features that make them different from other caspase proteins already described. Evaluation of the genes' tissue expression patterns revealed extremely high expression levels within the gland and gills, where the apoptotic process is highly active due to the clearance of damaged cells. Hemocytes also showed high expression values, probably due to of the role of apoptosis in the defense against pathogens. To understand the mechanisms of caspase gene regulation, hemocytes were treated with UV-light, environmental pollutants and pathogen-associated molecular patterns (PAMPs and apoptosis was evaluated by microscopy, flow cytometry and qPCR techniques. Our results suggest that the apoptotic process could be tightly regulated in bivalve mollusks by overexpression/suppression of caspase genes; additionally, there is evidence of caspase-specific responses to pathogens and pollutants. The apoptotic process in mollusks has a similar complexity to that of vertebrates, but presents unique features that may be related to recurrent exposure to environmental changes, pollutants and pathogens imposed by their sedentary nature.

  17. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis

    Science.gov (United States)

    Millet, Arnaud; Martin, Katherine R.; Bonnefoy, Francis; Saas, Philippe; Mocek, Julie; Alkan, Manal; Terrier, Benjamin; Kerstein, Anja; Tamassia, Nicola; Satyanarayanan, Senthil Kumaran; Ariel, Amiram; Ribeil, Jean-Antoine; Guillevin, Loïc; Cassatella, Marco A.; Mueller, Antje; Thieblemont, Nathalie; Lamprecht, Peter; Mouthon, Luc; Perruche, Sylvain; Witko-Sarsat, Véronique

    2015-01-01

    Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology. PMID:26436651

  18. H pylori receptor MHC class II contributes to the dynamic gastric epithelial apoptotic response

    Science.gov (United States)

    Bland, David A; Suarez, Giovanni; Beswick, Ellen J; Sierra, Johanna C; Reyes, Victor E

    2006-01-01

    AIM: To investigate the role of MHC class II in the modulation of gastric epithelial cell apoptosis induced by H pylori infection. METHODS: After stimulating a human gastric epithelial cell line with bacteria or agonist antibodies specific for MHC class II and CD95, the quantitation of apoptotic and anti-apoptotic events, including caspase activation, BCL-2 activation, and FADD recruitment, was performed with a fluorometric assay, a cytometric bead array, and confocal microscopy, respectively. RESULTS: Pretreatment of N87 cells with the anti-MHC class II IgM antibody RFD1 resulted in a reduction in global caspase activation at 24 h of H pylori infection. When caspase 3 activation was specifically measured, crosslinking of MHC class II resulted in a marked reduced caspase activation, while simple ligation of MHC class II did not. Crosslinking of MHC class II also resulted in an increased activation of the anti-apoptosis molecule BCL-2 compared to simple ligation. Confocal microscope analysis demonstrated that the pretreatment of gastric epithelial cells with a crosslinking anti-MHC class II IgM blocked the recruitment of FADD to the cell surface. CONCLUSION: The results presented here demonstrate that the ability of MHC class II to modulate gastric epithelial apoptosis is at least partially dependent on its crosslinking. Furthermore, while previous research has demonstrated that MHC class II signaling can be pro-apoptotic during extended ligation, we have shown that the crosslinking of this molecule has anti-apoptotic effects during the earlier time points of H pylori infection. This effect is possibly mediated by the ability of MHC class II to modulate the activation of the pro-apoptotic receptor Fas by blocking the recruitment of the accessory molecule FADD, and this delay in apoptosis induction could allow for prolonged cytokine secretion by H pylori-infected gastric epithelial cells. PMID:16981259

  19. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    Science.gov (United States)

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  20. Ion transport in a human lens epithelial cell line exposed to hyposmotic and apoptotic stress.

    Science.gov (United States)

    Chimote, Ameet A; Adragna, Norma C; Lauf, Peter K

    2010-04-01

    Membrane transport changes in human lens epithelial (HLE-B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium content, K(i), uptake of the K congener rubidium, Rb(i), and water content were measured after hyposmotic stress induced by hypotonicity, and apoptotic stress by the protein-kinase inhibitor staurosporine (STP). Cell water increased in hyposmotic (150 mOsm) as compared to isosmotic (300 mOsm) balanced salt solution (BSS) by >2-fold at 5 min and decreased within 15 min to baseline values accompanied by a 40% K(i) loss commensurate with cell swelling and subsequent cell shrinkage likely due to regulatory volume decrease (RVD). Loss of K(i), and accompanying water, and Rb(i) uptake in hyposmotic BSS were prevented by clotrimazole (CTZ) suggesting water shifts associated with K and Rb flux via intermediate conductance K (IK) channels, also detected at the mRNA and protein level. In contrast, 2 h after 2 microM STP exposure, the cells lost approximately 40% water and approximately 60% K(i), respectively, consistent with apoptotic volume decrease (AVD). Indeed, water and K(i) loss was at least fivefold greater after hyposmotic than after apoptotic stress. High extracellular K and 2 mM 4-aminopyridine (4-AP) but not CTZ significantly reduced apoptosis. Annexin labeling phosphatidylserine (PS) at 15 min suggested loss of lipid asymmetry. Quantitative PCR revealed significant IK channel expression during prolonged hyposmotic stress. Results suggest in HLE-B3 cells, IK channels likely partook in and were down regulated after RVD, whereas pro-apoptotic STP-activation of 4-AP-sensitive voltage-gated K channels preceded or accompanied PS externalization before subsequent apoptosis. J. Cell. Physiol. 223: 110-122, 2010. (c) 2009 Wiley-Liss, Inc.

  1. RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response

    Directory of Open Access Journals (Sweden)

    Toshinori Ozaki

    2013-01-01

    Full Text Available A proper DNA damage response (DDR, which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such as p21WAF1, BAX, and PUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53 is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between p53 and RUNX family in response to DNA damage.

  2. Activation of chromatin degradation by a protein factor of thymocyte cytoplasm of irradiated mice

    International Nuclear Information System (INIS)

    Soldatenkov, V.A.; Filippovich, I.V.

    1986-01-01

    A cytoplasmic thymocyte fraction isolated 1 h after irradiation of mice accelerates chromatin degradation in isolated nuclei. Treatment of the cytoplasmic fraction by heat and injection of cycloheximide to mice prevent the acceleration of DNA degradation. The analysis of the chromatin degradation products and the kinetics of this process at acid and alkaline pH shows that activation of DNA degradation in thymocytes by a factor obtained from the irradiated cell cytoplasm is specific for a Ca 2+ , Mg 2+ -dependent enzyme. The time- and dose-dependent parameters of the appearance in the thymocyte cytoplasm of the factor influencing degradation of chromatin are in a good agreement with both the time of the onset of its postirradiation degradation and the dose dependence of this process

  3. Repair of DNA damage in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Evans, D.M.

    1984-01-01

    The repair of DNA lesions in Deinococcus radiodurans was examined with particular reference to DNA excision repair of ultraviolet light (UV) induced pyrimidine dimers. The characteristics of excision repair via UV endonucleases α and β in vivo varied with respect to (a) the substrate range of the enzymes, (b) the rate of repair of DNA damage (c) the requirement for a protein synthesised in response to DNA damage to attenuate exonuclease action at repairing regions. UV endonuclease α is postulated to incise DNA in a different manner from UV endonuclease β thus defining the method of subsequent repair. Several DNA damage specific endonuclease activities independent of α and β are described. Mutations of the uvsA, uvsF and uvsG genes resulted in an increase in single-strand breaks in response to DNA damage producing uncontrolled DNA degradation. Evidence is presented that these genes have a role in limiting the access of UV endonuclease β to DNA lesions. uvsF and uvsG are also shown to be linked to the mtoA gene. Mutation of uvsH and reo-1 produces further distinct phenotypes which are discussed. An overall model of excision repair of DNA damage in Deinococcus radiodurans is presented. (author)

  4. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  5. DNA Investigations.

    Science.gov (United States)

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  6. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The outputs from the drift degradation analysis support scientific analyses, models, and design calculations, including the following: (1) Abstraction of Drift Seepage; (2) Seismic Consequence Abstraction; (3) Structural Stability of a Drip Shield Under Quasi-Static Pressure; and (4) Drip Shield Structural Response to Rock Fall. This report has been developed in accordance with ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The drift degradation analysis includes the development and validation of rockfall models that approximate phenomenon associated with various components of rock mass behavior anticipated within the repository horizon. Two drift degradation rockfall models have been developed: the rockfall model for nonlithophysal rock and the rockfall model for lithophysal rock. These models reflect the two distinct types of tuffaceous rock at Yucca Mountain. The output of this modeling and analysis activity documents the expected drift deterioration for drifts constructed in accordance with the repository layout configuration (BSC 2004 [DIRS 172801])

  7. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    could potentially improve bioremediation of BAM. An important prerequisite for bioaugmentation is the potential to produce the degrader strain at large quantities within reasonable time. The aim of manuscript II, was to optimize the growth medium for Aminobacter MSH1 and to elucidate optimal growth...

  8. Radiation degradation of silk

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Silk fibroin powder was prepared from irradiated silk fibroin fiber by means of only physical treatment. Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1000 kGy was pulverized by using a ball mill. Unirradiated silk fibroin fiber was not pulverized at all. But the more irradiation was increased, the more the conversion efficiency from fiber to powder was increased. The conversion efficiency of silk fibroin fiber irradiated 1000 kGy in oxygen was 94%. Silk fibroin powder shows remarkable solubility, which dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin which did not treat with chemicals gets solubility only being pulverized. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk fibroin powder was analyzed. The more irradiation dose up, the more glycine or alanine degraded, but degradation fraction reached bounds about 50%. Other amino acids were degraded only 20% even at the maximum. To consider crystal construction of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve silk fibroin powder. (author)

  9. Ancient DNA investigations: A review on their significance in ...

    African Journals Online (AJOL)

    However, its degradation and post-mortem chemical alteration make difficult its quantification and amplification. Moreover the study of aDNA is challenging due to the contamination by exogenous current DNA. Recently, the progress of molecular techniques and the use of sophisticated approaches greatly improved the ratio ...

  10. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.

    Science.gov (United States)

    Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli

    2018-01-01

    with polyethylenimine (PEI) reagent at the ratio of 1:6 (DNA:PEI). In conclusion, the anti-apoptotic efficacy of the Bcl-xL expressing plasmid in humanized anti-TNF-α MAb producing stable CHO cells is compatible with curative effect for high efficiency recombinant protein production. Thus, this model can be used for large-scale production of biosimilars through transient Bcl-xL gene expression as a cost-effective method.

  11. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  12. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  13. Comparison of lymphocyte apoptotic index and qualitative DNA damage in yoga practitioners and breast cancer patients: A pilot study

    Directory of Open Access Journals (Sweden)

    Amritanshu Ram

    2013-01-01

    Conclusion: Cellular dysfunction (QDD requires restorative mechanisms (AI to restore the system to a balance. The results of this pilot study show trends, which indicate that in ill-health, there is inadequate restorative mechanisms (AI although dysfunction (QDD is high. Through regular practice of yoga, cellular dysfunction can be lowered, thus necessitating reduced restorative mechanisms. AI and QDD could also be useful indicators for predicting the three zones of health viz. disease, health, and positive health.

  14. Metallic gold reduces TNFalpha expression, oxidative DNA damage and pro-apoptotic signals after experimental brain injury

    DEFF Research Database (Denmark)

    Pedersen, Mie Ostergaard; Larsen, Agnete; Pedersen, Dan Sonne

    2009-01-01

    Brain injury represents a major health problem and may result in chronic inflammation and neurodegeneration. Due to antiinflammatory effects of gold, we have investigated the cerebral effects of metallic gold particles following a focal brain injury (freeze-lesion) in mice. Gold particles 20......-45 microm in size or the vehicle (placebo) were implanted in the cortical tissue followed by a cortical freeze-lesioning. At 1-2 weeks post-injury, brains were analyzed by using immunohistochemistry and markers of inflammation, oxidative stress and apoptosis. This study shows that gold treatment...

  15. COMPUTATIONAL MODELING OF SIGNALING PATHWAYS MEDIATING CELL CYCLE AND APOPTOTIC RESPONSES TO IONIZING RADIATION MEDIATED DNA DAMAGE

    Science.gov (United States)

    Demonstrated of the use of a computational systems biology approach to model dose response relationships. Also discussed how the biologically motivated dose response models have only limited reference to the underlying molecular level. Discussed the integration of Computational S...

  16. Oxaliplatin immuno hybrid nanoparticles for active targeting: an approach for enhanced apoptotic activity and drug delivery to colorectal tumors.

    Science.gov (United States)

    Tummala, Shashank; Gowthamarajan, K; Satish Kumar, M N; Wadhwani, Ashish

    2016-06-01

    Tumor necrosis factor related apoptosis inducing ligand (TRAIL) proved to be a promising new target for colorectal cancer treatment. Elevated expression of TRAIL protein in tumor cells distinguishes it from healthy cells, thereby delivering the drug at the specific site. Here, we formulated oxaliplatin immunohybrid nanoparticles (OIHNPs) to deliver oxaliplatin and anti-TRAIL for colorectal cancer treatment in xenograft tumor models. The polymeric chitosan layer binds to the lipid film with the mixture of phospholipids by an ultra sound method followed by conjugating with thiolated antibody using DSPE-PEG-mal3400, resulting in the formation of OIHNPs. The polymer layer helps in more encapsulation of the drug (71 ± 0.09%) with appreciable particle size (95 ± 0.01 nm), and lipid layer prevents degradation of the drug in serum by preventing nanoparticle aggregation. OIHNPs have shown a 4-fold decrease in the IC50 value compared to oxaliplatin in HT-29 cells by the MTT assay. These immuno-nanoparticles represent the successful uptake and internalization of oxaliplatin in HT-29 cells rather than in MCF-7 cells determined by triple fluorescence method. Apoptotic activity in vitro of OIHNPs was determined by the change in the mitochondria membrane potential that further elevates its anti-tumor property. Furthermore, the conjugated nanoparticles can effectively deliver the drug to the tumor sites, which can be attributed to its ability in reducing tumor mass and tumor volume in xenograft tumor models in vivo along with sustaining its release in vitro. These findings indicated that the oxaliplatin immuno-hybrid nanoparticles would be a promising nano-sized active targeted formulation for colorectal-tumor targeted therapy.

  17. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    Energy Technology Data Exchange (ETDEWEB)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  18. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA2 activity

    International Nuclear Information System (INIS)

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2015-01-01

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA 2 , which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA 2 activity, leading to avoidance of non-apoptotic cell death

  19. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  20. TALSPEAK Solvent Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Bruce J. Mincher

    2009-09-01

    Understanding the radiolytic degradation behavior of organic molecules involved in new or existing schemes for the recycle of used nuclear fuels is of significant interest for sustaining a closed nuclear fuel cycle. Here we have conducted several lines of investigation to begin understanding the effects of radiolysis on the aqueous phase of the TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides. Using the 60-Co irradiator at the INL, we have begun to quantify the effects of radiation on the aqueous phase complexants used in this separation technique, and how this will affect the actinide lanthanide separation factor. In addition we have started to develop methodologies for stable product identification, a key element in determining the degradation pathways. We have also introduced a methodology to investigate the effects of alpha radiolysis that has previously received limited attention.

  1. Rapidly Degradable Pyrotechnic System

    Science.gov (United States)

    2009-02-01

    material system (structural polymer and degradation agent ) for producing a high strength, non-corroding, highly inert, environmentally safe, extended...polymer sites in the active enzyme center differs dramatically between alkyl and aromatic polyesters. More specifically, as the degree of backbone...capped and centrifuged at 3,000 g. This procedure was repeated twice. To the remaining biomass pellet 15 mL of 1 mg/mL solution of N-ethyl-N- nitrosourea

  2. Radiation degradation of chitosan

    International Nuclear Information System (INIS)

    Norzita Yacob; Maznah Mahmud; Norhashidah Talip; Kamarudin Bahari; Kamaruddin Hashim; Khairul Zaman Dahlan

    2010-01-01

    In order to obtain an oligo chitosan, degradation of chitosan s were carried out in solid state and liquid state. The effects of an irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer and Brookfield Viscometer respectively. The molecular weight and viscosity of the chitosan s were decreased with an increase in the irradiation dose. In the presence of hydrogen peroxide, the molecular weight of chitosan can be further decreased. (author)

  3. Anti-apoptotic effect of hyperglycemia can allow survival of potentially autoreactive T cells.

    Science.gov (United States)

    Ramakrishnan, P; Kahn, D A; Baltimore, D

    2011-04-01

    Thymocyte development is a tightly controlled multi-step process involving selective elimination of self-reactive and non-functional T cells by apoptosis. This developmental process depends on signaling by Notch, IL-7 and active glucose metabolism. In this study, we explored the requirement of glucose for thymocyte survival and found that in addition to metabolic regulation, glucose leads to the expression of anti-apoptotic genes. Under hyperglycemic conditions, both mouse and human thymocytes demonstrate enhanced survival. We show that glucose-induced anti-apoptotic genes are dependent on NF-κB p65 because high glucose is unable to attenuate normal ongoing apoptosis of thymocytes isolated from p65 knockout mice. Furthermore, we demonstrate that in vivo hyperglycemia decreases apoptosis of thymocytes allowing for survival of potentially self-reactive thymocytes. These results imply that hyperglycemic conditions could contribute to the development of autoimmunity through dysregulated thymic selection. © 2011 Macmillan Publishers Limited

  4. Caloric restriction suppresses apoptotic cell death in the mammalian cochlea and leads to prevention of presbycusis.

    Science.gov (United States)

    Someya, Shinichi; Yamasoba, Tatsuya; Weindruch, Richard; Prolla, Tomas A; Tanokura, Masaru

    2007-10-01

    Presbycusis is characterized by an age-related progressive decline of auditory function, and arises mainly from the degeneration of hair cells or spiral ganglion (SG) cells in the cochlea. Here we show that caloric restriction suppresses apoptotic cell death in the mouse cochlea and prevents late onset of presbycusis. Calorie restricted (CR) mice, which maintained body weight at the same level as that of young control (YC) mice, retained normal hearing and showed no cochlear degeneration. CR mice also showed a significant reduction in the number of TUNEL-positive cells and cleaved caspase-3-positive cells relative to middle-age control (MC) mice. Microarray analysis revealed that CR down-regulated the expression of 24 apoptotic genes, including Bak and Bim. Taken together, our findings suggest that loss of critical cells through apoptosis is an important mechanism of presbycusis in mammals, and that CR can retard this process by suppressing apoptosis in the inner ear tissue.

  5. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    Directory of Open Access Journals (Sweden)

    Maria Dolores Boyano

    2011-03-01

    Full Text Available Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies.

  6. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  7. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  8. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    Science.gov (United States)

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  9. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells

    Science.gov (United States)

    Rivera, Mariela; Ramos, Yanilda; Rodríguez-Valentín, Madeline; López-Acevedo, Sheila; Cubano, Luis A.; Zou, Jin; Zhang, Qiang; Wang, Guangdi

    2017-01-01

    Curcumin, an extract from the turmeric rhizome (Curcuma longa), is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated. In the present study, we examined the signaling pathways triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was evaluated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks. Results were confirmed at the gene expression level by qRT-PCR and at the protein expression level by western blot and flow cytometry. Our findings revealed that curcumin induced an Endoplasmic Reticulum stress-mediated apoptosis in PC3. The mechanisms by which curcumin promoted cell death in these cells were associated with cell cycle arrest, increased reactive oxygen species, autophagy and the Unfolded Protein Response. Furthermore, the upregulation of ER stress was measured using key indicators of ER stress: Glucose-Regulated Protein 78, Inositol-Requiring Enzyme 1 alpha, Protein Disulfide isomerase and Calreticulin. Chronic ER stress induction was concomitant with the upregulation of pro-apoptotic markers (caspases 3,9,12) and Poly (ADP-ribose) polymerase. The downregulated proteins include anti-apoptotic and anti-tumor markers, supporting their curcumin-induced pro-apoptotic role in prostate cancer cells. Taken together, these data suggest that curcumin may serve as a promising anticancer agent by inducing a chronic ER stress mediated cell death and activation of cell cycle arrest, UPR, autophagy and oxidative stress responses. PMID:28628644

  10. Increased endothelial apoptotic cell density in human diabetic erectile tissue--comparison with clinical data.

    Science.gov (United States)

    Costa, Carla; Soares, Raquel; Castela, Angela; Adães, Sara; Hastert, Véronique; Vendeira, Pedro; Virag, Ronald

    2009-03-01

    Erectile dysfunction (ED) is a common complication of diabetes. Endothelial cell (EC) dysfunction is one of the main mechanisms of diabetic ED. However, loss of EC integrity has never been assessed in human diabetic corpus cavernosum. To identify and quantify apoptotic cells in human diabetic and normal erectile tissue and to compare these results with each patient's clinical data and erection status. Eighteen cavernosal samples were collected, 13 from diabetics with ED and 5 from nondiabetic individuals. Cavernosal structure and cell proliferation status were evaluated by immunohistochemistry. Tissue integrity was assessed by terminal transferase dUTP nick end labeling assay, an index of apoptotic cell density (ACD) established and compared with each patient age, type of diabetes, arterial risk factors number, arterial/veno-occlusive disease, response to intracavernous vasoactive injections (ICI), and penile nitric oxide release test (PNORT). Establish an index of ACD and correlate those results with patient clinical data. Nondiabetic samples presented few scattered cells in apoptosis and an ACD of 7.15 +/- 0.44 (mean apoptotic cells/tissue area mm(2) +/- standard error). The diabetic group showed an increased ACD of 23.82 +/- 1.53, and apoptotic cells were located specifically at vascular sites. Rehabilitation of these endothelial lesions seemed impaired, as no evidence of EC proliferation was observed. Furthermore, higher ACD in diabetic individuals correlated to poor response to PNORT and to ICI. We provided evidence for the first time that loss of cavernosal EC integrity is a crucial event involved in diabetic ED. Furthermore, we were able to establish a threshold between ACD values and cavernosal tissue functionality, as assessed by PNORT and vasoactive ICI.

  11. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Mariela Rivera

    Full Text Available Curcumin, an extract from the turmeric rhizome (Curcuma longa, is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated. In the present study, we examined the signaling pathways triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was evaluated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks. Results were confirmed at the gene expression level by qRT-PCR and at the protein expression level by western blot and flow cytometry. Our findings revealed that curcumin induced an Endoplasmic Reticulum stress-mediated apoptosis in PC3. The mechanisms by which curcumin promoted cell death in these cells were associated with cell cycle arrest, increased reactive oxygen species, autophagy and the Unfolded Protein Response. Furthermore, the upregulation of ER stress was measured using key indicators of ER stress: Glucose-Regulated Protein 78, Inositol-Requiring Enzyme 1 alpha, Protein Disulfide isomerase and Calreticulin. Chronic ER stress induction was concomitant with the upregulation of pro-apoptotic markers (caspases 3,9,12 and Poly (ADP-ribose polymerase. The downregulated proteins include anti-apoptotic and anti-tumor markers, supporting their curcumin-induced pro-apoptotic role in prostate cancer cells. Taken together, these data suggest that curcumin may serve as a promising anticancer agent by inducing a chronic ER stress mediated cell death and activation of cell cycle arrest, UPR, autophagy and oxidative stress responses.

  12. Apoptotic factors in physiological and pathological processes of teeth and periodontal tissues – literature review

    Directory of Open Access Journals (Sweden)

    Orzedala-Koszel Urszula

    2014-12-01

    Full Text Available Apoptosis is a physiological process that occurs in the human body throughout the entire life span. This process can be seen in the tissues of the stomatognathic system. A disorder in such programmed cell death processes leads to the development of pathological lesions. Among these are inflammation, osteolytic lesions and neoplastic hyperplasia. We put forward that future studies should concentrate on how to use the knowledge of apoptotic processes and their inhibitors in therapeutic processes involving the stomatognathic system.

  13. Reemergence of apoptotic cells between fractionated doses in irradiated murine tumors

    International Nuclear Information System (INIS)

    Meyn, R.E.; Hunter, N.R.; Milas, L.

    1994-01-01

    The purpose of this investigation was to follow up our previous studies on the development of apoptosis in irradiated murine tumors by testing whether an apoptotic subpopulation of cells reemerges between fractionated exposures. Mice bearing a murine ovarian carcinoma, OCa-I, were treated in vivo with two fractionation protocols: two doses of 12.5 Gy separated by various times out to 5 days and multiple daily fractions of 2.5 Gy. Animals were killed 4 h after the last dose in each protocol, and the percent apoptosis was scored from stained histological sections made from the irradiated tumors according to the specific features characteristic of this mode of cell death. The 12.5+12.5 Gy protocol yielded a net total percent apoptosis of about 45% when the two doses were separated by 5 days (total dose = 25 Gy), whereas the 2.5 Gy per day protocol yielded about 50% net apoptotic cells when given for 5 days (total dose = 12.5 Gy). These values are to be compared to the value of 36% apoptotic cells that is yielded by large single doses (> 25 Gy). Thus, these results indicate that an apoptotic subpopulation of cells reemerged between the fractions in both protocols, but the kinetics appeared to be delayed in the 12.5+12.5 Gy vs. the multiple 2.5 Gy protocol. This reemergence of cells with the propensity for radiation-induced apoptosis between fractionated exposures is consistent with a role for this mode of cell death in the response of tumors to radiotherapy and may represent the priming of a new subpopulation of tumor cells for apoptosis as part of normal tumor homeostasis to counterbalance cell division. 25 refs., 3 figs., 1 tab

  14. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  15. Pro- and anti-apoptotic CD95 signaling in T cells

    Directory of Open Access Journals (Sweden)

    Janssen Ottmar

    2011-04-01

    Full Text Available Abstract The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6 is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose-dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.

  16. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    Science.gov (United States)

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Characterization of the enhanced apoptotic response to azidothymidine by pharmacological inhibition of NF-kB.

    Science.gov (United States)

    Matteucci, Claudia; Minutolo, Antonella; Marino-Merlo, Francesca; Grelli, Sandro; Frezza, Caterina; Mastino, Antonio; Macchi, Beatrice

    2015-04-15

    The present study addresses the issue of enhanced apoptotic response to AZT following co-treatment with an NF-kB inhibitor. To investigate this issue, different cell lines were assayed for susceptibility to AZT-mediated apoptosis without or with the addition of the NF-kB inhibitor Bay-11-7085. For further investigation, U937 cells were selected as good-responder cells to the combination treatment with 32 or 128 μM AZT, and 1 μM Bay-11-7085. Inhibition of NF-kB activation by Bay-11-7085 in cells treated with AZT was assayed through Western blot analysis of p65 expression and by EMSA. Involvement of the mitochondrial pathway of apoptosis in mechanisms underlying the improved effect of AZT following Bay-11-7085 co-treatment, was evaluated by assaying the cytochrome c release and the mitochondrial membrane potential (MMP) status using the JC-1 dye. Moreover, the transcriptional activity of both anti- and pro-apoptotic genes in U937 cells after combination treatment was quantitatively evaluated through real-time PCR. We found that the combined treatment induced high levels of cytochrome c release and of MMP collapse in association with evident changes in the expression of both anti- and pro-apoptotic genes of the Bcl-2 family. Overexpression of Bcl-2 significantly suppressed the sensitization of U937 cells to an enhanced apoptotic response to AZT following co-treatment with the NF-kB inhibitor. The new findings suggest that a combination regimen based on AZT plus an NF-kB inhibitor could represent a new chemotherapeutic tool for retrovirus-related pathologies.

  18. Early radiation effects in highly apoptotic murine lymphoma xenografts monitored by 31P magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Sakurai, Hideyuki; Mitsuhashi, Norio; Murata, Osamu; Kitamoto, Yoshizumi; Saito, Yoshihiro; Hasegawa, Masatoshi; Akimoto, Tetsuo; Takahashi, Takeo; Nasu, Sachiko; Niibe, Hideo

    1998-01-01

    Purpose: Phosphorus-31 magnetic resonance spectra ( 31 P-MRS) were obtained from highly apoptotic murine lymphoma xenografts before and up to 24 hr following graded doses of radiation ranging from 2 to 30 Gy. Radiation-induced apoptosis was also estimated up to 24 hr by scoring apoptotic cells in tumor tissue. Methods and Materials: Highly apoptotic murine lymphoma cells, EL4, were subcutaneously transplanted into C57/BL mice. At 7 days after transplantation, radiation was given to the tumor with a single dose at 3, 10, and 30 Gy. The β-ATP/Pi, PME/Pi, and β-ATP/PME values were calculated from the peak area of each spectrum. Radiation-induced apoptosis was scored with counting apoptotic cells on hematoxylin and eosin stained specimens (%apoptosis). Results: The values of % apoptosis 4, 8, and 24 hr after radiation were 21.8, 19.6, and 4.6% at 3 Gy, 35.1, 25.6, and 14.8% at 10 Gy, 38.4, 38.0, and 30.6% at 30 Gy, respectively (cf. 4.4% in control). There was no correlation between early change in β-ATP/Pi and % apoptosis at 4 hr after radiation when most of the apoptosis occurred. An early decrease in PME/Pi was observed at 4 hr after radiation dose at 30 Gy. For each dose, the values of β-ATP/Pi 24 hr after radiation were inversely related to radiation dose. Conclusion: The increase in β-ATP/Pi observed by 31 P-MRS was linked to the degree of histological recovery from radiation-induced apoptosis

  19. Apoptotic role of TGF-β mediated by Smad4 mitochondria translocation and cytochrome c oxidase subunit II interaction.

    Science.gov (United States)

    Pang, Lijuan; Qiu, Tao; Cao, Xu; Wan, Mei

    2011-07-01

    Smad4, originally isolated from the human chromosome 18q21, is a key factor in transducing the signals of the TGF-β superfamily of growth hormones and plays a pivotal role in mediating antimitogenic and proapoptotic effects of TGF-β, but the mechanisms by which Smad4 induces apoptosis are elusive. Here we report that Smad4 directly translocates to the mitochondria of apoptotic cells. Smad4 gene silencing by siRNA inhibits TGF-β-induced apoptosis in Hep3B cells and UV-induced apoptosis in PANC-1 cells. Cell fractionation assays demonstrated that a fraction of Smad4 translocates to mitochondria after long time TGF-β treatment or UV exposure, during which the cells were under apoptosis. Smad4 mitochondria translocation during apoptosis was also confirmed by fluorescence observation of Smad4 colocalization with MitoTracker Red. We searched for mitochondria proteins that have physical interactions with Smad4 using yeast two-hybrid screening approach. DNA sequence analysis identified 34 positive clones, five of which encoded subunits in mitochondria complex IV, i.e., one clone encoded cytochrome c oxidase COXII, three clones encoded COXIII and one clone encoded COXVb. Strong interaction between Smad4 with COXII, an important apoptosis regulator, was verified in yeast by β-gal activity assays and in mammalian cells by immunoprecipitation assays. Further, mitochondrial portion of cells was isolated and the interaction between COXII and Smad4 in mitochondria upon TGF-β treatment or UV exposure was confirmed. Importantly, targeting Smad4 to mitochondria using import leader fusions enhanced TGF-β-induced apoptosis. Collectively, the results suggest that Smad4 promote apoptosis of the cells through its mitochondrial translocation and association with mitochondria protein COXII. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Cytoplasmic and nuclear anti-apoptotic roles of αB-crystallin in retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Woo Jin Jeong

    Full Text Available In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO can alter the function of the basement membrane of retinal pigment epithelial (RPE cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.

  1. Sesamol induced apoptotic effect in lung adenocarcinoma cells through both intrinsic and extrinsic pathways.

    Science.gov (United States)

    Siriwarin, Boondaree; Weerapreeyakul, Natthida

    2016-07-25

    Sesamol is a phenolic lignan found in sesame seeds (Sesamum indicum L.) and sesame oil. The anticancer effects and molecular mechanisms underlying its apoptosis-inducing effect were investigated in human lung adenocarcinoma (SK-LU-1) cells. Sesamol inhibited SK-LU-1 cell growth with an IC50 value of 2.7 mM and exhibited less toxicity toward normal Vero cells after 48 h of treatment (Selective index = 3). Apoptotic bodies-the hallmark of apoptosis-were observed in sesamol-treated SK-LU-1 cells, stained with DAPI. Sesamol increased the activity of caspase 8, 9, and 3/7, indicating that apoptotic cell death occurred through both extrinsic and intrinsic pathways. Sesamol caused the loss of mitochondrial transmembrane potential signifying intrinsic apoptosis induction. Decreasing Bid expression revealed crosstalk between the intrinsic and extrinsic apoptotic pathways; demonstrating clearly that sesamol induces apoptosis through both pathways in human lung adenocarcinoma (SK-LU-1) cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Melatonin modulates inflammatory response and suppresses burn-induced apoptotic injury

    Directory of Open Access Journals (Sweden)

    Ganka Bekyarova

    2017-04-01

    Full Text Available Introduction: Melatonin, the principal secretory product of the pineal gland, has antioxidant functions as a potent antioxidant and free radical scavenger. Objectives of the present study were to investigate the effect of melatonin against inflammatory response, burn-induced oxidative damage and apoptotic changes of rat liver. Methods: Melatonin (10 mg /kg, i.p. was applied immediately after 30% of total body surface area (TBSA burns on male Wistar rats. The level of malondialdehyde (MDA as a marker of an oxidative stress was quantified by thiobarbituric method. Hepatic TNFα and IL-10 as inflammatory markers were assayed by ELISA. Using light immunоchistochemistry the expression Ki67 proliferative marker was investigated. Results: Hepatic MDA and TNF-α levels increased significantly following burns without any change in IL-10 level. Intracellular vacuolization, hepatic cell degeneration and apoptosis occurred in rats after burns. The number of apoptotic cells was increased whereas no significant increase in Ki67 proliferative marker. Melatonin decreased the MDA and TNF-α content and increased the IL-10 level. It also limited the degenerative changes and formation of apoptotic cells in rat liver but did not increase expression of the marker of proliferation. In conclusion, our data show that melatonin relieves burn-induced hepatic damage associated with modulation of the proinflammatory/anti-inflammatory balance, mitigation of lipid peroxidation and hepatic apoptosis.

  3. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Xu HL

    2015-05-01

    Full Text Available Huanli Xu,1 Xin Zhao,2 Xiaohui Liu,1 Pingxiang Xu,1 Keming Zhang,2 Xiukun Lin11Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, 2Department of Hepatobiliary Surgery, 302 Hospital of Chinese People’s Liberation Army, Beijing, People’s Republic of ChinaAbstract: Defects in apoptosis are common phenomena in many types of cancer and are also a critical step in tumorigenesis. Targeting the apoptotic pathway has been considered an intriguing strategy for cancer therapy. Traditional Chinese medicine (TCM has been used in the People’s Republic of China for thousands of years, and many of the medicines have been confirmed to be effective in the treatment of a number of tumors. With increasing cancer rates worldwide, the antitumor effects of TCMs have attracted more and more attention globally. Many of the TCMs have been shown to have antitumor activity through multiple targets, and apoptosis pathway-related targets have been extensively studied and defined to be promising. This review focuses on several antitumor TCMs, especially those with clinical efficacy, based on their effects on the apoptotic signaling pathway. The problems with and prospects of development of TCMs as anticancer agents are also presented.Keywords: traditional Chinese medicine, antitumor effects, apoptotic pathway

  4. Vitamin-C protect ethanol induced apoptotic neuro degeneration in postnatal rat brain

    International Nuclear Information System (INIS)

    Naseer, M.I.; Najeebullah; Ikramullah; Zubair, H.; Hassan, M.; Yang, B.C.

    2010-01-01

    Objective: To evaluate ethanol effects to induced activation of caspsae-3, and to observe the protective effects of Vitamin C (vit-C) on ethanol-induced apoptotic neuro degeneration in rat cortical area of brain. Methodology: Administration of a single dose of ethanol in 7-d postnatal (P7) rats triggers activation of caspase-3 and widespread apoptotic neuronal death. Western blot analysis, cells counting and Nissl staining were used to elucidate possible protective effect of vit-C against ethanol-induced apoptotic neuro degeneration in brain. Results: The results showed that ethanol significantly increased caspase-3 expression and neuronal apoptosis. Furthermore, the co-treatment of vit-C along with ethanol showed significantly decreased expression of caspase-3 as compare to control group. Conclusion: Our findings indicate that vit-C can prevent some of the deleterious effect of ethanol on developing rat brain when given after ethanol exposure and can be used as an effective protective agent for Fetal Alcohol Syndrome (FAS). (author)

  5. Reactive oxygen species are key mediators of the nitric oxide apoptotic pathway in anterior pituitary cells.

    Science.gov (United States)

    Machiavelli, Leticia I; Poliandri, Ariel H; Quinteros, Fernanda A; Cabilla, Jimena P; Duvilanski, Beatriz H

    2007-03-01

    We previously showed that long-term exposure of anterior pituitary cells to nitric oxide (NO) induces apoptosis. The intracellular signals underlying this effect remained unclear. In this study, we searched for possible mechanisms involved in the early stages of the NO apoptotic cascade. Caspase 3 was activated by NO with no apparent disruption of mitochondrial membrane potential. NO caused a rapid increase of reactive oxygen species (ROS), and this increase seems to be dependent of mitochondrial electron transport chain. The antioxidant N-acetyl-cysteine avoided ROS increase, prevented the NO-induced caspase 3 activation, and reduced the NO apoptotic effect. Catalase was inactivated by NO, while glutathione peroxidase (GPx) activity and reduced glutathione (GSH) were not modified at first, but increased at later times of NO exposure. The increase of GSH level is important for the scavenging of the NO-induced ROS overproduction. Our results indicate that ROS have an essential role as a trigger of the NO apoptotic cascade in anterior pituitary cells. The permanent inhibition of catalase may strengthen the oxidative damage induced by NO. GPx activity and GSH level augment in response to the oxidative damage, though this increase seems not to be enough to rescue the cells from the NO effect.

  6. Apoptotic effects of bovine apo-lactoferrin on HeLa tumor cells.

    Science.gov (United States)

    Luzi, Carla; Brisdelli, Fabrizia; Iorio, Roberto; Bozzi, Argante; Carnicelli, Veronica; Di Giulio, Antonio; Lizzi, Anna Rita

    2017-01-01

    Lactoferrin (Lf), a cationic iron-binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron-free bovine lactoferrin (apo-bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron-free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric-bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl-2, Sirt1, Mcl-1, and PARP-1 were modulated by 1.25 μM of apo-bLf. In the same cell line, apo-bLf induced apoptosis together with poly (ADP-ribose) polymerase cleavage, caspase activation, and a significant drop of NAD + . In addition, apo-bLf-treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo-bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Apoptotic-cell-derived membrane microparticles and IFN-α induce an inflammatory immune response.

    Science.gov (United States)

    Niessen, Anna; Heyder, Petra; Krienke, Stefan; Blank, Norbert; Tykocinski, Lars-Oliver; Lorenz, Hanns-Martin; Schiller, Martin

    2015-07-15

    A dysregulation in the clearance of apoptotic material is considered a major pathogenetic factor for the emergence of autoimmune diseases. Apoptotic-cell-derived membrane microparticles (AdMPs), which are released from the cell surface during apoptosis, have been implicated in the pathogenesis of autoimmunity. Also of importance are cytokines, such as interferon-α (IFN-α), which is known to be a major player in patients with systemic lupus erythematosus (SLE). This study investigates the combined effect of AdMPs and IFN-α on professional phagocytes. In the presence of IFN-α, phagocytosis of AdMPs by human monocytes was significantly increased in a dose-dependent manner. The combination of AdMPs and raised IFN-α concentrations resulted in an increase in the secretion of pro-inflammatory cytokines and an upregulation of surface molecule expression involved in antigen uptake. In addition, macrophage polarisation was shifted towards a more inflammatory type of cell. The synergism between IFN-α and AdMPs seemed to be mediated by an upregulation of phosphorylated STAT1. Our results indicate that IFN-α, together with AdMPs, amplify the initiation and maintenance of inflammation. This mechanism might especially play a crucial role in disorders with a defective clearance of apoptotic material. © 2015. Published by The Company of Biologists Ltd.

  8. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  9. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    International Nuclear Information System (INIS)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-01

    Research highlights: → THAP5 is a DNA-binding protein and a transcriptional repressor. → THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. → THAP5 induction correlates with the degree of apoptosis in melanoma cell population. → THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  10. Analysis of human blood plasma cell-free DNA fragment size distribution using EvaGreen chemistry based droplet digital PCR assays.

    Science.gov (United States)

    Fernando, M Rohan; Jiang, Chao; Krzyzanowski, Gary D; Ryan, Wayne L

    2018-04-12

    Plasma cell-free DNA (cfDNA) fragment size distribution provides important information required for diagnostic assay development. We have developed and optimized droplet digital PCR (ddPCR) assays that quantify short and long DNA fragments. These assays were used to analyze plasma cfDNA fragment size distribution in human blood. Assays were designed to amplify 76,135, 490 and 905 base pair fragments of human β-actin gene. These assays were used for fragment size analysis of plasma cell-free, exosome and apoptotic body DNA obtained from normal and pregnant donors. The relative percentages for 76, 135, 490 and 905 bp fragments from non-pregnant plasma and exosome DNA were 100%, 39%, 18%, 5.6% and 100%, 40%, 18%,3.3%, respectively. The relative percentages for pregnant plasma and exosome DNA were 100%, 34%, 14%, 23%, and 100%, 30%, 12%, 18%, respectively. The relative percentages for non-pregnant plasma pellet (obtained after 2nd centrifugation step) were 100%, 100%, 87% and 83%, respectively. Non-pregnant Plasma cell-free and exosome DNA share a unique fragment distribution pattern which is different from pregnant donor plasma and exosome DNA fragment distribution indicating the effect of physiological status on cfDNA fragment size distribution. Fragment distribution pattern for plasma pellet that includes apoptotic bodies and nuclear DNA was greatly different from plasma cell-free and exosome DNA. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  12. Apoptotic Regulation

    National Research Council Canada - National Science Library

    Thress, Kenneth

    2000-01-01

    ... for implementation of the cell death program. In an extensive analysis of chromosomal deletion mutants in the fly, Drosophila Melanogaster, Steller and colleagues identified a chromosomal region containing a number of genes critical...

  13. Isoegomaketone induces apoptosis in SK-MEL-2 human melanoma cells through mitochondrial apoptotic pathway via activating the PI3K/Akt pathway.

    Science.gov (United States)

    Kwon, Soon-Jae; Lee, Ju-Hye; Moon, Kwang-Deog; Jeong, Il-Yun; Yee, Sung-Tae; Lee, Mi-Kyung; Seo, Kwon-Il

    2014-11-01

    Isoegomaketone (IK) is a major biologically active component of Perilla frutescens. In this study, we investigated the contribution of reactive oxygen species (ROS) to IK-induced apoptosis in human melanoma SK-MEL-2 cells. We found that IK inhibited the proliferation of SK-MEL-2 human melanoma cells in a dose-dependent manner. IK also induced sub-G1 DNA accumulation, formation of apoptotic bodies, nuclear condensation, and a DNA ladder in SK-MEL-2 cells. IK also induced activation of caspase-3 and -9, whereas caspase‑8 was unaffected. Further, N-acetyl-L-cysteine (NAC, ROS scavenger) treatment to SK-MEL-2 cells significantly reduced IK-induced cell death. Pretreatment of NAC to SK-MEL-2 cells followed by 100 µM IK reduced the protein levels of Bax and cytochrome c as well as PARP cleavage, whereas the protein level of Bcl-2 increased. Moreover, IK inhibited the phosphorylation of AKT/mTOR protein and cell proliferation induced by LY294002, a PI3K inhibitor. In conclusion, IK-induced ROS generation regulates cell growth inhibition and it induces apoptosis through caspase‑dependent and -independent pathways via modulation of PI3K/AKT signaling in SK-MEL-2 cells.

  14. Apoptotic induction activity of Dactyloctenium aegyptium (L. P.B. and Eleusine indica (L. Gaerth. extracts on human lung and cervical cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pintusorn Hansakul

    2009-08-01

    Full Text Available Dactyloctenium aegyptium (L. P.B. (Yaa paak khwaai and Eleusine indica (L. Gaerth. (Yaa teen-ka have long been used in traditional Thai medicine because of their diuretic, anti-inflamatory, and antipyretic effects. The present study examined the antiproliferative and cytotoxic effects of the hexane and butanolic extracts of these two grass species. All the grass extracts exhibited selective growth inhibition effect on human lung cancer (A549 and cervical cancer (HeLa cells relative to normal human lung MRC-5 fibroblasts with IC50 values in a range of 202 to 845 mg/ml. Apparently, HeLa cellswere more sensitive to the extracts than A549 cells. Moreover, all the extracts induced lethality in both cancer cell lines atconcentrations close to 1,000 mg/ml, indicating their selective cytotoxicity effects. ELISA assay showed that only the hexaneextract of D. aegyptium (L. P.B. and E. indica (L. Gaerth. significantly increased the apoptotic level in extract-treatedA549 cells. However, DNA ladder assay detected classic DNA ladder patterns, a characteristic feature of apoptosis, in both cancer cell lines treated with all the extracts in a dose- and time-dependent manner. Taken together, these results indicatethat the cytotoxic activity of the grass extracts against lung and cervical cancer cells is mediated through the induction ofapoptosis.

  15. Statistical modeling for degradation data

    CERN Document Server

    Lio, Yuhlong; Ng, Hon; Tsai, Tzong-Ru

    2017-01-01

    This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.

  16. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.

    Science.gov (United States)

    Singh, Kamaleshwar P; Treas, Justin; Tyagi, Tulika; Gao, Weimin

    2012-03-01

    Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA