WorldWideScience

Sample records for apoptotic cell death

  1. The regulation of apoptotic cell death

    Directory of Open Access Journals (Sweden)

    Amarante-Mendes G.P.

    1999-01-01

    Full Text Available Apoptosis is a fundamental biological phenomenon in which the death of a cell is genetically and biochemically regulated. Different molecules are involved in the regulation of the apoptotic process. Death receptors, coupled to distinct members of the caspases as well as other adapter molecules, are involved in the initiation of the stress signals (The Indictment. Members of the Bcl-2 family control at the mitochondrial level the decision between life and death (The Judgement. The effector caspases are responsible for all morphological and biochemical changes related to apoptosis including the "eat-me" signals perceived by phagocytes and neighboring cells (The Execution. Finally, apoptosis would have little biological significance without the recognition and removal of the dying cells (The Burial.

  2. Induction of apoptotic cell death by putrescine

    DEFF Research Database (Denmark)

    Takao, Koichi; Rickhag, Karl Mattias; Hegardt, Cecilia;

    2006-01-01

    overexpression of a metabolically stable ODC in CHO cells induced a massive cell death unless the cells were grown in the presence of the ODC inhibitor alpha-difluoromethylornithine (DFMO). Cells overexpressing wild-type (unstable) ODC, on the other hand, were not dependent on the presence of DFMO for their...... growth. The induction of cell death was correlated with a dramatic increase in cellular putrescine levels. Analysis using flow cytometry revealed perturbed cell cycle kinetics, with a large accumulation of cells with sub-G1 amounts of DNA, which is a typical sign of apoptosis. Another strong indication...... polyamine homeostasis may negatively affect cell proliferation and eventually lead to cell death by apoptosis if putrescine levels become too high....

  3. Distinct mathematical behavior of apoptotic versus non-apoptotic tumor cell death

    International Nuclear Information System (INIS)

    Purpose: The presence or absence of a p53-dependent apoptosis response has previously been shown to greatly influence radiosensitivity in tumor cells. Here, we examine clonogenic survival curves for two genetically related oncogene transformed cell lines differing in the presence or absence of p53 and apoptosis. Solid tumor radiosensitivity patterns have been previously described for these lines. Materials and Methods: Oncogene-transformed fibroblasts derived from E1A + Ras transfection of p53-wild-type or p53-null mouse embryonic fibroblasts were plated as single cells and irradiated at increasing radiation doses in single fractions from 1.5 to 11 Gy. Clonogenic cell survival assays were obtained. Survival data are fit to a linear-quadratic relationship: S = e-αD-βD2. Apoptosis was assessed and quantitated morphologically by staining with the fluorescent nuclear dye DAPI, by TUNEL assay for DNA fragmentation, and by measurement of apoptotic cysteine protease cleavage activity in cytosolic extracts. Results: Whereas radiation triggers massive apoptosis in the presence of p53, it produces no measurable DNA fragmentation, apoptotic cysteine protease cleavage activity, or morphological changes of apoptosis in the cells lacking p53. These contrasting mechanisms of death display dramatically different quantitative behavior: log-survival of apoptotic cells is linearly proportional to dose (S = e-αD), whereas survival of non-apoptotic (p53 null) is linear-quadratic with a significant quadratic contribution. The surviving fraction at 2 Gy (SF-2) for p53-null cells was 70% verses 12% for p53-intact cells. Conclusions: In this system, apoptosis appears to exhibit a dominance of single-event which produces a very high α/β ratio, and no significant shoulder; whereas non-apoptotic death in this system exhibits a comparatively small linear component, a low α/β ratio, and a larger shoulder

  4. In vitro apoptotic cell death during erythroid differentiation.

    Science.gov (United States)

    Zamai, L; Burattini, S; Luchetti, F; Canonico, B; Ferri, P; Melloni, E; Gonelli, A; Guidotti, L; Papa, S; Falcieri, E

    2004-03-01

    Erythropoiesis occurs in bone marrow and it has been shown that during in vivo erythroid differentiation some immature erythroblasts undergo apoptosis. In this regard, it is known that immature erythroblasts are FasL- and TRAIL-sensitive and can be killed by cells expressing these ligand molecules. In the present study, we have investigated the cell death phenomenon that occurs during a common unilineage model of erythroid development. Purified CD34+ human haemopoietic progenitors were cultured in vitro in the presence of SCF, IL-3 and erythropoietin. Their differentiation stages and apoptosis were followed by multiple technical approaches. Flow cytometric evaluation of surface and intracellular molecules revealed that glycophorin A appeared at day 3-4 of incubation and about 75% of viable cells co-expressed high density glycophorin A (Gly(bright)) and adult haemoglobin at day 14 of culture, indicating that this system reasonably recapitulates in vivo normal erythropoiesis. Interestingly, when mature (Gly(bright)) erythroid cells reached their higher percentages (day 14) almost half of cultured cells were apoptotic. Morphological studies indicated that the majority of dead cells contained cytoplasmic granular material typical of basophilic stage, and DNA analysis by flow cytometry and TUNEL reaction revealed nuclear fragmentation. These observations indicate that in vitro unilineage erythroid differentiation, as in vivo, is associated with apoptotic cell death of cells with characteristics of basophilic erythroblasts. We suggest that the interactions between different death receptors on immature basophilic erythroblasts with their ligands on more mature erythroblasts may contribute to induce apoptosis in vitro. PMID:15004520

  5. Distinct mathematical behavior of apoptotic vs. non-apoptotic tumor cell death

    International Nuclear Information System (INIS)

    Purpose: A quantitative description of cancer cell death behavior is of potential importance in identifying prognostically meaningful treatment responses and mechanisms underlying those responses. Here we examine clonogenic survival curves for two genetically related tumor cell lines differing in the presence or absence of p53, for whom solid tumor radiosensitivity patterns have been previously described. Materials and Methods: Oncogene-transformed fibroblasts derived from E1A+Ras tranfections of p53 wildtype or p53 null mouse embryonic fibroblasts were plated in single cell suspension. Cells were irradiated at increasing radiation doses from 1.5 Gy to 11 Gy. Dishes were scored for colonies at day 11. Survival curves were generated by least-squares regression over dose of log (survival) onto the quadratic (αD + βD2), each point being weighted inversely to the variance among replicates. Apoptosis was assessed morphologically by staining with flourescent nuclear dye DAPI, by DNA fragmentation with the APOPTAG Apoptosis Detection Kit (Oncor), and by measurement of apoptotic cysteine protease cleavage activity in cytosolic extracts. Results: Whereas radiation triggers massive apoptosis in the presence of p53, in this system it produces no measurable DNA fragmentation, apoptotic cysteine protease cleavage activity, or morphologic changes of apoptosis in the cells lacking p53. These contrasting mechanisms of death display dramatically different quantitative behavior: log-survival of apoptotic cells is linearly proportional to dose (S=e-nD) whereas non-apoptotic survival is quadratically related to dose (S=e-nD2). Radioresistance at clinical doses (about 2 Gy) were largely mirrored by the initial slopes. For quadratic killing, survival was nearly flat at 77%, whereas it was only 12% for apoptosis owing to its steep linear slope. Conclusions: Apoptosis exhibits single hit kinetics and is seen to produce a high α/β ratio and no significant shoulder, whereas non-apoptotic

  6. Apoptotic cell death and its relationship to gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Ferda Bir; Nese Calli-Demirkan; A Cevik Tufan; Metin Akbulut; N Lale Satiroglu-Tufan

    2007-01-01

    AIM: To investigate the apoptotic process of cells within the intestinal metaplasia areas co-localizing with chronic gastritis and gastric carcinomas and to analyze the involvement of proteins regulating apoptosis in the process of intestinal metaplasia related gastric carcinogenesis.METHODS: Forty-two gastric carcinoma and seventeen chronic gastritis cases were included in this study. All cases were examined for the existence of intestinal metaplasia. Ten cases randomly selected from each group were processed for TUNEL assay. TUNEL positive cells within the intestinal metaplasia areas, colocalizing either to gastric carcinoma or chronic gastritis,were counted and converted to apoptotic indices.In addition, p53, bcl-2 and bax expression patterns within these tissues were analyzed on the basis of immunohistochemistry.RESULTS: Twenty-eight of the cases were intestinal and 14 of the cases were diffuse type adenocarcinomas.64% (27/42) of the gastric carcinoma cases had intestinal metaplasia. Intestinal metaplasia co-localized more with intestinal type carcinomas compared with diffuse type carcinomas [75% (21/28) vs 42% (6/14),respectively; P≤0.05]. The mean apoptotic index in tumor cells was 0.70±0.08. The mean apoptotic index in intestinal metaplasias co-localizing to tumors was significantly higher than that of intestinal metaplasias co-localizing to chronic gastritis (0.70±0.03 vs 0.09±0.01, respectively; P≤0.05). P53 positivity was not observed in areas of intestinal metaplasia adjacent to tumors or chronic gastritis. Intestinal metaplasia areas adjacent to tumors showed lower cytoplasmic bcl-2 positivity compared to intestinal metaplasia areas adjacent to chronic gastritis [55.5% (15/27) vs 70.5%(12/17), respectively]. On the other hand, intestinal metaplasia areas adjacent to tumors showed significantly higher cytoplasmic bax positivity compared to intestinal metaplasia areas adjacent to chronic gastritis [44.4%(12/27) vs 11.7% (2/17), respectively; P≤0

  7. The calcimimetic R-568 induces apoptotic cell death in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Cheng Guangming

    2009-07-01

    Full Text Available Abstract Background Increased serum level of parathyroid hormone (PTH was found in metastatic prostate cancers. Calcimimetic R-568 was reported to reduce PTH expression, to suppress cell proliferation and to induce apoptosis in parathyroid cells. In this study, we investigated the effect of R-568 on cellular survival of prostate cancer cells. Methods Prostate cancer cell lines LNCaP and PC-3 were used in this study. Cellular survival was determined with MTT, trypan blue exclusion and fluorescent Live/Death assays. Western blot assay was utilized to assess apoptotic events induced by R-568 treatment. JC-1 staining was used to evaluate mitochondrial membrane potential. Results In cultured prostate cancer LNCaP and PC-3 cells, R-568 treatment significantly reduced cellular survival in a dose- and time-dependent manner. R-568-induced cell death was an apoptotic event, as evidenced by caspase-3 processing and PARP cleavage, as well as JC-1 color change in mitochondria. Knocking down calcium sensing receptor (CaSR significantly reduced R-568-induced cytotoxicity. Enforced expression of Bcl-xL gene abolished R-568-induced cell death, while loss of Bcl-xL expression led to increased cell death in R-568-treated LNCaP cells,. Conclusion Taken together, our data demonstrated that calcimimetic R-568 triggers an intrinsic mitochondria-related apoptotic pathway, which is dependent on the CaSR and is modulated by Bcl-xL anti-apoptotic pathway.

  8. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells.

    Science.gov (United States)

    Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon

    2010-11-01

    Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture. PMID:20809085

  9. Apoptotic-like programed cell death in fungi: the benefits in filamentous species

    OpenAIRE

    Shlezinger, Neta; Goldfinger, Nir; Sharon, Amir

    2012-01-01

    Studies conducted in the early 1990s showed for the first time that Saccharomyces cerevisiae can undergo cell death with hallmarks of animal apoptosis. These findings came as a surprise, since suicide machinery was unexpected in unicellular organisms. Today, apoptosis in yeast is well-documented. Apoptotic death of yeast cells has been described under various conditions and S. cerevisiae homologs of human apoptotic genes have been identified and characterized. These studies also revealed fund...

  10. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  11. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  12. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    International Nuclear Information System (INIS)

    Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies

  13. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    Directory of Open Access Journals (Sweden)

    Maria Dolores Boyano

    2011-03-01

    Full Text Available Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies.

  14. Cloning and analysis of a defender against apoptotic cell death (DAD1) homologue from tomato

    NARCIS (Netherlands)

    Hoeberichts, F.A.; Woltering, E.J.

    2001-01-01

    A cDNA clone homologous to the human defender against apoptotic cell death (DAD1) gene, which is believed to be a conserved inhibitor of programmed cell death, was isolated from tomato (Lycopersicon esculentum cv. Prisca). The 351 basepairs open reading frame predicted a 116 amino acid protein seque

  15. Attenuation of cisplatin-induced acute renal failure is associated with less apoptotic cell death.

    Science.gov (United States)

    Zhou, H; Miyaji, T; Kato, A; Fujigaki, Y; Sano, K; Hishida, A

    1999-12-01

    To clarify the pathophysiologic role of apoptosis in acute renal failure (ARF), we examined whether the attenuation of cisplatin-induced ARF is associated with the change in the degree of apoptotic cell death. The administration of cisplatin (CDDP) (6 mg/kg body weight) in rats induced ARF at day 5, as manifested by a significant increase in serum creatinine (Scr) and tubular damage. CDDP-induced apoptotic cell death was confirmed by electron microscopic examination, agarose gel electrophoresis, and increased cells positive for TaT-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) in the outer medulla of the kidney. Treatment with dimethylthiourea (DMTU)--a scavenger of hydroxyl radicals--or glycine abrogated CDDP-induced increases in Scr, the tubular damage score, and the number of TUNEL-positive cells. Pretreatment with uranyl acetate (UA) induced a significant expression of Bcl-2 in the kidney and ameliorated CDDP-induced increases in Scr, the tubular damage score, and TUNEL-positive cells in the outer stripe of the outer medulla. Our findings indicate (1) that the attenuation of CDDP-induced ARF was associated with less apoptotic cell death and (2) that the induction of the anti-apoptotic protein Bcl-2 attenuated apoptosis and tubular damage. Our results suggest that apoptotic cell death may play an important role in the development of cisplatin-induced ARF. PMID:10595794

  16. Effect of Transient Maternal Hypotension on Apoptotic Cell Death in Foetal Rat Brain

    OpenAIRE

    Özyürek, Hamit; Bayrak, Sibel; Pehlivanoğlu, Bilge; Atilla, Pergin; Balkancı, Zeynep Dicle; Çakar, Nur; Anlar, Banu

    2014-01-01

    Background: Intrauterine perfusion insufficiency induced by transient maternal hypotension has been reported to be associated with foetal brain malformations. However, the effects of maternal hypotension on apoptotic processes in the foetal brain have not been investigated experimentally during the intrauterine period. Aims: The aim of this study was to investigate the effects of transient maternal hypotension on apoptotic cell death in the intrauterine foetal brain. Study...

  17. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation

    Science.gov (United States)

    Lee, Yoonjung; Byun, Hee Sun; Seok, Jeong Ho; Park, Kyeong Ah; Won, Minho; Seo, Wonhyoung; Lee, So-Ra; Kang, Kidong; Sohn, Kyung-Cheol; Lee, Ill Young; Kim, Hyeong-Geug; Son, Chang Gue; Shen, Han-Ming; Hur, Gang Min

    2016-01-01

    Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades. PMID:27117478

  18. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    Science.gov (United States)

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. PMID:25691005

  19. Anti-apoptotic peptides protect against radiation-induced cell death

    International Nuclear Information System (INIS)

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15 Gy radiation. In mice exposed to 5 Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues

  20. p53 dependent apoptotic cell death induces embryonic malformation in Carassius auratus under chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Paramita Banerjee Sawant

    Full Text Available Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD, leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD, ultimately resulting in significant (p<0.05 embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos.

  1. Rho family GTPase Chp/RhoV induces PC12 apoptotic cell death via JNK activation

    OpenAIRE

    Shepelev, Mikhail V; Chernoff, Jonathan; Korobko, Igor V

    2011-01-01

    Rho GTPases regulate numerous cellular processes including apoptosis. Chp/RhoV is an atypical Rho GTPase which functions are poorly understood. Here we investigated the role of Chp in regulation of cell viability using PC12 cells with inducible expression of Chp as a model. We found that expression of Chp results in apoptosis in PC12 cells. Chp-induced apoptosis was accompanied by activation of JNK signaling and both death receptor-mediated and mitochondrial apoptotic pathways as justified by...

  2. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  3. Targeting Protective Autophagy Exacerbates UV-Triggered Apoptotic Cell Death

    Directory of Open Access Journals (Sweden)

    Shih-Hwa Chiou

    2012-01-01

    Full Text Available Autophagy is activated by various stresses, including DNA damage, and previous studies of DNA damage-induced autophagy have focused on the response to chemotherapeutic drugs, ionizing radiation, and reactive oxygen species. In this study, we investigated the biological significance of autophagic response to ultraviolet (UV irradiation in A549 and H1299 cells. Our results indicated that UV induces on-rate autophagic flux in these cells. Autophagy inhibition resulting from the knockdown of beclin-1 and Atg5 reduced cell viability and enhanced apoptosis. Moreover, we found that ATR phosphorylation was accompanied by microtubule-associated protein 1 light chain 3B II (LC3B-II expression during the early phases following UV irradiation, which is a well-established inducer of ATR. Knocking down ATR further attenuated the reduction in LC3B-II at early stages in response to UV treatment. Despite the potential role of ATR in autophagic response, reduced ATR expression does not affect autophagy induction during late phases (24 and 48 h after UV treatment. The result is consistent with the reduced ATR phosphorylation at the same time points and suggests that autophagic response at this stage is activated via a distinct pathway. In conclusion, this study demonstrated that autophagy acts as a cytoprotective mechanism against UV-induced apoptosis and that autophagy induction accompanied with apoptosis at late stages is independent of ATR activation.

  4. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    Energy Technology Data Exchange (ETDEWEB)

    Takatani-Nakase, Tomoka, E-mail: nakase@mukogawa-u.ac.jp; Takahashi, Koichi, E-mail: koichi@mukogawa-u.ac.jp

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  5. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA2 activity

    International Nuclear Information System (INIS)

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA2, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA2 activity, leading to avoidance of non-apoptotic cell death

  6. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  7. TRPV1 stimulation triggers apoptotic cell death of rat cortical neurons

    International Nuclear Information System (INIS)

    Transient receptor potential vanilloid 1 (TRPV1) functions as a polymodal nociceptor and is activated by several vanilloids, including capsaicin, protons and heat. Although TRPV1 channels are widely distributed in the brain, their roles remain unclear. Here, we investigated the roles of TRPV1 in cytotoxic processes using TRPV1-expressing cultured rat cortical neurons. Capsaicin induced severe neuronal death with apoptotic features, which was completely inhibited by the TRPV1 antagonist capsazepine and was dependent on extracellular Ca2+ influx. Interestingly, nifedipine, a specific L-type Ca2+ channel blocker, attenuated capsaicin cytotoxicity, even when applied 2-4 h after the capsaicin. ERK inhibitor PD98059 and several antioxidants, but not the JNK and p38 inhibitors, attenuated capsaicin cytotoxicity. Together, these data indicate that TRPV1 activation triggers apoptotic cell death of rat cortical cultures via L-type Ca2+ channel opening, Ca2+ influx, ERK phosphorylation, and reactive oxygen species production.

  8. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    Science.gov (United States)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  9. Anti-apoptotic peptides protect against radiation-induced cell death.

    Science.gov (United States)

    McConnell, Kevin W; Muenzer, Jared T; Chang, Kathy C; Davis, Chris G; McDunn, Jonathan E; Coopersmith, Craig M; Hilliard, Carolyn A; Hotchkiss, Richard S; Grigsby, Perry W; Hunt, Clayton R

    2007-04-01

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15Gy radiation. In mice exposed to 5Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues. PMID:17307150

  10. Proposed Pharmacological Countermeasures Against Apoptotic Cell Death in Experimental Models Mimicking Space Environment Damage

    Science.gov (United States)

    Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio

    2008-06-01

    Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.

  11. Development of RI-based real-time display technology of apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Hyun; Jagn, Beom Su; Hayu, Tyas Utami

    2012-01-15

    Apoptosis, or the programmed cell death, is the generally normal death of a cell in living organisms. Inappropriate apoptosis (either too little or too much) is a factor in many human disease including neurodegenerative diseases, autoimmune disorders and many types of cancer. Therefore, it is one of the most challenging and widely studied topics currently. Development of RI-based real-time display technology of apoptosis can be provided invaluable analysis data for diagnosis and treatment of various diseases. In this study, bifunctional chelator (BFC) for Tc-99m tricarbonyl was synthesized for ML-10 derivative radiolabeling. The formation of complexation of apoptotic cells was developed by combining the ML-10 moiety with the BFC for {sup 99m}Tc-tricarbonyl precursor. The results of this project will be utilized for the development of RI-Biomics Center-based Total Analysis System (TAS) through the optimization of equipment in the RI-Biomics Center.

  12. Cathepsin B launches an apoptotic exit effort upon cell death-associated disruption of lysosomes.

    Science.gov (United States)

    de Castro, M A G; Bunt, G; Wouters, F S

    2016-01-01

    The release of cathepsin proteases from disrupted lysosomes results in lethal cellular autodigestion. Lysosomal disruption-related cell death is highly variable, showing both apoptotic and necrotic outcomes. As the substrate spectrum of lysosomal proteases encompasses the apoptosis-regulating proteins of the Bcl-2 family, their degradation could influence the cell death outcome upon lysosomal disruption. We used Förster resonance energy transfer (FRET)-based biosensors to image the real-time degradation of the Bcl-2-family members, Bcl-xl, Bax and Bid, in living cells undergoing lysosomal lysis and identified an early chain of proteolytic events, initiated by the release of cathepsin B, which directs cells toward apoptosis. In this apoptotic exit strategy, cathepsin B's proteolytic activity results in apoptosis-inducing Bid and removes apoptosis-preventing Bcl-xl. Cathepsin B furthermore appears to degrade a cystein protease that would otherwise have eliminated apoptosis-supporting Bax, indirectly keeping cellular levels of the Bax protein up. The concerted effort of these three early events shifts the balance of cell fate away from necrosis and toward apoptosis. PMID:27551506

  13. Exploiting death: apoptotic immunity in microbial pathogenesis.

    Science.gov (United States)

    Ucker, D S

    2016-06-01

    Innate immunity typically is responsible for initial host responses against infections. Independently, nucleated cells that die normally as part of the physiological process of homeostasis in mammals (including humans) suppress immunity. Specifically, the physiological process of cell death (apoptosis) generates cells that are recognized specifically by viable cells of all types and elicit a profound transient suppression of host immunity (termed 'innate apoptotic immunity' (IAI)). IAI appears to be important normally for the maintenance of self-tolerance and for the resolution of inflammation. In addition, pathogens are able to take advantage of IAI through a variety of distinct mechanisms, to enable their proliferation within the host and enhance pathogenicity. For example, the protist pathogen Leishmania amazonensis, at its infective stage, mimics apoptotic cells by expressing apoptotic-like protein determinants on the cell surface, triggering immunosuppression directly. In contrast, the pathogenic bacterium Listeria monocytogenes triggers cell death in host lymphocytes, relying on those apoptotic cells to suppress host immune control and facilitate bacterial expansion. Finally, although the inhibition of apoptotic cell death is a common attribute of many viruses which facilitates their extended replication, it is clear that adenoviruses also reprogram the non-apoptotic dead cells that arise subsequently to manifest apoptotic-like immunosuppressive properties. These three instances represent diverse strategies used by microbial pathogens to exploit IAI, focusing attention on the potency of this facet of host immune control. Further examination of these cases will be revealing both of varied mechanisms of pathogenesis and the processes involved in IAI control. PMID:26943319

  14. Chemical -induced apoptotic cell death in tomato cells : involvement of caspase-like proteases

    NARCIS (Netherlands)

    Jong, de A.J.; Hoeberichts, F.A.; Yakimova, E.T.; Maximova, E.; Woltering, E.J.

    2000-01-01

    A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characte

  15. Unc93b Induces Apoptotic Cell Death and Is Cleaved by Host and Enteroviral Proteases.

    Directory of Open Access Journals (Sweden)

    Katharine G Harris

    Full Text Available Unc93b is an endoplasmic reticulum (ER-resident transmembrane protein that serves to bind and traffic toll-like receptors (TLRs from the ER to their appropriate subcellular locations for ligand sensing. Because of its role in TLR trafficking, Unc93b is necessary for an effective innate immune response to coxsackievirus B3 (CVB, a positive-sense single stranded RNA virus belonging to the enterovirus family. Here, we show that Unc93b is cleaved by a CVB-encoded cysteine protease (3Cpro during viral replication. Further, we define a role for Unc93b in the induction of apoptotic cell death and show that expression of wild-type Unc93b, but not a mutant incapable of binding TLRs or exiting the ER (H412R, induces apoptosis. Furthermore, we show that cellular caspases activated during apoptosis directly cleave Unc93b. Interestingly, we show that the 3Cpro- and caspase-mediated cleavage of Unc93b both occur within ten amino acids in the distal N-terminus of Unc93b. Mechanistically, neither caspase-mediated nor 3Cpro-mediated cleavage of Unc93b altered its trafficking function, inhibited its role in facilitating TLR3 or TLR8 signaling, or altered its apoptosis-inducing effects. Taken together, our studies show that Unc93b is targeted by both viral- and host cell-specific proteases and identify a function of Unc93b in the induction of apoptotic cell death.

  16. Possible involvement of protein kinase C in apoptotic cell death of macrophages infected with Actinobacillus actinomycetemcomitans.

    Science.gov (United States)

    Nonaka, K; Ishisaki, A; Muro, M; Kato, S; Oido, M; Nakashima, K; Kowashi, Y; Nishihara, T

    1998-02-15

    We have previously reported the evidence for apoptosis in the mouse macrophage cell line J774.1 by the periodontopathic bacterium Actinobacillus actinomycetemcomitans. In this study, we examined the role of protein kinases in the induction of apoptosis in A. actinomycetemcomitans-infected J774.1 cells by the MTT assay, fluorescence microscopy and flow cytometric analysis. After J774.1 cells were precultured with protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), J774.1 cells infected with A. actinomycetemcomitans showed the increased percentage of apoptotic cells. On the contrary, protein kinase A (PKA) activators, such as forskolin and dibutyryl cAMP, do not mimic the effect of PMA. PKC inhibitors, such as staurosporine, calphostin C, chelerythrine chloride, and H7 were found to suppress apoptotic cell death in J774.1 cells infected with A. actinomycetemcomitans. However, HA1004, known as PKA inhibitor, had no effect on apoptosis in infected macrophages. The results presented here suggest that the signals through PKC may play crucial roles in the modulation of apoptosis in macrophages infected with A. actinomycetemcomitans. PMID:9503618

  17. Sam68 is cleaved by caspases under apoptotic cell death induced by ionizing radiation

    International Nuclear Information System (INIS)

    The RNA-binding protein Sam68, a mitotic substrate of tyrosine kinases, has been reported to participate in the cell cycle, apoptosis, and signaling. In particular, overexpression of Sam68 protein is known to suppress cell growth and cell cycle progression in NIH3T3 cells. Although Sam68 is involved in many cellular activities, the function of Sam68, especially in response to apoptotic stimulation, is not well understood. In this study, we found that Sam68 protein is cleaved in immune cells undergoing apoptosis induced by γ-radiation. Moreover, we found that Sam68 cleavage was induced by apoptotic stimuli containing γ-radiation in a caspase-dependent manner. In particular, we showed that activated casepase-3, 7, 8 and 9 can directly cleave Sam68 protein through in vitro protease cleavage assay. Finally, we found that the knockdown of Sam68 attenuated γ-radiation-induced cell death and growth suppression. Conclusively, the cleavage of Sam68 is a new indicator for the cell damaging effects of ionizing radiation. (author)

  18. Para-Phenylenediamine Induces Apoptotic Death of Melanoma Cells and Reduces Melanoma Tumour Growth in Mice

    Directory of Open Access Journals (Sweden)

    Debajit Bhowmick

    2016-01-01

    Full Text Available Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP, generation of reactive oxygen species (ROS, and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma.

  19. Para-Phenylenediamine Induces Apoptotic Death of Melanoma Cells and Reduces Melanoma Tumour Growth in Mice.

    Science.gov (United States)

    Bhowmick, Debajit; Bhar, Kaushik; Mallick, Sanjaya K; Das, Subhadip; Chatterjee, Nabanita; Sarkar, Tuhin Subhra; Chakrabarti, Rajarshi; Das Saha, Krishna; Siddhanta, Anirban

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD) in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS), and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma. PMID:27293892

  20. Para-Phenylenediamine Induces Apoptotic Death of Melanoma Cells and Reduces Melanoma Tumour Growth in Mice

    Science.gov (United States)

    Bhowmick, Debajit; Bhar, Kaushik; Mallick, Sanjaya K.; Das, Subhadip; Chatterjee, Nabanita; Sarkar, Tuhin Subhra; Chakrabarti, Rajarshi; Das Saha, Krishna; Siddhanta, Anirban

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer, usually resistant to standard chemotherapeutics. Despite a huge number of clinical trials, any success to find a chemotherapeutic agent that can effectively destroy melanoma is yet to be achieved. Para-phenylenediamine (p-PD) in the hair dyes is reported to purely serve as an external dyeing agent. Very little is known about whether p-PD has any effect on the melanin producing cells. We have demonstrated p-PD mediated apoptotic death of both human and mouse melanoma cells in vitro. Mouse melanoma tumour growth was also arrested by the apoptotic activity of intraperitoneal administration of p-PD with almost no side effects. This apoptosis is shown to occur primarily via loss of mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS), and caspase 8 activation. p-PD mediated apoptosis was also confirmed by the increase in sub-G0/G1 cell number. Thus, our experimental observation suggests that p-PD can be a potential less expensive candidate to be developed as a chemotherapeutic agent for melanoma. PMID:27293892

  1. Fermented Brown Rice Extract Causes Apoptotic Death of Human Acute Lymphoblastic Leukemia Cells via Death Receptor Pathway.

    Science.gov (United States)

    Horie, Yukiko; Nemoto, Hideyuki; Itoh, Mari; Kosaka, Hiroaki; Morita, Kyoji

    2016-04-01

    Mixture of brown rice and rice bran fermented with Aspergillus oryzae, designated as FBRA, has been reported to reveal anti-carcinogenic and anti-inflammatory effects in rodents. Then, to test its potential anti-cancer activity, the aqueous extract was prepared from FBRA powder, and the effect of this extract on human acute lymphoblastic leukemia Jurkat cells was directly examined. The exposure to FBRA extract reduced the cell viability in a concentration- and time-dependent manner. The reduction of the cell viability was accompanied by the DNA fragmentation, and partially restored by treatment with pan-caspase inhibitor. Further studies showed that FBRA extract induced the cleavage of caspase-8, -9, and -3, and decreased Bcl-2 protein expression. Moreover, the expression of tBid, DR5, and Fas proteins was enhanced by FBRA extract, and the pretreatment with caspase-8 inhibitor, but not caspase-9 inhibitor, restored the reduction of the cell viability induced by FBRA extract. These findings suggested that FBRA extract could induce the apoptotic death of human acute lymphoblastic leukemia cells probably through mainly the death receptor-mediated pathway and supplementarily through the tBid-mediated mitochondrial pathway, proposing the possibility that FBRA was a potential functional food beneficial to patients with hematological cancer. PMID:26769704

  2. Apoptotic death of prostate cancer cells by a gonadotropin-releasing hormone-II antagonist.

    Directory of Open Access Journals (Sweden)

    Sumi Park

    Full Text Available Gonadotropin-releasing hormone-I (GnRH-I has attracted strong attention as a hormonal therapeutic tool, particularly for androgen-dependent prostate cancer patients. However, the androgen-independency of the cancer in advanced stages has spurred researchers to look for new medical treatments. In previous reports, we developed the GnRH-II antagonist Trp-1 to inhibit proliferation and stimulate the autophagic death of various prostate cancer cells, including androgen-independent cells. We further screened many GnRH-II antagonists to identify molecules with higher efficiency. Here, we investigated the effect of SN09-2 on the growth of PC3 prostate cancer cells. SN09-2 reduced the growth of prostate cancer cells but had no effect on cells derived from other tissues. Compared with Trp-1, SN09-2 conspicuously inhibited prostate cancer cell growth, even at low concentrations. SN09-2-induced PC3 cell growth inhibition was associated with decreased membrane potential in mitochondria where the antagonist was accumulated, and increased mitochondrial and cytosolic reactive oxygen species. SN09-2 induced lactate dehydrogenase release into the media and annexin V-staining on the PC3 cell surface, suggesting that the antagonist stimulated prostate cancer cell death by activating apoptotic signaling pathways. Furthermore, cytochrome c release from mitochondria to the cytosol and caspase-3 activation occurred in a concentration- and time-dependent manner. SN09-2 also inhibited the growth of PC3 cells xenotransplanted into nude mice. These results demonstrate that SN09-2 directly induces mitochondrial dysfunction and the consequent ROS generation, leading to not only growth inhibition but also apoptosis of prostate cancer cells.

  3. Apoptotic cell death: its implications for imaging in the next millennium

    International Nuclear Information System (INIS)

    In this review the cellular phenomenon of apoptotic cell death and the imaging methods which can detect the process in vitro and in vivo are first discussed. Thereafter an outline is provided of the role of apoptosis in the pathophysiology of clinical disorders including stroke, neurodegenerative diseases, pulmonary inflammatory diseases, myocardial ischemia and inflammation, myelodysplastic disorders, organ transplantation, and oncology, in which imaging may play a critical role in diagnosis and patient management. Objective imaging markers of apoptosis may soon become measures of therapeutic success or failure in both current and future treatment paradigms. Since apoptosis is a major factor in many diseases, quantification and monitoring the process could become important in clinical decision making. (orig./MG) (orig.)

  4. Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling

    Directory of Open Access Journals (Sweden)

    S.S. Smaili

    2003-02-01

    Full Text Available Cellular Ca2+ signals are crucial in the control of most physiological processes, cell injury and programmed cell death through the regulation of a number of Ca2+-dependent enzymes such as phospholipases, proteases, and nucleases. Mitochondria along with the endoplasmic reticulum play pivotal roles in regulating intracellular Ca2+ content. Mitochondria are endowed with multiple Ca2+ transport mechanisms by which they take up and release Ca2+ across their inner membrane. During cellular Ca2+ overload, mitochondria take up cytosolic Ca2+, which in turn induces opening of permeability transition pores and disrupts the mitochondrial membrane potential (Dym. The collapse of Dym along with the release of cytochrome c from mitochondria is followed by the activation of caspases, nuclear fragmentation and cell death. Members of the Bcl-2 family are a group of proteins that play important roles in apoptosis regulation. Members of this family appear to differentially regulate intracellular Ca2+ level. Translocation of Bax, an apoptotic signaling protein, from the cytosol to the mitochondrial membrane is another step in this apoptosis signaling pathway.

  5. Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing.

    Science.gov (United States)

    Singh, B N; Upreti, D K; Singh, B R; Pandey, G; Verma, S; Roy, S; Naqvi, A H; Rawat, A K S

    2015-04-01

    Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC), a dietary flavonoid isolated from an edible lichen (Usnea longissima), can be implemented as a sensitizing agent for FCZ-resistant C. albicans NBC099, enhancing the efficacy of FCZ. QC enhanced FCZ-mediated cell killing of NBC099 and also induced cell death. These experiments indicated that the combined application of both drugs was FCZ dose dependent rather than QC dose dependent. In addition, we found that QC strongly suppressed the production of virulence weapons-biofilm formation, hyphal development, phospholipase, proteinase, esterase, and hemolytic activity. Treatment with QC also increased FCZ-mediated cell death in NBC099 biofilms. Interestingly, we also found that QC enhances the anticandidal activity of FCZ by inducing apoptotic cell death. We have also established that this sensitization is reliant on the farnesol response generated by QC. Molecular docking studies also support this conclusion and suggest that QC can form hydrogen bonds with Gln969, Thr1105, Ser1108, Arg1109, Asn1110, and Gly1061 in the ATP binding pocket of adenylate cyclase. Thus, this QS-mediated combined sensitizer (QC)-anticandidal agent (FCZ) strategy may be a novel way to enhance the efficacy of FCZ-based therapy of C. albicans infections. PMID:25645848

  6. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    OpenAIRE

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol ...

  7. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Directory of Open Access Journals (Sweden)

    Yoon TH

    2012-03-01

    Full Text Available Ki-Chun Yoo1, Chang-Hwan Yoon1, Dongwook Kwon2, Kyung-Hwan Hyun1, Soo Jung Woo1, Rae-Kwon Kim1, Eun-Jung Lim1, Yongjoon Suh1, Min-Jung Kim1, Tae Hyun Yoon2, Su-Jae Lee11Laboratory of Molecular Biochemistry, 2Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University, Seoul, Republic of KoreaBackground: Titanium dioxide (TiO2 has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70 together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein

  8. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  9. Cotreatment with Smac mimetics and demethylating agents induces both apoptotic and necroptotic cell death pathways in acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Gerges, Steve; Rohde, Katharina; Fulda, Simone

    2016-05-28

    Treatment resistance in acute lymphoblastic leukemia (ALL) is often caused by defects in programmed cell death, e.g. by overexpression of Inhibitor of Apoptosis (IAP) proteins. Here, we report that small-molecule Smac mimetics (i.e. BV6, LCL161, birinapant) that neutralize x-linked IAP (XIAP), cellular IAP (cIAP)1 and cIAP2 cooperate with demethylating agents (i.e. 5-azacytidine (5AC) or 5-aza-2'-deoxycytidine (DAC)) to induce cell death in ALL cells. Molecular studies reveal that induction of cell death is preceded by BV6-mediated depletion of cIAP1 protein and involves tumor necrosis factor (TNF)α autocrine/paracrine signaling, since the TNFα-blocking antibody Enbrel significantly reduces BV6/5AC-induced cell death. While BV6/5AC cotreatment induces caspase-3 activation, the broad-range caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) only partly rescues ALL cells from BV6/5AC-induced cell death. This indicates that BV6/5AC cotreatment engages non-apoptotic cell death upon caspase inhibition. Indeed, genetic silencing of key components of necroptosis such as Receptor-Interacting Protein (RIP)3 or mixed lineage kinase domain-like (MLKL) in parallel with administration of zVAD.fmk provides a significantly better protection against BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. Similarly, concomitant administration of pharmacological inhibitors of necroptosis (i.e. necrostatin-1s, GSK'872, dabrafenib, NSA) together with zVAD.fmk is superior in rescuing cells from BV6/5AC-induced cell death compared to the use of zVAD.fmk alone. These findings demonstrate that in ALL cells BV6/5AC-induced cell death is mediated via both apoptotic and necroptotic pathways. Importantly, BV6/5AC cotreatment triggers necroptosis in ALL cells that are resistant to apoptosis due to caspase inhibition. This opens new perspectives to overcome apoptosis resistance with important implications for the development of new treatment strategies

  10. Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CCA), a devastating neoplasm, is highly resistant to current chemotherapies. CCA cells frequently overexpress the antiapoptotic protein myeloid cell leukemia-1(Mcl-1), which is responsible for its extraordinary ability to evade cell death. Triptolide, a bioactive ingredient extracted from Chinese medicinal plant, has been shown to inhibit cell proliferation and induce apoptosis in several cancers. CCK-8 assay was performed to detect cell survival rate in vitro. DAPI staining and Flow cytometry were used to analyze apoptosis. Western blot was performed to determine the expression levels of caspase-3, caspase-7, caspase-9, PARP, and Mcl-1. Quantitative real-time PCR and immunofluorescence were used to detect the expression levels of Mcl-1. The nude mice xenograft model was used to evaluate the antitumor effect of triptolide in vivo. Triptolide reduced cell viability in cholangiocarcinoma cell lines in a dose- and time-dependent manner, with IC50 values of 12.6 ± 0.6 nM, 20.5 ± 4.2 nM, and 18.5 ± 0.7 nM at 48 h for HuCCT1, QBC939, and FRH0201 respectively. Triptolide induced apoptosis in CCA cell lines in part through mitochondrial pathway. Using quantitative real-time PCR, western blot and immunofluorescence, we have shown that triptolide downregulates Mcl-1 mRNA and protein levels. Furthermore, triptolide inhibited the CCA growth in vivo. Triptolide has profound antitumor effect on CCA, probably by inducing apoptosis through inhibition of Mcl-1. Triptolide would be a promising therapeutic agent for CCA

  11. BCL2 suppresses PARP1 function and non-apoptotic cell death

    OpenAIRE

    Dutta, Chaitali; Day, Tovah; Kopp, Nadja; van Bodegom, Diederik; Davids, Matthew S.; Ryan, Jeremy; Bird, Liat; Kommajosyula, Naveen; Weigert, Oliver; Yoda, Akinori; Fung, Hua; Brown, Jennifer R; Shapiro, Geoffrey I.; Letai, Anthony; Weinstock, David M.

    2012-01-01

    BCL2 suppresses apoptosis by binding the BH3 domain of pro-apoptotic factors and thereby regulating outer mitochondrial membrane permeabilization. Many tumor types, including B-cell lymphomas and chronic lymphocytic leukemia, are dependent on BCL2 for survival, but become resistant to apoptosis after treatment. Here we identified a direct interaction between the anti-apoptotic protein BCL2 and the enzyme poly(ADP) ribose polymerase 1 (PARP1), which suppresses PARP1 enzymatic activity and inhi...

  12. Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death.

    Directory of Open Access Journals (Sweden)

    Mihajlo Bosnjak

    Full Text Available The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4 and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR, and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.

  13. Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori.

    Science.gov (United States)

    Goncu, Ebru; Parlak, Osman

    2008-11-01

    Programmed cell death has been subdivided into two major groups: apoptosis and autophagic cell death. The anterior silk gland of Bombyx mori degenerates during larval-pupal metamorphosis. Our findings indicate that two types of programmed cell death features are observed during this physiological process. During the prepupal period, pyknosis of the nucleus, cell detachment,and membrane blebbing occur and they are the first signs of programmed cell death in the anterior silk glands. According to previous studies, all of these morphological appearances are common for both cell-death types. Autophagy features are also exhibited during the prepupal period. Levels of one of the lysosomal marker enzymes-acid phosphatase-are high during this period then decrease gradually. Vacuole formation begins to appear first at the basal surface of the cell, then expands to the apical surface just before the larval pupal ecdysis. After larval-pupal ecdysis, DNA fragmentation, which is the obvious biochemical marker of apoptosis, is detected in agarose gel electrophoresis, which also shows that caspase-like enzyme activities occur during the programmed cell death process of the anterior silk glands. Apoptosis and autophagic cell death interact with each other during the degeneration process of the anterior silk gland in Bombyx mori and this interaction occurs at a late phase of cell death. We suggest that apoptotic cell death only is not enough for whole gland degeneration and that more effective degeneration occurs with this cooperation. PMID:18838861

  14. Echinacoside induces apoptotic cancer cell death by inhibiting the nucleotide pool sanitizing enzyme MTH1

    Directory of Open Access Journals (Sweden)

    Dong L

    2015-12-01

    Full Text Available Liwei Dong,1 Hongge Wang,1 Jiajing Niu,1 Mingwei Zou,2 Nuoting Wu,1 Debin Yu,1 Ye Wang,1 Zhihua Zou11Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, People’s Republic of China; 2Department of Psychology, College of Liberal Arts and Social Sciences, University of Houston, Houston, TX, USA Abstract: Inhibition of the nucleotide pool sanitizing enzyme MTH1 causes extensive oxidative DNA damages and apoptosis in cancer cells and hence may be used as an anticancer strategy. As natural products have been a rich source of medicinal chemicals, in the present study, we used the MTH1-catalyzed enzymatic reaction as a high-throughput in vitro screening assay to search for natural compounds capable of inhibiting MTH1. Echinacoside, a compound derived from the medicinal plants Cistanche and Echinacea, effectively inhibited the catalytic activity of MTH1 in an in vitro assay. Treatment of various human cancer cell lines with Echinacoside resulted in a significant increase in the cellular level of oxidized guanine (8-oxoguanine, while cellular reactive oxygen species level remained unchanged, indicating that Echinacoside also inhibited the activity of cellular MTH1. Consequently, Echinacoside treatment induced an immediate and dramatic increase in DNA damage markers and upregulation of the G1/S-CDK inhibitor p21, which were followed by marked apoptotic cell death and cell cycle arrest in cancer but not in noncancer cells. Taken together, these studies identified a natural compound as an MTH1 inhibitor and suggest that natural products can be an important source of anticancer agents. Keywords: Echinacoside, MTH1, 8-oxoG, DNA damage, apoptosis, cell cycle arrest

  15. JNK controls the onset of mitosis in planarian stem cells and triggers apoptotic cell death required for regeneration and remodeling.

    Directory of Open Access Journals (Sweden)

    María Almuedo-Castillo

    2014-06-01

    Full Text Available Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.

  16. Cell death triggered by alpha-emitting {sup 213}Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Christof; Schroeck, Hedwig; Seidenschwang, Sabine; Beck, Roswitha; Schwaiger, Markus; Senekowitsch-Schmidtke, Reingard [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Schmid, Ernst [National Research Center for Environment and Health, Institute of Radiation Biology, GSF, Neuherberg (Germany); Abend, Michael [German Armed Forces, Institute of Radiobiology, Munich (Germany); Becker, Karl-Friedrich [Technische Universitaet Muenchen, Institute of Pathology, Munich (Germany); National Research Center for Environment and Health, Institute of Pathology, GSF, Neuherberg (Germany); National Research Center for Environment and Health, Institute of Molecular Immunology, GSF, Munich (Germany); Apostolidis, Christos; Nikula, Tuomo K. [European Commission, Institute for Transuranium Elements, Karlsruhe (Germany); Kremmer, Elisabeth [National Research Center for Environment and Health, Institute of Molecular Immunology, GSF, Munich (Germany)

    2005-03-01

    Radioimmunotherapy with {alpha}-particle-emitting nuclides, such as{sup 213}Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by {sup 213}Bi-immunoconjugates. Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of {sup 213}Bi-d9MAb targeting d9-E-cadherin and {sup 213}Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as {sup 213}Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and {sup 213}Bi-d9MAb was analysed via Western blotting. Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with {sup 213}Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of {alpha}-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific {sup 213}Bi-d9MAb compared with unspecific {sup 213}Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound {sup 213}Bi-immunoconjugates per cell exceeded 2 x 10{sup 4}, most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by {sup 213}Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway. {sup 213}Bi-immunoconjugates seem

  17. Cell death triggered by alpha-emitting 213Bi-immunoconjugates in HSC45-M2 gastric cancer cells is different from apoptotic cell death

    International Nuclear Information System (INIS)

    Radioimmunotherapy with α-particle-emitting nuclides, such as213Bi, is a promising concept for the elimination of small tumour nodules or single disseminated tumour cells. The aim of this study was to investigate cellular damage and the mode of cell death triggered by 213Bi-immunoconjugates. Human gastric cancer cells (HSC45-M2) expressing d9-E-cadherin were incubated with different levels of activity of 213Bi-d9MAb targeting d9-E-cadherin and 213Bi-d8MAb, which does not bind to d9-E-cadherin. Micronucleated (M) cells, abnormal (A) cells and apoptotic (A) [(MAA)] cells were scored microscopically in the MAA assay following fluorescent staining of nuclei and cytoplasm. Chromosomal aberrations were analysed microscopically following Giemsa staining. The effect of z-VAD-fmk, known to inhibit apoptosis, on the prevention of cell death was investigated following treatment of HSC45-M2 cells with sorbitol as well as 213Bi-d9MAb. Activation of caspase 3 after incubation of HSC45-M2 cells with both sorbitol and 213Bi-d9MAb was analysed via Western blotting. Following incubation of HSC45-M2 human gastric cancer cells expressing d9-E-cadherin with 213Bi-d9MAb the number of cells killed increased proportional to the applied activity concentration. Microscopically visible effects of α-irradiation of HSC45-M2 cells were formation of micronuclei and severe chromosomal aberrations. Preferential induction of these lesions with specific 213Bi-d9MAb compared with unspecific 213Bi-d8MAb (not targeting d9-E-cadherin) was not observed if the number of floating, i.e. unbound 213Bi-immunoconjugates per cell exceeded 2 x 104, most likely due to intense crossfire. In contrast to sorbitol-induced cell death, cell death triggered by 213Bi-immunoconjugates was independent of caspase 3 activation and could not be inhibited by z-VAD-fmk, known to suppress the apoptotic pathway. 213Bi-immunoconjugates seem to induce a mode of cell death different from apoptosis in HSC45-M2 cells. (orig.)

  18. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    International Nuclear Information System (INIS)

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior to palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G1/S progression of palatal mesenchymal cells through upregulation of p21 Cip1, leading to Rb hypophospholylation. Thus, RA appears to cause G1 arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA

  19. Manganese induces mitochondrial dynamics impairment and apoptotic cell death: a study in human Gli36 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Miglietta, Esteban A; Villarreal, Alejandro; Ramos, Alberto J; Kotler, Mónica L

    2013-10-25

    Manganese (Mn) is an essential trace element due to its participation in many physiological processes. However, overexposure to this metal leads to a neurological disorder known as Manganism whose clinical manifestations and molecular mechanisms resemble Parkinson's disease. Several lines of evidence implicate astrocytes as an early target of Mn neurotoxicity being the mitochondria the most affected organelles. The aim of this study was to investigate the possible mitochondrial dynamics alterations in Mn-exposed human astrocytes. Therefore, we employed Gli36 cells which express the astrocytic markers GFAP and S100B. We demonstrated that Mn triggers the mitochondrial apoptotic pathway revealed by increased Bax/Bcl-2 ratio, by the loss of mitochondrial membrane potential and by caspase-9 activation. This apoptotic program may be in turn responsible of caspase-3/7 activation, PARP-1 cleavage, chromatin condensation and fragmentation. In addition, we determined that Mn induces deregulation in mitochondria-shaping proteins (Opa-1, Mfn-2 and Drp-1) expression levels in parallel with the disruption of the mitochondrial network toward to an exacerbated fragmentation. Since mitochondrial dynamics is altered in several neurodegenerative diseases, these proteins could become future targets to be considered in Manganism treatment. PMID:24021799

  20. Hippocampal ultrastructural changes and apoptotic cell death in rats following endurance training and acute exhaustive exercise

    Institute of Scientific and Technical Information of China (English)

    Jianjun Zhang

    2008-01-01

    BACKGROUND: Exhaustive exercise can lead to apoptosis of skeletal muscle cells and myocardial cells as a result of pathological changes in the corresponding cellular ultrastructure. It is hypothesized that such changes could also occur in neurons. OBJECTIVE: To observe brain cell apoptosis and ultrastmctural changes in hippocampal neurons in rats following endurance training and acute exhaustive exercise. DESIGN, TIME AND SETTING: A randomized, controlled, morphological analysis was performed at the Medical Laboratory Center of Zhengzhou University between July and November 2007. MATERIALS: Forty male, 8-week-old, Sprague Dawley rats were included in this study. METHODS: Endurance training consisted of treadmill running once a day, 6 days a week, for 4 weeks. For acute exhaustive exercise, graded treadmill running was conducted. Rats were exposed to exercise at an increasing speed (10 m/min, increasing to 20 and 36 m/min for moderate- and high-intensity exhaustive exercise, respectively, and then was continued until exhaustion). A total of 40 rats were evenly distributed into the following 4 groups: Group A-rats were not exercised; Group B- rats were not trained but sacrificed 24 hours after acute exhaustive treadmill running exercise; Group C rats were subjected to endurance training and sacrificed immediately after acute exhaustive treadmill running exercise; Group D-rats were subjected to endurance training and sacrificed 24 hours after acute exhaustive treadmill running exercise. MAIN OUTCOME MEASURES: Apoptotic cell death was detected by the TUNEL method and hippocampal neuronal ultrastructural change was observed through using transmission electron microscopy. RESULTS: All 40 rats were included in the final analysis. Subsequent to exhaustive exercise, rat cerebral cortex and hippocampal neurons appeared contracted and degenerated. In addition, high amount of lipofuscin was visible in the hippocampal region. Necrotic neurons encased by glial cells appeared in

  1. Histone deacetylase inhibitor upregulates peroxisomal fatty acid oxidation and inhibits apoptotic cell death in abcd1-deficient glial cells.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh

    Full Text Available In X-ALD, mutation/deletion of ALD gene (ABCD1 and the resultant very long chain fatty acid (VLCFA derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD. The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal β-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs (1 and 3 in both cell types. However, higher induction of ELOVL's in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of anti-apoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL and cell survival (phospho-Erk1/2 proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD.

  2. The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells.

    Science.gov (United States)

    Liang, Wei-Zhe; Chou, Chiang-Ting; Hsu, Shu-Shong; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Tseng, Hui-Wen; Kuo, Chun-Chi; Jan, Chung-Ren

    2015-01-01

    Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca(2+) levels ([Ca(2+)]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca(2+)]i rises which were reduced by removing extracellular Ca(2+). Eugenol-induced [Ca(2+)]i rises were not altered by store-operated Ca(2+) channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca(2+)]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca(2+)]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca(2+)]i rises by inducing PLC-dependent release of Ca(2+) from the endoplasmic reticulum and caused Ca(2+) influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway. PMID:25455450

  3. Docetaxel induces Bcl-2- and pro-apoptotic caspase-independent death of human prostate cancer DU145 cells.

    Science.gov (United States)

    Ogura, Takeharu; Tanaka, Yoshiyuki; Tamaki, Hiroki; Harada, Mamoru

    2016-06-01

    Docetaxel is a useful chemotherapeutic agent for the first-line treatment of hormone-refractory prostate cancer. Abnormal expression of Bcl-2 is commonly found in cancer cells, which increases their anti-apoptotic potency and chemoresistance. We investigated the effects of Bcl-2 expression status on the susceptibility of DU145 cells, an androgen-independent human prostate cancer cell line, to docetaxel and other anticancer agents. A panel of Bcl-2-expressing DU145 cell lines was established. Bcl-2 expression levels were unrelated to the susceptibility of DU145 cells to docetaxel. The sensitivity of DU145 cells to cisplatin fluctuated, and the sensitivity to tumor necrosis factor (TNF)-α was decreased by Bcl-2 overexpression. In a xenograft mouse model, overexpression of Bcl-2 drastically decreased the sensitivity of DU145 cells to cisplatin and TNF-α; however, there was no change in the response to docetaxel. Fluorescent microscopy revealed that Bcl-2-overexpression had no effect on the docetaxel-induced death of DU145 cells, but significantly decreased DU145 cell death induced by cisplatin or TNF-α. Interestingly, docetaxel hardly induced caspase-3/7 activation in control or Bcl-2-overexpressing DU145 cells, but did at a low level in LNCaP cells, another prostate cancer cell line. Moreover, in contrast to LNCaP cells, the reduced viabilities of docetaxel-treated control and Bcl-2-overexpressing DU145 cells were not restored by the addition of either a Bid inhibitor or a panel of pro-apoptotic caspase inhibitors. These findings indicate that the antitumor effects of docetaxel on DU145 cells are independent of both Bcl-2 and pro-apoptotic caspases. PMID:27082738

  4. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death

    International Nuclear Information System (INIS)

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death. (author)

  5. Curcumin induces apoptotic cell death of activated human CD4+ T cells via increasing endoplasmic reticulum stress and mitochondrial dysfunction.

    Science.gov (United States)

    Zheng, Min; Zhang, Qinggao; Joe, Yeonsoo; Lee, Bong Hee; Ryu, Do Gon; Kwon, Kang Beom; Ryter, Stefan W; Chung, Hun Taeg

    2013-03-01

    Curcumin, a natural polyphenolic antioxidant compound, exerts well-known anti-inflammatory and immunomodulatory effects, the latter which can influence the activation of immune cells including T cells. Furthermore, curcumin can inhibit the expression of pro-inflammatory cytokines and chemokines, through suppression of the NF-κB signaling pathway. The beneficial effects of curcumin in diseases such as arthritis, allergy, asthma, atherosclerosis, diabetes and cancer may be due to its immunomodulatory properties. We studied the potential of curcumin to modulate CD4+ T cells-mediated autoimmune disease, by examining the effects of this compound on human CD4+ lymphocyte activation. Stimulation of human T cells with PHA or CD3/CD28 induced IL-2 mRNA expression and activated the endoplasmic reticulum (ER) stress response. The treatment of T cells with curcumin induced the unfolded protein response (UPR) signaling pathway, initiated by the phosphorylation of PERK and IRE1. Furthermore, curcumin increased the expression of the ER stress associated transcriptional factors XBP-1, cleaved p50ATF6α and C/EBP homologous protein (CHOP) in human CD4+ and Jurkat T cells. In PHA-activated T cells, curcumin further enhanced PHA-induced CHOP expression and reduced the expression of the anti-apoptotic protein Bcl-2. Finally, curcumin treatment induced apoptotic cell death in activated T cells via eliciting an excessive ER stress response, which was reversed by the ER-stress inhibitor 4-phenylbutyric acid or transfection with CHOP-specific siRNA. These results suggest that curcumin can impact both ER stress and mitochondria functional pathways, and thereby could be used as a promising therapy in the context of Th1-mediated autoimmune diseases. PMID:23415873

  6. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells

    International Nuclear Information System (INIS)

    Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. Anthocyanins exist widely in many vegetables and fruits. Some reports demonstrated that anthocyanins extracted from H. sabdariffa L., Hibiscus anthocyanins (HAs) (which are a group of natural pigments existing in the dried calyx of H. sabdariffa L.) exhibited antioxidant activity and liver protection. Therefore, in this study, we explored the effect of HAs on human cancer cells. The result showed that HAs could cause cancer cell apoptosis, especially in HL-60 cells. Using flow cytometry, we found that HAs treatment (0-4 mg/ml) markedly induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The result also revealed increased phosphorylation in p38 and c-Jun, cytochrome c release, and expression of tBid, Fas, and FasL in the HAs-treated HL-60 cells. We further used SB203580 (p38 inhibitor), PD98059 (MEK inhibitor), SP600125 (JNK inhibitor), and wortmannin (phosphatidylinositol 3-kinase; PI-3K inhibitor) to evaluate their effect on the HAs-induced HL-60 death. The data showed that only SB203580 had strong potential in inhibiting HL-60 cell apoptosis and related protein expression and phosphorylation. Therefore, we suggested that HAs mediated HL-60 apoptosis via the p38-FasL and Bid pathway. According to these results, HAs could be developed as chemopreventive agents. However, further investigations into the specificity and mechanism(s) of HAs are needed

  7. Tat-NOL3 protects against hippocampal neuronal cell death induced by oxidative stress through the regulation of apoptotic pathways.

    Science.gov (United States)

    Sohn, Eun Jeong; Shin, Min Jea; Eum, Won Sik; Kim, Dae Won; Yong, Ji In; Ryu, Eun Ji; Park, Jung Hwan; Cho, Su Bin; Cha, Hyun Ju; Kim, Sang Jin; Yeo, Hyeon Ji; Yeo, Eun Ji; Choi, Yeon Joo; Im, Seung Kwon; Kweon, Hae Young; Kim, Duk-Soo; Yu, Yeon Hee; Cho, Sung-Woo; Park, Meeyoung; Park, Jinseu; Cho, Yong-Jun; Choi, Soo Young

    2016-07-01

    Oxidative stress-induced apoptosis is associated with neuronal cell death and ischemia. The NOL3 [nucleolar protein 3 (apoptosis repressor with CARD domain)] protein protects against oxidative stress-induced cell death. However, the protective mechanism responsible for this effect as well as the effects of NOL3 against oxidative stress in ischemia remain unclear. Thus, we examined the protective effects of NOL3 protein on hydrogen peroxide (H2O2)-induced oxidative stress and the mechanism responsible for these effects in hippocampal neuronal HT22 cells and in an animal model of forebrain ischemia using Tat-fused NOL3 protein (Tat-NOL3). Purified Tat-NOL3 protein transduced into the H2O2-exposed HT22 cells and inhibited the production of reactive oxygen species (ROS), DNA fragmentation and reduced mitochondrial membrane potential (ΔΨm). In addition, Tat-NOL3 prevented neuronal cell death through the regulation of apoptotic signaling pathways including Bax, Bcl-2, caspase-2, -3 and -8, PARP and p53. In addition, Tat-NOL3 protein transduced into the animal brains and significantly protected against neuronal cell death in the CA1 region of the hippocampus by regulating the activation of microglia and astrocytes. Taken together, these findings demonstrate that Tat-NOL3 protein protects against oxidative stress-induced neuronal cell death by regulating oxidative stress and by acting as an anti-apoptotic protein. Thus, we suggest that Tat-NOL3 represents a potential therapeutic agent for protection against ischemic brain injury. PMID:27221790

  8. B cell receptor cross-linking triggers a caspase-8-dependent apoptotic pathway that is independent of the death effector domain of Fas-associated death domain protein.

    Science.gov (United States)

    Besnault, L; Schrantz, N; Auffredou, M T; Leca, G; Bourgeade, M F; Vazquez, A

    2001-07-15

    We have previously reported that B cell receptors, depending on the degree to which they are cross-linked, can promote apoptosis in various human B cell types. In this study, we show that B cell receptors can trigger two apoptotic pathways according to cross-linking and that these pathways control mitochondrial activation in human Burkitt's lymphoma cells. Whereas soluble anti-mu Ab triggers caspase-independent mitochondrial activation, cross-linked anti-mu Ab induces an apoptotic response associated with a caspase-dependent loss of mitochondrial transmembrane potential. This B cell receptor-mediated caspase-dependent mitochondrial activation is associated with caspase-8 activation. We show here that caspase-8 inhibitors strongly decrease cross-linking-dependent B cell receptor-mediated apoptosis in Burkitt's lymphoma BL41 cells. These inhibitors act upstream from the mitochondria as they prevented the loss of mitochondrial membrane potential observed in B cell receptor-treated BL41 cells. Caspase-8 activation in these cells was also evident from the detection of cleaved fragments of caspase-8 and the cleavage of specific substrates, including Bid. Our data show that cross-linked B cell receptors induced an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and the activation of caspase-9 and caspase-3. Cells expressing a dominant negative mutant of Fas-associated death domain protein were sensitive to cross-linked B cell receptor-induced caspase-8 activation and apoptosis; therefore, this caspase-8 activation was independent of the death effector domain of Fas-associated death domain protein. PMID:11441077

  9. A homologue of the defender against the apoptotic death gene (dad1) in UV-exposed Chlamydomonas cells is downregulated with the onset of programmed cell death

    Indian Academy of Sciences (India)

    Swati Moharikar; Jacinta S D’souza; Basuthkar J Rao

    2007-03-01

    We report here the isolation of a homologue of the potential anti-apoptotic gene, defender against apoptotic death (dad1) from Chlamydomonas reinhardtii cells. Using polymerase chain reaction (PCR), we investigated its expression in the execution process of programmed cell death (PCD) in UV-C exposed dying C. reinhardtii cells. Reverse-transcriptase (RT)-PCR showed that C. reinhardtii dad1 amplification was drastically reduced in UV-C exposed dying C. reinhardtii cells. We connect the downregulation of dad1 with the upregulation of apoptosis protease activating factor-1 (APAF-1) and the physiological changes that occur in C. reinhardtii cells upon exposure to 12 J/m2 UV-C in order to show a reciprocal relationship between proapoptotic and inhibitor of apoptosis factors. The temporal changes indicate a correlation between the onset of cell death and dad1 downregulation. The sequence of the PCR product of the cDNA encoding the dad1 homologue was aligned with the annotated dad1 (C_20215) from the Chlamydomonas database (http://genome.jgi-psf.org:8080/annotator/servlet/jgi.annotation.Annotation?pDb=chlre2); Annotation?pDb=chlre2); this sequence was found to show 100% identity, both at the nucleotide and amino acid level. The 327 bp transcript showed an open reading frame of 87 amino acid residues. The deduced amino acid sequence of the putative C. reinhardtii DAD1 homologue showed 54% identity with Oryza sativa, 56% identity with Drosophila melanogaster, 66% identity with Xenopus laevis, and 64% identity with Homo sapiens, Sus scrofa, Gallus gallus, Rattus norvegicus and Mus musculus.

  10. Apoptotic activity of a nuclear form of mitogaligin, a cell death protein

    International Nuclear Information System (INIS)

    Galig, an internal gene to the galectin-3 gene, encodes two proteins and induces cell death in human cells. Mitogaligin, one of these proteins, contains a mitochondrial targeting sequence and promotes the release of cytochrome c into the cytosol. Here, we show that mitogaligin can also localize to nucleus. The nuclear form of mitogaligin induced cell death through a pathway exhibiting typical properties of apoptosis. These observations indicate for the first time that mitogaligin expresses cytotoxic properties not only when addressed to mitochondria but also when targeted to the nucleus.

  11. Proteolytic activation of latent TGF-beta precedes caspase-3 activation and enhances apoptotic death of lung epithelial cells.

    Science.gov (United States)

    Solovyan, Victor T; Keski-Oja, Jorma

    2006-05-01

    Transforming growth factors beta (TGF-betas) are multifunctional cytokines, which are secreted in latent forms in large latent TGF-beta complexes (LL-TGF-beta) with subsequent deposition to the extracellular matrix (ECM). While a variety of mechanisms capable of activating latent TGF-beta in vitro have been described, the physiological conditions, which promote the activation of TGF-beta in vivo are poorly understood. Mink lung epithelial cells (Mv1Lu) are a widely used model for evaluation of the effects of exogenous TGF-beta both in transcriptional and growth inhibitor assays. We find here that apoptosis of Mv1Lu cells, induced either by staurosporine or serum deprivation, is accompanied by proteolytic processing of LL-TGF-beta and the activation of endogenous TGF-beta. Activation of TGF-beta preceded caspase-3 activation and was almost completely suppressed by the serine protease inhibitor, AEBSF. Both exogenous and endogenously activated TGF-betas were able to enhance the apoptotic response of Mv1Lu cells leading to potentiation of cell death. Potentiation of cell death by activated TGF-beta was associated with downregulation of Akt and p38 MAPK, which were both activated at the initial stages of Mv1Lu apoptosis and were suppressed by exogenous TGF-beta. Pharmacological interruption of either phosphoinositide-3-kinase (PI-3K)/Akt or p38 MAPK signaling by the specific inhibitors mimicked the effect of TGF-beta leading to potentiation of cell death. Current results suggest that proteolytic activation of endogenous TGF-beta is a component of the apoptotic response, capable of modulating the death of Mv1Lu cells by inhibition of both PI-3K/Akt and p38 MAPK-dependent survival pathways. PMID:16447253

  12. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    International Nuclear Information System (INIS)

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed that the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent

  13. Elevated Levels of Uterine Anti-Apoptotic Signaling May Activate NFKB and Potentially Confer Resistance to Caspase 3-Mediated Apoptotic Cell Death During Pregnancy in Mice1

    Science.gov (United States)

    Jeyasuria, Pancharatnam; Subedi, Kalpana; Suresh, Arvind; Condon, Jennifer C.

    2011-01-01

    Preserving the uterus in a state of relative quiescence is vital to the maintenance of a successful pregnancy. Elevated cytoplasmic levels of uterine caspase 3 during pregnancy have been proposed as a potential regulator of uterine quiescence through direct targeting and disabling of the uterine contractile architecture. However, despite highly elevated levels of uterine caspase 3 during pregnancy, there is minimal evidence of apoptosis. This current study defines the mechanism whereby the pregnant uterine myocyte may harness the tocolytic activity of active caspases while avoiding apoptotic cell death. Using the pregnant mouse model, we have analyzed the uterus for changes in pro- and antiapoptotic signaling patterns associated with the advancing stages of pregnancy. Briefly, we have found that members of the IAP family, such as SURVIVIN and XIAP, and the Bcl2 family members, such as MCL1, are elevated in the uterine myocyte during late gestation. The IAP family members are the only endogenous inhibitors of active caspase 3, and MCL1 limits activation of caspase 3 by suppressing proapoptotic signaling. Elevated XIAP levels partner with SURVIVIN, resulting in increased levels of the antiapoptotic MCL1 via NFKB activation; these together have the potential to limit both the activity and level of active caspase 3 in the pregnant uterus as term approaches. We propose that modification of these antiapoptotic signaling partners allows the pregnant uterus to escape the apoptotic action of elevated active caspase 3 levels but also functions to limit the levels of active uterine caspase 3 near term. PMID:21566000

  14. An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants

    Directory of Open Access Journals (Sweden)

    Hogg Bridget V

    2011-12-01

    Full Text Available Abstract In Arabidopsis thaliana we demonstrate that dying root hairs provide an easy and rapid in vivo model for the morphological identification of apoptotic-like programmed cell death (AL-PCD in plants. The model described here is transferable between species, can be used to investigate rates of AL-PCD in response to various treatments and to identify modulation of AL-PCD rates in mutant/transgenic plant lines facilitating rapid screening of mutant populations in order to identify genes involved in AL-PCD regulation.

  15. Metallodrug induced apoptotic cell death and survival attempts are characterizable by Raman spectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2014-09-01

    Chrysotherapeutics are under investigation as new or additional treatments for different types of cancers. In this study, gold complexes were investigated for their anticancer potential using Raman spectroscopy. The aim of the study was to determine whether Raman spectroscopy could be used for the characterization of metallodrug-induced cell death. Symptoms of cell death such as decreased peak intensities of proteins bonds and phosphodiester bonds found in deoxyribose nucleic acids were evident in the principal component analysis of the spectra. Vibrational bands around 761 cm-1 and 1300 cm-1 (tryptophan, ethanolamine group, and phosphatidylethanolamine) and 1720 cm-1 (ester bonds associated with phospholipids) appeared in the Raman spectra of cervical adenocarcinoma (HeLa) cells after metallodrug treatment. The significantly (p treatment could be a molecular signature of induced apoptosis since both the co-regulated phosphatidylserine and phosphatidylethanolamine are externalized during cell death. Treated cells had significantly higher levels of glucose and glycogen vibrational peaks, indicative of a survival mechanism of cancer cells under chemical stress. Cancer cells excrete chemotherapeutics to improve their chances of survival and utilize glucose to achieve this. Raman spectroscopy was able to monitor a survival strategy of cancer cells in the form of glucose uptake to alleviate chemical stress. Raman spectroscopy was invaluable in obtaining molecular information generated by biomolecules affected by anticancer metallodrug treatments and presents an alternative to less reproducible, conventional biochemical assays for cytotoxicity analyses.

  16. The Sarin-like Organophosphorus Agent bis (isopropyl methyl)phosphonate Induces Apoptotic Cell Death and COX-2 Expression in SK-N-SH Cells.

    Science.gov (United States)

    Arima, Yosuke; Yoshimoto, Kanji; Namera, Akira; Makita, Ryosuke; Murata, Kazuhiro; Nagao, Masataka

    2016-03-01

    Organophosphorus compounds, such as sarin, are highly toxic nerve agents that inhibit acetylcholinesterase (AChE), but not cholinesterase, via multiple mechanisms. Recent studies have shown that organophosphorus compounds increase cyclooxygenase-2 (COX-2) expression and induce neurotoxicity. In this study, we examined the toxicity of the sarin-like organophosphorus agent bis(isopropyl methyl)phosphonate (BIMP) and the effects of BIMP on COX-2 expression in SK-N-SH human neuroblastoma cells. Exposure to BIMP changed cell morphology and induced caspase-dependent apoptotic cell death accompanied by cleavage of caspase 3, caspase 9, and poly (ADP-ribose) polymerase (PARP). It also increased COX-2 expression, while pretreatment with a COX inhibitor, ibuprofen, decreased BIMP-dependent cell death and COX-2 expression in SK-N-SH cells. Thus, our findings suggest that BIMP induces apoptotic cell death and upregulates COX-2 expression. PMID:27348899

  17. Apoptotic Death of Prostate Cancer Cells by a Gonadotropin-Releasing Hormone-II Antagonist

    OpenAIRE

    Park, Sumi; Han, Ji Man; Cheon, Jun; Hwang, Jong-Ik; Seong, Jae Young

    2014-01-01

    Gonadotropin-releasing hormone-I (GnRH-I) has attracted strong attention as a hormonal therapeutic tool, particularly for androgen-dependent prostate cancer patients. However, the androgen-independency of the cancer in advanced stages has spurred researchers to look for new medical treatments. In previous reports, we developed the GnRH-II antagonist Trp-1 to inhibit proliferation and stimulate the autophagic death of various prostate cancer cells, including androgen-independent cells. We furt...

  18. Mechanisms of apoptotic cell death of lymphocytes in aging and in Alzheimer's disease

    OpenAIRE

    Schindowski, Katharina

    2007-01-01

    Aging and age-related diseases are becoming more and more important for our society and our health care system. Alzheimer's disease (AD) is a disorder that destroys some parts of the brain and is characterized by global cognitive decline including a progressive irreversible loss of memory, orientation, and reasoning. “Healthy aging”, therefore, is one of the major aims for modern medicine. Apoptosis, or programmed cell death, plays an important role for example in fetal development, as well a...

  19. Metallodrug induced apoptotic cell death and survival attempts are characterizable by Raman spectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2014-09-01

    Chrysotherapeutics are under investigation as new or additional treatments for different types of cancers. In this study, gold complexes were investigated for their anticancer potential using Raman spectroscopy. The aim of the study was to determine whether Raman spectroscopy could be used for the characterization of metallodrug-induced cell death. Symptoms of cell death such as decreased peak intensities of proteins bonds and phosphodiester bonds found in deoxyribose nucleic acids were evident in the principal component analysis of the spectra. Vibrational bands around 761 cm-1 and 1300 cm-1 (tryptophan, ethanolamine group, and phosphatidylethanolamine) and 1720 cm-1 (ester bonds associated with phospholipids) appeared in the Raman spectra of cervical adenocarcinoma (HeLa) cells after metallodrug treatment. The significantly (p cancer cells under chemical stress. Cancer cells excrete chemotherapeutics to improve their chances of survival and utilize glucose to achieve this. Raman spectroscopy was able to monitor a survival strategy of cancer cells in the form of glucose uptake to alleviate chemical stress. Raman spectroscopy was invaluable in obtaining molecular information generated by biomolecules affected by anticancer metallodrug treatments and presents an alternative to less reproducible, conventional biochemical assays for cytotoxicity analyses.

  20. Tualang Honey Promotes Apoptotic Cell Death Induced by Tamoxifen in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Soriani Yaacob

    2013-01-01

    Full Text Available Tualang honey (TH is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM, in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects.

  1. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Bhanot Haymanti

    2011-06-01

    Full Text Available Abstract Background Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Results Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl-1-(4-pyridinyl-2-propen-1-one (MIPP that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1, they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6 are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. Conclusions MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  2. Evaluation of apoptotic cell death in normal and chondrodystrophic canine intervertebral discs

    Directory of Open Access Journals (Sweden)

    Marie Klauser

    2012-02-01

    Full Text Available Disc degeneration occurs commonly in dogs. A variety of factors is thought to contribute an inappropriate disc matrix that isolate cells in the disc and lead to apoptosis. Disc herniation with radiculopathy and discogenic pain are the results of the degenerative process. The objective of this prospective study was to determine the extent of apoptosis in intact and herniated intervertebral discs of chondrodystrophic dogs and non-chondrodystrophic dogs. In addition, the nucleus pulposus (NP was histologically compared between non-chondrodystrophic and chondrodystrophic dogs. Thoracolumbar intervertebral discs and parts of the extruded nucleus pulposus were harvested from 45 dogs. Samples were subsequently stained with haematoxylin-eosin and processed to detect cleaved caspase-3 and poly(ADP-ribose polymerase. A significant greater degree of apoptosis was observed in herniated NPs of chondrodystrophic dogs compared to non- chondrodystrophic dogs with poly (ADP-ribose polymerase and cleaved caspase- 3 detection. Within the group of chondrodystrophic dogs, dogs with an intact disc and younger than 6 years showed a significant lower incidence of apoptosis in the NP compared to the herniated NP of chondrodystrophic dogs. The extent of apoptosis in the annulus fibrosus was not different between the intact disc from chondrodystrophic and non- chondrodystrophic dogs. An age-related increase of apoptotic cells in NP and annulus fibrosus was found in the intact non-herniated intervertebral discs. Histologically, absence of notochordal cells and occurrence of chondroid metaplasia were observed in the nucleus pulposus of chondrodystrophic dogs. As a result, we found that apoptosis plays a role in disc degeneration in chondrodystrophic dogs.

  3. Immunosuppressive effects of apoptotic cells

    Science.gov (United States)

    Voll, Reinhard E.; Herrmann, Martin; Roth, Edith A.; Stach, Christian; Kalden, Joachim R.; Girkontaite, Irute

    1997-11-01

    Apoptotic cell death is important in the development and homeostasis of multicellular organisms and is a highly controlled means of eliminating dangerous, damaged or unnecessary cells without causing an inflammatory response or tissue damage,. We now show that the presence of apoptotic cells during monocyte activation increases their secretion of the anti-inflammatory and immunoregulatory cytokine interleukin 10 (IL-10) and decreases secretion of the proinflammatory cytokines tumour necrosis factor-α (TNF-α), IL-1 and IL-12. This may inhibit inflammation and contribute to impaired cell-mediated immunity in conditions associated with increased apoptosis, such as viral infections, pregnancy, cancer and exposure to radiation.

  4. Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply

    Energy Technology Data Exchange (ETDEWEB)

    Spoden, Gilles A. [Department of Cell Metabolism and Differentiation, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck (Austria); Tumorvirology Research Group, Tyrolean Cancer Research Institute, Medical University Innsbruck, Innrain 66, 6020 Innsbruck (Austria); Rostek, Ursula; Lechner, Stefan; Mitterberger, Maria [Department of Cell Metabolism and Differentiation, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck (Austria); Mazurek, Sybille [Department for Biochemistry and Endocrinology, Veterinary Faculty, University of Giessen, 35392 Giessen (Germany); ScheBo Biotech AG, Netanyastrasse 3, 35394 Giessen (Germany); Zwerschke, Werner, E-mail: werner.zwerschke@oeaw.ac.at [Department of Cell Metabolism and Differentiation, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck (Austria); Tumorvirology Research Group, Tyrolean Cancer Research Institute, Medical University Innsbruck, Innrain 66, 6020 Innsbruck (Austria)

    2009-10-01

    The glycolytic key regulator pyruvate kinase M2 (M2-PK or PKM2) can switch between a highly active tetrameric and an inactive dimeric form. The transition between the two conformations regulates the glycolytic flux in tumor cells. We developed specific M2-PK-binding peptide aptamers which inhibit M2-PK, but not the 96% homologous M1-PK isoenzyme. In this study we demonstrate that, at normal blood glucose concentrations, peptide aptamer-mediated inhibition of M2-PK induces a significant decrease of the population doubling (PDL rate) and cell proliferation rate as well as an increase in cell size, whereas under glucose restriction an increase in PDL and cell proliferation rates but a decrease in cell size was observed. Moreover, M2-PK inhibition rescues cells from glucose starvation-induced apoptotic cell death by increasing the metabolic activity. These findings suggest that M2-PK is a metabolic sensor which regulates cell proliferation, cell growth and apoptotic cell death in a glucose supply-dependent manner.

  5. NAMPT inhibition synergizes with NQO1-targeting agents in inducing apoptotic cell death in non-small cell lung cancer cells.

    Science.gov (United States)

    Liu, Hui-Ying; Li, Qing-Ran; Cheng, Xue-Fang; Wang, Guang-Ji; Hao, Hai-Ping

    2016-08-01

    Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD(+), essential for a number of enzymes and regulatory proteins involved in a variety of cellular processes, including deacetylation enzyme SIRT1 which modulates several tumor suppressors such as p53 and FOXO. Herein we report that NQO1 substrates Tanshione IIA (TSA) and β-lapachone (β-lap) induced a rapid depletion of NAD(+) pool but adaptively a significant upregulation of NAMPT. NAMPT inhibition by FK866 at a nontoxic dose significantly enhanced NQO1-targeting agent-induced apoptotic cell death. Compared with TSA or β-lap treatment alone, co-treatment with FK866 induced a more dramatic depletion of NAD(+), repression of SIRT1 activity, and thereby the increased accumulation of acetylated FOXO1 and the activation of apoptotic pathway. In conclusion, the results from the present study support that NAMPT inhibition can synergize with NQO1 activation to induce apoptotic cell death, thereby providing a new rationale for the development of combinative therapeutic drugs in combating non-small lung cancer. PMID:27608947

  6. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi-Yano, Keiko; Akiyama, Hidenori [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555 (Japan)

    2013-08-30

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.

  7. Oral administration of Cr(VI) induced oxidative stress, DNA damage and apoptotic cell death in mice

    International Nuclear Information System (INIS)

    Potassium dichromate (Cr(VI)) was given orally to Swiss mice for 1 and 5 days with the dose of 25, 50 and 100 mg/kg body weight per day, respectively. Oxidative stress including the level of reactive oxygen species (ROS), the extent of lipid peroxidation and the activity of antioxidant enzymes in liver and kidney was determined. DNA damage in peripheral blood lymphocytes was determined by single-cell gel electrophoresis (comet assay). Apoptotic cell death in liver was detected using transmission electron microscopy and TUNEL assay. The results indicated that administration of Cr(VI) had caused a significant increase of ROS level in liver both after 1 and 5 days of exposure, accompanied with a dose-dependent decrease in superoxide dismutase (SOD) and catalase (CAT) activities. The malondialdehyde (MDA) content in liver was not changed as compared to the control animals. In contrast to the liver, no significant changes were observed in kidney on ROS, SOD, CAT and MDA as compared to the control animals. Dose- and time-dependent effects were observed on DNA damage after 1 and 5 days treatment. Significant difference was observed on the number of TUNEL positive liver cells between the control and Cr(VI) treatment groups. The apoptotic cells were also identified by characteristic ultrastructural features. The results obtained from the present study showed that Cr(VI) given orally to mice could induce dose- and time-dependent effects on DNA damage, hepatic oxidative stress and hepatocytes apoptosis. No significant oxidative stress observed in kidney in the study may suggest that the way of Cr(VI) exposure is an important factor affecting its toxicity

  8. Characterization of cyclin E expression in multiple myeloma and its functional role in seliciclib-induced apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Liat Josefsberg Ben-Yehoshua

    Full Text Available Multiple Myeloma (MM is a lymphatic neoplasm characterized by clonal proliferation of malignant plasma cell that eventually develops resistance to chemotherapy. Drug resistance, differentiation block and increased survival of the MM tumor cells result from high genomic instability. Chromosomal translocations, the most common genomic alterations in MM, lead to dysregulation of cyclin D, a regulatory protein that governs the activation of key cell cycle regulator--cyclin dependent kinase (CDK. Genomic instability was reported to be affected by over expression of another CDK regulator--cyclin E (CCNE. This occurs early in tumorigenesis in various lymphatic malignancies including CLL, NHL and HL. We therefore sought to investigate the role of cyclin E in MM. CCNE1 expression was found to be heterogeneous in various MM cell lines (hMMCLs. Incubation of hMMCLs with seliciclib, a selective CDK-inhibitor, results in apoptosis which is accompanied by down regulation of MCL1 and p27. Ectopic over expression of CCNE1 resulted in reduced sensitivity of the MM tumor cells in comparison to the paternal cell line, whereas CCNE1 silencing with siRNA increased the cell sensitivity to seliciclib. Adhesion to FN of hMMCLs was prevented by seliciclib, eliminating adhesion-mediated drug resistance of MM cells. Combination of seliciclib with flavopiridol effectively reduced CCNE1 and CCND1 protein levels, increased subG1 apoptotic fraction and promoted MM cell death in BMSCs co-culture conditions, therefore over-coming stroma-mediated protection. We suggest that seliciclib may be considered as essential component of modern anti MM drug combination therapy.

  9. Pterocarpans phaseollin and neorautenol isolated from Erythrina addisoniae induce apoptotic cell death accompanied by inhibition of ERK phosphorylation

    International Nuclear Information System (INIS)

    The genus Erythrina (Leguminosae), consisting of over 100 different species, is distributed in tropical regions. In traditional medicine, Erythrina species are used to treat cancer, but little is known about the anticancer mechanisms. From the stem bark of Erythrina addisoniae Hutch. and Dalziel, six prenylated pterocarpans were isolated and analysed for pharmacological activity: While calopocarpin, cristacarpin, orientanol c, and isoneorautenol showed only a weak or moderate toxicity in H4IIE hepatoma cells (EC50-value > 25 μM), the toxicity of neorautenol and phaseollin was in the low micromolar range (EC50-value: 1 and 1.5 μM, respectively). We further focused on these two substances showing that both increased caspase 3/7 activity and nuclear fragmentation as markers for apoptotic cell death. Neorautenol (10 μM, 2 h), but not phaseollin induced the formation of DNA strand breaks (comet assay). Both substances showed no effect on NF-κB signalling (SEAP assay: basal activity and stimulation with TNF-α), on the other hand both pterocarpans (10 μM, 2 h) decreased the activation of the ERK kinase (p44/p42), an mitogen activated protein kinase which is associated with cell proliferation. We conclude that the pterocarpans phaseollin and neorautenol may be responsible for the anticarcinogenic actions of the plant extract reported in the literature. Further analysis of these substances may lead to new pharmacons to be used in cancer therapy

  10. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyu An

    Full Text Available Anticancer properties and mechanisms of mimulone (MML, C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3 puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA, pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.

  11. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    Science.gov (United States)

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  12. Water Extract of Samultang Reduces Apoptotic Cell Death by H2O2-Induced Oxidative Injury in SK-N-MC Cells

    OpenAIRE

    Lee, Gyoung Wan; Kim, Min Sun

    2009-01-01

    The purpose of this study was to evaluate the effects of the water extract of Samultang (SMT), a Chinese herb, on apoptotic cell death by H2O2-induced oxidative stress in SK-N-MC cells. A nuclear fragmentation was observed via fluorescence imaging 12 h after exposure to 30 µM H2O2 and DNA laddering was detected via agarose electrophoresis gel. In addition, increases in sub-G1 phase and cleavage of the PARP protein were observed. However, treatment with SMT for 2 h prior to H2O2 exposure signi...

  13. Role of the mitochondria in immune-mediated apoptotic death of the human pancreatic β cell line βLox5.

    Directory of Open Access Journals (Sweden)

    Yaíma L Lightfoot

    Full Text Available Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA depleted βLox5 cells, or βLox5 ρ(0 cells. βLox5 ρ(0 cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ(0 cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways.

  14. Peroxynitrite decomposition catalyst prevents apoptotic cell death in a human astrocytoma cell line incubated with supernatants of HIV-infected macrophages

    Directory of Open Access Journals (Sweden)

    Perno Carlo

    2002-09-01

    Full Text Available Abstract Background Oxidative stress has shown to contribute in the mechanisms underlying apoptotic cell death occuring in AIDS-dementia complex. Here we investigated the role of peroxynitrite in apoptosis occurring in astroglial cells incubated with supernatants of HIV-infected human primary macrophages (M/M. Results Flow cytometric analysis (FACS of human cultured astrocytes shortly incubated with HIV-1-infected M/M supernatants showed apoptotic cell death, an effect accompanied by pronounced staining for nitrotyrosine (footprint of peroxynitrite and by abnormal formation of malondialdehyde (MDA. Pretreatment of astrocytes with the peroxynitrite decomposition catalyst FeTMPS antagonized HIV-related astrocytic apoptosis, MDA formation and nitrotyrosine staining. Conclusions Taken together, our results suggest that inibition of peroxynitrite leads to protection against peroxidative stress accompanying HIV-related apoptosis of astrocytes. Overall results support the role of peroxynitrite in HIV-related programmed death of astrocytes and suggest the use of peroxynitrite decomposition catalyst to counteract HIV-1-related neurological disorders.

  15. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  16. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    International Nuclear Information System (INIS)

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension

  17. Sitagliptin Prevents Inflammation and Apoptotic Cell Death in the Kidney of Type 2 Diabetic Animals

    Directory of Open Access Journals (Sweden)

    Catarina Marques

    2014-01-01

    Full Text Available This study aimed to evaluate the efficacy of sitagliptin, a dipeptidyl peptidase IV (DPP-IV inhibitor, in preventing the deleterious effects of diabetes on the kidney in an animal model of type 2 diabetes mellitus; the Zucker diabetic fatty (ZDF rat: 20-week-old rats were treated with sitagliptin (10 mg/kg bw/day during 6 weeks. Glycaemia and blood HbA1c levels were monitored, as well as kidney function and lesions. Kidney mRNA and/or protein content/distribution of DPP-IV, GLP-1, GLP-1R, TNF-α, IL-1β, BAX, Bcl-2, and Bid were evaluated by RT-PCR and/or western blotting/immunohistochemistry. Sitagliptin treatment improved glycaemic control, as reflected by the significantly reduced levels of glycaemia and HbA1c (by about 22.5% and 1.2%, resp. and ameliorated tubulointerstitial and glomerular lesions. Sitagliptin prevented the diabetes-induced increase in DPP-IV levels and the decrease in GLP-1 levels in kidney. Sitagliptin increased colocalization of GLP-1 and GLP-1R in the diabetic kidney. Sitagliptin also decreased IL-1β and TNF-α levels, as well as, prevented the increase of BAX/Bcl-2 ratio, Bid protein levels, and TUNEL-positive cells which indicates protective effects against inflammation and proapoptotic state in the kidney of diabetic rats, respectively. In conclusion, sitagliptin might have a major role in preventing diabetic nephropathy evolution due to anti-inflammatory and antiapoptotic properties.

  18. Apoptotic cell death during Drosophila oogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure.

    Science.gov (United States)

    Sagioglou, Niki E; Manta, Areti K; Giannarakis, Ioannis K; Skouroliakou, Aikaterini S; Margaritis, Lukas H

    2016-01-01

    Present generations are being repeatedly exposed to different types and doses of non-ionizing radiation (NIR) from wireless technologies (FM radio, TETRA and TV stations, GSM and UMTS phones/base stations, Wi-Fi networks, DECT phones). Although there is controversy on the published data regarding the non-thermal effects of NIR, studies have convincingly demonstrated bioeffects. Their results indicate that modulation, intensity, exposure duration and model system are important factors determining the biological response to irradiation. Attempting to address the dependence of NIR bioeffectiveness on these factors, apoptosis in the model biological system Drosophila melanogaster was studied under different exposure protocols. A signal generator was used operating alternatively under Continuous Wave (CW) or Frequency Modulation (FM) emission modes, at three power output values (10 dB, 0, -10 dB), under four carrier frequencies (100, 395, 682, 900 MHz). Newly emerged flies were exposed either acutely (6 min or 60 min on the 6th day), or repeatedly (6 min or 60 min daily for the first 6 days of their life). All exposure protocols resulted in an increase of apoptotic cell death (ACD) observed in egg chambers, even at very low electric field strengths. FM waves seem to have a stronger effect in ACD than continuous waves. Regarding intensity and temporal exposure pattern, EMF-biological tissue interaction is not linear in response. Intensity threshold for the induction of biological effects depends on frequency, modulation and temporal exposure pattern with unknown so far mechanisms. Given this complexity, translating such experimental data into possible human exposure guidelines is yet arbitrary. PMID:25333897

  19. Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells

    OpenAIRE

    Han, Sang Mi; Kim, Jung Min; Park, Kwan Kyu; Chang, Young Chae; Pak, Sok Cheon

    2014-01-01

    Background Free radicals are involved in neuronal cell death in human neurodegenerative diseases. Since ancient times, honeybee venom has been used in a complementary medicine to treat various diseases and neurologic disorders. Melittin, the main component of honeybee venom, has various biologic effects, including anti-bacterial, anti-viral, and anti-inflammatory activities. Methods We investigated the neuroprotective effects of melittin against H2O2-induced apoptosis in the human neuroblasto...

  20. Effects of Cigarette Smoke Condensate on Oxidative Stress, Apoptotic Cell Death, and HIV Replication in Human Monocytic Cells.

    Directory of Open Access Journals (Sweden)

    Pss Rao

    Full Text Available While cigarette smoking is prevalent amongst HIV-infected patients, the effects of cigarette smoke constituents in cells of myeloid lineage are poorly known. Recently, we have shown that nicotine induces oxidative stress through cytochrome P450 (CYP 2A6-mediated pathway in U937 monocytic cells. The present study was designed to examine the effect of cigarette smoke condensate (CSC, which contains majority of tobacco constituents, on oxidative stress, cytotoxicity, expression of CYP1A1, and/or HIV-1 replication in HIV-infected (U1 and uninfected U937 cells. The effects of CSC on induction of CYP1 enzymes in HIV-infected primary macrophages were also analyzed. The results showed that the CSC-mediated increase in production of reactive oxygen species (ROS in U937 cells is dose- and time-dependent. Moreover, CSC treatment was found to induce cytotoxicity in U937 cells through the apoptotic pathway via activation of caspase-3. Importantly, pretreatment with vitamin C blocked the CSC-mediated production of ROS and induction of caspase-3 activity. In U1 cells, acute treatment of CSC increased ROS production at 6H (>2-fold and both ROS (>2 fold and HIV-1 replication (>3-fold after chronic treatment. The CSC mediated effects were associated with robust induction in the expression of CYP1A1 mRNA upon acute CSC treatment of U937 and U1 cells (>20-fold, and upon chronic CSC treatment to U1 cells (>30-fold. In addition, the CYP1A1 induction in U937 cells was mediated through the aromatic hydrocarbon receptor pathway. Lastly, CSC, which is known to increase viral replication in primary macrophages, was also found to induce CYP1 enzymes in HIV-infected primary macrophages. While mRNA levels of both CYP1A1 and CYP1B1 were elevated following CSC treatment, only CYP1B1 protein levels were increased in HIV-infected primary macrophages. In conclusion, these results suggest a possible association between oxidative stress, CYP1 expression, and viral replication in

  1. Iodixanol induces apoptotic and antiproliferative effects but no necrotic cell death in renal proximal tubular cells in vitro

    International Nuclear Information System (INIS)

    Purpose: To evaluate the cytotoxic effects of the iso-osmolar contrast medium iodixanol on renal tubular cell cultures. Materials and Methods: LLC-PK1 cells were incubated with iodixanol and isotonic NaCl (18.75 - 75 mg I/ml, 1 - 24 hours). Cell death was assessed by the trypan blue exclusion test. To assess apoptosis, mononucleosomes and oligonucleosomes of cell lysates were determined. Measurement of BrdU (5-bromo-2'-deoxyuridine) incorporation into the DNA was used for the quantification of cell proliferation. Results: Iodixanol did not induce any significant increase in the number of necrotic cells (8 % and 9 % at 37.5 and 75 mg I/ml vs. 8 % for control, p > 0.05). In contrast, iodixanol significantly increased the number of oligonucleosomes indicating induction of apoptosis (125 ± 4 % of control, p < 0.05). Iodixanol induced a significant, dose- and time-dependent inhibition of BrdU incorporation indicating the inhibition of cell proliferation (92 ± 2 % and 79 ± 2 % of control at 18.75 and 37.5 mg I/ml, p < 0.001). (orig.)

  2. Iodixanol induces apoptotic and antiproliferative effects but no necrotic cell death in renal proximal tubular cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, M.C.; Scheer, M.; Heckmann, M.; Kuefner, M.A.; Uder, M. [Universitaetsklinikum Erlangen (Germany). Radiologisches Inst.

    2009-04-15

    Purpose: To evaluate the cytotoxic effects of the iso-osmolar contrast medium iodixanol on renal tubular cell cultures. Materials and Methods: LLC-PK1 cells were incubated with iodixanol and isotonic NaCl (18.75 - 75 mg I/ml, 1 - 24 hours). Cell death was assessed by the trypan blue exclusion test. To assess apoptosis, mononucleosomes and oligonucleosomes of cell lysates were determined. Measurement of BrdU (5-bromo-2'-deoxyuridine) incorporation into the DNA was used for the quantification of cell proliferation. Results: Iodixanol did not induce any significant increase in the number of necrotic cells (8 % and 9 % at 37.5 and 75 mg I/ml vs. 8 % for control, p > 0.05). In contrast, iodixanol significantly increased the number of oligonucleosomes indicating induction of apoptosis (125 {+-} 4 % of control, p < 0.05). Iodixanol induced a significant, dose- and time-dependent inhibition of BrdU incorporation indicating the inhibition of cell proliferation (92 {+-} 2 % and 79 {+-} 2 % of control at 18.75 and 37.5 mg I/ml, p < 0.001). (orig.)

  3. Expression of TNF-related apoptosis-inducing ligand (TRAIL in keratinocytes mediates apoptotic cell death in allogenic T cells

    Directory of Open Access Journals (Sweden)

    Kiefer Paul

    2009-11-01

    Full Text Available Abstract The objective of the present study was to evaluate the aptitude of TRAIL gene expression for inducing apoptosis in co-cultivated T-cells. This should allow preparing a strategy for the development of a durable, allogenic skin substitute based on the induction of an immune-privileged transplant. In order to counteract the significant potential of rejection in transplanted allogenic keratinocytes, we created a murine keratinocyte cell line which expressed TRAIL through stable gene transfer. The exogenic protein was localized on the cellular surface and was not found in soluble condition as sTRAIL. Contact to TRAIL expressing cells in co-culture induced cell death in sensitive Jurkat-cells, which was further intensified by lymphocyte activation. This cytotoxic effect is due to the induction of apoptosis. We therefore assume that the de-novo expression of TRAIL in keratinocytes can trigger apoptosis in activated lymphocytes and thus prevent the rejection of keratinocytes in allogenic, immune-privileged transplants.

  4. Exon-skipping strategy by ratio modulation between cytoprotective versus pro-apoptotic clusterin forms increased sensitivity of LNCaP to cell death.

    Directory of Open Access Journals (Sweden)

    Abdellatif Essabbani

    Full Text Available BACKGROUND: In prostate cancer the secreted form of clusterin (sCLU has been described as an anti-apoptotic protein whose expression is increased after therapeutic intervention, whereas, the nuclear protein form nCLU was reported to have pro-apoptotic properties. METHODOLOGY: In order to provide new therapeutic approaches targeting CLU, we developed a strategy based on exon skipping by using a lentiviral construct to preferentially induce the nuclear spliced form of the protein. The molecular construct was transduced in LNCaP cells for testing the modulation of sensitivity of the transduced cells to pro-apoptotic stress. RESULTS AND CONCLUSIONS: We showed an increase of nCLU/sCLU expression ratio in the prostate cancer cell line "LNCaP" after lentiviral vector-U7 nCLU transduction. Moreover, we showed a significant inhibition of cell proliferation in nCLU-U7 LNCaP cells after treatment with cisplatin and after exposure to ionizing radiation compared to control cells. Finally, we showed that nCLU-U7 LNCaP cells exposure to UV-C significantly reduced an increase of cell death compared to control. Finally, we showed that modulating nCLU expression had profound impact on Ku70/Bax interaction as well as Rad17 expression which could be a key mechanism in sensitizing cells to cell death. In conclusion, this is the first report showing that increasing of nCLU/sCLU expression ratio by using an "on demand alternative splicing" strategy successfully increased sensitivity to radiotherapy and chemotherapy of prostate cancer cells.

  5. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    International Nuclear Information System (INIS)

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT

  6. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States); Hei, Tom K. [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States)

    2013-04-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT.

  7. E2 Proteins from High- and Low-Risk Human Papillomavirus Types Differ in Their Ability To Bind p53 and Induce Apoptotic Cell Death

    OpenAIRE

    Parish, Joanna L; Kowalczyk, Anna; Chen, Hsin-Tien; Roeder, Geraldine E.; Sessions, Richard; Buckle, Malcolm; Gaston, Kevin

    2006-01-01

    The E2 proteins from oncogenic (high-risk) human papillomaviruses (HPVs) can induce apoptotic cell death in both HPV-transformed and non-HPV-transformed cells. Here we show that the E2 proteins from HPV type 6 (HPV6) and HPV11, two nononcogenic (low-risk) HPV types, fail to induce apoptosis. Unlike the high-risk HPV16 E2 protein, these low-risk E2 proteins fail to bind p53 and fail to induce p53-dependent transcription activation. Interestingly, neither the ability of p53 to activate transcri...

  8. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells

    Science.gov (United States)

    Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E.; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S.; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  9. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Angeliki Tiptiri-Kourpeti

    Full Text Available Probiotic microorganisms such as lactic acid bacteria (LAB exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof on murine (CT26 and human (HT29 colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 10(9 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells. In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 10(9 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain.

  10. Silymarin modulates doxorubicin-induced oxidative stress, Bcl-xL and p53 expression while preventing apoptotic and necrotic cell death in the liver

    International Nuclear Information System (INIS)

    The emergence of silymarin (SMN) as a natural remedy for liver diseases, coupled with its entry into NIH clinical trial, signifies its hepatoprotective potential. SMN is noted for its ability to interfere with apoptotic signaling while acting as an antioxidant. This in vivo study was designed to explore the hepatotoxic potential of Doxorubicin (Dox), the well-known cardiotoxin, and in particular whether pre-exposures to SMN can prevent hepatotoxicity by reducing Dox-induced free radical mediated oxidative stress, by modulating expression of apoptotic signaling proteins like Bcl-xL, and by minimizing liver cell death occurring by apoptosis or necrosis. Groups of male ICR mice included Control, Dox alone, SMN alone, and Dox with SMN pre/co-treatment. Control and Dox groups received saline i.p. for 14 days. SMN was administered p.o. for 14 days at 16 mg/kg/day. An approximate LD50 dose of Dox, 60 mg/kg, was administered i.p. on day 12 to animals receiving saline or SMN. Animals were euthanized 48 h later. Dox alone induced frank liver injury (> 50-fold increase in serum ALT) and oxidative stress (> 20-fold increase in malondialdehyde [MDA]), as well as direct damage to DNA (> 15-fold increase in DNA fragmentation). Coincident genomic damage and oxidative stress influenced genomic stability, reflected in increased PARP activity and p53 expression. Decreases in Bcl-xL protein coupled with enhanced accumulation of cytochrome c in the cytosol accompanied elevated indexes of apoptotic and necrotic cell death. Significantly, SMN exposure reduced Dox hepatotoxicity and associated apoptotic and necrotic cell death. The effects of SMN on Dox were broad, including the ability to modulate changes in both Bcl-xL and p53 expression. In animals treated with SMN, tissue Bcl-xL expression exceeded control values after Dox treatment. Taken together, these results demonstrated that SMN (i) reduced, delayed onset, or prevented toxic effects of Dox which are typically associated with

  11. Emodin Induces Apoptotic Death in Murine Myelomonocytic Leukemia WEHI-3 Cells In Vitro and Enhances Phagocytosis in Leukemia Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yuan-Chang Chang

    2011-01-01

    Full Text Available Emodin is one of major compounds in rhubarb (Rheum palmatum L., a plant used as herbal medicine in Chinese population. Although many reports have shown that emodin exhibits anticancer activity in many tumor cell types, there is no available information addressing emodin-affected apoptotic responses in the murine leukemia cell line (WEHI-3 and modulation of the immune response in leukemia mice. We investigated that emodin induced cytotoxic effects in vitro and affected WEHI-3 cells in vivo. This study showed that emodin decreased viability and induced DNA fragmentation in WEHI-3 cells. Cells after exposure to emodin for 24 h have shown chromatin condensation and DNA damage. Emodin stimulated the productions of ROS and Ca2+ and reduced the level of ΔΨm by flow cytometry. Our results from Western blotting suggest that emodin triggered apoptosis of WEHI-3 cells through the endoplasmic reticulum (ER stress, caspase cascade-dependent and -independent mitochondrial pathways. In in vivo study, emodin enhanced the levels of B cells and monocytes, and it also reduced the weights of liver and spleen compared with leukemia mice. Emodin promoted phagocytic activity by monocytes and macrophages in comparison to the leukemia mice group. In conclusions, emodin induced apoptotic death in murine leukemia WEHI-3 cells and enhanced phagocytosis in the leukemia animal model.

  12. Staurosporine-induced cell death in Tetrahymena thermophila has mixed characteristics of both apoptotic and autophagic degeneration

    DEFF Research Database (Denmark)

    Christensen, S T; Chemnitz, J; Straarup, E M; Kristiansen, Karsten; Wheatley, D N; Rasmussen, L

    phosphorylation of the PKC-specific substrate, myelin basic protein fragment 4-14. Our results show that cell death in the presence of staurosporine is associated with morphological and ultrastructural changes similar to both apoptosis and autophagic degeneration, but these in turn can be postponed or prevented...

  13. Soluble VEGF receptor 1 (sFLT1) induces non-apoptotic death in ovarian and colorectal cancer cells

    Science.gov (United States)

    Miyake, Tatsuya; Kumasawa, Keiichi; Sato, Noriko; Takiuchi, Tsuyoshi; Nakamura, Hitomi; Kimura, Tadashi

    2016-01-01

    Soluble Vascular Endothelial Growth Factor Receptor 1 (sVEGFR1/sFLT1) is an angiogenesis inhibitor that competes with angiogenic factors such as VEGF and Placental Growth Factor (PlGF). Imbalances of VEGF and sFLT1 levels can cause pathological conditions such as tumour growth or preeclampsia. We observed direct damage caused by sFLT1 in tumour cells. We exposed several kinds of cells derived from ovarian and colorectal cancers as well as HEK293T cells to sFLT1 in two ways, transfection and exogenous application. The cell morphology and an LDH assay revealed cytotoxicity. Additional experiments were performed to clarify how sFLT1 injured cells. In this study, non-apoptotic cell damage was found to be induced by sFLT1. Moreover, sFLT1 showed an anti-tumour effect in a mouse model of ovarian cancer. Our results suggest that sFLT1 has potential as a cancer therapeutic candidate. PMID:27103202

  14. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Fujita, Ken-Ichi; Tatsumi, Miki; Ogita, Akira; Kubo, Isao; Tanaka, Toshio

    2014-02-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae. PMID:24393541

  15. Neuroprotective effects of the Phellinus linteus ethyl acetate extract against H2O2-induced apoptotic cell death of SK-N-MC cells.

    Science.gov (United States)

    Choi, Doo Jin; Cho, Sarang; Seo, Jeong Yeon; Lee, Hyang Burm; Park, Yong Il

    2016-01-01

    Numerous studies have suggested that neuronal cells are protected against oxidative stress-induced cell damage by antioxidants, such as polyphenolic compounds. Phellinus linteus (PL) has traditionally been used to treat various symptoms in East Asian countries. In the present study, we prepared an ethyl acetate extract from the fruiting bodies of PL (PLEA) using hot water extraction, ethanol precipitation, and ethyl acetate extraction. The PLEA contained polyphenols as its major chemical component, and thus, we predicted that it may exhibit antioxidant and neuroprotective effects against oxidative stress. The results showed that the pretreatment of human brain neuroblastoma SK-N-MC cells with the PLEA (0.1-5 μg/mL) significantly and dose-dependently reduced the cytotoxicity of H2O2 and the intracellular ROS levels and enhanced the expression of HO-1 (heme oxygenase-1) and antioxidant enzymes, such as CAT (catalase), GPx-1 (glutathione peroxidase-1), and SOD-1 and -2 (superoxide dismutase-1 and -2). The PLEA also directly scavenged free radicals. PLEA pretreatment also significantly attenuated DNA fragmentation and suppressed the mRNA expression and activation of mitogen-activated protein kinases extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 kinase, which are induced by oxidative stress and lead to cell death. PLEA pretreatment inhibited the activation of the apoptosis-related proteins caspase-3 and poly (ADP-ribose) polymerase. These results demonstrate that the PLEA has neuroprotective effects against oxidative stress (H2O2)-induced neuronal cell death via its antioxidant and anti-apoptotic properties. PLEA should be investigated in an in vivo model on its potential to prevent or ameliorate neurodegenerative disease. PMID:26773779

  16. Crude saponins from Platycodon grandiflorum induce apoptotic cell death in RC-58T/h/SA#4 prostate cancer cells through the activation of caspase cascades and apoptosis-inducing factor.

    Science.gov (United States)

    Lee, Ju-Hye; Oh, Eun-Kyoung; Cho, Hyun-Dong; Kim, Jae-Yong; Lee, Mi-Kyung; Seo, Kwon-Il

    2013-04-01

    Saponins are a major active component of Platycodon grandiflorum (P. grandiflorum) and are known to induce apoptosis in metastatic prostate cancer cell lines. However, thus far, no research has been conducted on the anticancer activity of saponins in RC-58T/h/SA#4 primary prostate cancer cells. In this study, we show that the treatment of prostate cancer cells with saponins extracted from P. grandiflorum (SPG) inhibits cell proliferation in a dose-dependent manner. SPG significantly induced apoptotic cell death, resulting in an increase in the sub-G1 apoptotic cell population, apoptotic DNA fragmentation and morphological changes. Pre-treatment with a caspase inhibitor modestly attenuated the SPG-induced increase in the sub-G1 cell population, suggesting that caspases play a role in SPG-induced apoptosis. Moreover, SPG-induced apoptosis was associated with changes in caspase activity, the upregulation of the apoptotic protein, Bax and the downregulation of the anti-apoptotic protein, Bcl-2. Furthermore, the caspase-independent mitochondrial apoptosis factor, apoptosis-inducing factor (AIF) was upregulated following SPG treatment. These findings indicate that SPG exerts its anticancer effects on RC-58T/h/SA#4 primary prostate cancer cells through mitochondrial caspase-dependent and -independent apoptotic pathways. PMID:23443329

  17. Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Marie Lue Antony

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast, MCF-7 (breast, and HCT-116 (colon human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells and Bcl-2 (MCF-7 cells. Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study

  18. p62 prevents carbonyl cyanide m-chlorophenyl hydrazine (CCCP)-induced apoptotic cell death by activating Nrf2.

    Science.gov (United States)

    Park, Jeong Su; Kang, Dong Hoon; Bae, Soo Han

    2015-09-01

    Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) is a mitochondrial depolarizing agent that induces reactive oxygen species (ROS)-mediated cell death. The Nrf2-Keap1 pathway is crucial for the elimination of ROS in stressed cells. However, the molecular mechanism underlying the regulation of the Nrf2-Keap1 pathway in CCCP-induced cell death is unknown. In this study, we demonstrated that CCCP promotes Keap1 degradation, and thereby activates Nrf2. This CCCP-mediated Keap1 degradation is partly dependent on autophagy. Moreover, CCCP-induced Keap1 degradation is mainly reliant on p62, which functions as an adaptor protein during selective autophagy. Lack of p62 blocked CCCP-induced Keap1 degradation and inhibited Nrf2 activation, and thereby increased the accumulation of ROS. Ablation of p62 increased the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against oxidative stress through Keap1 degradation-mediated Nrf2 activation. PMID:26208452

  19. Methanolic extract of white asparagus shoots activates TRAIL apoptotic death pathway in human cancer cells and inhibits colon carcinogenesis in a preclinical model.

    Science.gov (United States)

    Bousserouel, Souad; Le Grandois, Julie; Gossé, Francine; Werner, Dalal; Barth, Stephan W; Marchioni, Eric; Marescaux, Jacques; Raul, Francis

    2013-08-01

    Shoots of white asparagus are a popular vegetable dish, known to be rich in many bioactive phytochemicals reported to possess antioxidant, and anti-inflammatory and antitumor activities. We evaluated the anticancer mechanisms of a methanolic extract of Asparagus officinalis L. shoots (Asp) on human colon carcinoma cells (SW480) and their derived metastatic cells (SW620), and Asp chemopreventive properties were also assessed in a model of colon carcinogenesis. SW480 and SW620 cell proliferation was inhibited by 80% after exposure to Asp (80 µg/ml). We demonstrated that Asp induced cell death through the activation of TRAIL DR4/DR5 death receptors leading to the activation of caspase-8 and caspase-3 and to cell apoptosis. By specific blocking agents of DR4/DR5 receptors we were able to prevent Asp-triggered cell death confirming the key role of DR4/DR5 receptors. We found also that Asp (80 µg/ml) was able to potentiate the effects of the cytokine TRAIL on cell death even in the TRAIL-resistant metastatic SW620 cells. Colon carcinogenesis was initiated in Wistar rats by intraperitoneal injections of azoxymethane (AOM), once a week for two weeks. One week after (post-initiation) rats received daily Asp (0.01%, 14 mg/kg body weight) in drinking water. After 7 weeks of Asp-treatment the colon of rats exhibited a 50% reduction of the number of preneoplastic lesions (aberrant crypt foci). In addition Asp induced inhibition of several pro-inflammatory mediators, in association with an increased expression of host-defense mediators. In the colonic mucosa of Asp-treated rats we also confirmed the pro-apoptotic effects observed in vitro including the activation of the TRAIL death‑receptor signaling pathway. Taken together, our data highlight the chemopreventive effects of Asp on colon carcinogenesis and its ability to promote normal cellular homeostasis. PMID:23754197

  20. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation.

    Science.gov (United States)

    Gama Sosa, Miguel A; De Gasperi, Rita; Hof, Patrick R; Elder, Gregory A

    2016-01-01

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1-/- embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1-/- cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1-/- cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1-/- cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1-/- cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1-/- cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway. PMID:27443835

  1. The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation

    International Nuclear Information System (INIS)

    The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is frequently deregulated in prostate cancer and associated with neoplastic transformation, malignant progression, and enhanced resistance to classical chemotherapy and radiotherapy. Thus, it is a promising target for therapeutic intervention. In the present study, the cytotoxic action of the Akt inhibitor Erufosine (ErPC3) was analyzed in prostate cancer cells and compared to the cytotoxicity of the PI3K inhibitor LY294002. Moreover, the efficacy of combined treatment with Akt inhibitors and ionizing radiation in prostate cancer cells was examined. Prostate cancer cell lines PC3, DU145, and LNCaP were treated with ErPC3 (1-100 µM), LY294002 (25-100 µM), irradiated (0-10 Gy), or subjected to combined treatments. Cell viability was determined by the WST-1 assay. Apoptosis induction was analyzed by flow cytometry after staining with propidium iodide in a hypotonic citrate buffer, and by Western blotting using antibodies against caspase-3 and its substrate PARP. Akt activity and regulation of the expression of Bcl-2 family members and key downstream effectors involved in apoptosis regulation were examined by Western blot analysis. The Akt inhibitor ErPC3 exerted anti-neoplastic effects in prostate cancer cells, however with different potency. The anti-neoplastic action of ErPC3 was associated with reduced phosphoserine 473-Akt levels and induction of apoptosis. PC3 and LNCaP prostate cancer cells were also sensitive to treatment with the PI3K inhibitor LY294002. However, the ErPC3-sensitive PC3-cells were less susceptible to LY294002 than the ErPC3-refractory LNCaP cells. Although both cell lines were largely resistant to radiation-induced apoptosis, both cell lines showed higher levels of apoptotic cell death when ErPC3 was combined with radiotherapy. Our data suggest that constitutive Akt activation and survival are controlled by different different molecular mechanisms in the two prostate cancer cell lines

  2. Wortmannin induces MCF-7 breast cancer cell death via the apoptotic pathway, involving chromatin condensation, generation of reactive oxygen species, and membrane blebbing

    Directory of Open Access Journals (Sweden)

    Akter R

    2012-07-01

    Full Text Available Rozina Akter,1 Md. Zakir Hossain,2 Maurice G Kleve,3 Michael A Gealt31Applied Biosciences Emphasis, Department of Applied Science, 2Graduate Institute of Technology, 3Department of Biology, College of Science and of Mathematics, University Arkansas at Little Rock, Little Rock, AR, USABackground: Apoptosis can be used as a reliable marker for evaluating potential chemotherapeutic agents. Because wortmannin is a microbial steroidal metabolite, it specifically inhibits the phosphatidyl inositol 3-kinase pathway, and could be used as a promising apoptosis-based therapeutic agent in the treatment of cancer. The objective of this study was to investigate the biomolecular mechanisms involved in wortmannin-induced cell death of breast cancer-derived MCF-7 cells.Methods and results: Our experimental results demonstrate that wortmannin has strong apoptotic effects through a combination of different actions, including reduction of cell viability in a dose-dependent manner, inhibition of proliferation, and enhanced generation of intracellular reactive oxygen species.Conclusion: Our findings suggest that wortmannin induces MCF-7 cell death via a programmed pathway showing chromatin condensation, nuclear fragmentation, reactive oxygen species, and membrane blebbing, which are characteristics typical of apoptosis.Keywords: wortmannin, human breast adenocarcinoma, apoptosis, reactive oxygen species, flow cytometry

  3. Synthetic catecholamine triggers β1-adrenergic receptor activation and stimulates cardiotoxicity via oxidative stress mediated apoptotic cell death in rats: Abrogating action of thymol.

    Science.gov (United States)

    Meeran, M F Nagoor; Jagadeesh, G S; Selvaraj, P

    2016-05-01

    Nowadays, there are considerable interests in the studies which are more connected with the impact of natural antioxidants against the free radical mediated damage in biological systems. Cardiotoxicity is one of the lethal manifestations of cardiovascular diseases (CVDs) which have been associated with the incidence of apoptotic cell death due to oxidative stress. We evaluated the impact of thymol, a dietary monoterpene phenol on isoproterenol (ISO), a synthetic catecholamine and a β1-adrenergic receptor agonist in rats. Thymol (7.5 mg/kg body weight) was pre and co-treated into male albino Wistar rats daily for a period of 7 days. Induction of cardiotoxicity was done by the subcutaneous administration of ISO (100 mg/kg body weight) into rats on 6th and 7th day. Cardiotoxicity in rats was confirmed by the increased levels/activity of serum troponin-T and creatine kinase in the serum alongwith decreased activity of creatine kinase in the heart. ISO induced cardiotoxic rats also showed a significant increase in the concentrations of lipid peroxidation products and a significant decrease in the activities/levels of antioxidants in the myocardium whereas Reverse Transcription Polymerase Chain Reaction study revealed an increased expression of caspase-8, caspase-9 and Fas genes along with a decreased expression of Bcl-xL gene in the myocardium. Thymol pre and co-treated ISO induced cardiotoxic rats showed considerable protective effects on all the biochemical parameters studied. Histopathological and in vitro findings are found in line with our biochemical findings. Thus, the present study revealed that thymol counters ISO induced cardiotoxicity by inhibiting oxidative stress and apoptotic cell death in rats by virtue of its potent antioxidant property. PMID:26996544

  4. Apoptotic cell death through inhibition of protein kinase CKII activity by 3,4-dihydroxybenzaldehyde purified from Xanthium strumarium.

    Science.gov (United States)

    Lee, Bang Hyo; Yoon, Soo-Hyun; Kim, Yun-Sook; Kim, Sang Kook; Moon, Byong Jo; Bae, Young-Seuk

    2008-01-01

    The CKII inhibitory compound was purified from the fruit of Xanthium strumarium by organic solvent extraction and silica gel chromatography. The inhibitory compound was identified as 3,4-dihydroxybenzaldehyde by analysis with FT-IR, FAB-Mass, EI-Mass, (1)H-NMR and (13)C-NMR. 3,4-dihydroxybenzaldehyde inhibited the phosphotransferase activity of CKII with IC(50) of about 783 microM. Steady-state studies revealed that the inhibitor acts as a competitive inhibitor with respect to the substrate ATP. A value of 138.6 microM was obtained for the apparent K(i). Concentration of 300 microM 3,4-dihydroxybenzaldehyde caused 50% growth inhibition of human cancer cell U937. 3,4-dihydroxybenzaldehyde-induced cell death was characterised with the cleavage of poly(ADP-ribose) polymerase and procaspase-3. Furthermore, the inhibitor induced the fragmentation of DNA into multiples of 180 bp, indicating that it triggered apoptosis. This induction of apoptosis by 3,4-dihydroxybenzaldehyde was also confirmed by using flow cytometry analysis. Since CKII is involved in cell proliferation and oncogenesis, these results suggest that 3,4-dihydroxybenzaldehyde may function by inhibiting oncogenic disease, at least in part, through the inhibition of CKII activity. PMID:19023807

  5. Expression of defender against apoptotic death (DAD-1) in iris and dianthus petals

    NARCIS (Netherlands)

    Kop, van der D.A.M.; Ruys, G.; Dees, D.; Schoot, van der C.; Boer, de A.D.; Doorn, van W.G.

    2003-01-01

    The gene defender against apoptotic death (DAD-1) prevents programmed cell death in animal cells. We investigated the expression pattern of DAD-1 in petals of iris (Iris x hollandica cv. Blue Magic) and carnation (Dianthus caryophyllus cv. Etarro). DAD-1 expression in Iris petals was strongly reduce

  6. Attenuation of Aβ25–35-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    International Nuclear Information System (INIS)

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ25–35-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ25–35 (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ25–35 treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ25–35 treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ25–35-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ25–35-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens or gypenosides. - Highlights:

  7. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    OpenAIRE

    Ivanov, Vladimir N.; Hei, Tom K.

    2012-01-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancer and severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pa...

  8. The pentacyclic triterpenoid, plectranthoic acid, a novel activator of AMPK induces apoptotic death in prostate cancer cells.

    Science.gov (United States)

    Akhtar, Nosheen; Syed, Deeba N; Khan, Mohammad Imran; Adhami, Vaqar M; Mirza, Bushra; Mukhtar, Hasan

    2016-01-26

    Epidemiologic studies indicated that diabetics treated with metformin had a lower incidence of cancer than those taking other anti-diabetes drugs. This led to a surge in the efforts for identification of safer and more effective metformin mimetic compounds. The plant Ficus microcarpa is widely used for the treatment of type 2 diabetes in traditional medicine in South Asia. We obtained extracts from this plant and identified a small molecule, plectranthoic acid (PA), with potent 5'AMP-activated kinase (AMPK) activating properties far superior than metformin. AMPK is the central hub of metabolic regulation and a well-studied therapeutic target for metabolic syndrome, type-2 diabetes and cancer. We observed that treatment of prostate cancer (PCa) cells with PA inhibited proliferation and induced G0/G1 phase cell cycle arrest that was associated with up-regulation of cyclin kinase inhibitors p21/CIP1 and p27/KIP1. PA treatment suppressed mTOR/S6K signaling and induced apoptosis in PCa cells in an AMPK-dependent manner. Interestingly, PA-induced autophagy in PCa cells was found to be independent of AMPK activation. Combination studies of PA and metformin demonstrated that metformin had an inhibitory effect on PA-induced AMPK activation and suppressed PA-mediated apoptosis. Given the anti-proliferative role of PA in cancer and its potent anti-hyperglycemic activity, we suggest that PA should be explored further as a novel activator of AMPK for its ultimate use for the prevention of cancers and treatment of type 2 diabetes. PMID:26683363

  9. Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death

    OpenAIRE

    Vaudry, David; Rousselle, Cécile; Basille, Magali; Falluel-Morel, Anthony; Pamantung, Tommy F.; Fontaine, Marc; Fournier, Alain; Vaudry, Hubert; Gonzalez, Bruno J

    2002-01-01

    Alcohol exposure during development can cause brain malformations and neurobehavioral abnormalities. In view of the teratogenicity of ethanol, identification of molecules that could counteract the neurotoxic effects of alcohol deserves high priority. Here, we report that pituitary adenylate cyclase-activating polypeptide (PACAP) can prevent the deleterious effect of ethanol on neuronal precursors. Exposure of cultured cerebellar granule cells to ethanol inhibited neurite outgrowth and provoke...

  10. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death.

    Science.gov (United States)

    Palem, Padmini P C; Kuriakose, Gini C; Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp--CrP14, obtained from stem tissues, and Talaromyces radicus--CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus--CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus--CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns. PMID:26697875

  11. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death.

    Directory of Open Access Journals (Sweden)

    Padmini P C Palem

    Full Text Available Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp--CrP14, obtained from stem tissues, and Talaromyces radicus--CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC, the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus--CrP20 (NCBI GenBank accession number KC920846. The production of vincristine and vinblastine by T. radicus--CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l in modified M2 medium and of vinblastine (70 μg/l in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns.

  12. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    International Nuclear Information System (INIS)

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl2 ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: ► Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. ► Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. ► Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca2+]i homeostasis. ► MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant potential or both.

  13. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek [Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior-474 002 (India); Binukumar, B.K.; Gill, Kiran Dip [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh-160 012 (India); Flora, Swaran J.S., E-mail: sjsflora@hotmail.com [Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior-474 002 (India)

    2011-11-15

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant

  14. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Akahane, K; Sanda, T; Mansour, M R; Radimerski, T; DeAngelo, D J; Weinstock, D M; Look, A T

    2016-01-01

    We previously found that tyrosine kinase 2 (TYK2) signaling through its downstream effector phospho-STAT1 acts to upregulate BCL2, which in turn mediates aberrant survival of T-cell acute lymphoblastic leukemia (T-ALL) cells. Here we show that pharmacologic inhibition of heat shock protein 90 (HSP90) with a small-molecule inhibitor, NVP-AUY922 (AUY922), leads to rapid degradation of TYK2 and apoptosis in T-ALL cells. STAT1 protein levels were not affected by AUY922 treatment, but phospho-STAT1 (Tyr-701) levels rapidly became undetectable, consistent with a block in signaling downstream of TYK2. BCL2 expression was downregulated after AUY922 treatment, and although this effect was necessary for AUY922-induced apoptosis, it was not sufficient because many T-ALL cell lines were resistant to ABT-199, a specific inhibitor of BCL2. Unlike ABT-199, AUY922 also upregulated the proapoptotic proteins BIM and BAD, whose increased expression was required for AUY922-induced apoptosis. Thus, the potent cytotoxicity of AUY922 involves the synergistic combination of BCL2 downregulation coupled with upregulation of the proapoptotic proteins BIM and BAD. This two-pronged assault on the mitochondrial apoptotic machinery identifies HSP90 inhibitors as promising drugs for targeting the TYK2-mediated prosurvival signaling axis in T-ALL cells. PMID:26265185

  15. Apoptotic Cells Are Cleared by Directional Migration and elmo1-Dependent Macrophage Engulfment

    OpenAIRE

    van Ham, Tjakko J.; Kokel, David; Peterson, Randall T.

    2012-01-01

    Apoptotic cell death is essential for development and tissue homeostasis [1, 2]. Failure to clear apoptotic cells can ultimately cause inflammation and autoimmunity [3, 4]. Apoptosis has primarily been studied by staining of fixed tissue sections, and a clear understanding of the behavior of apoptotic cells in living tissue has been elusive. Here, we use a newly developed technique [5] to track apoptotic cells in real time as they emerge and are cleared from the zebrafish brain. We find that ...

  16. Metabolic connections during apoptotic cell engulfment

    OpenAIRE

    Han, Claudia Z.; Ravichandran, Kodi S.

    2011-01-01

    Billions of cells die via apoptosis every day and are swiftly and efficiently removed. When a phagocyte engulfs an apoptotic cell, it essentially doubles its cellular contents, raising the question of how a phagocyte may manage the excess metabolic load. This review discusses phagocyte cellular metabolism, the digestion of the ingested apoptotic cell and the impact of these processes on engulfment.

  17. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures

    Directory of Open Access Journals (Sweden)

    Lucilia B. Lepsch

    2015-01-01

    Full Text Available To study cocaine’s toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2 and/or neuronal nucleus protein (NeuN staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mechanism, confirmed by TUNEL assay. Therefore, the present paper shows that cocaine causes apoptotic cell death and inhibition of the neurite prolongation in striatal and mesencephalic cell culture. These data suggest that if similar neuronal damage could be produced in the developing human brain, it could account for the qualitative or quantitative defects in neuronal pathways that cause a major handicap in brain function following prenatal exposure to cocaine.

  18. Cocaine Causes Apoptotic Death in Rat Mesencephalon and Striatum Primary Cultures

    OpenAIRE

    Lepsch, Lucilia B; Planeta, Cleopatra S.; Critoforo Scavone

    2015-01-01

    To study cocaine’s toxic effects in vitro, we have used primary mesencephalic and striatal cultures from rat embryonic brain. Treatment with cocaine causes a dramatic increase in DNA fragmentation in both primary cultures. The toxicity induced by cocaine was paralleled with a concomitant decrease in the microtubule associated protein 2 (MAP2) and/or neuronal nucleus protein (NeuN) staining. We also observed in both cultures that the cell death caused by cocaine was induced by an apoptotic mec...

  19. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of non-apoptotic cell death

    OpenAIRE

    Robinson, Michael W.; Overmeyer, Jean H.; Young, Ashley M.; Erhardt, Paul W.; Maltese, William A.

    2012-01-01

    Methuosis is a novel caspase-independent form of cell death in which massive accumulation of vacuoles derived from macropinosomes ultimately causes cells to detach from the substratum and rupture. We recently described a chalcone-like compound, 3-(2-methyl-1H indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (i.e. MIPP), which can induce methuosis in glioblastoma and other types of cancer cells. Herein we describe the synthesis and structure-activity relationships of a directed library of related co...

  20. Multiple doses of erythropoietin impair liver regeneration by increasing TNF-alpha, the Bax to Bcl-xL ratio and apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Katja Klemm

    Full Text Available BACKGROUND: Liver resection and the use of small-for-size grafts are restricted by the necessity to provide a sufficient amount of functional liver mass. Only few promising strategies to maximize liver regeneration are available. Apart from its erythropoiesis-stimulating effect, erythropoietin (EPO has meanwhile been recognized as mitogenic, tissue-protective, and anti-apoptotic pleiotropic cytokine. Thus, EPO may support regeneration of hepatic tissue. METHODOLOGY: Rats undergoing 68% hepatectomy received daily either high dose (5000 IU/kg bw i.v. or low dose (500 IU/kg bw i.v. recombinant human EPO or equal amounts of physiologic saline. Parameters of liver regeneration and hepatocellular apoptosis were assessed at 24 h, 48 h and 5 d after resection. In addition, red blood cell count, hematocrit and serum EPO levels as well as plasma concentrations of TNF-alpha and IL-6 were evaluated. Further, hepatic Bcl-x(L and Bax protein expression were analyzed by Western blot. PRINCIPAL FINDINGS: Administration of EPO significantly reduced the expression of PCNA at 24 h followed by a significant decrease in restitution of liver mass at day 5 after partial hepatectomy. EPO increased TNF-alpha levels and shifted the Bcl-x(L to Bax ratio towards the pro-apoptotic Bax resulting in significantly increased hepatocellular apoptosis. CONCLUSIONS: Multiple doses of EPO after partial hepatectomy increase hepatocellular apoptosis and impair liver regeneration in rats. Thus, careful consideration should be made in pre- and post-operative recombinant human EPO administration in the setting of liver resection and transplantation.

  1. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration.

    Science.gov (United States)

    Hong, Jing-Fang; Song, Ying-Fang; Liu, Zheng; Zheng, Zhao-Cong; Chen, Hong-Jie; Wang, Shou-Sen

    2016-06-01

    The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle‑associated proteins and autophagy‑linked LC3B‑II proteins. The results demonstrated that taraxerol acetate induced dose‑ and time‑dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate‑treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub‑G1 cell cycle arrest with a corresponding decrease in the number of S‑phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate‑buffered saline (PBS)‑treated group (control) to 0.81 and 0.42

  2. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration

    Science.gov (United States)

    HONG, JING-FANG; SONG, YING-FANG; LIU, ZHENG; ZHENG, ZHAO-CONG; CHEN, HONG-JIE; WANG, SHOU-SEN

    2016-01-01

    The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle-associated proteins and autophagy-linked LC3B-II proteins. The results demonstrated that taraxerol acetate induced dose- and time-dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate-treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub-G1 cell cycle arrest with a corresponding decrease in the number of S-phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate-buffered saline (PBS)-treated group (control) to 0.81 and 0.42 g, respectively. Similarly, 0.25 and 0

  3. The curious world of apoptotic cell clearance

    OpenAIRE

    Weitzman, Jonathan B

    2004-01-01

    Analysis of knockout mice has brought into question the previously proposed role of the phosphatidylserine receptor (Ptdsr) in the clearance of apoptotic cell corpses, and has suggested important functions in regulating differentiation and inflammation.

  4. Surface code—biophysical signals for apoptotic cell clearance

    International Nuclear Information System (INIS)

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes. (paper)

  5. 甲硝唑诱导阴道毛滴虫凋亡样细胞死亡%Induction of Apoptotic-like Cell Death in Trichomonas vaginalis by Metronidazole

    Institute of Scientific and Technical Information of China (English)

    邓致刚; 黄景政; 辛致炜; 张仁利; 刘居理; 傅玉才

    2007-01-01

    目的 凋亡或程序性细胞死亡在多细胞生物体中已经被广泛研究,然而,关于单细胞寄生性原生动物细胞凋亡发生的分子机制却知之甚少.本研究旨在了解甲硝唑诱导阴道毛滴虫细胞凋亡的特征.方法 培养阴道毛滴虫并用不同浓度的甲硝唑进行处理.在不同的时间间隔进行活细胞计数.提取甲硝唑处理过的阴道毛滴虫基因组进行DNA断裂片段检测.用DNA断端末端标记(TUNEL)法测定甲硝唑处理后阴道毛滴虫核酸内切酶活性.流式细胞检测分析脂酰丝氨酸暴露情况.结果 甲硝唑可以诱导阴道毛滴虫出现凋亡样细胞死亡.这种凋亡样细胞死亡表现为细胞皱缩,磷脂酰丝氨酸暴露以及核染色体凝聚,但并未检测到寡核苷酸DNA梯带.结论 阴道毛滴虫程序性细胞死亡的调节通路不同于多细胞生物体.确定导致原生动物细胞死亡的凋亡通路也许最终可用于鉴定新的治疗靶点.%Objective Apoptosis or programmed cell death(PCD) has been studied extensively in multicellular organisms,however,very little is known about the molecular mechanisms by which apoptosis occurs in unicellular protozoan parasites.The aim of this study is to characterize the apoptosis or PCD of Trichomonas vaginalis induced by metronidazole (MTZ).Methods T. Vaginalis strain cultures were treated with various concentrations of MTZ and the number of viable cells were determined at different time intervals.The genomic DNA of MTZ treated T. Vaginalis was extracted and DNA fragmentation was analyzed.TUNEL assay was carried out to detect the endonuclease activity in T. Vaginalis after MTZ treatment.Flow cytometric analysis was used to analyse the phosphatidylserine (PS) exposure of T. Vaginalis.Results Metronidazole (MTZ) induced an apoptotic-like cell death in T. Vaginalis.This apoptotic-like cell death was demonstrated by cell shrinkage,phosphatidylserine exposure,and nuclear chromatin condensation

  6. DRP1-dependent apoptotic mitochondrial fission occurs independently of BAX, BAK and APAF1 to amplify cell death by BID and oxidative stress.

    Science.gov (United States)

    Oettinghaus, Björn; D'Alonzo, Donato; Barbieri, Elisa; Restelli, Lisa Michelle; Savoia, Claudia; Licci, Maria; Tolnay, Markus; Frank, Stephan; Scorrano, Luca

    2016-08-01

    During apoptosis mitochondria undergo cristae remodeling and fragmentation, but how the latter relates to outer membrane permeabilization and downstream caspase activation is unclear. Here we show that the mitochondrial fission protein Dynamin Related Protein (Drp) 1 participates in cytochrome c release by selected intrinsic death stimuli. While Bax, Bak double deficient (DKO) and Apaf1(-/-) mouse embryonic fibroblasts (MEFs) were less susceptible to apoptosis by Bcl-2 family member BID, H2O2, staurosporine and thapsigargin, Drp1(-/-) MEFs were protected only from BID and H2O2. Resistance to cell death of Drp1(-/-) and DKO MEFs correlated with blunted cytochrome c release, whereas mitochondrial fragmentation occurred in all cell lines in response to all tested stimuli, indicating that other mechanisms accounted for the reduced cytochrome c release. Indeed, cristae remodeling was reduced in Drp1(-/-) cells, potentially explaining their resistance to apoptosis. Our results indicate that caspase-independent mitochondrial fission and Drp1-dependent cristae remodeling amplify apoptosis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26997499

  7. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    OpenAIRE

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation ...

  8. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2016-01-01

    Full Text Available Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson’s disease (PD. However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P<0.0001 upregulated ferroportin 1 expression and significantly (P<0.05 decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P<0.05 and DNA fragmentation by 29% (P=0.086 and increased cell viability by 22% (P<0.05. In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P<0.05 and intracellular iron by 28% (P<0.01, indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1.

  9. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease.

    Science.gov (United States)

    Xu, Qi; Kanthasamy, Anumantha G; Jin, Huajun; Reddy, Manju B

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P export mediated by ferroportin 1. PMID:27298749

  10. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease

    Science.gov (United States)

    Xu, Qi; Kanthasamy, Anumantha G.; Jin, Huajun; Reddy, Manju B.

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1. PMID:27298749

  11. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  12. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB1 receptor, but not by the CB2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB1 receptors

  13. The transcription factor SKN7 regulates conidiation, thermotolerance, apoptotic-like cell death and parasitism in the nematode endoparasitic fungus Hirsutella minnesotensis.

    Science.gov (United States)

    Hussain, Muzammil; Hamid, M Imran; Wang, Niuniu; Bin, Lin; Xiang, Meichun; Liu, Xingzhong

    2016-01-01

    The transcription factor SKN7 is a highly conserved protein among fungi and was initially recognized as a response regulator that protects cells from oxidative stress and maintains cell wall integrity in yeast. Orthologs of SKN7 are extensively present in biocontrol agents of plant pathogens, but they had not been functionally characterized. Here, we identified and characterized the transcription factor SKN7 in the nematode endoparasitic fungus Hirsutella minnesotensis. Null mutant lacking HIM-SKN7 (HIM_03620), which was generated by a gene disruption strategy, demonstrated reduced conidiation, increased sensitivity to high temperature, hydrogen peroxide, mannitol and ethanol, and reduced fungal resistance to farnesol. However, over-expression mutant showed increased conidial production, thermotolerance and resistance to farnesol, suggesting that HIM-SKN7 regulates antiapoptotic-like cell death in H. minnesotensis. Moreover, the results showed that in null mutant, H. minnesotensis had decreased endoparasitic ability as compared to wild type and over-expression strain. During the infection process, the relative expression of the HIM-SKN7 gene was significantly induced in the wild type and over-expression strain. The results of the present study advance our understanding of the functions of the SKN7 gene in biocontrol agents, in particular, nematode endoparasitic fungi. PMID:27436205

  14. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe2O4

    Science.gov (United States)

    Oh, Yunok; Lee, Nohyun; Kang, Hyun Wook; Oh, Junghwan

    2016-03-01

    Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.

  15. Multiple Doses of Erythropoietin Impair Liver Regeneration by Increasing TNF-α, the Bax to Bcl-xL Ratio and Apoptotic Cell Death

    OpenAIRE

    Katja Klemm; Christian Eipel; Daniel Cantré; Kerstin Abshagen; Menger, Michael D.; Brigitte Vollmar

    2008-01-01

    BACKGROUND: Liver resection and the use of small-for-size grafts are restricted by the necessity to provide a sufficient amount of functional liver mass. Only few promising strategies to maximize liver regeneration are available. Apart from its erythropoiesis-stimulating effect, erythropoietin (EPO) has meanwhile been recognized as mitogenic, tissue-protective, and anti-apoptotic pleiotropic cytokine. Thus, EPO may support regeneration of hepatic tissue. METHODOLOGY: Rats undergoing 68% hepat...

  16. Apoptotic cells are cleared by directional migration and elmo1- dependent macrophage engulfment.

    Science.gov (United States)

    van Ham, Tjakko J; Kokel, David; Peterson, Randall T

    2012-05-01

    Apoptotic cell death is essential for development and tissue homeostasis. Failure to clear apoptotic cells can ultimately cause inflammation and autoimmunity. Apoptosis has primarily been studied by staining of fixed tissue sections, and a clear understanding of the behavior of apoptotic cells in living tissue has been elusive. Here, we use a newly developed technique to track apoptotic cells in real time as they emerge and are cleared from the zebrafish brain. We find that apoptotic cells are remarkably motile, frequently migrating several cell diameters to the periphery of living tissues. F-actin remodeling occurs in surrounding cells, but also within the apoptotic cells themselves, suggesting a cell-autonomous component of motility. During the first 2 days of development, engulfment is rare, and most apoptotic cells lyse at the brain periphery. By 3 days postfertilization, most cell corpses are rapidly engulfed by macrophages. This engulfment requires the guanine nucleotide exchange factor elmo1. In elmo1-deficient macrophages, engulfment is rare and may occur through macropinocytosis rather than directed engulfment. These findings suggest that clearance of apoptotic cells in living vertebrates is accomplished by the combined actions of apoptotic cell migration and elmo1-dependent macrophage engulfment. PMID:22503503

  17. Attenuation of Aβ{sub 25–35}-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangbao; Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China); Sun, Guibo, E-mail: sunguibo@126.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China); Ye, Jingxue [Jilin Agricultural University, Changchun, Jilin 130021 (China); Zhou, Yanhui [Center of Cardiology, People' s Hospital of Jilin Province, Changchun, 130021, Jilin (China); Dong, Xi [Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Wang, Tingting; Lu, Shan [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China); Sun, Xiaobo, E-mail: sun_xiaobo163@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193 (China)

    2014-08-15

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ{sub 25–35}-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ{sub 25–35} (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ{sub 25–35} treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ{sub 25–35} treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ{sub 25–35}-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ{sub 25–35}-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens

  18. Artesunate induces necrotic cell death in schwannoma cells

    OpenAIRE

    Button, R W; Lin, F.; Ercolano, E; Vincent, J H; Hu, B.; Hanemann, C O; Luo, S

    2014-01-01

    Established as a potent anti-malaria medicine, artemisinin-based drugs have been suggested to have anti-tumour activity in some cancers. Although the mechanism is poorly understood, it has been suggested that artemisinin induces apoptotic cell death. Here, we show that the artemisinin analogue artesunate (ART) effectively induces cell death in RT4 schwannoma cells and human primary schwannoma cells. Interestingly, our data indicate for first time that the cell death induced by ART is largely ...

  19. Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri.

    Directory of Open Access Journals (Sweden)

    Sudip Bhattacharyya

    Full Text Available Aspirin has been used for a long time as an analgesic and anti-pyretic drug. Limitations of its use, however, remain for the gastro-intestinal side effects and erosions. Although the role of aspirin on gastro-intestinal injury has been extensively studied, the molecular mechanisms underlying aspirin-induced liver and spleen pathophysiology are poorly defined. The present study has been conducted to investigate whether phyllanthus niruri protein (PNP possesses any protective role against aspirin mediated liver and spleen tissue toxicity, and if so, what signaling pathways it utilizes to convey its protective action. Aspirin administration in mice enhanced serum marker (ALP levels, reactive oxygen species (ROS generation, reduced antioxidant power and altered oxidative stress related biochemical parameters in liver and spleen tissues. Moreover, we observed that aspirin intoxication activated both the extrinsic and intrinsic apoptotic pathways, as well as down regulated NF-κB activation and the phosphorylation of p38 and JNK MAPKs. Histological assessments and TUNEL assay also supported that aspirin induced tissue damages are apoptotic in nature. PNP treatment after aspirin exposure effectively neutralizes all these abnormalities via the activation of survival PI3k/Akt pathways. Combining all results suggest that PNP could be a potential protective agent to protect liver and spleen from the detrimental effects of aspirin.

  20. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells.

    Science.gov (United States)

    Shrotriya, Sangeeta; Deep, Gagan; Lopert, Pamela; Patel, Manisha; Agarwal, Rajesh; Agarwal, Chapla

    2015-12-01

    Head and neck squamous cell carcinoma (HNSCC) is a major killer worldwide and innovative measures are urgently warranted to lower the morbidity and mortality caused by this malignancy. Aberrant redox and metabolic status in HNSCC cells offer a unique opportunity to specifically target cancer cells. Therefore, we investigated the efficacy of grape seed extract (GSE) to target the redox and bioenergetic alterations in HNSCC cells. GSE treatment decreased the mitochondrial electron transport chain complex III activity, increased the mitochondrial superoxide levels and depleted the levels of cellular antioxidant (glutathione), thus resulting in the loss of mitochondrial membrane potential in human HNSCC Detroit 562 and FaDu cells. Polyethylene glycol-SOD addition reversed the GSE-mediated apoptosis without restoring complex III activity. Along with redox changes, GSE inhibited the extracellular acidification rate (representing glycolysis) and oxygen consumption rate (indicating oxidative phosphorylation) leading to metabolic stress in HNSCC cells. Molecular studies revealed that GSE activated AMP-activated protein kinase (AMPK), and suppressed Akt/mTOR/4E-BP1/S6K signaling in both Detroit 562 and FaDu cells. Interestingly, GSE increased the autophagic load specifically in FaDu cells, and autophagy inhibition significantly augmented the apoptosis in these cells. Consistent with in vitro results, in vivo analyses also showed that GSE feeding in nude mice activated AMPK and induced-autophagy in FaDu xenograft tumor tissues. Overall, these findings are innovative as we for the first time showed that GSE targets ETC complex III and induces oxidative and metabolic stress, thereby, causing autophagy and apoptotic death in HNSCC cells. PMID:25557495

  1. Radiation induced membrane oxidative damage in apoptotic death of mouse thymocytes

    International Nuclear Information System (INIS)

    Full text: Radiation oxidative damage to plasma membrane of cells and consequent mechanism of apoptotic death have been receiving growing attention of radiation scientists in recent years. We have employed fluorescence probe method to determine changes in the permeability and fluidity of plasma membrane of mouse thymocytes after gamma irradiation (∼ cGy to 10 Gy ). In vitro studies have shown that radiation induced membrane changes were correlated with the induction of apoptoic cell death. Studies have also been carried out to evaluate generation of intracellular reactive oxygen species (ROS) in response to radio-oxidative damage to thymocytes using a cytosolic fluorescence probe, 2',7'-dichlorodihydrofluorescein diacetate (DCH-FDA). The apoptosis of thymocytes was determined by measuring nuclear diameter using propidium iodide staining and nuclear DNA fragmentation. The viability of thymocytes was determined by trypan blue exclusion method that was found to gradually decrease after incubation of irradiated cells. Thymocytes labeled with DCH-FDA in PBS showed remarkably increased fluorescence intensity measured after 30 min. of 10 Gy radiation exposure indicating an enhanced formation of intracelluar ROS. DCH-FDA probe was found to sensitively detect g radiation effects on cells at low doses (10-50 cGy). The population of thymocytes with reduced nuclear diameter was found to progressively increase with the post-irradiation incubation. Moreover, fragmentation of nuclear DNA in irradiated thymocytes, as observed by ladder formation on agarose gel, was found to significantly increase after exposure to a particular radiation dose. Results suggest that increased intracellular reactive oxygen species generated in response to radio-oxidative stress were correlated with the induction of radiation induced apoptotic death in thymocytes. These observations and a highlight of emerging scenario of ionizing radiation effects on cell and membrane will be presented

  2. Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia

    International Nuclear Information System (INIS)

    Research highlights: → Ischemia induces high level of iPLA2 resulting in caspase-independent myocyte death. → Urocortin causes iPLA2 down-regulation leading to avoidance of non-apoptotic death. → The survival-promoting effect of urocortin is abrogated by CRH receptor antagonist. -- Abstract: Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A2 (iPLA2) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of ∼10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA2, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.

  3. Salivary apoptotic cells in oral (pre-) cancer as a potential diagnostic means

    OpenAIRE

    Kaur, Jasdeep; Politis, Constantinus; Jacobs, Reinhilde

    2015-01-01

    Background Apoptosis is a genetically programmed form of cell death which is indispensable for development and homeostasis of multi-cellular organism. Objectives The aim of this study was to find out the salivary apoptotic cells in oral precancerous and cancerous patients and furthermore to observe the potential diagnostic value of salivary apoptotic cells in detection of oral pre-cancer and cancer. Material and Methods Unsimulated saliva was collected from a group of 103 subjects diagnosed w...

  4. Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways

    OpenAIRE

    Xiong, Xin-xin; Liu, Ju-mei; Qiu, Xin-yao; Pan, Feng; Yu, Shang-bin; Xiao-qian CHEN

    2015-01-01

    Aim: To investigate the effects of piperlongumine (PL), an anticancer alkaloid from long pepper plants, on the primary myeloid leukemia cells from patients and the mechanisms of action. Methods: Human BM samples were obtained from 9 patients with acute or chronic myeloid leukemias and 2 patients with myelodysplastic syndrome (MDS). Bone marrow mononuclear cells (BMMNCs) were isolated and cultured. Cell viability was determined using MTT assay, and apoptosis was examined with PI staining or fl...

  5. 纳秒脉冲诱导SKOV3细胞凋亡的死亡受体途径分析%Analysis on Death Receptor Apoptotic Pathway of SKOV3 Cells Induced by Nanosecond Pulsed Electric Field

    Institute of Scientific and Technical Information of China (English)

    郭飞; 姚陈果; 王建; 孙才新; 夏如民; 唐均英

    2012-01-01

    The specific bioelectric effect of tumor cells apoptosis induced by nanosecond pulsed electric field ( nsPEF) has aroused great attention. Based on the latest studies, the effects of nsPEF on plasma membrane were illustrated to study the signaling pathway of death receptor apoptotic. Therefore, optimized parameters (voltage amplitude of 9 kV, pulse duration of 100 ns, pulse number of 30, repetition frequency of 1 Hz) of nsPEF were performed on SKOVa cells. Cell death and apoptosis were tested by flow cytometry, massager ribonucleic acid[mRNA) release of Fas, FasL, cysteine aspartic acid specific protease-8 (Caspase 8) and Bid were examined by reverse transcription-polymerase chain reaction(RT-PCR) method, and protein release of Fas, FasL, Caspase-8 and Bid were studied by western blot technology. Experimental results indicate that release of Fas, FasL, Caspase-8 and Bid greatly increase when tumor cell apoptosis with nsPEF, in advance to trigger the apoptotic signaling pathway of death receptor. The results provide a theoretic support for clinical tumor treatment with boarding the mechanism study of nsPEF-indueed apoptosis.%ns脉冲电场独特的诱导肿瘤细胞凋亡的生物电效应,引起了相关学者广泛的关注。为此,结合最新研究成果,侧重于ns脉冲对细胞膜结构和功能的影响,重点研究ns脉冲电场诱导肿瘤细胞凋亡的死亡受体途径。将优化的脉冲电场参数组合(电压幅值为9kV,脉宽为100ns,脉冲为30个,频率为1Hz)作用于人卵巢浆液性囊腺癌细胞SKOV3。利用流式细胞术和凝胶电泳法检测细胞凋亡、坏死情况;逆转录聚合酶链式扩增反应(reverse transcription-polymerase chain reaction,RT-PCR)法检测Fas、FasL、半胱氨酸天冬氨酸蛋白酶-8(cysteine aspartic acid specific protease-8,Caspase-8)和Bid的信使核糖核酸(messager ribonucleic acid,mRNA)释放水平;蛋白质印迹(western blot

  6. Lysosomal cell death at a glance

    DEFF Research Database (Denmark)

    Aits, Sonja; Jaattela, Marja

    2013-01-01

    Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of...... cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream...

  7. Folate deficiency triggers an oxidative-nitrosative stress-mediated apoptotic cell death and impedes insulin biosynthesis in RINm5F pancreatic islet β-cells: relevant to the pathogenesis of diabetes.

    Directory of Open Access Journals (Sweden)

    Hung-Chih Hsu

    Full Text Available It has been postulated that folic acid (folate deficiency (FD may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO. The latter compound could then trigger depletion of endoplasmic reticulum (ER calcium (Ca(2+ store leading to cytosolic Ca(2+ overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular glutathione (GSH and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes.

  8. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  9. Synthesis of apoptotic chalcone analogues in HepG2 human hepatocellular carcinoma cells.

    Science.gov (United States)

    Park, Cheon-Soo; Ahn, Yongchel; Lee, Dahae; Moon, Sung Won; Kim, Ki Hyun; Yamabe, Noriko; Hwang, Gwi Seo; Jang, Hyuk Jai; Lee, Heesu; Kang, Ki Sung; Lee, Jae Wook

    2015-12-15

    Eight chalcone analogues were prepared and evaluated for their cytotoxic effects in human hepatoma HepG2 cells. Compound 5 had a potent cytotoxic effect. The percentage of apoptotic cells was significantly higher in compound 5-treated cells than in control cells. Exposure to compound 5 for 24h induced cleavage of caspase-8 and -3, and poly (ADP-ribose) polymerase (PARP). Our findings suggest that compound 5 is the active chalcone analogue that contributes to cell death in HepG2 cells via the extrinsic apoptotic pathway. PMID:26564263

  10. Role of membrane and cellular oxidative damage in gamma radiation induced apoptotic death in mouse thymocytes

    International Nuclear Information System (INIS)

    Full text: Involvement of plasma membrane in the molecular mechanism of radiation-induced apoptotic death has increasingly been recognized by radiobiologists in the recent years. In present investigation, alterations in plasma membrane and the associated cytoplasmic / nuclear events were studied in apoptotic mouse thymocytes after gamma radiation exposure. The membrane oxidative damage in irradiated thymocytes was determined by thiobarbituric acid reactive species (TBARS) method and change in membrane permeability was estimated employing fluorescein diacetate (FDA) as fluorescent probe. Radiation-induced apoptotic thymocytes showed an increase in membrane permeability as observed by leakage of FDA, while trypan blue failed to respond. Moreover, using fluorescence technique, the changes in thymocytes membrane permeability could be sensitively determined within low to moderate radiation doses (2 cGy to 2 Gy). The dose dependent increase in intra-cellular reactive oxygen species (ROS) generation was found in irradiated thymocytes determined by fluorescence method, which could sensitively detect the radiation exposure in sub cGy range. Radiation induced membrane changes were found correlated with induction of apoptotic death determined by annexin-V method, caspase-3 assay, measuring nuclear diameter using propidium iodide (PI) staining and DNA fragmentation by gel electrophoresis. It has been also shown that membrane associated events observed in radiation induced apoptotic thymocytes are prior to nuclear / cytosolic processes. The membrane lipid peroxidation, cellular oxidative damage and apoptosis in radiation treated thymocytes were significantly inhibited by membrane-localized antioxidants suggesting significant contribution of membrane damage and oxidative stress in radiation mediated apoptosis in thymocytes

  11. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    Directory of Open Access Journals (Sweden)

    Xiaowan Wang

    2014-11-01

    Full Text Available NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke.

  12. Inducible cell death in plant immunity

    DEFF Research Database (Denmark)

    Hofius, Daniel; Tsitsigiannis, Dimitrios I; Jones, Jonathan D G;

    2006-01-01

    Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack......, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these...... pathways and their molecular components in plants are reviewed here....

  13. In vitro assays for predicting tumor cell response to radiation by apoptotic pathways

    International Nuclear Information System (INIS)

    Purpose: We had previously shown that the rate of spontaneous and radiation-induced apoptosis was significantly greater in well-differentiated compared to anaplastic Dunning prostate carcinomas. The goal of this study was to define the most useful assay for quantifying radiation-induced apoptotic cell death and to determine if measured rates of radiation-induced apoptosis in tumor cell populations can predict treatment outcome. Materials and Methods: The time course and extent of radiation-induced apoptosis after single doses of Cesium-137 gamma-rays were measured by five different assays. These included gross DNA degradation, nucleosome ladder formation, labeling of 3'-OH ends in DNA with an immunofluorescence probe, immunofluorescence vital stains (LIVE/DEAD[reg] EUKOLIGHTTM) and trypan blue. The majority of these studies were performed with DU-145 human prostate cells. Data was analyzed to determine the component of cell inactivation resulting from apoptosis with the modified linear quadratic equation, -1n (SF) = (αa + αp) D + βpD2, were αa represents cell inactivation by radiation-induced apoptosis, αp and βp represent cell death by proliferative mechanisms and D represents radiation dose. Results: These studies indicated that DU-145 cell death after radiation occurs over two distinct time periods. The first phase of death begins shortly after irradiation and plateaus within 16-24 hr. This process of cell death has properties consistent with apoptosis as determined by 3'-OH DNA end-labeling and nucleosome ladder assays. The second phase of cell death (determined by viability staining) begins approximately 48 hr after irradiation and continues until the remainder of inactivated cells express their death. This longer phase of cell inactivation probably represents proliferative cell death and other non-apoptotic mechanisms. The five different assays were performed on DU-145 cells 24 hr after irradiation with 10 Gy. Significant nucleosome ladders were

  14. Relaxin has anti-apoptotic effects on human trophoblast-derived HTR-8/SV neo cells.

    Science.gov (United States)

    Lodhi, Romana S Z; Nakabayashi, Koji; Suzuki, Kaho; Yamada, Ai Y; Hazama, Rhoichi; Ebina, Yasuhiko; Yamada, Hideto

    2013-12-01

    The study was conducted to evaluate the effects of human relaxin on apoptosis in the human trophoblast derived HTR-8/SV neo cell line, which is a possible model of human extravillous trophoblasts (EVTs). HTR-8/SV neo cells, cultured in phenol red free RPMI1640 medium, were treated with different doses of human recombinant (rH2) relaxin in serum-deprived conditions. RT-PCR was used for evaluating relaxin receptor: RXFP1 and RXFP2 expression in HTR-8/SV neo cells. The cell death was examined by TUNEL assay. Furthermore, we investigated caspase-3, cleaved PARP and Bcl-2 expressions by Western blot analysis to recognize the translational effects of anti-apoptotic and pro-apoptotic proteins. RXFP1 and RXFP2 mRNA expression was observed in HTR-8/SV neo cells. Compared with untreated control cultures, treatment with rH2 relaxin, decreased TUNEL-positive rate in HTR-8/SV neo cells was observed. Western blot analysis revealed that treatment with rH2 relaxin decreased the expression of caspase-3 and cleaved PARP, but in contrast increased Bcl-2 expression in those cells. These results suggest that rH2 relaxin has anti-apoptotic effects on HTR8/SV neo cells by decreasing pro-apoptotic caspase-3 and cleaved PARP expression and up-regulating anti-apoptotic Bcl-2 expression. PMID:24070111

  15. Cell shape and organelle modification in apoptotic U937 cells

    Directory of Open Access Journals (Sweden)

    MR Montinari

    2009-12-01

    Full Text Available U937 cells induced to apoptosis, progressively and dramatically modified their cell shape by intense blebbing formation, leading to the production of apoptotic bodies. The blebs evolved with time; milder forms of blebbing involving only a region or just the cortical part of the cytoplasm were observed within the first hour of incubation with puromycin; blebbing involving the whole cell body with very deep constrictions is the most frequent event observed during late times of incubation. The ultrastructural analysis of apoptotic cells revealed characteristic features of nuclear fragmentation (budding and cleavage mode and cytoplasmatic modifications. The cytoplasm of blebs does not contain organelles, such as ribosomes or mitochondria. Scarce presence of endoplasmic reticulum can be observed at the site of bleb detachment. However, blebbing is a dispensable event as evaluated by using inhibitor of actin polymerization. In the present study, the progressive modifications of the nucleus, mitochondria, nuclear fragmentation, cytoplasmic blebs formation and production of apoptotic bodies in U937 monocytic cells induced to apoptosis by puromycin (an inhibitor of protein synthesis were simultaneously analyzed.

  16. Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells

    DEFF Research Database (Denmark)

    Grunnet, Lars G; Aikin, Reid; Tonnesen, Morten F;

    2009-01-01

    OBJECTIVE: Proinflammatory cytokines are cytotoxic to beta-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced beta-cell death is unclear. Here, cytokine activation of the...... intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in beta-cells. RESEARCH DESIGN AND METHODS: Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1beta, interferon-gamma, and/or tumor necrosis...... factor-alpha). Activation of Bad was determined by Ser136 dephosphorylation, mitochondrial stress by changes in mitochondrial metabolic activity and cytochrome c release, downstream apoptotic signaling by activation of caspase-9 and -3, and DNA fragmentation. The inhibitors FK506 and V5 were used to...

  17. In vitro study of immunosuppressive effect of apoptotic cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-jin; ZHENG Shu-sen

    2005-01-01

    Recent studies revealed that apoptotic cells are actively involved in immunosuppression and anti-inflammation. After being phagocytosed by macrophages, apoptotic cells can actively regulate cytokines secretion from lipopolysaccharide (LPS)-stimulated macrophages, in which the secretion of immunosuppressive cytokines such as interleukin-10 (IL-10) is increased while the pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNFα), interleukin-1beta (IL-1β) and leukin-8 (IL-8) are suppressed. In this paper, we first present evidence that phagocytosed apoptotic cells regulate cytokine secretion of LPS-stimulated macrophages, but also inhibit the activation of T lymphocytes stimulated by ConA. These data suggest that apoptotic cells can alter the biological behavior of macrophages which gain immunosuppressive property.

  18. Role of phosphoinositide 3-kinase in the autophagic death of serum-deprived PC12 cells.

    Science.gov (United States)

    Guillon-Munos, A; van Bemmelen, M X P; Clarke, P G H

    2005-10-01

    The death of serum-deprived undifferentiated PC12 cells shows both autophagic and apoptotic features. Since it is still controversial whether the autophagy is instrumental in the cell death or a mere epiphenomenon, we tested the effects of inhibiting the autophagy by a variety of phosphoinositide 3-kinase inhibitors, and provided evidence that the autophagy, or a related trafficking event, is indeed instrumental in the cell death. Furthermore, by comparing the effects of PI3-K inhibition and caspase-inhibition on autophagic and apoptotic cellular events, we showed that in this case the autophagic and apoptotic mechanisms mediate cell death by parallel pathways and do not act in series. PMID:16151638

  19. Resveratrol engages selective apoptotic signals in gastric adenocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    William L Riles; Jason Erickson; Sanjay Nayyar; Mary Jo Atten; Bashar M Attar; Oksana Holian

    2006-01-01

    AIM: To investigate the intracellular apoptotic signals engaged by resveratrol in three gastric adenocarcinoma cancer cell lines, two of which (AGS and SNU-1) express p53 and one (KATO-Ⅲ) with deleted p53.METHODS: Nuclear fragmentation was used to quantitate apoptotic cells; caspase activity was determined by photometric detection of cleaved substrates; formation of oxidized cytochrome C was used to measure cytochrome C activity, and Western blot analysis was used to determine protein expression.RESULTS: Gastric cancer cells, irrespective of their p53 status, responded to resveratrol with fragmentation of DNA and cleavage of nuclear lamins A and B and PARP, Resveratrol, however, has no effect on mitochondria-associated apoptotic proteins Bcl-2, Bclxl, Bax, Bid or Smac/Diablo, and did not promote subcellular redistribution of cytochrome C, indicating that resveratrol-induced apoptosis of gastric carcinoma cells does not require breakdown of mitochondrial membrane integrity. Resveratrol up-regulated p53 protein in SNU-1 and AGS cells but there was a difference in response of intracellular apoptotic signals between these cell lines.SNU-1 cells responded to resveratrol treatment with down-regulation of survivin, whereas in AGS and KATO-Ⅲ cells resveratrol stimulated caspase 3 and cytochrome C oxidase activities.CONCLUSION: These findings indicate that even within a specific cancer the intracellular apoptotic signals engaged by resveratrol are cell type dependent and suggest that such differences may be related to differentiation or lack of differentiation of these cells.

  20. Caspase dependent apoptotic inhibition of melanoma and lung cancer cells by tropical Rubus extracts.

    Science.gov (United States)

    George, Blassan Plackal Adimuriyil; Abrahamse, Heidi; Hemmaragala, Nanjundaswamy M

    2016-05-01

    Rubus fairholmianus Gard. inhibits human melanoma (A375) and lung cancer (A549) cell growth by the caspase dependent apoptotic pathway. Herbal products have a long history of clinical use and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. The plants and plant derived products became the basis of traditional medicine system throughout the world for thousands of years. The effects of R. fairholmianus root acetone extract (RFRA) on the proliferation of A375 and A549 cells was examined in this study. RFRA led to a decrease in cell viability, proliferation and an increase in cytotoxicity in a dose dependent manner when compared with control and normal skin fibroblast cells (WS1). The morphology of treated cells supported apoptotic cell death. Annexin V/propidium iodide staining indicated that RFRA induced apoptosis in A375 and A549 cells and the percentages of early and late apoptotic populations significantly increased. Moreover, the apoptotic inducing ability of RFRA when analysing effector caspase 3/7 activity, indicated a marked increase in treated cells. In summary, we have shown the anticancer effects of RFRA in A375 and A549 cancer cells via induction of caspase dependent apoptosis in vitro. The extract is more effective against melanoma; which may suggest the usefulness of RFRA-based anticancer therapies. PMID:27133056

  1. Sensitization of radiation-induced cell death by genistein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Rim; Kim, In Gyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-03-15

    A number of epidemiological studies as well as biological experiments, showed that genistein, one of the isoflavone, prevents prostate cancer occurrence. In this study, we showed that genistein inhibited the cell proliferation of human promyeoltic leukemia HL-60 cells and induced G2/M phase arrest. In addition, combination of genistein treatment and {gamma}-irradiation displayed synergistic effect in apoptotic cell death of HL-60 cells. This means that the repair of genistein-induced DNA damage was hindered by {gamma}-irradiation and thus cell death was increased. In conclusion, genistein is one of the important chemicals that sensitize radiation-induced cell death.

  2. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    Science.gov (United States)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  3. A study on apoptotic signaling pathway in HL-60 cells induced by radiation

    International Nuclear Information System (INIS)

    The mechanical insights of death at cancer cells by ionizing radiation are not yet clearly defined. Recent evidences have demonstrated that radiation therapy may induce cell death via activation of signaling pathway for apoptosis in target cells. This study is designed whether ionizing radiation may activate the signaling cascades of apoptosis including caspase family cysteine proteases, Bcl2/Bax, cytochrome c and Fas/Fas-L in target cells. HL-60 cells were irradiated in vitro with 6 MV X-ray at dose ranges from 2 Gy to 32 Gy. The cell viability was tested by MTT assay and the extent of apoptosis was determined using agarose gel electrophoresis. The activities of caspase proteases were measured by proteolytic cleavages of substrates. Western blot analysis was used to monitor PARP, caspase-3, Cytochrome-c, BcI-2, Bax, Fas and Fas-L. Ionizing radiation decreases the viability of HL -60 cells in a time and dose dependent manner. Ionizing radiation-induced death in HL- 60 cells is an apoptotic death which is revealed as characteristic ladder-pattern fragmentation at genomic DNA over 16 Gy at 4 hours. Ionizing radiation induces the activation of caspase-2, 3, 6, 8 and 9 of HL --60 cells in a time-dependent manner. The activation of caspase- 3 protease is also evidenced by the digestion of poly (ADP-ribose) polymerase and procaspase 3 with 16Gy ionizing irradiation. Anti-apoptotic Bcl2 expression is decreased but apoptotic Bax expression is increased with mitochondrial cytochrome c release in a time- dependent manner. In addition, expression of Fas and Fas-L is also increased in a time dependent manner. These data suggest that ionizing radiation-induced apoptosis is mediated by the activation of various signaling pathways including caspase family cysteine proteases, BcI2/Bax, Fas and Fas-L in a time and dose dependent manner

  4. Apoptotic bone marrow CD34+ cells in cirrhotic patients

    Institute of Scientific and Technical Information of China (English)

    Shuang-Suo Dang; Wen-Jun Wang; Ning Gao; Shun-Da Wang; Mei Li; La-Yang Liu; Ming-Zhun Sun; Tao Dong

    2011-01-01

    AIM: To access the frequency and level of apoptotic CD34+ cells isolated from the marrow fluid of patients with post-hepatitis cirrhosis.METHODS: The frequency of bone marrow CD34+ cells and apoptotic bone marrow CD34+ cells in 31 in-patients with post-hepatitis cirrhosis (cirrhosis group), and 15 out-patients without liver or blood disorders (control group) was calculated by flow cytometry. Pa-rameters were collected to evaluate liver functions of patients in cirrhosis group.RESULTS: The percentage of normal bone marrow CD34+ cells was 6.30% ± 2.48% and 1.87% ± 0.53% (t = 3.906, P < 0.01) while that of apoptotic marrow CD34+ cells was 15.00% ± 15.81% and 5.73% ± 1.57% (t = 2.367, P < 0.05) in cirrhosis and control groups, re-spectively. The percentage of apoptotic marrow CD34+ cells was 6.25% ± 3.30% and 20.92 ± 18.5% (t = 2.409, P < 0.05) in Child-Pugh A and Child-Pugh B + C cirrhotic patients, respectively. The percentage of late apoptotic marrow CD34+ cells was positively correlated with the total bilirubin and aspartate aminotransferase serum levels in patients with cirrhosis.CONCLUSION: The status of CD34+ marrow cells in cirrhotic patients may suggest that the ability of he-matopoietic progenitor cells to transform into mature blood cells is impaired.

  5. [Cell death in malignant tumors. Relevance of cell death regulation for metastasis].

    Science.gov (United States)

    Roth, W

    2015-11-01

    Defects in the regulation of cell death are important causes for both the development and therapy resistance of malignant tumors. Several distinct, molecularly defined types of cell death are known, such as apoptosis, anoikis, and necroptosis. Moreover, the specific triggering of cell death plays an important role in the prevention of metastasis. The results of recent studies have shown that various types of cell death are pivotal at different steps of the metastasis cascade, in order to prevent cellular detachment, migration, invasion, intravasation, extravasation and the establishment of micrometastasis and macrometastasis. At the subcellular level, numerous links exist between cell death regulation and metastasis, specifically regarding signaling pathways and individual proteins with dual or multiple functions. As an example, the decoy receptor 3 protein (DcR3) functions both as an anti-apoptotic protein and as a direct promotor of invasion and migration of tumor cells. In summary, the specific triggering of cell death plays a pivotal role for the prevention of metastasis. On the other hand, the stepwise process of metastasis represents a mechanism of selection resulting in established metastases with a multiresistant phenotype which corresponds to the clinical observation that many metastasized cancers are therapy resistant. In the future, innovative diagnostic tests to individually predict the resistance pattern and possibilities to overcome resistance are urgently needed. PMID:26400565

  6. Melatonin Prevents Chemical-Induced Haemopoietic Cell Death

    Directory of Open Access Journals (Sweden)

    Sara Salucci

    2014-04-01

    Full Text Available Melatonin (MEL, a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death.

  7. A Novel Anticancer Agent, 8-Methoxypyrimido[4',5':4,5]thieno(2,3-b Quinoline-4(3H-One Induces Neuro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and -Independent Apoptotic Pathways.

    Directory of Open Access Journals (Sweden)

    Upasana Sahu

    Full Text Available Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido [4',5':4,5]thieno(2,3-b quinoline-4(3H-one (MPTQ is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM. Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly (ADP Ribose polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells

  8. Reemergence of apoptotic cells between fractionated doses in irradiated murine tumors

    International Nuclear Information System (INIS)

    The purpose of this investigation was to follow up our previous studies on the development of apoptosis in irradiated murine tumors by testing whether an apoptotic subpopulation of cells reemerges between fractionated exposures. Mice bearing a murine ovarian carcinoma, OCa-I, were treated in vivo with two fractionation protocols: two doses of 12.5 Gy separated by various times out to 5 days and multiple daily fractions of 2.5 Gy. Animals were killed 4 h after the last dose in each protocol, and the percent apoptosis was scored from stained histological sections made from the irradiated tumors according to the specific features characteristic of this mode of cell death. The 12.5+12.5 Gy protocol yielded a net total percent apoptosis of about 45% when the two doses were separated by 5 days (total dose = 25 Gy), whereas the 2.5 Gy per day protocol yielded about 50% net apoptotic cells when given for 5 days (total dose = 12.5 Gy). These values are to be compared to the value of 36% apoptotic cells that is yielded by large single doses (> 25 Gy). Thus, these results indicate that an apoptotic subpopulation of cells reemerged between the fractions in both protocols, but the kinetics appeared to be delayed in the 12.5+12.5 Gy vs. the multiple 2.5 Gy protocol. This reemergence of cells with the propensity for radiation-induced apoptosis between fractionated exposures is consistent with a role for this mode of cell death in the response of tumors to radiotherapy and may represent the priming of a new subpopulation of tumor cells for apoptosis as part of normal tumor homeostasis to counterbalance cell division. 25 refs., 3 figs., 1 tab

  9. Cytokine signaling for proliferation, survival, and death in hematopoietic cells.

    Science.gov (United States)

    Miyajima, A; Ito, Y; Kinoshita, T

    1999-04-01

    The survival, proliferation, and differentiation of hematopoietic cells are regulated by cytokines. In the absence of cytokines, hematopoietic cells not only stop proliferation, but undergo apoptosis. This strict dependency of hematopoietic cells on cytokines is an important mechanism that maintains the homeostasis of blood cells. Cytokines induce various intracellular signaling pathways by activating the receptor-associated Janus kinases (Jaks), and distinct signals are responsible for cell cycle progression and cell survival. Induction of signals for cell cycle progression without suppressing apoptosis results in apoptotic cell death, indicating the essential role of anti-apoptotic signaling for cell growth. In hematopoietic cells, Ras, a cellular protooncogen product, and phosphatidylinositol 3 kinase are involved in the suppression of apoptosis. Cytokine depletion not only turns off anti-apoptotic signaling, but also actively induces cell death by activating caspases, a distinct family of cysteine proteases. Alterations in the mechanisms of cytokine signaling for cell cycle progression and anti-apoptotic function are implicated in hematological disorders. PMID:10222650

  10. Pro‑apoptotic effects of pycnogenol on HT1080 human fibrosarcoma cells.

    Science.gov (United States)

    Harati, Kamran; Slodnik, Pawel; Chromik, Ansgar Michael; Behr, Björn; Goertz, Ole; Hirsch, Tobias; Kapalschinski, Nicolai; Klein-Hitpass, Ludger; Kolbenschlag, Jonas; Uhl, Waldemar; Lehnhardt, Marcus; Daigeler, Adrien

    2015-04-01

    Complete surgical resection with clear margins remains the mainstay of therapy for localised fibrosarcomas. Nevertheless, metastatic fibrosarcomas still represent a therapeutic dilemma. Commonly used chemotherapeutic agents like doxorubicin have proven to be effective in pycnogenol and its constituents on human fibrosarcoma cells (HT1080). Ten healthy subjects (six females, four males, mean age 24.8 ± 6 years) received a single dose of 300 mg pycnogenol orally. Blood plasma samples were obtained before and 6 h after intake of pycnogenol. HT1080 cells were treated with these plasma samples. Additionally, HT1080 were incubated separately with catechin, epicatechin and taxifolin that are known as the main constituents of pycnogenol. Vital, apoptotic and necrotic cells were quantified using flow cytometric analysis. Gene expression was analyzed by RNA microarray. The results showed that single application of taxifolin, catechin and epicatechin reduced cell viability of HT1080 cells only moderately. A single dose of 300 mg pycnogenol given to 10 healthy adults produced plasma samples that led to significant apoptotic cell death ex vivo whereas pycnogenol-negative serum displayed no apoptotic activity. Microarray analysis revealed remarkable expression changes induced by pycnogenol in a variety of genes, which are involved in different apoptotic pathways of cancer cells [Janus kinase 1 (JAK1), DUSP1, RHOA, laminin γ1 (LAMC1), fibronectin 1 (FN1), catenin α1 (CTNNA1), ITGB1]. In conclusion, metabolised pycnogenol induces apoptosis in human fibrosarcoma cells. Pycnogenol exhibits its pro-apoptotic activity as a mixture and is more effective than its main constituents catechin, epicatechin and taxifolin indicating that the metabolised components interact synergistically. These results provide experimental support for in vivo trials assessing the effect of the pine bark extract pycnogenol. PMID:25625225

  11. Heat shock genes – integrating cell survival and death

    Indian Academy of Sciences (India)

    Richa Arya; Moushami Mallik; Subhash C Lakhotia

    2007-04-01

    Heat shock induced gene expression and other cellular responses help limit the damage caused by stress and thus facilitate cellular recovery. Cellular damage also triggers apoptotic cell death through several pathways. This paper briefly reviews interactions of the major heat shock proteins with components of the apoptotic pathways. Hsp90, which acts as a chaperone for unstable signal transducers to keep them poised for activation, interacts with RIP and Akt and promotes NF-B mediated inhibition of apoptosis; in addition it also blocks some steps in the apoptotic pathways. Hsp70 is mostly anti-apoptotic and acts at several levels like inhibition of translocation of Bax into mitochondria, release of cytochrome c from mitochondria, formation of apoptosome and inhibition of activation of initiator caspases. Hsp70 also modulates JNK, NF-B and Akt signaling pathways in the apoptotic cascade. In contrast, Hsp60 has both anti- and pro-apoptotic roles. Cytosolic Hsp60 prevents translocation of the pro-apoptotic protein Bax into mitochondria and thus promotes cell survival but it also promotes maturation of procaspase-3, essential for caspase mediated cell death. Our recent in vivo studies show that RNAi for the Hsp60D in Drosophila melanogaster prevents induced apoptosis. Hsp27 exerts its anti-apoptotic influence by inhibiting cytochrome c and TNF-mediated cell death. crystallin suppresses caspase-8 and cytochrome c mediated activation of caspase-3. Studies in our laboratory also reveal that absence or reduced levels of the developmentally active as well as stress induced non-coding hsr transcripts, which are known to sequester diverse hnRNPs and related nuclear RNA-binding proteins, block induced apoptosis in Drosophila. Modulation of the apoptotic pathways by Hsps reflects their roles as ``weak links” between various ``hubs” in cellular networks. On the other hand, non-coding RNAs, by virtue of their potential to bind with multiple proteins, can act as ``hubs” in

  12. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs, such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC. Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins.

  13. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand

    Directory of Open Access Journals (Sweden)

    Venu Venkatarame Gowda Saralamma

    2015-09-01

    Full Text Available Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma. The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose polymerase (PARP. Inhibitor studies’ results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm, pro-apoptotic proteins (Bax and Bak and anti-apoptotic protein (Bcl-xL in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  14. Effect of ethanol on pro-apoptotic mechanisms in polarized hepatic cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chronic ethanol consumption is associated with serious and potentially fatal alcohol-related liver injuries such as hepatomegaly, alcoholic hepatitis and cirrhosis. Moreover,it has been documented that the clinical progression of alcohol-induced liver damage may be associated with an increase in hepatocellular death that involves apoptotic mechanisms. Although much information has been learned about the clinical manifestations associated with alcohol-related diseases, the search continues for a better understanding of the molecular and/or cellular mechanisms by which ethanol exerts its deleterious effects such as the induction of pro-apoptotic mechanisms and related cell damaging events. As part of the effort to enhance our understanding of those particular cellular pathways and mechanisms associated with ethanol toxicity, researchers over the years have utilized a variety of model systems. Recently, work has come forth demonstrating the utility of a hybrid cell line (WIF-B) as a cell culture model system for the study of alcohol-associated alterations in hepatocellular mechanisms. Success with such emerging model systems could aid in the development of potential therapeutic treatments for the prevention of alcoholinduced apoptotic cell death that may ultimately serve as a significant target in delaying the onset and/or progression of clinical symptoms of alcohol-mediated liver disease. This review article summarizes the current understanding of ethanol-mediated modifications in cell survival and thus the promotion of pro-apoptotic events with emphasis on analyses made in various experimental model systems, particularly the more recently characterized WIF-B cell system.

  15. ELMO1 signaling in apoptotic germ cell clearance and spermatogenesis.

    Science.gov (United States)

    Elliott, Michael R; Ravichandran, Kodi S

    2010-10-01

    Apoptosis and the subsequent removal of dying cells are crucial processes for tissue development and maintenance. Although we are beginning to understand the signaling pathways that control the phagocytic clearance of apoptotic cells, the physiological relevance of these pathways is lacking. During spermatogenesis, over half of the developing germ cells eventually die by apoptosis, yet the signaling pathways that regulate the phagocytic clearance of these dying cells or the impact of this clearance on development and maintenance of the germ cell population is not well understood. The ELMO1/Dock180 proteins form an evolutionarily conserved signaling module that functions as a bipartite guanine nucleotide exchange factor for the small GTPase Rac. The subsequent Rac-dependent cytoskeletal changes play an important role in the physical engulfment of apoptotic cells. Recent findings demonstrate an in vivo role for ELMO1-dependent clearance in the testes, with implications for spermatogenesis. Here we will discuss the role of apoptotic cell clearance during spermatogenesis, with a particular emphasis on ELMO1/Dock180 signaling. PMID:20958313

  16. PDT-treated apoptotic cells induce macrophage synthesis NO

    Science.gov (United States)

    Song, S.; Xing, D.; Zhou, F. F.; Chen, W. R.

    2009-11-01

    Nitric oxide (NO) is a biologically active molecule which has multi-functional in different species. As a second messenger and neurotransmitter, NO is not only an important regulatory factor between cells' information transmission, but also an important messenger in cell-mediated immunity and cytotoxicity. On the other side, NO is involving in some diseases' pathological process. In pathological conditions, the macrophages are activated to produce a large quantity of nitric oxide synthase (iNOS), which can use L-arginine to produce an excessive amount of NO, thereby killing bacteria, viruses, parasites, fungi, tumor cells, as well as in other series of the immune process. In this paper, photofrin-based photodynamic therapy (PDT) was used to treat EMT6 mammary tumors in vitro to induce apoptotic cells, and then co-incubation both apoptotic cells and macrophages, which could activate macrophage to induce a series of cytotoxic factors, especially NO. This, in turn, utilizes macrophages to activate a cytotoxic response towards neighboring tumor cells. These results provided a new idea for us to further study the immunological mechanism involved in damaging effects of PDT, also revealed the important function of the immune effect of apoptotic cells in PDT.

  17. Non-apoptotic programmed cell death with paraptotic-like features in bleomycin-treated plant cells is suppressed by inhibition of ATM/ATR pathways or NtE2F overexpression

    Czech Academy of Sciences Publication Activity Database

    Smetana, O.; Široký, Jiří; Houlné, G.; Opatrný, Z.; Chabouté, M.-E.

    2012-01-01

    Roč. 63, č. 7 (2012), s. 2631-2644. ISSN 0022-0957 Institutional research plan: CEZ:AV0Z50040702 Keywords : ATM /ATR pathways * cell cycle * double-strand break response Subject RIV: BO - Biophysics Impact factor: 5.242, year: 2012

  18. Anti-Apoptotic Effects of Lentiviral Vector Transduction Promote Increased Rituximab Tolerance in Cancerous B-Cells

    DEFF Research Database (Denmark)

    Ranjbar, Benyamin; Krogh, Louise Bechmann; Laursen, Maria Bach; Primo, Maria Nascimento; Marques, Sara Correia; Dybkær, Karen; Mikkelsen, Jacob Giehm

    2016-01-01

    achieved through effects of lentiviral transduction on cell death mediated by complement. Rather, reduced levels of PARP1 and persistent high levels of CD43 in Rituximab-treated GCBs demonstrate anti-apoptotic effects of lentiviral transduction that may interfere with the outcome and interpretation of...

  19. Farnesylpyridinium, an analog of isoprenoid farnesol, induces apoptosis but suppresses apoptotic body formation in human promyelocytic leukemia cells.

    Science.gov (United States)

    Hamada, Masahiro; Nishio, Kyo-ichi; Doe, Matsumi; Usuki, Yoshinosuke; Tanaka, Toshio

    2002-03-13

    1-Farnesylpyridinium (FPy), an analog of isoprenoid farnesol, initially induced morphological changes similar to those of typical apoptosis in human leukemia HL-60 cells but FPy-treated cells were characterized by the absolute absence of final apoptotic events such as fragmentation into apoptotic bodies. FPy-induced cell death was considered to be apoptotic on the basis of the induction of DNA fragmentation and the protection against these events by the coaddition of a pan-caspase inhibitor. The increase in the cytoplasmic cytochrome c level supported the possibility that FPy-treated cells should have the ability to complete the entire apoptotic process ending in cell fragmentation and apoptotic body formation. At concentrations too low to induce apoptosis, FPy could suppress the induction of apoptotic body formation in HL-60 cells by typical inducers of apoptosis such as actinomycin D or anisomycin. FPy exhibited a cytochalasin-like effect on spatial arrangement of actin filament independent of its apoptosis-inducing activity. PMID:11943160

  20. Role of polyphenols in cell death control.

    Science.gov (United States)

    Giovannini, Claudio; Masella, Roberta

    2012-05-01

    Dietary consumption of fruit, vegetables, fish, and olive oil has been demonstrated to exert beneficial effects on human health. This finding may be due to the high content of antioxidant compounds including polyphenols. Current evidence strongly supports a contribution of polyphenols to the prevention of several chronic degenerative diseases such as cancer, atherosclerosis and cardiovascular diseases, central nervous system disorders, as well as aging. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathologic processes, leading to proliferative or degenerative diseases. Polyphenols can interact with specific steps and/or proteins regulating the apoptotic process in different ways depending on their concentration, the cell system, the type or stage of the pathological process. Because of their ability to modulate cell death, polyphenols have been proposed as chemopreventive and therapeutic agents. This paper reviews and discusses the last 3-year findings related to the principal molecular mechanisms involved in the control of the balance between apoptosis and cell proliferation exerted by polyphenols. PMID:22584012

  1. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ivan Mfouo-Tynga

    2015-05-01

    Full Text Available The mechanisms of cell death can be predetermined (programmed or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT uses non-toxic chemotherapeutic agents, photosensitizer (PS, to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events.

  2. Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases

    Science.gov (United States)

    Tominami, Kanako; Kanetaka, Hiroyasu; Kudo, Tada-aki; Sasaki, Shota; Kaneko, Toshiro

    2016-01-01

    This study investigated the effects of low-temperature atmospheric-pressure plasma on various cells such as rat fibroblastic Rat-1 cell line, rat neuroblastoma-like PC12 cell line, and rat macrophage-like NR8383 cell line. The plasma was irradiated directly to a culture medium containing plated cells for 0-20 s. The applied voltage, excitation frequency, and argon or helium gas flow were, respectively, 3-6 kV, 10 kHz, and 3 L/min. Cell viability and apoptotic activity were evaluated using annexin-V/propidium iodide staining. Results showed that the low-temperature atmospheric-pressure plasma irradiation promoted cell death in a discharge-voltage-dependent and irradiation-time-dependent manner. Furthermore, different effects are produced depending on the cell type. Moreover, entirely different mechanisms might be responsible for the induction of apoptosis in cells by helium and argon plasma.

  3. Defining Characteristics of Types I and II Apoptotic Cells in Response to TRAIL

    Directory of Open Access Journals (Sweden)

    Nesrin Özören

    2002-01-01

    Full Text Available Type I cells have been defined to be independent of mitochondria for the induction of Fas death receptormediated apoptosis, whereas Type II cells are mitochondria-dependent. Knock-out studies in mice show that thymocytes are Type I and liver cells are Type II. We have previously shown that primary human hepatocytes and HCT116 human colon carcinoma cells behave like Type II cells because TRAIL-induced apoptosis can be blocked by the caspase 9 inhibitor, Z-LEHD-FMK. On the other hand, caspase 9 inhibition does not allow survival of TRAIL-treated SW480 colon cancer cells, which is predicted for Type I cells. Investigating the differences in TRAIL-induced apoptotic pathways in HCT116 and SW480 cells revealed that although FADD, BID, and procaspase 3 protein levels are higher in SW480 cells, and although procaspase 8 and FLIP processing is more efficient at the TRAIL-DISC of SW480 cells, BID, procaspase 3, XIAP, and PARP cleavages occur more rapidly in HCT116, despite the higher levels of BCL-2 and HSP70. Cytochrome c release from the mitochondria to the cytoplasm is more efficient in HCT116 cells. These results suggest BID cleavage as a possible limiting factor in the involvement of mitochondria in TRAIL-induced cell death. Thus, regulation of BID cleavage may define if a cell is mitochondria-dependent or -independent in response to TRAIL death receptor-induced apoptosis.

  4. Cytotoxic and apoptotic effects of prenylflavonoid artonin B in human acute lymphoblastic leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Chun-chung LEE; Chun-nan LIN; Guey-mei JOW

    2006-01-01

    Aim: To investigate the anticancer effects and molecular mechanism of artonin B on the human acute lymphoblastic leukemia CCRF-CEM cells compared with other prenylflavonoid compounds. Methods: The effects of four prenylflavonoids on the growth of CCRF-CEM and HaCa cells were studied by 3-(4,5)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Apoptosis were detected through Hoechst 33258 staining. The effect of artonin B on the cell cycle of CCRF-CEM cells were studied by propidium iodide method. The change in mitochondrial membrane potential was detected by rohdamine 123 staining. The cytochrome c release and caspase 3 activity were checked by immunoassay kits, respectively. The expression of Bcl-2 family proteins was detected by Western blot. Results: Our data revealed that artonin B strongly induced human CCRF-CEM leukemia cell death in a dose- and time-dependent manner by MTT assay, but not on normal epithelia cells (HaCa cells). Artonin B-induced cell death was considered to be apoptotic by observing the typical apoptotic morphological change by Hoechst 33258 staining. The induction of human CCRF-CEM leukemia cancer cell death was caused by an induction of apoptosis through mitochondrial membrane potential change, cytochrome c release, sub-G1 proportion increase, downregulation of Bcl-2 expression, upregulation of Bax and Bak expression and activation of caspase 3 pathways. Conclusion: These results clearly demonstrated that artonin B is able to inhibit proliferation by induction of hypoploid cells and cell apoptosis. Moreover, the anticancer effects of artonin B were related to mitochondrial pathway and caspase 3 activation in human CCRF-CEM leukemia cells.

  5. The intersection of cell death and inflammasome activation.

    Science.gov (United States)

    Vince, James E; Silke, John

    2016-06-01

    Inflammasomes sense cellular danger to activate the cysteine-aspartic protease caspase-1, which processes precursor interleukin-1β (IL-1β) and IL-18 into their mature bioactive fragments. In addition, activated caspase-1 or the related inflammatory caspase, caspase-11, can cleave gasdermin D to induce a lytic cell death, termed pyroptosis. The intertwining of IL-1β activation and cell death is further highlighted by research showing that the extrinsic apoptotic caspase, caspase-8, may, like caspase-1, directly process IL-1β, activate the NLRP3 inflammasome itself, or bind to inflammasome complexes to induce apoptotic cell death. Similarly, RIPK3- and MLKL-dependent necroptotic signaling can activate the NLRP3 inflammasome to drive IL-1β inflammatory responses in vivo. Here, we review the mechanisms by which cell death signaling activates inflammasomes to initiate IL-1β-driven inflammation, and highlight the clinical relevance of these findings to heritable autoinflammatory diseases. We also discuss whether the act of cell death can be separated from IL-1β secretion and evaluate studies suggesting that several cell death regulatory proteins can directly interact with, and modulate the function of, inflammasome and IL-1β containing protein complexes. PMID:27066895

  6. Phosphoproteomic analysis of apoptotic hematopoietic stem cells from hemoglobin E/β-thalassemia

    Directory of Open Access Journals (Sweden)

    Roytrakul Sittiruk

    2011-06-01

    Full Text Available Abstract Background Hemoglobin E/β-thalassemia is particularly common in Southeast Asia and has variable symptoms ranging from mild to severe anemia. Previous investigations demonstrated the remarkable symptoms of β-thalassemia in terms of the acceleration of apoptotic cell death. Ineffective erythropoiesis has been studied in human hematopoietic stem cells, however the distinct apoptotic mechanism was unclear. Methods The phosphoproteome of bone marrow HSCs/CD34+ cells from HbE/β-thalassemic patients was analyzed using IMAC phosphoprotein isolation followed by LC-MS/MS detection. Decyder MS software was used to quantitate differentially expressed proteins in 3 patients and 2 normal donors. The differentially expressed proteins from HSCs/CD34+ cells were compared with HbE/β-thalassemia and normal HSCs. Results A significant change in abundance of 229 phosphoproteins was demonstrated. Importantly, the analysis of the candidate proteins revealed a high abundance of proteins that are commonly found in apoptotic cells including cytochrome C, caspase 6 and apoptosis inducing factors. Moreover, in the HSCs patients a significant increase was observed in a specific type of phosphoserine/threonine binding protein, which is known to act as an important signal mediator for the regulation of cell survival and apoptosis in HbE/β-thalassemia. Conclusions Our study used a novel method to investigate proteins that influence a particular pathway in a given disease or physiological condition. Ultimately, phosphoproteome profiling in HbE/β-thalassemic stem cells is an effective method to further investigate the cell death mechanism of ineffective erythropoiesis in β-thalassemia. Our report provides a comprehensive phosphoproteome, an important resource for the study of ineffective erythropoiesis and developing therapies for HbE/β-thalassemia.

  7. Cell death proteomics database: consolidating proteomics data on cell death.

    Science.gov (United States)

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-01

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no. PMID:23537399

  8. Plant caspase-like proteases in plant programmed cell death

    OpenAIRE

    Xu, Qixian; Zhang, Lingrui

    2009-01-01

    Programmed cell death (PCD) is a genetically-controlled disassembly of the cell. In animal systems, the central core execution switch for apoptotic PCD is the activation of caspases (Cysteine-containing Aspartate-specific proteases). Accumulating evidence in recent years suggests the existence of caspase-like activity in plants and its functional involvement in various types of plant PCD, although no functional homologs of animal caspases were identified in plant genome. In this mini-review, ...

  9. Homocysteine thiolactone induces apoptotic DNA damage mediated by increased intracellular hydrogen peroxide and caspase 3 activation in HL-60 cells.

    Science.gov (United States)

    Huang, R F; Huang, S M; Lin, B S; Wei, J S; Liu, T Z

    2001-05-11

    The cytotoxicity of homocysteine derivatives on chromosomal damage in somatic cells is not well established. The present study used reactive homocysteine derivative of homocysteine thiolactone (Hcy) to investigate its causal effect on apoptotic DNA injury in human promyeloid HL-60 cells. Our results demonstrated that Hcy induced cell death and features of apoptosis including increased phosphotidylserine exposure on the membrane surface, increased apoptotic cells with hypoploid DNA contents, and internucleosomal DNA fragmentation, all of which occurred in a time- and concentration-dependent manner. Hcy treatment also significantly increased intracellular reactive oxygen species H2O2, which coincided with the elimination of caspase 3 proenzyme levels and increased caspase 3 activity at the time of the appearance of apoptotic DNA fragmentation. Preincubation of Hcy-treated HL-60 cells with catalase completely scavenged intracellular H2O2, thus inhibiting caspase 3 activity and protecting cells from apoptotic DNA damage. In contrast, superoxide dismutase failed to inhibit Hcy-induced DNA damage. Taken together, these results demonstrate that Hcy exerted its genotoxic effects on HL-60 cells through an apoptotic pathway, which is mediated by the activation of caspase 3 activity induced by an increase in intracellular hydrogen peroxide. PMID:11432446

  10. The control and execution of programmed cell death

    International Nuclear Information System (INIS)

    Apoptosis or programmed cell death is a highly conserved genetically controlled response of metazoan cells to commit suicide. Non apoptotic programmed cell death seems to operate in single celled eukaryotes implying that evolution of PCD has preceded the evolution of multicellularity. PCD plays a crucial role in the regulation of cellular and tissue homeostasis and any aberrations in apoptosis leads to several diseases including cancer, neurodegenerative disorders and AIDS. The mechanisms by which apoptosis is controlled are varied. In some cells, members of bcl-2 family or p53 are crucial for regulating the apoptosis programme, whereas in other cells Fas ligand is more important. bcl-2 family members have a prime role in the regulation of cell death at all stages including development, whereas cell death during development is independent of p53. bcl-2 family members being localized on the outer mitochondrial membrane, control the mitochondrial homeostasis and cytochrome c redistribution and thereby regulate the cell death process. p53 promotes DNA damage mediated cell death after growth arrest and failed DNA repair. Caspases play a key role in the execution of cell death by mediating highly specific cleavages of crucial cellular proteins collectively manifesting the apoptotic phenotype. Protein inhibitors like crm A, p35 and IAPs could prevent/control apoptosis induced by a broad array of cell death stimuli by several mechanisms specially interfering in caspase activation or caspase activity. Among endonucleases, caspase activated DNase (CAD) plays a crucial role in DNA fragmentation, a biochemical hallmark of apoptosis. As regulation of cell death seems to be as complex as regulation of cell proliferation, multiple kinase mediated regulatory mechanisms might control the apoptotic process. Thus, in spite of intensive research over the past few years, the field of apoptosis still remains fertile to unravel among others, the molecular mechanisms of cytochrome c

  11. Methyl jasmonate induces apoptosis and pro-apoptotic autophagy via the ROS pathway in human non-small cell lung cancer

    OpenAIRE

    Zhang, Mutian; Su, Ling; Xiao, Zhenna; Liu, Xianfang; Liu, Xiangguo

    2016-01-01

    Methyl jasmonate (MJ) is a botanical hormone that serves as a signal transduction intermediate and regulates cell death in stressed plants. MJ induces cell cycle arrest, apoptosis and non-apoptotic cell death selectively in cancer cells. However, the underlying mechanism of MJ-induced apoptosis remains unclear. In this study, we examined the molecular mechanism through which MJ induces apoptosis in human non-small cell lung cancer (NSCLC). We found that MJ triggered apoptosis via the DDIT3-TN...

  12. Programmed cell death and cell extrusion in rat duodenum

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Larsson, Lars-Inge

    2005-01-01

    techniques detecting the events associated with PCD in order to better understand its role in the turnover of the intestinal epithelium, including modified double- and triple-staining techniques for simultaneously detecting multiple markers of PCD in individual cells. Only a partial correlation between TUNEL......The small intestinal epithelium is continously renewed through a balance between cell division and cell loss. How this balance is achieved is uncertain. Thus, it is unknown to what extent programmed cell death (PCD) contributes to intestinal epithelial cell loss. We have used a battery of...... positivity for DNA fragmentation, c-jun phosphorylation on serine-63, positivity for activated caspase-3 and apoptotic morphology was observed. Our results show that DNA fragmentation does not invariable correlate to activation of caspase-3. Moreover, many cells were found to activate caspase-3 early in the...

  13. Acute myeloid leukemia-targeted toxin activates both apoptotic and necroptotic death mechanisms.

    Directory of Open Access Journals (Sweden)

    Henrick Horita

    Full Text Available BACKGROUND: Acute myelogenous leukemia (AML is the second most common leukemia with approximately 13,410 new cases and 8,990 deaths annually in the United States. A novel fusion toxin treatment, diphtheria toxin GM-CSF (DT-GMCSF has been shown to selectively eliminate leukemic repopulating cells that are critical for the formation of AML. We previously showed that DT-GMCSF treatment of U937 cells, an AML cell line, causes activation of caspases and the induction of apoptosis. METHODS AND FINDINGS: In this study we further investigate the mechanisms of cell death induced by DT-GMCSF and show that, in addition to the activation of caspase-dependent apoptosis, DT-GMCSF also kills AML cells by simultaneously activating caspase-independent necroptosis. These mechanisms depend on the ability of the targeted toxin to inhibit protein synthesis, and are not affected by the receptor that is targeted or the mechanism through which protein synthesis is blocked. CONCLUSIONS: We conclude that fusion toxin proteins may be effective for treating AML cells whether or not they are defective in apoptosis.

  14. Heterogeneity reduces sensitivity of cell death for TNF-Stimuli

    Directory of Open Access Journals (Sweden)

    Schliemann Monica

    2011-12-01

    Full Text Available Abstract Background Apoptosis is a form of programmed cell death essential for the maintenance of homeostasis and the removal of potentially damaged cells in multicellular organisms. By binding its cognate membrane receptor, TNF receptor type 1 (TNF-R1, the proinflammatory cytokine Tumor Necrosis Factor (TNF activates pro-apoptotic signaling via caspase activation, but at the same time also stimulates nuclear factor κB (NF-κB-mediated survival pathways. Differential dose-response relationships of these two major TNF signaling pathways have been described experimentally and using mathematical modeling. However, the quantitative analysis of the complex interplay between pro- and anti-apoptotic signaling pathways is an open question as it is challenging for several reasons: the overall signaling network is complex, various time scales are present, and cells respond quantitatively and qualitatively in a heterogeneous manner. Results This study analyzes the complex interplay of the crosstalk of TNF-R1 induced pro- and anti-apoptotic signaling pathways based on an experimentally validated mathematical model. The mathematical model describes the temporal responses on both the single cell level as well as the level of a heterogeneous cell population, as observed in the respective quantitative experiments using TNF-R1 stimuli of different strengths and durations. Global sensitivity of the heterogeneous population was quantified by measuring the average gradient of time of death versus each population parameter. This global sensitivity analysis uncovers the concentrations of Caspase-8 and Caspase-3, and their respective inhibitors BAR and XIAP, as key elements for deciding the cell's fate. A simulated knockout of the NF-κB-mediated anti-apoptotic signaling reveals the importance of this pathway for delaying the time of death, reducing the death rate in the case of pulse stimulation and significantly increasing cell-to-cell variability. Conclusions Cell

  15. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis.

    Science.gov (United States)

    Shimada, Kenichi; Skouta, Rachid; Kaplan, Anna; Yang, Wan Seok; Hayano, Miki; Dixon, Scott J; Brown, Lewis M; Valenzuela, Carlos A; Wolpaw, Adam J; Stockwell, Brent R

    2016-07-01

    Apoptosis is one type of programmed cell death. Increasingly, non-apoptotic cell death is recognized as being genetically controlled, or 'regulated'. However, the full extent and diversity of alternative cell death mechanisms remain uncharted. Here we surveyed the landscape of pharmacologically accessible cell death mechanisms. In an examination of 56 caspase-independent lethal compounds, modulatory profiling showed that 10 compounds induced three different types of regulated non-apoptotic cell death. Optimization of one of those ten resulted in the discovery of FIN56, a specific inducer of ferroptosis. Ferroptosis has been found to occur when the lipid-repair enzyme GPX4 is inhibited. FIN56 promoted degradation of GPX4. FIN56 also bound to and activated squalene synthase, an enzyme involved in isoprenoid biosynthesis, independent of GPX4 degradation. These discoveries show that dysregulation of lipid metabolism is associated with ferroptosis. This systematic approach is a means to discover and characterize novel cell death phenotypes. PMID:27159577

  16. Autophagy Has a Beneficial Role in Relieving Cigarette Smoke-Induced Apoptotic Death in Human Gingival Fibroblasts

    Science.gov (United States)

    Kim, Moon-Soo; Yun, Jeong-Won; Park, Jin-Ho; Park, Bong-Wook; Kang, Young-Hoon; Hah, Young-Sool; Hwang, Sun-Chul; Woo, Dong Kyun; Byun, June-Ho

    2016-01-01

    The deleterious role of cigarette smoke has long been documented in various human diseases including periodontal complications. In this report, we examined this adverse effect of cigarette smoke on human gingival fibroblasts (HGFs) which are critical not only in maintaining gingival tissue architecture but also in mediating immune responses. As well documented in other cell types, we also observed that cigarette smoke promoted cellular reactive oxygen species in HGFs. And we found that this cigarette smoke-induced oxidative stress reduced HGF viability through inducing apoptosis. Our results indicated that an increased Bax/Bcl-xL ratio and resulting caspase activation underlie the apoptotic death in HGFs exposed to cigarette smoke. Furthermore, we detected that cigarette smoke also triggered autophagy, an integrated cellular stress response. Interesting, a pharmacological suppression of the cigarette smoke-induced autophagy led to a further reduction in HGF viability while a pharmacological promotion of autophagy increased the viability of HGFs with cigarette smoke exposures. These findings suggest a protective role for autophagy in HGFs stressed with cigarette smoke, highlighting that modulation of autophagy can be a novel therapeutic target in periodontal complications with cigarette smoke.

  17. DIETARY PHYTOCHEMICALS INDUCE p53- AND CASPASE-INDEPENDENT CELL DEATH IN HUMAN NEUROBLASTOMA CELLS

    OpenAIRE

    Sukumari-Ramesh, Sangeetha; Bentley, J Nicole; Laird, Melissa D.; Singh, Nagendra; Vender, John R.; Dhandapani, Krishnan M.

    2011-01-01

    Neuroblastoma (NB) is the most prevalent pediatric solid tumor and a leading cause of cancer-related death in children. In the present study, a novel cytotoxic role for the dietary compounds, curcumin, andrographolide, wedelolactone, dibenzoylmethane, and tanshinone IIA was identified in human S-type NB cells, SK-N-AS and SK-N-BE(2). Mechanistically, cell death appeared apoptotic by flow cytometry; however, these effects proceeded independently from both caspase-3 and p53 activation, as asses...

  18. Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus.

    Science.gov (United States)

    Xia, Mao; Meng, Gang; Jiang, Aiqin; Chen, Aiping; Dahlhaus, Meike; Gonzalez, Patrick; Beltinger, Christian; Wei, Jiwu

    2014-06-15

    Although apoptotic phenomena have been observed in malignant cells infected by measles virus vaccine strain Edmonston B (MV-Edm), the precise oncolytic mechanisms are poorly defined. In this study we found that MV-Edm induced autophagy and sequestosome 1-mediated mitophagy leading to decreased cytochrome c release, which blocked the pro-apoptotic cascade in non-small cell lung cancer cells (NSCLCs). The decrease of apoptosis by mitophagy favored viral replication. Persistent viral replication sustained by autophagy ultimately resulted in necrotic cell death due to ATP depletion. Importantly, when autophagy was impaired in NSCLCs MV-Edm-induced cell death was significantly abrogated despite of increased apoptosis. Taken together, our results define a novel oncolytic mechanism by which mitophagy switches cell death from apoptosis to more efficient necrosis in NSCLCs following MV-Edm infection. This provides a foundation for future improvement of oncolytic virotherapy or antiviral therapy. PMID:25004098

  19. Glutathione in Cancer Cell Death

    International Nuclear Information System (INIS)

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy

  20. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  1. HSP70 mediates survival in apoptotic cells – Boolean network prediction and experimental validation

    Directory of Open Access Journals (Sweden)

    Suhas Vasaikar

    2015-08-01

    Full Text Available Neuronal stress or injury results in the activation of proteins, which regulate the balance between survival and apoptosis. However, the complex mechanism of cell signalling involving cell death and survival, activated in response to cellular stress is not yet completely understood. To bring more clarity about these mechanisms, a Boolean network was constructed that represented the apoptotic pathway in neuronal cells. FasL and neurotrophic growth factor (NGF were considered as inputs in the absence and presence of heat shock proteins known to shift the balance towards survival by rescuing pro-apoptotic cells. The probabilities of survival, DNA repair and apoptosis as cellular fates, in the presence of either the growth factor or FasL, revealed a survival bias encoded in the network. Boolean predictions tested by measuring the mRNA expression level of caspase-3, caspase-8 and BAX in neuronal Neuro2a (N2a cell line with NGF and FasL as external input, showed positive correlation with the observed experimental results for survival and apoptotic states. It was observed that HSP70 contributed more towards rescuing cells from apoptosis in comparison to HSP27, HSP40 and HSP90. Overexpression of HSP70 in N2a transfected cells showed reversal of cellular fate from FasL-induced apoptosis to survival. Further, the pro-survival role of the proteins BCL2, IAP, cFLIP and NFκB determined by vertex perturbation analysis was experimentally validated through protein inhibition experiments using EM20-25, Embelin and Wedelolactone, which resulted in 1.27-fold, 1.26-fold and 1.46-fold increase in apoptosis of N2a cells. The existence of a one-to-one correspondence between cellular fates and attractor states shows that Boolean networks may be employed with confidence in qualitative analytical studies of biological networks.

  2. The von Hippel-Lindau protein sensitizes renal carcinoma cells to apoptotic stimuli through stabilization of BIMEL

    Science.gov (United States)

    Guo, Y; Schoell, MC; Freeman, RS

    2009-01-01

    von Hippel-Lindau (VHL) disease is caused by germ-line mutations in the VHL tumor suppressor gene and is the most common cause of inherited renal cell carcinoma (RCC). Mutations in the VHL gene also occur in a large majority of sporadic cases of clear-cell RCC, which have high intrinsic resistance to chemotherapy and radiotherapy. Here we show that VHL-deficient RCC cells express lower levels of the pro-apoptotic Bcl-2 family protein BIMEL and are more resistant to etoposide and UV radiation induced death compared to the same cells stably expressing the wild type VHL protein (pVHL). Re-introducing pVHL into VHL-null cells increased the half-life of BIMEL protein without affecting its mRNA expression, and over-expressing pVHL inhibited BIMEL polyubiquitination. Suppressing pVHL expression with RNA interference resulted in a decrease in BIMEL protein and a corresponding decrease in the sensitivity of RCC cells to apoptotic stimuli. Directly inhibiting BIMEL expression in pVHL-expressing RCC cells caused a similar decrease in cell death. These results demonstrate that pVHL acts to promote BIMEL protein stability in RCC cells, and that destabilization of BIMEL in the absence of pVHL contributes to the increased resistance of VHL-null RCC cells to certain apoptotic stimuli. PMID:19305426

  3. The anti-cell death FNK protein protects cells from death induced by freezing and thawing

    International Nuclear Information System (INIS)

    The FNK protein, constructed from anti-apoptotic Bcl-xL with enhanced activity, was fused with the protein transduction domain (PTD) of the HIV/Tat protein to mediate the delivery of FNK into cells. The fusion protein PTD-FNK was introduced into chondrocytes in isolated articular cartilage-bone sections, cultured neurons, and isolated bone marrow mononuclear cells to evaluate its ability to prevent cell death induced by freezing and thawing. PTD-FNK protected the cells from freeze-thaw damage in a concentration-dependent manner. Addition of PTD-FNK with conventional cryoprotectants (dimethyl sulfoxide and hydroxyethyl starch) increased surviving cell numbers around 2-fold compared with controls treated only with the cryoprotectants. Notably, PTD-FNK allowed CD34+ cells among bone marrow mononuclear cells to survive more efficiently (12-fold more than the control cells) from two successive freeze-thaw cycles. Thus, PTD-FNK prevented cell death induced by freezing and thawing, suggesting that it provides for the successful cryopreservation of biological materials

  4. The Acetone Extract of Sclerocarya birrea (Anacardiaceae Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7

    Directory of Open Access Journals (Sweden)

    Nicoline Fri Tanih

    2013-01-01

    Full Text Available Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation. The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy.

  5. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells : discord in the death receptor family

    NARCIS (Netherlands)

    Azijli, K.; Weyhenmeyer, B.; Peters, G. J.; de Jong, S.; Kruyt, F. A. E.

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based therapy is currently evaluated in clinical studies as a tumor cell selective pro-apoptotic approach. However, besides activating canonical caspase-dependent apoptosis by binding to TRAIL-specific death receptors, the TRAIL ligand

  6. Programmed cell death and clearance of cell corpses in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Xiaochen; Yang, Chonglin

    2016-06-01

    Programmed cell death is critical to the development of diverse animal species from C. elegans to humans. In C. elegans, the cell death program has three genetically distinguishable phases. During the cell suicide phase, the core cell death machinery is activated through a protein interaction cascade. This activates the caspase CED-3, which promotes numerous pro-apoptotic activities including DNA degradation and exposure of the phosphatidylserine "eat me" signal on the cell corpse surface. Specification of the cell death fate involves transcriptional activation of the cell death initiator EGL-1 or the caspase CED-3 by coordinated actions of specific transcription factors in distinct cell types. In the cell corpse clearance stage, recognition of cell corpses by phagocytes triggers several signaling pathways to induce phagocytosis of apoptotic cell corpses. Cell corpse-enclosing phagosomes ultimately fuse with lysosomes for digestion of phagosomal contents. This article summarizes our current knowledge about programmed cell death and clearance of cell corpses in C. elegans. PMID:27048817

  7. Activation of multiple apoptotic pathways in human nasopharyngeal carcinoma cells by the prenylated isoflavone, osajin.

    Directory of Open Access Journals (Sweden)

    Tsung-Teng Huang

    Full Text Available Osajin is a prenylated isoflavone showing antitumor activity in different tumor cell lines. The underlying mechanism of osajin-induced cancer cell death is not clearly understood. In the present study, the mechanisms of osajin-induced cell death of human nasopharyngeal carcinoma (NPC cells were explored. Osajin was found to significantly induce apoptosis of NPC cells in a dose- and time-dependent manner. Multiple molecular effects were observed during osajin treatment including a significant loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, enhanced expression of Fas ligand (FasL, suppression of glucose-regulated protein 78 kDa (GRP78, and activation of caspases-9, -8, -4 and -3. In addition, up-regulation of proapoptotic Bax protein and down-regulation of antiapoptotic Bcl-2 protein were also observed. Taken together, osajin induces apoptosis in human NPC cells through multiple apoptotic pathways, including the extrinsic death receptor pathway, and intrinsic pathways relying on mitochondria and endoplasmic reticulum stress. Thus, osajin could be developed as a new effective and chemopreventive compound for human NPC.

  8. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos.

    Science.gov (United States)

    Wood, W; Turmaine, M; Weber, R; Camp, V; Maki, R A; McKercher, S R; Martin, P

    2000-12-01

    Apoptosis is one of the key tools used by an embryo to regulate cell numbers and sculpt body shape. Although massive numbers of cells die during development, they are so rapidly phagocytosed that very few corpses are ever seen in most embryonic tissues. In this paper, we focus on the catastrophic cell death that occurs as the developing footplate is remodelled to transform webbed regions into free interdigital spaces. In the wild-type embryo, these dead cells are rapidly engulfed and cleared by macrophages. We show that in a macrophageless mouse embryo, null for the haemopoetic-lineage-specific transcription factor, PU.1, the task of phagocytosis is taken over by 'stand-in' mesenchymal neighbours in a clear example of cell redundancy. However, it takes three times as many of these mesenchymal phagocytes to complete the task and, at each stage of the clearance process - in the recognition of apoptotic debris, its engulfment and finally its digestion - they appear to be less efficient than macrophages. A molecular explanation for this may be that several of the engulfment genes expressed by macrophages, including the ABC1 transporter (believed to be part of the phagocytic machinery conserved from Caenorhabditis elegans to mouse), are not upregulated by these 'stand-in' phagocytes. PMID:11076747

  9. Reducing VDAC1 expression induces a non-apoptotic role for pro-apoptotic proteins in cancer cell differentiation.

    Science.gov (United States)

    Arif, Tasleem; Krelin, Yakov; Shoshan-Barmatz, Varda

    2016-08-01

    Proteins initially identified as essential for apoptosis also mediate a wide range of non-apoptotic functions that include cell cycle progression, differentiation and metabolism. As this phenomenon was mostly reported with non-cancer cells, we considered non-conventional roles for the apoptotic machinery in the cancer setting. We found that treating glioblastoma (GBM) tumors with siRNA against VDAC1, a mitochondrial protein found at the crossroads of metabolic and survival pathways and involved in apoptosis, inhibited tumor growth while leading to differentiation of tumor cells into neuronal-like cells, as reflected in the expression of specific markers. Although VDAC1 depletion did not induce apoptosis, the expression levels of several pro-apoptotic regulatory proteins were changed. Specifically, VDAC1 deletion led to up-regulation of caspases, p53, cytochrome c, and down-regulation of SMAC/Diablo, AIF and TSPO. The down-regulated group was highly expressed in U-87MG xenografts, as well as in GBMs from human patients. We also showed that the rewired cancer-cell metabolism resulting from VDAC1 depletion reinforced cell growth arrest and differentiation via alterations in the transcription factors p53, c-Myc, HIF-1α and NF-κB. The decrease in c-Myc, HIF-1α and NF-κB levels was in accord with reduced cell proliferation, whereas increased p53 expression promoted differentiation. Thus, upon metabolic re-programing induced by VDAC1 depletion, the levels of pro-apoptotic proteins associated with cell growth decreased, while those connected to cell differentiation increased, converting GBM cells into astrocyte- and neuron-like cells. The results reveal that in tumors, pro-apoptotic proteins can perform non-apoptotic functions, acting as regulators of cell growth and differentiation, making these molecules potential new targets for cancer therapy. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy

  10. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain); Lopez, Mariana; Perez, Francisco J.; Triana, Jorge [Departamento de Quimica, Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigacion del Cancer, 35017 Las Palmas de Gran Canaria (Spain); Leon, Francisco [Instituto de Productos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda. Astrofisico F. Sanchez 3, 38206 La Laguna, Tenerife (Spain); Estevez, Francisco, E-mail: festevez@dbbf.ulpgc.es [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  11. The DNA damage-induced cell death response: a roadmap to kill cancer cells.

    Science.gov (United States)

    Matt, Sonja; Hofmann, Thomas G

    2016-08-01

    Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response. PMID:26791483

  12. Morphological Analysis of Cell Death by Cytospinning Followed by Rapid Staining.

    Science.gov (United States)

    Crowley, Lisa C; Marfell, Brooke J; Waterhouse, Nigel J

    2016-01-01

    Identifying and characterizing different forms of cell death can be facilitated by staining internal cellular structures with dyes such as hematoxylin and eosin (H&E). These dyes stain the nucleus and cytoplasm, respectively, and optimized reagents (e.g., Rapi-Diff, Rapid Stain, or Quick Dip) are commonly used in pathology laboratories. Fixing and staining adherent cells with these optimized reagents is a straightforward procedure, but apoptotic cells may detach from the culture plate and be washed away during the fixing and staining procedure. To prevent the loss of apoptotic cells, cells can be gently centrifuged onto glass slides by cytospinning before fixing and staining. In addition to apoptotic cells, this procedure can be used on cells in suspension, or adherent cells that have been trypsinized and removed from the culture dish. This protocol describes cytospinning followed by Rapi-Diff staining for morphological analysis of cell death. PMID:27587773

  13. Comedo-ductal carcinoma in situ: A paradoxical role for programmed cell death

    OpenAIRE

    Shekhar, Malathy P. V.; Tait, Larry; Pauley, Robert J.; Wu, Gen Sheng; Santner, Steven J.; Nangia-Makker, Pratima; Shekhar, Varun; Nassar, Hind; Visscher, Daniel W.; Heppner, Gloria H.; Miller, Fred R.

    2008-01-01

    Comedo-DCIS is a histologic subtype of preinvasive breast neoplasia that is characterized by prominent apoptotic cell death and has greater malignant potential than other DCIS subtypes. We investigated the mechanisms of apoptosis in comedo-DCIS and its role in conversion of comedo-DCIS to invasive cancer. Clinical comedo-DCIS excisions and the MCF10DCIS.com human breast cancer model which produces lesions resembling comedo-DCIS were analyzed. Apoptotic luminal and myoepithelial cells were ide...

  14. HIV-1 Vpr-induced cell death in Schizosaccharomyces pombe is reminiscent of apoptosis

    Institute of Scientific and Technical Information of China (English)

    Sylvain Huard; Mingzhong Chen; Kristen E Burdette; Csaba Fenyvuesvolgyi; Min Yu; Robert T Elder; Richard Y Zhao

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell death in mammalian and fission yeast cells,suggesting that Vpr may affect a conserved cellular process. It is unclear,however,whether Vpr-induced yeast cell death mimics Vpr-mediated apoptosis in mammalian cells. We have recently identified a number of Vpr suppressors that not only suppress Vpr-induced cell death in fission yeast,but also block Vpr-induced apoptosis in mammalian cells. These findings suggest that Vpr-induced cell death in yeast may resemble some of the apoptotic processes of mammalian cells.The goal of this study was to develop and validate a fission yeast model system for future studies of apoptosis. Similar to Vpr-induced apoptosis in mammalian cells,we show here that Vpr in fission yeast promotes phosphatidylserine externalization and induces hyperpolarization of mitochondria,leading to changes of mitochondrial membrane potential. Moreover,Vpr triggers production of reactive oxygen species (ROS),indicating that the apoptotic-like cell death might be mediated by ROS. Interestingly,Vpr induces unique morphologic changes in mitochondria that may provide a simple marker for measuring the apoptotic-like process in fission yeast. To verify this possibility,we tested two Vpr suppressors (EF2 and Hspl6) that suppress Vpr-induced apoptosis in mammalian cells in addition to a newly identified Vpr suppressor (Skp1). All three proteins abolished cell death mediated by Vpr and restored normal mitochondrialmorphology in the yeast cells. In conclusion,Vpr-induced cell death in fission yeast resembles the mammalian apoptotic process. Fission yeast may thus potentially be used as a simple model organism for the future study of the apoptotic-like process induced by Vpr and other proapoptotic agents.

  15. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  16. Cell death and autophagy: Cytokines, drugs, and nutritional factors

    International Nuclear Information System (INIS)

    Cells may use multiple pathways to commit suicide. In certain contexts, dying cells generate large amounts of autophagic vacuoles and clear large proportions of their cytoplasm, before they finally die, as exemplified by the treatment of human mammary carcinoma cells with the anti-estrogen tamoxifen (TAM, ≤1 μM). Protein analysis during autophagic cell death revealed distinct proteins of the nuclear fraction including GST-π and some proteasomal subunit constituents to be affected during autophagic cell death. Depending on the functional status of caspase-3, MCF-7 cells may switch between autophagic and apoptotic features of cell death [Fazi, B., Bursch, W., Fimia, G.M., Nardacci R., Piacentini, M., Di Sano, F., Piredda, L., 2008. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 4(4), 435-441]. Furthermore, the self-destruction of MCF-7 cells was found to be completed by phagocytosis of cell residues [Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet, W., Nemes, Z., Bursch, W., Fesues, L., 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Diff. 14 (6), 1117-1128]. Autophagy also constitutes a cell's strategy of defense upon cell damage by eliminating damaged bulk proteins/organelles. This biological condition may be exemplified by the treatment of MCF-7 cells with a necrogenic TAM-dose (10 μM), resulting in the lysis of almost all cells within 24 h. However, a transient (1 h) challenge of MCF-7 cells with the same dose allowed the recovery of cells involving autophagy. Enrichment of chaperones in the insoluble cytoplasmic protein fraction indicated the formation of aggresomes, a potential trigger for autophagy. In a further experimental model HL60 cells were treated with TAM, causing dose-dependent distinct responses: 1-5 μM TAM, autophagy predominant; 7-9 μM, apoptosis predominant; 15 μM, necrosis. These phenomena might be

  17. Proliferation and cell death in the midgut of the stingless bee Melipona quadrifasciata anthidioides (Apidae, Meliponini) during metamorphosis

    OpenAIRE

    Cruz, Lilian; Araújo, Vinícius; Queiroz Fialho, Maria; Serrão, José; Neves, Clóvis

    2013-01-01

    This study quantitatively compared proliferation and cell death in the remodeling of the midgut epithelium in Melipona quadrifasciata anthidioides during metamorphosis to elucidate the renewal mechanism of the midgut in bees during postembryonic development. An anti-phosphohistone H3 antibody was used to mark mitotic cells. An apoptotic cell marking kit was used (Apo-TRACE®) to identify cells undergoing the process of cell death. The ultrastructural aspects of cell death were also analyzed. T...

  18. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-Bromopyruvate

    OpenAIRE

    Chen, Zhao; Zhang, Hui; Lu, Weiqin; Huang, Peng

    2009-01-01

    It has long been observed that cancer cells rely more on glycolysis to generate ATP and actively use certain glycolytic metabolic intermediates for biosynthesis. Hexokinase II (HKII) is a key glycolytic enzyme that plays a role in the regulation of the mitochondria-initiated apoptotic cell death. As a potent inhibitor of hexokinase, 3-bromopyruvate (3-BrPA) is known to inhibit cancer cell energy metabolism and trigger cell death, supposedly through depletion of cellular ATP. The current study...

  19. Apoptotic cell-based therapies against transplant rejection: role of recipient’s dendritic cells

    Science.gov (United States)

    Larregina, Adriana T.

    2010-01-01

    One of the ultimate goals in transplantation is to develop novel therapeutic methods for induction of donor-specific tolerance to reduce the side effects caused by the generalized immunosuppression associated to the currently used pharmacologic regimens. Interaction or phagocytosis of cells in early apoptosis exerts potent anti-inflammatory and immunosuppressive effects on antigen (Ag)-presenting cells (APC) like dendritic cells (DC) and macrophages. This observation led to the idea that apoptotic cell-based therapies could be employed to deliver donor-Ag in combination with regulatory signals to recipient’s APC as therapeutic approach to restrain the anti-donor response. This review describes the multiple mechanisms by which apoptotic cells down-modulate the immuno-stimulatory and pro-inflammatory functions of DC and macrophages, and the role of the interaction between apoptotic cells and APC in self-tolerance and in apoptotic cell-based therapies to prevent/treat allograft rejection and graft-versus-host disease in murine experimental systems and in humans. It also explores the role that in vivo-generated apoptotic cells could have in the beneficial effects of extracorporeal photopheresis, donor-specific transfusion, and tolerogenic DC-based therapies in transplantation. PMID:20140521

  20. Arabidopsis Bax Inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisae

    Directory of Open Access Journals (Sweden)

    Birsen Çakır

    2015-02-01

    Full Text Available Apoptosis is an active form of programmed cell death (PCD that plays critical roles in the development, differentiation and resistance to pathogens in multicellular organisms. Ribosome inactivating proteins (RIPs are able to induce apoptotic cell death in mammalian cells. In this study, using yeast as a model system, we showed that yeast cells expressing pokeweed antiviral protein (PAP, a single-chain ribosome-inactivating protein, exhibit apoptotic-like features, such as nuclear fragmentation and ROS production. We studied the interaction between PAP and AtBI-1 (Arabidopsis thaliana Bax Inhibitor-1, a plant anti-apoptotic protein, which inhibits Bax induced cell death. Cells expressing PAP and AtBI-1 were able to survive on galactose media compared to PAP alone, indicating a reduction in the cytotoxicity of PAP in yeast. However, PAP was able to depurinate the ribosomes and to inhibit total translation in the presence of AtBI-1. A C-terminally deleted AtBI-1 was able to reduce the cytotoxicity of PAP. Since anti-apoptotic proteins form heterodimers to inhibit the biological activity of their partners, we used a co-immunoprecipitation assay to examine the binding of AtBI-1 to PAP. Both full length and C-terminal deleted AtBI-1 were capable of binding to PAP. These findings indicate that PAP induces cell death in yeast and AtBI-1 inhibits cell death induced by PAP without affecting ribosome depurination and translation inhibition.

  1. Bax-induced cell death in Candida albicans.

    Science.gov (United States)

    De Smet, Kris; Eberhardt, Ines; Reekmans, Rieka; Contreras, Roland

    2004-12-01

    Bax is a pro-apoptotic member of the Bcl-2 family of proteins involved in the regulation of genetically programmed cell death in mammalian cells. It has been shown that heterologous expression of Bax in several yeast species, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe and Pichia pastoris, also induces cell death. In this study we investigated the effects of Bax expression in the pathogenic yeast Candida albicans. Cell death inducing expression of Bax required a synthetic BAX gene that was codon-optimized for expression in Candida albicans. Expression of this BAX gene resulted in growth inhibition and cell death. By fusing Bax with the yeast enhanced green fluorescent protein of Aequoria victoria, the cell death-inducing effect of Bax was increased due to reduced proteolytic degradation of Bax. Using this fusion protein we showed that, upon expression in C. albicans, Bax co-localizes with the mitochondria. Furthermore, we showed for the first time that expression of Bax in yeast causes the mitochondria, which are normally distributed throughout the cell, to cluster in the perinuclear region. PMID:15565645

  2. Different Types of Cell Death Induced by Enterotoxins

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Hong

    2010-08-01

    Full Text Available The infection of bacterial organisms generally causes cell death to facilitate microbial invasion and immune escape, both of which are involved in the pathogenesis of infectious diseases. In addition to the intercellular infectious processes, pathogen-produced/secreted enterotoxins (mostly exotoxins are the major weapons that kill host cells and cause diseases by inducing different types of cell death, particularly apoptosis and necrosis. Blocking these enterotoxins with synthetic drugs and vaccines is important for treating patients with infectious diseases. Studies of enterotoxin-induced apoptotic and necrotic mechanisms have helped us to create efficient strategies to use against these well-characterized cytopathic toxins. In this article, we review the induction of the different types of cell death from various bacterial enterotoxins, such as staphylococcal enterotoxin B, staphylococcal alpha-toxin, Panton-Valentine leukocidin, alpha-hemolysin of Escherichia coli, Shiga toxins, cytotoxic necrotizing factor 1, heat-labile enterotoxins, and the cholera toxin, Vibrio cholerae. In addition, necrosis caused by pore-forming toxins, apoptotic signaling through cross-talk pathways involving mitochondrial damage, endoplasmic reticulum stress, and lysosomal injury is discussed.

  3. Bimodal cell death induced by high radiation doses in the radioresistant sf9 insect cell line

    International Nuclear Information System (INIS)

    Full text: This study was conducted to investigate the mode(s) of cell death induced by high radiation doses in the highly radioresistant Sf9 insect ovarian cell line. Methods: Cells were exposed to γ-radiation doses 200Gy and 500Gy, harvested at various time intervals (6h-72h) following irradiation, and subjected to cell morphology assay, DNA agarose gel electrophoresis, single cell gel electrophoresis (SCGE; comet assay) and Annexin-V labeling for the detection of membrane phosphatidylserine externalization. Cell morphology was assessed in cells entrapped and fixed in agarose gel directly from the cell suspension, thus preventing the possible loss of fragments/ apoptotic bodies. Surviving fraction of Sf9 cells was 0.01 at 200Gy and 98%) undergoing extensive DNA fragmentation at 500Gy, whereas the frequency of cells with DNA fragmentation was considerably less (∼12%) at 200Gy. Conclusions: While the mode of cell death at 200Gy seems to be different from typical apoptosis, a dose of 500Gy induced bimodal cell death, with typical apoptotic as well as the atypical cell death observed at 200Gy

  4. The von Hippel-Lindau protein sensitizes renal carcinoma cells to apoptotic stimuli through stabilization of BIM(EL).

    Science.gov (United States)

    Guo, Y; Schoell, M C; Freeman, R S

    2009-04-23

    von Hippel-Lindau (VHL) disease is caused by germ-line mutations in the VHL tumor suppressor gene and is the most common cause of inherited renal cell carcinoma (RCC). Mutations in the VHL gene also occur in a large majority of sporadic cases of clear-cell RCC, which have high intrinsic resistance to chemotherapy and radiotherapy. Here we show that VHL-deficient RCC cells express lower levels of the proapoptotic Bcl-2 family protein BIM(EL) and are more resistant to etoposide and UV radiation-induced death compared to the same cells stably expressing the wild-type VHL protein (pVHL). Reintroducing pVHL into VHL-null cells increased the half-life of BIM(EL) protein without affecting its mRNA expression, and overexpressing pVHL inhibited BIM(EL) polyubiquitination. Suppressing pVHL expression with RNA interference resulted in a decrease in BIM(EL) protein and a corresponding decrease in the sensitivity of RCC cells to apoptotic stimuli. Directly inhibiting BIM(EL) expression in pVHL-expressing RCC cells caused a similar decrease in cell death. These results demonstrate that pVHL acts to promote BIM(EL) protein stability in RCC cells, and that destabilization of BIM(EL) in the absence of pVHL contributes to the increased resistance of VHL-null RCC cells to certain apoptotic stimuli. PMID:19305426

  5. Induction of cell death by chemotherapeutic methylating agents

    International Nuclear Information System (INIS)

    The mechanism of cell death induced by O6 MeG has been investigated and inhibition of homologous recombination as a strategy for sensitization of tumor cells against methylating agents SN1. Dependence of the cell cycle was determined toxic responses triggered by O''6 MeG and evaluated by proliferation assays if apoptotic cells have originated exclusively from the second post-treatment cycle. Dependence of O''6 MeG was found at DSB formation. The activation of the control points of the cell cycle and induction of apoptosis is generated during the second cell cycle. Additionally, a portion of the cells has been determined that triggers apoptosis in subsequent generations in the second cell cycle. Inhibition of homologous recombination has been a reasonable strategy to increase SN1 alkylating agent effectiveness. Evidence has been provided in NHEJ dependent inhibition of DNA-PK that not significantly sensitizes the glioblastoma cells against temozolomide

  6. The Apoptosome: Heart and Soul of the Cell Death Machine

    Directory of Open Access Journals (Sweden)

    Arul M. Chinnaiyan

    1999-04-01

    Full Text Available Apoptosis is a fundamental biologic process by which metazoan cells orchestrate their own self-demise. Genetic analyses of the nematode C elegans identified three core components of the suicide apparatus which include CED-3, CED-4, and CED-9. An analogous set of core constituents exists in mammalian cells and includes caspase-9, Apaf-1, and bcl-2/xL, respectively. CED-3 and CED-4, along with their mammalian counterparts, function to kill cells, whereas CED-9 and its mammalian equivalents protect cells from death. These central components biochemically intermingle in a ternary complex recently dubbed the “apoptosome.” The C elegans protein EGL-1 and its mammalian counterparts, pro-apoptotic members of the bcl-2 family, induce cell death by disrupting apoptosome interactions. Thus, EGL-1 may represent a primordial signal integrator for the apoptosome. Various biochemical processes including oligomerization, adenosine triphosphate ATP/dATP binding, and cytochrome c interaction play a role in regulating the ternary death complex. Recent studies suggest that cell death receptors, such as CD95, may amplify their suicide signal by activating the apoptosome. These mutual associations by core components of the suicide apparatus provide a molecular framework in which diverse death signals likely interface. Understanding the apoptosome and its cellular connections will facilitate the design of novel therapeutic strategies for cancer and other disease states in which apoptosis plays a pivotal role.

  7. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping;

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  8. Mitochondria: pharmacological manipulation of cell death

    OpenAIRE

    Bouchier-Hayes, Lisa; Lartigue, Lydia; Newmeyer, Donald D.

    2005-01-01

    Cell death by apoptosis or necrosis is often important in the etiology and treatment of disease. Since mitochondria play important roles in cell death pathways, these organelles are potentially prime targets for therapeutic intervention. Here we discuss the mechanisms through which mitochondria participate in the cell death process and also survey some of the pharmacological approaches that target mitochondria in various ways.

  9. Impaired Clearance of Apoptotic Cells in Chronic Inflammatory Diseases: Therapeutic Implications

    OpenAIRE

    Szondy, Zsuzsa; Garabuczi, Éva; Joós, Gergely; Tsay, Gregory J.; Sarang, Zsolt

    2014-01-01

    In healthy individuals, billions of cells die by apoptosis every day. Removal of the dead cells by phagocytosis (a process called efferocytosis) must be efficient to prevent secondary necrosis and the consequent release of pro-inflammatory cell contents that damages the tissue environment and provokes autoimmunity. In addition, detection and removal of apoptotic cells generally induces an anti-inflammatory response. As a consequence improper clearance of apoptotic cells, being the result of e...

  10. Phellinus linteus polysaccharide extracts increase the mitochondrial membrane potential and cause apoptotic death of THP-1 monocytes

    OpenAIRE

    Griensven, van, L.J.L.D.; Verhoeven, H.A.

    2013-01-01

    Background: The differentiation resp. death of human monocytic THP-1 cells induced by polysaccharide extracts of the medicinal mushrooms Phellinus linteus, Agaricus bisporus and Agaricus brasiliensis have been studied. This study aims to identify leads for the causal effects of these mushroom components on cell differentiation and death. Methods: THP-1 cells were treated with different polysaccharide extracts of mushrooms and controls. Morphological effects were observed by light microscopy. ...

  11. Externalization and recognition by macrophages of large subunit of eukaryotic translation initiation factor 3 in apoptotic cells

    International Nuclear Information System (INIS)

    We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages [C. Fujii, A. Shiratsuchi, J. Manaka, S. Yonehara, Y. Nakanishi. Cell Death Differ. 8 (2001) 1113-1122]. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis

  12. Cell death, clearance and immunity in the skeletal muscle.

    Science.gov (United States)

    Sciorati, C; Rigamonti, E; Manfredi, A A; Rovere-Querini, P

    2016-06-01

    The skeletal muscle is an immunologically unique tissue. Leukocytes, virtually absent in physiological conditions, are quickly recruited into the tissue upon injury and persist during regeneration. Apoptosis, necrosis and autophagy coexist in the injured/regenerating muscles, including those of patients with neuromuscular disorders, such as inflammatory myopathies, dystrophies, metabolic and mitochondrial myopathies and drug-induced myopathies. Macrophages are able to alter their function in response to microenvironment conditions and as a consequence coordinate changes within the tissue from the early injury throughout regeneration and eventual healing, and regulate the activation and the function of stem cells. Early after injury, classically activated macrophages ('M1') dominate the picture. Alternatively activated M2 macrophages predominate during resolution phases and regulate the termination of the inflammatory responses. The dynamic M1/M2 transition is increasingly felt to be the key to the homeostasis of the muscle. Recognition and clearance of debris originating from damaged myofibers and from dying stem/progenitor cells, stromal cells and leukocytes are fundamental actions of macrophages. Clearance of apoptotic cells and M1/M2 transition are causally connected and represent limiting steps for muscle healing. The accumulation of apoptotic cells, which reflects their defective clearance, has been demonstrated in various tissues to prompt autoimmunity against intracellular autoantigens. In the muscle, in the presence of type I interferon, apoptotic myoblasts indeed cause the production of autoantibodies, lymphocyte infiltration and continuous cycles of muscle injury and regeneration, mimicking human inflammatory myopathies. The clearance of apoptotic cells thus modulates the homeostatic response of the skeletal muscle to injury. Conversely, defects in the process may have deleterious local effects, guiding maladaptive tissue remodeling with collagen and fat

  13. Cell death in the cardiovascular system

    OpenAIRE

    Clarke, Murray; Bennett, Martin; Littlewood, Trevor

    2006-01-01

    Cell death is important for both development and tissue homeostasis in the adult. As such, it is tightly controlled and deregulation is associated with diverse pathologies; for example, regulated cell death is involved in vessel remodelling during development or following injury, but deregulated death is implicated in pathologies such as atherosclerosis, aneurysm formation, ischaemic and dilated cardiomyopathies and infarction. We describe the mechanisms of cell death and its role in the norm...

  14. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1.

    Science.gov (United States)

    Fond, Aaron M; Lee, Chang Sup; Schulman, Ira G; Kiss, Robert S; Ravichandran, Kodi S

    2015-07-01

    Macrophages clear millions of apoptotic cells daily and, during this process, take up large quantities of cholesterol. The membrane transporter ABCA1 is a key player in cholesterol efflux from macrophages and has been shown via human genetic studies to provide protection against cardiovascular disease. How the apoptotic cell clearance process is linked to macrophage ABCA1 expression is not known. Here, we identified a plasma membrane-initiated signaling pathway that drives a rapid upregulation of ABCA1 mRNA and protein. This pathway involves the phagocytic receptor brain-specific angiogenesis inhibitor 1 (BAI1), which recognizes phosphatidylserine on apoptotic cells, and the intracellular signaling intermediates engulfment cell motility 1 (ELMO1) and Rac1, as ABCA1 induction was attenuated in primary macrophages from mice lacking these molecules. Moreover, this apoptotic cell-initiated pathway functioned independently of the liver X receptor (LXR) sterol-sensing machinery that is known to regulate ABCA1 expression and cholesterol efflux. When placed on a high-fat diet, mice lacking BAI1 had increased numbers of apoptotic cells in their aortic roots, which correlated with altered lipid profiles. In contrast, macrophages from engineered mice with transgenic BAI1 overexpression showed greater ABCA1 induction in response to apoptotic cells compared with those from control animals. Collectively, these data identify a membrane-initiated pathway that is triggered by apoptotic cells to enhance ABCA1 within engulfing phagocytes and with functional consequences in vivo. PMID:26075824

  15. Expression Profile of Apoptotic Mediators and Proliferative Markers in Oral Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Oral squamous cell carcinoma (OSCC) represents a major health problem worldwide. It is therefore essential to develop a deeper understanding of its biology. Beside the recent hypothesis of cancer stem cells, the consideration of its cell death and cell proliferation has emerged as important diagnostic and prognostic tools. Purpose of the Study: Detection of the proportion of cell loss monitored by apoptosis-related genes, p53, p21 and Bcl2, and their relationship to the pathological proliferation parameter, PCNA in OSCC. Furthermore, discussion of the hypothesis of cancer stem cell biology in OSCC would be anticipated. Material and Methods: Archival 35 tissue embedded paraffin blocks, that were previously diagnosed as well to moderately differentiated OSCC, were immunohistochemically stained using a panel of antibodies including apoptotic mediators, p53, p21, Bcl2, and proliferation marker, PCNA. Immuno expression was scored using a semiquantitative scale and statistically analyzed. Results: The clinico-pathological data revealed that mean age was 46.9±8.2 and the tongue was the most affected site, followed by the palate then the floor of the mouth. There was no significant difference between metastasizing and non-metastasizing patients regarding age or gender (p=0.174, 0.404, respectively). On the other hand, variable profile patterns of the investigated indicators existed, where PCNA positively immunostaining cells was 100% while P21 recorded the higher percentage of negatively immunoreactive cells (42.9%). A common trait for the studied cell cycle indicators was that the basal and supra basal epithelial cells as well as the peripheral cells of the invading nests were the harbor of immunoreactivity. Meanwhile, Pca immuno positivity was revealed in all epithelial layers plus stromal cells. Conclusions: Assessment of the studied cell cycle regulators may be valuable to judge tumorigenesis of Osac. Furthermore, deregulation of cell cycle control might aid in the

  16. Baicalein induces programmed cell death in Candida albicans.

    Science.gov (United States)

    Dai, Bao-Di; Cao, Ying-Ying; Huang, Shan; Xu, Yong-Gang; Gao, Ping-Hui; Wang, Yan; Jiang, Yuan-Ying

    2009-08-01

    Recent evidence has revealed the occurrence of an apoptotic phenotype in Candida albicans that is inducible with environmental stresses such as acetic acid, hydrogen peroxide, and amphotericin B. In the present study, we found that the Chinese herbal medicine Baicalein (BE), which was one of the skullcapflavones, can induce apoptosis in C. albicans. The apoptotic effects of BE were detected by flow cytometry using Annexin V-FITC and DAPI, and it was confirmed by transmission electron microscopy analysis. After exposure to 4 microg/ml BE for 12 h, about 10% of C. albicans cells were apoptotic. Both the increasing intracellular levels of reactive oxygen species (ROS) and upregulation of some redox-related genes (CAP1, SOD2, TRR1) were observed. Furthermore, we compared the survivals of CAP1 deleted, wild-type, and overexpressed strains and found that Cap1p attenuated BE-initiated cell death, which was coherent with a higher mRNA level of the CAP1 gene. In addition, the mitochondrial membrane potential of C. albicans cells changed significantly ( palbicans cells, and the apoptosis was associated with the breakdown of mitochondrial membrane potential. PMID:19734718

  17. The replication of human immunodeficiency virus type 1 in macrophages is enhanced after phagocytosis of apoptotic cells

    OpenAIRE

    Lima, Rosangela G; Van Weyenbergh, Johan; Saraiva, Elvira M. B.; Barral-Netto, Manoel; Galvão-Castro, Bernardo; Bou-Habib, Dumith Chequer

    2002-01-01

    Clearance of apoptotic cells increases macrophage secretion of antiinflammatory mediators and might modulate viral replication in human immunodeficiency virus (HIV) type 1-infected macrophages. To study this, primary macrophages were infected with HIV-1 and exposed to apoptotic cells. It was found that phagocytosis of apoptotic cells potently enhanced HIV-1 growth. The peptide Arg-Gly-Asp-Ser, which binds to integrin receptors, inhibited the uptake of apoptotic cells and the subsequent enhanc...

  18. Surface active stabilizer Tyloxapol in colloidal dispersions exerts cytostatic effects and apoptotic dismissal of cells

    International Nuclear Information System (INIS)

    Solid lipid nanoparticles (SLN) have been praised for their advantageous drug delivery properties such as biocompatibility, controlled release and passive drug targeting. However, the cytotoxicity of SLN and their ingredients, especially over a longer time period, has not been investigated in detail. We examined the critical issues regarding the use of a surface active stabilizer Tyloxapol (Tyl) for the preparation of solid lipid particles (SLP) and their effects on cellular functions and viability. SLP composed of behenate, phospholipids and a stabilizer, Tyloxapol or Lutrol (Lut), were prepared by the lipid melt method, labeled with a fluorescent dye and tested on Jurkat or HEK293 cells. The nano-sized particles were rapidly internalized and exhibited cytoplasmic localization. Incubation of cells with SLP-Tyl resulted in a dose- and time-dependent cytostatic effect, and also caused moderate and delayed cytotoxicity. Tyloxapol solution or SLP-Tyl dispersion caused the detachment of HEK293 cells, a decrease in cell proliferation and alterations in cellular morphology. Cell cycle analysis revealed that, while the unfavourable effects of SLP-Tyl and Tyloxapol solution are similar initially, longer incubation results in partial recovery of cells incubated with the dispersion of SLP-Tyl, whereas the presence of Tyloxapol solution induces apoptotic cell death. These findings indicate that Tyloxapol is an unfavourable stabilizer of SLP used for intracellular delivery and reinforce the role of stabilizers in a design of SLP with minimal cytotoxic properties

  19. Investigation of epothilone B-induced cell death mechanisms in human epithelial cancer cells -in consideration of combined treatment with ionizing radiation.

    Science.gov (United States)

    Baumgart, Tonja; Kriesen, Stephan; Neels, Oliver; Hildebrandt, Guido; Manda, Katrin

    2015-07-01

    Epothilone B was shown to have promising chemo- and radiosensitizing effects on cells, but the mechanisms underlying cell death remain ambiguous. The aim of the study was to examine selected cell death pathways on the basis of FaDu and A549 cells. Western blot analyses were used for investigation of specific apoptotic markers. Immunofluorescence imaging and flow cytometry were utilized for examination of cell death mechanisms. DNA-staining was used for studying influence of epothilone B on micronucleus rate. We showed that epothilone B can initiate cell death via apoptosis and mitotic catastrophe, but induction of cell death was cell type specific. PMID:25919223

  20. Phagocytosis mechanism of apoptotic granulosa cells regulated by milk-fat globule-EGF factor 8.

    Science.gov (United States)

    Naka, Mayumi; Kusakabe, Ken; Takeshita, Ai; Nakagawa, Hiroshi; Ito, Yuko; Shibata, Masa-Aki; Otsuki, Yoshinori

    2009-09-01

    In the process of ovary sexual maturation, most immature ovarian follicles degrade into atretic follicles accompanied by apoptosis in granulosa cells. Macrophages can recognize apoptotic cells through specific binding with phosphatidylserine (PS), exposed on the surface of apoptotic cells, which is mediated by milk-fat globule-EGF factor 8 (MFG-E8). In the present research, we examined the involvement of the MFG-E8-dependent phagocytosis system in the atretic follicles of developing mouse ovaries. The number of atretic follicles and DNA-fragmented granulosa cells significantly increased in B6C3F1 mice during 2 to 6 weeks. Chromatin-condensed granulosa cells were engulfed by macrophages, which existed in the stroma or atretic follicles, or by neighboring normal granulosa cells. MFG-E8 mRNA increased in ovaries during 2 to 6 weeks, and immunoreactivity of MFG-E8 was detected at the surface of apoptotic cells existing around the antrum. Immunoelectron microscopic study revealed MFG-E8-positive signals on the membrane of apoptotic cells near macrophages, but apoptotic cells engulfed by neighboring granulosa cells showed few signals. Anti-Fas antibody elevated the annexin-V-positive reaction in isolated granulosa cells from 3-week-old mouse ovaries. MFG-E8 seems to act on the phagocytosis of apoptotic granulosa cells via macrophages and contribute to the regression process of atretic follicles. PMID:19784740

  1. Glucococorticoid-Induced Death of Pancreatic Beta Cells: An Organized Chaos

    Directory of Open Access Journals (Sweden)

    Joselyn Rojas

    2015-01-01

    Full Text Available Glucocorticoids (GC are renowned for their pleiotropic effects in all organ systems, their ubiquitous use in numerous clinical settings, and the abundant adverse effects they may exert, particularly in the endocrine-metabolic sphere. Although hyperglycemia and insulin resistance are well-defined GC-induced diabetogenic phenomena, an added component of direct injury to pancreatic β cells (PBC may also participate in this scenario. Indeed, the apoptotic capacity of GC is widely recognized, and PBC do not escape this situation. No unified pathway has been characterized regarding GC-induced cell death; instead, it appears to depend on the specific machinery of each cell type, determining a great heterogeneity in GC-dependent apoptotic mechanisms among different tissues. In PBC, GC can induce the expression or activation of pro-apoptotic proteins (Bax, BAD, p38, repress anti-apoptotic proteins (Bcl-2, deactivate pro-survival mechanisms (cAMP-PKA signaling and sensitize the cell to death induced by oxidative stress, fatty acids, hyperglycemia and cytokines. Although proliferative pathways (TGF-β, H-ras are activated simultaneously – and an increase in PBC mass may be observed initially – pro-apoptotic and anti-proliferative mechanisms appear to eventually overcome their pro-survival counterparts, due to their synergic and aggregative action. Key molecules such as p38 and the cAMP-PKA system may be promising therapeutic targets in the prevention of GC-induced cell death.

  2. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation.

    Science.gov (United States)

    Grabiec, Aleksander M; Hussell, Tracy

    2016-07-01

    Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called 'efferocytosis'. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released 'damage associated molecular patterns' (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections. PMID:26957481

  3. Molecular analysis of the apoptotic effects of BPA in acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Del Pozzo Giovanna

    2009-06-01

    Full Text Available Abstract Background: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenolpropane is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. Methods: Cell cycle, apoptosis and differentiation analyses; western blots. Results: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. Conclusion: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis.

  4. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.

    Science.gov (United States)

    Gali-Muhtasib, Hala; Hmadi, Raed; Kareh, Mike; Tohme, Rita; Darwiche, Nadine

    2015-12-01

    Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics. PMID:26362468

  5. Gene delivery of the elastase inhibitor elafin protects macrophages from neutrophil elastase-mediated impairment of apoptotic cell recognition.

    Science.gov (United States)

    Henriksen, Peter A; Devitt, Andrew; Kotelevtsev, Yuri; Sallenave, Jean-Michel

    2004-09-10

    The resolution of inflammation is dependent on recognition and phagocytic removal of apoptotic cells by macrophages. Receptors for apoptotic cells are sensitive to degradation by human neutrophil elastase (HNE). We show in the present study that HNE cleaves macrophage cell surface CD14 and in so doing, reduces phagocytic recognition of apoptotic lymphocytic cells (Mutu 1). Using an improved method of adenovirus-mediated transfection of macrophages with the HNE inhibitor elafin, we demonstrate that elafin overexpression prevents CD14 cleavage and restores apoptotic cell recognition by macrophages. This approach of genetic modification of macrophages could be used to restore apoptotic cell recognition in inflammatory conditions. PMID:15358543

  6. The proteasomal and apoptotic phenotype determine bortezomib sensitivity of non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Chęcińska Agnieszka

    2007-11-01

    Full Text Available Abstract Bortezomib is a novel anti-cancer agent which has shown promising activity in non-small lung cancer (NSCLC patients. However, only a subset of patients respond to this treatment. We show that NSCLC cell lines are differentially sensitive to bortezomib, IC50 values ranging from 5 to 83 nM. The apoptosis-inducing potential of bortezomib in NSCLC cells was found to be dependent not only on the apoptotic phenotype but also on the proteasomal phenotype of individual cell lines. Upon effective proteasome inhibition, H460 cells were more susceptible to apoptosis induction by bortezomib than SW1573 cells, indicating a different apoptotic phenotype. However, exposure to a low dose of bortezomib did only result in SW1573 cells, and not in H460 cells, in inhibition of proteasome activity and subsequent apoptosis. This suggests a different proteasomal phenotype as well. Additionally, overexpression of anti-apoptotic protein Bcl-2 in H460 cells did not affect the proteasomal phenotype of H460 cells but did result in decreased bortezomib-induced apoptosis. In conclusion, successful proteasome-inhibitor based treatment strategies in NSCLC face the challenge of having to overcome apoptosis resistance as well as proteasomal resistance of individual lung cancer cells. Further studies in NSCLC are warranted to elucidate underlying mechanisms.

  7. Molecular mechanisms of cell death in intervertebral disc degeneration (Review).

    Science.gov (United States)

    Zhang, Fan; Zhao, Xueling; Shen, Hongxing; Zhang, Caiguo

    2016-06-01

    Intervertebral discs (IVDs) are complex structures that consist of three parts, namely, nucleus pulposus, annulus fibrosus and cartilage endplates. With aging, IVDs gradually degenerate as a consequence of many factors, such as microenvironment changes and cell death. Human clinical trial and animal model studies have documented that cell death, particularly apoptosis and autophagy, significantly contribute to IVD degeneration. The mechanisms underlying this phenomenon include the activation of apoptotic pathways and the regulation of autophagy in response to nutrient deprivation and multiple stresses. In this review, we briefly summarize recent progress in understanding the function and regulation of apoptosis and autophagy signaling pathways. In particular, we focus on studies that reveal the functional mechanisms of these pathways in IVD degeneration. PMID:27121482

  8. Unlocking Pandora's box: personalising cancer cell death in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Fennell Dean A

    2012-06-01

    Full Text Available Abstract Evasion of apoptosis is a hallmark of tumorigenesis and a recognised cause of multidrug resistance. Over the last decade, insights into how apoptosis might be exploited in non-small cell lung cancer (NSCLC and how cancer therapeutics might be used to engage apoptotic signalling in a personalised manner have changed markedly. We are now in the wake of a paradigm shift in stratified therapeutic approaches related to NSCLC. At the heart of this shift in thinking is the emerging knowledge that even the most drug-resistant cancers exhibit a functional death pathway and, critically, that this pathway can be efficiently engaged, leading to clinical benefit. This review will summarise current knowledge of mitochondrial apoptotic pathway dysfunction in NSCLC and how the next generation of targeted therapeutics might be used to exploit deficiencies in apoptotic signalling in a personalised manner to improve clinical outcome and predict therapeutic benefit.

  9. Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery.

    Science.gov (United States)

    Karlsson, Hannah

    2016-04-15

    Chimaeric antigen receptor (CAR) T-cells have shown impressive results in patients with B-cell leukaemia. Yet, in patients with lymphoma durable responses are still rare and heavy preconditioning required. Apoptosis resistance is considered a hallmark of cancer, often conveyed by a halted apoptosis signalling. Tumours regularly skew the balance of the components of the apoptotic machinery either through up-regulating anti-apoptotic proteins or silencing pro-apoptotic ones. Malignant B-cells frequently up-regulate anti-apoptotic B-cell lymphoma 2 (Bcl-2) family proteins leading to therapy resistance. CAR T-cells kill tumour cells via apoptosis induction and their efficacy may be affected by the level of Bcl-2 family proteins. Hence, there is an interesting possibility to increase the effect of CAR T-cell therapy by combining it with apoptosis inhibitor blockade agents. Compounds that inhibit Bcl-2, B-cell lymphoma extra large (Bcl-xL) and Bcl-2-like protein 2 (Bcl-w), can restore execution of apoptosis in tumour cells or sensitize them to other apoptosis-dependent treatments. Hence, there is a great interest to combine such agents with CAR T-cell therapy to potentiate the effect of CAR T-cell killing. This review will focus on the potential of targeting the apoptotic machinery to sensitize tumour cells to CAR T-cell killing. PMID:27068942

  10. Cell death and cytokine production induced by autoimmunogenic hydrocarbon oils.

    Science.gov (United States)

    Herman, Sonja; Kny, Angelika; Schorn, Christine; Pfatschbacher, Jürgen; Niederreiter, Birgit; Herrmann, Martin; Holmdahl, Rikard; Steiner, Günter; Hoffmann, Markus H

    2012-12-01

    Hydrocarbon oils such as pristane or hexadecane induce arthritis and lupus in rodents sharing clinical and pathological features with the human diseases rheumatoid arthritis and systemic lupus erythematosus, respectively. In pristane-induced lupus in the mouse induction of apoptosis and augmentation of type-I Interferon signalling by pristane have been suggested to contribute to pathology, whereas in pristane-induced arthritis (PIA) in the rat the pathological mechanisms are still elusive. Here we show that pristane induces cell death in rat and human cells. Increased numbers of apoptotic cells were found in draining lymph nodes of pristane-injected rats and increased percentages of apoptotic and necrotic cells were observed in peripheral blood. In addition, neutrophil extracellular trap formation was triggered by pristane and hexadecane in neutrophils. Because levels of interleukin (IL)-1β were elevated in sera of pristane-injected rats, with levels mirroring the course of PIA, we examined the effect of pristane at single cell level in vitro, using rat splenocytes and the human monocytic cell line THP-1. Pristane and other hydrocarbon oils induced IL-1β secretion in THP-1 cells as well as in rat splenocytes. The potassium channel inhibitor glibenclamide partly inhibited IL-1β induction, suggesting involvement of the inflammasome. Elevated levels of IL-1α were also found in supernatants of cells treated with pristane and hexadecane. In conclusion, autoimmunogenic hydrocarbon oils induce various forms of cell death in rat and human cells. The higher serum IL-1β levels in pristane-injected animals might be caused by both inflammasome-dependent and -independent mechanisms, such as passive release from dying-cells and probably extracellular maturation of pro-IL-1β. PMID:22917079

  11. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1

    OpenAIRE

    Fond, Aaron M.; Lee, Chang Sup; Schulman, Ira G.; Kiss, Robert S.; Ravichandran, Kodi S.

    2015-01-01

    Macrophages clear millions of apoptotic cells daily and, during this process, take up large quantities of cholesterol. The membrane transporter ABCA1 is a key player in cholesterol efflux from macrophages and has been shown via human genetic studies to provide protection against cardiovascular disease. How the apoptotic cell clearance process is linked to macrophage ABCA1 expression is not known. Here, we identified a plasma membrane–initiated signaling pathway that drives a rapid upregulatio...

  12. Pro-apoptotic effect of Persea americana var. Hass (avocado) on Jurkat lymphoblastic leukemia cells.

    Science.gov (United States)

    Bonilla-Porras, Angelica R; Salazar-Ospina, Andrea; Jimenez-Del-Rio, Marlene; Pereañez-Jimenez, Andres; Velez-Pardo, Carlos

    2013-11-01

    Abstract Context: Therapy for leukemia has a limited efficacy. There is a need to search for alternative anti-leukemia therapies. Persea americana Mill var. Hass (Lauraceae) is a tropical fruit (avocado) that might be used against cancer. Objective: To investigate whether P. americana induces death in Jurkat lymphoblastic leukemia cells. Materials and methods: Four ethanol extracts (0.1, 0.5, 1, 2 and 5 mg/mL) from avocado fruit (endocarp, whole seed, seed and leaves) were analyzed against Jurkat cells. Hydrogen peroxide generation by oxidation of 2',7'-dichlorodihydrofluorescein diacetate to the fluorescent compound 2',7'-dichlorfluorescein assay, acridine orange/ethidium bromide staining, flow cytometry analysis of annexin-V/7-amino-actinomycin, mitochondrial membrane potential and immunocytochemistry detection of transcription factor p53, caspase-3 and apoptosis-inducing factor (AIF) were evaluated. Results: Endocarp, seed, whole seed, and leaf (0.1 mg/mL) extracts induced significant apoptosis in Jurkat cells (p americana extracts function as a pro-apoptotic compound. Leukemic cells are eliminated through an oxidative stress mechanism. This study contributes to the understanding of the molecular mechanism of the avocado and its therapeutic action on leukemia. PMID:24188375

  13. Morphological classification of plant cell deaths

    DEFF Research Database (Denmark)

    van Doorn, W.G.; Beers, E.P.; Dangl, J.L.;

    2011-01-01

    cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during...

  14. Triggering Apoptotic Death of Human Epidermal Keratinocytes by Malic Acid: Involvement of Endoplasmic Reticulum Stress- and Mitochondria-Dependent Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yu-Ping Hsiao

    2015-01-01

    Full Text Available Malic acid (MA has been commonly used in cosmetic products, but the safety reports in skin are sparse. To investigate the biological effects of MA in human skin keratinocytes, we investigated the potential cytotoxicity and apoptotic effects of MA in human keratinocyte cell lines (HaCaT. The data showed that MA induced apoptosis based on the observations of DAPI staining, DNA fragmentation, and sub-G1 phase in HaCaT cells and normal human epidermal keratinocytes (NHEKs. Flow cytometric assays also showed that MA increased the production of mitochondrial superoxide (mito-SOX but decreased the mitochondrial membrane potential. Analysis of bioenergetics function with the XF 24 analyzer Seahorse extracellular flux analyzer demonstrated that oxygen consumption rate (OCR was significantly decreased whereas extracellular acidification rate (ECAR was increased in MA-treated keratinocytes. The occurrence of apoptosis was proved by the increased expressions of FasL, Fas, Bax, Bid, caspases-3, -8, -9, cytochrome c, and the declined expressions of Bcl-2, PARP. MA also induced endoplasmic reticulum stress associated protein expression such as GRP78, GADD153, and ATF6α. We demonstrated that MA had anti-proliferative effect in HaCaT cell through the inhibition of cell cycle progression at G0/G1, and the induction of programmed cell death through endoplasmic reticulum stress- and mitochondria-dependent pathways.

  15. Hepatic Leukemia Factor Promotes Resistance To Cell Death: Implications For Therapeutics and Chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J.

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation.

  16. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial Endosymbiont.

    Directory of Open Access Journals (Sweden)

    Weiwen Zheng

    Full Text Available Programmed cell death (PCD is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20% of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays, together with visualization of cytoskeleton alterations (FITC-phalloidin staining, showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20 further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  17. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont.

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  18. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  19. The Growing Complexity of Cancer Cell Response to DNA-Damaging Agents: Caspase 3 Mediates Cell Death or Survival?

    OpenAIRE

    Razmik Mirzayans; Bonnie Andrais; Piyush Kumar; David Murray

    2016-01-01

    It is widely stated that wild-type p53 either mediates the activation of cell cycle checkpoints to facilitate DNA repair and promote cell survival, or orchestrates apoptotic cell death following exposure to cancer therapeutic agents. This reigning paradigm has been challenged by numerous discoveries with different human cell types, including solid tumor-derived cell lines. Thus, activation of the p53 signaling pathway by ionizing radiation and other DNA-damaging agents hinders apoptosis and t...

  20. Deciphering the plasma membrane hallmarks of apoptotic cells: Phosphatidylserine transverse redistribution and calcium entry

    Directory of Open Access Journals (Sweden)

    Martínez M Carmen

    2001-10-01

    Full Text Available Abstract Background During apoptosis, Ca2+-dependent events participate in the regulation of intracellular and morphological changes including phosphatidylserine exposure in the exoplasmic leaflet of the cell plasma membrane. The occurrence of phosphatidylserine at the surface of specialized cells, such as platelets, is also essential for the assembly of the enzyme complexes of the blood coagulation cascade, as demonstrated by hemorrhages in Scott syndrome, an extremely rare genetic deficiency of phosphatidylserine externalization, without other apparent pathophysiologic consequences. We have recently reported a reduced capacitative Ca2+ entry in Scott cells which may be part of the Scott phenotype. Results Taking advantage of these mutant lymphoblastoid B cells, we have studied the relationship between this mode of Ca2+ entry and phosphatidylserine redistribution during apoptosis. Ca2+ ionophore induced apoptosis in Scott but not in control cells. However, inhibition of store-operated Ca2+ channels led to caspase-independent DNA fragmentation and decrease of mitochondrial membrane potential in both control and Scott cells. Inhibition of cytochrome P450 also reduced capacitative Ca2+ entry and induced apoptosis at comparable extents in control and Scott cells. During the apoptotic process, both control and more markedly Scott cells externalized phosphatidylserine, but in the latter, this membrane feature was however dissociated from several other intracellular changes. Conclusions The present results suggest that different mechanisms account for phosphatidylserine transmembrane migration in cells undergoing stimulation and programmed death. These observations testify to the plasticity of the plasma membrane remodeling process, allowing normal apoptosis even when less fundamental functions are defective.

  1. Cell death regulates muscle fiber number.

    Science.gov (United States)

    Sarkissian, Tatevik; Arya, Richa; Gyonjyan, Seda; Taylor, Barbara; White, Kristin

    2016-07-01

    Cell death can have both cell autonomous and non-autonomous roles in normal development. Previous studies have shown that the central cell death regulators grim and reaper are required for the developmentally important elimination of stem cells and neurons in the developing central nervous system (CNS). Here we show that cell death in the nervous system is also required for normal muscle development. In the absence of grim and reaper, there is an increase in the number of fibers in the ventral abdominal muscles in the Drosophila adult. This phenotype can be partially recapitulated by inhibition of cell death specifically in the CNS, indicating a non-autonomous role for neuronal death in limiting muscle fiber number. We also show that FGFs produced in the cell death defective nervous system are required for the increase in muscle fiber number. Cell death in the muscle lineage during pupal stages also plays a role in specifying fiber number. Our work suggests that FGFs from the CNS act as a survival signal for muscle founder cells. Thus, proper muscle fiber specification requires cell death in both the nervous system and in the developing muscle itself. PMID:27131625

  2. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen; Zuhayra, Maaz; Schütze, Stefan; Steckelings, Ulrike Muscha; Recarti, Chiara; Namsolleck, Pawel; Unger, Thomas; Culman, Juraj

    2015-01-01

    -peptide AT2 receptor agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial...... apoptotic pathway, i. e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our...

  3. Characterization of the apoptotic response of human leukemia cells to organosulfur compounds

    Directory of Open Access Journals (Sweden)

    Griffiths Rebecca

    2010-07-01

    Full Text Available Abstract Background Novel therapeutic agents that selectively induce tumor cell death are urgently needed in the clinical management of cancers. Such agents would constitute effective adjuvant approaches to traditional chemotherapy regimens. Organosulfur compounds (OSCs, such as diallyl disulfide, have demonstrated anti-proliferative effects on cancer cells. We have previously shown that synthesized relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richi, possess tumor-specific antiproliferative effects and are thus promising lead candidates. Methods Because our structure-activity analyses showed that regions flanking the disulfide bond mediated specificity, we synthesized 18 novel OSCs by structural modification of the most promising dysoxysulfone derivatives. These compounds were tested for anti-proliferative and apoptotic activity in both normal and leukemic cells. Results Six OSCs exhibited tumor-specific killing, having no effect on normal bone marrow, and are thus candidates for future toxicity studies. We then employed mRNA expression profiling to characterize the mechanisms by which different OSCs induce apoptosis. Using Gene Ontology analysis we show that each OSC altered a unique set of pathways, and that these differences could be partially rationalized from a transcription factor binding site analysis. For example, five compounds altered genes with a large enrichment of p53 binding sites in their promoter regions (p Conclusions Taken together, these data establish OSCs derivatized from dysoxysulfone as a novel group of compounds for development as anti-cancer agents.

  4. Characterization of the apoptotic response of human leukemia cells to organosulfur compounds

    International Nuclear Information System (INIS)

    Novel therapeutic agents that selectively induce tumor cell death are urgently needed in the clinical management of cancers. Such agents would constitute effective adjuvant approaches to traditional chemotherapy regimens. Organosulfur compounds (OSCs), such as diallyl disulfide, have demonstrated anti-proliferative effects on cancer cells. We have previously shown that synthesized relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richi, possess tumor-specific antiproliferative effects and are thus promising lead candidates. Because our structure-activity analyses showed that regions flanking the disulfide bond mediated specificity, we synthesized 18 novel OSCs by structural modification of the most promising dysoxysulfone derivatives. These compounds were tested for anti-proliferative and apoptotic activity in both normal and leukemic cells. Six OSCs exhibited tumor-specific killing, having no effect on normal bone marrow, and are thus candidates for future toxicity studies. We then employed mRNA expression profiling to characterize the mechanisms by which different OSCs induce apoptosis. Using Gene Ontology analysis we show that each OSC altered a unique set of pathways, and that these differences could be partially rationalized from a transcription factor binding site analysis. For example, five compounds altered genes with a large enrichment of p53 binding sites in their promoter regions (p < 0.0001). Taken together, these data establish OSCs derivatized from dysoxysulfone as a novel group of compounds for development as anti-cancer agents

  5. Study of Arctiin and Arctigenin in Inducing Non-apoptotic Death of Human Prostate Cancer PC3 Cells%牛蒡子苷与苷元诱导人前列腺癌PC3细胞非凋亡性死亡的研究

    Institute of Scientific and Technical Information of China (English)

    李孝庆; 杨瑞仪; 刘抗伦; 沈小玲; 胡英杰

    2013-01-01

    ARC and ARG in time-and dose-dependent manner,and the cell survival rate within 48h was significantly lower than that within 24 h (P<0.01).The cells treated with ARG or ARC showed obvious morphological changes such as retraction of cellular membrane,cell membrane attaching closely to the nucleus,reduction of cytoplasm,and obvious fibra network structure in the enchylema.Compared with blank control group,the Annexin V-FITC/PI double staining rate as well as PI single dye rate at concentrations of 20 μmol/L and 5 μmol/L was significantly increased in ARG-or ARC-treated cells (P< 0.05 or P<0.01) showed by the results of flow cytometry,but the Annexin V-FITC single dye rate had no significant changes (P>0.05).Western blot analysis revealed that the expression level of Bcl-2 was reduced after PC3 cells had been treated with ARG or ARC for 48h (P<0.01),but Bax and Caspase-3 had no significant changes (P>0.05).Conclusion ARC and ARG may induce the death of PC3 cells in a non-apoptotic way,and the mechanism is probably related with the down-regulation of Bcl-2 expression.

  6. Apoptotic cell-treated dendritic cells induce immune tolerance by specifically inhibiting development of CD4(+) effector memory T cells.

    Science.gov (United States)

    Zhou, Fang; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-02-01

    CD4(+) memory T cells play an important role in induction of autoimmunity and chronic inflammatory responses; however, regulatory mechanisms of CD4(+) memory T cell-mediated inflammatory responses are poorly understood. Here we show that apoptotic cell-treated dendritic cells inhibit development and differentiation of CD4(+) effector memory T cells in vitro and in vivo. Simultaneously, intravenous transfer of apoptotic T cell-induced tolerogenic dendritic cells can block development of experimental autoimmune encephalomyelitis (EAE), an inflammatory disease of the central nervous system in C57 BL/6J mouse. Our results imply that it is effector memory CD4(+) T cells, not central memory CD4(+) T cells, which play a major role in chronic inflammatory responses in mice with EAE. Intravenous transfer of tolerogenic dendritic cells induced by apoptotic T cells leads to immune tolerance by specifically blocking development of CD4(+) effector memory T cells compared with results of EAE control mice. These results reveal a new mechanism of apoptotic cell-treated dendritic cell-mediated immune tolerance in vivo. PMID:26111522

  7. Calcium and cell death signaling in neurodegeneration and aging

    Directory of Open Access Journals (Sweden)

    Soraya Smaili

    2009-09-01

    Full Text Available Transient increase in cytosolic (Cac2+ and mitochondrial Ca2+ (Ca m2+ are essential elements in the control of many physiological processes. However, sustained increases in Ca c2+ and Ca m2+ may contribute to oxidative stress and cell death. Several events are related to the increase in Ca m2+, including regulation and activation of a number of Ca2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER play pivotal roles in the maintenance of intracellular Ca2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes maylead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.Aumentos transientes no cálcio citosólico (Ca c2+ e mitocondrial (Ca m2+ são elementos essenciais no controle de muitos processos fisiológicos. No entanto, aumentos sustentados do Ca c2+ e do Ca m2+ podem contribuir para o estresse oxidativo ea morte celular. Muitos eventos estão relacionados ao aumentono Ca c2+, incluindo a regulação e ativação de várias enzimas dependentes de Ca2+ como as fosfolipases, proteases e nucleases. A mitocôndria e o retículo endoplasmático têm um papel central na manutenção da homeostase intracellular de Ca c2+ e na regulação da morte celular. Várias evidências mostraram que, na presença de certos estímulos apoptóticos, a ativação dos processos mitocondriais pode promover a liberação de citocromo c, seguida da ativação de caspases, fragmentação nuclear e morte celular por apoptose. O objetivo desta revisão é mostrar como aumentos na sinalização de

  8. Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications

    Directory of Open Access Journals (Sweden)

    Zsuzsa eSzondy

    2014-08-01

    Full Text Available In healthy individuals billions of cells die by apoptosis every day. Removal of the dead cells by phagocytosis (a process called efferocytosis must be efficient to prevent secondary necrosis and the consequent release of proinflammatory cell contents that damages the tissue environment and provokes autoimmunity. In addition, detection and removal of apoptotic cells generally induces an anti-inflammatory response. As a consequence improper clearance of apoptotic cells, being the result of either genetic anomalies and /or a persistent disease state, contributes to the establishment and progression of a number of human chronic inflammatory diseases such as autoimmune and neurological disorders, inflammatory lung diseases, obesity, type 2 diabetes or atherosclerosis. During the past decade our knowledge about the mechanism of efferocytosis has significantly increased, providing therapeutic targets through which impaired phagocytosis of apoptotic cells and the consequent inflammation could be influenced in these diseases.

  9. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways

    Directory of Open Access Journals (Sweden)

    Jasmin Balmer

    2015-07-01

    Full Text Available Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3 both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg. Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE cells, primary retinal cells, and the cone photoreceptor (PRC cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1 was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.

  10. Does MW Radiation Affect Gene Expression, Apoptotic Level, and Cell Cycle Progression of Human SH-SY5Y Neuroblastoma Cells?

    Science.gov (United States)

    Kayhan, Handan; Esmekaya, Meric Arda; Saglam, Atiye Seda Yar; Tuysuz, Mehmed Zahid; Canseven, Ayşe Gulnihal; Yagci, Abdullah Munci; Seyhan, Nesrin

    2016-06-01

    Neuroblastoma (NB) is a cancer that occurs in sympathetic nervous system arising from neuroblasts and nerve tissue of the adrenal gland, neck, chest, or spinal cord. It is an embryonal malignancy and affects infants and children. In this study, we investigated the effects of microwave (MW) radiation on apoptotic activity, cell viability, and cell cycle progression in human SH-SY5Y NB cells which can give information about MW radiation effects on neural cells covering the period from the embryonic stages to infants. SH-SY5Y NB cells were exposed to 2.1 GHz W-CDMA modulated MW radiation for 24 h at a specific absorption rate of 0.491 W/kg. Control samples were in the same conditions with MW-exposed samples but they were not exposed to MW radiation. The apoptotic activity of cells was measured by Annexin-V-FITC and propidium iodide staining. Moreover, mRNA levels of proliferative and cell cycle proteins were determined by real-time RT-PCR. The change in cell cycle progression was observed by using CycleTest-Plus DNA reagent. No significant change was observed in apoptotic activity of MW-exposed cells compared to control cells. The mRNA levels of c-myc and cyclin D1 were significantly reduced in MW group (p CDMA modulated MW radiation did not cause apoptotic cell death but changed cell cycle progression. PMID:27260669

  11. The Apoptotic Effects of the P300 Activator on Breast Cancer and Lung Fibroblast Cell Lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salahshoor

    2013-10-01

    Full Text Available Background: P300 is an enzyme that acetylates histones during stress. It alsoacetylates several non-histone proteins, including P53 which is the most important tumorsuppressor gene. P53 plays an important role in the apoptosis of tumor cells. Hereby,this study describes the potency of cholera toxin B subunit as a P300 activator to induceapoptosis in a breast cancer cell line (MCF-7 and a lung fibroblast cell line (MRC-5as a non-tumorigenic control sample. Methods: MCF-7 and MRC-5 were cultured in RPMI-1640 and treated with orwithout cholera toxin B subunit at the concentration of 85.43 μmol/L, based on the half-maximal inhibitory concentration index at different times (24, 48 and 72 h. Thepercentage of apoptotic cells was measured by flow cytometry. Real-time quantitativeRT-PCR was performed to estimate the mRNA expression of P300 in MCF-7 and MRC-5 with cholera toxin B subunit at different times. We used the ELISA and Bradford proteintechniques to detect levels of total and acetylated P53 protein generated in MCF-7 andMRC-5. Results: Our findings indicated that the cholera toxin B subunit effectively andsignificantly induced more apoptosis in MCF-7 compared to MRC-5. We showed thatexpression of P300 up-regulated by increasing the time of the cholera toxin B subunittreatment in MCF-7 but not in MRC-5. In addition, the acetylated and total P53protein levels increased more in MCF-7 cells than in MRC-5 cells.Conclusion: Cholera toxin B subunit induced significant cell death in MCF-7, butit could be well tolerated in MRC-5. Therefore, cholera toxin B subunit can besuggested as an anti-cancer agent.

  12. Pro-apoptotic effects of the flavonoid luteolin in rat H4IIE cells

    International Nuclear Information System (INIS)

    Polyphenols are ubiquitous substances in the diet. Their anti-oxidative, anti-inflammatory and anti-viral effects are of interest for human health, and polyphenols such as luteolin are used at high concentrations in food supplements. The aim of this project was to determine the intrinsic effects of luteolin in H4IIE rat hepatoma cells. Luteolin is relatively toxic, cell death was caused via induction of apoptosis as detected by DNA-ladder formation, by nuclear fragmentation and activation of apoptotic enzymes (caspase-2, -3/7, -9 and -8/10). Luteolin (250 μM, 24 h) increased the caspase-3/7 activity four-fold and the caspase-9 activity six-fold. In a time course experiment caspase-9 is activated after 6 h, while caspase-2 and -3/7 are activated after 12 h. After 24 h, caspase-8/10 also displays activation. We found a concentration-dependent increase in malondialdehyde release suggesting a prooxidative effect of luteolin. Furthermore, we analysed DNA strand break formation by luteolin and found a distinct increase of DNA strand breaks after incubation for 3 h with 100 μM luteolin, a concentration which induces oligonucleosomal DNA cleavage at 24 h. In conclusion, the sequence of events is compatible with the assumption that luteolin triggers the mitochondrial pathway of apoptosis, probably by inducing DNA damage

  13. Selective Induction of Cancer Cell Death by Targeted Granzyme B

    Directory of Open Access Journals (Sweden)

    Robert A. Jabulowsky

    2013-02-01

    Full Text Available The potential utility of immunotoxins for cancer therapy has convincingly been demonstrated in clinical studies. Nevertheless, the high immunogenicity of their bacterial toxin domain represents a critical limitation, and has prompted the evaluation of cell-death inducing proteins of human origin as a basis for less immunogenic immunotoxin-like molecules. In this review, we focus on the current status and future prospects of targeted fusion proteins for cancer therapy that employ granzyme B (GrB from cytotoxic lymphocytes as a cytotoxic moiety. Naturally, this serine protease plays a critical role in the immune defense by inducing apoptotic target cell death upon cleavage of intracellular substrates. Advances in understanding of the structure and function of GrB enabled the generation of chimeric fusion proteins that carry a heterologous cell binding domain for recognition of tumor-associated cell surface antigens. These hybrid molecules display high selectivity for cancer cells, with cell killing activities similar to that of corresponding recombinant toxins. Recent findings have helped to understand and circumvent intrinsic cell binding of GrB and susceptibility of the enzyme to inhibition by serpins. This now allows the rational design of optimized GrB derivatives that avoid sequestration by binding to non-target tissues, limit off-target effects, and overcome resistance mechanisms in tumor cells.

  14. Carnosine prevents necrotic and apoptotic death of rat thymocytes via ouabain sensitive Na/K-ATPase

    OpenAIRE

    Smolyaninova, Larisa V.; Dergalev, Alexander A.; Kulebyakin, Konstantin Y.; Carpenter, David O.; Boldyrev, Alexander A.

    2012-01-01

    It is known that ouabain, a selective inhibitor of Na/K-ATPase, can cause not only activation of signal cascades, which regulate the cell viability, but also can cause free radical accumulation, which can evoke the oxidative stress. We have shown that nanomolar concentrations of ouabain result in the temporary increase in the level of intracellular free radicals but the millimolar concentration of ouabain induces a stable intracellular accumulation of free radicals in rat thymocytes. The incr...

  15. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    International Nuclear Information System (INIS)

    The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis

  16. Structural study of TTR-52 reveals the mechanism by which a bridging molecule mediates apoptotic cell engulfment

    OpenAIRE

    Kang, Yanyong; Zhao, Dongfeng; Liang, Huanhuan; Liu, Bin; Zhang, Yan; Liu, Qinwen; Wang, Xiaochen; Liu, Yingfang

    2012-01-01

    Apoptotic cells display various “eat me” signals that can be recognized through bridging molecules that cross-link the dying cells to phagocytes. This work illustrates the first full-length structure of such a bridging molecule, TTR-52. The study elucidates the binding of these bridging molecules with the apoptotic cell signals and phagocyte receptors, providing valuable new insight into the process of apoptotic cell recognition.

  17. Apoptotic Susceptibility to DNA Damage of Pluripotent Stem Cells Facilitates Pharmacologic Purging of Teratoma Risk

    OpenAIRE

    Smith, Alyson J.; Nelson, Natalie G.; Oommen, Saji; Hartjes, Katherine A.; Folmes, Clifford D.; Terzic, Andre; Nelson, Timothy J.

    2012-01-01

    The pluripotent cell-purging assay validated herein demonstrates that pluripotent cells are selectively hypersensitive to DNA damage-induced apoptosis as a function of the specific apoptotic inducer protein Puma. Risk of dysregulated growth is decreased and the safety profile of transplant-ready, bioengineered progenitor cells is augmented.

  18. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    Science.gov (United States)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  19. Cyclic dinucleotides modulate human T-cell response through monocyte cell death.

    Science.gov (United States)

    Tosolini, Marie; Pont, Frédéric; Verhoeyen, Els; Fournié, Jean-Jacques

    2015-12-01

    Cyclic dinucleotides, a class of microbial messengers, have been recently identified in bacteria, but their activity in humans remains largely unknown. Here, we have studied the function of cyclic dinucleotides in humans. We found that c-di-AMP and cGAMP, two adenosine-based cyclic dinucleotides, activated T lymphocytes in an unusual manner through monocyte cell death. c-di-AMP and cGAMP induced the selective apoptosis of human monocytes, and T lymphocytes were activated by the direct contact with these dying monocytes. The ensuing T-cell response comprised cell-cycle exit, phenotypic maturation into effector memory cells and proliferation arrest, but not cell death. This quiescence was transient since T cells remained fully responsive to further restimulation. Together, our results depict a novel activation pattern for human T lymphocytes: a transient quiescence induced by c-di-AMP- or cGAMP-primed apoptotic monocytes. PMID:26460927

  20. Methyl jasmonate induces apoptosis and pro-apoptotic autophagy via the ROS pathway in human non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Mutian; Su, Ling; Xiao, Zhenna; Liu, Xianfang; Liu, Xiangguo

    2016-01-01

    Methyl jasmonate (MJ) is a botanical hormone that serves as a signal transduction intermediate and regulates cell death in stressed plants. MJ induces cell cycle arrest, apoptosis and non-apoptotic cell death selectively in cancer cells. However, the underlying mechanism of MJ-induced apoptosis remains unclear. In this study, we examined the molecular mechanism through which MJ induces apoptosis in human non-small cell lung cancer (NSCLC). We found that MJ triggered apoptosis via the DDIT3-TNFRSF10B-CASP axis. MJ treatment significantly decreased the expression of CFLAR (CASP8 and FADD-like apoptosis regulator, an inhibitor of CASP8) in NSCLC cells, and ectopic expression of CFLAR partly protected cells from MJ-induced apoptosis. MJ also induced pro-apoptotic autophagy in NSCLC cells. Importantly, inhibition of ROS suppressed both MJ-induced apoptosis and autophagy. Taken together, MJ induces apoptosis and pro-apoptotic autophagy in NSCLC cells through the ROS pathway. Thus, MJ and its derivative treatment may serve as a novel chemotherapeutic strategy for cancer therapy. PMID:27186395

  1. Cell death induced by gamma irradiation of developing skeletal muscle

    International Nuclear Information System (INIS)

    Newborn Sprague-Dawley rats were exposed to a single dose of 2 Gy gamma rays and killed from 6 h to 5 d later. Increased numbers of dying cells, characterised by their extreme chromatin condensation and often nuclear fragmentation were seen in skeletal muscle 6 h after irradiation. Dying cells decreased to nearly normal values 48 h later. In situ labelling of nuclear DNA fragmentation identified individual cells bearing fragmented DNA. The effects of gamma rays were suppressed following cycloheximide i.p. at a dose of 1 μg/g body weight given at the time of irradiation. Taken together, the present morphological and pharmacological results suggest that gamma ray induced cell death in skeletal muscle is apoptotic, and that the process is associated with protein synthesis. Finally, proliferating cell nuclear antigen-immunoreactive cells, which were abundant in control rats, decreased in number 48 h after irradiation. However, a marked increase significantly above normal age values was observed at the 5th day, thus suggesting that regeneration occurs following irradiation-induced cell death in developing muscle. (author)

  2. Cordycepin enhances cisplatin apoptotic effect through caspase/MAPK pathways in human head and neck tumor cells

    Directory of Open Access Journals (Sweden)

    Chen YH

    2013-07-01

    Full Text Available Ying-Hui Chen,1,2,* Jo-Yu Wang,3,* Bo-Syong Pan,3,4 Yi-Fen Mu,3 Meng-Shao Lai,3,4 Edmund Cheung So,5 Thian-Sze Wong,6 Bu-Miin Huang3,4 1Department of Anesthesia, Chi-Mei Medical Center, Liouying, 2Department of Nursing, Min-Hwei College of Health Care Management, 3Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 4The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 5Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan; 6Department of Surgery, University of Hong Kong Medical Center, Faculty of Medicine, The University of Hong Kong, Hong Kong *Authors contributed equally to this work Purpose: The present study aims to investigate whether the combination treatment of cordycepin (an extracted pure compound from Cordyceps sinensis and cisplatin (a platinum-based chemotherapy drug has better apoptotic effect in head and neck squamous cell carcinoma (HNSCC. Methods: The apoptotic influences of cordycepin and/or cisplatin treatments to human OC3, OEC-M1, and FaDu HNSCC cells were investigated by morphological observations, viability assay, flow cytometry assay, and Western blotting methods. Results: Data showed that the cell death phenomenon increased as the dosage of cordycepin or cisplatin increased, and it appeared more in cordycepin plus cisplatin cotreatment among three cell lines. Cell survival rates significantly decreased as the dosage of cordycepin or cisplatin increased, and the better apoptotic effects were observed in cotreatment. Cell cycle analysis further demonstrated that percentages of subG1 cells in cordycepin or cisplatin treatments significantly increased, suggesting that cells underwent apoptosis, and cordycepin plus cisplatin induced many more subG1 cells. Furthermore, cordycepin or cisplatin induced caspase-8, caspase-9, caspase-3, and poly adenosine diphosphate-ribose polymerase protein cleavages, and stimulated c

  3. Selection of apoptotic cell specific human antibodies from adult bone marrow.

    Directory of Open Access Journals (Sweden)

    Caroline Grönwall

    Full Text Available Autoreactive antibodies that recognize neo-determinants on apoptotic cells in mice have been proposed to have protective, homeostatic and immunoregulatory properties, although our knowledge about the equivalent antibodies in humans has been much more limited. In the current study, human monoclonal antibodies with binding specificity for apoptotic cells were isolated from the bone marrow of healthy adults using phage display technology. These antibodies were shown to recognize phosphorylcholine (PC-associated neo-determinants. Interestingly, three of the four identified apoptotic cell-specific antibody clones were encoded by VH3 region rearrangements with germline or nearly germline configuration without evidence of somatic hypermutation. Importantly, the different identified antibody clones had diverse heavy chain CDR3 and deduced binding surfaces as suggested by structure modeling. This may suggest a potentially great heterogeneity in human antibodies recognizing PC-related epitopes on apoptotic cells. To re-construct the postulated structural format of the parental anti-PC antibody, the dominant clone was also expressed as a recombinant human polymeric IgM, which revealed a substantially increased binding reactivity, with dose-dependent and antigen-inhibitable binding of apoptotic cells. Our findings may have implication for improved prognostic testing and therapeutic interventions in human inflammatory disease.

  4. Skeletal muscle stem cells express anti-apoptotic ErbB receptors during activation from quiescence

    International Nuclear Information System (INIS)

    To be effective for tissue repair, satellite cells (the stem cells of adult muscle) must survive the initial activation from quiescence. Using an in vitro model of satellite cell activation, we show that erbB1, erbB2 and erbB3, members of the EGF receptor tyrosine kinase family, appear on satellite cells within 6 h of activation. We show that signalling via erbB2 provides an anti-apoptotic survival mechanism for satellite cells during the first 24 h, as they progress to a proliferative state. Inhibition of erbB2 signalling with AG825 reduced satellite cell numbers, concomitant with elevated caspase-8 activation and TUNEL labelling of apoptotic satellite cells. In serum-free conditions, satellite cell apoptosis could be largely prevented by a mixture of erbB1, erbB3 and erbB4 ligand growth factors, but not by neuregulin alone (erbB3/erbB4 ligand). Furthermore, using inhibitors specific to discrete intracellular signalling pathways, we identify MEK as a pro-apoptotic mediator, and the erbB-regulated factor STAT3 as an anti-apoptotic mediator during satellite cell activation. These results implicate erbB2 signalling in the preservation of a full compliment of satellite cells as they activate in the context of a damaged muscle

  5. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo.

    Science.gov (United States)

    Elliott, Michael R; Zheng, Shuqiu; Park, Daeho; Woodson, Robin I; Reardon, Michael A; Juncadella, Ignacio J; Kinchen, Jason M; Zhang, Jun; Lysiak, Jeffrey J; Ravichandran, Kodi S

    2010-09-16

    Apoptosis and the subsequent clearance of dying cells occurs throughout development and adult life in many tissues. Failure to promptly clear apoptotic cells has been linked to many diseases. ELMO1 is an evolutionarily conserved cytoplasmic engulfment protein that functions downstream of the phosphatidylserine receptor BAI1, and, along with DOCK1 and the GTPase RAC1, promotes internalization of the dying cells. Here we report the generation of ELMO1-deficient mice, which we found to be unexpectedly viable and grossly normal. However, they had a striking testicular pathology, with disrupted seminiferous epithelium, multinucleated giant cells, uncleared apoptotic germ cells and decreased sperm output. Subsequent in vitro and in vivo analyses revealed a crucial role for ELMO1 in the phagocytic clearance of apoptotic germ cells by Sertoli cells lining the seminiferous epithelium. The engulfment receptor BAI1 and RAC1 (upstream and downstream of ELMO1, respectively) were also important for Sertoli-cell-mediated engulfment. Collectively, these findings uncover a selective requirement for ELMO1 in Sertoli-cell-mediated removal of apoptotic germ cells and make a compelling case for a relationship between engulfment and tissue homeostasis in vivo. PMID:20844538

  6. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucocorticoid receptor and affects the receptor function.

    Science.gov (United States)

    Hulkko, S M; Wakui, H; Zilliacus, J

    2000-08-01

    The yeast two-hybrid system was used to isolate cDNAs encoding proteins that interact with the glucocorticoid receptor (GR) ligand-binding domain in a ligand-dependent manner. One isolated cDNA encoded a fragment of death-associated protein 3 (DAP3), which has been implicated as a positive mediator of apoptosis. In vitro experiments showed that the full-length DAP3 also interacted with GR. The main interaction domain was mapped to the N-terminal region of DAP3 that had previously been shown to function in a dominant-negative fashion, protecting cells from apoptosis. Co-transfection experiments in COS-7 cells showed that DAP3 had a stimulatory effect on the ligand-induced transcriptional activation by GR and also increased the steroid-sensitivity. Furthermore, DAP3 formed a complex with several other nuclear receptors and some basic helix-loop-helix/Per-Arnt-Sim proteins, as well as with heat-shock protein 90 (hsp90) (Arnt is the aryl-hydrocarbon-receptor nuclear translocator, and Per and Sim are the Drosophila proteins Period and Single-minded). The results suggest that DAP3 could have an important role in GR action, possibly by modulating the cytoplasmic GR-hsp90 complex. Since glucocorticoids can induce apoptosis, the pro-apoptotic DAP3 protein may be involved in this function of GR. PMID:10903152

  7. Apoptosis: A Review of Programmed Cell Death

    OpenAIRE

    Elmore, Susan

    2007-01-01

    The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions incl...

  8. Programmed cell death during quinoa perisperm development

    OpenAIRE

    López-Fernández, María Paula; Maldonado, Sara

    2013-01-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucle...

  9. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    International Nuclear Information System (INIS)

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals

  10. Activation of Cyclin-Dependent Kinase 5 Is a Consequence of Cell Death

    Directory of Open Access Journals (Sweden)

    Yixia Ye

    2009-01-01

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is similar to other Cdks but is activated during cell differentiation and cell death rather than cell division. Since activation of Cdk5 has been reported in many situations leading to cell death, we attempted to determine if it was required for any form of cell death. We found that Cdk5 is activated during apoptotic deaths and that the activation can be detected even when the cells continue to secondary necrosis. This activation can occur in the absence of Bim, calpain, or neutral cathepsins. The kinase is typically activated by p25, derived from p35 by calpain-mediated cleavage, but inhibition of calpain does not affect cell death or the activation of Cdk5. Likewise, RNAi-forced suppression of the synthesis of Cdk5 does not affect the incidence or kinetics of cell death. We conclude that Cdk5 is activated as a consequence of metabolic changes that are common to many forms of cell death. Thus its activation suggests processes during cell death that will be interesting or important to understand, but activation of Cdk5 is not necessary for cells to die.

  11. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    International Nuclear Information System (INIS)

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response

  12. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Sontag, Ryan L. [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov [Systems Toxicology Groups, Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2013-04-15

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional program encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.

  13. Plant Proteases Involved in Regulated Cell Death.

    Science.gov (United States)

    Zamyatnin, A A

    2015-12-01

    Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death. PMID:26878575

  14. Correlation Between PARP-1 Immunoreactivity and Cytomorphological Features of Parthanatos, a Specific Cellular Death in Breast Cancer Cells

    OpenAIRE

    Donizy, P.; Halon, A.; Surowiak, P.; Pietrzyk, G.; C. Kozyra; Matkowski, R.

    2013-01-01

    In parthanatos, a PARP-1 (poly (ADP-ribose) polymerase 1)-mediated cell death, dissipation of mitochondrial membrane potential, large-scale DNA fragmentation and chromatin condensation were observed. In contrast to apoptosis, it does not cause apoptotic bodies formation. Although PARP-1-mediated cell death presents loss of membrane integrity similar to necrosis, it does not induce cell swelling. The purpose of the study was to correlate the immunohistochemical parameters of PARP-1 reactivity ...

  15. Programmed cell death of Ulmus pumila L. seeds during aging

    Institute of Scientific and Technical Information of China (English)

    Yulan ZHANG; Ming ZHANG; Fang LI; Xiaofeng WANG

    2008-01-01

    The programmed cell death (PCD) character-istics of Ulmus pumila L. seeds were investigated. The seeds were treated at a high temperature of 37℃ and 100% relative humidity for six days. DAPI (4'6-diami-dino-2-phenylindole) staining revealed that the aging treatment induced condensation and margination of chro-matin, as well as the formation of apoptotic bodies. DNA electrophoresis results of U. pumila seeds on an agarose gel showed a characteristic "ladder" pattern. Levels of electrolyte leakage of seed cells showed that membranes retained their integral form during almost the entire aging time. There was an immediate increase in the production rate of superoxide anion (O2-) and in the amount of hydrogen peroxide (H2O2), which remained at a μmol level. All of these common characteristics indicate that seed aging can be classified as PCD.

  16. Protein kinase CK2 inhibition induces cell death via early impact on mitochondrial function*

    Science.gov (United States)

    Qaiser, Fatima; Trembley, Janeen H.; Kren, Betsy T.; Wu, Jing-Jiang; Naveed, A. Khaliq; Ahmed, Khalil

    2014-01-01

    CK2 (official acronym for casein kinase 2 or II) is a potent suppressor of apoptosis in response to diverse apoptotic stimuli —thus its molecular downregulation or activity inhibition results in potent induction of cell death. CK2 downregulation is known to impact mitochondrial apoptotic circuitry but the underlying mechanism(s) remain unclear. Utilizing prostate cancer cell lines subjected to CK2-specific inhibitors which cause loss of cell viability, we have found that CK2 inhibition in cells causes rapid early decrease in mitochondrial membrane potential (Δψm). Cells treated with the CK2 inhibitors TBB (4,5,6,7-tetrabromobenzotriazole) or TBCA (tetrabromocinnamic acid) demonstrate changes in Δψm which become apparent within 2 h, i.e., significantly prior to evidence of activation of other mitochondrial apoptotic signals whose temporal expression ensues subsequent to loss of Δψm. Further, we have demonstrated the presence of CK2 in purified mitochondria and it appears that the effect on Δψm evoked by inhibition of CK2 may involve mitochondrial localized CK2. Results also suggest that alterations in Ca2+ signaling may be involved in the CK2 mediated regulation of Δψm and mitochondrial permeability. Thus, we propose that a key mechanism of CK2 impact on mitochondrial apoptotic circuitry and cell death involves early loss of Δψm which may be a primary trigger for apoptotic signaling and cell death resulting from CK2 inhibition. PMID:25043911

  17. Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure.

    Science.gov (United States)

    Legrand, M; Elie, C; Stefani, J; N Florès; Culeux, C; Delissen, O; Ibanez, C; Lestaevel, P; Eriksson, P; Dinocourt, C

    2016-01-01

    The developing brain is more susceptible to neurotoxic compounds than adult brain. It is also well known that disturbances during brain development cause neurological disorders in adulthood. The brain is known to be a target organ of uranium (U) exposure and previous studies have noted that internal U contamination of adult rats induces behavioral disorders as well as affects neurochemistry and neurophysiological properties. In this study, we investigated whether depleted uranium (DU) exposure affects neurogenesis during prenatal and postnatal brain development. We examined the structural morphology of the brain, cell death and finally cell proliferation in animals exposed to DU during gestation and lactation compared to control animals. Our results showed that DU decreases cell death in the cortical neuroepithelium of gestational day (GD) 13 embryos exposed at 40mg/L and 120mg/L and of GD18 fetuses exposed at 120mg/L without modification of the number of apoptotic cells. Cell proliferation analysis showed an increase of BrdU labeling in the dentate neuroepithelium of fetuses from GD18 at 120mg/L. Postnatally, cell death is increased in the dentate gyrus of postnatal day (PND) 0 and PND5 exposed pups at 120mg/L and is associated with an increase of apoptotic cell number only at PND5. Finally, a decrease in dividing cells is observed in the dentate gyrus of PND21 rats developmentally exposed to 120mg/L DU, but not at PND0 and PND5. These results show that DU exposure during brain development causes opposite effects on cell proliferation and cell death processes between prenatal and postnatal development mainly at the highest dose. Although these modifications do not have a major impact in brain morphology, they could affect the next steps of neurogenesis and thus might disrupt the fine organization of the neuronal network. PMID:26506049

  18. Activation of cell death pathways in the inner ear of the aging CBA/J mouse

    OpenAIRE

    Sha, Su-Hua; CHEN, FU-QUAN; Schacht, Jochen

    2009-01-01

    We have previously demonstrated that oxidative stress increases in the inner ear of aging CBA/J mice and might contribute to the loss of function of the sensory system. We now investigate the activation of cell death pathways in the cochlea of these animals. Middle-aged (12 months) and old (18-26 months) mice with hearing deficits displayed outer hair cell nuclei with apoptotic and, to a lesser extent, necrotic features. Both intrinsic and extrinsic cell death pathways were activated by trans...

  19. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.

    Science.gov (United States)

    Wu, Chenxi; Chen, Yujun; Wang, Feng; Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei

    2015-10-01

    Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis. PMID:26474173

  20. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells

    International Nuclear Information System (INIS)

    The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on human cervix epithelioid carcinoma cell line (HeLa). Nickel oxide precursors were synthesized by an nickel sulphate-excess urea reaction in boiling aqueous solution. The synthesized NiO nanoparticles (< 200 nm) were investigated by X-ray diffraction analysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in 50-500 micro g/ml NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy. The cytotoxicity was observed low in 50-200 micro g/ml concentration for 16 h, but high in 400-500 micro g/ml concentration for 2-6 h. HeLa cells cytoplasm membrane was lysed and detached from the well surface in 400 micro g/ml concentration NiO nanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in culture on the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation. (authors)

  1. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells

    Directory of Open Access Journals (Sweden)

    Kezban Ada

    2010-04-01

    Full Text Available The aim of this study was to observe the cytotoxicity and apoptotic effects of nickel oxide nanoparticles on humancervix epithelioid carcinoma cell line (HeLa. Nickel oxide precursors were synthesized by an nickel sulphate-excess ureareaction in boiling aqueous solution. The synthesized NiO nanoparticles (<200 nm were investigated by X-ray diffractionanalysis and transmission electron microscopy techniques. For cytotoxicity experiments, HeLa cells were incubated in50-500 μg/mL NiO for 2, 6, 12 and 16 hours. The viable cells were counted with a haemacytometer using light microscopy.The cytotoxicity was observed low in 50-200 μg/mL concentration for 16 h, but high in 400-500 μg/mL concentration for2-6 h. HeLa cells' cytoplasm membrane was lysed and detached from the well surface in 400 μg/mL concentration NiOnanoparticles. Double staining and M30 immunostaining were performed to quantify the number of apoptotic cells in cultureon the basis of apoptotic cell nuclei scores. The apoptotic effect was observed 20% for 16 h incubation.

  2. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.;

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  3. Clearance Deficiency and Cell Death Pathways: A Model for the Pathogenesis of SLE

    Science.gov (United States)

    Mahajan, Aparna; Herrmann, Martin; Muñoz, Luis E.

    2016-01-01

    Alterations of cell death pathways, including apoptosis and the neutrophil specific kind of death called NETosis, can represent a potential source of autoantigens. Defects in the clearance of apoptotic cells may be responsible for the initiation of systemic autoimmunity in several chronic inflammatory diseases, including systemic lupus erythematosus (SLE). Autoantigens are released mainly from secondary necrotic cells because of a defective clearance of apoptotic cells or an inefficient degradation of DNA-containing neutrophil extracellular traps (NETs). These modified autoantigens are presented by follicular dendritic cells to autoreactive B cells in germinal centers of secondary lymphoid organs. This results in the loss of self-tolerance and production of autoantibodies, a unifying feature of SLE. Immune complexes (IC) are formed from autoantibodies bound to uncleared cellular debris in blood or tissues. Clearance of IC by blood phagocytes, macrophages, and dendritic cells leads to proinflammatory cytokine secretion. In particular, plasmacytoid dendritic cells produce high amounts of interferon-α upon IC uptake, thereby contributing to the interferon signature of patients with SLE. The clearance of antinuclear IC via Fc-gamma receptors is considered a central event in amplifying inflammatory immune responses in SLE. Along with this, the accumulation of cell remnants represents an initiating event of the etiology, while the subsequent generation of autoantibodies against nuclear antigens (including NETs) results in the perpetuation of inflammation and tissue damage in patients with SLE. Here, we discuss the implications of defective clearance of apoptotic cells and NETs in the development of clinical manifestations in SLE. PMID:26904025

  4. Immune Responses of Dendritic Cells Loaded with Antigens from Apoptotic Cholangiocarcinoma Cells Caused by γ-Irradation

    Institute of Scientific and Technical Information of China (English)

    WUGang; HANBenli; PEIXuetao

    2002-01-01

    Objective:To investigate the induction cytotoxic T cells(CTLs) with antitumor activity and therapeutic efficacy after dendritic cells(DCs) acquired antigen from apoptotic cholangiocarcinoma cells caused by γ-irradiation. Methods:DCs from peripheral blood mononuclear cells (PBMC) that maintain the antigen capturing and processing capacity charateristic of immature cells have been established in vitro, using granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). Then, in cholangiocarcinoma cells apoptosis was induced by γ-irradiation. The experimental groups were as follows:(1)coculture of DCs and apoptotic cancer cells and T cells;(2)coculture of DCs and necrotic cancer cells and T cells;(3)coculture of DCs, cultured cancer cell and T cells. They are cocultured for 7 days.DCs and T cells were riched, isolated and their antitumor response was tested. Results:The cells had typical dendritic morphology, expressed high levels of CDla and B7, acquired antigen from apoptotic cells caused by γ-irradiation and induced an increased T cell stimulatory capacity in mixed lymphocyte reactions (MLR). Conclusion:DCs obtained from PBMCs using GM-CSF and IL-4 can efficiently present antigen derived from apoptotic cells caused by γ-irradiation and efficiently induce T cells.This strategy, therefore, may present an effective approach to transduce DCs with antigen.

  5. Immune responses of dendritic cells after acquiring antigen from apoptotic hepatocholangioma cells caused by γ-ray

    International Nuclear Information System (INIS)

    Objective: To investigate the induction of cytotoxic T lymphocytes (CTLs) in antitumor responsiveness and therapeutic effects after dendritic cells (DCs) acquired antigen from apoptotic hepatocholangioma cells. Methods: DCs from blood mononuclear cells that maintain the characteristics of immaturity-anti-gen-capturing and-processing capacity were established in vitro by using granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Then, apoptosis in hepatocholangioma cells was induced with γ-radiation. The experimental groups included (1) co-culture of DCs, and apoptotic cancer cells and T cells; (2) co-culture of DCs necrotic cancer cells and T cells; (3) co-culture of DCs-cultured cancer cell and T cells. These cells were co-cultured for 7 days. DCs and T cell were enriched separately. Finally, antitumor response test was carried out. Results: These cells had typical dendritic morphology, expressed high levels of CD1a, B7 and acquired antigen from apoptotic cells caused by γ-rays and induced an increased T cell-stimulatory capacity in MLR. Conclusions: DCs obtained from blood mononuclear cells using GM-CSF and IL-4 and DCs can efficiently present antigen driven from apoptotic cells caused by γ-rays and induce T cells increasing obviously. It can probably become an effective approach of DC transduction with antigen

  6. Cell death in the developing vertebrate retina.

    Science.gov (United States)

    Vecino, Elena; Hernández, María; García, Mónica

    2004-01-01

    Programmed cell death occurs naturally, as a physiological process, during the embryonic development of multicellular organisms. In the retina, which belongs to the central nervous system, at least two phases of cell death have been reported to occur during development. An early phase takes place concomitant with the processes of neurogenesis, cell migration and cell differentiation. A later phase affecting mainly neurons occurs when connections are established and synapses are formed, resulting in selective elimination of inappropriate connections. This pattern of cell death in the developing retina is common among different vertebrates. However, the timing and magnitude of retinal cell death varies among species. In addition, a precise regulation of apoptosis during retinal development has been described. Factors such as neurotrophins, among many others, and electrical activity influence the survival of retinal cells during the course of development. In this paper, we present a summary of these different aspects of programmed cell death during retinal development, and examine how these differ among different species. PMID:15558487

  7. Antiproliferative and pro-apoptotic effects of Uncaria tomentosa in human medullary thyroid carcinoma cells.

    Science.gov (United States)

    Rinner, Beate; Li, Zeng Xia; Haas, Helga; Siegl, Veronika; Sturm, Sonja; Stuppner, Hermann; Pfragner, Roswitha

    2009-11-01

    Medullary thyroid carcinoma (MTC), a rare calcitonin-producing tumor, is derived from parafollicular C-cells of the thyroid and is characterized by constitutive Bcl-2 overexpression. The tumor is relatively insensitive to radiation therapy as well as conventional chemotherapy. To date, the only curative treatment is the early and complete surgical removal of all neoplastic tissue. In this study, the antiproliferative and pro-apoptotic effects of fractions obtained from Uncaria tomentosa (Willd.) DC, commonly known as uña de gato or cat's claw were investigated. Cell growth of MTC cells as well as enzymatic activity of mitochondrial dehydrogenase was markedly inhibited after treatment with different fractions of the plant. Furthermore, there was an increase in the expressions of caspase-3 and -7 and poly(ADP-ribose) polymerase (PARP) fraction, while bcl-2 overexpression remained constant. In particular, the alkaloids isopterpodine and pteropodine of U. tomentosa exhibited a significant pro-apoptotic effect on MTC cells, whereas the alkaloid-poor fraction inhibited cell proliferation but did not show any pro-apoptotic effects. These promising results indicate the growth-restraining and apoptotic potential of plant extracts against neuroendocrine tumors, which may add to existing therapies for cancer. PMID:20032400

  8. Capsaicin-induced apoptosis is regulated by endoplasmic reticulum stress- and calpain-mediated mitochondrial cell death pathways

    International Nuclear Information System (INIS)

    Capsaicin, a pungent compound found in hot chili peppers, induces apoptotic cell death in various cell lines, however, the precise apoptosis signaling pathway is unknown. Here, we investigated capsaicin-induced apoptotic signaling in the human breast cell line MCF10A and found that it involves both endoplasmic reticulum (ER) stress and calpain activation. Capsaicin inhibited growth in a dose-dependent manner and induced apoptotic nuclear changes in MCF10A cells. Capsaicin also induced degradation of tumor suppressor p53; this effect was enhanced by the ER stressor tunicamycin. The proteasome inhibitor MG132 completely blocked capsaicin-induced p53 degradation and enhanced apoptotic cell death. Capsaicin treatment triggered ER stress by increasing levels of IRE1, GADD153/Chop, GRP78/Bip, and activated caspase-4. It led to an increase in cytosolic Ca2+, calpain activation, loss of the mitochondrial transmembrane potential, release of mitochondrial cytochrome c, and caspase-9 and -7 activation. Furthermore, capsaicin-induced the mitochondrial apoptotic pathway through calpain-mediated Bid translocation to the mitochondria and nuclear translocation of apoptosis-inducing factor (AIF). Capsaicin-induced caspase-9, Bid cleavage, and AIF translocation were blocked by calpeptin, and BAPTA and calpeptin attenuated calpain activation and Bid cleavage. Thus, both ER stress- and mitochondria-mediated death pathways are involved in capsaicin-induced apoptosis.

  9. Protein C inhibitor (PCI binds to phosphatidylserine exposing cells with implications in the phagocytosis of apoptotic cells and activated platelets.

    Directory of Open Access Journals (Sweden)

    Daniela Rieger

    Full Text Available Protein C Inhibitor (PCI is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10-30% of cells. PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal.

  10. Different death stimuli evoke apoptosis via multiple pathways in retinal pigment epithelial cells.

    Science.gov (United States)

    Ferrington, Deborah A; Tran, Tina N; Lew, Kathleen L; Van Remmen, Holly; Gregerson, Dale S

    2006-09-01

    Loss of retinal pigment epithelial (RPE) cells via apoptosis plays a prominent role in several retinal degenerative diseases, such as age-related macular degeneration, and with light damage. Strategies for preservation of vision that would interrupt the apoptotic cascade require understanding the molecular events associated with apoptosis. This study investigated the susceptibility of RPE to caspase-dependent and -independent apoptotic pathways when challenged with different stimuli, including oxidants, anti-Fas antibody, and activated cytotoxic T lymphocytes (CTLs). These experiments used novel RPE cell lines developed from wildtype and heterozygous mice with reduced levels of either Mn superoxide dismutatse (SOD) or CuZnSOD. Peroxide and 4-hydroxynonenal induced apoptosis through both caspase-independent and -dependent pathways, respectively. With both oxidants, translocation of apoptosis inducing factor into the nucleus was observed. Cells containing reduced levels of CuZnSOD were the most susceptible to oxidant-induced cell death. Targeted killing by CTLs and activation of the Fas death receptor induced caspase-dependent apoptosis. These results show stimulus-specific activation of either the caspase-dependent or -independent pathway. Since cultured RPE express the protein components required for different apoptotic pathways, they provide a good model system for studying molecular events associated with multiple signals that lead to cell death. PMID:16682026

  11. The apoptotic effects of escin in the H-Ras transformed 5RP7 cell line.

    Science.gov (United States)

    Güney, G; Kutlu, H M; Işcan, A

    2013-06-01

    Extracts of Aesculus hippocastanum L. (horse chestnut) seed have been used in the treatment of chronic venous insufficiency, edema and hemorrhoids. Most of the beneficial effects of horse chestnut are attributed to its principal component β-escin or escin. We have evaluated the cytotoxic and apoptotic effects of escin in the H-Ras 5RP7 cell line by analyzing cell growth inhibition, apoptosis and caspase-3 dependent activity. We have also shown structural and ultrastructural changes in these cell using confocal and transmission electron microscopy. The results indicated that escin has significant inhibitory effects on cell growth and the percentage of apoptotic cells increased after treatment with escin, and the micrographs confirmed that escin damaged these cells and induced apoptosis. PMID:22911540

  12. Melatonina: modulador de morte celular Melatonin: cell death modulator

    Directory of Open Access Journals (Sweden)

    Cecília da Silva Ferreira

    2010-01-01

    cells are eliminated after activation of a cell death program involving participation of pro-apoptotic molecules (Fas, Fas-L, Bax, caspases 2, 3, 6, 7, 8 and 9. Molecule activation causes typical morphological changes, such as cell shrinkage, loss of adhesion to the extracellular matrix and neighboring cells, chromatin condensation, DNA fragmentation and formation of apoptotic bodies. Anti-apoptotic molecules (Bcl-2, FLIP block the emergence and evolution of these cell changes and prevent cell death. The balance between molecules pro and anti-apoptotic ensures tissue homeostasis. When apoptosis is out of control, it contributes to the emergence of several neoplastic, autoimmune and neurodegenerative diseases. Several inducing and inhibitors of apoptosis agents are recognized as potential weapons in the fight against diseases related to proliferation and cell death disorders among which stand out hormones. Melatonin has been reported as important anti-apoptotic agent in various tissues by reducing cell calcium uptake, modulating expression of anti-oxidants and decreasing pro-apoptotic protein, such as Bax. The knowledge of new agents capable to act on the course pf apoptosis is important and of great value for developing further therapies against many diseases. Thus, the objective of this review was to elucidate the main aspects of cell death by apoptosis and the role of melatonin in this process.

  13. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    Science.gov (United States)

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (PGH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (PGH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation. PMID:27129619

  14. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2012-01-31

    BACKGROUND: Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS: MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS: Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION: Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.

  15. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2009-10-06

    Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.British Journal of Cancer advance online publication, 6 October 2009; doi:10.1038\\/sj.bjc.6605308 www.bjcancer.com.

  16. Arctigenin, a Natural Lignan Compound, Induces Apoptotic Death of Hepatocellular Carcinoma Cells via Suppression of PI3-K/Akt Signaling%牛蒡子苷元通过抑制PI3-K/Akt信号通路诱导肝癌细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    王静泓; 姜孝新; 曾乐平; 刘炼; 周辉; 刘玉冰

    2015-01-01

    Objective To explore the effects of arctigenin, a natural lignan compound, on the growth of human hepatocellular carcinoma (HCC) cells and the possible mechanisms. Methods The HepG2 and Hep3B cells were treated with different concentrations of arctigenin. The MTT assay was applied to detect the cell proliferation of HCC cells. Flow cytometry was applied to detect the cell apoptosis and cell cy-cle, and Western blot was adopted to detect the expressions of caspase-3 and caspase-9 as well as the expressions of anti-apoptotic proteins in cells. Manipulating Akt signaling was used to determine its role in the action of arctigenin. Results Arctigenin significantly inhibited the proliferation and induce the apoptosis of HCC cells in a concentration-dependent manner. Arctigenin induced the activation of caspase-9 and caspase-3. Overexpression of a constitutively active Akt mutant blocked arctigenin-induced apoptosis. Combinational treatment with arctigenin and the PI3K inhibitor LY294002 enhanced apoptosis significantly. Arctigenin reduced the expression of Bcl-xL, Mcl-1 and sur-viving, and the phosphorylation of mTOR and S6K, which were significantly reversed by overexpression of constitutively-active Akt. Con-clusion Arctigenin could down-regulate the expressions of anti-apoptotic proteins and promote the apoptosis of hepatocellular carcinoma cells by inactivating PI3-K/Akt signaling.%目的:探讨天然木脂素类化合物牛蒡子苷元对肝癌细胞生长的抑制作用及其可能机制。方法采用不同浓度的牛蒡子苷元处理HepG2和Hep3B细胞,通过MTT法检测细胞增殖情况,流式细胞术检测细胞凋亡及细胞周期,免疫印迹检测细胞中caspase-9和caspase-3的活化情况以及抗凋亡蛋白的表达。进一步通过转染Akt质粒以及使用PI3K抑制剂,探讨牛蒡子苷元对肝癌细胞PI3K/Akt信号通路的影响。结果牛蒡子苷元能以浓度依赖性方式显著抑制肝癌细胞增殖并促进其凋亡,

  17. Inflammasomes as polyvalent cell death platforms.

    Science.gov (United States)

    de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Lamkanfi, Mohamed

    2016-06-01

    Inflammasomes are multi-protein platforms that are organized in the cytosol to cope with pathogens and cellular stress. The pattern recognition receptors NLRP1, NLRP3, NLRC4, AIM2 and Pyrin all assemble canonical platforms for caspase-1 activation, while caspase-11-dependent inflammasomes respond to intracellular Gram-negative pathogens. Inflammasomes are chiefly known for their roles in maturation and secretion of the inflammatory cytokines interleukin-(IL)1β and IL18, but they can also induce regulated cell death. Activation of caspases 1 and 11 in myeloid cells can trigger pyroptosis, a lytic and inflammatory cell death mode. Pyroptosis has been implicated in secretion of IL1β, IL18 and intracellular alarmins. Akin to these factors, it may have beneficial roles in controlling pathogen replication, but become detrimental in the context of chronic autoinflammatory diseases. Inflammasomes are increasingly implicated in induction of additional regulated cell death modes such as pyronecrosis and apoptosis. In this review, we overview recent advances in inflammasome-associated cell death research, illustrating the polyvalent roles of these macromolecular platforms in regulated cell death signaling. PMID:27048821

  18. Apoptotic Effect of Coix Polysaccharides on A549 Lung Cancer Cells in Vitro

    OpenAIRE

    Luo, Cheng; Liu, Wei; Lu, Xiangyi

    2012-01-01

    Background and objective Coix seeds are commonly used in Traditional Chinese Medicine and ingested through daily diet. The aim of this study is to analyze the apoptotic effect of coix polysaccharides on A549 cells. Methods A fraction of polysaccharides was isolated from coix seeds and extracted by ethanol precipitation. The extract was then purified by dialysis and DEAE-52 ion-exchange chromatography. Cell viability was determined by the MTT assay. Cell morphology was observed by scanning ele...

  19. Unexpected requirement for ELMO1 in apoptotic germ cell clearance in vivo

    OpenAIRE

    Elliott, Michael R.; Zheng, Shuqiu; Park, Daeho; Woodson, Robin I.; Reardon, Michael A.; Juncadella, Ignacio J.; Kinchen, Jason M.; Zhang, Jun; Lysiak, Jeffrey J.; Ravichandran, Kodi S.

    2010-01-01

    Apoptosis and the subsequent clearance of these dying cells occur throughout development and adult life in many tissues. Failure to promptly clear apoptotic cells has been linked to many diseases1-3. ELMO1 is an evolutionarily conserved cytoplasmic engulfment protein that functions downstream of the phosphatidylserine receptor BAI1, and, along with Dock180 and Rac1, promotes internalization of the dying cells4-7. Here, we generated ELMO1-deficient mice, and unexpectedly found them to be viabl...

  20. Preprogrammed and programmed cell death mechanisms of apoptosis: UV-induced immediate and delayed apoptosis

    International Nuclear Information System (INIS)

    Equitoxic doses (10% clonogenic survival) of UV radiation (UVR) from the three waveband regions, i.e. UVA1 (340-400 nm), UVB (290-320 nm) and UVC (200-290 nm), were shown to induce immediate or delayed apoptosis in L5178Y-R murine lymphoma cells. Membrane and DNA damage were shown to be the most probable initiators of UVA1-induced immediate or UVR-induced delayed apoptosis, respectively. These UV-induced apoptotic processes appeared to utilize two different ''core'' biochemical mechanisms; however, one core mechanism could be initiated at two distinct sites (e.g. membrane or DNA) and result in disparate kinetics. In an attempt to resolve this mechanistic issue, the dependence on macromolecular synthesis of each UV-induced apoptotic mechanism was investigated. In the absence of UVR, inhibition of either transcription (actinomycin D) or translation (cycloheximide) induced apoptosis in a concentration-and time-dependent manner. These results suggest that an apoptotic mechanism exists that does not require macromolecular synthesis postinsult (constitutive). The UVR data demonstrate that UVA-1 induced immediate apoptosis utilizes this constitutive mechanism (preprogrammed), while UVR-induced delayed apoptosis utilizes the well-known inducible mechanism (programmed). Therefore, there are two different core biochemical mechanisms of apoptotic death available to each cell: preprogrammed (constitutive) and programmed (inducible) cell death. (Author)

  1. Proliferative and apoptotic effects of andrographolide on the BGC-823 human gastric cancer cell line

    Institute of Scientific and Technical Information of China (English)

    LI Shu-guang; WANG Yuan-yu; YE Zai-yuan; SHAO Qing-shu; TAO Hou-quan; SHU Li-sha; ZHAO Yi-feng

    2013-01-01

    Background Andrographolide has been shown to have anticancer activity on diverse cancer cell lines representing different types of human cancers.The aim of this research was to investigate the anticancer and apoptotic effects of andrographolide on the BGC-823 human gastric cancer cell line.Methods Cell proliferation and IC50 were evaluated using MTT assay,cell-cycle analysis with flow cytometry apoptotic effects with Annexin-V/propidium iodide double-staining assay,and morphologic structure with transmission electron microscopy.Immunohistochemistry and reverse-transcription PCR was used to analyze Bcl-2,Bax,and caspase-3 expressions.Results Andrographolide showed a time-and concentration-dependent inhibitory effects on BGC-823 cell growth.Compared to controls,the number of cells in the G0-G1-phase increased significantly,S and G2-M-phase cells decreased after 48 hours of treatment with andrographolide,and both early and late apoptotic rates increased significantly compared to the controls,all in a concentration-dependent manner.Bax and caspase-3 expressions were markedly increased,and Bcl-2 expression was decreased.Conclusions Andrographolide inhibits BGC-823 cell growth and induces BGC-823 cell apoptosis by up-regulating Bax and caspase-3 expressions and down-regulating Bcl-2 expression.Andrographolide may be useful as a potent and selective agent in the treatment of human gastric cancers.

  2. Cell Death Inducing Microbial Protein Phosphatase Inhibitors—Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Rune Kleppe

    2015-10-01

    Full Text Available Okadaic acid (OA and microcystin (MC as well as several other microbial toxins like nodularin and calyculinA are known as tumor promoters as well as inducers of apoptotic cell death. Their intracellular targets are the major serine/threonine protein phosphatases. This review summarizes mechanisms believed to be responsible for the death induction and tumor promotion with focus on the interdependent production of reactive oxygen species (ROS and activation of Ca2+/calmodulin kinase II (CaM-KII. New data are presented using inhibitors of specific ROS producing enzymes to curb nodularin/MC-induced liver cell (hepatocyte death. They indicate that enzymes of the arachidonic acid pathway, notably phospholipase A2, 5-lipoxygenase, and cyclooxygenases, may be required for nodularin/MC-induced (and presumably OA-induced cell death, suggesting new ways to overcome at least some aspects of OA and MC toxicity.

  3. Reversal of Apoptotic Resistance by Lycium barbarum Glycopeptide 3 in Aged T Cells

    Institute of Scientific and Technical Information of China (English)

    LONG-GUO YUAN; HONG-BIN DENG; LI-HUI CHEN; DIAN-DONG LI; QI-YANG HE

    2008-01-01

    Objective To study whether Lycium barbarian glycopeptide 3 (LBGP3) affects T cell apeptosis in aged mice. Methods LBGP3 was purified with DEAE cellulose and Sephadex columns. Apoptotic "sub-Gl peak" was detected by flow cytometry and DNA ladder was resolved by agarose gel electrophoresis. Levels of IFN-γ, and IL-10 were measured with specific kits and mRNA expression was detected by RT-PCR. Apoptosis-related proteins of FLIP, FasL, and Bcl-2 were determined by Western blotting. Resdts LBGP3 was purified from Fructus Lycii water extracts and identified as a 41 kD glycopeptide.Treatment with 200 μg/mL LBGP3 increased the apoptotic rate of T cells from aged mice and showed a similar DNA ladder pattern to that in young T ceils. The reversal of apoptotic resistance was involved in down-regulating the expression of Bcl-2 and FLIP, and up-regulating the expression of FasL. Conclusion Lycium barbarum glycopeptide 3 reverses apoptotic resistance of aged T cells by modulating the expression of apoptosis-related molecules.

  4. Active caspase-3 and ultrastructural evidence of apoptosis in spontaneous and induced cell death in bovine in vitro produced pre-implantation embryos

    DEFF Research Database (Denmark)

    Gjørret, Jakob O.; Fabian, Dusan; Avery, Birthe;

    2007-01-01

    In this study we investigated chronological onset and involvement of active caspase-3, apoptotic nuclear morphology, and TUNEL-labeling, as well as ultrastructural evidence of apoptosis, in both spontaneous and induced cell death during pre-implantation development of bovine in vitro produced...... staining for detection of apoptotic nuclear morphology, and subjected to fluorescence microscopy. Additionally, treated and untreated blastocysts were fixed and processed for ultrastructural identification of apoptosis. Untreated embryos revealed no apoptotic features at 2- and 4-cell stages. However......, active caspase-3 and apoptotic nuclear morphology were observed in an untreated 8-cell stage, and TUNEL-labeling was observed from the 16-cell stage. Blastomeres concurrently displaying all apoptotic features were present in a few embryos at 16-cell and morula stages and in all blastocysts. All three...

  5. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    International Nuclear Information System (INIS)

    Highlights: → We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. → Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. → Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. → Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactive chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.

  6. Coupling of the cell cycle and apoptotic machineries in developing T cells.

    Science.gov (United States)

    Xue, Ling; Sun, Yuefang; Chiang, Leslie; He, Bo; Kang, Chulho; Nolla, Hector; Winoto, Astar

    2010-03-01

    Proliferation and apoptosis are diametrically opposite processes. Expression of certain genes like c-Myc, however, can induce both, pointing to a possible linkage between them. Developing CD4(+)CD8(+) thymocytes are intrinsically sensitive to apoptosis, but the molecular basis is not known. We have found that these noncycling cells surprisingly express many cell cycle proteins. We generated transgenic mice expressing a CDK2 kinase-dead (CDK2-DN) protein in the T cell compartment. Analysis of these mice showed that the CDK2-DN protein acts as a dominant negative mutant in mature T cells as expected, but surprisingly, it acts as a dominant active protein in CD4(+)CD8(+) thymocytes. The levels of CDK2 kinase activity, cyclin E, cyclin A, and other cell cycle proteins in transgenic CD4(+)CD8(+) thymocytes are increased. Concurrently, caspase levels are elevated, and apoptosis is significantly enhanced in vitro and in vivo. E2F-1, the unique E2F member capable of inducing apoptosis when overexpressed, is specifically up-regulated in transgenic CD4(+)CD8(+) thymocytes but not in other T cell populations. These results demonstrate that the cell cycle and apoptotic machineries are normally linked, and expression of cell cycle proteins in developing T cells contributes to their inherent 1sensitivity to apoptosis. PMID:20068041

  7. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    Science.gov (United States)

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. PMID:27129202

  8. Cationic Antimicrobial Peptides Derived from Crocodylus siamensis Leukocyte Extract, Revealing Anticancer Activity and Apoptotic Induction on Human Cervical Cancer Cells.

    Science.gov (United States)

    Theansungnoen, Tinnakorn; Maijaroen, Surachai; Jangpromma, Nisachon; Yaraksa, Nualyai; Daduang, Sakda; Temsiripong, Theeranan; Daduang, Jureerut; Klaynongsruang, Sompong

    2016-06-01

    Known antimicrobial peptides KT2 and RT2 as well as the novel RP9 derived from the leukocyte extract of the freshwater crocodile (Crocodylus siamensis) were used to evaluate the ability in killing human cervical cancer cells. RP9 in the extract was purified by a combination of anion exchange column and reversed-phase HPLC, and its sequence was analyzed by mass spectrometry. The novel peptide could inhibit Gram-negative Vibrio cholerae (clinical isolation) and Gram-positive Bacillus pumilus TISTR 905, and its MIC values were 61.2 µM. From scanning electron microscopy, the peptide was seen to affect bacterial surfaces directly. KT2 and RT2, which are designed antimicrobial peptides using the C. siamensis Leucrocin I template, as well as RP9 were chemically synthesized for investigation of anticancer activity. By Sulforhodamine B colorimetric assay, these antimicrobial peptides could inhibit both HeLa and CaSki cancer cell lines. The IC50 values of KT2 and RT2 for HeLa and CaSki cells showed 28.7-53.4 and 17.3-30.8 µM, while those of RP9 were 126.2 and 168.3 µM, respectively. Additionally, the best candidate peptides KT2 and RT2 were used to determine the apoptotic induction on cancer cells by human apoptosis array assay. As a result, KT2 and RT2 were observed to induce apoptotic cell death in HeLa cells. Therefore, these results indicate that KT2 and RT2 with antimicrobial activity have a highly potent ability to kill human cervical cancer cells. PMID:27129462

  9. Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death

    OpenAIRE

    Awasthi, Yogesh C.; Sharma, Rajendra; Sharma, Abha; Yadav, Sushma; SINGHAL, SHARAD S.; Chaudhary, Pankaj; Awasthi, Sanjay

    2008-01-01

    Within the last two decades, 4-hydroxynonenal has emerged as an important second messenger involved in the regulation of various cellular processes. Our recent studies suggest that HNE can induce apoptosis in various cells through the death receptor Fas (CD95)-mediated extrinsic pathway as well as through the p53-dependent intrinsic pathway. Interestingly, through its interaction with the nuclear protein Daxx, HNE can self-limit its apoptotic role by translocating Daxx to cytoplasm where it b...

  10. Time-Lapse Imaging of Cell Death.

    Science.gov (United States)

    Wallberg, Fredrik; Tenev, Tencho; Meier, Pascal

    2016-03-01

    The best approach to distinguish between necrosis and apoptosis is time-lapse video microscopy. This technique enables a biological process to be photographed at regular intervals over a period, which may last from a few hours to several days, and can be applied to cells in culture or in vivo. We have established two time-lapse microscopy methods based on different ways of calculating cell death: semiautomated and automated. In the semiautomated approach, cell death can be visualized by staining with combinations of Alexa Fluor 647-conjugated Annexin V and Sytox Green (SG), or Annexin V(FITC) and Propidium iodide (PI). The automated method is similar except that all cells are labeled with dyes. This allows faster quantification of data. To this end Cell Tracker Green is used to label all cells at time zero in combination with PI and Alexa Fluor 647-conjugated Annexin V. Necrotic cell death is accompanied by either simultaneous labeling with Annexin V and PI or SG (double-positive), or direct PI or SG staining. Additionally, necrotic cells display characteristic morphology, such as cytoplasmic swelling. In contrast to necrosis where membrane permeabilization is an early event, cells that die by apoptosis lose their membrane permeability relatively late. Therefore, the time between Annexin V staining and PI or SG uptake (double-positive) can be used to distinguish necrosis from apoptosis. This protocol describes the analysis of cell death by time-lapse imaging of HT1080 and L929 cells stained with these dyes, but it can be readily adapted to other cell types of interest. PMID:26933245

  11. Cell death signalling mechanisms in heart failure

    OpenAIRE

    Mughal, Wajihah; Kirshenbaum, Lorrie A.

    2011-01-01

    In 2003, cardiovascular disease was the most costly disease in Canada, and it is still on the rise. The loss of properly functioning cardiomyocytes leads to cardiac impairment, which is a consequence of heart failure. Therefore, understanding the pathways of cell death (necrosis and apoptosis) has potential implications for the development of therapeutic strategies. In addition, the role of B-cell lymphoma-2 family members is discussed and the importance of mitochondria in directing cell deat...

  12. The caspase 3-dependent apoptotic effect of pycnogenol in human oral squamous cell carcinoma HSC-3 cells

    OpenAIRE

    Yang, In-Hyoung; Shin, Ji-Ae; Kim, Lee-Han; Kwon, Ki Han; Cho, Sung-Dae

    2015-01-01

    In the present study, the apoptotic effect of pycnogenol and its molecular mechanism in human oral squamous cell carcinoma HSC-3 cells were investigated. Pycnogenol significantly inhibited the viability of HSC-3 cells and suppressed neoplastic cell transformation in HSC-3 cells and TPA-treated JB6 cells. It caused caspase-dependent apoptosis evidenced by the increase in cleaved poly (ADP-ribose) polymerase and caspase 3 in a dose-dependent manner. Pycnogenol increased Bak protein by enhancing...

  13. Apoptotic Effect of Coix Polysaccharides on A549 Lung Cancer Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Cheng LUO

    2012-11-01

    Full Text Available Background and objective Coix seeds are commonly used in Traditional Chinese Medicine and ingested through daily diet. The aim of this study is to analyze the apoptotic effect of coix polysaccharides on A549 cells. Methods A fraction of polysaccharides was isolated from coix seeds and extracted by ethanol precipitation. The extract was then purified by dialysis and DEAE-52 ion-exchange chromatography. Cell viability was determined by the MTT assay. Cell morphology was observed by scanning electronic microscopy (SEM, and cell cycle was detected by flow cytometry (FCM. The relative quantities of caspase-3 and caspase-9 were determined by RT-PCR. Results Coix polysaccharides exerted remarkable inhibitory effects on A549 cell proliferation. Apoptotic bodies were observed by SEM. Apoptotic induction was also verified by DNA accumulation using propidium iodide nucleus staining in the S phase by flow cytometry, as well as by DNA fragmentation using the comet assay. Regarding the molecular mechanism of apoptosis induction, the gene expression of caspase-3 and caspase-9 increased after coix polysaccharide treatment. Conclusion Polysaccharide fraction CP-1 induced A549 cell apoptosis.

  14. Mitochondrial response and calcium ion change in apoptotic insect cells induced by SfaMNPV

    Institute of Scientific and Technical Information of China (English)

    XIU Meihong; PENG Jianxin; HONG Huazhu

    2005-01-01

    Mitochondrial responses and changes of calcium ions in apoptotic insect SL-1 cells induced by Syngrapha falcifera multiple nuclear polyhedrosis virus (SfaMNPV) are reported in this paper. By using Rhodamine 123 as a fluorescent labeling probe, flow cytometry analysis and confocal laser scanning microscope observation we observed that the mitochondrial transmembrane potential (△Ψm) began to decrease in SL-1 cells at 4 h post infection and △Ψm reduced continuously with the extension of virus infection. Western blotting indicated that the Bcl-2 level in the mitochondria gradually declined and was down- regulated. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria, which indicated that cytochrome c was released from mitochondria into cytosol. These results suggest that mitochondrion-mediated apoptotic signal transduction pathway exists in apoptotic insect cell induced by SfaMNPV. Cytosolic free calcium ([Ca2+]i) concentration rapidly increased after SfaMNPV infection and the elevated calcium was tested to come partly from extracelllular calcium ion influx. Flow cytometry analysis indicated that the apoptosis in SL-1 cells was not influenced by established cytosolic calcium clamped conditions and the EGTA inhibiting calcium influx. Therefore, neither the elevation of cytosolic calcium ion nor extracellular calcium entry was the inducing factor of apoptosis, which hinted that the depletion of ER Ca2+ store contributed to SL-1 cell apoptosis induced by SfaMNPV.

  15. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Directory of Open Access Journals (Sweden)

    Ye-Ji Jeong

    Full Text Available Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA, an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  16. Apoptotic potential of C-phycoerythrin from Phormidium sp. A27DM and Halomicronema sp. A32DM on human lung carcinoma cells.

    Science.gov (United States)

    Madamwar, Datta; Patel, Dipak K; Desai, Swati N; Upadhyay, Kapil K; Devkar, Ranjitsinh V

    2015-01-01

    Phycobilisomes present in cyanobacteria are photosynthetic macromolecular protein complexes that are categorized into three types - phycoerythrins (high energy), phycocyanin (intermediate energy) and allophycocyanin (low energy). Structurally, they consist of α and β protein subunits and open chain tetrapyrrole prosthetic group (bilin chromophore), known for its antioxidant properties and therapeutic potential against a variety of physiological ailments. Phycoerythrins (C-PE) were purified from cyanobacterial strains Phormidium sp. A27DM and Halomicronema sp. A32DM and their respective apoptotic potentials were assessed on A549 human lung carcinoma cells. Both strains of cyanobacteria were cultured and the C-PE from each strain was extracted, quantified and characterized. C-PE accounted for a dose dependent decrement in cell viability, mitochondrial membrane potential and an increment in lactate dehydrogenase release. Higher doses of C-PE (of both strains) accounted for loss of cell viability and nuclear pycnosis. These findings were further substantiated with flow cytometry that revealed a cell arrest at G0/G1 phase and a high percentage of cells undergoing apoptosis following C-PE treatment. These results confirm the efficacy of C-PE from Phormidium sp. or Halomicronema sp. in triggering apoptotic cell death. This study is the first to report on apoptotic property of C-PE against A549 human lung carcinoma cells and warrants further studies to establish its anti-cancer potential. PMID:26535041

  17. Leptin is an anti-apoptotic effector in placental cells involving p53 downregulation.

    Directory of Open Access Journals (Sweden)

    Ayelén Rayen Toro

    Full Text Available Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1 was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle

  18. The influence of the surface chemistry of silver nanoparticles on cell death

    International Nuclear Information System (INIS)

    The influence of the surface chemistry of silver nanoparticles (AgNPs) on p53 mediated cell death was evaluated using human dermal fibroblast (HDF) and lung cancer (A549) cells. The citrate reduced AgNPs (C-AgNPs) were modified with either lactose (L-AgNPs) or a 12-base long oligonucleotide (O-AgNPs). Both unmodified and modified AgNPs showed increased concentration and time dependent cytotoxicity and genotoxicity causing an increased p53 up-regulation within 6 h and led to apoptotic or necrotic cell deaths. The C-AgNPs induced more cytotoxicity and cellular DNA damage than the surface modified AgNPs. Modifying the C-AgNPs with lactose or the oligonucleotide reduced both necrotic and apoptotic cell deaths in the HDF cells. The C-AgNPs caused an insignificant necrosis in A549 cells whereas the modified AgNPs caused necrosis and apoptosis in both cell types. Compared to the O-AgNPs, the L-AgNPs triggered more cellular DNA damage, which led to up-regulation of p53 gene inducing apoptosis in A549 cells compared to HDF cells. This suggests that the different surface chemistries of the AgNPs cause different cellular responses that may be important not only for their use in medicine but also for reducing their toxicity. (paper)

  19. Regulated cell death and adaptive stress responses.

    Science.gov (United States)

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Kepp, Oliver; Kroemer, Guido

    2016-06-01

    Eukaryotic cells react to potentially dangerous perturbations of the intracellular or extracellular microenvironment by activating rapid (transcription-independent) mechanisms that attempt to restore homeostasis. If such perturbations persist, cells may still try to cope with stress by activating delayed and robust (transcription-dependent) adaptive systems, or they may actively engage in cellular suicide. This regulated form of cell death can manifest with various morphological, biochemical and immunological correlates, and constitutes an ultimate attempt of stressed cells to maintain organismal homeostasis. Here, we dissect the general organization of adaptive cellular responses to stress, their intimate connection with regulated cell death, and how the latter operates for the preservation of organismal homeostasis. PMID:27048813

  20. Inhibitive effect of 3-bromopyruvic acid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-hong; ZHENG Xue-fang; WANG Yong-li

    2009-01-01

    Background Breast cancer is one of the most common malignancies in women and is highly resistant to chemotherapy. Due to its high tumour selectivity, 3-bromopyruvic acid (3-BrPA), a well-known inhibitor of energy metabolism has been proposed as a specific anticancer agent. The present study determined the effect of 3-BrPA on proliferation, cell cycle and apoptosis in the human breast cancer MCF-7 cell line and other antitumour mechanisms. Methods MCF-7 cells were treated with various concentrations of 3-BrPA for 1-4 days, and cell growth was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. Marked morphological changes in MCF-7 cells after treatment with 3-BrPA were observed using transmission electron microscopy. The distributions of the cell cycle and apoptosis were analyzed by flow cytometry. Immunohistochemistry was used to indicate the changes in the expression of Bcl-2, c-Myc, and mutant p53. Results 3-BrPA (25 μg/ml) significantly inhibited the proliferation of MCF-7 cells in a time-dependent manner. The MCF-7 cells exposed to 3-BrPA showed the typical morphological characteristics of apoptosis, including karyopycnosis, nuclear condensation and oversize cytoplasmic particles. In addition, flow cytometric assay also showed more apoptotic cells after 3-BrPA stimulation. The cells at the GO and G1 phases were dramatically decreased while cells at the S and G2/M phases were increased in response to 3-BrPA treatment after 48 hours. Furthermore, 3-BrPA stimulation decreased the expressions of Bcl-2, c-Myc and mutant p53, which were strongly associated with the programmed cell death signal transduction pathway. Conclusion 3-BrPA inhibits proliferation, induces S phase and G2/M phase arrest, and promotes apoptosis in MCF-7 cells, which processes might be mediated by the downregulation of the expressions of Bcl-2, c-Myc and mutant p53.

  1. Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells

    Energy Technology Data Exchange (ETDEWEB)

    Hojka-Osinska, Anna, E-mail: hojka@immuno.iitd.pan.wroc.pl [Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw (Poland); Ziolo, Ewa, E-mail: ziolo@immuno.iitd.pan.wroc.pl [Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw (Poland); Rapak, Andrzej, E-mail: rapak@immuno.iitd.pan.wroc.pl [Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw (Poland)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer The combination of fenretinide and indomethacin induces a high level of cell death. Black-Right-Pointing-Pointer Apoptotic pathway is caspase-independent. Black-Right-Pointing-Pointer Jurkat cells undergo AIF-mediated cell death. -- Abstract: Currently used cytotoxic drugs in cancer therapy have a similar mechanism of action and low specificity. Applied simultaneously, they show an additive effect with strong side effects. Clinical trials with the use of different agents in cancer therapy show that the use of these compounds alone is not very effective in fighting cancer. An alternative solution could be to apply a combination of these agents, because their combination has a synergistic effect on some cancer cells. Therefore, in our investigations we examined the effects of a synthetic retinoid-fenretinide when combined with a non-steroidal anti-inflammatory drug-indomethacin on the process of apoptosis in the acute human T-cell leukemia cell line Jurkat. We demonstrate that treatment with the combination of the tested compounds induces the death of cells, that is peculiar and combines features of apoptosis as well as non-apoptotic cell death. In detail we observed, cell membrane permeabilization, phosphatydylserine exposure, no oligonucleosomal DNA fragmentation, no caspase-3 activation, but apoptosis inducing factor (AIF) nuclear translocation. Taken together these results indicate, that Jurkat cells after treatment with a combination of fenretinide and indomethacin undergo AIF-mediated programmed cell death.

  2. Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells

    International Nuclear Information System (INIS)

    Highlights: ► The combination of fenretinide and indomethacin induces a high level of cell death. ► Apoptotic pathway is caspase-independent. ► Jurkat cells undergo AIF-mediated cell death. -- Abstract: Currently used cytotoxic drugs in cancer therapy have a similar mechanism of action and low specificity. Applied simultaneously, they show an additive effect with strong side effects. Clinical trials with the use of different agents in cancer therapy show that the use of these compounds alone is not very effective in fighting cancer. An alternative solution could be to apply a combination of these agents, because their combination has a synergistic effect on some cancer cells. Therefore, in our investigations we examined the effects of a synthetic retinoid-fenretinide when combined with a non-steroidal anti-inflammatory drug–indomethacin on the process of apoptosis in the acute human T-cell leukemia cell line Jurkat. We demonstrate that treatment with the combination of the tested compounds induces the death of cells, that is peculiar and combines features of apoptosis as well as non-apoptotic cell death. In detail we observed, cell membrane permeabilization, phosphatydylserine exposure, no oligonucleosomal DNA fragmentation, no caspase-3 activation, but apoptosis inducing factor (AIF) nuclear translocation. Taken together these results indicate, that Jurkat cells after treatment with a combination of fenretinide and indomethacin undergo AIF-mediated programmed cell death.

  3. BGP-15 inhibits caspase-independent programmed cell death in acetaminophen-induced liver injury

    International Nuclear Information System (INIS)

    It has been recently shown that acute acetaminophen toxicity results in endoplasmic reticulum redox stress and an increase in cells with apoptotic phenotype in liver. Since activation of effector caspases was absent, the relevance of caspase-independent mechanisms in acetaminophen-induced programmed cell death was investigated. BGP-15, a drug with known protective actions in conditions involving redox imbalance, has been co-administered with a single sublethal dose of acetaminophen. Proapoptotic events and outcome of the injury were investigated. ER redox alterations and early ER-stress-related signaling events induced by acetaminophen, such as ER glutathione depletion, phosphorylation of eIF2α and JNK and induction of the transcription factor GADD153, were not counteracted by co-treatment with BGP-15. However, BGP-15 prevented AIF mitochondria-to-nucleus translocation and mitochondrial depolarization. BGP-15 co-treatment attenuated the rate of acetaminophen-induced cell death as assessed by apoptotic index and enzyme serum release. These results reaffirm that acute acetaminophen toxicity involves oxidative stress-induced caspase-independent cell death. In addition, pharmacological inhibition of AIF translocation may effectively protect against or at least delay acetaminophen-induced programmed cell death.

  4. In vivo detection and imaging of phosphatidylserine expression during programmed cell death

    Science.gov (United States)

    Blankenberg, Francis G.; Katsikis, Peter D.; Tait, Jonathan F.; Davis, R. Eric; Naumovski, Louis; Ohtsuki, Katsuichi; Kopiwoda, Susan; Abrams, Michael J.; Darkes, Marilyn; Robbins, Robert C.; Maecker, Holden T.; Strauss, H.W.

    1998-01-01

    One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo. After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death. PMID:9600968

  5. An apoptotic cell cycle mutant in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Villadsen, Ingrid

    1996-01-01

    which apoptosis can be studied using the novel, temperature sensitive mutant, cdc77. The cdc77 cells are defective in a G1 process, and die show the characteristc signs of apoptosis: condensation of the chromatin, degradation of the inner nuclear membrane, dilation of the space between the nuclear...... membranes, condensation of the cytoplasm and degradation of DNA to 50kb fragmensts. It should be noted that in yeast, in contrast to higher eukaryotes, the nuclear membrane remain intact and the chromosomes remain uncondensed and invisible during mitosis. The cdc77 mutant exhibit a defect in initiation of...

  6. The deaths of a cell: how language and metaphor influence the science of cell death.

    Science.gov (United States)

    Reynolds, Andrew S

    2014-12-01

    Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms. PMID:25085023

  7. Dynamic effects of autophagy on arsenic trioxide-induced death of human leukemia cell line HL60 cells

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Zhong-qin LIANG; Bo GAO; Yan-li JIA; Zheng-hong QIN

    2008-01-01

    Aim: To evaluate the contribution of an autophagic mechanism to the As2O3-induced death of human acute myeloid leukaemia cell line HL60 cells. Methods: The growth inhibition of HL60 cells induced by As2O3 was assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazohum bromide colorimetric assay. The ac-tivation of autophagy was determined with monodansylcadaverine labeling and transmission electron microscope. The role of autophagy in the As2O3-induced death of HL60 cells was assessed using autophagic and lysosomal inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Results: After treatment with As2O3, the proliferation of HL60 cells was significantly inhibited and the formation of autophagosomes increased. The blockade of autophagy maturation with the autophagy-specific inhibitor 3-methyladenine (3-MA) or the lysosome-neutraliz-ing agent NH4C11 h before As2O3 potentiated the As2O3-induced death of HL60 cells. In contrast, 3-MA attenuated As2O3-induced death when administered 30 min after As2O3. 3-MA and NH4Cl also inhibited As2O3-induced upregulation of microtubule-associated protein 1 light chain 3, the protein required for autophagy in mammalian cells. Following As2O3, lysosomes were activated as indicated by increased levels of cathepsins B and L. The apoptotic response of HL60 cells to As2O3 was suggested by the collapse of mitochondrial membrane potential, re-lease of cytochrome c from mitochondria, and the activation of caspase-3. Pre-treatment with 3-MA prior to As2O3 amplified these apoptotic signals, while post-treatment with 3-MA 30 min after As2O3 attenuated the apoptotic pathways. Conclusion: Autophagy plays complex roles in the As2O3-induced death of HL60 cells; it inhibits As2O3-induced apoptosis in the initiation stage, but amplifies the AS2O3-mediated apoptotic program if it is persistently activated.

  8. Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ikonomidou, C.; Bittigau, P.;

    2001-01-01

    the corresponding precursors, N-acylethanolamine phospholipids (NAPEs). However, it is unknown whether this key event for NAE formation is regulated differently in the context of insults causing necrotic or apoptotic neuronal death. To address this question, we monitored a range of Cortical NAPE...... species in three infant rat models of in vivo neurodegeneration: (i) necrosis caused by intrastriatal injection of NMDA (25 nmol); (ii) apoptosis induced by systemic administration of the NMDA-receptor antagonist (+)MK-801 (3 × 0.5 mg/kg, i.p.); and (iii) apoptosis following focal necrosis triggered by...

  9. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    International Nuclear Information System (INIS)

    Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL

  10. Targeted delivery of siRNA to cell death proteins in sepsis

    OpenAIRE

    Brahmamdam, Pavan; Watanabe, Eizo; Unsinger, Jacqueline; Chang, Katherine C.; Schierding, William; Hoekzema, Andrew S.; Zhou, Tony T.; McDonough, Jacquelyn S.; Holemon, Heather; Heidel, Jeremy D.; Coopersmith, Craig M.; McDunn, Jonathan E.; Hotchkiss, Richard S.

    2009-01-01

    Immune suppression is a major cause of morbidity and mortality in the septic patient. Apoptotic loss of immune effector cells such as CD4 T and B cells is a key component in the loss immune competence in sepsis. Inhibition of lymphocyte apoptosis has led to improved survival in animal models of sepsis. Using qRT-PCR of isolated splenic CD4 T and B cells, we determined that Bim and PUMA, two key cell death proteins, are markedly up-regulated during sepsis. Lymphocytes have been notoriously dif...

  11. Sensitization by wortmannin of heat- or X-ray induced cell death in cultured Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Here we found that wortmannin sensitized Chinese hamster V79 cells to hyperthermic treatment at 44.0 deg C as determined either by colony formation assay or by dye exclusion assay. Wortmannin enhanced heat-induced cell death accompanying cleavage of poly (ADP-ribose) polymerases (PARP). Additionally, the induction of heat shock protein HSP70 was suppressed and delayed in wortmannin-treated cells. Heat sensitizing effect of wortmannin was obvious at more than 5 or 10 μM of final concentrations, while radiosensitization was apparent at 5 μM. Requirement for high concentration of wortmannin, i.e., order of μM, suggests a possible role of certain protein kinases, such as DNA-PK and/or ATM among PI3-kinase family. The sensitization was minimal when wortmannin was added at the end of heat treatment. This was similar to the case of X-ray. Since heat-induced cell death and PARP cleavage preceded HSP70 induction phenomenon, the sensitization to the hyperthermic treatment was considered mainly caused by enhanced apoptotic cell death rather than secondary to suppression or delay by wortmannin of HSP70 induction. Further, in the present system radiosensitization by wortmannin was also at least partly mediated through enhancement of apoptotic cell death. (author)

  12. Astroglial U87 Cells Protect Neuronal SH-SY5Y Cells from Indirect Effect of Radiation by Reducing DNA Damage and Inhibiting Fas Mediated Apoptotic Pathway in Coculture System.

    Science.gov (United States)

    Saeed, Yasmeen; Rehman, Abdul; Xie, Bingjie; Xu, Jin; Hong, Ma; Hong, Qing; Deng, Yulin

    2015-08-01

    Recent studies provide the evidence that indirect effects of radiation could lead to neuronal cells death but underlying mechanism is not completely understood. On the other hand astroglial cells are known to protect neuronal cells against stress conditions in vivo and invitro. Yet, the fate of neuronal cells and the neuroprotective effect of coculture system (with glial cells) in response to indirect radiation exposure remain rarely discussed. Here, we purpose that the indirect effect of radiation may induce DNA damage by cell cycle arrest and receptor mediated apoptotic cascade which lead to apoptotic death of neuronal SH-SY5Y cells. We also hypothesized that coculture (with glial U87) may relieved the neuronal SH-SY5Y cells from toxicity of indirect effects radiation by reducing DNA damage and expression of apoptotic proteins in vitro. In the present study irradiated cell conditioned medium (ICCM) was used as source of indirect effect of radiation. Neuronal SH-SY5Y cells were exposed to ICCM with and without coculture with (glial U87) in transwell coculture system respectively. Various endpoints such as, cell survival number assay, Annexin V/PI assay, cell cycle analysis by flow cytometer, mRNA level of Fas receptor by q RT-PCR, expression of key apoptotic proteins by western blot and estimation of neurotrophic factors by ELISA method were analyzed into neuronal SH-SY5Y cells with and without co culture after ICCM exposure respectively. We found that ICCM induced DNA damage in neuronal SH-SY5Y cells by significant increase in cell cycle arrest at S-phase (***P cultures system (with glial U87) neuronal SH-SY5Y depicts remarkable resistance against ICCM induced neurotoxicity. PMID:26142731

  13. Single cell analysis of caspase-3 in apoptotic and non-apoptotic cells during mouse limb development

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Klepárník, Karel; Matalová, E.

    2014-01-01

    Roč. 3, - (2014), PP58. ISSN 2052-1219. [European Calcified Tissue Society Congress /41./. 17.05.2014-20.05.2014, Praha] R&D Projects: GA ČR GAP206/11/2377; GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : single cell analysis * caspase-3 * mouse limb development Subject RIV: CB - Analytical Chemistry, Separation

  14. The mechanism of pneumolysin-induced cochlear hair cell death in the rat.

    Science.gov (United States)

    Beurg, Maryline; Hafidi, Aziz; Skinner, Liam; Cowan, Graeme; Hondarrague, Yannick; Mitchell, Tim J; Dulon, Didier

    2005-10-01

    Streptoccocus pneumoniae infection can result in local and systemic diseases such as otitis media, pneumonia and meningitis. Sensorineural hearing loss associated with this infection is mediated by the release of an exotoxin, pneumolysin. The goal of the present study was to characterize the mechanisms of pneumolysin toxicity in cochlear hair cells in vitro. Pneumolysin induced severe damage in cochlear hair cells, ranging from stereocilia disorganization to total cell loss. Surprisingly, pneumolysin-induced cell death preferentially targeted inner hair cells. Pneumolysin triggered in vitro cell death by an influx of calcium. Extracellular calcium appeared to enter the cell through a pore formed by the toxin. Buffering intracellular calcium with BAPTA improved hair cell survival. The mitochondrial apoptotic pathway involved in pneumolysin-induced cell death was demonstrated by the use of bongkrekic acid. Binding of pneumolysin to the hair cell plasma membrane was required to induce cell death. Increasing external calcium reduced cell toxicity by preventing the binding of pneumolysin to hair cell membranes. These results showed the significant role of calcium both in triggering pneumolysin-induced hair cell apoptosis and in preventing the toxin from binding to its cellular target. PMID:16051626

  15. (-)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization

    Science.gov (United States)

    LeGendre, Onica; Breslin, Paul AS; Foster, David A

    2015-01-01

    (-)-Oleocanthal (OC), a phenolic compound present in extra-virgin olive oil (EVOO), has been implicated in the health benefits associated with diets rich in EVOO. We investigated the effect of OC on human cancer cell lines in culture and found that OC induced cell death in all cancer cells examined as rapidly as 30 minutes after treatment in the absence of serum. OC treatment of non-transformed cells suppressed their proliferation but did not cause cell death. OC induced both primary necrotic and apoptotic cell death via induction of lysosomal membrane permeabilization (LMP). We provide evidence that OC promotes LMP by inhibiting acid sphingomyelinase (ASM) activity, which destabilizes the interaction between proteins required for lysosomal membrane stability. The data presented here indicate that cancer cells, which tend to have fragile lysosomal membranes compared to non-cancerous cells, are susceptible to cell death induced by lysosomotropic agents. Therefore, targeting lysosomal membrane stability represents a novel approach for the induction of cancer-specific cell death. PMID:26380379

  16. Detection of apoptotic cells in horses with and without gastrointestinal disease.

    OpenAIRE

    Rowe, Emma L

    2003-01-01

    A study was performed to identify apoptotic cells in the equine intestine and to determine if the occurrence of apoptosis is affected by gastrointestinal disease and tissue layer of intestine. Samples of intestine were collected from 38 horses that underwent surgery or were humanely destroyed for small or large bowel obstruction, strangulation or distension. Samples were also taken from 9 horses which were humanely euthanized for reasons other than gastrointestinal disease or systemic disea...

  17. Mitochondrial Swelling and Incipient Outer Membrane Rupture in Preapoptotic and Apoptotic Cells

    OpenAIRE

    Sesso, A.; Belizário, JE; Marques, MM; Higuchi, ML; Schumacher, RI; Colquhoun, A; Ito, E.; Kawakami, J.

    2012-01-01

    Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM ru...

  18. Chinese Medicines Induce Cell Death: The Molecular and Cellular Mechanisms for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Xuanbin Wang

    2014-01-01

    Full Text Available Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and Methods. Chinese medicines (including Chinese medicinal herbs, animal parts, and minerals were used in the study. The key words including “cancer”, “cell death”, “apoptosis”, “autophagy,” “necrosis,” and “Chinese medicine” were used in retrieval of related information from PubMed and other databases. Results. The cell death induced by Chinese medicines is described as apoptotic, autophagic, or necrotic cell death and other types with an emphasis on their mechanisms of anticancer action. The relationship among different types of cell death induced by Chinese medicines is critically reviewed and discussed. Conclusions. This review summarizes that CMs treatment could induce multiple pathways leading to cancer cell death, in which apoptosis is the dominant type. To apply these preclinical researches to clinic application will be a key issue in the future.

  19. Sesamol protects human embryonic kidney cells from radiation induced cell death: a potential radioprotective agent

    International Nuclear Information System (INIS)

    Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. In our earlier studies, we have demonstrated that sesamol protected DNA (plasmid and calf thymus) and V79 cells from radiation induced cell death and the effect was higher (DMF=2) in comparison to melatonin (DMF=1.3). This prompted us to study, sesamol mediated radioprotection in detail to understand the mechanism of action. We have chosen human embryonic kidney (HEK) cells to understand the mechanism of radioprotection. The HEK cells were treated with sesamol before exposure of g rays (60Co teletherapy, Bhabhatron II) in the radiation dose range 0-7 Gy for clonogenic survival. Toxicity, antioxidant enzyme activity other biochemical assays were performed. Flow cytometric analysis (FACS Calibre, BD, USA) was used to determine the apoptotic population and mitochondrial membrane potential (Rh 123, JC-1). ROS was determined using DCFHDA. Cell cycle analysis, caspase 3 activity and cytochrome C were also measured. Results suggested that sesamol protected HEK cells from cell death. The dose modifying factor for sesamol was 1.3, whereas the alpha protection factor was 2. Sesamol inhibited radiation induced cell cycle arrest in G2/M phase; ROS generation and depolarization of mitochondrial membrane potential and caspase-3 activity. Sesamol inhibited damage of critical cellular components (protein, lipids, membrane and amino acid) and maintained the redox status of cells. The results will be helpful in understanding the mechanistic aspects and development of sesamol based radioprotector. (author)

  20. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells

    OpenAIRE

    Benoit, Marie E; Clarke, Elizabeth V.; Morgado, Pedro; Fraser, Deborah A.; Tenner, Andrea J.

    2012-01-01

    Deficiency in C1q, the recognition component of the classical complement cascade and a pattern recognition receptor involved in apoptotic cell clearance, leads to lupus-like auto-immune diseases characterized by auto-antibodies to self proteins and aberrant innate immune cell activation likely due to impaired clearance of apoptotic cells. Here, we developed an autologous system using primary human lymphocytes and monocyte-derived macrophages (HMDMs) to characterize the effect of C1q on macrop...

  1. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells.

    OpenAIRE

    Benoit, Marie E; Clarke, Elizabeth V.; Morgado, Pedro; Fraser, Deborah A.; Tenner, Andrea J.

    2012-01-01

    Deficiency in C1q, the recognition component of the classical complement cascade and a pattern recognition receptor involved in apoptotic cell clearance, leads to lupus-like autoimmune diseases characterized by auto-antibodies to self proteins and aberrant innate immune cell activation likely due to impaired clearance of apoptotic cells. In this study, we developed an autologous system using primary human lymphocytes and human monocyte-derived macrophages (HMDMs) to characterize the effect of...

  2. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    Directory of Open Access Journals (Sweden)

    Jongkyun Kang

    Full Text Available The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  3. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    International Nuclear Information System (INIS)

    Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2 expression correlated with

  4. Converting redox signaling to apoptotic activities by stress-responsive regulators HSF1 and NRF2 in fenretinide treated cancer cells.

    Directory of Open Access Journals (Sweden)

    Kankan Wang

    Full Text Available BACKGROUND: Pharmacological intervention of redox balance in cancer cells often results in oxidative stress-mediated apoptosis, attracting much attention for the development of a new generation of targeted therapy in cancer. However, little is known about mechanisms underlying the conversion from oxidative signaling to downstream activities leading cells to death. METHODOLOGY/PRINCIPAL FINDINGS: We here report a systematic detection of transcriptome changes in response to oxidative signals generated in leukemia cells upon fenretinide treatment, implicating the occurrence of numerous stress-responsive events during the fenretinide induced apoptosis, such as redox response, endoplasmic reticulum stress/unfolded protein response, translational repression and proteasome activation. Moreover, the configuration of these relevant events is primarily orchestrated by stress responsive transcription factors, as typically highlighted by NF-E2-related factor-2 (NRF2 and heat shock factor 1 (HSF1. Several lines of evidence suggest that the coordinated regulation of these transcription factors and thus their downstream genes are involved in converting oxidative signaling into downstream stress-responsive events regulating pro-apoptotic and apoptotic activities at the temporal and spatial levels, typifying oxidative stress-mediated programmed death rather than survival in cancer cells. CONCLUSIONS/SIGNIFICANCE: This study provides a roadmap for understanding oxidative stress-mediated apoptosis in cancer cells, which may be further developed into more sophisticated therapeutic protocols, as implicated by synergistic induction of cell apoptosis using proteasome inhibitors with fenretinide.

  5. Ezrin dephosphorylation/downregulation contributes to ursolic acid-mediated cell death in human leukemia cells

    International Nuclear Information System (INIS)

    Ezrin links the actin filaments with the cell membrane and has a functional role in the apoptotic process. It appears clear that ezrin is directly associated with Fas, leading to activation of caspase cascade and cell death. However, the exact role of ezrin in ursolic acid (UA)-induced apoptosis remains unclear. In this study, we show for the first time that UA induces apoptosis in both transformed and primary leukemia cells through dephosphorylation/downregulation of ezrin, association and polarized colocalization of Fas and ezrin, as well as formation of death-inducing signaling complex. These events are dependent on Rho-ROCK1 signaling pathway. Knockdown of ezrin enhanced cell death mediated by UA, whereas overexpression of ezrin attenuated UA-induced apoptosis. Our in vivo study also showed that UA-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with the dephosphorylation/downregulation of ezrin. Such findings suggest that the cytoskeletal protein ezrin may represent an attractive target for UA-mediated lethality in human leukemia cells

  6. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    International Nuclear Information System (INIS)

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution

  7. Zinc chelation: a metallothionein 2A's mechanism of action involved in osteosarcoma cell death and chemotherapy resistance

    OpenAIRE

    Habel, N; Hamidouche, Z; Girault, I; Patiño-García, A; Lecanda, F. (Fernando); Marie, P. J.; Fromigué, O.

    2013-01-01

    Osteosarcoma is the most common primary tumor of bone occurring in children and adolescents. The histological response to chemotherapy represents a key clinical factor related to survival. We previously showed that statins exhibit antitumor effects in vitro, inducing apoptotic cell death, reducing cell migration and invasion capacities and strengthening cytotoxic effects in combination with standard drugs. Comparative transcriptomic analysis between control and statin-treated cells revealed s...

  8. Galectin-1 and Galectin-3 induce mitochondrial apoptotic pathway in Jurkat cells

    Science.gov (United States)

    Vasil'eva, O. A.; Isaeva, A. V.; Prokhorenko, T. S.; Zima, A. P.; Novitsky, V. V.

    2016-08-01

    Cellular malignant transformation is often accompanied by increased gene expression of low-molecular proteins of lectins family-galectins. But it is unknown how galectins promote tumor growth and malignization. Galectins-1 and galectin-3 are thought to be possible immunoregulators exerting their effects by regulating the balance of CD4+ lymphocytes. In addition it is known that tumor cells overexpressing galectins are capable of escaping immunological control, causing apoptosis of lymphocytes. The aim of the study is to investigate the role of galectin-1 and galectin-3 in the implementation of mitochondrial apoptotic pathway in Jurkat cells. Methods: Jurkat cells were used as a model for the study of T-lymphocytes. Jurkat cells were activated with antibodies to CD3 and CD28 and cultured with recombinant galectin-1 and -3. Apoptosis of Jurkat cells and depolarization of the mitochondrial membrane were assessed by flow cytometry. It was found that galectin-1 and galectin-3 have a dose-dependent pro-apoptotic effect on Jurkat cells in vitro and enlarge the number of cells with decreased mitochondrial membrane potential compared with intact cells.

  9. Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy

    DEFF Research Database (Denmark)

    Maddika, S; Ande, SR; Panigrahi, S;

    2007-01-01

    The partial cross-utilization of molecules and pathways involved in opposing processes like cell survival, proliferation and cell death, assures that mutations within one signaling cascade will also affect the other opposite process at least to some extent, thus contributing to homeostatic...... regulatory circuits. This review highlights some of the connections between opposite-acting pathways. Thus, we discuss the role of cyclins in the apoptotic process, and in the regulation of cell proliferation. CDKs and their inhibitors like the INK4-family (p16(Ink4a), p15(Ink4b), p18(Ink4c), p19(Ink4d...... highlighted both for their apoptosis-regulating capacity and also for their effect on the cell cycle progression. The PI3-K/Akt cell survival pathway is shown as regulator of cell metabolism and cell survival, but examples are also provided where aberrant activity of the pathway may contribute to the...

  10. Integrin α PAT-2/CDC-42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Hsiao-Han Hsieh

    Full Text Available Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2-mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180/CED-12 (ELMO or CED-6 (GULP respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level.

  11. Regulation of cell death in cancer - possible implications for immunotherapy

    OpenAIRE

    Simone eFulda

    2013-01-01

    Since most anticancer therapies including immunotherapy trigger programmed cell death in cancer cells, defective cell death programs can lead to treatment resistance and tumor immune escape. Therefore, evasion of programmed cell death may provide one possible explanation as to why cancer immunotherapy has so far only shown modest clinical benefits for children with cancer. A better understanding of the molecular mechanisms that regulate sensitivity and resistance to programmed cell death is e...

  12. Identification and apoptotic potential of T-2 toxin metabolites in human cells.

    Science.gov (United States)

    Weidner, Maria; Welsch, Tanja; Hübner, Florian; Schwerdt, Gerald; Gekle, Michael; Humpf, Hans-Ulrich

    2012-06-01

    The mycotoxin T-2 toxin, produced by various Fusarium species, is a widespread contaminant of grain and grain products. Knowledge about its toxicity and metabolism in the human body is crucial for any risk assessment as T-2 toxin can be detected in processed and unprocessed food samples. Cell culture studies using cells of human origin represent a potent model system to study the metabolic fate of T-2 toxin as well as the cytotoxicity in vitro. In this study the metabolism of T-2 toxin was analyzed in a cell line derived from human colon carcinoma cells (HT-29) and primary human renal proximal tubule epithelial cells (RPTEC) using high-performance liquid chromatography coupled with Fourier transformation mass spectrometry (HPLC-FTMS). Both cell types metabolized T-2 toxin to a variety of compounds. Furthermore, cell cycle analysis in RPTEC proved the apoptotic effect of T-2 toxin and its metabolites HT-2 toxin and neosolaniol in micromolar concentrations. PMID:22551244

  13. Suppression by Apoptotic Cells Defines Tumor Necrosis Factor-Mediated Induction of Glomerular Mesangial Cell Apoptosis by Activated Macrophages

    OpenAIRE

    Duffield, Jeremy S.; Ware, Carl F.; Ryffel, Bernhardt; Savill, John

    2001-01-01

    Activated macrophages (Mφ) isolated from inflamed glomeruli or generated by interferon-γ and lipopolysaccharide treatment in vitro induce glomerular mesangial cell apoptosis by hitherto incompletely understood mechanisms. In this report we demonstrate that nitric oxide-independent killing of co-cultured mesangial cells by interferon-γ/lipopolysaccharide-activated Mφ is suppressed by binding/ingestion of apoptotic cells and is mediated by tumor necrosis factor (TNF). Thus, soluble TNF receptor...

  14. Regulated cell death in diagnostic histopathology.

    Science.gov (United States)

    Skenderi, Faruk; Vranic, Semir; Damjanov, Ivan

    2015-01-01

    Regulated cell death (RCD) is a controlled cellular process, essential for normal development, tissue integrity and homeostasis, and its dysregulation has been implicated in the pathogenesis of various conditions including developmental and immunological disorders, neurodegenerative diseases, and cancer. In this review, we briefly discuss the historical perspective and conceptual development of RCD, we overview recent classifications and some of the key players in RCD; finally we focus on current applications of RCD in diagnostic histopathology. PMID:26009238

  15. Kinetic modeling reveals a common death niche for newly formed and mature B cells.

    Directory of Open Access Journals (Sweden)

    Gitit Shahaf

    Full Text Available BACKGROUND: B lymphocytes are subject to elimination following strong BCR ligation in the absence of appropriate second signals, and this mechanism mediates substantial cell losses during late differentiation steps in the bone marrow and periphery. Mature B cells may also be eliminated through this mechanism as well as through normal turnover, but the population containing mature cells destined for elimination has not been identified. Herein, we asked whether the transitional 3 (T3 subset, which contains most newly formed cells undergoing anergic death, could also include mature B cells destined for elimination. METHODOLOGY/PRINCIPAL FINDINGS: To interrogate this hypothesis and its implications, we applied mathematical models to previously generated in vivo labeling data. Our analyses reveal that the death rate of T3 B cells is far higher than the death rates of all other splenic B cell subpopulations. Further, the model, in which the T3 pool includes both newly formed and mature primary B cells destined for apoptotic death, shows that this cell loss may account for nearly all mature B cell turnover. CONCLUSIONS/SIGNIFICANCE: This finding has implications for the mechanism of normal mature B cell turnover.

  16. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Owa C

    2013-09-01

    Full Text Available Chie Owa, Michael E Messina Jr, Reginald HalabyDepartment of Biology, Montclair State University, Montclair, NJ, USABackground: Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3.Methods: MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells.Results: These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability.Conclusion: Our results suggest that further studies are warranted to investigate triptolide's potential as an anticancer therapeutic agent.Keywords: triptolide, MCF-7 breast cancer cells, apoptosis, lysosomes, lysosomal membrane permeabilization (LMP

  17. Detection of apoptotic cells by selective precipitation of [3H]thymidine-labelled DNA.

    OpenAIRE

    Patki, A H; Lederman, M M

    1996-01-01

    Apoptosis is characterized by systematic fragmentation of high-molecular-weight DNA into oligonucleosome fragments. A sensitive method for detection of apoptotic cells involving [3H]thymidine-labelled DNA is presented. Cells from mid-log-phase cultures were labelled with [3H]thymidine for 15 to 18 h and then exposed to gamma irradiation to induce apoptosis. A modified Hirt method was used to separate low-molecular-weight DNA from high-molecular-weight DNA. The percentage of fragmented DNA and...

  18. Activation of intrinsic apoptotic signaling pathway in cancer cells by Cymbopogon citratus polysaccharide fractions.

    Science.gov (United States)

    Thangam, Ramar; Sathuvan, Malairaj; Poongodi, Arasu; Suresh, Veeraperumal; Pazhanichamy, Kalailingam; Sivasubramanian, Srinivasan; Kanipandian, Nagarajan; Ganesan, Nalini; Rengasamy, Ramasamy; Thirumurugan, Ramasamy; Kannan, Soundarapandian

    2014-07-17

    Essential oils of Cymbopogon citratus were already reported to have wide ranging medical and industrial applications. However, information on polysaccharides from the plant and their anticancer activities are limited. In the present study, polysaccharides from C. citratus were extracted and fractionated by anion exchange and gel filtration chromatography. Two different polysaccharide fractions such as F1 and F2 were obtained, and these fractions were found to have distinct acidic polysaccharides as characterized by their molecular weight and sugar content. NMR spectral analysis revealed the presence of (1→4) linked b-d-Xylofuranose moiety in these polysaccharides. Using these polysaccharide fractions F1 and F2, anti-inflammatory and anticancer activities were evaluated against cancer cells in vitro and the mechanism of action of the polysaccharides in inducing apoptosis in cancer cells via intrinsic pathway was also proposed. Two different reproductive cancer cells such as Siha and LNCap were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation, changes in mitochondrial membrane potential, and profiles of gene and protein expression in response to treatment of cells by the polysaccharide fractions. These polysaccharide fractions exhibited potential cytotoxic and apoptotic effects on carcinoma cells, and they induced apoptosis in these cells through the events of up-regulation of caspase 3, down-regulation of bcl-2 family genes followed by cytochrome c release. PMID:24702929

  19. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun-Yu [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Chao-Yu [School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Kang, Chao-Kai [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Sher, Yuh-Pyng [Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan (China); Sheu, Wayne H.-H. [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan (China); School of Medicine, National Yang Ming University, Taipei, Taiwan (China); School of Medicine, National Defense Medical Center, Taipei, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Lee, Tsung-Han, E-mail: thlee@email.nchu.edu.tw [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung, Taiwan (China)

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation.

  20. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    International Nuclear Information System (INIS)

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation

  1. Autoantibodies against complement C1q specifically target C1q bound on early apoptotic cells.

    Science.gov (United States)

    Bigler, Cornelia; Schaller, Monica; Perahud, Iryna; Osthoff, Michael; Trendelenburg, Marten

    2009-09-01

    Autoantibodies against complement C1q (anti-C1q) are frequently found in patients with systemic lupus erythematosus (SLE). They strongly correlate with the occurrence of severe lupus nephritis, suggesting a pathogenic role in SLE. Because anti-C1q are known to recognize a neoepitope on bound C1q, but not on fluid-phase C1q, the aim of this study was to clarify the origin of anti-C1q by determining the mechanism that renders C1q antigenic. We investigated anti-C1q from serum and purified total IgG of patients with SLE and hypocomplementemic urticarial vasculitis as well as two monoclonal human anti-C1q Fab from a SLE patient generated by phage display. Binding characteristics, such as their ability to recognize C1q bound on different classes of Igs, on immune complexes, and on cells undergoing apoptosis, were analyzed. Interestingly, anti-C1q did not bind to C1q bound on Igs or immune complexes. Neither did we observe specific binding of anti-C1q to C1q bound on late apoptotic/necrotic cells when compared with binding in the absence of C1q. However, as shown by FACS analysis and confocal microscopy, anti-C1q specifically targeted C1q bound on early apoptotic cells. Anti-C1q were found to specifically target C1q bound on cells undergoing apoptosis. Our observations suggest that early apoptotic cells are a major target of the autoimmune response in SLE and provide a direct link between human SLE, apoptosis, and C1q. PMID:19648280

  2. Investigation of the apoptotic pathway induced by benzimidazole-oxindole conjugates against human breast cancer cells MCF-7.

    Science.gov (United States)

    Lakshma Nayak, Vadithe; Nagaseshadri, Bobburi; Vishnuvardhan, M V P S; Kamal, Ahmed

    2016-07-15

    In our previous studies, benzimidazole-oxindole conjugates were synthesized and evaluated by National Cancer Institute (NCI) for their cytotoxic activity and the new molecules like 5c and 5p were considered as potential leads. These conjugates arrested the cell cycle at G2/M phase and inhibited tubulin polymerization. These observations prompted us to investigate the apoptotic mechanism induced by these lead molecules against human breast cancer cells (MCF-7). Studies like measurement of mitochondrial membrane potential (ΔΨm), generation of reactive oxygen species (ROS) and Annexin V-FITC assay revealed that these compounds induced mitochondrial mediated (intrinsic apoptotic pathway) apoptosis in human breast cancer cells. It was further confirmed by western blot analysis of pro apoptotic protein Bax, anti apoptotic protein Bcl-2, cytochrome c release, caspase-9 activity and cleavage of PARP. PMID:27262596

  3. TNF α and reactive oxygen species in necrotic cell death

    Institute of Scientific and Technical Information of China (English)

    Michael J Morgan; You-Sun Kim; Zheng-gang Liu

    2008-01-01

    Death receptors, including the TNF receptor-1 (TNF-RI), have been shown to be able to initiate caspase-independent cell death. This form of "necrotic cell death" appears to be dependent on the generation of reactive oxygen species. Recent data have indicated that superoxide generation is dependent on the activation of NADPH oxidases, which form a complex with the adaptor molecules RIP1 and TRADD. The mechanism of superoxide generation further establishes RIP1 as the central molecule in ROS production and cell death initiated by TNFa and other death receptors. A role for the sustained JNK activation in necrotic cell death is also suggested. The sensitization of virus-infected cells to TNFa indicates that necrotic cell death may represent an alternative cell death pathway for clearance of infected cells.

  4. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  5. Anti-Apoptotic Effects of Lentiviral Vector Transduction Promote Increased Rituximab Tolerance in Cancerous B-Cells

    Science.gov (United States)

    Ranjbar, Benyamin; Krogh, Louise Bechmann; Laursen, Maria Bach; Primo, Maria Nascimento; Marques, Sara Correia; Dybkær, Karen; Mikkelsen, Jacob Giehm

    2016-01-01

    Diffuse large B-cell lymphoma (DLBCL) is characterized by great genetic and clinical heterogeneity which complicates prognostic prediction and influences treatment efficacy. The most common regimen, R-CHOP, consists of a combination of anthracycline- and immuno-based drugs including Rituximab. It remains elusive how and to which extent genetic variability impacts the response and potential tolerance to R-CHOP. Hence, an improved understanding of mechanisms leading to drug tolerance in B-cells is crucial, and modelling by genetic intervention directly in B-cells is fundamental in such investigations. Lentivirus-based gene vectors are widely used gene vehicles, which in B-cells are an attractive alternative to potentially toxic transfection-based methodologies. Here, we investigate the use of VSV-G-pseudotyped lentiviral vectors in B-cells for exploring the impact of microRNAs on tolerance to Rituximab. Notably, we find that robust lentiviral transduction of cancerous B-cell lines markedly and specifically enhances the resistance of transduced germinal center B-cells (GCBs) to Rituximab. Although Rituximab works partially through complement-mediated cell lysis, increased tolerance is not achieved through effects of lentiviral transduction on cell death mediated by complement. Rather, reduced levels of PARP1 and persistent high levels of CD43 in Rituximab-treated GCBs demonstrate anti-apoptotic effects of lentiviral transduction that may interfere with the outcome and interpretation of Rituximab tolerance studies. Our findings stress that caution should be exercised exploiting lentiviral vectors in studies of tolerance to therapeutics in DLBCL. Importantly, however, we demonstrate the feasibility of using the lentiviral gene delivery platform in studies addressing the impact of specific microRNAs on Rituximab responsiveness. PMID:27045839

  6. Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines.

    Science.gov (United States)

    Mirzaei, Mohammad Reza; Najafi, Ali; Arababadi, Mohammad Kazemi; Asadi, Malek Hosein; Mowla, Seyed Javad

    2014-10-01

    OCT4B1 is a newly discovered spliced variant of OCT4 which is primarily expressed in pluripotent and tumor cells. Based on our previous studies, OCT4B1 is significantly overexpressed in tumors, where it endows an anti-apoptotic property to tumor cells. However, the mechanism by which OCT4B1 regulates the apoptotic pathway is not yet elucidated. Here, we investigated the effects of OCT4B1 suppression on the expression alteration of 84 genes involved in apoptotic pathway. The AGS (gastric adenocarcinoma), 5637 (bladder tumor), and U-87MG (brain tumor) cell lines were transfected with OCT4B1 or irrelevant siRNAs. The expression level of apoptotic genes was then quantified using a human apoptosis panel-PCR kit. Our data revealed an almost similar pattern of alteration in the expression profile of apoptotic genes in all three studied cell lines, following OCT4B1 suppression. In general, the expression of more than 54 apoptotic genes (64 % of arrayed genes) showed significant changes. Among these, some up-regulated (CIDEA, CIDEB, TNFRSF1A, TNFRSF21, TNFRSF11B, TNFRSF10B, and CASP7) and down-regulated (BCL2, BCL2L11, TP73, TP53, BAD, TRAF3, TRAF2, BRAF, BNIP3L, BFAR, and BAX) genes had on average more than tenfold gene expression alteration in all three examined cell lines. With some minor exceptions, suppression of OCT4B1 caused upregulation of pro-apoptotic and down-regulation of anti-apoptotic genes in transfected tumor cells. Uncovering OCT4B1 down-stream targets could further elucidate its part in tumorigenesis, and could lead to finding a new approach to combat cancer, based on targeting OCT4B1. PMID:25008565

  7. [Effect of lidamycin on mitochondria initiated apoptotic pathway in human cancer cells].

    Science.gov (United States)

    Qiu, Qiang; Wang, Zhen; Jiang, Jian-ming; Li, Dian-dong

    2007-02-01

    Although enediyne antibiotic lidamycin ( LDM) is a potent inducer of apoptosis, the underlying mechanisms of its apoptotic functions remain to be explored. Here, we aim to elucidate its possible mechanisms in mitochondria initiated apoptotic pathway involved in human BEL-7402 and MCF-7 cells. Cytochrome c released from mitchondria to cytosol fraction was detected by Western blotting. p53 and Bax, Bcl-2 expressions were detected by Western blotting and RT-PCR. MTT assay was used to detect cytotoxicity of LDM with or without caspase inhibitor z-VAD-fmk. After the BEL-7402 cells were exposed to 0. 1 micromol x L(-1) LDM within 6 h, the increase of cytochrome c in the cytosol and decrease in the mitochondria were observed when compared with untreated cells. The expression of Bax, an important proapoptotic member of the Bcl-2 family, increased gradually in the BEL-7402 cells after exposure to LDM of 0. 1 micromol x L (-1) for 2, 6, and 9 h, separately, while Bcl-2 increased at 2 and 6 h, and decreased at 9 h after LDM treatment. Enhanced protein expressions were parallel with respective increased mRNA level for Bax only, but not p53. Caspase inhibitor may inhibit partially the killing effects induced by LDM. Therefore we conclude that the rapid activation of mitochondrial pathway induced by LDM in tumor cells might contribute to its highly potent cytotoxicities. PMID:17518039

  8. Apoptotic effects of non-edible parts of Punica granatum on human multiple myeloma cells.

    Science.gov (United States)

    Kiraz, Yağmur; Neergheen-Bhujun, Vidushi S; Rummun, Nawraj; Baran, Yusuf

    2016-02-01

    Multiple myeloma is of great concern since existing therapies are unable to cure this clinical condition. Alternative therapeutic approaches are mandatory, and the use of plant extracts is considered interesting. Punica granatum and its derived products were suggested as potential anticancer agents due to the presence of bioactive compounds. Thus, polypenolic-rich extracts of the non-edible parts of P. granatum were investigated for their antiproliferative and apoptotic effects on U266 multiple myeloma cells. We demonstrated that there were dose-dependent decreases in the proliferation of U266 cells in response to P. granatum extracts. Also, exposure to the extracts triggered apoptosis with significant increases in loss of mitochondrial membrane potential in U266 cells exposed to the leaves and stem extracts, while the flower extract resulted in slight increases in loss of MMP. These results were confirmed by Annexin-V analysis. These results documented the cytotoxic and apoptotic effects of P. granatum extracts on human U266 multiple myeloma cells via disruption of mitochondrial membrane potential and increasing cell cycle arrest. The data suggest that the extracts can be envisaged in cancer chemoprevention and call for further exploration into the potential application of these plant parts. PMID:26318303

  9. Local Augmented Angiotensinogen Secreted from Apoptotic Vascular Endothelial Cells Is a Vital Mediator of Vascular Remodelling.

    Directory of Open Access Journals (Sweden)

    Shyh-Jong Wu

    Full Text Available Vascular remodelling is a critical vasculopathy found in atheromatous diseases and allograft failures. The local renin angiotensin system (RAS has been implicated in vascular remodelling. However, the mechanisms by which the augmented local RAS is associated with the initial event of endothelial cell apoptosis in injured vasculature remain undefined. We induced the apoptosis of human umbilical vein endothelial cells (HUVECs and vascular smooth muscle cells (VSMCs through serum starvation (SS. After the cells were subjected to SS, we found that the mRNA expression of angiotensinogen (AGT was increased by >3-fold in HUVECs and by approximately 2.5-fold in VSMCs. In addition, the expression of angiotensin-converting enzyme (ACE mRNA was increased in VSMCs but decreased to 50% in HUVECs during the same apoptotic process. Increases in the expression of AGT protein and angiotensin II (Ang II were found in a serum-free medium conditioned by HUVECs (SSC. The increased Ang II was suppressed using lisinopril (an ACE inhibitor treatment. Moreover, the activation of ERK1/2 induced by the SSC in VSMCs was also suppressed by losartan. In conclusion, we first demonstrated that the augmented AGT released from apoptotic endothelial cells acts as a vital progenitor of Ang II to accelerate vascular remodelling, and we suggest that blocking local augmented Ang II might be an effective strategy for restraining intimal hyperplasia.

  10. Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

    Directory of Open Access Journals (Sweden)

    Kyung Eun Choi

    2014-07-01

    Full Text Available Our previous findings have demonstrated that bee venom (BV has anti-cancer activity in several cancer cells. However, the effects of BV on lung cancer cell growth have not been reported. Cell viability was determined with trypan blue uptake, soft agar formation as well as DAPI and TUNEL assay. Cell death related protein expression was determined with Western blotting. An EMSA was used for nuclear factor kappaB (NF-κB activity assay. BV (1–5 μg/mL inhibited growth of lung cancer cells by induction of apoptosis in a dose dependent manner in lung cancer cell lines A549 and NCI-H460. Consistent with apoptotic cell death, expression of DR3 and DR6 was significantly increased. However, deletion of DRs by small interfering RNA significantly reversed BV induced cell growth inhibitory effects. Expression of pro-apoptotic proteins (caspase-3 and Bax was concomitantly increased, but the NF-κB activity and expression of Bcl-2 were inhibited. A combination treatment of tumor necrosis factor (TNF-like weak inducer of apoptosis, TNF-related apoptosis-inducing ligand, docetaxel and cisplatin, with BV synergistically inhibited both A549 and NCI-H460 lung cancer cell growth with further down regulation of NF-κB activity. These results show that BV induces apoptotic cell death in lung cancer cells through the enhancement of DR3 expression and inhibition of NF-κB pathway.

  11. Searching in mother nature for anti-cancer activity: anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells.

    Directory of Open Access Journals (Sweden)

    Elisa Robles-Escajeda

    Full Text Available Green barley extract (GB was investigated for possible anti-cancer activity by examining its anti-proliferative and pro-apoptotic properties on human leukemia/lymphoma cell lines. Our results indicate that GB exhibits selective anti-proliferative activity on a panel of leukemia/lymphoma cells in comparison to non-cancerous cells. Specifically, GB disrupted the cell-cycle progression within BJAB cells, as manifested by G2/M phase arrest and DNA fragmentation, and induced apoptosis, as evidenced by phosphatidylserine (PS translocation to the outer cytoplasmic membrane in two B-lineage leukemia/lymphoma cell lines. The pro-apoptotic effect of GB was found to be independent of mitochondrial depolarization, thus implicating extrinsic cell death pathways to exert its cytotoxicity. Indeed, GB elicited an increase of TNF-α production, caspase-8 and caspase-3 activation, and PARP-1 cleavage within pre-B acute lymphoblastic leukemia Nalm-6 cells. Moreover, caspase-8 and caspase-3 activation and PARP-1 cleavage were strongly inhibited/blocked by the addition of the specific caspase inhibitors Z-VAD-FMK and Ac-DEVD-CHO. Furthermore, intracellular signaling analyses determined that GB treatment enhanced constitutive activation of Lck and Src tyrosine kinases in Nalm-6 cells. Taken together, these findings indicate that GB induced preferential anti-proliferative and pro-apoptotic signals within B-lineage leukemia/lymphoma cells, as determined by the following biochemical hallmarks of apoptosis: PS externalization, enhanced release of TNF-α, caspase-8 and caspase-3 activation, PARP-1 cleavage and DNA fragmentation Our observations reveal that GB has potential as an anti-leukemia/lymphoma agent alone or in combination with standard cancer therapies and thus warrants further evaluation in vivo to support these findings.

  12. Anti-apoptotic signature in thymic squamous cell carcinomas - functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c

    Directory of Open Access Journals (Sweden)

    AlexanderMarx

    2013-12-01

    Full Text Available The molecular pathogenesis of thymomas and thymic carcinomas (TCs is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and thymic carcinomas, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCC with a custom made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

  13. Melatonin Protects Human Adipose-Derived Stem Cells from Oxidative Stress and Cell Death

    Science.gov (United States)

    Han, Xiaolian; Sivakumaran, Priyadharshini; Lim, Shiang Y.; Morrison, Wayne A.

    2016-01-01

    Background Adipose-derived stem cells (ASCs) have applications in regenerative medicine based on their therapeutic potential to repair and regenerate diseased and damaged tissue. They are commonly subject to oxidative stress during harvest and transplantation, which has detrimental effects on their subsequent viability. By functioning as an antioxidant against free radicals, melatonin may exert cytoprotective effects on ASCs. Methods We cultured human ASCs in the presence of varying dosages of hydrogen peroxide and/or melatonin for a period of 3 hours. Cell viability and apoptosis were determined with propidium iodide and Hoechst 33342 staining under fluorescence microscopy. Results Hydrogen peroxide (1–2.5 mM) treatment resulted in an incremental increase in cell death. 2 mM hydrogen peroxide was thereafter selected as the dose for co-treatment with melatonin. Melatonin alone had no adverse effects on ASCs. Co-treatment of ASCs with melatonin in the presence of hydrogen peroxide protected ASCs from cell death in a dose-dependent manner, and afforded maximal protection at 100 µM (n=4, one-way analysis of variance P<0.001). Melatonin co-treated ASCs displayed significantly fewer apoptotic cells, as demonstrated by condensed and fragmented nuclei under fluorescence microscopy. Conclusions Melatonin possesses cytoprotective properties against oxidative stress in human ASCs and might be a useful adjunct in fat grafting and cell-assisted lipotransfer. PMID:27218020

  14. Programmed cell death and its role in inflammation

    Institute of Scientific and Technical Information of China (English)

    Yong Yang; Ge-Ning Jiang; Peng Zhang; Jie Fan

    2015-01-01

    Cell death plays an important role in the regulation of inflammation and may be the result of inflammation. The maintenance of tissue homeostasis necessitates both the recognition and removal of invading microbial pathogens as well as the clearance of dying cells. In the past few decades, emerging knowledge on cell death and inflammation has enriched our molecular understanding of the signaling pathways that mediate various programs of cell death and multiple types of inflammatory responses. This review provides an overview of the major types of cell death related to inflammation. Modification of cell death pathways is likely to be a logical therapeutic target for inflammatory diseases.

  15. Programmed cell death in plants and caspase-like activities

    NARCIS (Netherlands)

    Gaussand, Gwénael Martial Daniel Jean-Marie

    2007-01-01

    The development of multicellular organisms involves an important balance between cell growth, cell division and cell death. In animals, programmed cell death (PCD) plays a key role by forming and deleting structures, controlling cell numbers and eliminating abnormal damaged cells. Caspases were foun

  16. Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis

    OpenAIRE

    Yamagishi, Reiko; Aihara, Makoto

    2014-01-01

    Purpose Astaxanthin is a type of carotenoid known to have strong antioxidant effects. The purpose of this study was to investigate whether astaxanthin confers a neuroprotective effect against glutamate stress, oxidative stress, and hypoxia-induced apoptotic or necrotic cell death in primary cultures of rat retinal ganglion cells (RGCs). Methods Purified rat RGCs were exposed to three kinds of stressors induced by 25 μM glutamate for 72 h, B27 medium without an antioxidant for 4 h, and a reduc...

  17. Freezing and post-thaw apoptotic behaviour of cells in the presence of palmitoyl nanogold particles

    Energy Technology Data Exchange (ETDEWEB)

    Thirumala, Sreedhar [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA (United States); Forman, Julianne M [Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA (United States); Monroe, W Todd [Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA (United States); Devireddy, Ram V [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA (United States)

    2007-05-16

    The aim of this study was to evaluate the freezing response of HeLa and Jurkat cells in the presence of commercially available nanoparticles, NPs (Palmitoyl Nanogold[reg], Nanoprobes). The cells were incubated with NPs for either 5 min or 3 h, and a calorimeter technique was then used to generate the volumetric shrinkage response during freezing at 20 deg. C min{sup -1}. Concomitantly, we also examined the effect of a commonly used cryoprotectant, dimethylsulfoxide, DMSO (10% v/v ratio) on the freezing response of HeLa and Jurkat cells. By fitting a model of water transport to the experimentally determined volumetric shrinkage data, the reference hydraulic conductivity, L{sub pg} ({mu}m/min-atm) and activation energy, E{sub Lp} (kcal mol{sup -1}) were obtained. For HeLa cells, the values of L{sub pg} ranged from 0.08 to 0.23 {mu}m/min-atm, while E{sub Lp} ranged from 10.9 to 37.4 kcal mol{sup -1}. For Jurkat cells these parameter values ranged from 0.05 to 0.16 {mu}m/min-atm and 9.5 to 35.9 kcal mol{sup -1}. A generic optimal cooling rate equation was then used to predict the optimal rates of freezing HeLa and Jurkat cells in the presence and absence of DMSO and NPs. The post-thaw viability and apoptotic response of HeLa and Jurkat cells was further investigated by cooling cells at three rates in the presence and absence of DMSO and NPs using a commercially available controlled rate freezer. Jurkat cells treated in this manner demonstrated an increase in their adhesive properties after 18 h incubation and adhered strongly to the bottom of the culture plate. This observation prevented further analysis of Jurkat apoptotic and necrotic post-thaw responses. There was no significant effect of NPs or DMSO alone on HeLa cell viability prior to freezing. The post-thaw results from HeLa cells show that the NPs increased the measured post-freeze apoptotic response when cooled at 1 deg. C min{sup -1}, suggesting a possible therapeutic use of NPs in cryodestructive procedures.

  18. Lactadherin inhibits secretory phospholipase A2 activity on pre-apoptotic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Steffen Nyegaard

    Full Text Available Secretory phospholipase A2 (sPLA2 is a critical component of insect and snake venoms and is secreted by mammalian leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and septic shock. Many sPLA2's do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2 plateaued at 50-60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and >70% of human secretory phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data indicate that lactadherin may decrease inflammation by inhibiting sPLA2.

  19. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    Science.gov (United States)

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  20. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation.

    Science.gov (United States)

    Haka, Abigail S; Barbosa-Lorenzi, Valéria C; Lee, Hyuek Jong; Falcone, Domenick J; Hudis, Clifford A; Dannenberg, Andrew J; Maxfield, Frederick R

    2016-06-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  1. Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold

    Energy Technology Data Exchange (ETDEWEB)

    Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar; Calvo-Sanjuán, Rubén; Gracia-Fleta, Lucía; Naval, Javier; Marzo, Isabel, E-mail: imarzo@unizar.es

    2012-02-01

    Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.

  2. Death-associated Protein Kinase Mediated Cell Death Modulated by Interaction with DANGER

    OpenAIRE

    Kang, Bingnan N.; Ahmad, Abdullah S.; Saleem, Sofiyan; Patterson, Randen L.; Hester, Lynda; Doré, Sylvain; Snyder, Solomon H.

    2010-01-01

    Death-associated protein kinase (DAPK) is a key player in multiple cell death signaling pathways. We report that DAPK is regulated by DANGER, a partial MAB-21-domain containing protein. DANGER binds directly to DAPK and inhibits DAPK catalytic activity. DANGER-deficient mouse embryonic fibroblasts and neurons exhibit greater DAPK activity and increased sensitivity to cell death stimuli than do wild-type control cells. In addition, DANGER-deficient mice manifest more severe brain damage after ...

  3. Sesquiterpene lactones from Inula britannica and their cytotoxic and apoptotic effects on human cancer cell lines.

    Science.gov (United States)

    Bai, Naisheng; Lai, Ching-Shu; He, Kan; Zhou, Zhu; Zhang, Li; Quan, Zheng; Zhu, Nanqun; Zheng, Qun Yi; Pan, Min-Hsiung; Ho, Chi-Tang

    2006-04-01

    Three new sesquiterpenes (1-3), together with four known sesquiterpene lactones, were isolated from the flowers of Inula britannica var. chinensis. Structures were established on the basis of high-field 1D and 2D NMR methods supported by HRMS. All sesquiterpene lactones were tested for cytotoxicity as well as apoptotic ratio in human COLO 205, HT 29, HL-60, and AGS cancer cells. Compounds 3 and 4, two alpha-methylene gamma-lactone-bearing sesquiterpenes, were modestly active in these assays. PMID:16643020

  4. Evaluation of anti-apoptotic activity of different dietary antioxidants in renal cell carcinoma against hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    Garg Neeraj K; Mangal Sharad; Sahu Tejram; Mehta Abhinav; Vyas Suresh P; Tyagi Rajeev K

    2011-01-01

    Objective: To evaluate the anti-apoptotic and radical scavenging activities of dietary phenolics, namely ascorbic acid, -tocopherol acetate, citric acid, salicylic acid, and estimate H2O2-induced apoptosis in renal cell carcinoma cells. Methods: The intracellular antioxidant potency of antioxidants was investigated. H2O2-induced apoptosis in RCC-26 was assayed with the following parameters: cell viability (% apoptosis), nucleosomal damage and DNA fragmentation, bcl-2 levels and flow cytometery analysis (ROS production evaluation). Results: The anticancer properties of antioxidants such as ascorbic acid, - tocopherol acetate, citric acid, salicylic acid with perdurable responses were investigated. It was observed that these antioxidants had protective effect (anti-apoptotic activity) against hydrogen peroxide (H2O2) in renal cell carcinoma (RCC-26) cell line. Conclusions: This study reveals and proves the anticancer properties. However, in cancer cell lines anti-apoptotic activity can indirectly reflect the cancer promoter activity through radicals scavenging, and significantly protect nucleus and bcl-2.

  5. Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice

    Directory of Open Access Journals (Sweden)

    José Belizário

    2015-01-01

    Full Text Available Under stress conditions, cells in living tissue die by apoptosis or necrosis depending on the activation of the key molecules within a dying cell that either transduce cell survival or death signals that actively destroy the sentenced cell. Multiple extracellular (pH, heat, oxidants, and detergents or intracellular (DNA damage and Ca2+ overload stress conditions trigger various types of the nuclear, endoplasmic reticulum (ER, cytoplasmatic, and mitochondrion-centered signaling events that allow cells to preserve the DNA integrity, protein folding, energetic, ionic and redox homeostasis, thus escaping from injury. Along the transition from reversible to irreversible injury, death signaling is highly heterogeneous and damaged cells may engage autophagy, apoptotic, or necrotic cell death programs. Studies on multiple double- and triple- knockout mice identified caspase-8, flip, and fadd genes as key regulators of embryonic lethality and inflammation. Caspase-8 has a critical role in pro- and antinecrotic signaling pathways leading to the activation of receptor interacting protein kinase 1 (RIPK1, RIPK3, and the mixed kinase domain-like (MLKL for a convergent execution pathway of necroptosis or regulated necrosis. Here we outline the recent discoveries into how the necrotic cell death execution pathway is engaged in many physiological and pathological outcome based on genetic analysis of knockout mice.

  6. ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Damianovich, Maya; Ziv, Ilan; Aloya, Tali; Grimberg, Hagit; Levin, Galit; Reshef, Ayelet; Bentolila, Alfonso; Cohen, Avi; Shirvan, Anat [NeuroSurvival Technologies (NST) Ltd., Petah Tikva (Israel); Heyman, Samuel N.; Shina, Ahuva [Mt.Scopus and the Hebrew University Medical School, Department of Medicine, Hadassah Hospital, Jerusalem (Israel); Rosen, Seymour [Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Pathology, Boston, MA (United States); Kidron, Dvora [Meir Hospital, Department of Pathology, Kfar-Saba (Israel)

    2006-03-15

    Acute renal tubular necrosis (ATN), a common cause of acute renal failure, is a dynamic, rapidly evolving clinical condition associated with apoptotic and necrotic tubular cell death. Its early identification is critical, but current detection methods relying upon clinical assessment, such as kidney biopsy and functional assays, are insufficient. We have developed a family of small molecule compounds, ApoSense, that is capable, upon systemic administration, of selectively targeting and accumulating within apoptotic/necrotic cells and is suitable for attachment of different markers for clinical imaging. The purpose of this study was to test the applicability of these molecules as a diagnostic imaging agent for the detection of renal tubular cell injury following renal ischemia. Using both fluorescent and radiolabeled derivatives of one of the ApoSense compounds, didansyl cystine, we evaluated cell death in three experimental, clinically relevant animal models of ATN: renal ischemia/reperfusion, radiocontrast-induced distal tubular necrosis, and cecal ligature and perforation-induced sepsis. ApoSense showed high sensitivity and specificity in targeting injured renal tubular epithelial cells in vivo in all three models used. Uptake of ApoSense in the ischemic kidney was higher than in the non-ischemic one, and the specificity of ApoSense targeting was demonstrated by its localization to regions of apoptotic/necrotic cell death, detected morphologically and by TUNEL staining. (orig.)

  7. ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis

    International Nuclear Information System (INIS)

    Acute renal tubular necrosis (ATN), a common cause of acute renal failure, is a dynamic, rapidly evolving clinical condition associated with apoptotic and necrotic tubular cell death. Its early identification is critical, but current detection methods relying upon clinical assessment, such as kidney biopsy and functional assays, are insufficient. We have developed a family of small molecule compounds, ApoSense, that is capable, upon systemic administration, of selectively targeting and accumulating within apoptotic/necrotic cells and is suitable for attachment of different markers for clinical imaging. The purpose of this study was to test the applicability of these molecules as a diagnostic imaging agent for the detection of renal tubular cell injury following renal ischemia. Using both fluorescent and radiolabeled derivatives of one of the ApoSense compounds, didansyl cystine, we evaluated cell death in three experimental, clinically relevant animal models of ATN: renal ischemia/reperfusion, radiocontrast-induced distal tubular necrosis, and cecal ligature and perforation-induced sepsis. ApoSense showed high sensitivity and specificity in targeting injured renal tubular epithelial cells in vivo in all three models used. Uptake of ApoSense in the ischemic kidney was higher than in the non-ischemic one, and the specificity of ApoSense targeting was demonstrated by its localization to regions of apoptotic/necrotic cell death, detected morphologically and by TUNEL staining. (orig.)

  8. Regulation of Neuronal Cell Death by c-Abl-Hippo/MST2 Signaling Pathway

    Science.gov (United States)

    Xiao, Lei; Bai, Yujie; Qu, Aiqin; Zheng, Zheng; Yuan, Zengqiang

    2012-01-01

    Background Mammalian Ste20-like kinases (MSTs) are the mammalian homologue of Drosophila hippo and play critical roles in regulation of cell death, organ size control, proliferation and tumorigenesis. MSTs exert pro-apoptotic function through cleavage, autophosphorylation and in turn phosphorylation of downstream targets, such as Histone H2B and FOXO (Forkhead box O). Previously we reported that protein kinase c-Abl mediates oxidative stress-induced neuronal cell death through phosphorylating MST1 at Y433, which is not conserved among mammalian MST2, Drosophila Hippo and C.elegans cst-1/2. Methodology/Principal Findings Using immunoblotting, in vitro kinase and cell death assay, we demonstrate that c-Abl kinase phosphorylates MST2 at an evolutionarily conserved site, Y81, within the kinase domain. We further show that the phosphorylation of MST2 by c-Abl leads to the disruption of the interaction with Raf-1 proteins and the enhancement of homodimerization of MST2 proteins. It thereby enhances the MST2 activation and induces neuronal cell death. Conclusions/Significance The identification of the c-Abl tyrosine kinase as a novel upstream activator of MST2 suggests that the conserved c-Abl-MST signaling cascade plays an important role in oxidative stress-induced neuronal cell death. PMID:22590567

  9. Programmed Cell Death in Unicellular Phytoplankton.

    Science.gov (United States)

    Bidle, Kay D

    2016-07-11

    Unicellular, planktonic, prokaryotic and eukaryotic photoautotrophs (phytoplankton) have an ancient evolutionary history on Earth during which time they have played key roles in the regulation of marine food webs, biogeochemical cycles, and Earth's climate. Since they represent the basis of aquatic ecosystems, the manner in which phytoplankton die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining nutrient flow. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of abiotic (nutrient, light, osmotic) and biotic (virus infection, allelopathy) environmental stresses, have an integral grip on cell fate, and have shaped the ecological success and evolutionary trajectory of diverse phytoplankton lineages. A combination of physiological, biochemical, and genetic techniques in model algal systems has demonstrated a conserved molecular and mechanistic framework of stress surveillance, signaling, and death activation pathways, involving collective and coordinated participation of organelles, redox enzymes, metabolites, and caspase-like proteases. This mechanistic understanding has provided insight into the integration of sensing and transduction of stress signals into cellular responses, and the mechanistic interfaces between PCD, cell stress and virus infection pathways. It has also provided insight into the evolution of PCD in unicellular photoautotrophs, the impact of PCD on the fate of natural phytoplankton assemblages and its role in aquatic biogeochemical cycles. PMID:27404255

  10. Silencer of death domains controls cell death through tumour necrosis factor-receptor 1 and caspase-10 in acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Adam Cisterne

    Full Text Available Resistance to apoptosis remains a significant problem in drug resistance and treatment failure in malignant disease. NO-aspirin is a novel drug that has efficacy against a number of solid tumours, and can inhibit Wnt signaling, and although we have shown Wnt signaling to be important for acute lymphoblastic leukemia (ALL cell proliferation and survival inhibition of Wnt signaling does not appear to be involved in the induction of ALL cell death. Treatment of B lineage ALL cell lines and patient ALL cells with NO-aspirin induced rapid apoptotic cell death mediated via the extrinsic death pathway. Apoptosis was dependent on caspase-10 in association with the formation of the death-inducing signaling complex (DISC incorporating pro-caspase-10 and tumor necrosis factor receptor 1 (TNF-R1. There was no measurable increase in TNF-R1 or TNF-α in response to NO-aspirin, suggesting that the process was ligand-independent. Consistent with this, expression of silencer of death domain (SODD was reduced following NO-aspirin exposure and lentiviral mediated shRNA knockdown of SODD suppressed expansion of transduced cells confirming the importance of SODD for ALL cell survival. Considering that SODD and caspase-10 are frequently over-expressed in ALL, interfering with these proteins may provide a new strategy for the treatment of this and potentially other cancers.

  11. Silencer of Death Domains Controls Cell Death through Tumour Necrosis Factor-Receptor 1 and Caspase-10 in Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Khan, Naveed I.; Welschinger, Robert; Basnett, Jordan; Fung, Carina; Rizos, Helen; Bradstock, Kenneth F.; Bendall, Linda J.

    2014-01-01

    Resistance to apoptosis remains a significant problem in drug resistance and treatment failure in malignant disease. NO-aspirin is a novel drug that has efficacy against a number of solid tumours, and can inhibit Wnt signaling, and although we have shown Wnt signaling to be important for acute lymphoblastic leukemia (ALL) cell proliferation and survival inhibition of Wnt signaling does not appear to be involved in the induction of ALL cell death. Treatment of B lineage ALL cell lines and patient ALL cells with NO-aspirin induced rapid apoptotic cell death mediated via the extrinsic death pathway. Apoptosis was dependent on caspase-10 in association with the formation of the death-inducing signaling complex (DISC) incorporating pro-caspase-10 and tumor necrosis factor receptor 1 (TNF-R1). There was no measurable increase in TNF-R1 or TNF-α in response to NO-aspirin, suggesting that the process was ligand-independent. Consistent with this, expression of silencer of death domain (SODD) was reduced following NO-aspirin exposure and lentiviral mediated shRNA knockdown of SODD suppressed expansion of transduced cells confirming the importance of SODD for ALL cell survival. Considering that SODD and caspase-10 are frequently over-expressed in ALL, interfering with these proteins may provide a new strategy for the treatment of this and potentially other cancers. PMID:25061812

  12. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells

    OpenAIRE

    Baeza-Squiban Armelle; Fleury Jocelyne; Martens Johan A; Andreau Karine; Borot Marie-Caroline; Ferecatu Ioana; Thomassen Leen CJ; Hussain Salik; Marano Francelyne; Boland Sonja

    2010-01-01

    Abstract Background Increasing environmental and occupational exposures to nanoparticles (NPs) warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB) and titanium dioxide (TiO2) NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells) and to investigate the implicated molecular pathways. Results Detailed time course studies revealed that both CB (13 nm) and...

  13. Markov mean properties for cell death-related protein classification.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Gestal, Marcos; González-Díaz, Humberto; Dorado, Julián; Pazos, Alejandro; Munteanu, Cristian R

    2014-05-21

    The cell death (CD) is a dynamic biological function involved in physiological and pathological processes. Due to the complexity of CD, there is a demand for fast theoretical methods that can help to find new CD molecular targets. The current work presents the first classification model to predict CD-related proteins based on Markov Mean Properties. These protein descriptors have been calculated with the MInD-Prot tool using the topological information of the amino acid contact networks of the 2423 protein chains, five atom physicochemical properties and the protein 3D regions. The Machine Learning algorithms from Weka were used to find the best classification model for CD-related protein chains using all 20 attributes. The most accurate algorithm to solve this problem was K*. After several feature subset methods, the best model found is based on only 11 variables and is characterized by the Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.992 and the true positive rate (TP Rate) of 88.2% (validation set). 7409 protein chains labeled with "unknown function" in the PDB Databank were analyzed with the best model in order to predict the CD-related biological activity. Thus, several proteins have been predicted to have CD-related function in Homo sapiens: 3DRX-involved in virus-host interaction biological process, protein homooligomerization; 4DWF-involved in cell differentiation, chromatin modification, DNA damage response, protein stabilization; 1IUR-involved in ATP binding, chaperone binding; 1J7D-involved in DNA double-strand break processing, histone ubiquitination, nucleotide-binding oligomerization; 1UTU-linked with DNA repair, regulation of transcription; 3EEC-participating to the cellular membrane organization, egress of virus within host cell, class mediator resulting in cell cycle arrest, negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle and apoptotic process. Other proteins from bacteria predicted as

  14. Colorectal Cancer Stem Cells and Cell Death

    International Nuclear Information System (INIS)

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool

  15. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  16. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  17. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    International Nuclear Information System (INIS)

    Research highlights: → THAP5 is a DNA-binding protein and a transcriptional repressor. → THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. → THAP5 induction correlates with the degree of apoptosis in melanoma cell population. → THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  18. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient

    Science.gov (United States)

    Sun, E.; Gao, Y.; Chen, J.; Roberts, A. I.; Wang, X.; Chen, Z.; Shi, Y.

    2004-01-01

    Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.

  19. The nuclear receptor Nr4a1 mediates anti-inflammatory effects of apoptotic cells.

    Science.gov (United States)

    Ipseiz, Natacha; Uderhardt, Stefan; Scholtysek, Carina; Steffen, Martin; Schabbauer, Gernot; Bozec, Aline; Schett, Georg; Krönke, Gerhard

    2014-05-15

    Uptake of apoptotic cells (ACs) by macrophages ensures the nonimmunogenic clearance of dying cells, as well as the maintenance of self-tolerance to AC-derived autoantigens. Upon ingestion, ACs exert an inhibitory influence on the inflammatory signaling within the phagocyte. However, the molecular signals that mediate these immune-modulatory properties of ACs are incompletely understood. In this article, we show that the phagocytosis of apoptotic thymocytes was enhanced in tissue-resident macrophages where this process resulted in the inhibition of NF-κB signaling and repression of inflammatory cytokines, such as IL-12. In parallel, ACs induced a robust expression of a panel of immediate early genes, which included the Nr4a subfamily of nuclear receptors. Notably, deletion of Nr4a1 interfered with the anti-inflammatory effects of ACs in macrophages and restored both NF-κB signaling and IL-12 expression. Accordingly, Nr4a1 mediated the anti-inflammatory properties of ACs in vivo and was required for maintenance of self-tolerance in the murine model of pristane-induced lupus. Thus, our data point toward a key role for Nr4a1 as regulator of the immune response to ACs and of the maintenance of tolerance to "dying self." PMID:24740500

  20. Gene Expression Profiling in Apoptotic K562 Cells Treated by Homoharringtonine

    Institute of Scientific and Technical Information of China (English)

    Wei JIN; Jiong WU; Zhigang ZHUANG; Junjie Li; Fei FEI; Genhong DI; Ying CHEN; Ming YAO; Zhimin SHAO

    2007-01-01

    Gene chip technology was used to determine the gene expression profiles in apoptotic K562 cells induced by homoharringtonine. The expression of forty-four mRNAs was found to be changed significantly were identified after screening with a gene chip capable of detecting 14,218 different human mRNA species simultaneously. Of these genes, 17 were up-regulated and 27 were down-regulated.Most of them were found to be related to apoptosis, oncogenes, or tumor suppression. Several genes with altered gene expression, such as human transforming growth factor-beta inducible early protein gene (TIEG), vitamin D3 upregulated protein 1 gene (VDUP1), RNA binding motif protein 4 gene (RBM4) and v-myc myelocytomatosis viral oncogene homolog (C-MYC), were confirmed by Northern blot analysis.According to the dynamic gene expression pattern in these apoptotic cells, the activated transforming growth factor-β and tumor necrosis factor signaling pathways play an important role in homoharringtonine-induced apoptosis. TIEG was significantly altered after apoptosis induction, it should be critical for apoptosis signal transmission.

  1. Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells.

    LENUS (Irish Health Repository)

    Greene, C M

    2010-05-01

    alpha(1)-antitrypsin (alpha(1)-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of alpha(1)-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z alpha(1)-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved. Control, M variant alpha(1)-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-kappaB activation and induced expression of a selection of pro- and anti-apoptotic genes. Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-kappaB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-kappaB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies. The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

  2. Genetic regulation of programmed cell death in Drosophila

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Programmed cell death plays an important role in maintaining homeostasis during animal development, and has been conserved in animals as different as nematodes and humans. Recent studies of Drosophila have provided valuable information toward our understanding of genetic regulation of death. Different signals trigger the novel death regulators rpr, hid, and grim, that utilize the evolutionarily conserved iap and ark genes to modulate caspase function. Subsequent removal of dying cells also appears to be accomplished by conserved mechanisms. The similarity between Drosophila and human in cell death signaling pathways illustrate the promise of fruit flies as a model system to elucidate the mechanisms underlying regulation of programmed cell death.

  3. Antifungal Mechanism of Action of Lactoferrin: Identification of H+-ATPase (P3A-Type) as a New Apoptotic-Cell Membrane Receptor.

    Science.gov (United States)

    Andrés, María T; Acosta-Zaldívar, Maikel; Fierro, José F

    2016-07-01

    Human lactoferrin (hLf) is a protein of the innate immune system which induces an apoptotic-like process in yeast. Determination of the susceptibility to lactoferrin of several yeast species under different metabolic conditions, respiratory activity, cytoplasmic ATP levels, and external medium acidification mediated by glucose assays suggested plasma membrane Pma1p (P3A-type ATPase) as the hLf molecular target. The inhibition of plasma membrane ATPase activity by hLf and the identification of Pma1p as the hLf-binding membrane protein confirmed the previous physiological evidence. Consistent with this, cytoplasmic ATP levels progressively increased in hLf-treated Candida albicans cells. However, oligomycin, a specific inhibitor of the mitochondrial F-type ATPase proton pump (mtATPase), abrogated the antifungal activity of hLf, indicating a crucial role for mtATPase in the apoptotic process. We suggest that lactoferrin targeted plasma membrane Pma1p H(+)-ATPase, perturbing the cytoplasmic ion homeostasis (i.e., cytoplasmic H(+) accumulation and subsequent K(+) efflux) and inducing a lethal mitochondrial dysfunction. This initial event involved a normal mitochondrial ATP synthase activity responsible for both the ATP increment and subsequent hypothetical mitochondrial proton flooding process. We conclude that human lactoferrin inhibited Pma1p H(+)-ATPase, inducing an apoptotic-like process in metabolically active yeast. Involvement of mitochondrial H(+)-ATPase (nonreverted) was essential for the progress of this programmed cell death in which the ionic homeostasis perturbation seems to precede classical nonionic apoptotic events. PMID:27139463

  4. Protein C Inhibitor (PCI) Binds to Phosphatidylserine Exposing Cells with Implications in the Phagocytosis of Apoptotic Cells and Activated Platelets

    OpenAIRE

    Daniela Rieger; Alice Assinger; Katrin Einfinger; Barbora Sokolikova; Margarethe Geiger

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marke...

  5. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145

  6. Apoptotic and anti-angiogenic effects of Salvia triloba extract in prostate cancer cell lines.

    Science.gov (United States)

    Atmaca, Harika; Bozkurt, Emir

    2016-03-01

    Plants, due to their remarkable composition, are considered as natural resources of bioactive compounds with specific biological activities. Salvia genus (Lamiaceae) has been used around the world in complementary medicine since ancient times. We investigated the cytotoxic, apoptotic and anti-angiogenic effects of methanolic Salvia triloba extract (STE) in prostate cancer cells. Cell viability was evaluated by XTT; apoptosis was investigated by DNA fragmentation and caspase 3/7 activity assays. Changes in the angiogenic cytokine levels were investigated by human angiogenesis antibody array. Scratch assay was used to determine the cell motility. STE induced cytotoxicity and apoptosis in a concentration-dependent manner in both cancer cells; however, it was not cytotoxic to normal cells. Cell motility was reduced in PC-3, DU-145 and HUVEC cells by STE treatment. ANG, ENA-78, bFGF, EGF, IGF-1 and VEGF-D levels were significantly decreased by -2.9, -3.7, -1.7, -1.7, -2.0 and -1.8 fold in STE-treated DU-145 cells, however, ANG, IL-8, LEP, RANTES, TIMP-1, TIMP-2 and VEGF levels were significantly decreased by -5.1, -2.0, -2.4, -3.1, -1.5, -2.0 and -2.5 fold in PC-3 cells. These data suggest that STE might be a promising candidate for anti-tumor and anti-angiogenic treatment of prostate cancer. PMID:26459311

  7. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    International Nuclear Information System (INIS)

    Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the

  8. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine

    Directory of Open Access Journals (Sweden)

    Jonna Nykky

    2010-06-01

    Full Text Available Jonna Nykky, Jenni E Tuusa, Sanna Kirjavainen, Matti Vuento, Leona GilbertNanoscience Center and Department of Biological and Environmental Science, University of Jyväskylä, FinlandAbstract: Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK cells and canine fibroma cells (A72 displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments.Keywords: canine parvovirus, apoptosis, necrosis, nanoparticle, virotherapy

  9. THAP5 is a DNA binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Science.gov (United States)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-01

    THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death. PMID:21110952

  10. Plant programmed cell death, ethylene and flower senescence

    NARCIS (Netherlands)

    Woltering, E.J.; Jong, de A.; Hoeberichts, F.A.; Iakimova, E.T.; Kapchina, V.

    2005-01-01

    Programmed cell death (PCD) applies to cell death that is part of the normal life of multicellular organisms. PCD is found throughout the animal and plant kingdoms; it is an active process in which a cell suicide pathway is activated resulting in controlled disassembly of the cell. Most cases of PCD

  11. HMM Search for Apoptotic Domains (MOLECULAR BIOLOGY AND INFORMATION-Biological Information Science)

    OpenAIRE

    Hattori, Masahiro; Kanehisa, Minoru

    2000-01-01

    For the purpose of analyzing apoptotic molecular interactions, we have developed a knowledge base, which consists of apoptotic molecular interactions, together with the WWW interface for it. This database and the user interface enabled us to find out entries containing various information about cell death. This information tells us that the apoptotic molecular interactions are likely to be controlled under a series of specific conserved domains. Thus, the viewpoint of domain seems to be more ...

  12. Co-culture of apoptotic breast cancer cells with immature dendritic cells: a novel approach for DC-based vaccination in breast cancer

    International Nuclear Information System (INIS)

    A dendritic cell (DC)-based vaccine strategy could reduce the risk of recurrence and improve the survival of breast cancer patients. However, while therapy-induced apoptosis of hepatocellular and colorectal carcinoma cells can enhance maturation and antigen presentation of DCs, whether this effect occurs in breast cancer is currently unknown. In the present study, we investigated the effect of doxorubicin (ADM)-induced apoptotic MCF-7 breast cancer cells on the activation of DCs. ADM-induced apoptotic MCF-7 cells could effectively induce immature DC (iDC) maturation. The mean fluorescence intensity (MFI) of DC maturity marker CD83 was 23.3 in the ADM-induced apoptotic MCF-7 cell group compared with 8.5 in the MCF-7 cell group. The MFI of DC co-stimulatory marker CD86 and HLA-DR were also increased after iDCs were treated with ADM-induced apoptotic MCF-7 cells. Furthermore, the prol