WorldWideScience

Sample records for apoptosis

  1. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  2. Calpains, mitochondria, and apoptosis.

    Science.gov (United States)

    Smith, Matthew A; Schnellmann, Rick G

    2012-10-01

    Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca(2+)-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca(2+) overload causes mitochondrial calpain 1 cleavage of the Na(+)/Ca(2+) exchanger leading to mitochondrial Ca(2+) accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca(2+) overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system.

  3. Inhibitor of apoptosis proteins and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yunbo Wei; Tingjun Fan; Miaomiao Yu

    2008-01-01

    Apoptosis is a physiological cell death process that plays a critical role in development, homeostasis, and immune defense of multicellular animals. Inhibitor of apoptosis proteins (IAPs) constitute a family of proteins that possess between one and three baculovirus IAP repeats. Some of them also have a really interesting new gene finger domain, and can prevent cell death by binding and inhibiting active caspases, but are regulated by IAP antagonists. Some evidence also indicates that IAP can modulate the cell cycle and signal transduction. The three main factors, IAPs, IAP antagonists, and caspases, are involved in regulating the progress of apoptosis in many species. Many studies and assumptions have been focused on the anfractuous interactions between these three main factors to explore their real functional model in order to develop potential anticancer drugs.In this review, we describe the classification, molecular structures, and properties of IAPs and discuss the mechanisms of apoptosis. We also discuss the promising significance of clinical applications of IAPs in the diagnosis and treatment of malignancy.

  4. Caspases: An apoptosis mediator

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Palai

    2015-03-01

    Full Text Available The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy - dependent biochemical mechanisms. Apoptosis is a widely conserved phenomenon helping many processes, including normal cell turnover, proper development and functioning of the immune system, hormone dependent atrophy etc. Inappropriate apoptosis (either low level or high level leads to many developmental abnormalities like, neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. To use cells for therapeutic purposes through generating cell lines, it is critical to study the cell cycle machinery and signalling pathways that controls cell death and apoptosis. Apoptotic pathways provide a fundamental protective mechanism that decreases cellular sensitivity to damaging events and allow proper developmental process in multi-cellular organisms. Major mediator of apoptosis is a family of proteins known as caspases. There are mainly fourteen types of caspases but out of them only ten caspasese have got essential role in controlling the process of apoptosis. These ten caspases have been categorized into either initiator caspases (caspase 2, 8, 9, 10 or executioner caspases (caspase 3, 6, 7. Although various types of caspases have been identified so far, the exact mechanisms of action of these groups of proteins is still to be fully understood. The aim of this review is to provide a detail overview of role of different caspases in regulating the process of apoptosis.

  5. DNA fragmentation in apoptosis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cleavage of chromosomal DNA into oligonucleosomal size fragments is an integral part of apoptosis. Elegant biochemical work identified the DNA fragmentation factor (DFF) as a major apoptotic endonuclease for DNA fragmentation in vitro. Genetic studies in mice support the importance of DFF in DNA fragmentation and possibly in apoptosis in vivo. Recent work also suggests the existence of additional endonucleases for DNA degradation. Understanding the roles of individual endonucleases in apoptosis, and how they might coordinate to degrade DNA in different tissues during normal development and homeostasis, as well as in various diseased states, will be a major research focus in the near future.

  6. Apoptosis in Pneumovirus Infection

    Directory of Open Access Journals (Sweden)

    Reinout A. Bem

    2013-01-01

    Full Text Available Pneumovirus infections cause a wide spectrum of respiratory disease in humans and animals. The airway epithelium is the major site of pneumovirus replication. Apoptosis or regulated cell death, may contribute to the host anti-viral response by limiting viral replication. However, apoptosis of lung epithelial cells may also exacerbate lung injury, depending on the extent, the timing and specific location in the lungs. Differential apoptotic responses of epithelial cells versus innate immune cells (e.g., neutrophils, macrophages during pneumovirus infection can further contribute to the complex and delicate balance between host defense and disease pathogenesis. The purpose of this manuscript is to give an overview of the role of apoptosis in pneumovirus infection. We will examine clinical and experimental data concerning the various pro-apoptotic stimuli and the roles of apoptotic epithelial and innate immune cells during pneumovirus disease. Finally, we will discuss potential therapeutic interventions targeting apoptosis in the lungs.

  7. LYMPHOCYTE APOPTOSIS IN PSORIASIS

    Directory of Open Access Journals (Sweden)

    О. M. Kapuler

    2006-01-01

    Full Text Available Abstract. Forty-two patients with progressive vulgar psoriasis (PASI = 19.7 ± 1.5 and 40 healthy volunteers were under investigation. Psoriatic patients were characterized by increased number of CD4+ CD95+ peripheral blood T lymphocytes, which correlates with clinical psoriatic score, and by increased levels of soluble Fas (sFas in serum, as compared to controls (resp., 1868.1 ± 186.8 pg/ml vs. 1281.4 ± 142.5 pg/ml, PLSD = 0.019. The levels of spontaneous lymphocyte apoptosis and anti-Fas (Mab-induced apoptosis in psoriatic patients did not differ from the controls. However, apoptosis induced by “oxidative stress” (50 M Н202, 4 hrs was depressed in the patients. Moreover, a simultaneous assessment of cell cycle structure (metachromatic staining with Acridine Orange, apoptosis and Fas receptor expression (AnnV-FITC/antiFas mAbs-PE staining following a short-term mitogenic stimulation (PHA-P, 5 µg/ml, 24 hrs were performed. We found no marked differences in mitogenic reactivity, activation-induced apoptosis, and activation-induced Fas receptor expression when studying lymphocytes from healthy donors and psoriatic patients. However, PHA-activated lymphocytes from psoriatic patients displayed a significantly decreased ratio of AnnV+CD95+ to the total AnnV+ subpopulation, thus suggesting a decreased role of Fas-dependent mechanisms of apoptosis during the cell activation. The data obtained confirm a view, that an abnormal lymphocyte “apoptotic reactivity”, which plays a crucial role in the mechanisms of autoimmunity, may also of importance in the pathogenesis of psoriasis.

  8. Apoptosis - Methods and Protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2010-03-01

    Full Text Available Apoptosis - Methods and ProtocolsSecond edition, 2009; Peter Erhardt and Ambrus Toth (Eds; Springer Protocols - Methods in molecular biology, vol. 559; Humana press, Totowa, New Jersey (USA; Pages: 400; €88.35; ISBN: 978-1-60327-016-8The editors rightly begin the preface telling us that: “The ability to detect and quantify apoptosis, to understand its biochemistry and to identify its regulatory genes and proteins is crucial to biomedical research”. Nowadays this is a grounding concept of biology and medicine. What is particularly remarkable...

  9. The biochemistry of apoptosis.

    Science.gov (United States)

    Hengartner, M O

    2000-10-12

    Apoptosis--the regulated destruction of a cell--is a complicated process. The decision to die cannot be taken lightly, and the activity of many genes influence a cell's likelihood of activating its self-destruction programme. Once the decision is taken, proper execution of the apoptotic programme requires the coordinated activation and execution of multiple subprogrammes. Here I review the basic components of the death machinery, describe how they interact to regulate apoptosis in a coordinated manner, and discuss the main pathways that are used to activate cell death.

  10. Apoptosis and inflammation

    Directory of Open Access Journals (Sweden)

    C. Haanen

    1995-01-01

    Full Text Available During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972 introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.

  11. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2014-07-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  12. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  13. Apoptosis and survival

    Directory of Open Access Journals (Sweden)

    Manjul Tiwari

    2011-01-01

    Full Text Available The term apoptosis first appeared in the biomedical literature in 1972, to delineate a structurally distinctive mode of cell death responsible for cell loss within living tissues. The cardinal morphological features are cell shrinkage, accompanied by transient but violent bubbling and blebbing from the surface, and culminating in separation of the cell into a cluster of membrane-bounded bodies. Changes in several cell surface molecules also ensure that, in tissues, apoptotic cells are immediately recognised and phagocytosed by their neighbours. However, it is important to note that apoptosis is only one form of cell death and the particular death pathway that is the most important determinant for cancer therapy is not necessarily that which has the fastest kinetics, as is the bias in many laboratories, but rather that which displays the most sensitive dose-response relationship.

  14. Apoptosis: una muerte silenciosa

    Directory of Open Access Journals (Sweden)

    Isis Casadelvalle Pérez

    2006-01-01

    Full Text Available La apoptosis o muerte celular programada es un tipo de muerte presente en todas las células eucarióticas. Es un proceso ordenado y esencial del desarrollo normal y de mantenimiento de la homeostasis de un organismo. En el presente trabajo se resumen las principales características fisiológicas, bioquímicas y moleculares de la muerte por apoptosis, evento que ocurre de forma apagada o silenciosa, o sea, sin daño celular aparente diferenciándose claramente del proceso de necrosis celular. En ese proceso se destaca la mitocondria, como organelo celular donde mediado por la activación de las caspasas se inicia el paso hacia la muerte celular programada. En el momento actual, la apoptosis ha cobrado un verdadero valor para la mejor comprensión de los procesos biológicos normales en los que este evento está involucrado y que con anterioridad no era tomado en cuenta. En este sentido, se comentan las principales técnicas de detección de muerte celular programada y se aclara que la elección de algunas de ellas depende del modelo de estudio. Tambi én se dan a conocer algunas de las patologías generales en las que este proceso representa un papel determinante y se discute acerca de cómo algunas alteraciones en los mecanismos de regulación de la apoptosis inducen la aparici ón de varias enfermedades, incluyendo aquellos desórdenes en los que ocurre acumulación celular (cáncer, alteración cardiaca, neurodegeneración y SIDA. El estudio y caracterización de este complejo mecanismo ha cambiado profundamente la comprensión de numerosas patologías en los organismos eucariotas.

  15. Sphingolipids and mitochondrial apoptosis.

    Science.gov (United States)

    Patwardhan, Gauri A; Beverly, Levi J; Siskind, Leah J

    2016-04-01

    The sphingolipid family of lipids modulate several cellular processes, including proliferation, cell cycle regulation, inflammatory signaling pathways, and cell death. Several members of the sphingolipid pathway have opposing functions and thus imbalances in sphingolipid metabolism result in deregulated cellular processes, which cause or contribute to diseases and disorders in humans. A key cellular process regulated by sphingolipids is apoptosis, or programmed cell death. Sphingolipids play an important role in both extrinsic and intrinsic apoptotic pathways depending on the stimuli, cell type and cellular response to the stress. During mitochondrial-mediated apoptosis, multiple pathways converge on mitochondria and induce mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of intermembrane space proteins such as cytochrome c and Apaf1 into the cytosol where they activate the caspases and DNases that execute cell death. The precise molecular components of the pore(s) responsible for MOMP are unknown, but sphingolipids are thought to play a role. Here, we review evidence for a role of sphingolipids in the induction of mitochondrial-mediated apoptosis with a focus on potential underlying molecular mechanisms by which altered sphingolipid metabolism indirectly or directly induce MOMP. Data available on these mechanisms is reviewed, and the focus and limitations of previous and current studies are discussed to present important unanswered questions and potential future directions.

  16. Role of Calpain in Apoptosis

    Directory of Open Access Journals (Sweden)

    Hamid Reza Momeni

    2011-01-01

    Full Text Available Apoptosis, a form of programmed cell death that occurs under physiologicalas well as pathological conditions, is characterized by morphological and biochemicalfeatures. While the importance of caspases in apoptosis is established,several noncaspase proteases (Ca2+-dependent proteases such as calpain mayplay a role in the execution of apoptosis. The calpain family consists of twomajor isoforms, calpain I and calpain II which require μM and mM Ca2+ concentrationsto initiate their activity. An increase in intracellular Ca2+ level isthought to trigger a cascade of biochemical processes including calpain activation.Once activated, calpains degrade membrane, cytoplasmic and nuclear substrates,leading to the breakdown of cellular architecture and finally apoptosis.The activation of calpain has been implicated in neuronal apoptosis followingspinal cord injuries and neurodegenerative diseases. This review focuses oncalpain with an emphasis on its key role in the proteolysis of cellular proteinsubstrates following apoptosis.

  17. Apoptosis and DNA Methylation

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Huan X.; Hackett, James A. [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Nestor, Colm [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Dunican, Donncha S.; Madej, Monika; Reddington, James P. [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Pennings, Sari [Queen' s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ (United Kingdom); Harrison, David J. [Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Meehan, Richard R., E-mail: Richard.Meehan@hgu.mrc.ac.uk [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (United Kingdom)

    2011-04-01

    Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  18. Apoptosis and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Richard R. Meehan

    2011-04-01

    Full Text Available Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  19. Apoptosis Resistance in Endometriosis

    Directory of Open Access Journals (Sweden)

    Liselotte Mettler

    2011-08-01

    Full Text Available Introduction: In a cytological analysis of endometriotic lesions neither granulocytes nor cytotoxic T-cells appear in an appreciable number. Based on this observation we aimed to know, whether programmed cell death plays an essential role in the destruction of dystopic endometrium. Disturbances of the physiological mechanisms of apoptosis, a persistence of endometrial tissue could explain the disease. Another aspect of this consideration is the proliferation competence of the dystopic mucous membrane. Methods: Endometriotic lesions of 15 patients were examined through a combined measurement of apoptosis activity with the TUNEL technique (terminal deoxyribosyltransferase mediated dUTP Nick End Labeling and the proliferation activity (with the help of the Ki-67-Antigens using the monoclonal antibody Ki-S5. Results: Twelve out of 15 women studied showed a positive apoptotic activity of 3-47% with a proliferation activity of 2-25% of epithelial cells. Therefore we concluded that the persistence of dystopic endometrium requires proliferative epithelial cells from middle to lower endometrial layers. Conclusion: A dystopia misalignment of the epithelia of the upper layers of the functionalism can be rapidly eliminated by apoptotic procedures.

  20. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  1. Apoptosis : Target of cancer therapy

    NARCIS (Netherlands)

    Ferreira, CG; Epping, M; Kruyt, FAE; Giaccone, G

    2002-01-01

    Recent knowledge on apoptosis has made it possible to devise novel approaches, which exploit this process to treat cancer. In this review, we discuss in detail approaches to induce tumor cell apoptosis, their mechanism of action, stage of development, and possible drawbacks. Finally, the obstacles y

  2. Apoptosis Evaluation by Electrochemical Techniques.

    Science.gov (United States)

    Yin, Jian; Miao, Peng

    2016-03-01

    Apoptosis has close relevance to pathology, pharmacology, and toxicology. Accurate and convenient detection of apoptosis would be beneficial for biological study, clinical diagnosis, and drug development. Based on distinct features of apoptotic cells, a diversity of analytical techniques have been exploited for sensitive analysis of apoptosis, such as surface plasmon resonance, electrochemical methods, flow cytometry, and some imaging assays. Among them, the features of simplicity, easy operation, low cost, and high sensitivity make electrochemical techniques powerful tools to investigate electron-transfer processes of in vitro biological systems. In this contribution, a general overview of current knowledge on various technical approaches for apoptosis evaluation is provided. Furthermore, recently developed electrochemical biosensors for detecting apoptotic cells and their advantages over traditional methods are summarized. One of the main considerations focuses on designing the recognition elements based on various biochemical events during apoptosis.

  3. Caspase Family Proteases and Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ting-Jun FAN; Li-Hui HAN; Ri-Shan CONG; Jin LIANG

    2005-01-01

    Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin-1β-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regulated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain,and Ca2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.

  4. Apoptosis in Primary Hyperparathyroidism.

    Science.gov (United States)

    Segiet, Oliwia Anna; Mielańczyk, Łukasz; Piecuch, Adam; Michalski, Marek; Tyczyński, Szczepan; Brzozowa-Zasada, Marlena; Deska, Mariusz; Wojnicz, Romuald

    2017-03-31

    Primary hyperparathyroidism (PHPT) is defined by inappropriate elevation of parathormone, caused by parathyroid hyperplasia, also known as multi-gland disease (MGD), parathyroid adenoma (PA), or parathyroid carcinoma (PC). Although several studies have already been conducted, there is a lack of a definite diagnostic marker, which could unambiguously distinguish MGD from PA or PC. The accurate and prompt diagnosis has the key meaning for effective treatment and follow-up. This review paper presents the role of apoptosis in PHPT. The comparison of the expression of Fas, TRAIL, BCL-2 family members, p53 in MGD, PA, and PC, among others, was described. The expression of described factors varies among proliferative lesions of parathyroid gland; therefore, these could serve as additional markers to assist in the diagnosis.

  5. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    , and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...... by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling....

  6. Protooncogenes as mediators of apoptosis.

    Science.gov (United States)

    Teng, C S

    2000-01-01

    Apoptosis has been well established as a vital biological phenomenon that is important in the maintenance of cellular homeostasis. Three major protooncogene families and their encoded proteins function as mediators of apoptosis in various cell types and are the subject of this chapter. Protooncogenic proteins such as c-Myc/Max, c-Fos/c-Jun, and Bcl-2/Bax utilize a synergetic effect to enhance their roles in the pro- or antiapoptotic action. These family members activate and repress the expression of their target genes, control cell cycle progression, and execute programmed cell death. Repression or overproduction of these protooncogenic proteins induces apoptosis, which may vary as a result of either cell type specificity or the nature of the apoptotic stimuli. The proapoptotic and antiapoptotic proteins exert their effects in the membrane of cellular organelles. Here they generate cell-type-specific signals that activate the caspase family of proteases and their regulators for the execution of apoptosis.

  7. Invertebrate Iridovirus Modulation of Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Trevor Williams; Nllesh S. Chitnis; Sh(a)n L. Bilimoria

    2009-01-01

    Programmed cell death (apoptosis) is a key host response to virus infection. Viruses that can modulate host apoptotic responses are likely to gain important opportunities for transmission. Here we review recent studies that demonstrate that particles of Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae, genus Iridovirus), or an IIV-6 virion protein extract, are capable of inducing apoptosis in lepidopteran and coleopteran cells, at concentrations 1000-fold lower than that required to shut-off host macromolecular synthesis. Induction of apoptosis depends on endocytosis of one or more heat-sensitive virion component(s). Studies with a JNK inh ibitor(SP600125) indicated that the JNK signaling pathway is significantly involved in apoptosis in IIV-6 infections of Choristoneurafumiferana ceils. The genome of IIV-6 codes for an inhibitor of apoptosis iap gene (193R) that encodes a protein of 208 aa with 15% identity and 28% similarity in its amino acid sequence to IAP-3 from Cydia pomonella ganulovirus (CpGV). Transcription of IIV-6 iap did not require prior DNA or protein synthesis, indicating that it is an immediate-early class gene. Transient expression and gene knockdown studies have confirmed the functional nature of the IIV-6 iap gene. We present a tentative model for IIV-6 induction and inhibition of apoptosis in insect cells and discuss the potential applications of these findings in insect pest control.

  8. Cardiomyocytic apoptosis and heart failure

    Institute of Scientific and Technical Information of China (English)

    Quanzhou Feng

    2008-01-01

    Heart failure is a major disease seriously threatening human health.Once left ventricular dysfunction develops,cardiac function usually deteriorates and progresses to congestive heart failure in several months or years even if no factors which accelerate the deterioration repeatedly exist.Mechanism through which cardiac function continually deteriorates is still unclear.Cardiomyocytic apoptosis can occur in acute stage of ischemic heart diseases and the compensated stage of cardiac dysfunction.In this review,we summarize recent advances in understanding the role of cardiomyocytic apoptosis in heart failure.

  9. Apoptosis in irradiated murine tumors.

    Science.gov (United States)

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E

    1991-09-01

    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors.

  10. Apoptosis and congestive heart failure.

    Science.gov (United States)

    Feuerstein, G; Ruffolo, R R; Yue, T L

    1997-10-01

    Congestive heart failure (CHF) is the final clinical manifestation of a variety of cardiac (myopathies), coronary (atherosclerosis), and systemic diseases (diabetes, hypertension). Regardless of the origin of the cardiac insult, left ventricular dysfunction resulting in decreased cardiac output elicits a series of adaptational processes that attempt to compensate for some of the decrement in myocardial function. One of the key manifestations of these compensatory processes is cardiac hypertrophy, which is characterized by a marked increase in myocyte size and an increase in contractile proteins. The benefits resulting from these compensatory adaptational mechanisms, however, are only transient, and within a period of months to years, the changes induced in the myocardium fail to sustain cardiac output at a level that is sufficient to meet the demands of the body; subsequently, physical performance is impaired. Typically, progressive dilation and thinning of the left ventricle occur along with progression of CHF. The mechanisms responsible for the thinning of ventricular tissue and loss of left ventricular mass are poorly understood; traditionally, such loss has been attributed to tissue necrosis based on the morphologic observation of dead cardiac myocytes. Very recently, there have been data suggesting that apoptosis, a form of programmed cell death (PCD), occurs in the heart and may be responsible, at least in part, for the progression of CHF and the chronic loss of left ventricular function and mass. Evidence for a role of apoptosis/PCD in the progression of heart failure has been obtained from a variety of observations, including in vitro studies of cardiac myocytes in culture, experimental animal models of cardiac injury, and cardiac tissue obtained from patients with CHF. Thus, apoptosis/PCD may be a critical mechanism involved in the progressive loss of cardiac myocytes, which ultimately results in end-stage heart failure. In this brief review, the evidence

  11. Molecular signal transduction in vascular cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  12. Apoptosis in cancer: from pathogenesis to treatment

    Directory of Open Access Journals (Sweden)

    Wong Rebecca SY

    2011-09-01

    Full Text Available Abstract Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. It is also one of the most studied topics among cell biologists. An understanding of the underlying mechanism of apoptosis is important as it plays a pivotal role in the pathogenesis of many diseases. In some, the problem is due to too much apoptosis, such as in the case of degenerative diseases while in others, too little apoptosis is the culprit. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. The mechanism of apoptosis is complex and involves many pathways. Defects can occur at any point along these pathways, leading to malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Despite being the cause of problem, apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies. The abundance of literature suggests that targeting apoptosis in cancer is feasible. However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects.

  13. The cellular decision between apoptosis and autophagy

    Institute of Scientific and Technical Information of China (English)

    Yong-Jun Fan; Wei-Xing Zong

    2013-01-01

    Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis,respectively.While apoptosis fulfills its role through dismantling damaged or unwanted cells,autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules.Yet in some conditions,autophagy can lead to cell death.Apoptosis and autophagy can be stimulated by the same stresses.Emerging evidence indicates an interplay between the core proteins in both pathways,which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy.This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.

  14. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  15. Targeted induction of apoptosis for cancer therapy

    NARCIS (Netherlands)

    Bremer, Edwin

    2006-01-01

    Introduction to the thesis Programmed cell death, known as apoptosis, is an essential cellular homeostasis mechanism that ensures correct development and function of multi-cellular organisms. The pivotal importance of correct execution of apoptosis is apparent from the many human diseases with aberr

  16. Apoptosis in mammalian oocytes: a review.

    Science.gov (United States)

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  17. Crosstalk between apoptosis and inflammation in atherosclerosis

    NARCIS (Netherlands)

    Westra, Marijke Marianne

    2010-01-01

    In this thesis the role of several apoptosis regulating proteins in the development of atherosclerosis and atherosclerotic plaque stability is investigated. Apoptosis of different cell types in atherosclerotic plaques, such as macrophages and smooth muscle cells may inhibit or promote plaque develop

  18. Hepatitis C virus infection and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Richard Fischer; Thomas Baumert; Hubert E Blum

    2007-01-01

    Apoptosis is central for the control and elimination of viral infections. In chronic hepatitis C virus (HCV) infection,enhanced hepatocyte apoptosis and upregulation of the death inducing ligands CD95/Fas, TRAIL and TNFα occur.Nevertheless, HCV infection persists in the majority of patients. The impact of apoptosis in chronic HCV infection is not well understood. It may be harmful by triggering liver fibrosis, or essential in interferon (IFN)induced HCV elimination. For virtually all HCV proteins,pro- and anti-apoptotic effects have been described,especially for the core and NS5A protein. To date, it is not known which HCV protein affects apoptosis in vivo and whether the infectious virions act pro- or antiapoptotic. With the availability of an infectious tissue culture system, we now can address pathophysiologically relevant issues. This review focuses on the effect of HCV infection and different HCV proteins on apoptosis and of the corresponding signaling cascades.

  19. Study of apoptosis in human liver cancers

    Institute of Scientific and Technical Information of China (English)

    Chang-Min Shan; Juan Li

    2002-01-01

    AIM: To investigate the action of apoptosis in occurrence ofliver cacinornas in vivo and the biological effect of Solanumlyratum Thumb on BEL-7404 cell line inducing apoptosis invitro.METHODS: The apoptosis in the liver carcinoma wasdetected with terminal deoxynucl neotidyl transferasemediated dUTP nick end labelling (TUNEL); the cancer cellscultured in DMED medium were treated with extract ofSolanum lyratum Thumb and observed under microscope,and their DNA was assayed by gel electrophoresis.RESULTS: In vivo apoptotic cells in the cancer adjacenttissues inceased; in vitro treatment of liver cancers withextract of Solanum lyratum Thumb could induce the cells tomanifest a typical apoptotic morphology. Their DNA wasfractured and a characteristic ladder pattem could be foundusing electrophoresis.CONCLUSION: In vivo the apoptosis of carcinomas waslower; maybe the cells divided quickly and then the cancersoccurred. In the cancer adjacent tissues, the apoptosispricked up, and in vitro Solarium lyratum Thumb couldinduce the apoptosis of BEL-7404 cells.

  20. APOPTOSIS AFTER SPINAL CORD INJURY IN RATS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To confirm the role played by apoptosis in spinal cord injury. Methods 36 rats models of spinal cord injury were made by Allen method. Histological examinations using HE staining and in situ end-labeling were used to observe apoptosis in spinal cord tissues from 1h to 21d after injury. Results HE staining sections showed hemorrhage and necrosis, neuronal degeneration and gliai cell proliferation. In situ end-labeling sections showed the appearance of apoptosis in both gray and white matter as well as in both central and surrounding region. The number of apoptotic cells increased from 12h after injury, increased to the peak at 4d and declined to normal at 21d. Conclu sion The results suggest that apoptosis, especially glial apoptosis, plays a role in the pathogenesis of spinal cord in jury.

  1. Autophagy and apoptosis: where do they meet?

    Science.gov (United States)

    Mukhopadhyay, Subhadip; Panda, Prashanta Kumar; Sinha, Niharika; Das, Durgesh Nandini; Bhutia, Sujit Kumar

    2014-04-01

    Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1's interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.

  2. Posttraumatic Chondrocyte Apoptosis in the Murine Xiphoid

    Science.gov (United States)

    Davis, Christopher G.; Eisner, Eric; McGlynn, Margaret; Shelton, John M.; Richardson, James

    2013-01-01

    Objective. To demonstrate posttraumatic chondrocyte apoptosis in the murine xiphoid after a crush-type injury and to ultimately determine the pathway (i.e., intrinsic or extrinsic) by which chondrocytes undergo apoptosis in response to mechanical injury. Design. The xiphoids of adult female wild-type mice were injured with the use of a modified Kelly clamp. Postinjury xiphoid cartilage was analyzed via 3 well-described independent means of assessing apoptosis in chondrocytes: hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and activated caspase-3 staining. Results. Injured specimens contained many chondrocytes with evidence of apoptosis, which is characterized by cell shrinkage, chromatin condensation, nuclear fragmentation, and the liberation of apoptotic bodies. There was a statistically significant increase in the number of chondrocytes undergoing apoptosis in the injured specimens as compared with the uninjured specimens. Conclusions. Chondrocytes can be stimulated to undergo apoptosis as a result of mechanical injury. These experiments involving predominantly cartilaginous murine xiphoid in vivo establish a baseline for future investigations that employ the genetic and therapeutic modulation of chondrocyte apoptosis in response to mechanical injury. PMID:26069679

  3. Metadherin facilitates podocyte apoptosis in diabetic nephropathy

    Science.gov (United States)

    Liu, Wen-Ting; Peng, Fen-Fen; Li, Hong-Yu; Chen, Xiao-Wen; Gong, Wang-Qiu; Chen, Wen-Jing; Chen, Yi-Hua; Li, Pei-Lin; Li, Shu-Ting; Xu, Zhao-Zhong; Long, Hai-Bo

    2016-01-01

    Apoptosis, one of the major causes of podocyte loss, has been reported to have a vital role in diabetic nephropathy (DN) pathogenesis, and understanding the mechanisms underlying the regulation of podocyte apoptosis is crucial. Metadherin (MTDH) is an important oncogene, which is overexpressed in most cancers and responsible for apoptosis, metastasis, and poor patient survival. Here we show that the expression levels of Mtdh and phosphorylated p38 mitogen-activated protein kinase (MAPK) are significantly increased, whereas those of the microRNA-30 family members (miR-30s) are considerably reduced in the glomeruli of DN rat model and in high glucose (HG)-induced conditionally immortalized mouse podocytes (MPC5). These levels are positively correlated with podocyte apoptosis rate. The inhibition of Mtdh expression, using small interfering RNA, but not Mtdh overexpression, was shown to inhibit HG-induced MPC5 apoptosis and p38 MAPK pathway, and Bax and cleaved caspase 3 expression. This was shown to be similar to the effects of p38 MAPK inhibitor (SB203580). Furthermore, luciferase assay results demonstrated that Mtdh represents the target of miR-30s. Transient transfection experiments, using miR-30 microRNA (miRNA) inhibitors, led to the increase in Mtdh expression and induced the apoptosis of MPC5, whereas the treatment with miR-30 miRNA mimics led to the reduction in Mtdh expression and apoptosis of HG-induced MPC5 cells in comparison with their respective controls. Our results demonstrate that Mtdh is a potent modulator of podocyte apoptosis, and that it represents the target of miR-30 miRNAs, facilitating podocyte apoptosis through the activation of HG-induced p38 MAPK-dependent pathway. PMID:27882943

  4. Cytochrome c and insect cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Kai-Yu Liu; Hong Yang; Jian-Xin Peng; Hua-Zhu Hong

    2012-01-01

    The role ofcytochrome c in insect cell apoptosis has drawn considerable attention and has been subject to considerable controversy.In Drosophila,the majority of studies have demonstrated that cytochrome c may not be involved in apoptosis,although there are conflicting reports.Cytochrome c is not released from mitochondria into the cytosol and activation of the initiator caspase Dronc or effector caspase Drice is not associated with cytochrome c during apoptosis in Drosophila SL2 cells or BG2 cells.Cytochrome c failed to induce caspase activation and promote caspase activation in Drosophila cell lysates,but remarkably caused caspase activation in extracts from human cells.Knockdown of cytochrome c does not protect cells from apoptosis and over-expression of cytochrome c also does not promote apoptosis.Structural analysis has revealed that cytochrome c is not required for Dapaf-1 complex assembly.In Lepidoptera,the involvement of cytochrome c in apoptosis has been demonstrated by the accumulating evidence.Cytochrome c release from mitochondria into cytosol has been observed in different cell lines such as Spodoptera frugiperda Sf9,Spodoptera litura S1-1 and Lymantria dispar LdFB.Silencing of cytochrome c expression significantly affected apoptosis and activation of caspase and the addition of cytochrome c to cell-free extracts results in caspase activation,suggesting the activation of caspase is dependent on cytochrome c.Although Apaf- 1 has not been identified in Lepidoptera,the inhibitor of apoptosome formation can inhibit apoptosis and caspase activation.Cytochrome c may be exclusively required for Lepidoptera apoptosis.

  5. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5).

    Science.gov (United States)

    Li, Dong; Liu, Yu; Li, Hua; Peng, Jing-Jing; Tan, Yan; Zou, Qiang; Song, Xiao-Feng; Du, Min; Yang, Zheng-Hui; Tan, Yong; Zhou, Jin-Jun; Xu, Tao; Fu, Zeng-Qiang; Feng, Jian-Qiong; Cheng, Peng; chen, Tao; Wei, Dong; Su, Xiao-Mei; Liu, Huan-Yi; Qi, Zhong-Chun; Tang, Li-Jun; Wang, Tao; Guo, Xin; Hu, Yong-He; Zhang, Tao

    2015-01-02

    Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells.

  6. Inhibition of Reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs)

    OpenAIRE

    1997-01-01

    IAPs comprise a family of inhibitors of apoptosis found in viruses and animals. In vivo binding studies demonstrated that both baculovirus and Drosophila IAPs physically interact with an apoptosis-inducing protein of Drosophila, Reaper (RPR), through their baculovirus IAP repeat (BIR) region. Expression of IAPs blocked RPR-induced apoptosis and resulted in the accumulation of RPR in punctate perinuclear locations which coincided with IAP localization. When expressed alone, RPR rapidly disappe...

  7. [Apoptosis and thymocyte development (epithelial cells as inducers of thymocyte apoptosis)].

    Science.gov (United States)

    Iarilin, A A; Bulanova, E G; Sharova, N I; Budagian, V M

    1998-01-01

    Apoptosis, together with proliferation, is a main factor of selection of the clones of developing T-lymphocytes: the clones not supported by positive selection are subject to apoptosis and apoptosis accounts for discarding of potentially autoaggressive clones, i.e., for negative selection in the thymus and peripheral lymphoid tissue. Realization of apoptosis at different stages of the development of T-lymphocytes depends to a varying extent on Fas, Bcl-2, p53, and other regulators. The dendritic cells are the main cell type, the contact with determines apoptosis of T-lymphocytes. A possible role of the epithelial cells was shown in few models (on murine cells) and was not practically studied. We obtained a line of epithelial cells of the human thymus cells HTSC, cocultivation with which induces apoptosis of immature thymocytes and blood T-cells activated by mitogens. Development of apoptosis is suppressed by inhibitors of protein and RNA synthesis, chelators Ca2+, ions Zn2+, and factors destroying the cytoskeleton components. In this model, interaction of pairs of molecules CD4-HLA class II and LFA-1-ICAM-1. When in contact with the HTSC cells, the thymocytes of mice mutant for Fas-receptor (line MRL.lpr) are subject to apoptosis, but when this receptor is present, it affects the development of apoptosis.

  8. Research of BH3 domain protein inducing cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    FENG Wan-yu; LIU Yang; ZHANG Zhi-cheng

    2008-01-01

    Objective BH3 domain protein plays an important role in control mechanism of cell apoptosis. The article mainly discusses its mechanism of promoting cell apoptosis and control. Methods The article analyzed and evaluated the mechanism of BH3 domain protein promoting cell apoptosis by internal and overseas literature. Results Activation of BH3 domain protein could promote the increase of mitochondrial membrane permeability, then it would start mitoehondrial apoptosis pathway, and at the last the cell apoptosis. Conclusions BH3 domain protein is the necessary condition of starting cell apoptosis. Its activation can cause cell apoptosis.

  9. [Protein kinase C activation induces platelet apoptosis].

    Science.gov (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng

    2013-10-01

    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  10. Effect of sevoflurane on human neutrophil apoptosis.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Both chronic occupational exposure to volatile anaesthetic agents and acute in vitro exposure of neutrophils to isoflurane have been shown to inhibit the rate of apoptosis of human neutrophils. It is possible that inhibition of neutrophil apoptosis arises through delaying mitochondrial membrane potential collapse. We assessed mitochondrial depolarization and apoptosis in unexposed neutrophils and neutrophils exposed to sevoflurane in vivo. METHODS: A total of 20 mL venous blood was withdrawn pre- and postinduction of anaesthesia, the neutrophils isolated and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. Mitochondrial depolarization was measured using the dual emission styryl dye JC-1. RESULTS: Apoptosis was significantly inhibited in neutrophils exposed to sevoflurane in vivo at 24 (exposed: 38 (12)% versus control: 28 (11)%, P = 0.001), but not at 1 or 12 h, in culture. Mitochondrial depolarization was not delayed in neutrophils exposed to sevoflurane. CONCLUSIONS: The most important findings are that sevoflurane inhibits neutrophil apoptosis in vivo and that inhibition is not mediated primarily by an effect on mitochondrial depolarization.

  11. Host-pathogen interactions during apoptosis

    Indian Academy of Sciences (India)

    Seyed E Hasnain; Rasheeda Begum; K V A Ramaiah; Sudhir Sahdev; E M Shajil; Tarvinder K Taneja; Manjari Mohan; M Athar; Nand K Sah; M Krishnaveni

    2003-04-01

    Host pathogen interaction results in a variety of responses, which include phagocytosis of the pathogen, release of cytokines, secretion of toxins, as well as production of reactive oxygen species (ROS). Recent studies have shown that many pathogens exert control on the processes that regulate apoptosis in the host. The induction of apoptosis upon infection results from a complex interaction of parasite proteins with cellular host proteins. Abrogation of host cell apoptosis is often beneficial for the pathogen and results in a successful host invasion. However, in some cases, it has been shown that induction of apoptosis in the infected cells significantly imparts protection to the host from the pathogen. There is a strong correlation between apoptosis and the host protein translation machinery: the pathogen makes all possible efforts to modify this process so as to inhibit cell suicide and ensure that it can survive and, in some cases, establish latent infection. This review discusses the significance of various pathways/steps during virus-mediated modulation of host cell apoptosis.

  12. Epithelial Cell Apoptosis and Lung Remodeling

    Institute of Scientific and Technical Information of China (English)

    Kazuyoshi Kuwano

    2007-01-01

    Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell apoptosis has been considered to be initial event in various lung diseases. Apoptosis signaling is classically composed of two principle pathways. One is a direct pathway from death receptor ligation to caspase cascade activation and cell death. The other pathway triggered by stresses such as drugs, radiation, infectious agents and reactive oxygen species is mediated by mitochondria. Endoplasmic reticulum has also been shown to be the organelle to mediate apoptosis.Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation,cytokine production, activation of coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis.Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling and its regulation by novel strategies may lead to effective treatments against various lung diseases. We review the recent advances in the understanding of apoptosis signaling and discuss the involvement of apoptosis in lung remodeling.

  13. [Depression and treatment. Apoptosis, neuroplasticity and antidepressants].

    Science.gov (United States)

    Arantes-Gonçalves, Filipe; Coelho, Rui

    2006-01-01

    Depression's neurobiology begins to be better understood. The last decade data considers neuroplasticity and stress as implicated factors on the pathophisiology of depression. Because antidepressants have a lag-time on their action it is possible that inhibition of neurotransmitters recaptation is not sufficient to explain long term changes. For that purpose, neurogenesis increase, nervous fibers sprouting, new synapses and stabilization of the old ones can be responsible for those changes. AMPc-MAPcinases-CREB-BDNF cellular cascade can play a significant role in the mechanisms of dendritic restructuration, hippocampal neurogenesis increase and nervous cells survival. The aim of this article is to discuss if apoptosis could play a key role as an ethiopathogenic factor on the patogenesis of depression. It was done a medline search for references with apoptosis, stress, neuroplasticity, depression and antidepressants key-words. It were found 101 original or review references about these subjects. Stress plays a key role in the etiopathogeny of depression. Its deletery effects on apoptosis and neuroplasticity can be changed by antidepressants. Neurogenesis' increase is necessary for their action. This increase is reached with chronic antidepressant treatment and not with other psychotropic drugs which means some pharmacological specificity of antidepressants. AMPc, CREB, BDNF and Bcl-2 can be considered as target genes in antidepressant synthesis. At the level of this neurotrophic factors apoptosis might be included in the neuroplastic model of depression and play a prominent role in etiopathogeny of depression. To confirm that, we need more research on the field to know which are the mechanisms that trigger apoptosis and its biological significance. In relation to the last one, we can say that is possible to be physiological apoptosis in deteriorated neurons death which cannot make strong connections and pathological apoptosis because of stress via, namely, HPA axis.

  14. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  15. NMR exposure sensitizes tumor cells to apoptosis.

    Science.gov (United States)

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M

    2006-03-01

    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies.

  16. Apoptosis of beta cells in diabetes mellitus.

    Science.gov (United States)

    Anuradha, Rachakatla; Saraswati, Mudigonda; Kumar, Kishore G; Rani, Surekha H

    2014-11-01

    Diabetes mellitus is a multifactorial metabolic disorder characterized by hyperglycemia. Apoptosis in beta cells has been observed in response to diverse stimuli, such as glucose, cytokines, free fatty acids, leptin, and sulfonylureas, leading to the activation of polyol, hexosamine, and diacylglycerol/protein kinase-C (DAG/PKC) pathways that mediate oxidative and nitrosative stress causing the release of different cytokines. Cytokines induce the expression of Fas and tumor necrosis factor-alpha (TNF-α) by activating the transcription factor, nuclear factor-κb, and signal transducer and activator of transcription 1 (STAT-1) in the β cells in the extrinsic pathway of apoptosis. Cytokines produced in beta cells also induce proapoptotic members of the intrinsic pathway of apoptosis. The genetic alterations in apoptosis signaling machinery and the pathogenesis of diabetes include Fas, FasL, Akt, caspases, calpain-10, and phosphatase and tensin homolog (Pten). The other gene products that are involved in diabetes are nitric oxide synthase-2 (NOS2), small ubiquitin-like modifier (SUMO), apolipoprotein CIII (ApoCIII), forkhead box protein O1 (FOXO1), and Kruppel-like zinc finger protein Gli-similar 3 (GLIS3). The gene products having antiapoptotic nature are Bcl-2 and Bcl-XL. Epigenetic mechanisms play an important role in type I and type II diabetes. Further studies on the apoptotic genes and gene products in diabetics may be helpful in pharmacogenomics and individualized treatment along with antioxidants targeting apoptosis in diabetes.

  17. Measuring Apoptosis by Microscopy and Flow Cytometry.

    Science.gov (United States)

    Hollville, Emilie; Martin, Seamus J

    2016-02-02

    Apoptosis is a mode of programmed cell death that plays an important role during development and in the maintenance of tissue homeostasis. Numerous physiological as well as pathological stimuli trigger apoptosis such as engagement of Fas, TRAIL, or TNF receptors, growth factor deprivation, hypoxia, or exposure to cytotoxic drugs. Apoptosis is coordinated from within by members of the caspase family of cysteine proteases that, upon activation, trigger a series of morphological changes including cell shrinkage, extensive plasma membrane blebbing, chromatin condensation, DNA hydrolysis, and nuclear fragmentation. These dramatic structural and biochemical alterations result not only in the controlled dismantling of the cell, but also in the efficient recognition and removal of apoptotic cells by phagocytes. Necrosis, which is typically nonprogrammed or imposed upon the cell by overwhelming membrane or organelle damage, is characterized by rapid plasma membrane rupture followed by organelle and cell swelling. Necrosis is often provoked by infectious agents or a severe departure from physiological conditions. This unit describes protocols for the measurement of apoptosis and for distinguishing apoptosis from necrosis.

  18. Apoptosis in Drosophila: which role for mitochondria?

    Science.gov (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle

    2016-03-01

    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.

  19. Death penalty for keratinocytes: apoptosis versus cornification.

    Science.gov (United States)

    Lippens, S; Denecker, G; Ovaere, P; Vandenabeele, P; Declercq, W

    2005-11-01

    Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.

  20. Dimerization of two novel apoptosis-inducing proteins and its function in regulating cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    刘青珍; 甘淼; 齐义鹏; 李凌云; 齐兵

    2003-01-01

    Asy (apoptosis/saibousi Yutsudo) is a novel apoptosis-inducing gene found in 1999 by Yutsudo group in Japan. In 2000, Qi Bing et al. cloned another novel gene, named hap (homologue of ASY protein), which encoded the ASY interact ing protein, from human lung cell line (WI-38) cDNA library by using yeast two-h ybrid system. It has been proved that ASY formed homodimer in yeast and human ce ll line, ASY and HAP formed heterodimer in yeast cells, and both induced cell ap optosis in human tumor cell lines Sao2 and CGL4. This paper showed that HAP coul d form homodimer in yeast cells by yeast two-hybrid system; HAP and ASY could pr oduce heterodimer in human cell line by cross-immunoprecipitation test; by using apoptosis-testing technologies such as AnnexinV, TUNEL, DNA ladder and Flow Cyt ometry, the cell apoptosis in human normal or tumor cell lines transfected with hap or asy individually or cotransfected by the both was qualified or quantified . It was firstly demonstrated that ASY or HAP induced cell apoptosis not only in human tumor cell lines, but also in human normal cell lines. Moreover, we prove d that the heterodimer between ASY and HAP decreased apoptosis-inducing activity from the homodimer of ASY or HAP. It revealed that by choosing to form heterodi mer or homodimer between ASY and / or HAP is an important mechanism of regulatin g apoptosis in human cell lines.

  1. The relationship between prostate cancer and apoptosis

    Directory of Open Access Journals (Sweden)

    Zeki Arı

    2011-03-01

    Full Text Available Prostate is the largest accessory gland of male genitaltract and the beginning part of male urethra. Prostatecancer is the most common internal malignancy inmales. Prostate cancer is ranked as second in death fromto cancer. A malignant disease is known as uncontrolledproliferation of cells. Beside excessive proliferation, decreasedapoptosis was also observed contribute to thedevelopment of malignancy. Apoptosis (programmedcell death plays an important role in many diseases andfree radical damage, triggers by cytokines and inflammatoryinjury. This review has been prepared to show theinteresting link between apoptosis and cancer and toprovide collective source to who want to do research onthis subject. J Clin Exp Invest 2011; 2(1: 124-131

  2. Stress response and apoptosis in pro- and antiinflammatory macrophages.

    Science.gov (United States)

    Malyshev, I Yu; Kruglov, S V; Bakhtina, L Yu; Malysheva, E V; Zubin, M; Norkin, M

    2004-08-01

    We showed that stress response and apoptosis in macrophages depend on the phenotype of their secretory activity and specific biological and physical characteristics of the factor inducing stress-response or apoptosis.

  3. Thiol redox state in apoptosis : physiological and toxicant modulation

    OpenAIRE

    Nobel, Stefan

    1997-01-01

    Apoptosis is a physiological type of cell death used to regulate the number of cells during development and im adult organs. However, apoptosis can also be inappropriately activated or inhibited under pathological conditions. One of the critical mechanisms of apoptosis is the activity of cysteine proteases belonging to the caspase family. The present study was designed to investigate the role of oxidative stress in apoptosis and how the apoptotic death program might be regul...

  4. Calpain Activator Dibucaine Induces Platelet Apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2011-03-01

    Full Text Available Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.

  5. Epac inhibits apoptosis of human leukocytes

    NARCIS (Netherlands)

    Grandoch, M.; Bujok, V.; Fleckenstein, D.; Schmidt, M.; Fischer, J. W.; Weber, A. -A.

    2009-01-01

    cAMP is known to participate in the regulation of apoptosis in leukocytes. Depending on the cell type, pro- and antiapoptotic effects of cAMP have been described. Thus far, most of the cAMP-dependent effects have been attributed to the activation of PKA. However, Epac proteins (direct cAMP targets a

  6. A novel method for detection of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zagariya, Alexander M., E-mail: zagariya@uic.edu

    2012-04-15

    There are two different Angiotensin II (ANG II) peptides in nature: Human type (ANG II) and Bovine type (ANG II*). These eight amino acid peptides differ only at position 5 where Valine is replaced by Isoleucine in the Bovine type. They are present in all species studied so far. These amino acids are different by only one atom of carbon. This difference is so small, that it will allow any of ANG II, Bovine or Human antibodies to interact with all species and create a universal method for apoptosis detection. ANG II concentrations are found at substantially higher levels in apoptotic, compared to non-apoptotic, tissues. ANG II accumulation can lead to DNA damage, mutations, carcinogenesis and cell death. We demonstrate that Bovine antiserum can be used for universal detection of apoptosis. In 2010, the worldwide market for apoptosis detection reached the $20 billion mark and significantly increases each year. Most commercially available methods are related to Annexin V and TUNNEL. Our new method based on ANG II is more widely known to physicians and scientists compared to previously used methods. Our approach offers a novel alternative for assessing apoptosis activity with enhanced sensitivity, at a lower cost and ease of use.

  7. Spermine inhibits Endoplasmic Reticulum Stress - induced Apoptosis: a New Strategy to Prevent Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Can Wei

    2016-02-01

    Full Text Available Background/Aims: Endoplasmic reticulum stress (ERS plays an important role in the progression of acute myocardial infarction (AMI, in part by mediating apoptosis. Polyamines, including putrescine, spermidine, and spermine, are polycations with anti-oxidative, anti-aging, and cell growth-promoting activities. This study aimed to determine the mechanisms by which spermine protects against ERS-induced apoptosis in rats following AMI. Methods and Results: AMI was established by ligation of the left anterior descending coronary artery (LAD in rats, and exogenous spermine was administered by intraperitoneal injection (2.5 mg/ml daily for 7 days pre-AMI. Spermine treatment limited infarct size, attenuated cardiac troponin I and creatinine kinase-MB release, improved cardiac function, and decreased ERS and apoptosis related protein expression. Isolated cardiomyocytes subjected to hypoxia showed significant increase in reactive oxygen species (ROS and the expression of apoptosis and ERS related proteins; these effects occurred through PERK and eIF2α phosphorylation. The addition of spermine attenuated cardiomyocyte apoptosis, suppressed the production of ROS, and inhibited ERS related pathways. Conclusions: Spermine was an effective pre-treatment strategy to attenuate cardiac ERS injury in rats, and the cardioprotective mechanism occurring through inhibition of ROS production and down regulation of the PERK-eIF2α pathway. These findings provide a novel target for the prevention of apoptosis in the setting of AMI.

  8. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway.

    Science.gov (United States)

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Smirnova, Iva; Schnee, Tona; Zagzag, David

    2008-07-01

    Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.

  9. Paclitaxel induces apoptosis in human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Ju-Ren Zhu

    2003-01-01

    AIM: To investigate the apoptosis in gastric cancer cells induced by paclitaxel, and the relation between this apoptosis and expression of Bcl-2 and Bax.METHODS: In in vitro experiments, MTT assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of gastric cancer cell line SGC-7901 before and after the paditaxel treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2and Bax.RESULTS: Paclitaxel inhibited the growth of gastric cancer cell line SGC-7901 in a dose-and time-dependent manner.Paclitaxel induced SGC-7901 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. Paclitaxel could reduce the expression of apoptosis-regulated gene Bcl-2, and improve the expression of apoptosis-regulated gene Bax.CONCLUSION: Paclitaxel is able to induce the apoptosis in gastric cancer. This apoptosis may be mediated by downexpression of apoptosis-regulated gene Bcl-2 and upexpression of apoptosis-regulated gene Bax.

  10. ING function in apoptosis in diverse model systems.

    Science.gov (United States)

    Shah, Sitar; Smith, Heather; Feng, Xiaolan; Rancourt, Derrick E; Riabowol, Karl

    2009-02-01

    Genetic studies in model organisms have shown that programmed cell death (apoptosis) plays a significant role during development, where a deficiency in apoptosis results in severe and diverse diseases. Dysregulation of apoptosis also contributes to a variety of human diseases, such as cancer and autoimmune diseases. ING family proteins (ING1-ING5) are involved in many cellular processes, and appear to play a significant role in apoptosis. Loss or downregulation of ING protein function is frequently observed in different tumour types, many of which are resistant to apoptosis, thus warranting their classification as type II tumour suppressors. Several different in vitro and in vivo models have explored the role of ING proteins in regulating apoptosis. In this review, we discuss the progress that has been made in understanding ING protein function in apoptosis using in vitro studies and Mus musculus, Xenopus laevis, and Caenorhabditis elegans experimental models, with an emphasis on ING1 and ING3.

  11. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    Science.gov (United States)

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-01

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  12. THE CONSEQUENCES OF APOPTOSIS IN AUTOIMMUNITY

    Science.gov (United States)

    Lleo, Ana; Selmi, Carlo; Invernizzi, Pietro; Podda, Mauro; Gershwin, M. Eric

    2008-01-01

    The clearance of apoptotic cells is a highly regulated mechanism, normally associated with anti-inflammatory response. During early stages of apoptosis the cell is promptly recognized and engulfed by professional phagocytes or tissue cells to avoid the outflow of intracellular content and limit the immunological reaction against released antigens. However, increasing evidences suggest that impairment in the uptake of apoptotic cell debris is linked to the development of autoimmunity. In fact, autoantigens have been demonstrated to be content within apoptotic bodies and apoptotic cells seems to be critical in the presentation of antigens, activation of innate immunity and regulation of macrophage cytokine secretion. We herein review the known mechanisms for regulating the uptake of the products of apoptosis in the development of autoimmunity. PMID:18513925

  13. Ordering the multiple pathways of apoptosis.

    Science.gov (United States)

    Park, D S; Stefanis, L; Greene, L A

    1997-11-01

    Apoptosis plays an important role in development, homeostasis, and disease. Current work has suggested that apoptosis can be evoked by multiple stimuli that, in turn, initiate distinct death pathways. Recently, exciting advances have been made in the understanding of biochemical pathways that regulate apoptotic processes. These pathways contain both evolutionarily conserved elements and components that are dependent on the death stimulus and cell context. Accordingly, this review focuses on the compositions and relative ordering of the apoptotic pathways in four different death paradigms: activation of receptors of the Fas ligand, destruction by cytotoxic T lymphocytes, exposure to DNA damaging agents, and loss of support by neurotrophic factors. These examples illustrate the conservation and divergence in the ways that death pathways are composed and ordered. (Trends Cardiovasc Med 1997;7:294-301). © 1997, Elsevier Science Inc.

  14. Autophagy and apoptosis: rivals or mates?

    Institute of Scientific and Technical Information of China (English)

    Yan Cheng; Jin-Ming Yang

    2013-01-01

    Autophagy,a cellular process of "self-eating" by which intracellular components are degraded within the lysosome,is an evolutionarily conserved response to various stresses.Autophagy is associated with numerous patho-physiological conditions,and dysregulation of autophagy contributes to the pathogenesis of a variety of human diseases including cancer.Depending on context,activation of autophagy may promote either cell survival or death,two major events that determine pathological process of many illnesses.Importantly,the activity of autophagy is often associated with apoptosis,another critical cellular process determining cellular fate.A better understanding of biology of autophagy and its implication in human health and disorder,as well as the relationship between autophagy and apoptosis,has the potential of facilitating the development of autophagy-based therapeutic interventions for human diseases such as cancer.

  15. Mechanisms of Neuronal Apoptosis In Vivo

    Science.gov (United States)

    2004-02-01

    Mechanisms for neuronal degeneration in amyotrophic rons in aging and neurological research: aluminum neu- lateral sclerosis and in models of motor neuron...not ture-DNA damage-lschemic neuronal death-MEKKI. Understanding the molecular regulation of apoptosis is such as Alzheimer disease (Anderson et al...WH, Jung Y-K, Kovacs DM and Tanzi RE: Kaneko K, Shimizu T, lihara K, Kojima T, Miyatake T and Alternative cleavage of Alzheimer -associated presenilins

  16. Control of apoptosis by asymmetric cell division.

    Directory of Open Access Journals (Sweden)

    Julia Hatzold

    2008-04-01

    Full Text Available Asymmetric cell division and apoptosis (programmed cell death are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  17. Keratinocyte Apoptosis is Decreased in Psoriatic Epidermis

    Directory of Open Access Journals (Sweden)

    Fatma Eskioğlu

    2009-12-01

    Full Text Available Background and Design: Abnormal differentiation and hyperproliferation of keratinocytes are the hallmarks of psoriasis vulgaris. Although psoriasis vulgaris is generally accepted as a disease of decreased keratinocyte apoptosis, the results are contradictory. The aim of the current study is to investigate whether decreased keratinocyte apoptosis contributes to the formation of a thickened epidermis as increased keratinocyte proliferation. Material and Method: Forty-three untreated psoriasis vulgaris patients and 20 healthy control subjects were included into the study. Biopsy specimens taken from the enrollee were evaluated by immunohistochemical staining for Ki-67 expressions to show the proliferation of keratinocytes and by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL method to show the apoptotic keratinocytes. Results: Apoptotic index (percentage of the TUNEL positive cells was significantly lower in psoriatic epidermis (0.33±0.64 than in normal epidermis (0.75±0.85; whereas Ki-67 index (percentage of positively staining cells for Ki-67 was significantly higher in psoriatic epidermis (30.86±10.49 than in normal epidermis (11.65±2.98, (p=0.021 and p=0.00; respectively. Conclusion: Decreased keratinocyte apoptosis also contribute to increased epidermal thickness in psoriasis as well as increased keratinocyte proliferation.

  18. Neuronal apoptosis: signal and cell diversity

    Directory of Open Access Journals (Sweden)

    Lina Vanessa Becerra

    2009-12-01

    Full Text Available Programmed cell death occurs as a physiological process during development. In the brain and spinal cord this event determines the number and location of the different cell types. In adulthood, programmed cell death or apoptosis is more restricted but it may play a major role in different acute and chronic pathological entities. However, in contrast to other tissues where apoptosis has been widely documented from a morphological point of view, in the central nervous system complete anatomical evidence of apoptosis is scanty. In spite of this there is consensus about the activation of different signal systems associated to programmed cell death. In the present article we attempt to summarize the main apoptotic pathways so far identified in nervous tissue. Considering that apoptotic pathways are multiple, the neuronal cell types are highly diverse and specialized and that neuronal response to injury and survival depends upon tissue context, (i.e., preservation of connectivity, glial integrity and cell matrix, blood supply and trophic factors availability what is relevant for the apoptotic process in a sector of the brain may not be important in another.

  19. Hormonal regulation of apoptosis an ovarian perspective.

    Science.gov (United States)

    Hsu, S Y; Hsueh, A J

    1997-07-01

    Using the ovary as a model system for studying the hormonal regulation of apoptosis, recent studies have revealed that the survival of growing follicles is under the regulation of a complex array of hormones through endocrine, paracrine, autocrine, or juxtacrine mechanism in a development-dependent manner. More effort is needed, however, to identify tissue-specific factors required for the survival of ovarian somatic and germ cells at specific stage of development. New insights based on characterization of conserved apoptotic effectors, both extracellular and intracellular, have suggested that apoptosis in ovarian cells may be mediated by apoptotic programs common to other cells but using specific members of the death domain proteins as well as ced-9/Bcl-2 and ced-3/ICE caspase families of genes. Future studies may provide new therapeutic modalities for different ovarian diseases caused by aberrant regulation of apoptosis in ovarian cells, including premature ovarian failure and polycystic ovarian syndrome. (Trends Endocrinol Metab 1997;8:207-213). (c) 1997, Elsevier Science Inc.

  20. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong

    2011-01-01

    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  1. Lipid Metabolism, Apoptosis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Chunfa Huang

    2015-01-01

    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  2. Apoptosis de fibroblastos gingivales en periodontitis

    Directory of Open Access Journals (Sweden)

    Roger Mauricio Arce

    2007-09-01

    Full Text Available Introducción: Los fibroblastos gingivales humanos (FGH tienen un papel importante en la enfermedad periodontal, pues alteran su normal funcionamiento en respuesta a estímulos pro-inflamatorios. Se cree que los fibroblastos se pueden eliminar anormalmente por medio de apoptosis en periodontitis. El propósito de este estudio es determinar y cuantificar la apoptosis de FGH en biopsias del periodonto de individuos sanos y con enfermedad periodontal. Métodos: Se realizó un estudio clínico descriptivo de corte transversal en personas con diagnóstico de salud periodontal (S, gingivitis (G y periodontitis crónica (PC. Se tomaron biopsias escisionales y se hicieron tinciones inmunohistoquímicas (hematoxilina-eosina, caspasa-3 y vimentina. Las placas se interpretaron por histopatología y se digitalizaron para cuantificar las células apoptóticas. Todos los datos se analizaron con un software estadístico para encontrar diferencias significativas (p0.5, r²=0.02; mientras que para las células inflamatorias se encontró una relación proporcional significativa (p<0.05, r²=0.2018. Conclusiones: Los resultados permiten concluir que tanto los fibroblastos gingivales como las células inflamatorias presentan apoptosis manifiesta por la expresión de caspasa-3, y ésta se incrementa significativamente en gingivitis y enfermedad periodontal.

  3. Apoptosis and oxidative stress in neurodegenerative diseases.

    Science.gov (United States)

    Radi, Elena; Formichi, Patrizia; Battisti, Carla; Federico, Antonio

    2014-01-01

    Neurodegenerative disorders affect almost 30 million individuals leading to disability and death. These disorders are characterized by pathological changes in disease-specific areas of the brain and degeneration of distinct neuron subsets. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear similar, suggesting common neurodegenerative pathways. Apoptosis seems to play a key role in the progression of several neurologic disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis as demonstrated by studies on animal models and cell lines. On the other hand, research on human brains reported contradictory results. However, many dying neurons have been detected in brains of patients with neurodegenerative diseases, and these conditions are often associated with significant cell loss accompanied by typical morphological features of apoptosis such as chromatin condensation, DNA fragmentation, and activation of cysteine-proteases, caspases. Cell death and neurodegenerative conditions have been linked to oxidative stress and imbalance between generation of free radicals and antioxidant defenses. Multiple sclerosis, stroke, and neurodegenerative diseases have been associated with reactive oxygen species and nitric oxide. Here we present an overview of the involvement of neuronal apoptosis and oxidative stress in the most important neurodegenerative diseases, mainly focusing the attention on several genetic disorders, discussing the interaction between primary genetic abnormalities and the apoptotic pathways.

  4. Safrole oxide inhibits angiogenesis by inducing apoptosis.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2005-06-01

    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (Psafrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  5. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  6. Intracoronary levosimendan during ischemia prevents myocardial apoptosis.

    Directory of Open Access Journals (Sweden)

    Markus eMalmberg

    2012-02-01

    Full Text Available Background. Levosimendan is a calcium-sensitizing inotropic agent that prevents myocardial contractile depression following cardiac surgery. Levosimendan has also anti-apoptotic properties, but the role of this mechanism is not clear. We studied whether levosimendan prevents cardiomyocyte apoptosis and post-operative stunning after either intracoronary administration or intravenous infusion in an experimental model. Methods. Pigs (n=24 were subjected to 40 minutes of global, cardioplegic ischemia under cardiopulmonary bypass and 240 minutes of reperfusion. L-IV group received intravenous infusion of levosimendan (65 μg/kg 40 minutes before ischemia and L-IC group received levosimendan (65 μg/kg during ischemia administered intracoronary. Control group was operated without levosimendan. Echocardiography was performed to all animals. Apoptosis was determined from transmyocardial biopsies taken from left ventricle using TUNEL assay and immunohistochemistry of active caspace-3. Results. Apoptosis was induced after ischemia-reperfusion in all groups (pre L-IV 0.002±0.004 % vs. post L-IV 0.020±0.017 % p=0.02, pre L-IC 0.001±0.004 % vs. post L-IC 0.020±0.017 % p<0.001, pre control 0.007±0.013 % vs. post control 0.062±0.044 % p=0.01. The amount of apoptosis was higher in the controls, compared with the L-IV (p=0.03 and the L-IC (p=0.03 groups. Longitudinal left ventricular contraction was significantly reduced in the L-IC and the control groups when compared to the L-IV group (L-IV 0.75±0.12 mm vs. L-IC 0.53±0.11 mm p=0.003, L-IV vs. control 0.54±0.11 p=0.01. Conclusions. Both intracoronary administration and pre-ischemic intravenous infusion of levosimendan equally prevented apoptosis, but intravenous administration was required for optimal preservation of the post-operative systolic left ventricle function.

  7. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J;

    2006-01-01

    Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations...... of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of ... preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta...

  8. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J;

    2006-01-01

    Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations...... of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of TNF-alpha suppression...... preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta...

  9. Regulation of apoptosis by the papillomavirus E6 oncogene

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Li; Li-Na Zhao; Zhi-Guo Liu; Ying Han; Dai-Ming Fan

    2005-01-01

    Infection with human papillomaviruses is strongly associated with the development of multiple cancers including esophageal squamous cell carcinoma. The HPV E6 gene is essential for the oncogenic potential of HPV.The recgulation of apoptosis by oncogene has been relatel to carcinogenesis closely; therefore, the modulation of E6 on cellular apoptosis has become a hot research topic recently. Inactivation of the pro-apoptotic tumor suppressor p53 by E6 is an important mechanism by which E6promotes cell growth; it is expected that inactivation of p53 by E6 should lead to a reduction in cellular apoptosis,numerous studies showed that E6 could in fact sensitize cells to apoptosis. The molecular basis for apoptosis modulation by E6 is poorly understood. In this article, we will present an overview of observations and current understanding of molecular basis for E6-induced apoptosis.

  10. Artesunate induces AIF-dependent apoptosis in A549 cells

    Science.gov (United States)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  11. Aspartame-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity.

  12. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells.

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  13. Molecular mechanisms of TRAIL-induced apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of de-veloping TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.

  14. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    OpenAIRE

    2009-01-01

    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showe...

  15. Apoptosis induced by propolis in human hepatocellular carcinoma cell line.

    Science.gov (United States)

    Choi, Y H; Lee, W Y; Nam, S Y; Choi, K C; Park, Y E

    1999-07-01

    Propolis has been reported to exhibit a wide spectrum of activities including antibiotic, antiviral, anti-inflammatory, immunostimulatory and tumor carcinostatic properties. We showed propolis induced apoptosis in a human hepatoma cell line (SNU449) by FITC-Annexin V/PI staining. We also compared the apoptosis inducing effect between Korean and Commercial (Sigma # p-1010) propolis. There was no difference on apoptosis between them.

  16. Apoptosis and Its Significance in Oral Diseases: An Update

    Directory of Open Access Journals (Sweden)

    Megha Jain

    2013-01-01

    Full Text Available Apoptosis is a well defined mode of cell death which plays an imperative role in the development, regulation, and maintenance of the cell populations in multicellular organisms. Apoptosis is implicated in both health and diseases. Errors in apoptotic mechanisms have been allied to a wide range of pathologies including oral diseases. This review presents an update focused on the role and significance of apoptosis in various oral diseases ranging from reactive to benign and malignant pathologies.

  17. Shifting the balance of mitochondrial apoptosis: therapeutic perspectives

    Directory of Open Access Journals (Sweden)

    Simone eFulda

    2012-10-01

    Full Text Available Signaling via the intrinsic (mitochondrial pathway of apoptosis represents one of the critical signal transduction cascades that control the regulation of cell death. This pathway is typically altered in human cancers, thereby providing a suitable target for therapeutic intervention. Members of the Bcl-2 family of proteins as well as cell survival signaling cascades such as the PI3K/Akt/mTOR pathway are involved in the regulation of mitochondria-mediated apoptosis. Therefore, further insights into the molecular mechanisms that form the basis for the control of mitochondria-mediated apoptosis will likely open new perspectives to bypass evasion of apoptosis and treatment resistance in human cancers.

  18. Role of PUMA in methamphetamine-induced neuronal apoptosis.

    Science.gov (United States)

    Chen, Chuanxiang; Qincao, Litao; Xu, Jingtao; Du, Sihao; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-05

    Exposure to methamphetamine (METH), a widely used illicit drug, has been shown to cause neuron apoptosis. p53 upregulated modulator of apoptosis (PUMA) is a key mediator in neuronal apoptosis. This study aimed to examine the effects of PUMA in METH-induced neuronal apoptosis. We determined PUMA protein expression in PC12 cells and SH-SY5Y cells after METH exposure using western blot. We also observed the effect of METH on neuronal apoptosis after silencing PUMA expression with siRNA using TUNEL staining and flow cytometry. Additionally, to investigate possible mechanisms of METH-induced PUMA-mediated neuronal apoptosis, we measured the protein expression of apoptotic markers, including cleaved caspase-3, cleaved PARP, Bax, B-cell leukemia/lymphoma-2 (Bcl-2) and cytochrome c (cyto c), after METH treatment with or without PUMA knockdown. Results showed that METH exposure induced cell apoptosis, increased PUMA protein levels, activated caspase-3 and PARP, elevated Bax and reduced Bcl-2 expression, as well as increased the release of cyto c from mitochondria to the cytoplasm in both PC12 and SH-SY5Y cells. All these effects were attenuated or reversed after silencing PUMA. A schematic depicting the role of PUMA in METH-induced mitochondrial apoptotic pathway was proposed. Our results suggest that PUMA plays an important role in METH-triggered apoptosis and it may be a potential target for ameliorating neuronal injury and apoptosis caused by METH.

  19. Induction of Apoptosis in Protoplasts and Suspension Cultures of Plant Cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many studies have showed that apoptosis exists in plants. Our study shows that (1) menadione(VK3) induces apoptosis in suspension cultures of carrot cells; (2) heat shock induces apoptosis in suspension cultures of tobacco cells; and (3) ethrel induces apoptosis in carrot protoplasts. Some important indications of apoptosis were observed, including DNA laddering, TUNEL-positive reaction, condensation and degradation of nuclei.

  20. Apoptosis of gingival fibroblasts in periodontitis.

    Directory of Open Access Journals (Sweden)

    Roger Mauricio Arce

    2009-11-01

    Full Text Available Introducción: Los fibroblastos gingivales humanos (FGH tienen un papel importante en la enfermedad periodontal, pues alteran su normal funcionamiento en respuesta a estímulos pro-inflamatorios. Se cree que los fibroblastos se pueden eliminar anormalmente por medio de apoptosis en periodontitis. El propósito de este estudio es determinar y cuantificar la apoptosis de FGH en biopsias del periodonto de individuos sanos y con enfermedad periodontal. Métodos: Se realizó un estudio clínico descriptivo de corte transversal en personas con diagnóstico de salud periodontal (S, gingivitis (G y periodontitis crónica (PC. Se tomaron biopsias escisionales y se hicieron tinciones inmunohistoquímicas (hematoxilina-eosina, caspasa-3 y vimentina. Las placas se interpretaron por histopatología y se digitalizaron para cuantificar las células apoptóticas. Todos los datos se analizaron con un software estadístico para encontrar diferencias significativas (p Resultados: La población celular total de fibroblastos tuvo un promedio de 430±67.6 en los individuos sanos y una disminución significativamente progresiva en gingivitis (270±37.1 y periodontitis crónica (206.5±69.8 (p0.5, r²=0.02; mientras que para las células inflamatorias se encontró una relación proporcional significativa (p Conclusiones: Los resultados permiten concluir que tanto los fibroblastos gingivales como las células inflamatorias presentan apoptosis manifiesta por la expresión de caspasa-3, y ésta se incrementa significativamente en gingivitis y enfermedad periodontal.

  1. The changing shape of mitochondrial apoptosis.

    Science.gov (United States)

    Wasilewski, Michał; Scorrano, Luca

    2009-08-01

    Mitochondria are key organelles in conversion of energy, regulation of cellular signaling and amplification of programmed cell death. The anatomy of the organelle matches this functional versatility in complexity and is modulated by the concerted action of proteins that impinge on its fusion-fission equilibrium. A growing body of evidence implicates changes in mitochondrial shape in the progression of apoptosis and, therefore, proteins governing such changes are likely candidates for involvement in pathogenetic mechanisms in neurodegeneration and cancer. Here, we discuss the recent advancements in our knowledge about the machinery that regulates mitochondrial shape and on the role of molecular mechanisms controlling mitochondrial morphology during cell death.

  2. Benzene metabolites induce apoptosis in lymphocytes.

    Science.gov (United States)

    Martínez-Velázquez, M; Maldonado, V; Ortega, A; Meléndez-Zajgla, J; Albores, A

    2006-08-01

    Benzene is an important environmental pollutant with important health implications. Exposure to this aromatic hydrocarbon is associated with hematotoxicity, and bone marrow carcinogenic effects. It has been shown that benzene induces oxidative stress, cell cycle alterations, and programmed cell death in cultured cells. Hepatic metabolism of benzene is thought to be a prerequisite for its bone marrow toxicity. Nevertheless, there are no reports on the cellular effects of reactive intermediates derived from hepatic metabolism of benzene. Thus, the goal of this project was to determine the cellular alterations of benzene metabolites produced by the cultured hepatic cell line HepG2. Supernatants collected from these cells were applied to a culture of freshly isolated lymphocytes. A higher decrease in cell viability was found in cells exposed to these supernatants than to unmetabolized benzene. This viability decrease was due to apoptosis, as determined by Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling (TUNEL) assay and internucleosomal fragmentation of DNA. When supernatants were analyzed by HPLC, we found that not all the hydrocarbon was biotransformed, since a 28 microM concentration (37%) remained. The only metabolite found in the culture medium was muconic acid. The present results show that muconic acid derived from benzene metabolism is able to cooperate with the pollutant for the induction of apoptosis in rat lymphocytes.

  3. Helicobacter pylori vacuolating toxin A and apoptosis

    Directory of Open Access Journals (Sweden)

    Rassow Joachim

    2011-11-01

    Full Text Available Abstract VacA, the vacuolating cytotoxin A of Helicobacter pylori, induces apoptosis in epithelial cells of the gastic mucosa and in leukocytes. VacA is released by the bacteria as a protein of 88 kDa. At the outer surface of host cells, it binds to the sphingomyelin of lipid rafts. At least partially, binding to the cells is facilitated by different receptor proteins. VacA is internalized by a clathrin-independent mechanism and initially accumulates in GPI-anchored proteins-enriched early endosomal compartments. Together with early endosomes, VacA is distributed inside the cells. Most of the VacA is eventually contained in the membranes of vacuoles. VacA assembles in hexameric oligomers forming an anion channel of low conductivity with a preference for chloride ions. In parallel, a significant fraction of VacA can be transferred from endosomes to mitochondria in a process involving direct endosome-mitochondria juxtaposition. Inside the mitochondria, VacA accumulates in the mitochondrial inner membrane, probably forming similar chloride channels as observed in the vacuoles. Import into mitochondria is mediated by the hydrophobic N-terminus of VacA. Apoptosis is triggered by loss of the mitochondrial membrane potential, recruitment of Bax and Bak, and release of cytochrome c.

  4. The Adipokine Chemerin Induces Apoptosis in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Diego Rodríguez-Penas

    2015-08-01

    Full Text Available Background: The adipokine chemerin has been associated with cardiovascular disease. We investigated the effects of chemerin on viability and intracellular signalling in murine cardiomyocytes, and the effects of insulin and TNF-α on cardiomyocyte chemerin production. Methods: Hoechst dye vital staining and cell cycle analysis were used to analyse the viability of murine cardiac cells in culture. Western blot was used to explore the phosphorylation of AKT and caspase-9 activity in neonatal rat cardiomyocytes and HL-1 cells. Finally, RT-qPCR, ELISA and western blot were performed to examine chemerin and CMKLR1 expression after insulin and TNF-α treatment in cardiac cells. Results: Chemerin treatment increased apoptosis, reduced phosphorylation of AKT at Thr308 and increased caspase-9 activity in murine cardiomyocytes. Insulin treatment lowered chemerin and CMKLR1 mRNA and protein levels, and the amount of chemerin in the cell media, while TNF-α treatment increased chemerin mRNA and protein levels but decreased expression of the CMKLR1 gene. Conclusion: Chemerin induces apoptosis, reduces AKT phosphorylation and increases the cleavage of caspase-9 in murine cardiomyocytes. The expression of chemerin is regulated by important metabolic (insulin and inflammatory (TNF-α mediators at cardiac level. Our results suggest that chemerin could play a role in the physiopathology of cardiac diseases.

  5. Triggering of dendritic cell apoptosis by xanthohumol.

    Science.gov (United States)

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  6. Modulation of neutrophil apoptosis by antimicrobial peptides.

    Science.gov (United States)

    Nagaoka, Isao; Suzuki, Kaori; Niyonsaba, François; Tamura, Hiroshi; Hirata, Michimasa

    2012-01-01

    Peptide antibiotics possess the potent antimicrobial activities against invading microorganisms and contribute to the innate host defense. Human antimicrobial peptides, α-defensins (human neutrophil peptides, HNPs), human β-defensins (hBDs), and cathelicidin (LL-37) not only exhibit potent bactericidal activities against Gram-negative and Gram-positive bacteria, but also function as immunomodulatory molecules by inducing cytokine and chemokine production, and inflammatory and immune cell activation. Neutrophil is a critical effector cell in host defense against microbial infection, and its lifespan is regulated by various pathogen- and host-derived substances. Here, we provided the evidence that HNP-1, hBD-3, and LL-37 cannot only destroy bacteria but also potently modulate (suppress) neutrophil apoptosis, accompanied with the phosphorylation of ERK-1/-2, the downregulation of tBid (an proapoptotic protein) and upregulation of Bcl-xL (an antiapoptotic protein), and the inhibition of mitochondrial membrane potential change and caspase 3 activity, possibly via the actions on the distinct receptors, the P2Y6 nucleotide receptor, the chemokine receptor CCR6, and the low-affinity formyl-peptide receptor FPRL1/the nucleotide receptor P2X7, respectively. Suppression of neutrophil apoptosis results in the prolongation of their lifespan and may be advantageous for the host defense against bacterial invasion.

  7. Resveratrol induces apoptosis in human esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Yun Yan; Ya-Ni Sun; Ju-Ren Zhu

    2003-01-01

    AIM: To investigate the apoptosis in esophageal cancer cells induced by resveratrol, and the relation between this apoptosis and expression of Bcl-2 and Bax.METHODS: In in vitro experiments, MTr assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of esophageal cancer cell line EC-9706 before and after the resveratrol treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2 and Bax.RESULTS: Resveratrol inhibited the growth of esophageal cancer cell line EC-9706 in a dose-and time-dependent manner. Resveratrol induced EC-9706 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. TUNEL assay showed that after the for 24 to 96 hours, the AIs were apparently increased with treated time (P<0.05). Immunohistochemical staining showed that after the treatment of EC-9706 cells with proteins were apparently reduced with treated time (P<0.05)and the PRs of Bax proteins were apparently increased with treated time (P<0.05).CONCLUSION: Resveratrol is able to induce the apoptosisin esophageal cancer. This apoptosis may be mediated by down-regulating the apoptosis-regulated gene Bcl-2 and upregulating the expression of apoptosis-regulated gene bax.

  8. Role of the Crosstalk between Autophagy and Apoptosis in Cancer

    Directory of Open Access Journals (Sweden)

    Minfei Su

    2013-01-01

    Full Text Available Autophagy and apoptosis are catabolic pathways essential for organismal homeostasis. Autophagy is normally a cell-survival pathway involving the degradation and recycling of obsolete, damaged, or harmful macromolecular assemblies; however, excess autophagy has been implicated in type II cell death. Apoptosis is the canonical programmed cell death pathway. Autophagy and apoptosis have now been shown to be interconnected by several molecular nodes of crosstalk, enabling the coordinate regulation of degradation by these pathways. Normally, autophagy and apoptosis are both tumor suppressor pathways. Autophagy fulfils this role as it facilitates the degradation of oncogenic molecules, preventing development of cancers, while apoptosis prevents the survival of cancer cells. Consequently, defective or inadequate levels of either autophagy or apoptosis can lead to cancer. However, autophagy appears to have a dual role in cancer, as it has now been shown that autophagy also facilitates the survival of tumor cells in stress conditions such as hypoxic or low-nutrition environments. Here we review the multiple molecular mechanisms of coordination of autophagy and apoptosis and the role of the proteins involved in this crosstalk in cancer. A comprehensive understanding of the interconnectivity of autophagy and apoptosis is essential for the development of effective cancer therapeutics.

  9. Apoptosis and T cell depletion during feline infectious peritonitis

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Egberink, H.F.

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activa

  10. Apoptosis of Cancer Cells Induced by HAP Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; LI Shipu; YAN Yuhua; WANG Youfa; CAO Xianying

    2005-01-01

    To confirm apoptosis is one of the hepatoma cells death pathways after HAP nanoparticles absorption, hepatoma cells were collected for ultrathin sections preparation and examined under a transmission electron microscope (TEM) after 1 h incubation with HAP nanoparticle. Apoptosis was detected by TUNEL technique. After absorption, some vacuoles with membrane containing HAP nanoparticles were found in cytoplasma.The nuclear envelope shrinked, and some area pullulated from nucleus. The karyotin became pycnosis and assembled at the edge. An apoptosis body was found. And the data of IOD and numbers of the positive apoptosic signals in nuclear area of slides could illustrate much more apoptosis in the HAP group than those in the control group ( P < 0.001 ). The experimental results indicate that the HAP nanoparticles can induce cancer cells apoptosis.

  11. Apoptosis in skeletal muscle and its relevance to atrophy

    Institute of Scientific and Technical Information of China (English)

    Esther E Dupont-Versteegden

    2006-01-01

    Apoptosis is necessary for maintaining the integrity of proliferative tissues, such as epithelial cells of the gastrointestinal system. The role of apoptosis in post mitotic tissues, such as skeletal muscle, is less well defined. Apoptosis during muscle atrophy occurs in both myonuclei and other muscle cell types. Apoptosis of myonuclei likely contributes to the loss of muscle mass, but the mechanisms underlying this process are largely unknown. Caspase-dependent as well as -independent pathways have been implicated and the mode by which atrophy is induced likely determines the apoptotic mechanisms that are utilized. It remains to be determined whether a decrease in apoptosis will alleviate atrophy and distinct research strategies may be required for different causes of skeletal muscle loss.

  12. Identification of genes responsive to apoptosis in HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    Wei JIN; Le-feng QU; Ping MIN; Shan CHEN; Hong LI; He LU; Yong-tai HOU

    2004-01-01

    AIM: To identify genes responsive to apoptosis in HL-60 cells treated by homoharringtonine. METHODS: cDNA microarray technology was used to detect gene expression and the result of microarrays for genes (TIEG and VDUP1) was confirmed by Northern analysis. RESULTS: Seventy-five individual mRNAs whose mass changed significantly were identified. Among these genes (25 were up-regulated and 50 were down-regulated), most are known related to oncogenes and tumor suppressor. Some genes were involved in apoptosis signaling pathways.CONCLUSION: TGFβ and TNF apoptosis signaling pathways were initiated during apoptosis in HL-60 cells.TIEG and VDUP1 play important roles in mediating apoptosis.

  13. Periodontal Ligament Stem Cells Regulate Apoptosis of Neutrophils

    Science.gov (United States)

    Wang, Qing; Ding, Gang; Xu, Xin

    2017-01-01

    Abstract Periodontal ligament stem cells (PDLSCs) are promising cell resource for the cell-based therapy for periodontitis and regeneration of bio-root. In this study, we investigated the effect of PDLSCs on neutrophil, a critical constituent of innate immunity, and the underlying mechanisms. The effect of PDLSCs on the proliferation and apoptosis of resting neutrophils and IL-8 activated neutrophils was tested under cell-cell contact culture and Transwell culture, with or without anti-IL-6 neutralizing antibody. We found that PDLSCs could promote the proliferation and reduce the apoptosis of neutrophils whether under cell-cell contact or Transwell culture. Anti-IL-6 antibody reduced PDLSCs-mediated inhibition of neutrophil apoptosis. IL-6 at the concentration of 10ng/ml and 20ng/ml could inhibit neutrophil apoptosis statistically. Collectively, PDLSCs could reduce the apoptosis of neutrophils via IL-6.

  14. Simplified evaluation of apoptosis using the Muse cell analyzer.

    Science.gov (United States)

    Khan, Asima; Gillis, Katherine; Clor, Julie; Tyagarajan, Kamala

    2012-01-01

    The degree of apoptosis in a cell population is an important parameter of cell health and is characterized by distinct morphological changes. Current methods of accurate detection and measurement of cellular apoptosis require expensive and complicated instrument platforms and expertise. The Muse Cell Analyzer is a unique instrument that enables multidimensional cell health analysis on a single platform. In this study, we used the Muse Cell Analyzer for apoptosis studies using the Muse Annexin V & Dead Cell Assay. The assay is based on the detection of phosphatidylserine (PS) on the surface of apoptotic cells. The results obtained from Muse Cell Analyzer were compared with traditional methods for apoptosis analysis. Our results indicate that Muse Annexin V & Dead Cell Assay and software module enabled the acquisition of accurate and highly precise measurements of cellular apoptosis. The assay is versatile and works with both suspension and adherent cell lines and multiple treatment conditions.

  15. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress

    Directory of Open Access Journals (Sweden)

    Becker DF

    2012-02-01

    Full Text Available Sathish Kumar Natarajan, Donald F BeckerDepartment of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NEAbstract: Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF, proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of

  16. Quercetin-induced apoptosis prevents EBV infection.

    Science.gov (United States)

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Cho, Hyosun; Kang, Hyojeung

    2015-05-20

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.

  17. Apoptosis in thymus of teleost fish.

    Science.gov (United States)

    Romano, Nicla; Ceccarelli, Giuseppina; Caprera, Cecilia; Caccia, Elisabetta; Baldassini, Maria Rosaria; Marino, Giovanna

    2013-08-01

    The presence and distribution of apoptotic cells during thymus development and in adult were studied by in situ end-labelling of fragmented DNA in three temperate species carp (Cyprinus carpio), sea bass (Dicentrarchus labrax) and dusky grouper (Epinephelus marginatus) and in the adult thymus of three Antarctic species belonging to the genus Trematomus spp. During thymus development some few isolated apoptotic cell (AC) firstly appeared in the central-external part of the organ (carp: 5 days ph; sea bass: 35 days ph grouper: 43 days ph). Initially the cells were isolated and then increased in number and aggregated in small groups in the outer-cortical region of the thymus larvae. The high density of apoptotic cells was observed in the junction between cortex and medulla from its appearance (border between cortex and medulla, BCM). ACs decreased in number in juveniles and adult as well as the ACs average diameter. In late juveniles and in adulthood, the apoptosis were restricted to the cortex. In Antarctic species the thymus is highly adapted to low temperature (high vascularisation to effort the circulation of glycoproteins enriched plasma and strongly compact parenchyma). The apoptosis process was more extended (4-7 fold) as compare with the thymus of temperate species, even if the distribution of ACs was similar in all examined species. Data suggested a common process of T lymphocyte negative-selection in BCM of thymus during the ontogeny. The selection process seems to be still active in adult polar fish, but restricted mainly in the cortex zone.

  18. Endoplasmic reticulum quality control and apoptosis.

    Science.gov (United States)

    Groenendyk, Jody; Michalak, Marek

    2005-01-01

    The ER is one of the most important folding compartments within the cell, as well as an intracellular Ca(2+) storage organelle and it contains a number of Ca(2+) regulated molecular chaperones responsible for the proper folding of glycosylated as well as non-glycosylated proteins. The luminal environment of the ER contains Ca(2+) which is involved in regulating chaperones such as calnexin and calreticulin, as well as apoptotic proteins caspase-12 and Bap31, which may play an important role in determining cellular sensitivity to ER stress and apoptosis. The ER quality control system consists of several molecular chaperones, including calnexin, that assist in properly folding proteins and transporting them through the ER as well as sensing misfolded proteins, attempting to refold them and if this is not possible, targeting them for degradation. Accumulation of misfolded protein in the ER leads to activation of genes responsible for the expression of ER chaperones. The UPR mechanism involves transcriptional activation of chaperones by the membrane-localized transcription factor ATF6, in conjunction with the ER membrane kinase IRE1, as well as translational repression of protein synthesis by another ER membrane kinase PERK. When accumulation of misfolded protein becomes toxic, apoptosis is triggered, potentially with IRE1 involved in signaling via caspase-12. Both the extrinsic and intrinsic apoptotic pathways appear to culminate in the activation of caspases and this results in the recruitment of mitochondria in an essential amplifying manner. Bap31 may direct pro-apoptotic crosstalk between the ER and the mitochondria via Ca(2+) in conjunction with caspase-12 and calnexin. Accordingly, ER stress and the resultant Ca(2+) release must be very carefully regulated because of their effects in virtually all areas of cell function.

  19. APOPTOSIS OF HYPERPLASIA AND CANCER OF THE GALLBLADDER WITH CALCULAS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To investigate the relation between different extent of proliferation caused by gallstone and gallbladder cancer by counting the proliferation and the apoptosis of the gallbladder cancer for the clinically prevention of the gallbladder carcinoma.Methods:The TUNEL method was used to detect the apoptosis of the specimens and the mean apoptosis indices obtained by quantification of apoptosis cells flurescence by laser scanning confocal microscope were compared among the varible pathological paterns,Results:The mean apoptosis indexed in the mormal and abnormal specimens with cholecystits,simple hyperplasia,low-grade dysplasia,mid-grade dysplasia,high-grade dysplasia and carcinoma were 5.11,5.49,6.32,8.65,12.27,25.24,39.62,119.8,respectively.There was significant difference among the variable pathological patterns and as the lesion progressing,the index went up gradually with the carcinoma had the highest index.Conclusion:the apoptosis indexes increase with the pathological progress during the carcinogenesis of gallbladder cancer caused by lithiasis,which stimulate the epithelium for long time and result in an increasing of the apoptosis;and it may play an important role in the carcinogenesis of gallbladder cancer.

  20. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei

    2008-01-01

    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  1. Mechanisms and Biomarkers of Apoptosis in Liver Disease and Fibrosis

    Directory of Open Access Journals (Sweden)

    Jayashree Bagchi Chakraborty

    2012-01-01

    Full Text Available Liver fibrosis and cirrhosis are a major cause of morbidity and mortality worldwide. Development of the fibrotic scar is an outcome of chronic liver diseases of varying aetiologies including alcoholic liver disease (ALD nonalcoholic liver disease (NAFLD including non-alcoholic steatohepatitis (NASH viral hepatitis B and C (HBV, HCV. The critical step in the development of scar is activation of hepatic stellate cells (HSCs, which become the primary source of extracellular matrix. Aberrant apoptosis is a feature of chronic liver diseases and is associated with worsening stages of fibrosis. However, apoptosis is also the main mechanism promoting the resolution of fibrosis, and spontaneous or targeted apoptosis of HSC is associated with regression of fibrosis in animal models and patients with chronic liver disease. Given the importance of apoptosis in disease progression and resolution, there is much interest in precisely delineating the mechanisms involved and also developing biomarkers that accurately reflect the underlying pathogenesis. Here, we review the mechanisms driving apoptosis in development of liver disease and use of apoptosis -related biomarkers to aid in clinical diagnosis. Finally, we will also examine the recent literature regarding new insights into mechanisms involved in apoptosis of activated HSCs as possible method of fibrosis regression.

  2. Smad2 is Involved in Aggregatibacter actinomycetemcomitans-induced Apoptosis

    Science.gov (United States)

    Yoshimoto, T.; Fujita, T.; Ouhara, K.; Kajiya, M.; Imai, H.; Shiba, H.; Kurihara, H.

    2014-01-01

    Apoptosis is thought to contribute to the progression of periodontitis. It has been suggested that the apoptosis of epithelial cells may contribute to the loss of epithelial barrier function. Smad2, a downstream signaling molecule of TGF-β receptors (TGF-βRs), is critically involved in apoptosis in several cell types. However, the relationship between smad2 and bacteria-induced apoptosis has not yet been elucidated. It is possible that the regulation of apoptosis induced by periodontopathic bacteria may lead to novel preventive therapies for periodontitis. Therefore, in the present study, we investigated the involvement of smad2 phosphorylation in apoptosis of human gingival epithelial cells induced by Aggregatibacter actinomycetemcomitans (Aa). Aa apparently induced the phosphorylation of smad2 in primary human gingival epithelial cells (HGECs) or the human gingival epithelial cell line, OBA9 cells. In addition, Aa induced phosphorylation of the serine residue of the TGF-β type I receptor (TGF-βRI) in OBA9 cells. SB431542 (a TGF-βRI inhibitor) and siRNA transfection for TGF-βRI, which reduced both TGF-βRI mRNA and protein levels, markedly attenuated the Aa-induced phosphorylation of smad2. Furthermore, the disruption of TGF-βRI signaling cascade by SB431542 and siRNA transfection for TGF-βRI abrogated the activation of cleaved caspase-3 expression and repressed apoptosis in OBA9 cells treated with Aa. Thus, Aa induced apoptosis in gingival epithelial cells by activating the TGF-βRI-smad2-caspase-3 signaling pathway. The results of the present study may suggest that the periodontopathic bacteria, Aa, activates the TGF-βR/smad2 signaling pathway in human gingival epithelial cells and induces apoptosis in epithelial cells, which may lead to new therapeutic strategies that modulate the initiation of periodontitis. PMID:25192897

  3. The interplays between autophagy and apoptosis induced by enterovirus 71.

    Directory of Open Access Journals (Sweden)

    Xueyan Xi

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is the causative agent of human diseases with distinct severity, from mild hand, foot and mouth disease to severe neurological syndromes, such as encephalitis and meningitis. The lack of understanding of viral pathogenesis as well as lack of efficient vaccine and drugs against this virus impedes the control of EV71 infection. EV71 virus induces autophagy and apoptosis; however, the relationship between EV71-induced autophagy and apoptosis as well as the influence of autophagy and apoptosis on virus virulence remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, it was observed that the Anhui strain of EV71 induced autophagy and apoptosis in human rhabdomyosarcoma (RD-A cells. Additionally, by either applying chemical inhibitors or knocking down single essential autophagic or apoptotic genes, inhibition of EV71 induced autophagy inhibited the apoptosis both at the autophagosome formation stage and autophagy execution stage. However, inhibition of autophagy at the stage of autophagosome and lysosome fusion promoted apoptosis. In reverse, the inhibition of EV71-induced apoptosis contributed to the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I to LC3-II and degradation of sequestosome 1 (SQSTM1/P62. Furthermore, the inhibition of autophagy in the autophagsome formation stage or apoptosis decreased the release of EV71 viral particles. CONCLUSIONS/SIGNIFICANCE: In conclusion, the results of this study not only revealed novel aspect of the interplay between autophagy and apoptosis in EV71 infection, but also provided a new insight to control EV71 infection.

  4. INHIBITION OF SPONTANEOUS APOPTOSIS IN HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    邵志敏; 江明; 吴炅; 余黎民; 韩企夏; 张延璆; 沈镇宙

    1996-01-01

    Breast tumorigenesis proceeds through an accumulation of specific genetic alteration. Breast malignant transformation is dependent on not only the rate of cell production but also on apoptcsis,a genetically prograined process of autonomous ceil death. We investigated whether breast tumorigenesis involved an altered susceptibility to apoptosis and proliferation by examining normal breast epithelium and breast cancer sampies. We found there is a great inhibition of spontaneous apoptosis in breast cancer ceils compared with normal breast epithelium. The inhibition of apoptosis in breast cancer may contribute to neoplastic transformation.

  5. Executionary pathway for apoptosis: lessons from mutant mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Apoptosis or programmed cell death (PCD) is an evolutionarily conserved cellular process that is essential for normal development and homeostasis of multicellular organisms. Defects in the apoptosis signaling result in many diseases including autoimmune diseases and cancer. The apoptosis signaling pathway was first described genetically in the nematode Caenorhabditis elegans which serves as a framework for the more complex apop totic pathways that exist in mammals. In this review, we will discuss the apoptotic pathways that are emerging in mammals as elucidated by studies of gene-targeted mutant mice.

  6. ING1 induces apoptosis through direct effects at the mitochondria

    DEFF Research Database (Denmark)

    Bose, P; Thakur, S; Thalappilly, S;

    2013-01-01

    The ING family of tumor suppressors acts as readers and writers of the histone epigenetic code, affecting DNA repair, chromatin remodeling, cellular senescence, cell cycle regulation and apoptosis. The best characterized member of the ING family, ING1,interacts with the proliferating cell nuclear...... translocates to the mitochondria of primary fibroblasts and established epithelial cell lines in response to apoptosis inducing stimuli, independent of the cellular p53 status. The ability of ING1 to induce apoptosis in various breast cancer cell lines correlates well with its degree of translocation...

  7. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy.

    Science.gov (United States)

    Dirks-Naylor, Amie J; Griffiths, Carrie L

    2009-10-01

    Glucocorticoid-induced myopathy is a common side effect of chronic glucocorticoid therapy. Several mechanisms are currently being examined as ways in which glucocorticoid-induced myopathy occurs. These include apoptotic signaling through mitochondrial-mediated and Fas-mediated apoptosis, the role of the proteosome, the suppression of the IGF-1 signaling, and the role of ceramide in glucocorticoid-induced apoptosis and myopathy. It is difficult to differentiate which mechanism may be the initiating event responsible for the induction of apoptosis; however, all of the mechanisms play a vital role in glucocorticoid-induced myopathy.

  8. Stochastic modeling of p53-regulated apoptosis upon radiation damage

    CERN Document Server

    Bhatt, Divesh; Bahar, Ivet

    2011-01-01

    We develop and study the evolution of a model of radiation induced apoptosis in cells using stochastic simulations, and identified key protein targets for effective mitigation of radiation damage. We identified several key proteins associated with cellular apoptosis using an extensive literature survey. In particular, we focus on the p53 transcription dependent and p53 transcription independent pathways for mitochondrial apoptosis. Our model reproduces known p53 oscillations following radiation damage. The key, experimentally testable hypotheses that we generate are - inhibition of PUMA is an effective strategy for mitigation of radiation damage if the treatment is administered immediately, at later stages following radiation damage, inhibition of tBid is more effective.

  9. Differentiation and apoptosis in human immortalized sebocytes.

    Science.gov (United States)

    Wróbel, Anna; Seltmann, Holger; Fimmel, Sabine; Müller-Decker, Karin; Tsukada, Miki; Bogdanoff, Birgit; Mandt, Nathalie; Blume-Peytavi, Ulrike; Orfanos, Constantin E; Zouboulis, Christos C

    2003-02-01

    Increased cell volume, accumulation of lipid droplets in the cytoplasm, and nuclear degeneration are phenomena indicating terminal differentiation of human sebocytes followed by holocrine secretion and cell death. The molecular pathways of natural and induced sebocyte elimination are still unknown, however. In this study, SZ95 sebocytes were found to exhibit DNA fragmentation after a 6 h culture followed by increased lactate dehydrogenase release after 24 h, indicating cell damage. With the help of morphologic studies and using Oil Red detection of cellular lipids, cell enlargement, accumulation of lipid droplets in the cytoplasm, and nuclear fragmentation could be observed under treatment with arachidonic acid. Staurosporine, a potent inhibitor of phospholipid Ca2+-dependent protein kinase, increased externalized phosphatidylserine levels on SZ95 sebocytes, detected by annexin V/propidium iodide flow cytometry, as early as after 1 h, whereas dose-dependent reduction of bcl-2 mRNA and protein expression, enhanced DNA fragmentation, and increased caspase 3 levels, detected by caspase 3 inhibitor/propidium iodide flow cytometry, were found after 6 h of treatment. SZ95 sebocyte death was detected as early as after 6 h of SZ95 sebocyte treatment with high staurosporine concentrations (10(-6)-10(-5) M). 5Alpha-dihydrotestosterone (10(-8)-10(-5) M) did not affect externalized phosphatidylserine levels and DNA fragmentation in SZ95 sebocytes but slightly decreased lactate dehydrogenase cell release. Neither acitretin nor 13-cis retinoic acid (10(-8)-10(-5) M) affected externalized phosphatidylserine levels, DNA fragmentation, and lactate dehydrogenase cell release, despite the increased caspase 3 levels under treatment with 13-cis retinoic acid. The combined staurosporine and 13-cis retinoic acid treatment enhanced DNA fragmentation in SZ95 sebocytes to the same magnitude as in cells only treated with staurosporine. In conclusion, SZ95 sebocytes in vitro undergo apoptosis

  10. Overexpressed TP73 induces apoptosis in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Perlaky Laszlo

    2007-07-01

    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and

  11. Cytokines and Pancreatic β-Cell Apoptosis.

    Science.gov (United States)

    Berchtold, L A; Prause, M; Størling, J; Mandrup-Poulsen, T

    Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.

  12. Effect of Celecoxib on Apoptosis of Endometrial Carcinoma Cell

    Institute of Scientific and Technical Information of China (English)

    SHENG Xiu-jie; FANG Zhao

    2007-01-01

    Objective: To investigate the effect of Celecoxib on proliferation and apoptosis of the endometrial carcinoma cell HEC-1B and the effect on the expression of Fas and Survivin mRNA. Methods: The inhibition on the growth of human endometrial carcinoma cell HEC-1B was investigated by cell culture and MTT experiment when treated with different concentrations of Celecoxib. The cell apoptosis was detected by flow cytometry and DNA Ladder Electrophoresis. The change of the expression of Fas and Survivin mRNA after the treatment of Celecoxib was detected With RT-PCR. Results: Celecoxib could effectively inhibit the growth of HEC-1B cells and induce apoptosis. Survivin mRNA expression was decreased and Fas mRNA expression was increased after treating with Celecoxib. Conclusion: Celecoxib could inhibit HEC-1B cell proliferation and induce its apoptosis.

  13. Induction of Apoptosis by Hypertension Via Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Yingying Sun

    2015-02-01

    Full Text Available Background/Aims: Endoplasmic reticulum (ER stress is one of the intrinsic apoptosis pathways, and cardiac apoptosis can occur in cardiovascular diseases, such as hypertension. However, the mechanisms by which ER stress leads to apoptosis remain enigmatic, particularly in the progression from cardiac hypertrophy to diastolic heart failure due to hypertension. Methods: We used spontaneously hypertensive rats (SHRs to investigate possible signalling pathways for ER stress. Results: We found that cardiac protein and mRNA levels of glucose-regulated protein 78 were up-regulated. In addition, the CHOP- and caspase-12-dependent pathways, but not that of JNK, were activated in the SHR rats. Conclusions: These results suggest that ER stress can contribute to myocardial apoptosis during hypertensive disease.

  14. MODERN TECHNOLOGIES AND APPROACHES TO APOPTOSIS STUDIES IN EXPERIMENTAL BIOLOGY

    Directory of Open Access Journals (Sweden)

    I. V. Kudriavtsev

    2012-01-01

    Full Text Available Abstract. This review is focused on analysis of currently used flow cytometric methods designed foridentifying apoptotic cells in various invertebrate and vertebrate species. Apoptosis can be characterized by stage-specific morphological and biochemical changes that are typical to all kinds of eukaryotic cells. In this article, we consider different techniques of apoptosis detection based on assessment of cellular morphology and plasma membrane alterations, activation of intracellular enzymes and components of a caspase cascade, as well as DNA fragmentation and failure of mitochondrial transmembrane potential, as assessed in various animal groups. Apoptosis recognized as a key mechanism aiming at maintenance of cellular homeostasis in multicellular organisms, and such investigations represent a necessary component of fundamental and applied studies in diverse fields of experimental biology and immunology. A broad spectrum of apoptosis markers isused, and the preference is given to optimal approaches, as determined by experimental tasks, and technical opportunities of the laboratory.

  15. Control of Apoptosis in Treatment and Biology of Pancreatic Cancer.

    Science.gov (United States)

    Modi, Shrey; Kir, Devika; Banerjee, Sulagna; Saluja, Ashok

    2016-02-01

    Pancreatic cancer is estimated to be the 12th most common cancer in the United States in 2014 and yet this malignancy is the fourth leading cause of cancer-related death in the United States. Late detection and resistance to therapy are the major causes for its dismal prognosis. Apoptosis is an actively orchestrated cell death mechanism that serves to maintain tissue homoeostasis. Cancer develops from normal cells by accruing significant changes through one or more mechanisms, leading to DNA damage and mutations, which in a normal cell would induce this programmed cell death pathway. As a result, evasion of apoptosis is one of the hallmarks of cancer cells. PDAC is notoriously resistant to apoptosis, thereby explaining its aggressive nature and resistance to conventional treatment modalities. The current review is focus on understanding different intrinsic and extrinsic pathways in pancreatic cancer that may affect apoptosis in this disease.

  16. Key role of mitochondria in apoptosis of lymphocytes.

    Science.gov (United States)

    Boichuk, S V; Minnebaev, M M; Mustafin, I G

    2001-12-01

    Changes in the mitochondrial potential, expression of phosphatidylserine, parameters of direct and lateral light scattering, and DNA fragmentation during spontaneous and induced apoptosis in peripheral blood lymphocytes were studied by flow cytofluorometry. Dexamethasone and Ca2+ ionophore A23187 served as inductors of apoptosis. A decrease in the mitochondrial potential is an early sign of spontaneous and induced apoptosis. Phosphatidylserine expression on the outer plasma membrane occurred later and inversely depended on the mitochondrial potential. Our results indicate that the involvement of mitochondria in spontaneous and induced apoptosis accompanied by a decrease in the mitochondrial potential is an early and key event of programmed lymphocyte death. The decrease in the mitochondrial potential of lymphocytes induced degradation of their nuclei (DNA fragmentation) and promoted elimination of apoptotic cells (phosphatidylserine expression).

  17. Apoptosis and the target genes of microRNA-21

    Institute of Scientific and Technical Information of China (English)

    Lindsey E. Becker Buscaglia; Yong Li

    2011-01-01

    MicroRNA-21 (miR-21) is frequently up-regulated in cancer and the majodty of its reported targets are tumor suppressors. Through functional suppression, miR-21 is implicated in practically every walk of oncogenic life: the promotion of cell proliferation, invasion and metastasis, genome instability and mutation, inflammation, replicative immortalization, abnormal metabolism, angiogenesis, and evading apoptosis, immune destruction, and growth suppressors. In particular, miR-21 is strongly involved in apoptosis. In this article, we reviewed the experimentally validated targets of miR-21 and found that two thirds are linked to intrinsic and/or extrinsic pathways of cellular apoptosis. This suggests that miR-21 is an oncogene which plays a key role in resisting programmed cell death in cancer cells and that targeting apoptosis is a viable therapeutic option against cancers expressing miR-21.

  18. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ewelina Szliszka

    2009-12-01

    Full Text Available Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showed that all five tested chalcones: chalcone, licochalcone-A, isobavachalcone, xanthohumol, butein markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer.

  19. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  20. APOPTOSIS INDUCTION BY THE RECOMBINANT FUSION APOPTOSIS INDUCING FACTOR ON HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    于翠娟; 孟艳玲; 桂俊豪; 赵晶; 金明; 王智; 王成济; 杨安钢

    2003-01-01

    Objective: To obtain the recombinant fusion AIF genes inserted into the eukaryotic expression vector Pires2-EGFP, to observe the expression and location of the fusion AIF genes (3NE: PE(280-358)-AIFΔ1-120, and 4NE: PE(280-364)-AIFΔ1-120), and to detect and compare their apoptosis inducing effects on the transfected HeLa cells. Methods: Full-length human AIF gene was cloned by RT-PCR, and its N-terminal mitochondrial localization sequence (MLS) was replaced by part sequence of Psuedomonas exotoxin A (PE) translocation domain (PEII(280-358/364)), then the recombinant fusion genes were inserted into the Pires2-EGFP eukaryotic expression vector. After these genes were transiently transfected into HeLa cells with LipofectAmine, the expression of the recombinant fusion AIF genes and their effects on HeLa cells were detected by fluorescent microscopy, laser confocal microscopy and electron microscopy. Results: The eukaryotic expression vectors containing the recombinant fusion AIF genes (Pires2-EGFP-PEII(280-358/364)- AIFΔ1- 120) were constructed successfully. It was demonstrated that the fusion AIF protein genes were expressed effectively in the transfected cells, with the GFP comco-expressed in cells by indirect immunofluorescence staining analysis. After transfection, expression of the genes could induce HeLa cells to exhibit the typical apoptosis features: such as plasma membrane blebbing and peripheral chromatin condensation. As compared with control groups, the untreated cells and the void vector transfected cells, the living cell number of the AIF gene transfected cells reduced distinctly. Conclusion: Our data prove that the expression of the recombinant human AIF fusion genes could induce apoptosis in transfected HeLa cells, which provides new strategy for cancer killing.

  1. Determinants of PDT-induced apoptosis

    Science.gov (United States)

    Kessel, David; Luo, Yu; Kim, Hyeong-Reh C.

    2000-03-01

    Photodynamic therapy can initiate cell death by apoptosis or necrosis. Using agents with known patterns of sub-cellular localization, we examined the correlation between sites of photodamage and the mode of cell death, using murine leukemia cells in vitro. Mitochondrial or mitochondrial/lysosomal photodamage caused the rapid release of cytochrome c. This effect was not temperature sensitive, and could be demonstrated immediately after irradiation of photosensitized cells at 10 degrees C. Subsequent warming to 37 degrees C led to a rapid apoptotic response, consistent with the known ability of cytochrome c to trigger the activation of caspase-3. In contrast, lysosomal or lysosomal/membrane photodamage resulted in the release of cathepsins and other proteolytic enzymes. A subsequent incubation at 37 degrees C resulted in mitochondrial degradation, leading to loss of cytochrome c within 30 min. The apoptotic response was both delayed and incomplete, with many dead cells not exhibiting an apoptotic morphology. The latter outcome was traced to photodamage to procaspase-3, an effect not observed with sensitizers that caused mainly mitochondrial photodamage. Studies in a cell-free system demonstrated that agents with lysosomal and/or membrane targets could bring about photoinactivation of caspase-3. These result are consistent with the proposal that photodynamic therapy can both activate and inactivate components of the apoptotic process.

  2. Social apoptosis in honey bee superorganisms

    Science.gov (United States)

    Page, Paul; Lin, Zheguang; Buawangpong, Ninat; Zheng, Huoqing; Hu, Fuliang; Neumann, Peter; Chantawannakul, Panuwan; Dietemann, Vincent

    2016-01-01

    Eusocial insect colonies form superorganisms, in which nestmates cooperate and use social immunity to combat parasites. However, social immunity may fail in case of emerging diseases. This is the case for the ectoparasitic mite Varroa destructor, which switched hosts from the Eastern honeybee, Apis cerana, to the Western honey bee, Apis mellifera, and currently is the greatest threat to A. mellifera apiculture globally. Here, we show that immature workers of the mite’s original host, A. cerana, are more susceptible to V. destructor infestations than those of its new host, thereby enabling more efficient social immunity and contributing to colony survival. This counterintuitive result shows that susceptible individuals can foster superorganism survival, offering empirical support to theoretical arguments about the adaptive value of worker suicide in social insects. Altruistic suicide of immature bees constitutes a social analogue of apoptosis, as it prevents the spread of infections by sacrificing parts of the whole organism, and unveils a novel form of transgenerational social immunity in honey bees. Taking into account the key role of susceptible immature bees in social immunity will improve breeding efforts to mitigate the unsustainably high colony losses of Western honey bees due to V. destructor infestations worldwide. PMID:27264643

  3. Coronavirus infection, ER stress and Apoptosis

    Directory of Open Access Journals (Sweden)

    TO SING eFUNG

    2014-06-01

    Full Text Available The replication of coronavirus, a family of important animal and human pathogens, is closely associated with the cellular membrane compartments, especially the endoplasmic reticulum (ER. Coronavirus infection of cultured cells was previously shown to cause ER stress and induce the unfolded protein response (UPR, a process that aims to restore the ER homeostasis by global translation shutdown and increasing the ER folding capacity. However under prolonged ER stress, UPR can also induce apoptotic cell death. Accumulating evidence from recent studies has shown that induction of ER stress and UPR may constitute a major aspect of coronavirus-host interaction. Activation of the three branches of UPR modulates a wide variety of signaling pathways, such as mitogen-activated protein (MAP kinases activation, autophagy, apoptosis and innate immune response. ER stress and UPR activation may therefore contribute significantly to the viral replication and pathogenesis during coronavirus infection. In this review, we summarize current knowledge on coronavirus-induced ER stress and UPR activation, with emphasis on their cross-talking to apoptotic signaling.

  4. Cerebral ischemia—induced neuronal apoptosis mediated by nitric oxide

    Institute of Scientific and Technical Information of China (English)

    NomuY

    2002-01-01

    To elucidate the cellular and molecular mechanism of cerebral ischemia-induced neuronal apoptosis mediated by nitric oxide (NO) in the brain,we investigated:(1)cell death in hippocampal CA1 neurons of rats after a rransient four vessel occlusion (4VO)/reperfusion and (2) apoptosis induced by NOC18(NO releaser) using SHSY5Y cells,a human neuroblastoma cell line.We found that 4VO caused expression of inducible type of NO synthase (iNOS) in glial cells and neuronal apoptosis in CA1 region of rats.Next we examined in vitro apoptotic effects of NOC18 on SHSY5Y cells and suggest that NO decrease mitochondrial membrane potential,release cytochrome C from mitochondria,activates caspase-3,degrade inhibitor of caspase-activated DNase(Icad),and activated DNase translocate into nucleus and induce DNA fragmentation.Thus we conclude that the excess amount of NO produced by glial iNOS at cerebral ischemia could be involved in neuronal apoptosis in CA1 region.Regarding NO action on neurons,we further obtained that NO propects neuronal apoptosis in PC12 cells perhaps by nitrosylation of caspase,subsequent reduction of proteolytic activity.Taken together,we suggest that NO seem to exert dual effects(toxic and beneficial) on neuronal apoptosis,the one (toxic);apoptosis-induction throuth the decrease in mitochondrial membrane potentials and cytochrome C release and the othe (beneficial);protection against apoptosis through the inhibition of caspase activity.

  5. Apoptosis of human primary gastric carcinoma cells induced by genistein

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Juan-Juan Chen; Wen-Xia Wang; Jian-Ting Cai; Qin Du

    2004-01-01

    AIM: To investigate the apoptosis in primary gastric cancer cells induced by genistein, and the relationship between this apoptosis and expression of bcl-2 and bax.METHODS: MTT assay was used to determine the cell growth inhibitory rate in vitro. Transmission electron microscope and TUNEL staining were used to quantitatively and qualitatively detect the apoptosis of primary gastric cancer cells before and after genistein treatment. Immunohistochemical staining and RT-PCR were used to detect the expression of apoptosisassociated genes bcl-2 and bax.RESULTS: Genistein inhibited the growth of primary gastric cancer cells in dose-and time-dependent manner. Genistein induced primary gastric cancer cells to undergo apoptosis with typically apoptotic characteristics. TUNEL assay showed that after the treatment of primary gastric cancer cells with genistein for 24 to 96 h, the apoptotic rates of primary gastric cancer cells increased time-dependently. Immunohistochemical staining showed that after the treatment of primary gastric cancer cells with genistein for 24 to 96 h, the positivity rates of Bcl-2 proteins were apparently reduced with time and the positivity rates of Bax proteins were apparently increased with time. After exposed to genistein at 20 μmol/L for 24,48, 72 and 96 respectively, the density of bcl-2 mRNA decreased progressively and the density of bax mRNA increased progressively with elongation of time.CONCLUSION: Genistein is able to induce the apoptosis in primary gastric cancer cells. This apoptosis may be mediated by down-regulating the apoptosis- associated bcl-2 gene and up-regulating the expression of apoptosis-associated bax gene.

  6. Peptides Regulate Cortical Thymocytes Differentiation, Proliferation, and Apoptosis

    Directory of Open Access Journals (Sweden)

    V. Kh. Khavinson

    2011-01-01

    Full Text Available The processes of differentiation, proliferation, and apoptosis were studied in a cell culture of human cortical thymocytes under the influence of short peptides T-32 (Glu-Asp-Ala and T-38 (Lys-Glu-Asp. Peptides T-32 and T-38 amplified cortical thymocytes differentiation towards regulatory T cells, increased their proliferative activity, and decreased the level of apoptosis. Moreover, peptides under study stimulated proliferative and antiapoptotic activity of the mature regulatory T cells.

  7. Apoptosis and T cell depletion during feline infectious peritonitis

    OpenAIRE

    Horzinek, M.C.; Haagmans, B. L.; Egberink, H F

    1996-01-01

    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activated T cells. Since feline infectious peritonitis virus does not infect T cells, and viral proteins did not inhibit T-cell proliferation, we postulate that soluble mediators released during the infe...

  8. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells.

    Science.gov (United States)

    Shuid, Ahmad Naqib; Safi, Nikoo; Haghani, Amin; Mehrbod, Parvaneh; Haron, Mohd Syamsul Reza; Tan, Sheau Wei; Omar, Abdul Rahman

    2015-11-01

    Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p < 0.05) followed by late apoptosis at 12 hpi (p < 0.05) and necrosis from 24 hpi (p < 0.05). Then, next generation sequencing was performed on 9 hpi and control uninfected cells by Illumina analyzer. An aggregate of 4546 genes (2229 down-regulated and 2317 up-regulated) from 17 cellular process, 11 molecular functions and 130 possible biological pathways were affected by FIPV. 131 genes from apoptosis cluster (80 down-regulated and 51 up-regulated) along with increase of apoptosis, p53, p38 MAPK, VEGF and chemokines/cytokines signaling pathways were probably involved in apoptosis process. Six of the de-regulated genes expression (RASSF1, BATF2, MAGEB16, PDCD5, TNFα and TRAF2) and TNFα protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.

  9. Enhancement of basophil apoptosis by olopatadine and theophylline.

    Science.gov (United States)

    Kawakami, Ayako; Suzukawa, Maho; Koketsu, Rikiya; Komiya, Akiko; Ohta, Ken; Yamamoto, Kazuhiko; Yamaguchi, Masao

    2008-01-01

    Regulation of basophil survival is an important aspect in the pathogenesis of allergic inflammation associated with local accumulation of basophils. However, pharmacologic modulation of basophil survival is largely unknown except for the apoptosis-enhancing effect of glucocorticoids. We tested the effects of two anti-allergic and anti-asthmatic drugs, olopatadine and theophylline, on basophil survival. Basophils were highly purified from normal human peripheral blood. Apoptosis was analyzed by flow cytometry using annexin V staining or another staining method that detected alterations in the mitochondrial transmembrane potential. In addition to the conventional method using annexin V, basophil apoptosis was successfully established by analysis of the mitochondrial transmembrane potential. Olopatadine decreased the number of live basophils, and they induced apoptosis of basophils during culture. The decline in live basophils was induced by olopatadine even when low doses of IL-3 were included in the culture medium. Theophylline also affected basophil apoptosis and induced a decrease in the number of live basophils. Basophil apoptosis was enhanced by both olopatadine and theophylline. This effect may partly explain the pharmacologic basis of why these drugs are effective on allergic diseases.

  10. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress.

    Science.gov (United States)

    Eno, Colins O; Zhao, Guoping; Venkatanarayan, Avinashnarayan; Wang, Bing; Flores, Elsa R; Li, Chi

    2013-12-01

    The exact roles of lysosomal membrane permeabilization (LMP) in oxidative stress-triggered apoptosis are not completely understood. Here, we first studied the temporal relation between LMP and mitochondrial outer membrane permeabilization (MOMP) during the initial stage of apoptosis caused by the oxidative stress inducer H2O2. Despite its essential role in mediating apoptosis, the expression of the BH3-only Bcl-2 protein Noxa was dispensable for LMP. In contrast, MOMP was dependent on Noxa expression and occurred downstream of LMP. When lysosomal membranes were stabilized by the iron-chelating agent desferrioxamine, H2O2-induced increase in DNA damage, Noxa expression, and subsequent apoptosis were abolished by the inhibition of LMP. Importantly, LMP-induced Noxa expression increase was mediated by p53 and seems to be a unique feature of apoptosis caused by oxidative stress. Finally, exogenous iron loading recapitulated the effects of H2O2 on the expression of BH3-only Bcl-2 proteins. Overall, these data reveal a Noxa-mediated signaling pathway that couples LMP with MOMP and ultimate apoptosis during oxidative stress.

  11. Signaling pathways of the ING proteins in apoptosis.

    Science.gov (United States)

    Shah, Sitar; Riabowol, Karl

    2009-05-01

    Members of the ING family of type II tumor suppressors reside in different chromatin regulatory complexes and are stoichiometeric members of histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes. It has been frequently observed that expressing ING proteins promotes apoptosis in both normal and transformed cells of different species. They have also been reported to either rely upon p53, or to add to its ability to promote programmed cell death (apoptosis) although whether ING proteins require p53 to induce apoptosis is now questionable based upon observations using knockout cell lines and animal models. Genetic studies in model organisms, and particularly in Caenorhabditis elegans, have identified different pathways involved in apoptosis during development, in the germ line and in response to various forms of stress including DNA damage. In this review we summarize structural features of the INGs and recent observations made in knockout models of Mus musculus and Caenorhabditis elegans that have helped to further clarify the functions of the ING proteins in biochemical pathways leading to apoptosis. Based upon these observations we propose a model for how ING proteins may act both independently and in concert with p53 to promote apoptosis.

  12. Differential Apoptosis Radiosensitivity of Neural Progenitors in Adult Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Yu-Qing Li

    2016-06-01

    Full Text Available Mammalian tissue-specific stem cells and progenitors demonstrate differential DNA damage response. Neural progenitors in dentate gyrus of the hippocampus are known to undergo apoptosis after irradiation. Using a mouse model of hippocampal neuronal development, we characterized the apoptosis sensitivity of the different neural progenitor subpopulations in adult mouse dentate gyrus after irradiation. Two different bromodeoxyuridine incorporation paradigms were used for cell fate mapping. We identified two apoptosis sensitive neural progenitor subpopulations after irradiation. The first represented non-proliferative and non-newborn neuroblasts and immature neurons that expressed doublecortin, calretinin or both. The second consisted of proliferative intermediate neural progenitors. The putative radial glia-like neural stem cells or type-1 cells, regardless of proliferation status, were apoptosis resistant after irradiation. There was no evidence of radiation-induced apoptosis in the absence of the Trp53 (p53 gene but absence of Cdkn1a (p21 did not alter the apoptotic response. Upregulation of nuclear p53 was observed in neuroblasts after irradiation. We conclude that adult hippocampal neural progenitors may demonstrate differential p53-dependent apoptosis sensitivity after irradiation.

  13. Fluidization of tissues by cell division and apoptosis.

    Science.gov (United States)

    Ranft, Jonas; Basan, Markus; Elgeti, Jens; Joanny, Jean-François; Prost, Jacques; Jülicher, Frank

    2010-12-07

    During the formation of tissues, cells organize collectively by cell division and apoptosis. The multicellular dynamics of such systems is influenced by mechanical conditions and can give rise to cell rearrangements and movements. We develop a continuum description of tissue dynamics, which describes the stress distribution and the cell flow field on large scales. In the absence of division and apoptosis, we consider the tissue to behave as an elastic solid. Cell division and apoptosis introduce stress sources that, in general, are anisotropic. By combining cell number balance with dynamic equations for the stress source, we show that the tissue effectively behaves as a viscoelastic fluid with a relaxation time set by the rates of division and apoptosis. If the system is confined in a fixed volume, it reaches a homeostatic state in which division and apoptosis balance. In this state, cells undergo a diffusive random motion driven by the stochasticity of division and apoptosis. We calculate the expression for the effective diffusion coefficient as a function of the tissue parameters and compare our results concerning both diffusion and viscosity to simulations of multicellular systems using dissipative particle dynamics.

  14. Apoptosis of wound fibroblasts induced by oxidative stress.

    Science.gov (United States)

    Takahashi, Atsushi; Aoshiba, Kazutetsu; Nagai, Atsushi

    2002-06-01

    Irreversible lung parenchymal injury is usually healed by fibrosis, which depends on the abilities of fibroblasts to proliferate, migrate into the wound, and survive. Because the lung is frequently exposed to increased oxidative stress, which is thought to mediate apoptosis, we examined whether oxidative stress induces apoptosis in fibroblasts during wound healing. We performed an in vitro scratch wound assay where cultured fibroblast monolayers were exposed to H2O2 (10-500 microM) after artificial wounding. Apoptosis was evaluated by nuclear staining with Hoechst33342 or terminal deoxynucleotidyl transferase (TdT)-mediated nucleotide nick end-labeling (TUNEL). Intracellular oxidants were assessed with the peroxide-sensitive fluorochrome carboxydichlorodihydrofluorescein (CDCF). We found that repopulating fibroblasts at the wound margin, but not quiescent fibroblasts at the intact site, selectively underwent oxidant accumulation and apoptosis in response to H2O2 exposure. Some of the apoptotic cells had incorporated bromodeoxyuridine (BrdU), an indicator of proliferating cells. These results suggest that oxidative stress selectively induces apoptosis in fibroblasts that are stimulated to proliferate and/or migrate into the wound. Fibroblast apoptosis induced by oxidative stress during wound repopulation may be relevant to intractable wound healing.

  15. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.

    Science.gov (United States)

    Zheng, Xingnan; He, Kan; Zhang, Lin; Yu, Jian

    2013-05-01

    Oncogenic alterations in MET or anaplastic lymphoma kinase (ALK) have been identified in a variety of human cancers. Crizotinib (PF02341066) is a dual MET and ALK inhibitor and approved for the treatment of a subset of non-small cell lung carcinoma and in clinical development for other malignancies. Crizotinib can induce apoptosis in cancer cells, whereas the underlying mechanisms are not well understood. In this study, we found that crizotinib induces apoptosis in colon cancer cells through the BH3-only protein PUMA. In cells with wild-type p53, crizotinib induces rapid induction of PUMA and Bim accompanied by p53 stabilization and DNA damage response. The induction of PUMA and Bim is mediated largely by p53, and deficiency in PUMA or p53, but not Bim, blocks crizotinib-induced apoptosis. Interestingly, MET knockdown led to selective induction of PUMA, but not Bim or p53. Crizotinib also induced PUMA-dependent apoptosis in p53-deficient colon cancer cells and synergized with gefitinib or sorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and therapeutic responses to crizotinib in xenograft models. These results establish a critical role of PUMA in mediating apoptotic responses of colon cancer cells to crizotinib and suggest that mechanisms of oncogenic addiction to MET/ALK-mediated survival may be cell type-specific. These findings have important implications for future clinical development of crizotinib.

  16. Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura

    NARCIS (Netherlands)

    Houwerzijl, EJ; Blom, NR; van der Want, JJL; Esselink, MT; Koornstra, JJ; Smit, JW; Louwes, H; Vellenga, E; de Wolf, JTM

    2004-01-01

    To investigate whether altered megakaryocyte morphology contributes to reduced platelet production in idiopathic thrombocytopenic purpura (ITP), ultrastructural analysis of megakaryocytes was performed in 11 ITP patients. Ultrastructural abnormalities compatible with (para-)apoptosis were present in

  17. Advance research in apoptosis mediating by death receptor

    Institute of Scientific and Technical Information of China (English)

    JI Yu-bin; LIU Hong-juan; JI Chen-feng; ZHANG He

    2008-01-01

    Apoptosis is one of the main types of programmed cell deaths (PCD) and involves a series of biochemical events that lead to a variety of morphological changes and death. The initial and progress of apoptosis is precisely regulated. This review will summarize current knowledge of the signal transduction pathways of apoptosis. It is now well-established that the apoptotic signals generally involve the extrinsic or intrinsic pathways of apoptosis. The extrinsic pathway originates at the membrane and engages cell surface death receptors whereas the intrinsic pathway predominantly involves mitochondria. In the intrinsic pathway, the cell death signal induced changes of mitochondrial membrane permeability and the loss of membrane potential. Many proteins factors released, and then cytoplasmic cytochrome C and easpase-9 form of apoptosis. The activated caspase-9 cut caspase-3, then cell dead at last. In the case of extrinsic pathway, several death receptors exist including Fas, TNFR-1, DR3, DR4, DR5 and DR6. These death receptors contain an intracellular region of approximately 80 amino acids that is designated as "death domain". The death domain is an important structure that plays a key role in the transduction of apoptotic signals. The interaction between Fas and its ligand (FasL) triggers the formation of a death-inducing signaling complex (DISC), which subsequently recruits and activates caspase-8; this in turn activates other procaspases and culminates in the cleavage of cellular substrates and apoptosis. During the process of tumor cell lines apoptosis Inducted by chemotherapy. It is easy to see the increasing of the Fas receptors and inducing of FasL expression, it can inhibite apoptosis when the blocking Fas / FasL. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type Ⅱ transmembrane protein belonging to the TNF family of death ligands. TRAIL has been suggested as a safe and tumorselective anticancer agent with low toxicity to normal

  18. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    Directory of Open Access Journals (Sweden)

    Gretel G. Pellegrini

    2016-07-01

    Full Text Available Oats contain unique bioactive compounds known as avenanthramides (AVAs with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT and Nrf2 Knockout (KO osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast

  19. Increased expression of cytokines, soluble cytokine receptors, soluble apoptosis ligand and apoptosis in dengue.

    Science.gov (United States)

    Arias, Julia; Valero, Nereida; Mosquera, Jesús; Montiel, Milagros; Reyes, Eduardo; Larreal, Yraima; Alvarez-Mon, Melchor

    2014-03-01

    Several studies have been performed to determine biomarkers that define the risk factors to developing severe forms of dengue. In this study, the levels of TNF-α, IL-6, IL-1, IL-17, soluble interleukin-1 receptor like 1 protein (sST2), soluble TNF-related apoptosis-inducing ligand (sTRAIL), IL-12 and soluble receptors for TNF (sTNF-RI and sTNF-RII) were determined by ELISA in dengue patients and monocyte/macrophage cultures. Dengue was classified as dengue without warning symptoms (DNWS), with warning symptoms (DWWS) and severe dengue (SD). High values of IL-6, sTNFRI, sTNFRII and sST2 were observed in DWWS and/or SD and IL-12 and sTRAIL in DNWS. TNF-α and IL-17 were increased not associated to the disease severity. High production of TNF-α, IL-1β, IL-12, IL-17, sST2 and sTRAIL and apoptosis expression were observed in dengue monocyte/macrophage cultures. This study shows that beneficial or deleterious biomarkers can be present in dengue regardless the disease severity and that monocytes may be in part the source of studied molecules.

  20. Apoptosis in parasites and parasite-induced apoptosis in the host immune system: a new approach to parasitic diseases

    Directory of Open Access Journals (Sweden)

    M.A. Barcinski

    1999-04-01

    Full Text Available Apoptosis, a form of programmed cell death (PCD, has been described as essential for normal organogenesis and tissue development, as well as for the proper function of cell-renewal systems in adult organisms. Apoptosis is also pivotal in the pathogenesis of several different diseases. In this paper we discuss, from two different points of view, the role of apoptosis in parasitic diseases. The description of apoptotic death in three different species of heteroxenic trypanosomatids is reviewed, and considerations on the phylogenesis of apoptosis and on the eventual role of PCD on their mechanism of pathogenesis are made. From a different perspective, an increasing body of evidence is making clear that regulation of host cell apoptosis is an important factor on the definition of a host-pathogen interaction. As an example, the molecular mechanisms by which Trypanosoma cruzi is able to induce apoptosis in immunocompetent cells, in a murine model of Chagas' disease, and the consequences of this phenomenon on the outcome of the experimental disease are discussed.

  1. Apoptosis in ovarian cells in postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Maria Laszczyńska

    2007-06-01

    Full Text Available Apoptosis is a natural process which accompanies human ovary from the moment of birth until old age. While it is a well-known process at the reproductive age, it still needs to be thoroughly examined when referring to the postmenopausal age. The study involved 30 postmenopausal women who had their ovaries removed by laparotomy due to nonneoplastic diseases of the uterus. The women were divided into 3 groups depending on the time that had passed since the last menstruation. Group A consisted of women who had their last menstruation no more than 5 years earlier. In group B menopause occurred 5 to 10 years earlier. Group C was composed of patients who had the last menstruation over 10 years earlier. In all the patients concentrations of follitropin (FSH and estradiol (E2 in blood plasma were measured. Ovarian tissue was obtained during surgery. For morphological studies, ovaries were fixed in Bouin's solution and 4% formalin and embedded in paraffin. Morphological analysis was carried out after hematoxylin-eosin (H-E staining. For histochemical detection of apoptotic cells (in situ localization of fragment DNA, the TUNEL method was used. The expression of caspase-3 positive cells was determined immunohistochemically in paraffin-embedded specimens. Comparing to groups A and B, the ovaries in group C contained small number of corpora albicantia located in the medullary part as well as thinned blood vessels and few lymphatic vessels and nerves. In contrast to group A where the number of TUNEL-positive cells was high and caspase-3 expression was observed, no TUNEL-positive nuclei and caspase-3 expression were found in the examined ovaries of group C women.

  2. Early Contact Stage of Apoptosis: Its Morphological Features and Function

    Directory of Open Access Journals (Sweden)

    Etheri Mikadze

    2006-01-01

    Full Text Available Apoptosis has been a biological phenomenon of intense interest for 20 years, but the earlier morphological features of apoptosis have not been determined hitherto. Using the methods of semi- and ultrathin sections, the livers of intact embryos and young rats have been studied under the effect of cycloheximide to determine morphological features of an early stage of apoptosis. It is discovered that both in hepatoblasts and hepatocytes, apoptosis, besides the well-known stages, also includes an early contact stage, distinguishing features of which are agglutination of bound ribosomes (breaking of translation, elimination of the nucleolus, reduction of free polysomes (and in hepatocytes, reduction of cisterns of rough endoplasmic reticulum, formation of cytoplasmic excrescences, and cell shape changes. The early stage of apoptosis is characterized by close contact with neighboring cells. At a certain phase of the contact stage of apoptosis, the nucleolus reappears in the nucleus and the number of free polysomes in the cytoplasm increases, which suggests the renewal of synthesis of new RNA and proteins. Close contact of differentiating and mitotic hepatoblasts with apoptotic cells indicates a certain functional relationship between these cells that is realized not only by micropinocytosis, but through gap junctions as well. We assume that the apoptotic cell, besides proteolytic products, can contain newly synthesized, low-molecular substances, the relocation of which from apoptotic to neighboring cells may contribute to both functional activity and proliferation of adjacent hepatoblasts and, therefore, the function of apoptosis may not be limited only to the elimination of harmful, damaged, and unwanted cells.

  3. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  4. Beryllium-stimulated apoptosis in macrophage cell lines.

    Science.gov (United States)

    Sawyer, R T; Fadok, V A; Kittle, L A; Maier, L A; Newman, L S

    2000-08-21

    In vitro stimulation of bronchoalveolar lavage cells from patients with chronic beryllium disease (CBD) induces the production of TNF-alpha. We tested the hypothesis that beryllium (Be)-stimulated TNF-alpha might induce apoptosis in mouse and human macrophage cell lines. These cell lines were selected because they produce a range of Be-stimulated TNF-alpha. The mouse macrophage cell line H36.12j produces high levels of Be-stimulated TNF-alpha. The mouse macrophage cell line P388D.1 produces low, constitutive, levels of TNF-alpha and does not up-regulate Be-stimulated TNF-alpha production. The DEOHS-1 human CBD macrophage cell line does not produce constitutive or Be-stimulated TNF-alpha. Apoptosis was determined by microscopic observation of propidium iodide stained fragmented nuclei in unstimulated and BeSO(4)-stimulated macrophage cell lines. BeSO(4) induced apoptosis in all macrophage cell lines tested. Beryllium-stimulated apoptosis was dose-responsive and maximal after 24 h of exposure to 100 microM BeSO(4). In contrast, unstimulated and Al(2)(SO(4))(3)-stimulated macrophage cell lines did not undergo apoptosis. The general caspase inhibitor BD-fmk inhibited Be-stimulated macrophage cell line apoptosis at concentrations above 50 microM. Our data show that Be-stimulated macrophage cell line apoptosis was caspase-dependent and not solely dependent on Be-stimulated TNF-alpha levels. We speculate that the release of Be-antigen from apoptotic macrophages may serve to re-introduce Be material back into the lung microenvironment, make it available for uptake by new macrophages, and thereby amplify Be-stimulated cytokine production, promoting ongoing inflammation and granuloma maintenance in CBD.

  5. Changes in neuronal apoptosis and apoptosis modulatory factors in cerebral ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Liying Qiu; Ying Li; Hongbin Fan; Bin Du; Zhiyong Yang; Jianqing Cheng

    2007-01-01

    BACKGROUND: The high concentration of glutamate release is the main cause for neuronal cell death. The relationship between glutamate level and apoptosis during ischemia/reperfusion injury is still unclear. OBJECTIVE: To observe the neuronal apoptosis at 24 and 72 hours following cerebral ischemia/reperfusion in rats, and analyze the possible influencing factors. DESIGN: A randomized controlled animal experiment. SETTING: School of Medicine, Southern Yangtze University.MATERIALS: Totally 30 male adult Sprague Dawley (SD) rats of clean grade, weighing 240 - 290 g, were obtained from Shanghai Experimental Animal Center, Chinese Academy of Sciences. The rats were randomly divided into sham-operated group (n=10) and model group (n=20). Each group was observed at 24 and 72 hours after ischemia/reperfusion, 5 rats at each time point in the sham-operated group, whereas 12 at 24 hours and 8 at 72 hours in the model group. Kits for determining apoptosis and Bcl-2 were bought from Wuhan Boster Biological Technology, Co., Ltd.; Kit for calcineurin from Nanjing Jiancheng Bioengineering Institute.METHODS: The experiment was carried out in the Functional Scientific Research Room of Southern Yangtze University from June to October in 2006.①Right middle cerebral artery was occluded by inserting a thread through internal carotid artery (ICA). The surgical process for the sham-operated rats was the same as that in the model group except a nylon suture inserted the ICA. According to Longa five-degree standard, the neurological deficit evaluation of rats was evaluated after surgery, and grades 1-3 were taken as successful model establishment. The blood was recirculated by withdrawing the nylon filament under anesthesia at 2 hours after ischemia in successful rat models.②After reperfusion, the brain tissue was quickly removed at 24 or 72 hours and the slices were obtained from optic chiasma to funnel manubrium. The changes of the number of apoptotic cells were observed using the

  6. Microvesicular caspase-1 mediates lymphocyte apoptosis in sepsis.

    Directory of Open Access Journals (Sweden)

    Matthew C Exline

    Full Text Available OBJECTIVE: Immune dysregulation during sepsis is poorly understood, however, lymphocyte apoptosis has been shown to correlate with poor outcomes in septic patients. The inflammasome, a molecular complex which includes caspase-1, is essential to the innate immune response to infection and also important in sepsis induced apoptosis. Our group has recently demonstrated that endotoxin-stimulated monocytes release microvesicles (MVs containing caspase-1 that are capable of inducing apoptosis. We sought to determine if MVs containing caspase-1 are being released into the blood during human sepsis and induce apoptosis.. DESIGN: Single-center cohort study. MEASUREMENTS: 50 critically ill patients were screened within 24 hours of admission to the intensive care unit and classified as either a septic or a critically ill control. Circulatory MVs were isolated and analyzed for the presence of caspase-1 and the ability to induce lymphocyte apoptosis. Patients remaining in the ICU for 48 hours had repeated measurement of caspase-1 activity on ICU day 3. MAIN RESULTS: Septic patients had higher microvesicular caspase-1 activity 0.05 (0.04, 0.07 AFU versus 0.0 AFU (0, 0.02 (p<0.001 on day 1 and this persisted on day 3, 0.12 (0.1, 0.2 versus 0.02 (0, 0.1 (p<0.001. MVs isolated from septic patients on day 1 were able to induce apoptosis in healthy donor lymphocytes compared with critically ill control patients (17.8±9.2% versus 4.3±2.6% apoptotic cells, p<0.001 and depletion of MVs greatly diminished this apoptotic signal. Inhibition of caspase-1 or the disruption of MV integrity abolished the ability to induce apoptosis. CONCLUSION: These findings suggest that microvesicular caspase-1 is important in the host response to sepsis, at least in part, via its ability to induce lymphocyte apoptosis. The ability of microvesicles to induce apoptosis requires active caspase-1 and intact microvesicles.

  7. Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer.

    Science.gov (United States)

    Shukla, Sanjeev; Fu, Pingfu; Gupta, Sanjay

    2014-05-01

    Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70-Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy.

  8. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    Science.gov (United States)

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  9. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Ying Wu; Hwei-Fang Tsai; We-Cheng Lin; Ai-Hsiang Chou; Hui-Ting Chen; Jyh-Chin Yang; Ping-I Hsu; Ping-Ning Hsu

    2004-01-01

    AIM: To investigate the relations between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Helicobacter pylori(H pylori) infection in apoptosis of gastric epithelial cells and to assess the expression of TRAIL onthe surface of infiltrating T-cells in Hpylori-infected gastric mucosa.METHODS: Human gastric epithelial cell lines and primary gastric epithelial cells were co-cultured with H pylori in vitro, then recombinant TRAIL proteins were added to the culture. Apoptosis of gastric epithelial cells was determined by a specific ELISA for cell death. Infiltrating lymphocytes were isolated from H pylori-infected gastric mucosa, and expression of TRAIL in T cells was analyzed by flow cytometry.RESULTS: The apoptosis of gastric epithelial cell lines and primary human gastric epithelial cells was mildly increased by interaction with either TRAIL or H pylorialone. Interestingly,the apoptotic indices were markedly elevated when gastric epithelial cells were incubated with both TRAIL and H pylori (Control vsTRAIL and H pylori: 0.51±0.06 vs 2.29±0.27,P = 0.018). A soluble TRAIL receptor (DR4-Fc) could specifically block the TRAIL-mediated apoptosis. Further studies demonstrated that infiltrating T-cells in gastric mucosa expressed TRAIL on their surfaces, and the induction of TRAIL sensitivity by H pylori was dependent upon direct cell contact of viable bacteria, but not CagA and VacA of H pylori.CONCLUSION: H pylori can sensitize human gastric epithelial ceils and enhance susceptibility to TRAIL-mediated apoptosis. Modulation of host cell sensitivity to apoptosis by bacterial interaction adds a new dimension to the immunopathogenesis of H pylori infection.

  10. Apoptosis of transgenic cloned and recloned bovine blastocysts

    Institute of Scientific and Technical Information of China (English)

    Guojie Sun; Rong Li; Yunping Dai; Haiping Wang; Lili Wang; Ying Liu; Fangrong Ding; Hengxi Wei; Ning Li

    2009-01-01

    Apoptosis plays an important role in preimplantation embryonic development. Investigating mechanisms of apoptosis can provide useful information for obtaining high-quality embryos and help to improve cloning efficiency. Here, we investigated the incidence of blastomere apoptosis in transgenic blastocysts generated by somatic cell nuclear transfer (SCNT) and recloning using a terminal deoxy-nucleotidyl transferase-mediated d-UTP nick end-labeling (TUNEL) assay. Transgenic recloned embryos were the second generation SCNT embryos derived from the somatic cells of a transgenic SCNT calf. The blastocyst rate of transgenic SCNT embryos was lower than that of nontransgenic SCNT embryos. The incidence of apoptosis in transgenic SCNT embryos was higher than that of nontrans-genie SCNT embryos. The blastocyst rate and the incidence of apoptosis in transgenic recloned embryos were similar to nontransgenic SCNT embryos. The process of donor cell transfection and drug selection may decrease the developmental capacity of transgenic SCNT embryos. Serial cloning did not influence the developmental capacity of transgenic recloned embryos.

  11. Apoptosis in the craniofacial tissues of irradiated growing rats

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Min Suk; Choi, Hang Moon; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won [Seoul National Univ. College of Dentistry, Seoul (Korea, Republic of)

    2001-12-15

    The purpose of this study was to investigate the apoptosis induction in tissues constituting the craniofacial region of growing rat by irradiation. The submandibular gland, brain, articular cartilage of condylar head, and calvarium were extracted from 20-day-old rats irradiated 10 Gy. Apoptosis of each tissue was examined by DNA fragmentation and estimated quantitatively using apoptotic index on TUNEL assay. Apoptotic index of each tissue was calculated by the equation for apoptotic cells/total cells X 1,000 on the images of confocal laser scanning microscopy. Apoptotic index was analyzed statistically according to the time lapse after irradiation on the tissues. In the submandibular gland, apoptotic index was significantly increased from 6 hours after irradiation showing the highest value at 12 hours and decreased to the control level at 3 days after irradiation. In the brain, apoptotic index was abruptly reached to the maximum value at 6 hours after irradiation and decreased to the control level at 4 days after irradiation. Articular cartilage and calvarium showed no or little apoptotic signals. The results obtained by the apoptotic index accorded with that of DNA fragmentation. Radiation was closely related with the apoptosis of submandibular gland and brain but, not related with the apoptosis of the articular cartilage of condylar head and calvarium. The changes induced by radiation of the hard tissues would not be explained by apoptosis.

  12. Serine racemase: a key player in apoptosis and necrosis

    Directory of Open Access Journals (Sweden)

    Nadia eCanu

    2014-04-01

    Full Text Available A fine balance between cell survival and cell death is required to sculpt the nervous system during development. However, an excess of cell death can occur following trauma, exposure to neurotoxins or alcohol, and some developmental and neurodegenerative diseases, such as Alzheimer’s disease (AD. N-Methyl-D-aspartate receptors (NMDARs support synaptic plasticity and survival of many neuronal populations whereas inappropriate activation may promote various forms of cell death, apoptosis and necrosis representing the two extremes of a continuum of cell death processes both in vitro and in vivo. Hence, by identifying the switches controlling pro-survival vs. apoptosis and apoptosis vs. pro-excitotoxic outcome of NMDAR stimulation, NMDAR modulators could be developed that selectively block the cell death enhancing pro-survival signaling or synaptic plasticity mediated by NMDAR. Among these modulators, a role is emerging for the enzyme serine racemase (SR that synthesizes D-serine, a key co-agonist with glutamate at NMDAR. This review summarizes the experimental evidence from in vitro neuronal cultures -- with special emphasis on cerebellar granule neurons (CGNs -- and in vivo models of neurodegeneration, where the dual role of the SR/D-serine pathway as a master regulator of apoptosis and the apoptosis-necrosis shift will be discussed.

  13. Combinatorial MicroRNAs Suppress Hypoxia-Induced Cardiomyocytes Apoptosis

    Directory of Open Access Journals (Sweden)

    Yingqi Xu

    2015-09-01

    Full Text Available Background/Aims: Our previous in silico analysis revealed potential synergy in the activities of micro(miRNAs in myocardial infarction. The present study investigated whether miR-1 and -21 act synergistically to protect against cardiomyocytes apoptosis. Methods: Cell survival was analyzed with cell viability assay; apoptosis was detected by flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling, and the caspase-3 activity assay; and protein expression level was determined by western blotting. Results: MiR-1:miR-21 and several other miRNA pairs were evaluated for their potentially synergistic effects against myocardial hypoxia in neonatal rat ventricular cardiomyocytes. Lower combination indices suggested that miRNA pairs acted synergistically to inhibit apoptosis; miR-1 and -21 jointly blocked hypoxia-induced cardiomyocytes apoptosis. Moreover, combined application of miR-1 and -21 activated Akt and blocked hypoxia-induced upregulation of p53 in these cells. Conclusion: MiR-1 and -21 exert synergistic effects against hypoxia-induced cardiomyocytes apoptosis. These results provide a basis for the development of combined miRNA-based therapeutics to treat cardiovascular diseases.

  14. The MAPK pathway as an apoptosis enhancer in melanoma.

    Science.gov (United States)

    Haydn, Johannes M; Hufnagel, Anita; Grimm, Johannes; Maurus, Katja; Schartl, Manfred; Meierjohann, Svenja

    2014-07-15

    Inhibition of RAF/MEK/ERK signaling is beneficial for many patients with BRAF(V600E)-mutated melanoma. However, primary and secondary resistances restrict long-lasting therapy success. Combination therapies are therefore urgently needed. Here, we evaluate the cellular effect of combining a MEK inhibitor with a genotoxic apoptosis inducer. Strikingly, we observed that an activated MAPK pathway promotes in several melanoma cell lines the pro-apoptotic response to genotoxic stress, and MEK inhibition reduces intrinsic apoptosis. This goes along with MEK inhibitor induced increased RAS and P-AKT levels. The protective effect of the MEK inhibitor depends on PI3K signaling, which prevents the induction of pro-apoptotic PUMA that mediates apoptosis after DNA damage. We could show that the MEK inhibitor dependent feedback loop is enabled by several factors, including EGF receptor and members of the SPRED family. The simultaneous knockdown of SPRED1 and SPRED2 mimicked the effects of MEK inhibitor such as PUMA repression and protection from apoptosis. Our data demonstrate that MEK inhibition of BRAF(V600E)-positive melanoma cells can protect from genotoxic stress, thereby achieving the opposite of the intended anti-tumorigenic effect of the combination of MEK inhibitor with inducers of intrinsic apoptosis.

  15. RIP3 induces apoptosis independent of pronecrotic kinase activity.

    Science.gov (United States)

    Mandal, Pratyusha; Berger, Scott B; Pillay, Sirika; Moriwaki, Kenta; Huang, Chunzi; Guo, Hongyan; Lich, John D; Finger, Joshua; Kasparcova, Viera; Votta, Bart; Ouellette, Michael; King, Bryan W; Wisnoski, David; Lakdawala, Ami S; DeMartino, Michael P; Casillas, Linda N; Haile, Pamela A; Sehon, Clark A; Marquis, Robert W; Upton, Jason; Daley-Bauer, Lisa P; Roback, Linda; Ramia, Nancy; Dovey, Cole M; Carette, Jan E; Chan, Francis Ka-Ming; Bertin, John; Gough, Peter J; Mocarski, Edward S; Kaiser, William J

    2014-11-20

    Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.

  16. Apoptosis-based therapy to treat pulmonary arterial hypertension

    Science.gov (United States)

    Suzuki, Yuichiro J.; Ibrahim, Yasmine F.; Shults, Nataliia V.

    2016-01-01

    Pulmonary arterial hypertension (PAH) is rare, but patients who are diagnosed with this disease still suffer from a lack of satisfactory treatment strategies to prolong survival. While currently approved drugs for PAH have some benefits, these vasodilators only have limited efficacy for eliminating pulmonary vascular remodeling and reducing mortality. Thus, our laboratory has been exploring the use of aggressive drugs, which are capable of causing apoptotic cell death, to treat PAH. We have so far found that three classes of anti-tumor agents, including anthracyclines, taxanes, and proteasome inhibitors, are capable of reducing pulmonary vascular thickness in rats with PAH. These drugs kill cells in remodeled pulmonary vessels without affecting the normal, healthy pulmonary vasculature, revealing that proliferating vascular cells in PAH patients are more sensitive to drug-induced apoptosis compared to the differentiated phenotype that is physiologically important for smooth muscle contraction. Since many apoptosis-inducing drugs cause cardiotoxicity in cancer patients, and because PAH patients already have a weakened heart, we focus on finding biological mechanisms that may reverse pulmonary vascular remodeling without promoting cardiotoxicity. We found two agents, dexrazoxane and pifithrin-α, that selectively inhibit cardiac muscle apoptosis without affecting the drug-induced apoptosis of the proliferating pulmonary vascular cells. Thus, we propose that the addition of apoptosis-inducing drugs and cardioprotectants to PAH therapies may be effective in treating patients and preventing right heart failure.

  17. Relationship between Cell Proliferation and Apoptosis in Cervical Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the relationship between cell proliferation and apoptosis in cervical carcinoma and its clinical significance.Methods The cell proliferation and apoptosis of cervical epithelial cells in archival formalin-fixed,paraffin-embedded tissue sections of normal cervix ,cervical intraepithelial neoplasms(CN) and cervical squamous carcinoma were tested by using immunohistochemistry assay and DNA nick end-labeling technigue.The proliferation index(PI) and apoptosis index(AI) were calculated and their correlation with clinical and pathological data was analyzed. Results PI was gradually increased,but the AI and AI/PI ratio decreased from normal cervical epithelium,CIN to cervical carcinoma. There was no significant relationship among cell proliferation,apoptosis,clinical stages and pathological grades.High AI was always asso-ciated with a poor prognosis of the patients. Conclusion Cell proliferation and apoptosis allow to distinguish among normal epithelium,CIN and cervical carcinoma and are useful for the assessment of the malignant potential of tumor tissues.

  18. Apoptosis and the thymic microenvironment in murine lupus.

    Science.gov (United States)

    Takeoka, Y; Taguchi, N; Shultz, L; Boyd, R L; Naiki, M; Ansari, A A; Gershwin, M E

    1999-11-01

    The thymus of New Zealand black (NZB) mice undergoes premature involution. In addition, cultured thymic epithelial cells from NZB mice undergo accelerated preprogrammed degeneration. NZB mice also have distinctive and well-defined abnormalities of thymic architecture involving stromal cells, defined by staining with monoclonal antibodies specific for the thymic microenvironment. We took advantage of these findings, as well as our large panel of monoclonal antibodies which recognize thymic stroma, to study the induction of apoptosis in the thymus of murine lupus and including changes of epithelial architecture. We studied NZB, MRL/lpr, BXSB/Yaa, C3H/gld mice and BALB/c and C57BL/6 as control mice. Apoptosis was studied both at basal levels and following induction with either dexamethasone or lipopolysaccharide (LPS). The apoptotic cells were primarily found in the thymic cortex, and the frequency of apoptosis in murine lupus was less than 20% of controls. Moreover, all strains of murine lupus had severe abnormalities of the cortical network. These changes were not accentuated by dexamethasone treatment in cultured thymocytes. However, the thymus in murine lupus was less susceptible to LPS-induced apoptosis than control mice. Finally we note that the number of thymic nurse cells (TNC) was lowest in NZB mice. Our findings demonstrate significant abnormalities in the induction of apoptosis and the formation of TNC-like epithelial cells in SLE mice, and suggest that the abnormalities of the thymic microenvironment have an important role in the pathogenesis of murine lupus.

  19. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis.

    Science.gov (United States)

    Nie, C; Luo, Y; Zhao, X; Luo, N; Tong, A; Liu, X; Yuan, Z; Wang, C; Wei, Y

    2014-10-30

    The protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) is one of the most potent and frequently used proapoptotic stimuli. The BH3-only molecule of Bcl-2 family proteins has been reported to contribute to UCN-01-induced apoptosis. Here we have found that UCN-01 triggers Puma-induced mitochondrial apoptosis pathway. Our data confirmed that Akt-FoxO3a pathway mediated Puma activation. Importantly, we elucidate the detailed mechanisms of Puma-induced apoptosis. Our data have also demonstrated that caspase-9 is a decisive molecule of Puma induction after UCN-01 treatment. Caspase-9 mediates apoptosis through two kinds of feedback loops. On the one hand, caspase-9 enhances Puma activation by cleaving Bcl-2 and Bcl-xL independent of caspase-3. On the other hand, caspase-9 directly activated caspase-3 in the presence of caspase-3. Caspase-3 could cleave XIAP in an another positive feedback loop to further sensitize cancer cells to UCN-01-induced apoptosis. Therefore, caspase-9 mediates Puma activation to determine the threshold for overcoming chemoresistance in cancer cells.

  20. Detection of the apoptosis of Jurkat cell using an electrorotation chip

    Institute of Scientific and Technical Information of China (English)

    Long Quan; Xing Wanli

    2006-01-01

    The apoptosis of cells is one of the fields that attract increasing attention in biology today.Usually,the cells are treated with chemicals when detecting apoptosis.It is highly desired to detect apoptosis in a real-time basis.Apoptosis of Jurkat cells was studied using a real-time electrorotation chip.This chip allows the detection of the cell membrane capacitance changes during the course of apoptosis and therefore facilitates the analysis of apoptosis in a real-time basis without involving any chemical treatment.

  1. Dendritic Cell Apoptosis and the Pathogenesis of Dengue

    Directory of Open Access Journals (Sweden)

    Lysangela R. Alves

    2012-11-01

    Full Text Available Dengue viruses and other members of the Flaviviridae family are emerging human pathogens. Dengue is transmitted to humans by Aedes aegypti female mosquitoes. Following infection through the bite, cells of the hematopoietic lineage, like dendritic cells, are the first targets of dengue virus infection. Dendritic cells (DCs are key antigen presenting cells, sensing pathogens, processing and presenting the antigens to T lymphocytes, and triggering an adaptive immune response. Infection of DCs by dengue virus may induce apoptosis, impairing their ability to present antigens to T cells, and thereby contributing to dengue pathogenesis. This review focuses on general mechanisms by which dengue virus triggers apoptosis, and possible influence of DC-apoptosis on dengue disease severity.

  2. Methylprednisolone exerts neuroprotective effects by regulating autophagy and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Wei Gao; Shu-rui Chen; Meng-yao Wu; Kai Gao; Yuan-long Li; Hong-yu Wang; Chen-yuan Li; Hong Li

    2016-01-01

    Methylprednisolone markedly reduces autophagy and apoptosis after secondary spinal cord injury. Here, we investigated whether pretreat-ment of cells with methylprednisolone would protect neuron-like cells from subsequent oxidative damagevia suppression of autophagy and apoptosis. Cultured N2a cells were pretreated with 10 µM methylprednisolone for 30 minutes, then exposed to 100 µM H2O2 for 24 hours. Inverted phase contrast microscope images, MTT assay, lfow cytometry and western blot results showed that, compared to cells ex-posed to 100 µM H2O2 alone, cells pretreated with methylprednisolone had a signiifcantly lower percentage of apoptotic cells, maintained a healthy morphology, and showed downregulation of autophagic protein light chain 3B and Beclin-1 protein expression. These ifndings indicate that methylprednisolone exerted neuroprotective effects against oxidative damage by suppressing autophagy and apoptosis.

  3. Molecular imaging of apoptosis: from micro to macro.

    Science.gov (United States)

    Zeng, Wenbin; Wang, Xiaobo; Xu, Pengfei; Liu, Gang; Eden, Henry S; Chen, Xiaoyuan

    2015-01-01

    Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus.

  4. Effects of glucocorticoids on apoptosis and clearance of apoptotic cells.

    Science.gov (United States)

    McColl, Aisleen; Michlewska, Sylwia; Dransfield, Ian; Rossi, Adriano G

    2007-08-17

    The glucocorticoid (GC) drugs are one of the most commonly prescribed and effective anti-inflammatory agents used for the treatment of many inflammatory disorders through their ability to attenuate phlogistic responses. The glucocorticoid receptor (GCR) primarily mediates GC actions via activation or repression of gene expression. GCs directly induce the expression of proteins displaying anti-inflammatory activities. However, the likely predominant effect of GCs is the repression of multiple inflammatory genes that invariably are overexpressed during nonresolving chronic inflammation. Although most GC actions are mediated through regulation of transcription, rapid nongenomic actions have also been reported. In addition, GCs modulate inflammatory cell survival, inducing apoptosis in immature thymocytes and eosinophils, while delaying constitutive neutrophil apoptosis. Importantly, GCs promote noninflammatory phagocytosis of apoptotic cell targets, a process important for the successful resolution of inflammation. Here, the effects and mechanisms of action of GC on inflammatory cell apoptosis and phagocytosis will be discussed.

  5. Effects of Glucocorticoids on Apoptosis and Clearance of Apoptotic Cells

    Directory of Open Access Journals (Sweden)

    Aisleen McColl

    2007-01-01

    Full Text Available The glucocorticoid (GC drugs are one of the most commonly prescribed and effective anti-inflammatory agents used for the treatment of many inflammatory disorders through their ability to attenuate phlogistic responses. The glucocorticoid receptor (GCR primarily mediates GC actions via activation or repression of gene expression. GCs directly induce the expression of proteins displaying anti-inflammatory activities. However, the likely predominant effect of GCs is the repression of multiple inflammatory genes that invariably are overexpressed during nonresolving chronic inflammation. Although most GC actions are mediated through regulation of transcription, rapid nongenomic actions have also been reported. In addition, GCs modulate inflammatory cell survival, inducing apoptosis in immature thymocytes and eosinophils, while delaying constitutive neutrophil apoptosis. Importantly, GCs promote noninflammatory phagocytosis of apoptotic cell targets, a process important for the successful resolution of inflammation. Here, the effects and mechanisms of action of GC on inflammatory cell apoptosis and phagocytosis will be discussed.

  6. Human Soluble TRAIL Protein Inducing Apoptosis in Osteosarcoma Cell

    Institute of Scientific and Technical Information of China (English)

    ZHU Shaobo; YU Aixi; ZHANG Zhongning; WU Gang

    2007-01-01

    This study is to examine the effect of human recombinant soluble TRAIL (TNF-related apoptosis-inducing ligand) protein inducing apoptosis in MG-63 human osteosarcoma cells. The inhibitive rates of TRAIL to MG-63 cells were detected by MTT assay. The apoptosis induced by TRAIL in MG-63 human osteosarcoma cells was analyzed with FACS and TUNEL and the apoptotic bodies were observed by transmission electron microscope. MTT assay showed that the inhibitive rates of 500, 1 000,2 000 and 4 000 ng/mL TRAIL for 24 h were 10.1%, 24.3%,50.6% and 97.7% respectively. Flow cytometric analysis showed that after MG-63 cells were treated with 2 μg/mL TRAIL for 6 h,obvious apoptotic peak would immediately appear before diploid peak. Human soluble TRAIL protein can quickly kill MG-63 osteosarcoma cells selectively, and may have potential value for clinical treatment of osteosarcoma.

  7. The role of T cell apoptosis in nervous system autoimmunity.

    Science.gov (United States)

    Comi, C; Fleetwood, T; Dianzani, U

    2012-12-01

    Fas is a transmembrane receptor involved in the death program of several cell lines, including T lymphocytes. Deleterious mutations hitting genes involved in the Fas pathway cause the autoimmune lymphoprolipherative syndrome (ALPS). Moreover, defective Fas function is involved in the development of common autoimmune diseases, including autoimmune syndromes hitting the nervous system, such as multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). In this review, we first explore some peculiar aspects of Fas mediated apoptosis in the central versus peripheral nervous system (CNS, PNS); thereafter, we analyze what is currently known on the role of T cell apoptosis in both MS and CIDP, which, in this regard, may be seen as two faces of the same coin. In fact, we show that, in both diseases, defective Fas mediated apoptosis plays a crucial role favoring disease development and its chronic evolution.

  8. Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway.

    Science.gov (United States)

    Niu, Huiyan; Zhang, Yifei; Wu, Baogang; Zhang, Yi; Jiang, Hongfang; He, Ping

    2014-09-01

    Lung cancer is the leading cause of cancer‑related mortality in humans. The prognosis for advanced lung cancer patients is extremely poor. Current standard care is rather ineffective for prolonging patient life while preserving satisfactory quality of life due to adverse side-effects. Matrine extracted from the traditional Chinese herbal plant Sophora flavescens was shown to induce cancer cell death in vitro. The aim of this study was to investigate the effect of matrine on the proliferation and apoptosis of lung cancer cells and the molecular basis of matrine-induced apoptosis. The results showed that matrine inhibited cell proliferation and induced apoptosis in lung cancer A549 and 95D cells in a dose- and time-dependent manner. The apoptotic effects of matrine on lung cancer cells appeared to act via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway and downregulation of the expression of the inhibitor of apoptosis protein (IAP) family proteins. Matrine exerts its cancer-killing effect via promoting apoptosis in lung cancer cells and may be a useful adjuvant therapeutic scheme for treating advanced lung cancer patients.

  9. Tumor Necrosis Factor-related Apoptosis Ligand Induces Apoptosis in Prostate Cancer PC-3M Cell Line

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhohui; WANG Huafang; GU Longjie; YE Zhewei; XIAO Yajun

    2005-01-01

    To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24h. Annixin-Ⅴ fluorescence staining and TUNEL method were employed to detect the apoptosis of PC-3M cells. The morphology of apoptotic PC-3M cells was observed by electron microscopy. The relationship between TRAIL concentrations and the percentage of apoptotic cells was evaluated by flow cytometry. The proliferation inhibitory ratio was calculated by using MTT colorimetry. Our results showed that apoptosis of PC-3M cells could be induced by treatment with TRAIL for at most 4 h. The results of flow cytometry and MTT colorimetry demonstrated a time- and concentration-dependent relationship between cell apoptosis rate and TRAIL concentration. It is concluded that apoptosis of PC-3M cells can be induced by TRAIL. Because of the selective killing effect of TRAIL on tumor ceils, it may become a potential alternative for the treatment of advanced prostate cancer.

  10. Trihydroxybenzoic Acid Dimer-induced Apoptosis Effects in vitro

    Institute of Scientific and Technical Information of China (English)

    NIU Feng-lan; WANG Xue-dong; WANG Ying-li; SONG Lian-sheng

    2005-01-01

    The in vitro inhibitory effect of trihydroxybenzoic acid dimer(TAD) extracted from Trapabispinosd roxb on HeLa cell growth was investigated via the MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diophenyl-tetrazolium bromide] reduction method. The morphological changes of HeLa cells were observed by means of an optical microscope and a transmission electron microscope(TEM); the cell circles and apoptosis were detected by a flow cytometer. It was found that TAD can significantly inhibit the growth of Hela cells and can induce the apoptosis of HeLa cells. It was also found that the inhibition to the growth of Hela cells and the induction to the apoptosis of HeLa cells have a dosage-dependent feature. The inhibiting rates of TAD with mass concentrations of 25.000, 12.500 and 6.250 mg/L to the HeLa cell growth were 52.04%, 34.44% and 23.72% after 30 h, respectively, while those with TAD mass concentrations of 100.000, 50.000, 25.000, 12.500, 6.250 and 3.125 mg/L showed positive correlation with a correlation coefficient value of r=0.9859(P<0.01) and a IC50 value of 10.90 mg/L. Observed by means of TEM, the HeLa cells exposed to 25.000, 12.500 and 6.250 mg/L TAD showed apoptosis to various extents, shrinkage of the cell nuclei, condensation and margination of chromatin, and cavitation of mitochondrion. An apoptosis peak was detected via a flow cytometer. It can be drawn from the results that TAD extracted from Trapabispinosd roxb has an evident inhibitory effect on the proliferation of and an inductive effect on the apoptosis of HeLa cells, but has no obvious arrest action towards the cell circles of HeLa cells.

  11. Mitochondrial apoptosis of lymphocyte is induced in type 2 diabetes

    Institute of Scientific and Technical Information of China (English)

    Xu Hui; Chen Yanbo; Li Yanxiang; Xia Fangzhen; Han Bing; Zhang Huixin; Zhai Hualing

    2014-01-01

    Background Lymphocyte function and homeostasis is associated with immune defence to infection.Apoptosis of lymphocytes might be a considerably important component which has an impact on immunity to infections in people with hyperglycemia.The aim of this study was to explore the mitochondrial apoptosis pathway of lymphocyte in diabetic patients.Methods Sixty patients with type 2 diabetes mellitus and fifty healthy volunteers were included in this study.Annexin V and propidiumiodide (Pl) were joined in the isolated lymphocytes and the rate of lymphocyte apoptosis was calculated with flow cytometry.Observation of the lymphocytes was done using transmission electron microscopy; mitochondria had been extracted and then mitochondrial membrane potential (MMP) was detected to assess mitochondrial function; the mRNA level of Bcl-2,cytochrome c (Cyt-C),caspase-9 and caspase-3 were analyzed by real-time reverse transcriptionpolymerase chain reaction (RT-PCR).Results Apoptosis rate of lymphocyte was significantly higher in diabetic group than that in normal control group (P <0.05).Transmission electron microscopy showed lymphocyte shrinkage and breakage,chromatin condensation and less mitochondria; a fall in MMP levels was also evident; Bcl-2 concentration was reduced and the expressions of caspase-9,caspase-3 and Cyt-C were elevated (P <0.05) in diabetic patients.Conclusions The rate of lymphocyte apoptosis was significantly higher in type 2 diabetic patients than that in normal population.Mitochondrial apoptosis pathway may play a very important role in decreasing function of lymphocyte in diabetes.

  12. Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions.

    Science.gov (United States)

    Lee, Sun Ha; Moon, Sung Jin; Paeng, Jisun; Kang, Hye-Young; Nam, Bo Young; Kim, Seonghun; Kim, Chan Ho; Lee, Mi Jung; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2015-08-01

    Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.

  13. Dying a thousand death. Radionuclide imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Blankenberg, F.; Ohtsuki, K.; Strauss, H.W. [Stanford Univ., CA (United States). Dept. of Radiology and Division Nuclear Medicine

    1999-06-01

    Programmed cell death, apoptosis, in an inducible, organized, energy requiring form of demise that results in the disappearance of a cell without the induction of an inflammatory response. Apoptotic cell death is strikingly different than necrotic death, which is disorderly, does not require energy and results in local inflammation, usually secondary to sudden release of intercellular contents. Apoptosis is induced when cells undergo severe injury to their nucleus, as occurs following exposure to gamma or X-radiation, or mitochondria, as as occurs in variety of viral illnesses. Apoptosis can also be induced by externals signals, such as interaction of 'fas' ligand with 'fas' receptors. Once the cell is committed to apoptosis, the caspase enzyme cascade is activate. An early effect of caspase activation is the rapid expression of phosphatidylserine on the external leaflet of the cell membrane. Membrane bound phosphatidylserine expression serves as a signal to surrounding cells, identifying the expressing cell as undergoing apoptosis. A deficiency or an excess of programmed cell death is an integral component of autoimmune disorders, transplant rejection and cancer. A technique to image programmed cell death would be used to assist in the development of drugs, designed to treat these diseases, and to monitor the effectiveness of therapy The sudden expression of phosphatidylserine on the cell membrane is target that could be used for this purpose. A 35 kD physiologic protein, Annexin V lipocortin, binds with nanomolar affinity to membrane bound phosphatidylserine. Annexin V has been radiolabeled with Technetium-99m by direct coupling to free sulfhydryl groups, and through the hydrazinonicatinamide and N2S2 linking agents. The biodistribution of the agents labeled with each of the methods is slightly different. In all cases the radiopharmaceutical binds to cell undergoing apoptosis 'in vitro', and permits imaging of the process in

  14. Smac/DIABLO regulates the apoptosis of hypertrophic scar fibroblasts.

    Science.gov (United States)

    Liu, Bao-Heng; Chen, Liang; Li, Shi-Rong; Wang, Zhen-Xiang; Cheng, Wen-Guang

    2013-09-01

    In abnormal skin wound healing, hypertrophic scars (HS) are characterized by excessive fibroblast hypercellularity and an overproduction of collagen, leading to atypical extracellular matrix (ECM) remodeling. Although the exact mechanisms of HS remain unclear, decreased HS fibroblast (HSFB) apoptosis and increased proliferation are evident in the development of HS. In this study, the contribution of the second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein (IAP)-binding protein with a low isoelectric point (pI) (Smac/DIABLO), an apoptosis-promoting protein released from the mitochondria, was investigated in human normal skin and HSFB cultures. The expression of Smac/DIABLO is usually decreased in many malignant tumors compared with normal tissues. Immunohistochemical analysis of skin tissues and the western blot analyses of fibroblasts revealed that the expression of Smac/DIABLO was lower in HS tissues compared with normal skin tissues. Of note, adenovirus-mediated Smac/DIABLO overexpression in the cultured HSFBs significantly reduced cell proliferation, as detected by the cell counting kit-8, and increased caspase-3 and -9 activity, as detected by spectrofluorimetry. In addition, it increased apoptosis, as detected by fluorescence-activated cell sorting (FACS). Furthermore, we found that the silencing of Smac with siRNA in the HSFBs induced a noticeable decrease in caspase-3 and -9 activity, leading to a significant reduction in apoptosis. In addition, the mRNA expression of type I and III pro-collagen detected in the HSFBs was significantly increased following the silencing of Smac with siRNA and was inhibited following Smac/DIABLO overexpression, as shown by real-time RT-PCR. In conclusion, Smac/DIABLO decreases the proliferation and increases the apoptosis of HSFBs. To our knowledge, the data from our study suggest for the first time that Smac/DIABLO is a novel therapeutic target for HS.

  15. Bacteremia causes hippocampal apoptosis in experimental pneumococcal meningitis

    DEFF Research Database (Denmark)

    Andersen, Christian Østergaard; Leib, S.L.; Rowland, Ian J;

    2010-01-01

    -specific pneumococcal antibodies (n=14), and III. uninfected controls (n=6). RESULTS: Pneumococcal meningitis resulted in a significantly higher apoptosis score 0.22 (0.18-0.35) compared to uninfected controls (0.02 (0.00-0.02), Mann Whitney test, P=0.0003). Also, meningitis with an attenuation of bacteremia...... by antibody treatment resulted in significantly reduced apoptosis (0.08 (0.02-0.20), P=0.01) as compared to meningitis. CONCLUSIONS: Our results demonstrate that bacteremia accompanying meningitis plays an important role in the development of hippocampal injury in pneumococcal meningitis....

  16. Ureaplasma urealyticum infection and apoptosis of spermatogenic cells

    Institute of Scientific and Technical Information of China (English)

    Xue-JunSHANG; Yu-FengHUANG

    1999-01-01

    Aim: To study the relationship between ureaplasma urealyticum (UU) infection and apoptosis of human spennato-genie cells. Methods: Spermatogenic cells were observed under light microscope with Wright-Giemsa staining andby means of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP)-biotin nick-end labeling(TUNEL) technique. Results: Apoptotic rate of UU-infected males ( 15.5%±6.8% ) was significantly higherthan that of controls (5.2%±2.3 % ). Conclusion: Apoptosis of spermatogenic cells can be caused by UU in-fection, which provides further evidence for UU-induced male infertility.

  17. High expression of markers of apoptosis in Langerhans cell histiocytosis

    DEFF Research Database (Denmark)

    Petersen, Bodil Laub; Lundegaard, Pia Rengtved; Bank, M I;

    2003-01-01

    53 and the number of cells in apoptosis detected with TUNEL. Langerhans cell histiocytosis cells showed strong expression of p53 and in some cases co-expression of Fas and Fas-L. The expression of Fas-L was significantly higher in infiltrates from patients with single-system disease. The actual...... number of pathological Langerhans cells in apoptosis as estimated by TUNEL was low. CONCLUSIONS: The low number of TUNEL-reactive cells can be explained by the rapid turnover of apoptotic cells in the tissue, not leaving the apoptotic cells long enough in the tissue to be detected. The co...

  18. Apoptosis in Trypanosomatids: Evolutionary and phylogenetic considerations

    Directory of Open Access Journals (Sweden)

    Marcello A. Barcinski

    1998-03-01

    Full Text Available Programmed cell death (PCD or apoptosis, an active process of cell death, plays a central role in normal tissue development and organogenesis, as well as in the pathogenesis of different diseases. Although it occurs in diverse cells and tissues under the influence of a remarkable variety of inducing agents, the resultant ultrastructural and biochemical changes are extremely monotonous, indicating the existence of a common biological mechanism underlying its occurrence. It is generally accepted that a developmental program leading to cell death cannot be advantageous to unicellular organisms and that PCD appeared in evolution to fulfill the organizational needs of multicellular life. However, the recent description of apoptotic death occurring in three different species of pathogenic kinetoplastids suggests that the evolutionary origin of PCD precedes the appearence of multicellular organisms. The present study proposes that a population of pathogenic Trypanosomatids is socially organized and that PCD is a prerequisite for this organization and for the fulfillment of the demands of a heteroxenic lifestyle. This proposal includes possible roles for PCD in the development of the parasite in the insect vector and/or in its mammalian host and suggests experimental strategies to localize the evolutionary origin of PCD within the kinetoplastids.A morte celular programada (PCD ou apoptose, um processo ativo de morte celular, desempenha um papel fundamental no desenvolvimento tecidual normal e na organogênese, assim como na patogênese de diferentes doenças. Embora este processo ocorra em uma gama variada de diferentes células e tecidos, sob a influência dos mais diversos agentes indutores, a resultante morfológica e bioquímica do processo é extremamente monótona, sugerindo que um mecanismo único opere em todas as situações. Era consensualmente aceito que um programa de morte programada não poderia ser vantajoso para organismos unicelulares e

  19. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts

    Directory of Open Access Journals (Sweden)

    Bost Kenneth L

    2003-04-01

    Full Text Available Abstract Background Staphylococcus aureus infection of normal osteoblasts induces expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Results Normal osteoblasts were incubated in the presence of purified bacterial products over a range of concentrations. Results demonstrate that purified surface structures and a selected superantigen present in the extracellular environment are not capable of inducing TRAIL expression by osteoblasts. Osteoblasts were co-cultured with S. aureus at various multiplicities of infection utilizing cell culture chamber inserts. Results of those experiments suggest that direct contact between bacteria and osteoblasts is necessary for optimal TRAIL induction. Finally, S. aureus infection of osteoblasts in the presence of anti-TRAIL antibody demonstrates that TRAIL mediates caspase-8 activation and apoptosis of infected cells. Conclusions Collectively, these findings suggest a mechanism whereby S. aureus mediates bone destruction via induction of osteoblast apoptosis.

  20. Influence of vitamin D on cell cycle, apoptosis, and some apoptosis related molecules in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Nafise Tabasi

    2015-11-01

    Full Text Available Objective(s:Genetic and environmental factors are involved in the pathogenesis of systemic lupus erythematosus (SLE. Autoreactive lymphocytes are cleared through apoptosis and any disturbance in the apoptosis or clearance of apoptotic cells may disturb tolerance and lead to autoimmunity. Vitamin D has anti-proliferative effects and controls cell cycle progression. In this study we investigated the effects of vitamin D on cell cycle and apoptosis induction in lupus patients. Materials and Methods:Isolated peripheral blood mononuclear cells (PBMCs from 25 SLE patients were cultured in the presence of 50 nM of 1,25(OH2D3; then one part of the cells were stained with FITC labeled Annexin V and PI and were analyzed for apoptosis determination. For gene expression assessment of FasL, Bcl-2 and Bax, RNA was extracted from one another part of the cells, cDNA was synthesized and gene expression analysis was performed using Real time PCR. An additional part of the cells were treated with PI and the cell cycle was analyzed using flowcytometer. Results: The mean number of early apoptotic cells in vitamin D treated cells decreased significantly (18.48±7.9% compared to untreated cells (22.02±9.4% (P=0.008. Cell cycle analysis showed a significant increase in G1 phase in vitamin D treated cells (67.33±5.2% compared to non treated ones (60.77±5.7% (P =0.02. Vitamin D up-regulated the expression levels of Bcl-2 by (18.87 fold increase, and down-regulated expression of Bax (23% and FasL (25%. Conclusion:Vitamin D has regulatory effects on cell cycle progression, apoptosis and apoptosis related molecules in lupus patients.

  1. The Role of Apoptosis Associated Markers in Pathogenesis of Pulmonary Tuberculosis

    Science.gov (United States)

    2012-08-28

    To Compare the Serum Apoptosis-associated Markers Between Patients With Active TB and Patients With LTBI; To Evaluate the Efficiency of Apoptosis-associated Markers to Differentiate Potential of Active TB From LTBI

  2. SDZ诱导lovo细胞凋亡%SDZ-induced apoptosis in Iovo cells

    Institute of Scientific and Technical Information of China (English)

    Ruijin Song; Li Feng; Jinxue Tong

    2009-01-01

    Objective: To explore the inhibition effective of the SDZ on Iovo cell growth of colon cancer in vitro. Methods:The apoptosis was observed by Hoechst fluorescein stain and transmission electron microscope. Results: The apoptosis was observed after the Iovo ceils treated by SDZ (1000 μg/mL) for 24 h. The rate of apoptosis was 30.2%. Conclusion: The apoptosis of Iovo cells can be induced by SDZ in vitro.

  3. Specific degradation of keratin in Xenopus laevis egg extracts undergoing apoptosis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cytochrome c activates apoptosis specific protease XCPP32 when being added to Xenopus laevis egg extracts, and induces apoptosis in this cell-free system. During apoptosis, cyto-skeleton proteins in egg extracts are degraded. Western blot assay indicates that 42-ku acidic keratin in egg extracts has been degraded by XCPP32. The degradation of 42-ku keratin may be crucial in apoptosis.

  4. INHIBITION OF APOPTOSIS BY bcr-abl FUSION GENE IN K562 CELLS

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-hong; SUN Bing-zhong; YUAN Yue-chuan

    1999-01-01

    Objective: To investigate the effect of bcr-abl fusion gene on CML cell apoptosis. Methods: Apoptosis of exvivo cultured K562 cells were observed after exposure to synthetic 18 mer antisense oligodeoxynucleotide complementary to the bcr-abl junction (b3a2). Results: Apoptosis of K562 cells was significantly increased associated with inhibition of bcr-abl expression. Conclusion: bcr-abl fusion gene formation due to chromosome translocation may be the major mechanism of CML via inhibition of apoptosis.

  5. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy

    OpenAIRE

    Tan, S; X Wei; Song, M.; Tao, J.; Yang, Y.; Khatoon, S.; Liu, H; Jiang, J.; Wu, B.

    2014-01-01

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of th...

  6. Proteasomal regulation of caspase-8 in cancer cell apoptosis.

    Science.gov (United States)

    Fiandalo, Michael V; Schwarze, Steven R; Kyprianou, Natasha

    2013-06-01

    Previous studies demonstrated that proteasome inhibition sensitizes TRAIL resistant prostate cancer cells to TRAIL-mediated apoptosis via stabilization of the active p18 subunit of caspase-8. The present study investigated the impact of proteasome inhibition on caspase-8 stability, ubiquitination, trafficking, and activation in cancer cells. Using caspase-8 deficient neuroblastoma (NB7) cells for reconstituting non-cleavable mutant forms of caspase-8, we demonstrated that the non-cleavable forms of caspase-8 are capable of inducing apoptosis comparably to wild-type caspase-8, in response to proteasome inhibitor and GST-TRAIL. Moreover in the LNCaP human prostate cancer cells, caspase-8 polyubiquitination occurs after TRAIL stimulation and caspase-8 processing. Subcellular fractionation analysis revealed caspase-8 activity in both cytosol and plasma membrane fractions in both NB7 reconstituted caspase-8 cell lines, as well the LNCaP prostate cancer cells. The present results suggest that caspase-8 stabilization through proteasome inhibition leads to reactivation of the extrinsic pathway of apoptosis and identify E3 ligase mediating caspase-8 polyubiquitination, as a novel molecular target. Inhibition of this E3 ligase in combination with TRAIL towards restoring apoptosis signaling activation may have potential therapeutic significance in resistant tumors.

  7. Colchicine induces apoptosis in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne W; Noer, Helle; Gramsbergen, Jan Bert;

    2003-01-01

    with the colchicine-induced apoptosis in 1-week-old cultures showed that colchicine-induced PI uptake and formation of apoptotic nuclei were temporarily prevented by coapplication of the protein synthesis inhibitor cycloheximide. Application of the pancaspase inhibitor z-VAD-fmk almost completely abolished...

  8. Multifaceted role of prohibitin in cell survival and apoptosis.

    Science.gov (United States)

    Peng, Ya-Ting; Chen, Ping; Ouyang, Ruo-Yun; Song, Lei

    2015-09-01

    Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.

  9. Regulation of apoptosis pathways in cancer stem cells.

    Science.gov (United States)

    Fulda, Simone

    2013-09-10

    Cancer stem cell are considered to represent a population within the bulk tumor that share many similarities to normal stem cells as far as their capacities to self-renew, differentiate, proliferate and to reconstitute the entire tumor upon serial transplantation are concerned. Since cancer stem cells have been shown to be critical for maintaining tumor growth and have been implicated in treatment resistance and tumor progression, they constitute relevant targets for therapeutic intervention. Indeed, it has been postulated that eradication of cancer stem cells will be pivotal in order to achieve long-term relapse-free survival. However, one of the hallmarks of cancer stem cells is their high resistance to undergo cell death including apoptosis in response to environmental cues or cytotoxic stimuli. Since activation of apoptosis programs in tumor cells underlies the antitumor activity of most currently used cancer therapeutics, it will be critical to develop strategies to overcome the intrinsic resistance to apoptosis of cancer stem cells. Thus, a better understanding of the molecular mechanisms that are responsible for the ability of cancer stem cells to evade apoptosis will likely open new avenues to target this critical pool of cells within the tumor in order to develop more efficient treatment options for patients suffering from cancer.

  10. Polycyclic’ Aromatic Hydrocarbon Induced Intracellular Signaling and Lymphocyte Apoptosis

    DEFF Research Database (Denmark)

    Schneider, Alexander M.

    lymphocytes. Our experiments on preB lymphocytes supported by stromal cells suggest that apoptosis is one of the mechanisms for PAH immunosuppression. It could be either due to direct effect of the PAH on the B cells, via stromal cell signaling. Ubiquitous PAH-like toxin, fluoranthene, was tested for it...

  11. Keratocyte loss in Acanihamoeba Keratitis: Phagocytosis, necrosis or apoptosis?

    Directory of Open Access Journals (Sweden)

    Vemuganti Geeta

    2000-01-01

    Full Text Available Purpose: Pathogenesis of Acanthamoeba keratitis involves breakdown of epithelial barrier, stromal invasion by Acanthamoeba, loss of keratocytes, inflammatory response and finally stromal necrosis. The loss of keratocytes, believed to be due to the phagocytic activity of the parasite, occurs disproportionate to and independent of the parasite load, thereby suggesting additional modes of cell loss. To test our hypothesis that the loss of keratocytes in Acanthamoeba keratitis is due to apoptosis, we did both histology and histochemistry on the corneal tissues. Methods: Routine Haematoxylin and Eosin, Gomori′s Methenamine Silver and Periodic acid Schiff stained sections of five corneal tissues from penetrating keratoplasty and eviscerated eyes were reviewed. TUNEL staining was done for morphological detection of apoptosis in three cases, using formalin-fixed, paraffin-processed tissues. Results: Histological changes were epithelial ulceration, loss of keratocytes in all layers, inflammation in anterior two-thirds of the stroma with necrosis, and deeper quiet stroma. Acanthamoeba trophozoites were found in the anterior stroma while the cysts were more in the deeper stroma, with minimal or no inflammatory response. TUNEL staining was positive in keratocytic nuclei in all layers. Conclusions: This study demonstrates that one of the modes of keratocyte loss in Acanthamoeba keratitis is by apoptosis, possibly in addition to the necrotic process and phagocytic activity of the parasite. The death of inflammatory cells also appears to be mediated by apoptosis.

  12. Isoflurane-induced neuronal apoptosis in developing hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai; Weitao Guo

    2013-01-01

    We hypothesized that the P2X7 receptor may be the target of isoflurane, so we investigated the roles of the P2X7 receptor and inositol triphosphate receptor in calcium overload and neuronal apoptosis induced by isoflurane in cultured embryonic rat hippocampal neurons. Results showed that isoflurane induced widespread neuronal apoptosis and significantly increased cytoplasmic Ca2+. Blockade of P2X7 receptors or removal of extracellular Ca2+ combined with blockade of inositol triphosphate receptors completely inhibited apoptosis or increase in cytoplasmic Ca2+. Removal of extracellular Ca2+ or blockade of inositol triphosphate receptor alone could partly inhibit these effects of isoflurane. Isoflurane could directly activate P2X7-gated channels and induce inward currents, but did not affect the expression of P2X7 receptor protein in neurons. These findings indicate that the mechanism by which isoflurane induced neuronal apoptosis in rat developing brain was mediated by intracellular calcium overload, which was caused by P2X7 receptor mediated calcium influx and inositol triphosphate receptor mediated calcium release.

  13. Puerarin Suppress Apoptosis of Human Osteoblasts via ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ling-juan Liu

    2013-01-01

    Full Text Available Puerarin, the main isoflavone glycoside extracted from Radix Puerariae, is an isoflavone traditional Chinese herb. Previous studies have demonstrated that puerarin could regulate osteoblast proliferation and differentiation to promote bone formation. However, the effect of puerarin on the process of human osteoblasts (hOBs apoptosis is still unclear. In this study, we detected the function of puerarin on serum-free-induced cell apoptosis using ELISA and TUNEL arrays and then found that the mortality of hOBs was significantly decreased after exposure to 10−10–10−6 M puerarin and reached the maximal antiapoptotic effect at the concentration of 10−8 M. In addition, compared with the control group, puerarin notably increased the Bcl-2 protein levels while it decreased the Bax protein levels in the hOBs in a dose-dependent way. 10−7 M puerarin decreased the Bax/Bcl-2 ratio with a maximal decrease to 0.08. Moreover, puerarin activated ERK signaling pathways in hOBs, and the antiapoptotic effect induced by puerarin was abolished by incubation of ERK inhibitor PD98059. Similarly, the estrogen receptor antagonist ICI182780 also suppressed the inhibitory effect of puerarin on hOBs apoptosis. In conclusion, puerarin could prevent hOBs apoptosis via ERK signaling pathway, which might be effective in providing protection against bone loss and bone remolding associated with osteoporosis.

  14. Early autophagy activation inhibits podocytes from apoptosis induced by aldosterone

    Institute of Scientific and Technical Information of China (English)

    王文琰

    2013-01-01

    Objective To explore the protection of early autoph-agy activation on podocyte injury induced by aldosterone.Methods In vitro cultured mouse podocyte clones(MPC5) were treated with aldosterone for 6,12,24,48 hrespectively. Apoptosis of podocytes was detected by

  15. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells.

    Science.gov (United States)

    Wang, I-Te; Chou, Shou-Chu; Lin, Ying-Chin

    2014-12-01

    Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.

  16. S-nitrosylation/Denitrosylation and Apoptosis of Immune Cells

    Institute of Scientific and Technical Information of China (English)

    Shaojin Duan; Chang Chen

    2007-01-01

    Nitric oxide (NO) as an immunoregulatory molecule, predominantly depending on S-nitrosylation, acts as a versatile player that executes its regulation and signal transduction for exerting its multi-functions and pleiotropy.Apoptosis of immune cells is an intricate process coupled with positive/negative selection depending on integrated diverse endogenous and exogenous signals and functions to sustain homeostasis in the immune system. Here, the dual roles of NO depending on its concentration in apoptosis are reviewed, breeding up a switch mode in the apoptotic process. Following comments of different switches from apoptosis-death, a new finding of checkpoint(early fluorescence point) of GSNO-initiated thymocyte apoptosis and NOS-GSNOR double control are highlighted.Moreover, S-nitrosylation/denitrosylation, being as a redox switch, logically approaches to networks of metabolism itself and further accesses the neuroendicrine-immune-free radical network as a whole. Moreover, the host defense mediated by NO on pathogens, via protein S-nitrosylation are also discussed.

  17. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  18. Involvement of Prohibitin Upregulation in Abrin-Triggered Apoptosis

    Directory of Open Access Journals (Sweden)

    Yu-Huei Liu

    2012-01-01

    Full Text Available Abrin (ABR, a protein purified from the seeds of Abrus precatorius, induces apoptosis in various types of cancer cells. However, the detailed mechanism remains largely uncharacterized. By using a cDNA microarray platform, we determined that prohibitin (PHB, a tumor suppressor protein, is significantly upregulated in ABR-triggered apoptosis. ABR-induced upregulation of PHB is mediated by the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK pathway, as demonstrated by chemical inhibitors. In addition, ABR significantly induced the expression of Bax as well as the activation of caspase-3 and poly(ADP-ribose polymerase (PARP in Jurkat T cells, whereas the reduction of PHB by specific RNA interference delayed ABR-triggered apoptosis through the proapoptotic genes examined. Moreover, our results also indicated that nuclear translocation of the PHB-p53 complex may play a role in the transcription of Bax. Collectively, our data show that PHB plays a role in ABR-induced apoptosis, which may be helpful for the development of diagnostic or therapeutic agents.

  19. Recombinant soluble TRAIL induces apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    TRAIL is a tumor necrosis factor family member that selectively induces apoptosis of cancer cells but not of normal cells. To develop TRAIL into a potential cancer drug, three different sizes of soluble TRAIL fragments, including sTRAIL(74-281), sTRAIL(95-281) and sTRAIL(101-281), were expressed in E. coli and purified to homogeneity. Apoptosis assays indicated that sTRAIL(95-281) and sTRAIL(101-281), but not sTRAIL(74-281), can potently induce apoptosis of various cancer cell lines in 6 h, suggesting that the N-terminal fragment of aa101 has inhibitory effect on TRAIL-induced apoptosis. Moreover, we found that some cancer cells were resistant to TRAIL and the resistant cells could be converted into sensitive cells by treatment with the protein synthesis inhibitor cycloheximide, suggesting that one or more short-lived proteins are responsible for cells' resistance to TRAIL.

  20. Salmonella typhimurium Invasion Induces Apoptosis in Infected Macrophages

    Science.gov (United States)

    Monack, Denise M.; Raupach, Barbel; Hromockyj, Alexander E.; Falkow, Stanley

    1996-09-01

    Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S. typhimurium and Salmonella typhi, independent of their ability to replicate intracellularly, are cytotoxic to RAW264.7 macrophages and, to a greater degree, to murine bone marrow-derived macrophages. Here, we show that the macrophage cytotoxicity mediated by invasive Salmonella is apoptosis, as shown by nuclear morphology, cytoplasmic vacuolization, and host cell DNA fragmentation. S. typhimurium that enter cells causing ruffles but are mutant for subsequent intracellular replication also initiate host cell apoptosis. Mutant S. typhimurium that are incapable of inducing host cell membrane ruffling fail to induce apoptosis. The activation state of the macrophage plays a significant role in the response of macrophages to Salmonella invasion, perhaps indicating that the signal or receptor for initiating programmed cell death is upregulated in activated macrophages. The ability of Salmonella to promote apoptosis may be important for the initiation of infection, bacterial survival, and escape of the host immune response.

  1. Herbal Medicine as Inducers of Apoptosis in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Elham Safarzadeh

    2014-12-01

    Full Text Available Cancer is uncontrolled growth of abnormal cells in the body. Nowadays, cancer is considered as a human tragedy and one of the most prevalent diseases in the wide, and its mortality resulting from cancer is being increased. It seems necessary to identify new strategies to prevent and treat such a deadly disease. Control survival and death of cancerous cell are important strategies in the management and therapy of cancer. Anticancer agents should kill the cancerous cell with the minimal side effect on normal cells that is possible through the induction of apoptosis. Apoptosis is known as programmed cell death in both normal and damaged tissues. This process includes some morphologically changes in cells such as rapid condensation and budding of the cell, formation of membrane-enclosed apoptotic bodies with well-preserved organelles. Induction of apoptosis is one of the most important markers of cytotoxic antitumor agents. Some natural compounds including plants induce apoptotic pathways that are blocked in cancer cells through various mechanisms in cancer cells. Multiple surveys reported that people with cancer commonly use herbs or herbal products. Vinca Alkaloids, Texans, podo phyllotoxin, Camptothecins have been clinically used as Plant derived anticancer agents. The present review summarizes the literature published so far regarding herbal medicine used as inducers of apoptosis in cancer.

  2. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  3. Sensitization for Anticancer Drug-Induced Apoptosis by Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2005-02-01

    Full Text Available We previously described that betulinic acid (BetA, a naturally occurring pentacyclic triterpenoid, induces apoptosis in tumor cells through the mitochondrial pathway. Here, for the first time, we provide evidence that BetA cooperated with anticancer drugs to induce apoptosis and to inhibit clonogenic survival of tumor cells. Combined treatment with BetA and anticancer drugs acted in concert to induce loss of mitochondrial membrane potential and the release of cytochrome c and Smac from mitochondria, resulting in activation of caspases and apoptosis. Overexpression of Bcl-2, which blocked mitochondrial perturbations, also inhibited the cooperative effect of BetA and anticancer drugs, indicating that cooperative interaction involved the mitochondrial pathway. Notably, cooperation of BetA and anticancer drugs was found for various cytotoxic compounds with different modes of action (e.g., doxorubicin, cisplatin, Taxol, VP16, or actinomycin D. Importantly, BetA and anticancer drugs cooperated to induce apoptosis in different tumor cell lines, including p53 mutant cells, and also in primary tumor cells, but not in human fibroblasts indicating some tumor specificity. These findings indicate that using BetA as sensitizer in chemotherapy-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy, which warrants further investigation.

  4. A new inhibitor of apoptosis from vaccinia virus and eukaryotes.

    NARCIS (Netherlands)

    Gubser, C.; Bergamaschi, D.; Hollinshead, M.; Lu, X.; Kuppeveld, F.J.M. van; Smith, G.L.

    2007-01-01

    A new apoptosis inhibitor is described from vaccinia virus, camelpox virus, and eukaryotic cells. The inhibitor is a hydrophobic, multiple transmembrane protein that is resident in the Golgi and is named GAAP (Golgi anti-apoptotic protein). Stable expression of both viral GAAP (v-GAAP) and human GAA

  5. Influenza virus induces apoptosis via BAD-mediated mitochondrial dysregulation.

    Science.gov (United States)

    Tran, Anh T; Cortens, John P; Du, Qiujiang; Wilkins, John A; Coombs, Kevin M

    2013-01-01

    Influenza virus infection results in host cell death and major tissue damage. Specific components of the apoptotic pathway, a signaling cascade that ultimately leads to cell death, are implicated in promoting influenza virus replication. BAD is a cell death regulator that constitutes a critical control point in the intrinsic apoptosis pathway, which occurs through the dysregulation of mitochondrial outer membrane permeabilization and the subsequent activation of downstream apoptogenic factors. Here we report a novel proviral role for the proapoptotic protein BAD in influenza virus replication. We show that influenza virus-induced cytopathology and cell death are considerably inhibited in BAD knockdown cells and that both virus replication and viral protein production are dramatically reduced, which suggests that virus-induced apoptosis is BAD dependent. Our data showed that influenza viruses induced phosphorylation of BAD at residues S112 and S136 in a temporal manner. Viral infection also induced BAD cleavage, late in the viral life cycle, to a truncated form that is reportedly a more potent inducer of apoptosis. We further demonstrate that knockdown of BAD resulted in reduced cytochrome c release and suppression of the intrinsic apoptotic pathway during influenza virus replication, as seen by an inhibition of caspases-3, caspase-7, and procyclic acidic repetitive protein (PARP) cleavage. Our data indicate that influenza viruses carefully modulate the activation of the apoptotic pathway that is dependent on the regulatory function of BAD and that failure of apoptosis activation resulted in unproductive viral replication.

  6. Cadmium-induced ectopic apoptosis in zebrafish embryos

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Po Kwok; Cheng, Shuk Han [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2003-02-01

    In this study, we tested the hypothesis that cadmium-induced developmental toxicity was mediated via ectopic occurrence of apoptosis during embryonic development. We employed confocal microscopy to acquire images of whole-mount staining of apoptotic cells in zebrafish embryo exposed to 100 {mu}M cadmium from 5 hours post fertilisation (hpf) to 28 hpf. Three-dimensional reconstruction of the images was performed and the spatial and temporal distributions of apoptotic cells in the embryos were compared. In cadmium-treated embryos with varying degrees of gross developmental malformations, significantly higher numbers of apoptotic cells were detected with this method. In order to detect the precise locations of apoptotic cells, we performed terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay in sectioned embryos. In the degenerating neural tube of cadmium-treated embryos apoptotic cells were detected, while in the healthy neural tube of the untreated controls no apoptotic cells were found. We then employed flow cytometry to investigate whether cadmium exposure would affect the dynamics of apoptosis or induce any abnormalities in cell-cycle progression. It appeared that cadmium did not induce cell-cycle arrest. The percentages of apoptotic cells did not differ in the two groups at 13, 16 or 19 hpf. At 28 hpf, however, a significantly higher percentage of apoptotic cells were found in the cadmium-treated group. Exposure to cadmium, therefore, induced ectopic apoptosis at 28 hpf without affecting the dynamics of apoptosis at earlier developmental stages. (orig.)

  7. Fluid shear stress inhibits TNFalpha-induced osteocyte apoptosis.

    NARCIS (Netherlands)

    Tan, S.D.; Kuijpers-Jagtman, A.M.; Semeins, C.M.; Bronckers, A.L.; Maltha, J.C.; Hoff, J.W. Von den; Everts, V.; Klein-Nulend, J.

    2006-01-01

    Bone tissue can adapt to orthodontic load. Mechanosensing in bone is primarily a task for the osteocytes, which translate the canalicular flow resulting from bone loading into osteoclast and osteoblast recruiting signals. Apoptotic osteocytes attract osteoclasts, and inhibition of osteocyte apoptosi

  8. Accelerated apoptosis of neutrophils in familial Mediterranean fever

    DEFF Research Database (Denmark)

    Manukyan, Gayane; Aminov, Rustam; Hakobyan, Gagik

    2015-01-01

    The causative mutations for familial Mediterranean fever (FMF) are located in the MEFV gene, which encodes pyrin. Pyrin modulates the susceptibility to apoptosis via its PYD domain, but how the mutated versions of pyrin affect apoptotic processes are poorly understood. Spontaneous and induced rates...

  9. Coxsackievirus B3-induced apoptosis and Caspase-3

    Institute of Scientific and Technical Information of China (English)

    JIAN PING YUAN; WEI ZHAO; HONG TAO WANG; KAI YU WU; TAO LI; XIAO KUI GUO; SHAN QING TONG

    2003-01-01

    Cell death can be classified into two categories: apoptosis and necrosis. Apoptotic pathway can beeither caspase-dependent or caspase-independent. Caspase-independent cytopathic effect (CPE) has beendescribed. In order to evaluate the pattern of HeLa cell death induced by Coxsackievirus B3 (CVB3)and whether apoptosis involves caspase activation, we co-cultivated HeLa cells with CVB3 and detectedthe cytopathic changes, the alteration of mRNA and protein expression of caspase-3 gene plus caspase-3activity, as well as analyzing DNA fragmentation before and after caspase-3 activity inhibition. Accordingto the results, we propose that CVB3 may induce apoptosis and necrosis in HeLa cells, the latter appearingmuch earlier. Caspase-3 is activated at the levels of both transcription and translation, and procaspase-3 isproteolytically cleaved, thus leading to the continuous increasing of both caspase-3 precursor protein and itssubunit. However, besides CPE, apoptosis induced by CVB3 is not a direct consequence of the activationof caspase-3, or caspase-3 is not the only effector molecule in apoptotic cell death, for caspase-3 inhibitorcan not decrease DNA fragmentation. Some other biochemical mechanisms may participate in the process,whose role weakens the effect of inhibiting caspase-3 activity.

  10. Increased lymphoid tissue apoptosis in baboons with bacteremic shock.

    Science.gov (United States)

    Efron, Philip A; Tinsley, Kevin; Minnich, Douglas J; Monterroso, Victor; Wagner, J; Lainée, Pierre; Lorré, Katrien; Swanson, Paul E; Hotchkiss, Richard; Moldawer, Lyle L

    2004-06-01

    The molecular mechanisms of immune cell apoptosis during sepsis remain unclear. Two young adult baboons (Papio sp.) received a lethal dose of live Escherichia coli and were sacrificed at either 16 (for animal welfare concerns) or 24 h post-septic shock. An additional baboon, which received no bacteria, served as a control. Necropsy was performed immediately with subsequent immunohistochemical staining of lymphoid tissue. Immunohistologic analysis of tissues from the septic baboons revealed marked systemic lymphocyte apoptosis occurring in all lymphoid tissues examined. Focally, pyknotic and karyorrhectic lymphocytes demonstrated activation of a mitochondrial-dependent cell death pathway (active caspase 9 and apoptosis-inducing factor). Other regions demonstrated apoptotic lymphocytes with activation of a death receptor-dependent cell pathway (Fas ligand). Thus, we have demonstrated for the first time in primates that overwhelming gram-negative bacteremia produces an early and profound lymphocyte death that occurs through multiple cell death pathways. Bacteremic shock in the baboon may be an appropriate model for studying experimental therapies aimed at blocking lymphocyte apoptosis because their response appears comparable to humans dying from sepsis.

  11. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis

    Science.gov (United States)

    Kurze, Christoph; Le Conte, Yves; Dussaubat, Claudia; Erler, Silvio; Kryger, Per; Lewkowski, Oleg; Müller, Thomas; Widder, Miriam; Moritz, Robin F. A.

    2015-01-01

    Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion. PMID:26445372

  12. Nosema Tolerant Honeybees (Apis mellifera Escape Parasitic Manipulation of Apoptosis.

    Directory of Open Access Journals (Sweden)

    Christoph Kurze

    Full Text Available Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host's apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.

  13. Mitochondria in the Center of Human Eosinophil Apoptosis and Survival

    Directory of Open Access Journals (Sweden)

    Pinja Ilmarinen

    2014-03-01

    Full Text Available Eosinophils are abundantly present in most phenotypes of asthma and they contribute to the maintenance and exacerbations of the disease. Regulators of eosinophil longevity play critical roles in determining whether eosinophils accumulate into the airways of asthmatics. Several cytokines enhance eosinophil survival promoting eosinophilic airway inflammation while for example glucocorticoids, the most important anti-inflammatory drugs used to treat asthma, promote the intrinsic pathway of eosinophil apoptosis and by this mechanism contribute to the resolution of eosinophilic airway inflammation. Mitochondria seem to play central roles in both intrinsic mitochondrion-centered and extrinsic receptor-mediated pathways of apoptosis in eosinophils. Mitochondria may also be important for survival signalling. In addition to glucocorticoids, another important agent that regulates human eosinophil longevity via mitochondrial route is nitric oxide, which is present in increased amounts in the airways of asthmatics. Nitric oxide seems to be able to trigger both survival and apoptosis in eosinophils. This review discusses the current evidence of the mechanisms of induced eosinophil apoptosis and survival focusing on the role of mitochondria and clinically relevant stimulants, such as glucocorticoids and nitric oxide.

  14. Expression pattern of apoptosis-related markers in Huntington's disease

    NARCIS (Netherlands)

    Vis, José C; Schipper, Ellis; de Boer-van Huizen, Roelie T; Verbeek, Marcel M; de Waal, Rob M W; Wesseling, Pieter; ten Donkelaar, Hans J; Kremer, Berry

    2005-01-01

    Inappropriate apoptosis has been implicated in the mechanism of neuronal death in Huntington's disease (HD). In this study, we report the expression of apoptotic markers in HD caudate nucleus (grades 1-4) and compare this with controls without neurological disease. Terminal transferase-mediated biot

  15. Iron starvation induces apoptosis in Rhizopus oryzae in vitro.

    Science.gov (United States)

    Shirazi, Fazal; Kontoyiannis, Dimitrios P; Ibrahim, Ashraf S

    2015-01-01

    Mortality associated with mucormycosis remains high despite current antifungals. Iron-starvation strategies have been shown to have promising activity against Mucorales. We hypothesized that iron starvation enhances apoptosis in Rhizopus oryzae. Apoptosis was characterized in R. oryzae transformed with RNAi plasmid targeting FTR1 expression (iron permease mutant) or empty plasmid grown in iron rich (0.125% FeCl3) and iron depleted media (YNB+1mM ferrozine and 1 mM ascorbic acid). Increased apoptosis was observed with dihydrorhodamine-123 and rhodamine-123 staining in the iron starved mutant FTR1 when compared to empty plasmid, followed by increased extracellular ATP levels. In addition, DNA fragmentation and metacaspase activity were prominent in FTR1. In contrast, Rhizopus strains grown in iron-rich medium displayed minimal apoptosis. Our results demonstrate a metacaspase dependent apoptotic process in iron deprived condition and further support the role of iron starvation strategies as an adjunct treatment for mucormycosis, a mechanism by which iron starvation affects R. oryzae.

  16. Relationship between ascorbyl radical intensity and apoptosis-inducing activity.

    Science.gov (United States)

    Sakagami, H; Satoh, K; Ohata, H; Takahashi, H; Yoshida, H; Iida, M; Kuribayashi, N; Sakagami, T; Momose, K; Takeda, M

    1996-01-01

    Ascorbic acid and its related compounds were compared for their ascorbyl radical intensity and apoptosis-inducing activity. Sodium L-ascorbate, L-ascorbic acid, D-isoascorbic acid, sodium 6-beta-O-galactosyl-L-ascorbate and sodium 5,6-benzylidene-L-ascorbate, at the concentration of 1-10 mM, induced apoptotic cell death characterized by cell shrinkage, nuclear fragmentation and internucleosomal DNA cleavage in human promyelocytic leukemic HL-60 cells. On the other hand, L-ascorbic acid-2-phosphate magnesium salt and L-ascorbic acid 2-sulfate did not induce any of these apoptosis-associated characteristics. ESR measurements revealed that all the active compounds were progressively degraded, producing the ascorbyl radical (g = 2.0064, hfc = 0.17 mT) in culture medium, whereas the inactive compounds were stable and did not produce the ascorbyl radical. Cytotoxicity began to appear when the radical intensity exceeded a certain threshold level. In the presence of N-acetyl-L-cysteine, both ascorbyl radical intensity and apoptosis-inducing activity were significantly reduced. These data suggest the possible involvement of the ascorbyl radical in apoptosis induction by ascorbic acid-related compounds. Exposure of HL-60 cells to ascorbic acid or its active derivatives resulted in the rapid elevation of intracellular Ca2+ concentration, which might serve as the initial signal leading to the cell death pathway.

  17. Factors influencing ER subtype-mediated cell proliferation and apoptosis

    NARCIS (Netherlands)

    Evers, N.M.

    2014-01-01

      The aim of the current thesis is to elucidate the role of estrogen receptor (ER)αand ERβin cell proliferation and apoptosis induced by estrogenic compounds. Special attention is paid to the importance of the receptor preference of the estrogenic compounds, the cellular ERα/E

  18. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2016-11-01

    Full Text Available The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC. Levels of reactive oxygen species (ROS, malondialdehyde (MDA, and glutathione (GSH, activities of superoxide dismutase (SOD and catalase (CAT, mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  19. Sulforaphane Prevents Neuronal Apoptosis and Memory Impairment in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Gengyin Wang

    2016-08-01

    Full Text Available Background/Aims: To explore the effects of sulforaphane (SFN on neuronal apoptosis in hippocampus and memory impairment in diabetic rats. Methods: Thirty male rats were randomly divided into normal control, diabetic model and SFN treatment groups (N = 10 in each group. Streptozotocin (STZ was applied to establish diabetic model. Water Morris maze task was applied to test learning and memory. Tunel assaying was used to detect apoptosis in hippocampus. The expressions of Caspase-3 and myeloid cell leukemia 1(MCL-1 were detected by western blotting. Neurotrophic factor levels and AKT/GSK3β pathway were also detected. Results: Compared with normal control, learning and memory were apparently impaired, with up-regulation of Caspase-3 and down-regulation of MCL-1 in diabetic rats. Apoptotic neurons were also found in CA1 region after diabetic modeling. By contrast, SFN treatment prevented the memory impairment, decreased the apoptosis of hippocampal neurons. SFN also attenuated the abnormal expression of Caspase-3 and MCL-1 in diabetic model. Mechanically, SFN treatment reversed diabetic modeling-induced decrease of p-Akt, p-GSK3β, NGF and BDNF expressions. Conclusion: SFN could prevent the memory impairment and apoptosis of hippocampal neurons in diabetic rat. The possible mechanism was related to the regulation of neurotropic factors and Akt/GSK3β pathway.

  20. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, David; Strom, Joshua; Chen, Qin M., E-mail: qchen@email.arizona.edu

    2014-04-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA.

  1. alpha-Amanitin induced apoptosis in primary cultured dog hepatocytes.

    Directory of Open Access Journals (Sweden)

    Adam Szelag

    2010-06-01

    Full Text Available Amatoxin poisoning is caused by mushroom species belonging to the genera Amanita, Galerina and Lepiota with the majority of lethal mushroom exposures attributable to Amanita phalloides. High mortality rate in intoxications with these mushrooms is principally a result of the acute liver failure following significant hepatocyte damage due to hepatocellular uptake of amatoxins. A wide variety of amatoxins have been isolated; however, alpha-amanitin (alpha-AMA appears to be the primary toxin. Studies in vitro and in vivo suggest that alpha-AMA does not only cause hepatocyte necrosis, but also may lead to apoptotic cell death. The objective of this study was to evaluate the complex hepatocyte apoptosis in alpha-AMA cytotoxicity. All experiments were performed on primary cultured canine hepatocytes. The cells were incubated for 12 h with alpha-AMA at a final concentration of 1, 5, 10 and 20 microM. Viability test (MTT assay, apoptosis evaluation (TUNEL reaction, detection of DNA laddering and electron microscopy were performed at 6 and 12 h of exposure to alpha-AMA. There was a clear correlation between hepatocyte viability, concentration of alpha-AMA and time of exposure to this toxin. The decline in cultured dog hepatocyte viability during the exposure to alpha-AMA is most likely preceded by enhanced cellular apoptosis. Our results demonstrate that apoptosis might contribute to pathogenesis of the severe liver injury in the course of amanitin intoxication, particularly during the early phase of poisoning.

  2. Advances in TCM Treatment of Gastric Cancer and Studies on the Apoptosis

    Institute of Scientific and Technical Information of China (English)

    吴敏; 姚保泰

    2002-01-01

    @@ The significance of apoptosis in gastric cancer is now widely recognized, and the induction of apoptosis as a new approach to treat gastric cancer has aroused great interest. In recent years, studies on certain TCM drugs for treating gastric cancer and for inducing apoptosis have brought about great attention both at home and abroad. The following is a summary made in this aspect.

  3. FADD and TRADD expression and apoptosis in primary hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Bao Hua Sun; Xi Ping Zhao; Bao Ju Wang; Dong Liang Yang; Lian Jie Hao

    2000-01-01

    AIM To investigate the clinical features of FADD and TRADD expressions in primary hepatocellular carcinoma ( HCC ) and to determine their relationship with hepatic apoptosis. METHODS FADD and TRADD expressions were detected by immunohistochemistry and hepatic apoptosis were determined by in situ endlabeling ( ISEL). RESULTS Ten (25.6%) cases of HCC were detected to express FADD protein. The positive rate in HCC is lower than that in non-cancerous adjacent liver tissues (62.5%) (P<0.05). In those of grade Ⅰ - Ⅱ, 8 (38.1%) cases were FADD positive, while only 2/18 (11. 1%) cases of grade Ⅲ - Ⅳ had detectable FADD protein (P<0.05). No relationship was found between FADD expression and other clinical features,such as gender, age, tumor size, differentiation or metastasis. ISEL positive cells can be seen in all cases of HCC. The hepatic apoptosis was associated with FADD expression as more apoptotic cells were detected in those cases which had moderately to strongly positive FADD, as compared with negative or weak positive FADD cases (P< 0.05). No relationship was found between FADD expression and hepatic apoptosis in non-cancerous adjacent liver tissues. Fifteen of 39 (38.5%) cases of HCC were found positive for TRADD protein, and similar positive rate (37.5%) in non-cancerous adjacent liver tissues (P >0.05). The expression of TRADD is correlated with HCC differentiation,as only 22.2% of moderately to highly differentiated HCC showed positive TRADD protein, while as high as 52.4% of poorly differentiated HCC had TRADD (P<0.05). No relationship was found between TRADD expression and gender, age, tumor size or grade or metastasis, although 42.9% of HCC of grade Ⅰ/Ⅱ showed positive TRADD which was slightly higher than that of grade Ⅲ/Ⅳ (33.3%,P > 0.05). Hepatic apoptosis was not related to TRADD expression in HCC or non-cancerous adjacent liver tissues. CONCLUSION Loss of FADD expression plays an important role in HCC carcinogenesis, and

  4. Trauma induces apoptosis in human thoracolumbar intervertebral discs

    Directory of Open Access Journals (Sweden)

    Ertel Wolfgang

    2006-05-01

    Full Text Available Abstract Background Vertebral fractures resulting from high energy trauma often comprise the risk of posttraumatic degenerative changes in the affected intervertebral discs (IVD. Particularly in conservatively treated patients, or in cases after implant removal of an exclusively posterior stabilization, consecutive disc degeneration and the associated functional losing of the spinal segment clearly represent detrimental treatment results. In this regard, apoptosis of IVD cells has been suggested to be involved in the critical changes of the extracellular matrix. Methods To investigate whether fractures of the vertebrae induce apoptosis in the affected IVD, disc tissue from patients (n = 17 undergoing open reduction and internal fixation of thoracolumbar spine fractures were analysed in regards to caspase activity, apoptosis-receptor expression levels and gene expression of apoptosis-regulating proteins such as Bax and Bcl-2. Healthy IVD tissue (n = 3 obtained from patients undergoing surgical resection of adjacent vertebrae were used as control samples. Results In contrast to healthy control IVD tissues, samples from traumatic thoracolumbar IVD showed positive TUNEL staining and a significant increase of caspase-3/7 activity. Interestingly, analyses of the initiator caspase-8 and -9 revealed significantly increased activation levels compared to control values, suggesting the coexistent activation of both the extrinsic (receptor-mediated and intrinsic (mitochondria-mediated apoptosis pathway. Accordingly, expression levels of the Fas receptor (FasR mRNA were significantly increased. Although the TNF receptor I (TNFR I was only slightly upregulated, corresponding TNFα from trauma IVD presented significantly increased mRNA expression values. Furthermore, traumatic IVD cells demonstrated significantly reduced expression of the mitochondria-bound anti-apoptotic Bcl-2, thereby maintaining baseline transcriptional levels of the pro-apoptotic Bax

  5. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rossi Adriano G

    2009-05-01

    Full Text Available Abstract Background Nitric oxide (NO can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-. In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ, and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z-1- [2-(2-aminoethyl-N-(2-ammonioethylamino]diazen-1-ium-1,2-diolate (DETA/NO and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl-, chloride (GEA-3162 was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM or GEA-3162 (10 – 300 μM in the presence or absence of BAY 41–2272 (1 μM, isobutylmethylxanthine (IBMX; 1 μM, 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM or 8-bromo-cGMP (1 mM. Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO had no effect on cell viability, but ONOO- (GEA-3162 caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX, or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  6. Role of mitochondrial damage during cardiac apoptosis in septic rats

    Institute of Scientific and Technical Information of China (English)

    LI Li; HU Bang-chuan; CHEN Chang-qin; GONG Shi-jin; YU Yi-hua; DAI Hai-wen; YAN Jing

    2013-01-01

    Background Myocardial apoptosis is involved in the pathogenesis of sepsis-related myocardial depression.However,the underlying mechanism remains unknown.This study investigated the role of mitochondrial damage and mitochondria-induced oxidative stress during cardiac apoptosis in septic rats.Methods Seventy-two Sprague-Dawley rats were randomly divided into a control group and septic group receiving lipopolysaccharide injection.Heart tissue was removed and changes in cardiac morphology were observed by light microscopy and scanning electron microscopy.In situ apoptosis was examined using terminal transferase-mediated dUTP nick end-labeling assay and nuclear factor-kappa B activation in myocardium by Western blotting to estimate myocardial apoptosis.Appearance of mitochondrial cristae and activation of cytochrome C oxidase were used to evaluate mitochondrial damage.Oxidative stress was assessed by mitochondrial lipid and protein oxidation,and antioxidant defense was assessed by mitochondrial superoxide dismutase and glutathione peroxidase activity.Results Sepsis-induced inflammatory cell infiltration,myocardium degeneration and dropsy were time-dependent.Expanded capillaries were observed in the hearts of infected rats 24 hours post-challenge.Compared with sham-treated rats,the percentage of cell apoptosis increased in a time-dependent manner in hearts from septic rats at 6 hours,12 hours and 24 hours post-injection (P < 0.05).The expression of nuclear factor-kappa B p65 decreased gradually in the cytosol and increased in the nucleus during sepsis,indicating that septic challenge provoked the progressive activation of nuclear factor-kappa B.Mitochondrial cristae and activation of cytochrome C oxidase increased in a time-dependent manner.Both superoxide dismutase and glutathione peroxidase activities decreased,while mitochondrial lipid and protein oxidation increased between 6 and 24 hours after lipopolysaccharide challenge.Conclusions Septic challenge induced

  7. Neem oil limonoids induces p53-independent apoptosis and autophagy.

    Science.gov (United States)

    Srivastava, Pragya; Yadav, Neelu; Lella, Ravi; Schneider, Andrea; Jones, Anthony; Marlowe, Timothy; Lovett, Gabrielle; O'Loughlin, Kieran; Minderman, Hans; Gogada, Raghu; Chandra, Dhyan

    2012-11-01

    Azadirachta indica, commonly known as neem, has a wide range of medicinal properties. Neem extracts and its purified products have been examined for induction of apoptosis in multiple cancer cell types; however, its underlying mechanisms remain undefined. We show that neem oil (i.e., neem), which contains majority of neem limonoids including azadirachtin, induced apoptotic and autophagic cell death. Gene silencing demonstrated that caspase cascade was initiated by the activation of caspase-9, whereas caspase-8 was also activated late during neem-induced apoptosis. Pretreatment of cancer cells with pan caspase inhibitor, z-VAD inhibited activities of both initiator caspases (e.g., caspase-8 and -9) and executioner caspase-3. Neem induced the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, suggesting the involvement of both caspase-dependent and AIF-mediated apoptosis. p21 deficiency caused an increase in caspase activities at lower doses of neem, whereas p53 deficiency did not modulate neem-induced caspase activation. Additionally, neem treatment resulted in the accumulation of LC3-II in cancer cells, suggesting the involvement of autophagy in neem-induced cancer cell death. Low doses of autophagy inhibitors (i.e., 3-methyladenine and LY294002) did not prevent accumulation of neem-induced LC3-II in cancer cells. Silencing of ATG5 or Beclin-1 further enhanced neem-induced cell death. Phosphoinositide 3-kinase (PI3K) or autophagy inhibitors increased neem-induced caspase-3 activation and inhibition of caspases enhanced neem-induced autophagy. Together, for the first time, we demonstrate that neem induces caspase-dependent and AIF-mediated apoptosis, and autophagy in cancer cells.

  8. Signaling pathway for apoptosis: a racetrack for life or death.

    Science.gov (United States)

    Wang, E; Marcotte, R; Petroulakis, E

    1999-01-01

    Apoptosis, or programmed cell death, is a gene-directed mechanism activated as a suicidal event to get rid of excess, damaged, or infected cells. The recent astounding pace of research in this area has expanded our horizon of understanding that this mechanism is regulated largely by pro- and anti-apoptosis factors acting for or against the final death event. The driving force behind these factors, either pro-apoptosis or pro-survival, is largely determined by signal transduction pathways, starting with the initiation of a death signal at the plasma membrane, and following through a complex cytoplasmic network before reaching the end point of cell demise. Enmeshed in this intricate cytoplasmic network are many checkpoints, where complexes of pro- and anti-apoptosis factors function to facilitate or deter the death signals. The culmination of the balancing act between these two camps of factors at these signal transduction checkpoints may then result in the final decision to die or to live. Thus, the eventual death of a cell may require successful passage through all the checkpoints, a mechanism Nature has provided as a safeguard to prevent erroneous triggering of death. With the advent of a new biotechnology revolution at the dawn of the new millenium, we look forward to an exciting era when we can gain fuller understanding of the operation of all these checkpoints. Ultimately, this gain will pave the way to control the apoptosis event at the checkpoints, and to support the organism's functionality as long as possible. J. Cell. Biochem. Suppls. 32/33:95-102, 1999.

  9. Resveratrol Induces Apoptosis in Human Osteosarcoma MG63 Cells

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Xin Wang; Yuxin Xie; Jingui Zhang; Qingshan Wang; Xianhui Xu

    2008-01-01

    OBJECTIVE To investigate apoptosis in human osteosarcoma MG63 cells induced by resveratrol and the molecular mechanism involved.METHODS MG63 cells were treated with different concentrations of resveratrol and transmission electron microscopy was used to observe morphological changes occurring in apoptosis.The MTT method was used to determine the inhibitory rate and flow cytometry was used to assess apoptosis and to analyze the expression of the p21ciP1/WAF1 and survivin proteins;the expression of p21ciP1/WAF1 and survivin mRNAs was analyzed by the reverse transcriptase polymerase chain reaction (RT-PCR).RESULTS After resveratrol treatment,the growth of the MG63 cells was significantly inhibited in a time- and dose-dependent fashion.By transmission electron microscopy,the cells displayed morphological changes characteristic of apoptosis,including formation of cytoplasmic vacuoles,chromatin condensation and margination.Flow cytometry showed that the growth of the cells was inhibited after resveratrol (10 mg/L and 20 mg/L) treatment.The inhibitory rates were (11.9 ±0.63)% and (19.7 ± 0.88)%respectively.The quantity of treated cells in G0/G1 transition was increased,but the number in the S phase and G2/M transition was decreased.A subdiploid peak was observed.The expression of p21ciP1/WAF1 was up-regulated while survivin was down-regulated.CONCLUSION Resveratrol can inhibit growth and induce apoptosis of MG63 cells.Its molecular mechanism might be related to modulation of survivin and p21ciP1/WAF1 expression.

  10. Focused ultrasound induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    GUO Qian; JIANG Li-xin; HU Bing

    2012-01-01

    Background The incidence and mortality rate of pancreatic cancer have increased dramatically in China over recent decades.Focused ultrasound (FU) has been somewhat successful in treating pancreatic cancer.The purpose of this study was to investigate apoptosis in pancreatic cancer cells induced by FU.Methods Suspension of human pancreatic carcinoma cell line PaTu 8988t was radiated by FU,using five doses with different radiation parameters and patterns,including one blank control.Temperature increase of the cell suspension was monitored.Cell apoptosis and death after FU radiation was observed using fluorescence microscopy and was tested by flow cytometer at 3,6,12,24,and 48 hours after ultrasound radiation.Results The maximum cell suspension temperatures following five radiation doses were 28°C,(42.20±2.17)°C,(50.80±0.84)°C,(55.80±2.17)°C,and (65.20±3.11)°C; differences between the doses were statistically significant (P <0.05).The apoptosis rate peaked at 24 hours after radiation,at (0.56±0.15)%,(1.28±0.16)%,(1.84±0.29)%,(5.74±1.15)%,and (2.00±0.84)% for the five doses; differences between the doses were statistically significant (P <0.05).Between doses 1-4,cell apoptosis rates increased as the Tmax increased.In dose 5,as the Tmax was above 60°C,the apoptosis rate decreased.Conclusion Sub-threshold thermal exposures of FU radiation with a continuous radiation pattern could result in higher oercentage of apoptosed cells.

  11. Levamisole induced apoptosis in cultured vascular endothelial cells

    Science.gov (United States)

    Artwohl, Michaela; Hölzenbein, Thomas; Wagner, Ludwig; Freudenthaler, Angelika; Waldhäusl, Werner; Baumgartner-Parzer, Sabina M

    2000-01-01

    To better understand the anticancer activity of Levamisole (LMS), which serves as an adjuvant in colon cancer therapy in combination with 5-Fluorouracil, this study analyses LMS' ability to induce apoptosis and growth arrest in cultured human micro- and macrovascular endothelial cells (ECs) and fibroblasts. Cells exposed (24 h) to Levamisole (range: 0.5–2 mmol l−1) alone or in combination with antioxidants (10 mmol l−1 glutathione or 5 mmol l−1 N-Acetylcysteine or 0.1 mmol l−1 Tocopherol) were evaluated for apoptosis (3H-thymidine assays, in situ staining), mRNA/protein expression (Northern/Western blot), and proliferation (3H-thymidine incorporation). Levamisole dose-dependently increased apoptosis in ECs to 230% (HUVECs-human umbilical vein ECs), 525% (adult human venous ECs) and 600% (human uterine microvascular ECs) but not in fibroblasts compared to control cells (set as 100%). Levamisole increased in ECs integrin-dependent matrix adhesion, inhibited proliferation (−70%), reduced expression of survival factors such as clusterin (−30%), endothelin-1 (−43%), bcl-2 (−34%), endothelial NO-synthase (−32%) and pRb (Retinoblastoma protein: −89%), and increased that of growth arrest/death signals such as p21 (+73%) and bak (+50%). LMS (2 mmol l−1)-induced apoptosis was inhibited by glutathione (−50%) and N-Acetylcysteine (−36%), which also counteracted reduction by Levamisole of pRb expression, suggesting reactive oxygen species and pRb play a role in these processes. The ability of LMS to selectively induce apoptosis and growth arrest in endothelial cells potentially hints at vascular targeting to contribute to Levamisole's anticancer activity. PMID:11139434

  12. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fengbo [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Graduate School of Tianjin Medical University, No. 22, Qixiangtai Street, Heping District, Tianjin 300070 (China); Sun, Xiaolei; Ma, Jianxiong [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Ma, Xinlong, E-mail: gengxiao502@163.com [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Zhao, Bin; Zhang, Yang; Tian, Peng [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China); Li, Yanjun [Graduate School of Tianjin Medical University, No. 22, Qixiangtai Street, Heping District, Tianjin 300070 (China); Han, Zhe [Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin TJ 300050 (China)

    2014-09-26

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.

  13. Neutrophil apoptosis in the lung after hemorrhage or endotoxemia: apoptosis and migration are independent of IL-1beta.

    Science.gov (United States)

    Parsey, M V; Kaneko, D; Shenkar, R; Abraham, E

    1999-05-01

    Hemorrhage and endotoxemia are associated with neutrophil accumulation in the lungs and the development of acute inflammatory lung injury. Because alterations in the rate of apoptosis may affect the number and function of neutrophils in the lungs, we determined the percentage of neutrophils undergoing apoptosis in the lungs of control, hemorrhaged, or endotoxemic mice. In control mice, 18.5 +/- 1.2% of pulmonary neutrophils were apoptotic. The proportion of apoptotic neutrophils in the lungs was significantly decreased 1 h after hemorrhage (6.5 +/- 1.6%, P < 0.01 compared to control) or endotoxemia (7.0 +/- 0.9%, P < 0.01 compared to control). Between 1 and 24 h after endotoxemia or hemorrhage, the proportion of apoptotic neutrophils in the lung remained significantly depressed compared to that in control, unmanipulated mice. By 48 h, the proportion of apoptotic neutrophils returned to baseline levels in the lungs of hemorrhaged (21.4 +/- 1.4%) or endotoxemic (16.4 +/- 1. 6%) mice. Lung neutrophil IL-1beta mRNA was significantly increased from that of control mice [i.e., 0.12 +/- 0.06 relative absorbance units (RAU)] 1 h after hemorrhage (5.19 +/- 0.068 RAU, P < 0.05 compared to control) or endotoxemia (8.90 +/- 1.53 RAU, P < 0.01 compared to control). In IL-1beta-deficient mice, there was no significant difference in lung neutrophil apoptosis or neutrophil entry into the lung after hemorrhage or endotoxemia compared to wild-type mice. Our results show that apoptosis among lung neutrophils is decreased for more than 24 h after hemorrhage or endotoxemia. Although IL-1beta expression is increased in lung neutrophils under these conditions, IL-1beta is not responsible for either the influx of neutrophils into the lung or the reduction of apoptosis in neutrophil populations after hemorrhage or endotoxemia.

  14. The role of apoptosis in the development and function of T lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Nu ZHANG; Heather HARTIG; Ivan DZHAGALOV; David DRAPER; You Wen HE

    2005-01-01

    Apoptosis plays an essential role in T cell biology. Thymocytes expressing nonfunctional or autoreactive TCRs are eliminated by apoptosis during development. Apoptosis also leads to the deletion of expanded effector T cells during immune responses. The dysregulation of apoptosis in the immune system results in autoimmunity, tumorogenesis and immunodeficiency. Two major pathways lead to apoptosis: the intrinsic cell death pathway controlled by Bcl-2 family members and the extrinsic cell death pathway controlled by death receptor signaling. These two pathways work together to regulate T lymphocyte development and function.

  15. Crosstalk between Autophagy and Apoptosis: Potential and Emerging Therapeutic Targets for Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Meng Li

    2016-03-01

    Full Text Available Autophagy is a cell survival process which is related to breaking down and reusing cytoplasm components. Moreover, autophagy regulates cell death under certain conditions. Apoptosis has the characteristics of chromatin agglutination and the shrinking of nuclear and apoptosis body form. Even if the mechanisms of autophagy and apoptosis have differences, some proteins modulate both autophagy and apoptosis. Crosstalk between them exists. This review highlights recent advances in the interaction of autophagy and apoptosis and its importance in the development of cardiovascular diseases.

  16. FADD null mouse embryonic fibroblasts undergo apoptosis after photosensitization with the silicon phthalocyanine Pc 4.

    Science.gov (United States)

    Nagy, B; Yeh, W C; Mak, T W; Chiu, S M; Separovic, D

    2001-01-01

    Oxidative stress, such as photodynamic therapy with the silicon phthalocyanine Pc 4 (Pc 4-PDT), can induce apoptosis and tumor necrosis factor alpha (TNF) production. TNF receptors, as well as other death receptors, have been implicated in stress-induced apoptosis. To assess directly the role of FADD, a death receptor-associated protein, in induction of apoptosis post-Pc 4-PDT, embryonic fibroblasts from FADD knock out (k/o) and wild-type (wt) mice were used. Pc 4-PDT induced casp-3 activation and apoptosis in both cell types. In the presence of zVAD, a pancaspase inhibitor, Pc 4-PDT-induced apoptosis was abrogated in both cell lines. Fumonisin B1 (FB), an inhibitor of ceramide synthase, had no effect on apoptosis after Pc 4-PDT in either cell line. Similar to Pc 4-PDT, exogenous C6-ceramide bypassed FADD deficiency and induced zVAD-sensitive apoptosis. In contrast to Pc 4 photosensitization, TNF did not induce either apoptosis or ceramide accumulation in FADD k/o cells. In the absence of FADD deficiency, TNF-induced apoptosis was zVAD-sensitive and FB-insensitive. Induced ceramide levels remained elevated after cotreatment with TNF and zVAD in FADD wt cells. Taken together, these data provide genetic evidence for a lack of FADD requirement in Pc 4-PDT- or C6-ceramide-induced apoptosis. FB-sensitive ceramide production accompanies, but does not suffice, for apoptosis after Pc 4 photosensitization or TNF.

  17. Effects of calcium channel on 3-morpholinosydnonimine-induced rat hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Chang; Shuling Zhang; Yuanyin Zheng; Lijuan Xu; Jinbao Yin; Shining Cai

    2011-01-01

    Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus.The present study investigated the effects of the broad-spectrum calcium channel blocker CdC12 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis.The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-1-induced neuronal apoptosis.The calcium channel blocker CdC12 did not increase the survival rate of neurons and did not affect SIN-1-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis.Results demonstrated that calcium channels did not significantly affect neuronal apoptosis.

  18. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    Science.gov (United States)

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency.

  19. Nutritional regulation of mammary cell apoptosis in lactating ewes

    Directory of Open Access Journals (Sweden)

    M. Colitti

    2011-03-01

    Full Text Available Recent advances in understanding the control of the mammary cell population now offer new insights to understand the decline in milk yield of dairy animals, which has long been a biological conundrum for the mammary biologists. Evidence indicates that change in mammary cell number is the result of an imbalance between cell proliferation and cell removal and that this is a principal cause of declining production (Stefanon et al., 2001. Further, it suggests that the persistency of lactation, the rate of decline in milk yield with stage of lactation, is strongly influenced by the rate of cell death by apoptosis in the lactating gland (Wilde et al., 1997. The most significant advance in understanding the cell biology underpinning persistency of lactation has come from the demonstration that cell loss during lactation occurs by apoptosis. Several researches obtained in cell cultures in mouse and rat have indicated that gene expression and cellular activities are modulated by the reactive oxygen species..........

  20. Induction of apoptosis in lung cancer cells by isorhamnetin

    Institute of Scientific and Technical Information of China (English)

    LingZHU; Li-mingZHOU; Chun-leiYANG; Zun-zhenZHANG; JingXIAO; Zheng-rongWANG

    2005-01-01

    AIM The aim of the present study was to explore cytotoxic activity and the mechanism of tumor cell killing by isorhamnetin and to investigate the effect of isorhamnetin on tumor growth, cell prolification and apoptosis in transplantation tumor of lung cancer of Lewis cell line in C57BL/6 mice. METHODS Human A549 cells were treated with 10-320(g/ml isorhamnetin, C57BL/6 mice were subcutaneously inoculated Lewis cells 0.2ml/each (1×107cells/ml) below the right forelimb armpit and were treated with 50 (g/ml isorhamnetin isorhamnetin.The results were observed and analyzed under light-microscope, electronic microscopy, growth inhibition was analyzed by MTT, clonogenic asssays and growth curve;the apoptosis and the expression-associated genes peaks were detected with flow cytometry (FCM), DNA fragmentation, single cell gel electrophoresis (comet) assay,

  1. Poliovirus protease 3C(pro) kills cells by apoptosis.

    Science.gov (United States)

    Barco, A; Feduchi, E; Carrasco, L

    2000-01-20

    The tetracycline-based Tet-Off expression system has been used to analyze the effects of poliovirus protease 3C(pro) on human cells. Stable HeLa cell clones that express this poliovirus protease under the control of an inducible, tightly regulated promoter were obtained. Tetracycline removal induces synthesis of 3C protease, followed by drastic morphological alterations and cellular death. Degradation of cellular DNA in nucleosomes and generation of apoptotic bodies are observed from the second day after 3C(pro) induction. The cleavage of poly(ADP-ribose) polymerase, an enzyme involved in DNA repair, occurs after induction of 3C(pro), indicating caspase activation by this poliovirus protease. The 3C(pro)-induced apoptosis is blocked by the caspase inhibitor z-VAD-fmk. Our findings suggest that the protease 3C is responsible for triggering apoptosis in poliovirus-infected cells by a mechanism that involves caspase activation.

  2. Apoptosis in normal bronchial respiratory epithelium between certainties and uncertainties

    Directory of Open Access Journals (Sweden)

    Adriana Grigoras

    2010-02-01

    Full Text Available The respiratory epithelium lines the conducting airways and functions as a selective barrier interposed between external environment and human body. It is exposed to various aggressive factors such as viral and bacterial microorganisms, or cigarette smoke and other inhaled noxious substances. The normal airway epithelium has its own mechanisms that maintain the integrity of the epithelial barrier and it is relatively refractory to a number of apoptotic stimuli. The up to date data about apoptosis in normal airway epithelium are limited, especially regarding the regulatory factors of this process. The current knowledge concerning the airway epithelium apoptosis regulation needs to be further studied by exploring the Bcl-2 superfamily members, Zn, p21, or peroxiredoxine V and pirine.

  3. Nitric oxide damages neuronal mitochondria and induces apoptosis in neurons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The cytotoxic effect of nitric oxide on primarily cultured rat cerebellar granule cells was studied,and the mechanisms were discussed.The results showed that nitric oxide donor S-nitroso-N-acetyl-penicillamine (SNAP; 500 μmol/L) could induce apoptosis in immature cultures of cerebellar granule cells.Flow cytometry and HPLC analyses revealed that after treatment with SNAP,the mitochondrial transmembrane potential and the cellular ATP content decreased significantly.Nitric oxide scavenger hemoglobin could effectively prevent the neuronal mitochondria from dysfunction and attenuate apoptosis.The results suggested that nitric oxide activated the apoptotic program by inhibiting the activity of mitochondrial respiratory chain and thus decreasing the cellular ATP content.

  4. Apoptosis in immune cells induced by fission fragment 147Pm

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; ZhangLan-Sheng; 等

    1997-01-01

    Apoptosis in human acute lymphoblastic leukemia cell line Molt-4 cell and macrophage cell line Ana-1 cell could be induced by fission fragment 147Pm,The cumulative absorption dose of 147Pm in cultural cells through different periods were estimated.By using fluorescence microscopy and microautoradiographic tracing it can be found that Molt-4 and Anal-1 cells internally irradiated by 147Pm,displayed an obvious nuclear fragmentation and a marked phknosis in immune cell nucei,as well as DNA chain fragmentation and apoptotic bodies formation.The microautoradiographic study showed that 147Pm could infiltrate thourgh cell membrane and displayed membrane-seeking condensation in cells.At the same time.the membrane-bounded apoptotic bodies were observed.Experimental results in recent study provide evidence that Molt-4 and Ano-1 immune cells undergo apoptosis while internally irradiated with 147Pm.

  5. Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces β-Cell Apoptosis and Impairs β-Cell Mass

    Science.gov (United States)

    Schulthess, Fabienne T.; Katz, Sophie; Ardestani, Amin; Kawahira, Hiroshi; Georgia, Senta; Bosco, Domenico; Bhushan, Anil; Maedler, Kathrin

    2009-01-01

    Background Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF. Methodology/Principal Findings Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated. Conclusions/Significance Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival. PMID:19197367

  6. Deletion of the mitochondrial flavoprotein apoptosis inducing factor (AIF induces beta-cell apoptosis and impairs beta-cell mass.

    Directory of Open Access Journals (Sweden)

    Fabienne T Schulthess

    Full Text Available BACKGROUND: Apoptosis is a hallmark of beta-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to beta-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF. In the present study, we investigated the role of AIF on beta-cell mass and survival using the Harlequin (Hq mutant mice, which are hypomorphic for AIF. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT. Analysis of beta-cell mass in these mice revealed a greater than 4-fold reduction in beta-cell mass together with an 8-fold increase in beta-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of beta-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in beta-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the beta-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. beta-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on beta-cell function was potentiated. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AIF is essential for maintaining beta-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on beta-cell survival.

  7. Interrelationships Between Apoptosis and Fertility in Bull Sperm

    OpenAIRE

    Dogan, Sule; MASON, Melissa C.; Govindaraju, Aruna; BELSER, Lauren; Kaya, Abdullah; Stokes, John; ROWE, Dennis; Memili, Erdogan

    2012-01-01

    Abstract Male fertility, the ability of sperm to fertilize and activate the egg and support early embryogenesis, is vital for mammalian reproduction. Despite producing adequate numbers of sperm with normal motility and morphology, some males suffer from low fertility whose molecular mechanisms are not known. The objective was to determine apoptosis in sperm from high and low fertility bulls and its relationship with male fertility. DNA damage, phosphatidylserine (PS) translocation, and expres...

  8. Apoptosis of ventricular myocytes: a means to an end.

    Science.gov (United States)

    Regula, Kelly M; Kirshenbaum, Lorrie A

    2005-01-01

    One of the most compelling issues to impact on contemporary cardiology is arguably the phenomenon of programmed cell death or apoptosis. Studies in the nematode Caenorhabditis elegans provided the first indication that determinants of cell fate crucial for normal worm development were under genetic influences of the ced-3 and ced-9 genes, which promote or prevent cell death, respectively. Extrapolation of these seminal findings led to the discovery of the mammalian ced-3 and ced-9 homologs, which broadly encompass a family of cellular cysteine proteases known collectively as caspases and the Bcl-2 proteins. In quiescent cells, caspases exist as inactive zymogens that are readily activated by autocatalytic processes or by other caspases following a death signal. The caspase-dependent cleavage of intracellular substrates results in the biochemical dismantling of the cell and morphological features characteristic of apoptosis. Recently, a mitochondrial death pathway for apoptosis has been proposed. Perturbations to mitochondria resulting in the loss of mitochondrial membrane potential, DeltaPsim, permeability transition pore (PTP) opening and the release of pro-apoptotic factors by mitochondria including cytochrome c, second mitochondrial activator of caspases/direct IAP binding protein with low pI (Smac/DIABLO), AIF, and others are considered terminal events in the apoptotic pathway. Bcl-2 and related family members are characterized by their ability to promote or prevent cell death. These proteins exert their pro- or anti-apoptosis function by impinging on components of the cell death pathway that underlie caspase activation, mitochondrial dysfunction or both. The limited regenerative potential of the adult cardiac muscle itself, together with the heightened and exciting possibility of regenerating cardiac muscle with cardiac progenitor cells, acknowledges the need for new strategies to suppress and/or prevent inappropriate cardiac cell death in patients with

  9. Calpains are downstream effectors of bax-dependent excitotoxic apoptosis.

    Science.gov (United States)

    D'Orsi, Beatrice; Bonner, Helena; Tuffy, Liam P; Düssmann, Heiko; Woods, Ina; Courtney, Michael J; Ward, Manus W; Prehn, Jochen H M

    2012-02-01

    Excitotoxicity resulting from excessive Ca(2+) influx through glutamate receptors contributes to neuronal injury after stroke, trauma, and seizures. Increased cytosolic Ca(2+) levels activate a family of calcium-dependent proteases with papain-like activity, the calpains. Here we investigated the role of calpain activation during NMDA-induced excitotoxic injury in embryonic (E16-E18) murine cortical neurons that (1) underwent excitotoxic necrosis, characterized by immediate deregulation of Ca(2+) homeostasis, a persistent depolarization of mitochondrial membrane potential (Δψ(m)), and insensitivity to bax-gene deletion, (2) underwent excitotoxic apoptosis, characterized by recovery of NMDA-induced cytosolic Ca(2+) increases, sensitivity to bax gene deletion, and delayed Δψ(m) depolarization and Ca(2+) deregulation, or (3) that were tolerant to excitotoxic injury. Interestingly, treatment with the calpain inhibitor calpeptin, overexpression of the endogenous calpain inhibitor calpastatin, or gene silencing of calpain protected neurons against excitotoxic apoptosis but did not influence excitotoxic necrosis. Calpeptin failed to exert a protective effect in bax-deficient neurons but protected bid-deficient neurons similarly to wild-type cells. To identify when calpains became activated during excitotoxic apoptosis, we monitored calpain activation dynamics by time-lapse fluorescence microscopy using a calpain-sensitive Förster resonance energy transfer probe. We observed a delayed calpain activation that occurred downstream of mitochondrial engagement and directly preceded neuronal death. In contrast, we could not detect significant calpain activity during excitotoxic necrosis or in neurons that were tolerant to excitotoxic injury. Oxygen/glucose deprivation-induced injury in organotypic hippocampal slice cultures confirmed that calpains were specifically activated during bax-dependent apoptosis and in this setting function as downstream cell-death executioners.

  10. Apoptosis may underlie the pathology of zinc-deficient skin.

    Science.gov (United States)

    Wilson, Dallas; Varigos, George; Ackland, M Leigh

    2006-02-01

    The trace element zinc is essential for the survival and function of all cells. Zinc deficiency, whether nutritional or genetic, is fatal if left untreated. The effects of zinc deficiency are particularly obvious in the skin, seen as an erythematous rash, scaly plaques, and ulcers. Electron microscopy reveals degenerative changes within keratinocytes. Despite the well-documented association between zinc deficiency and skin pathology, it is not clear which cellular processes are most sensitive to zinc deficiency and could account for the typical pathological features. We used the cultured HaCaT keratinocyte line to obtain insight into the cellular effects of zinc deficiency, as these cells show many characteristics of normal skin keratinocytes. Zinc deficiency was induced by growing cells in the presence of the zinc chelator, TPEN, or by growth in zinc-deficient medium. Growth of cells in zinc-deficient medium resulted in a 44% reduction of intracellular zinc levels and a 75% reduction in the activity of the zinc-dependent enzyme, 5'-nucleotidase, relative to the control cells. Over a period of 7 days of exposure to zinc-deficient conditions, no changes in cell viability and growth, or in the cytoskeletal and cell adhesion systems, were found in HaCaT cells. At 7 days, however, induction of apoptosis was indicated by the presence of DNA fragmentation and expression of active caspase-3 in cells. These results demonstrate that apoptosis is the earliest detectable cellular change induced by zinc deficiency in HaCaT keratinocytes. Our observations account for many of the features of zinc deficiency, including the presence of degenerate nuclei, chromatin aggregates and abnormal organization of keratin, that may represent the later stages of apoptosis. In summary, a major causal role for apoptosis in the pathology of zinc deficiency in the skin is proposed. This role is consistent with the previously unexplained diverse range of degenerative cellular changes seen at the

  11. Effective chemotherapy induce apoptosis in vivo in patients with leukemia

    Institute of Scientific and Technical Information of China (English)

    岑溪南; 朱平; 虞积仁; 石永进; 马明信

    2003-01-01

    Objective To investigate apoptosis in vivo in patients with leukemia at different stages of the first cycle of chemotherapy.Methods We detected apoptosis of HL-60 cells and peripheral blood leukemia cells in 17 patients at different stages, using in situ terminal deoxynucleotidyl transferase (TdT) fluorescence measurement and DNA electrophoresis. Results When HL-60 cells were incubated with 0.02 mg/L harringtonine for 0 to 48 hours, agarose gel electrophoresis showed that DNA ladder patterns became evident only at 12 hour into the treatment. In situ TdT assay showed that apoptotic cells occurred after one hour of the treatment. Apoptotic cells were few (0-3.3%) before chemotherapy, but increased substantially (11.4%-87.5%) during chemotherapy in patients with complete remission (CR) or partial remission (PR). Apoptotic cells were few (0-6.1%) during chemotherapy in ten patients with no remission (NR). DNA ladder cannot be detected by agarose gel electrophoresis either before, during or after chemotherapy. Wilcoxon signed rank test shows: P=0.0012<0.01, apoptotic cells during chemotherapy were present in greater quantity than prior to chemotherapy. Wilcoxon rank sum test shows: P=0.0011<0.01, with the median of apoptotic cells during chemotherapy in patients with CR or PR more than with NR.Conclusions TdT assay can be used to detect apoptotic cells earlier and more sensitively than DNA agarose gel electrophoresis. In situ TdT assay is useful to detect apoptosis in vivo in the initial phase of chemotherapy for immediate modification of the chemotherapy regimen, whereas electrophoretic analysis is not sensitive enough to detect apoptotic cell in vivo. Where the median of apoptotic cells during chemotherapy in patients with CR or PR were greater than with NR, only effective drug therapy could induce apoptosis.

  12. PTEN regulates colorectal epithelial apoptosis through Cdc42 signalling

    OpenAIRE

    Deevi, R; A. Fatehullah; Jagan, I; Nagaraju, M; Bingham, V; Campbell, F C

    2011-01-01

    Background: Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) regulation of the Rho-like GTPase Cdc42 has a central role in epithelial polarised growth, but effects of this molecular network on apoptosis remain unclear. Methods: To investigate the role of Cdc42 in PTEN-dependent cell death, we used flow cytometry, in vitro pull-down assays, poly(ADP ribose) polymerase (PARP) cleavage and other immunoblots in isogenic PTEN-expressing and -deficient colorectal cells (HCT116PTEN+/...

  13. Radiation-induced apoptosis in developing fetal rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Woong Ki; Nam, Taek Keun; Lee, Min Cheol; Ahn, Sung Ja; Song, Ju Young; Park, Seung Jin; Nah, Byung Sik [College of Medicine, Chonnam National Univ., Gwangju (Korea, Republic of)

    2003-09-01

    The study was performed to investigate apoptosis by radiation in the developing fetal rat brain. Fetal brains were irradiated in utero between the 17th and 19th days of fetal life(E17-19) by linear accelerator. A dose of irradiation ranging from 1 Gy to 4 Gy was used to evaluate dose dependency. To test time dependency the rats were irradiated with 2 Gy and then the fetal brain specimens were removed at variable time course; 1, 3, 6, 12 and 24 hours after the onset of irradiation. Immunohistochemical staining using in situ TdT-mediated dUTP nick end labelling (TUNEL) technique was used for apoptotic cells. The cerebral cortex, including three zones of cortical zone (CZ), intermediate zone (IZ), and ventricular zone (VZ), was examined. TUNEL positive cells revealed typical features of apoptotic cells under light microscope in the fetal rat cerebral cortex. Apoptotic cells were not found in the cerebral cortex of non-irradiated fetal rats, but did appear in the entire cerebral cortex after 1 Gy irradiation, and were more extensive at the ventricular and intermediate zones than at the cortical zone. The extent of apoptosis was increased with increasing doses of radiation. Apoptosis reached the peak at 6 hours after the onset of 2 Gy irradiation and persisted until 24 hours. Typical morphologic features of apoptosis by irradiation were observed in the developing fetal rat cerebral cortex. It was more extensive at the ventricular and intermediate zones than at the cortical zone, which suggested that stem cells or early differentiating cells are more radiosensitive than differentiated cells of the cortical zone.

  14. Resistance to cancer in amphibians: a role for apoptosis?

    Science.gov (United States)

    Ruben, Laurens N; Johnson, Rachel O; Clothier, Richard H; Balls, Michael

    2013-07-01

    The rarity of spontaneous cancer in amphibians, and the difficulty of inducing cancer in these lower vertebrates, suggest that they possess an effective system for resistance to the development of cancer. The first part of this narrative presents evidence for cancer resistance in amphibians, and then a variety of studies designed to help understand the physiological basis for this resistance are reviewed. Here, our emphasis is on evidence with regard to the role that apoptosis might play.

  15. Bcl-2 gene therapy for apoptosis following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; ZHENG Xue-sheng; LIU Wei-guo; FENG Jun-feng

    2006-01-01

    Objective: To investigate the therapeutic effect of Bcl- 2 fusion protein on apoptosis in brain following traumatic brain injury.Methods: Bcl-2 gene was cloned by RT-PCR. Bcl-2 and EGFP genes were linked together and inserted into pAdeno-X vector. This recombinant vector was packaged into infectious adenovirus in HEK293 cells. Ninety Wistar rats were assigned randomly into experimental group(n=45) and control group (n=45). All rats were subjected to traumatic brain injury. Then recombinant adenovirus (for experimental group) or saline (for control group) was injected into the traumatic brain. The expression of Bcl-2 fusion protein was investigated by Western blotting, immunohistochemistry and fluorescence microscopy. Apoptosis in the injured brain was studied by TUNEL. Animals' behavior capacity was evaluated by tiltboard test.Results: In the experimental group, many fluorescent cells were found around the traumatic locus,which were also proven to be Bcl-2-positive by immunohistochemistry. On the contrary, few Bcl-2-positive cells and no fluorescent cell were detected in the control group. Bcl-2 expression of experimental group was much higher than that of control group, which was illustrated by Western blotting. The apoptosis index of experimental group was 0.027 ± 0.005, and that of control group was 0.141±0.025 (P<0.01). Two weeks after injury, animals of the experimental group behaved better than those of the control group.Conclusions: A recombinant adenovirus vector expressing Bcl-2 fusion protein has been constructed. Bcl-2 fusion protein can suppress apoptosis and promote cell survival. Moreover, the behavior recovery of the injured animal is promoted. Bcl-2 fusion protein provides a way to track the target cells in vivo.

  16. TNFα PRODUCTION AND APOPTOSIS REGULATION IN VIRAL HEPATITIS TYPE C

    Directory of Open Access Journals (Sweden)

    V. V. Novitsky

    2005-01-01

    Full Text Available Abstract. Chronical course of infection caused by hepatitis C virus is accompanied by increase Fas-positive lymphocytes of peripheral blood. Cultivation of agglutinin-stimulated mononuclear blood cells of patients with chronic hepatitis C revealed inhibition of apoptotic reactions of blood lymphocytes. This fact correlated with decrease in production of TNFα and accelerated synthesis of soluble receptor for this cytokine. We suggest a virus-specific influence on apoptosis regulation of target cells.

  17. Mechanisms and Consequences of Ebolavirus-Induced Lymphocyte Apoptosis

    Science.gov (United States)

    2011-01-31

    common finding in many other hemorrhagic fever viruses, in- cluding Lassa , Marburg, Crimean Congo hemorrhagic fever , and some Hantavirus infections... fever , resulting in death in up to 90% of infected humans. EBOVinfection induces massive bystander lymphocyte apoptosis; however, neither the cellular...Jonathan E. McDunn,‡ Richard S. Hotchkiss,‡ and Sina Bavari* Ebolavirus (EBOV) is a member of the filovirus family and causes severe hemorrhagic fever

  18. Inhibitory effect of picroside Ⅱ on hepatocyte apoptosis

    Institute of Scientific and Technical Information of China (English)

    Hua GAO; Ya-wei ZHOU

    2005-01-01

    Aim: To investigate the influence of picroside Ⅱ on hepatocyte apoptosis and its mechanism. Methods: Morphological changes and quantification of apoptotic cells were determined under transmission electron microscopy and flow cytometry respectively. DNA fragmentation was visualized by agarose gel electrophoresis.Semi-quantitative reverse transcription-PCR (RT-PCR) was used to analyze the expression of bcl-2 and bax genes. The content of manganese-superoxide dismutase (SOD) in liver mitochondria was detected by the Marland method. The content of malonic aldehyde (MDA) and the protein level in liver tissue were determined by thiobarbituric acid colorimetry and Lowry method. Results:Picroside Ⅱ decreased the levels of alanine aminotransferase and aspartate aminotransferase in the serum resulting from acute-liver injured mice induced with D-GalN and LPS; it also reduced the content of MDA, and thus, enhanced the activity of SOD. Picroside Ⅱ 10 mg/kg was found to protect hepatocytes against apoptosis in a dose-dependent manner; it up-regulated the expression of bcl-2 genes,thus increased the bcl-2/bax ratio. Conclusion: Picroside Ⅱ can protect hepatocytes against injury and prevent hepatocytes from apoptosis. It might by upregulating the bcl-2 gene expression and antioxidation.

  19. Macrophage Apoptosis Triggered by IpaD from Shigella flexneri.

    Science.gov (United States)

    Arizmendi, Olivia; Picking, William D; Picking, Wendy L

    2016-06-01

    Shigellosis, a potentially severe bacillary dysentery, is an infectious gastrointestinal disease caused by Shigella spp. Shigella invades the human colonic epithelium and avoids clearance by promoting apoptosis of resident immune cells in the gut. This process is dependent on the Shigella type III secretion system (T3SS), which injects effector proteins into target cells to alter their normal cellular functions. Invasion plasmid antigen D (IpaD) is a structural component that forms a complex at the tip of the T3SS apparatus needle. Recently, IpaD has also been shown to indirectly induce apoptosis in B lymphocytes. In this study, we explored the cytotoxicity profile during macrophage infection by Shigella and discovered that the pathogen induces macrophage cell death independent of caspase-1. Our results demonstrate that IpaD triggers apoptosis in macrophages through activation of host caspases accompanied by mitochondrial disruption. Additionally, we found that the IpaD N-terminal domain is necessary for macrophage killing and SipD, a structural homologue from Salmonella, was found to promote similar cytotoxicity. Together, these findings indicate that IpaD is a contributing factor to macrophage cell death during Shigella infection.

  20. Proteasomal Dysfunction Induced By Diclofenac Engenders Apoptosis Through Mitochondrial Pathway.

    Science.gov (United States)

    Amanullah, Ayeman; Upadhyay, Arun; Chhangani, Deepak; Joshi, Vibhuti; Mishra, Ribhav; Yamanaka, Koji; Mishra, Amit

    2017-05-01

    Diclofenac is the most commonly used phenylacetic acid derivative non-steroidal anti-inflammatory drug (NSAID) that demonstrates significant analgesic, antipyretic, and anti-inflammatory effects. Several epidemiological studies have demonstrated anti-proliferative activity of NSAIDs and examined their apoptotic induction effects in different cancer cell lines. However, the precise molecular mechanisms by which these pharmacological agents induce apoptosis and exert anti-carcinogenic properties are not well known. Here, we have observed that diclofenac treatment induces proteasome malfunction and promotes accumulation of different critical proteasome substrates, including few pro-apoptotic proteins in cells. Exposure of diclofenac consequently elevates aggregation of various ubiquitylated misfolded proteins. Finally, we have shown that diclofenac treatment promotes apoptosis in cells, which could be because of mitochondrial membrane depolarization and cytochrome c release into cytosol. This study suggests possible beneficial insights of NSAIDs-induced apoptosis that may improve our existing knowledge in anti-proliferative interspecific strategies development. J. Cell. Biochem. 118: 1014-1027, 2017. © 2016 Wiley Periodicals, Inc.

  1. Novel synthetic organosulfur compounds induce apoptosis of human leukemic cells.

    Science.gov (United States)

    Wong, W W; Macdonald, S; Langler, R F; Penn, L Z

    2000-01-01

    It has been well documented that natural organosulfur compounds (OSCs) derived from plants such as garlic, onions and mahogany trees possess antiproliferative properties; however, the essential chemical features of the active OSC compounds remain unclear. To investigate the association between OSC structure and growth inhibitory activity, we synthesized novel relatives of dysoxysulfone, a natural OSC derived from the Fijian medicinal plant, Dysoxylum richii. In this study, we have examined the antiproliferative effects of these novel OSCs on a model human leukemic cell system and show that the compounds segregate into three groups. Group I, consisting of compounds A, B, G and J, did not affect either cell proliferation or the cell cycle profile of the leukemic cell lines. Group II, consisting of compounds F and H, induced the cells to undergo apoptosis from the G2/M phase of the cell cycle. Group III, consisting of compounds C, D, E and I, decreased cell proliferation and induced apoptosis throughout the cell cycle. The apoptotic agonists of Group II and III shared a common disulfide moiety, essential for leukemic cell cytotoxicity. Interestingly, Group II compounds did not affect cell viability of normal human diploid cells, suggesting the regions flanking the disulfide group contributes to the specificity of cell killing. Thus, we provide evidence that structure-activity analysis of natural products can identify novel compounds for the development of new therapeutics that can trigger apoptosis in a tumor-specific manner.

  2. Fluorosis Caused Cellular Apoptosis and Oxidative Stress of Rat Kidneys

    Institute of Scientific and Technical Information of China (English)

    SONG Yang; WANG Jin-cheng; XU Hui; DU Zhen-wu; ZHANG Gui-zhen; SELIM Hamid Abdu; LI Guang-sheng

    2013-01-01

    As the strongest electronegative element,fluorine can stimulate the production of superoxide radicals in cells.In view of the important roles of kidneys in bone metabolism,the authors analyzed the quantitative pathomorphological characteristics of renal damage and the potential cellular apoptosis and oxidative stress mechanisms in rats treated with excessive fluoride.Wistar rats were exposed to 50 mg F-(110.5 mg NaF)/L,100 mg F-(221.0 mg NaF)/Land 150 mg F (331.5 mg NaF)/L in drinking water for 70 and 140 d,respectively.Microscope with image analysis was used to quantitate pathomorphological changes in renal tissues of the rats.Reactive oxygen species(ROS),the cell cycle and apoptosis of renal cells were measured by flow cytometry and TUNEL technique(terminal deoxynucleotidyl transferase dUTP nick end labeling),respectively.The ion concentrations in serum and renal functional parameters were detected by automatic biochemical analyzer.Quantitative analysis results demonstrate the expanded Bowman's space of glomerulus and obvious dilatation of renal tubule.TUNEL technique revealed that NBT/BCIP (nitro blue tetrazoliurn/5-bromo-4-chloro-3′-indolylphosphate,p-toluidine salt)-staining positive apoptotic cells selectively located in medullocortical junction areas.The data suggest that renal damage in chronic fluorostic rats is associated with the cellular apoptosis and oxidative stress.

  3. Detection of apoptosis in pemphigus vulgaris by TUNEL technique*

    Science.gov (United States)

    Cuevas-Gonzalez, Juan Carlos; Vega-Memíje, Maria Elisa; García-Vázquez, Francisco Javier; Aguilar-Urbano, Marco António

    2016-01-01

    Background Pemphigus is part of a group of blistering diseases that affect the skin and mucous membranes. Based on its autoimmune origin, autoantibodies develop in pemphigus that are directed toward cell surface components of keratinocytes. However, some data cannot be explained, such as the lack of a relationship between autoantibody levels and the severity of clinical manifestations, treatment resistance, the presence of inflammatory infiltrates and the potential occurrence of apoptosis as determinants of vesicle formation. Objective To examine the presence of apoptosis in pemphigus vulgaris by TUNEL technique. Methods In this cross-sectional study, we selected 15 paraffin-embedded tissues from subjects who were diagnosed with pemphigus vulgaris by hematoxylin and eosin staining. The samples were subjected to TUNEL assay and examined under an Olympus BX61 fluorescence microscope. Positivity was categorized dichotomously, and the statistical analysis was performed using the X2 test. Results Positivity was observed in basal layer cells in 14 (93.3%) cases. In 13 (86.7%) of the positive cases, we noted espinosum and granular layers that formed the blister roof, and in 12 cases (80%), positive acantholytic cells were observed. Conclusions TUNEL positivity was observed in pemphigus vulgaris, implicating apoptosis in the pathophysiology of this condition, which can help guide the development of apoptotic blockers as therapeutics. PMID:27438195

  4. The apoptosis in various stages of infantile hemangioma

    Institute of Scientific and Technical Information of China (English)

    YUAN Si-ming; XING Xin; OUYANG Tian-xiang; NI Can-rong; YANG Zhi-yong

    2005-01-01

    Objective: To detect the apoptosis in various stages of infantile hemangioma. Methods:Total 52 samples of infantile hemangioma (including 8 fresh samples) were included in this study. Agarose gel electrophoresis, transmission electron microscopy(TEM) and in situ TdT mediated dUTP-biotin nick end labeling(TUNEL) staining were used to observe the apoptosis. H-E staining was used to analyze the number of cells,the number and area of microvessels in hemangiomas. Results: The typical "ladder" occurred in the DNA electrophoresis of the hemangioma tissue in the late proferating stage. Many apoptotic cells were found in infantile hemangiomas with TEM. TUNEL staining identified that there were apoptotic cells througout the pathologic evolution of infantile hemangioma and the AI( % ) was the highest in the late proferating stage. There existed close relationship between the AI(%) and the total number of cells in hemangioma. Conclusion: The decrease of cells resulted from the apoptosis may be the major cause of the spontaneous involution of infantile hemangioma.

  5. Effect of clenbuterol on apoptosis, adipogenesis, and lipolysis in adipocytes.

    Science.gov (United States)

    Kim, Hye-Kyeong; Della-Fera, Mary Anne; Hausman, Dorothy B; Baile, Clifton A

    2010-09-01

    Clenbuterol, a beta(2)-adrenergic receptor (beta(2)-AR) selective agonist, has been shown to decrease body fat in animals and can induce apoptosis in adipose tissue in mice. We hypothesized that direct actions of a beta-adrenergic receptor agonist on adipocytes could trigger the observed apoptotic effect. The hypothesis was inspected by investigating the direct effect of clenbuterol on apoptosis, adipogenesis, and lipolysis in vitro using the 3T3-L1 cell line and rat primary adipocytes. Cells were treated with 10(-9) to 10(-5) M clenbuterol depending on the experiments. There was no apoptotic effect of clenbuterol both in 3T3-L1 cells and rat primary adipocytes. Adipogenesis monitored by Oil Red O staining and AdipoRed assay was modestly decreased by clenbuterol treatment (p < 0.05). In fully differentiated primary adipocytes, clenbuterol increased basal lipolysis compared with the control (p < 0.01). In summary, direct stimulation of beta(2)-AR by clenbuterol does not cause apoptosis in adipocytes, despite a direct lipolytic stimulation and attenuation of adipogenesis.

  6. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis.

    Science.gov (United States)

    Shimada, Kenichi; Crother, Timothy R; Karlin, Justin; Dagvadorj, Jargalsaikhan; Chiba, Norika; Chen, Shuang; Ramanujan, V Krishnan; Wolf, Andrea J; Vergnes, Laurent; Ojcius, David M; Rentsendorj, Altan; Vargas, Mario; Guerrero, Candace; Wang, Yinsheng; Fitzgerald, Katherine A; Underhill, David M; Town, Terrence; Arditi, Moshe

    2012-03-23

    We report that in the presence of signal 1 (NF-κB), the NLRP3 inflammasome was activated by mitochondrial apoptotic signaling that licensed production of interleukin-1β (IL-1β). NLRP3 secondary signal activators such as ATP induced mitochondrial dysfunction and apoptosis, resulting in release of oxidized mitochondrial DNA (mtDNA) into the cytosol, where it bound to and activated the NLRP3 inflammasome. The antiapoptotic protein Bcl-2 inversely regulated mitochondrial dysfunction and NLRP3 inflammasome activation. Mitochondrial DNA directly induced NLRP3 inflammasome activation, because macrophages lacking mtDNA had severely attenuated IL-1β production, yet still underwent apoptosis. Both binding of oxidized mtDNA to the NLRP3 inflammasome and IL-1β secretion could be competitively inhibited by the oxidized nucleoside 8-OH-dG. Thus, our data reveal that oxidized mtDNA released during programmed cell death causes activation of the NLRP3 inflammasome. These results provide a missing link between apoptosis and inflammasome activation, via binding of cytosolic oxidized mtDNA to the NLRP3 inflammasome.

  7. Apoptosis as a target for gene therapy in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Gabriel Adrián Rabinovich

    2000-01-01

    Full Text Available Rheumatoid arthritis (RA is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.

  8. A new inhibitor of apoptosis from vaccinia virus and eukaryotes.

    Directory of Open Access Journals (Sweden)

    Caroline Gubser

    2007-02-01

    Full Text Available A new apoptosis inhibitor is described from vaccinia virus, camelpox virus, and eukaryotic cells. The inhibitor is a hydrophobic, multiple transmembrane protein that is resident in the Golgi and is named GAAP (Golgi anti-apoptotic protein. Stable expression of both viral GAAP (v-GAAP and human GAAP (h-GAAP, which is expressed in all human tissues tested, inhibited apoptosis induced by intrinsic and extrinsic apoptotic stimuli. Conversely, knockout of h-GAAP by siRNA induced cell death by apoptosis. v-GAAP and h-GAAP display overlapping functions as shown by the ability of v-GAAP to complement for the loss of h-GAAP. Lastly, deletion of the v-GAAP gene from vaccinia virus did not affect virus replication in cell culture, but affected virus virulence in a murine infection model. This study identifies a new regulator of cell death that is highly conserved in evolution from plants to insects, amphibians, mammals, and poxviruses.

  9. Apoptosis in Raji cell line induced by influenza A virus

    Institute of Scientific and Technical Information of China (English)

    李虹; 肖丽英; 李华林; 李婉宜; 蒋中华; 张林; 李明远

    2003-01-01

    Objective To study the apoptotic effects of influenza A virus on the Raji cell line. Methods Cultured Raji cells were infected with influenza A virus at a multiplicity of infection (m.o.i) of 20 and the effects of apoptosis were detected at different time points post infection using the following methods: electron microscope, DNA agarose gel electrophoresis, PI stained flow cytometry (FCM) and Annexin-V FITC/PI stained FCM.Results Raji cells infected with influenza A virus showed changes of morphology apoptotis, DNA agarose electrophoresis also demonstrated a ladder-like pattern of DNA fragments in a time-dependent manner. PI stained FCM showed "apoptosis peak" and FITC/PI stained FCM showed apoptotic cells. Quantitative analysis indicated that the percentage of apoptotic Raji cells increased after infection, and cycloheximide (CHX), an eukaryotic transcription inhibitor, could effectively inhibit the apoptotic effects of influenza A virus in vitro.Conclusions Influenza A virus can induce apoptosis in Raji cell line suggesting that it may lead to a potential method for tumor therapy.

  10. Chestnut extract induces apoptosis in AGS human gastric cancer cells.

    Science.gov (United States)

    Lee, Hyun Sook; Kim, Eun Ji; Kim, Sun Hyo

    2011-06-01

    In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with 200 µg/mL CPE for 24 hr. CPE at various concentrations (0-200 µg/mL) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPE exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

  11. Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis.

    Science.gov (United States)

    Zuppini, Anna; Groenendyk, Jody; Cormack, Lori A; Shore, Gordon; Opas, Michal; Bleackley, R Chris; Michalak, Marek

    2002-02-26

    In this study, we used calnexin-deficient cells to investigate the role of this protein in ER stress-induced apoptosis. We found that calnexin-deficient cells are relatively resistant to ER stress-induced apoptosis. However, caspase 3 and 8 cleavage and cytochrome c release were unchanged in these cells, indicating that ER to mitochondria "communication" during apoptotic stimulation is not affected in the absence of calnexin. The Bcl-2:Bax ratio was also not significantly changed in calnexin-deficient cells regardless of whether the ER stress was induced with thapsigargin or not. Ca(2+) homeostasis and ER morphology were unaffected by the lack of calnexin, but ER stress-induced Bap31 cleavage was significantly inhibited. Immunoprecipitation experiments revealed that Bap31 forms complexes with calnexin, which may play a role in apoptosis. The results suggest that calnexin may not play a role in the initiation of the ER stress but that the protein has an effect on later apoptotic events via its influence on Bap31 function.

  12. Cytosolic pro-apoptotic SPIKE induces mitochondrial apoptosis in cancer.

    Science.gov (United States)

    Nikolic, Ivana; Kastratovic, Tatjana; Zelen, Ivanka; Zivanovic, Aleksandar; Arsenijevic, Slobodan; Mitrovic, Marina

    2010-04-30

    Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic "BH3-only" BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast. In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase's downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.

  13. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells.

    Science.gov (United States)

    Yang, Shida; Zhu, Zhiyong; Zhang, Xiaobing; Zhang, Ning; Yao, Zhicheng

    2017-01-24

    Idelalisib, a PI3K inhibitor, specifically targeting p110δ, has been approved for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. However, the mechanisms of action of idelalisib in colon cancer cells are not well understood. We investigated how idelalisib suppresses colon cancer cells growth and potentiates effects of other chemotherapeutic drugs. In this study, we found that idelalisib treatment induces PUMA in colon cancer cells irrespective of p53 status through the p65 pathway following AKT inhibition and glycogen synthase kinase 3β (GSK3β) activation. PUMA is necessary for idelalisib-induced apoptosis in colon cancer cells. Idelalisib also synergized with 5-FU or regorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and antitumor effect of idelalisib in xenograft model. These results demonstrate a critical role of PUMA in mediating the anticancer effects of idelalisib in colon cancer cells and suggest that PUMA induction can be used as an indicator of idelalisib sensitivity, and also have important implications for it clinical applications.

  14. High glucose augments stress-induced apoptosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Wenwen Zhong; Yang Liu; Hui Tian

    2009-01-01

    Hyperglycemia has been identified as one of the important factors involved in the microvascular complications of diabetes, and has been related to increased cardiovascular mortality. Endothelial damage and dysfunction result from diabetes; therefore, the aim of this study was to determine the response of endothelial cells to stressful stimuli, modelled in normal and high glucose concentrations in vitro. Eahy 926 endothelial cells were cultured in 5 mmol/L or 30 mmol/L glucose conditions for a 24 hour period and oxidative stress was induced by exposure to hydrogen peroxide (H2O2) or tumour necrosis factor- α (TNF- α ), following which the protective effect of the glucocorticoid dexamethasone was assessed. Apoptosis, necrosis and cell viability were determined using an ELISA for DNA fragmentation, an enzymatic lactate dehydrogenase assay and an MTT assay, respectively. High glucose significantly increased the susceptibility of Eahy 926 cells to apoptosis in the presence of 500 μmol/L H2O2, above that induced in normal glucose (P<0.02). A reduction of H2O2- and TNF- α -induced apoptosis occurred in both high and low glucose after treatment with dexametha-sone (P<0.05). Conclusion high glucose is effective in significantly augmenting stress caused by H2O2, but not in causing stress alone. These findings suggest a mechanism by which short term hyperglycemia may facilitate and augment endothelial damage.

  15. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer.

    Science.gov (United States)

    Dillon, Christopher P; Green, Douglas R

    2016-01-01

    Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.

  16. Serial killers: ordering caspase activation events in apoptosis.

    Science.gov (United States)

    Slee, E A; Adrain, C; Martin, S J

    1999-11-01

    Caspases participate in the molecular control of apoptosis in several guises; as triggers of the death machinery, as regulatory elements within it, and ultimately as a subset of the effector elements of the machinery itself. The mammalian caspase family is steadily growing and currently contains 14 members. At present, it is unclear whether all of these proteases participate in apoptosis. Thus, current research in this area is focused upon establishing the repertoire and order of caspase activation events that occur during the signalling and demolition phases of cell death. Evidence is accumulating to suggest that proximal caspase activation events are typically initiated by molecules that promote caspase aggregation. As expected, distal caspase activation events are likely to be controlled by caspases activated earlier in the cascade. However, recent data has cast doubt upon the functional demarcation of caspases into signalling (upstream) and effector (downstream) roles based upon their prodomain lengths. In particular, caspase-3 may perform an important role in propagating the caspase cascade, in addition to its role as an effector caspase within the death programme. Here, we discuss the apoptosis-associated caspase cascade and the hierarchy of caspase activation events within it.

  17. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Babatunji Emmanuel Oyinloye

    2015-04-01

    Full Text Available Excessive free radical generation, especially reactive oxygen species (ROS leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs. Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance.

  18. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    Energy Technology Data Exchange (ETDEWEB)

    Liiv, Ingrid, E-mail: ingrid.liiv@ut.ee [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia); Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert [Molecular Pathology, Institute of General and Molecular Pathology, University of Tartu, Tartu (Estonia)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  19. A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells.

    Science.gov (United States)

    Huang, Li; Han, Junjie; Ben-Hail, Danya; He, Luwei; Li, Baowei; Chen, Ziheng; Wang, Yueying; Yang, Yanlei; Liu, Lei; Zhu, Yushan; Shoshan-Barmatz, Varda; Liu, Hongwei; Chen, Quan

    2015-09-25

    The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak.

  20. A New Fungal Diterpene Induces VDAC1-dependent Apoptosis in Bax/Bak-deficient Cells*

    Science.gov (United States)

    Huang, Li; Han, Junjie; Ben-Hail, Danya; He, Luwei; Li, Baowei; Chen, Ziheng; Wang, Yueying; Yang, Yanlei; Liu, Lei; Zhu, Yushan; Shoshan-Barmatz, Varda; Liu, Hongwei; Chen, Quan

    2015-01-01

    The pro-apoptotic Bax and Bak proteins are considered central to apoptosis, yet apoptosis occurs in their absence. Here, we asked whether the mitochondrial protein VDAC1 mediates apoptosis independently of Bax/Bak. Upon screening a fungal secondary metabolite library for compounds inducing apoptosis in Bax/Bak-deficient mouse embryonic fibroblasts, we identified cyathin-R, a new cyathane diterpenoid compound able to activate apoptosis in the absence of Bax/Bak via promotion of the VDAC1 oligomerization that mediates cytochrome c release. Diphenylamine-2-carboxilic acid, an inhibitor of VDAC1 conductance and oligomerization, inhibited cyathin-R-induced VDAC1 oligomerization and apoptosis. Similarly, Bcl-2 overexpression conferred resistance to cyathin-R-induced apoptosis and VDAC1 oligomerization. Silencing of VDAC1 expression prevented cyathin-R-induced apoptosis. Finally, cyathin-R effectively attenuated tumor growth and induced apoptosis in Bax/Bak-deficient cells implanted into a xenograft mouse model. Hence, this study identified a new compound promoting VDAC1-dependent apoptosis as a potential therapeutic option for cancerous cells lacking or presenting inactivated Bax/Bak. PMID:26253170

  1. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Fanger, N A; Maliszewski, C R; Schooley, K; Griffith, T S

    1999-10-18

    TRAIL (TNF-related apoptosis-inducing ligand) is a member of the TNF family that induces apoptosis in a variety of cancer cells. In this study, we demonstrate that human CD11c(+) blood dendritic cells (DCs) express TRAIL after stimulation with either interferon (IFN)-gamma or -alpha and acquire the ability to kill TRAIL-sensitive tumor cell targets but not TRAIL-resistant tumor cells or normal cell types. The DC-mediated apoptosis was TRAIL specific, as soluble TRAIL receptor blocked target cell death. Moreover, IFN-stimulated interleukin (IL)-3 receptor (R)alpha(+) blood precursor (pre-)DCs displayed minimal cytotoxicity toward the same target cells, demonstrating a clear functional difference between the CD11c(+) DC and IL-3Ralpha(+) pre-DC subsets. These results indicate that TRAIL may serve as an innate effector molecule on CD11c(+) DCs for the elimination of spontaneously arising tumor cells and suggest a means by which TRAIL-expressing DCs may regulate or eliminate T cells responding to antigen presented by the DCs.

  2. Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis. Antisense Bcl-2 oligonucleotide sensitizes RIF 1 cells to photodynamic therapy apoptosis.

    Science.gov (United States)

    Srivastava, M; Ahmad, N; Gupta, S; Mukhtar, H

    2001-05-04

    Photodynamic therapy (PDT), a promising treatment modality, is an oxidative stress that induces apoptosis in many cancer cells in vitro and tumors in vivo. Understanding the mechanism(s) involved in PDT-mediated apoptosis may improve its therapeutic efficacy. Although studies suggest the involvement of multiple pathways, the triggering event(s) responsible for PDT-mediated apoptotic response is(are) not clear. To investigate the role of Bcl-2 in PDT-mediated apoptosis, we employed Bcl-2-antisense and -overexpression approaches in two cell types differing in their responses toward PDT apoptosis. In the first approach, we treated radiation-induced fibrosarcoma (RIF 1) cells, which are resistant to silicon phthalocyanine (Pc 4)-PDT apoptosis, with Bcl-2-antisense oligonucleotide. This treatment resulted in sensitization of RIF 1 cells to PDT-mediated apoptosis as demonstrated by i) cleavage of poly(ADP-ribose) polymerase, ii) DNA ladder formation, iii) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, and iv) DEVDase activity. This treatment also resulted in oligonucleotide concentration-dependent decrease in cell viability and down-regulation of Bcl-2 protein with a concomitant increase in apoptosis. However, the level of Bax, a pro-apoptotic member of Bcl-2 family, remained unaltered. In the second approach, an overexpression of Bcl-2 in PDT apoptosis-sensitive human epidermoid carcinoma (A431) cells resulted in enhanced apoptosis and up-regulation of Bax following PDT. In both the approaches, the increased Bax/Bcl-2 ratio was associated with an increased apoptotic response of PDT. Our data also demonstrated that PDT results in modulation of other Bcl-2 family members in a way that the overall ratio of pro-apoptotic and anti-apoptotic member proteins favors apoptosis.

  3. Expression of EPO Receptor in Pancreatic Cells and Its Effect on Cell Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Hongxia SHUAI; Ji ZHANG; Yikai YU; Muxun ZHANG

    2008-01-01

    In order to explore the expression of erythropoietin receptor (EPOR) in pancreatic cell ine NIT-1 and its effect on cell apoptosis after binding with erythropoietin (EPO), NIT-1 cells were cultured and expanded. The expression of EPOR was detected using electrophoresis. NIT-1 apoptosis was induced by cytokines and their effects on cell apoptosis and cell insulin secretion were assayed after binding of EPO to EPOR. The results showed that EPOR was expressed in NIT-1 cells. Recom- binant human EPO (rHuEPO) had no effect on cell apoptosis but significantly inhibited apoptosis in- duced by cytokines, rHuEPO had no effect on cell insulin secretion but significantly improved insulin secretion inhibited by cytokines. From these findings, it was concluded that EPOR was expressed in NIT-1 cells and EPO could protect N1T-1 cells from apoptosis induced by cytokines.

  4. Resistance to apoptosis should not be taken as a hallmark of cancer

    Institute of Scientific and Technical Information of China (English)

    Rui-An Wang; Zeng-Shan Li; Qing-Guo Yan; Xiu-Wu Bian; Yan-Qing Ding; Xiang Du; Bao-Cun Sun; Yun-Tian Sun; Xiang-Hong Zhang

    2014-01-01

    In the research community, resistance to apoptosis is often considered a hallmark of cancer. However, pathologists who diagnose cancer via microscope often see the opposite. Indeed, increased apoptosis and mitosis are usualy observed simultaneously in cancerous lesions. Studies have shown that increased apoptosis is associated with cancer aggressiveness and poor clinical outcome. Furthermore, overexpression of Bcl-2, an antiapoptotic protein, is linked with better survival of cancer patients. Conversely, Bax, CD95, Caspase-3, and other apoptosis-inducing proteins have been found to promote carcinogenesis. This notion of the role of apoptosis in cancer is not new; cancer cells were found to be short-lived 88 years ago. Given these observations, resistance to apoptosis should not be considered a halmark of cancer.

  5. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  6. Mechanisms of radioinduced apoptosis; Mecanismes de l'apoptose radio-induite

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Derradji, H.; Petitfour, Ol.; Von Schodoletz, H.; Mergeay, M. [Lab. de Radiobiologie, Centre d' Etude de l' Energie Nucleaire, SCK-CEN, Boeretang, Mol (Belgium)

    2002-07-01

    A general overview of the activation mechanisms of programmed cell death or apoptosis following an irradiation is given in this review. First, are summarized the main induction pathways of radiation-induced apoptosis by which extracellular (tumor necrosis factor (TNF), Fas ligand, TNF-related apoptosis-inducing ligand (TRAIL)) and intracellular (mitochondria and caspases) signals are integrated. A second part is then devoted to the importance of p53 and of its regulators (ATR, ATM, DNA-PKcs) in the process of radiation-induced apoptosis. Thereafter, signal transduction pathways and more specially the role of some protein kinases (MEKK, SAPK/JNK, p38-MAPK) is treated. At last, a chapter concerns the clinical interest of radiation-induced apoptosis and the implication of apoptosis in the treatment of certain diseases. (author)

  7. Cellular immune activation in children with acute dengue virus infections is modulated by apoptosis.

    Science.gov (United States)

    Myint, Khin S; Endy, Timothy P; Mongkolsirichaikul, Duangrat; Manomuth, Choompun; Kalayanarooj, Siripen; Vaughn, David W; Nisalak, Ananda; Green, Sharone; Rothman, Alan L; Ennis, Francis A; Libraty, Daniel H

    2006-09-01

    Apoptosis is an important modulator of cellular immune responses during systemic viral infections. Peripheral-blood mononuclear cell (PBMC) apoptosis and plasma soluble levels of CD95, a mediator of apoptosis, were determined in sequential samples from children participating in a prospective study of dengue virus (DV) infections. During the period of defervescence, levels of PBMC apoptosis were higher in children developing dengue hemorrhagic fever (DHF), the most severe form of illness, than in those with dengue fever (DF) and other, nondengue, febrile illnesses. CD8(+) T lymphocytes made up approximately half of the peak circulating apoptotic PBMCs in DHF and DF. Maximum plasma levels of soluble CD95 were also higher in children with DHF than in those with DF. The level of PBMC apoptosis correlated with dengue disease severity. Apoptosis appears to be involved in modulation of the innate and adaptive immune responses to DV infection and is likely involved in the evolution of immune responses in other viral hemorrhagic fevers.

  8. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  9. Direct activation of the apoptosis machinery as a mechanism to target cancer cells.

    Science.gov (United States)

    Nguyen, Jack T; Wells, James A

    2003-06-24

    Apoptosis plays a pivotal role in the cytotoxic activity of most chemotherapeutic drugs, and defects in this pathway provide a basis for drug resistance in many cancers. Thus the ability to restore apoptosis by using small molecules could have important therapeutic implications. Using a cell-free assay to simultaneously target multiple components of the apoptosis pathway, we identified a class of compounds that activate caspases in a cytochrome c-dependent manner and induce apoptosis in whole cells. By reconstituting the apoptosis pathway with purified proteins, we determined that these compounds promote the protein-protein association of Apaf-1 into the functional apoptosome. These compounds exert cytostatic and cytotoxic effects on a variety of cancer cell lines while having little or no activity against the normal cell lines tested. These findings suggest that direct activation of the basic apoptosis machinery may be a viable mechanism to selectively target cancer.

  10. Minocycline protects the apoptosis of PC12 cells induced by 1-methyl-4-phenylpyridinium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To explore the protective effect of minocycline on the apoptosis of cellular parkinsonism models induced by MPP+ . Methods: Using PC12 cells as the apoptotic model of dopaminergic neurons, MC and MPP+ were added into the culture medium of PC12 cells, and using MTT to assay the cell viability and metabolic state; The cells apoptosis was assayed by electrophoresis method and using flow cytometry FACS to assay the apoptosis ratio. Results: Added the MPP+ to get the concentration of 10μmol/L, the cellular parkinsonism model of apoptosis had been prepared. The pre-treatment of MC (100 μmol/L) could significantly increase the PC12 cell viability. The apoptosis ratio of MC + MPP+ group was significantly lower than that of MPP+ group, but was still significantly higher than that of control group. Conclusion: MC may protect the cell apoptosis induced by MPP+ to some extent.

  11. Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole H

    2008-01-01

    From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC. The aim...... was to investigate both the spontaneous and the cell death receptor ligand-induced apoptosis in UC....

  12. Overcoming Autophagy to Induce Apoptosis in Castration-Resistant Prostate Cancer

    Science.gov (United States)

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0529 TITLE: Overcoming Autophagy to Induce Apoptosis in...code) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 October 2014 Overcoming Autophagy to Induce Apoptosis in Castration...survival mechanism and led cells to undergo apoptosis . Survival mechanisms elicited by CRPC C4-2B cells when treated with Enza may be blocked by

  13. Apoptosis Modulation as a Promising Target for Treatment of Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Stéphane Chabaud

    2011-01-01

    Full Text Available Diffuse systemic sclerosis (SSc is a fatal autoimmune disease characterized by an excessive ECM deposition inducing a loss of function of skin and internal organs. Apoptosis is a key mechanism involved in all the stages of the disease: vascular damage, immune dysfunction, and fibrosis. The purpose of this paper is to gather new findings in apoptosis related to SSc, to highlight relations between apoptosis and fibrosis, and to identify new therapeutic targets.

  14. [Peculiarities of urinary bladder cancer tumor cells apoptosis response on neoadjuvant chemotherapy].

    Science.gov (United States)

    Iatsyna, A I; Stakhovskiĭ, É A; Sheremet, Ia A; Spivak, S I; Stakhovskiĭ, A É; Gavriliuk, O N; Vitruk, Iu V; Emets, A I; Blium, Ia B

    2011-01-01

    Induced apoptosis in urinary bladder cancer tumor cells of patients was studied using TUNEL reaction. It was shown that increase in induced apoptosis value had a definite correlation between corresponding features of tumor reaction as a response on Gemcitabine-Cisplatin neoadjuvant chemotherapy application. It was found that evaluation of induced apoptosis in urinary bladder cancer tumor cells using TUNEL method allows forecasting the effectiveness of chemotherapy on the cellular level in patients with this type of cancer.

  15. Drosophila BRUCE inhibits apoptosis through non-lysine ubiquitination of the IAP-antagonist REAPER

    OpenAIRE

    Domingues, C.; Ryoo, H D

    2011-01-01

    Active caspases execute apoptosis to eliminate superfluous or harmful cells in animals. In Drosophila, living cells prevent uncontrolled caspase activation through an inhibitor of apoptosis protein (IAP) family member, dIAP1, and apoptosis is preceded by the expression of IAP-antagonists, such as Reaper, Hid and Grim. Strong genetic modifiers of this pathway include another IAP family gene encoding an E2 ubiquitin conjugating enzyme domain, dBruce. Although the genetic effects of dBruce mutan...

  16. Apoptosis of motor neurons in the spinal cord after ischemia reperfusion injury delayed paraplegia in rabbits

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Apoptosis is known to occur in the centralnervous system during development and in patho-logical settings such ischemia reperfusion(IR)inju-ry[1].Apoptosis requires an active commit ment ofthe cell to degrade its own DNA,according to aninternal programof self-destruction[2].Newproteinsynthesis is required for apoptosis,and protein syn-thesis inhibitors have been shown to reduce celldeath postischemically[3].Incontrast,necrosis is nota gene-facilitated process but results frominjuriouschanges in the environm...

  17. A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    OpenAIRE

    Rahul Palchaudhuri; Michael J. Lambrecht; Rachel C. Botham; Kathryn C. Partlow; Tjakko J. van Ham; Karson S. Putt; Laurie T. Nguyen; Seok-Ho Kim; Randall T. Peterson; Timothy M. Fan; Paul J. Hergenrother

    2015-01-01

    textabstractApoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Ra...

  18. HER2 Phosphorylates and Destabilizes Pro-Apoptotic PUMA, Leading to Antagonized Apoptosis in Cancer Cells

    OpenAIRE

    Carpenter, Richard L.; Woody Han; Ivy Paw; Hui-Wen Lo

    2013-01-01

    HER2 is overexpressed in 15-20% of breast cancers. HER2 overexpression is known to reduce apoptosis but the underlying mechanisms for this association remain unclear. To elucidate the mechanisms for HER2-mediated survival, we investigated the relationship between HER2 and p53 upregulated modulator of apoptosis (PUMA), a potent apoptosis inducer. Our results showed that HER2 interacts with PUMA, which was independent of HER2 activation. In addition, we observed that HER2 interacted with PUMA i...

  19. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy.

    Science.gov (United States)

    Tan, S; Wei, X; Song, M; Tao, J; Yang, Y; Khatoon, S; Liu, H; Jiang, J; Wu, B

    2014-03-13

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of the study is to investigate whether PUMA is involved in PHG by mediating ER stress apoptotic signaling. To identify whether PUMA is involved in PHG by mediating ER stress, gastric mucosal injury and apoptosis were studied in both PHG patients and PHG animal models using PUMA knockout (PUMA-KO) and PUMA wild-type (PUMA-WT) mice. The induction of PUMA expression and ER stress signaling were investigated, and the mechanisms of PUMA-mediated apoptosis were analyzed. GES-1 and SGC7901 cell lines were used to further identify whether PUMA-mediated apoptosis was induced by ER stress in vitro. Epithelial apoptosis and PUMA were markedly induced in the gastric mucosa of PHG patients and mouse PHG models. ER stress had a potent role in the induction of PUMA and apoptosis in PHG models, and the apoptosis was obviously attenuated in PUMA-KO mice. Although the targeted deletion of PUMA did not affect ER stress, mitochondrial apoptotic signaling was downregulated in mice. Meanwhile, PUMA knockdown significantly ameliorated ER stress-induced mitochondria-dependent apoptosis in vitro. These results indicate that PUMA mediates ER stress-induced mucosal epithelial apoptosis through the mitochondrial apoptotic pathway in PHG, and that PUMA is a potentially therapeutic target for PHG.

  20. Role of JNK activation in apoptosis: A double-edged sword

    Institute of Scientific and Technical Information of China (English)

    Jing LIU; Anning LIN

    2005-01-01

    JNK is a key regulator of many cellular events, including programmed cell death (apoptosis). In the absence of NF-κB activation, prolonged JNK activation contributes to TNF-α induced apoptosis. JNK is also essential for UV induced apoptosis. However, recent studies reveal that JNK can suppress apoptosis in IL-3-dependent hematopoietic cells via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Thus, JNK has pro- or antiapoptotic functions, depending on cell type, nature of the death stimulus, duration of its activation and the activity of other signaling pathways.

  1. Apoptosis of lumbar spinal cord neurons in cauda equina syndrome rats

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Objective To explore the law of apoptosis of lumbar spinal cord neurons in cauda equina syndrome (CES). Methods Cauda equina of rats was compressed by a piece of silica gel stick. From day 1 to day 28,the lumbar spinal cord specimens were harvested and assessed by Nissl's staining and TUNEL staining. Results Compression of cauda equina caused lesion and apoptosis of neurons in lumbar spinal cord,and the extent of apoptosis reached the peak on 7th day after compression. Conclusion Apoptosis of neurons in lum...

  2. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  3. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    Science.gov (United States)

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  4. Hepatic Cell Apoptosis Was Triggerred by HBx Accumulation and Independent on Verapamil

    Institute of Scientific and Technical Information of China (English)

    王海平; 陈孝平; 白祥军

    2004-01-01

    Summary: In order to studythe roles of HBx and calcium inhibitor verapamil in apoptosis of human normal hepatic cells, L02-off, a pTet-off stably integrated human hepatic cell line was established,in which HBx expression was tightly induced by Doxycycline. The effect of different amounts of HBx and verapamil on apoptosis of human normal hepatic cells was detected. The study showed that apoptosis was triggered by accumulation of intracellular HBx, while verapamil had no effects on the apoptotic process. It was concluded that apoptosis mediated by HBx was dose-dependent but calcium-independent.

  5. Serial Serum Leukocyte Apoptosis Levels as Predictors of Outcome in Acute Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Hung-Chen Wang

    2014-01-01

    Full Text Available Background. Apoptosis associates with secondary brain injury after traumatic brain injury (TBI. This study posits that serum leukocyte apoptosis levels in acute TBI are predictive of outcome. Methods. Two hundred and twenty-nine blood samples from 88 patients after acute TBI were obtained on admission and on Days 4 and 7. Serial apoptosis levels of different leukocyte subsets were examined in 88 TBI patients and 27 control subjects. Results. The leukocyte apoptosis was significantly higher in TBI patients than in controls. Brief unconsciousness (P=0.009, motor deficits (P≤0.001, GCS (P≤0.001, ISS (P=0.001, WBC count (P=0.015, late apoptosis in lymphocytes and monocytes on Day 1 (P=0.004 and P=0.022, resp., subdural hemorrhage on initial brain CT (P=0.002, neurosurgical intervention (P≤0.001, and acute posttraumatic seizure (P=0.046 were significant risk factors of outcome. Only motor deficits (P=0.033 and late apoptosis in monocytes on Day 1 (P=0.037 were independently associated with outcome. A cutoff value of 5.72% of late apoptosis in monocytes was associated with poor outcome in acute TBI patients. Conclusion. There are varying degrees of apoptosis in patients following TBI and in healthy individuals. Such differential expression suggests that apoptosis in different leukocyte subsets plays an important role in outcome following injury.

  6. Experimental study on apoptosis induced by semiconductor laser to hair removal and armpit odor treatment

    Science.gov (United States)

    Shi, Hongmin; Yan, Min; Zhang, Meijue

    2005-07-01

    Objective: To observe and explore the effects and mechanism of apoptosis on canine induced by Laser. Try to find a new approach to treat of armpit odor with no traumatism. Method: We used different power of semiconductor Laser to irradiate the black hair canine to observe and evaluate the tissue effects with electroscope, flow cytometry and Tunel technique at different period of time after irradiation. Result: The apoptosis has been observed within the hair follicle cells and apocrine gland cells after irradiation. After repeat irradiation in low power level, more apoptosis has been observed. Conclusion: Apoptosis exists in hair follicle cells and apocrine gland cells after Laser irradiation.

  7. Modulation of Interleukin-15-induced Suppression of Human Neutrophil Apoptosis by TNFα

    Institute of Scientific and Technical Information of China (English)

    LIU Xiuping; XIONG Changyun; LI Chunhong; YANG Deguang

    2007-01-01

    Human interleukin-15 (IL-15) is a proinflammatory cytokine to suppress neutrophil apoptosis, which is a potential therapeutic agent. The modulatory effect of TNFα was investigated in IL-15-induced suppression of human neutrophil apoptosis. TNFα was shown to reverse the ability of IL-15 to delay neutrophil apoptosis within certain time course. Moreover, this reverse effect by TNFα might be associated with a reduction of the expression of the anti-apoptotic Bcl-Xl protein detected by Western blotting. It is concluded that TNFα can be used to modulate IL-15-induced suppression of neutrophil apoptosis within certain time course.

  8. Gene Analysis of Arsenic Trioxide—induced Apoptosis of Lymphoma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANGZidong; LIWeiyu; 等

    2002-01-01

    Objective The effect of arsenic trioxide on apoptosis gene expression of Raji cell was explored when Raji cells were incubated with 0.5μmol/L of arsenic trioxide for 6h。Methods Cell culture,extraction and isolation of mRNA,preparation of probes labeled with fluorescence,hybridization technique of DNA chip(each chip containing 200 apoptosis genes,Chinese Shanghai Biostar,In.)were used.Results Arsenic trioxide induced significant changes in 10%(20/200 genes)of the apoptosis genes:18 genes were downregulated,only two upregulated.In particular,inhibitors of apoptosis protein,such as X-linked inhibitor of apoptosis protein,were significantly downregulated.P53 and the other apoptosis genes were also downregulatec.Of the upregulated genes,high expression of heat-shock protein could promote apoptosis of Raji cells.Conclusion The inhibitors of apoptosis protein play an important role in the process of arsenic trioxide-induced apoptosis of Raji cells.

  9. Reactive oxygen species regulate a balance between mitotic catastrophe and apoptosis.

    Science.gov (United States)

    Sorokina, Irina V; Denisenko, Tatiana V; Imreh, Gabriela; Gogvadze, Vladimir; Zhivotovsky, Boris

    2016-12-01

    Mitotic catastrophe (MC) is a sequence of events resulting from premature or inappropriate entry of cells into mitosis that can be caused by chemical or physical stresses. There are several observations permitting to define MC as an oncosuppressive mechanism. MC can end up in apoptosis, necrosis or senescence. Here we show that the anticancer drug doxorubicin triggers DNA damage and MC independently of ROS production. In contrast, doxorubicin-induced apoptosis was found to be ROS-dependent. Antioxidants NAC or Trolox suppressed apoptosis, but facilitated MC development. Our data demonstrate that evasion of apoptosis and subsequent stimulation of MC can contribute to tumor cell elimination improving anticancer therapy.

  10. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    Science.gov (United States)

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  11. Cell-death-mode switch from necrosis to apoptosis in hydrogen peroxide treated macrophages

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cell death is typically defined either as apoptosis or necrosis. Because the consequences of apoptosis and necrosis are quite different for an entire organism, the investigation of the cell-death-mode switch has considerable clinical significance. The existence of a necrosis-to-apoptosis switch induced by hydrogen peroxide in macrophage cell line RAW 264.7 cells was confirmed by using flow cytometry and fluorescence microscopy. With the help of computational simulations, this study predicted that negative feedbacks between NF-κB and MAPKs are implicated in converting necrosis into apoptosis in macrophages exposed to hydrogen peroxide, which has significant implications.

  12. p63 is required beside p53 for PERP-mediated apoptosis in uveal melanoma

    Science.gov (United States)

    Awais, Raheela; Spiller, David G; White, Michael R H; Paraoan, Luminita

    2016-01-01

    Background: PERP (p53 apoptosis effector related to PMP-22), a transcriptional target of p53, is downregulated and contributes to the impairment of apoptosis in uveal melanoma (UM). Intriguingly, PERP is not induced in UM despite functional p53. p63, located on chromosome 3, which is characteristically altered in high-risk UM, can transactivate PERP. Here, we determine the functional role of p63 expression in the initiation of p53/PERP-mediated apoptosis in UM. Methods: PERP expression was monitored by quantitative PCR (qPCR) and immunoblotting in UM cell lines treated with DNA-damaging agents. The functional role of p63 was assessed by transient expression of p63-turbo GFP (p63-tGFP) in the apoptosis- resistant, 3q-deficient OCM-1 cells. Expression and localisation of p63, PERP and p53, and induction of apoptosis were characterised by qPCR, immunoblotting and live cell confocal microscopy. Results: PERP expression was significantly downregulated in all UM cell lines. DNA-damaging treatments failed to induce apoptosis and activate PERP in OCM-1 cells, which displayed non-functional levels of p63. Expression of p63-tGFP induced apoptosis with marked increase in PERP expression and associated p53 accumulation. Conclusions: Lack of p63 contributes to reduced PERP levels and impaired p53-mediated apoptosis in UM. p63 expression is required for PERP-mediated apoptosis in UM. PMID:27584665

  13. Aβ induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis.

    Science.gov (United States)

    Feng, Jie; Meng, Chengbo; Xing, Da

    2015-02-01

    p53 upregulated modulator of apoptosis (PUMA) is a promising tumor therapy target because it elicits apoptosis and profound sensitivity to radiation and chemotherapy. However, inhibition of PUMA may be beneficial for curbing excessive apoptosis associated with neurodegenerative disorders. Alzheimer's disease (AD) is a representative neurodegenerative disease in which amyloid-β (Aβ) deposition causes neurotoxicity. The regulation of PUMA during Aβ-induced neuronal apoptosis remains poorly understood. Here, we reported that PUMA expression was significantly increased in the hippocampus of transgenic mice models of AD and hippocampal neurons in response to Aβ. PUMA knockdown protected the neurons against Aβ-induced apoptosis. Furthermore, besides p53, PUMA transactivation was also regulated by forkhead box O3a through p53-independent manner following Aβ treatment. Notably, PUMA contributed to neuronal apoptosis through competitive binding of apoptosis repressor with caspase recruitment domain to activate caspase-8 that cleaved Bid into tBid to accelerate Bax mitochondrial translocation, revealing a novel pathway of Bax activation by PUMA to mediate Aβ-induced neuronal apoptosis. Together, we demonstrated that PUMA activation involved in Aβ-induced apoptosis, representing a drug target to antagonize AD progression.

  14. Melatonin and Doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate whether Melatonin has synergistic effects with Doxorubicin in the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and Bel-7402.METHODS:The synergism of Melatonin and Doxorubicin inhibited the cell growth and induced cell apoptosis in human hepatoma cell lines HepG2 and Bel-7402.Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT)assay.Cell apoptosis was evaluated using TUNEL method and flow cytometry.Apoptosis-r...

  15. Incudomalleal joint formation: the roles of apoptosis, migration and downregulation

    Directory of Open Access Journals (Sweden)

    Matalova Eva

    2007-12-01

    Full Text Available Abstract Background The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects. Results We show that the developing incudomalleal joint is characterised by a lack of proliferation and discrete areas of apoptosis. Apoptosis has been suggested to aid in the removal of pre-cartilaginous cells from the joint region, allowing for the physical separation of the cartilaginous elements, however, we show that joint initiation is unaffected by blocking apoptosis. There is also no evidence of cell migration out of the presumptive joint region, as observed by labelling of joint and ossicle cells in culture. Using Type II collagen lacZ reporter mice, however, it is evident that cells in the presumptive joint region remain in place and downregulate cartilage markers. Conclusion The malleus and incus first appear as a single united condensation expressing early cartilage markers. The incudomalleal joint region forms by cells in the presumptive joint region switching off cartilage markers and turning on joint markers. Failure in this process may result in fusion of this joint, as observed in human syndromes such as Branchio-Oto-Renal Syndrome or Treacher Collins Syndrome.

  16. Prolactin induces apoptosis of lactotropes in female rodents.

    Directory of Open Access Journals (Sweden)

    Jimena Ferraris

    Full Text Available Anterior pituitary cell turnover occurring during female sexual cycle is a poorly understood process that involves complex regulation of cell proliferation and apoptosis by multiple hormones. In rats, the prolactin (PRL surge that occurs at proestrus coincides with the highest apoptotic rate. Since anterior pituitary cells express the prolactin receptor (PRLR, we aimed to address the actual role of PRL in the regulation of pituitary cell turnover in cycling females. We showed that acute hyperprolactinemia induced in ovariectomized rats using PRL injection or dopamine antagonist treatment rapidly increased apoptosis and decreased proliferation specifically of PRL producing cells (lactotropes, suggesting a direct regulation of these cell responses by PRL. To demonstrate that apoptosis naturally occurring at proestrus was regulated by transient elevation of endogenous PRL levels, we used PRLR-deficient female mice (PRLRKO in which PRL signaling is totally abolished. According to our hypothesis, no increase in lactotrope apoptotic rate was observed at proestrus, which likely contributes to pituitary tumorigenesis observed in these animals. To decipher the molecular mechanisms underlying PRL effects, we explored the isoform-specific pattern of PRLR expression in cycling wild type females. This analysis revealed dramatic changes of long versus short PRLR ratio during the estrous cycle, which is particularly relevant since these isoforms exhibit distinct signaling properties. This pattern was markedly altered in a model of chronic PRLR signaling blockade involving transgenic mice expressing a pure PRLR antagonist (TGΔ1-9-G129R-hPRL, providing evidence that PRL regulates the expression of its own receptor in an isoform-specific manner. Taken together, these results demonstrate that i the PRL surge occurring during proestrus is a major proapoptotic signal for lactotropes, and ii partial or total deficiencies in PRLR signaling in the anterior pituitary

  17. Induction of Tumor Cell Apoptosis via Fas/DR5

    Institute of Scientific and Technical Information of China (English)

    Wenzhu Li; Shengyu Wang; Caixia Chen; Guohong Zhuang

    2006-01-01

    The apoptosis inducing effects on tumor cell lines MGC803, BEL7402 and HL60 by Fas ligand and anti-human DR5 monoclonal antibodies (anti-DR5 mAb) and the underlying mechanism was studied, Fas/DR5 mRNA was detected by RT-PCR. Cytotoxicity exerted by FasL/anti-DR5 mAb on tumor cell lines was measured by MTT assay and the induced apoptosis was determined by agarose gel electrophoresis. Flow cytometry was employed to analyze the mode of cell death. The mRNA expression of DR5 in MGC803 and BEL7402 cells after giving anti-DR5 mAb was up-regulated compared with control group, while it was down-regulated in HL60 cells in the same condition.The mRNA expression of Fas in HL60 was higher after giving FasL compared with control group, while it was lower in MGC803 and BEL7402. MGC803 and BEL7402 were sensitive to anti-DR5 mAb but partially to FasL,and HL60 was sensitive to FasL but less sensitive to anti-DR5 mAb. Apoptosis induced by Fas ligand and anti-DR5 mAb vary among tumor cell lines. The underlying mechanism may be relevant to Fas/DR5 mRNA expression,which was presented as the release of caspase-8 and Bcl-2.

  18. Apoptosis Sel Fibroblas Jaringan Pulpa Akibat Paparan Radiasi Ionisasi

    Directory of Open Access Journals (Sweden)

    Supriyadi Supriyadi

    2015-10-01

    Full Text Available In vivo apoptosis of fibroblast pulp cells by ionizing radiation from radiotherapy of the head and neck area has not yet been demonstrated. The study aimed to show in vivo the effect of a single dose of ionizing radiation on apoptosis of fibroblast pulp cells. The sample group consisted of 24 health male Wistar rats that were 3-4 months old and 150-200 g in weight. The rats were divided into 4 groups of 6 rats that were subjected to Cobalt 60 radiation to the head at the levels of 0, 100, 200 or 400 rad. The rats were sacrificed 24 hours after radiation exposure, and the lower incisivus were taken for histopathological processing. Apoptosis was detected by using the TUNEL Assay method. The apoptotc fibroblast pulp cells were counted under light microscope by multiple observers using the blind test approach. The fraction of apoptotic cells was counted as mean of labial and palatal sides of the teeth below odontogenic and free-cell zone. The data were statistically analyzed using one-way anova. The results showed the percentage of apoptotic of fibroblast pulp cells was 6.4, 23.7, 34.5 and 17.8% after , 100, 200, and 400 rad doses, respectively. There were significant differences in the apoptotic percentages between the four groups (p<0.05. In conclusion, the highest fraction of apoptotic fibroblast pulp cells was found after a single 200 rad dose, and this fraction decreased after a single dose of 400 rad.

  19. Effects of lysophosphatidylcholine on β-amyloid-induced neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Zhen-xia QIN; Hui-yan ZHU; Ying-he HU

    2009-01-01

    Aim: We have investigated the effects of lysophosphatidylcholine (LPC), a product of lipid peroxidation, on Aβ1-42-induced SH-SY5Y cell apoptosis.Methods: The viability of cultured SH-SY5Y cells was measured using a CCK-8 kit. Apoptosis was determined by Chip-based flow cytometric assay. The mRNA transcription of Bcl-2, Bax, and caspase-3 were detected by using reverse transcrip-tion and real-time quantitative PCR and the protein levels of Bax and caspase-3 were analyzed by Western blotting. Thecytosolic calcium concentration of SH-SY5Y cells was tested by calcium influx assay. GZA expression in SH-SYSY cells wassilenced by small interfering RNA.Results: Long-term exposure of SH-SY5Y cells to LPC augmented the neurotoxicity of Aβ1-42. Furthermore, after LPC treatment, the Bax/Bcl-XL ratio and the expression levels, as well as the activity of caspase-3 were, elevated, whereas the expression level of TRAF1 was reduced. Because LPC was reported to be a specific ligand for the orphan G-protein coupled receptor, G2A, we investigated LPC-mediated changes in calcium levels in SH-SY5Y cells. Our results demonstrated that LPC can enhance the Aβ1-42-induced elevation of intracellular calcium. Interestingly, Aβ1-42 significantly increased the expression of G2A in SH-SY5Y cells, whereas knockdown of G2A using siRNA reduced the effects of LPC on Aβ1-42-induced neurotoxicity.Conclusion: The effects of LPC on Aβ1-42-induced apoptosis may occur through the signal pathways of the orphan G-protein coupled receptor.

  20. Vanilloids induce oral cancer apoptosis independent of TRPV1

    Science.gov (United States)

    Gonzales, Cara B.; Kirma, Nameer B.; De La Chapa, Jorge J.; Chen, Richard; Henry, Michael A.; Luo, Songjiang; Hargreaves, Kenneth M.

    2015-01-01

    SUMMARY Objective To investigate the mechanisms of vanilloid cytotoxicity and anti-tumor effects in oral squamous cell carcinoma (OSCC). Materials and methods Immunohistochemistry and qPCR analyses demonstrated expression of the TRP vanilloid type 1 (TRPV1) receptor in OSCC. Using cell proliferation assays, calcium imaging, and three mouse xenograft models, prototypical vanilloid agonist (capsaicin) and antagonist (capsazepine) were evaluated for cytotoxic and anti-tumor effects in OSCC. Results OSCC cell lines treated with capsaicin displayed significantly reduced cell viability. Pre-treatment with capsazepine failed to reverse these effects. Moreover, capsazepine alone was significantly cytotoxic to tumor cells, suggesting the mechanism-of-action is independent of TRPV1 activation. This was further confirmed by calcium imaging indicating that TRPV1 channels are not functional in the cell lines tested. We then examined whether the observed vanilloid cytotoxicity was due to the generation of reactive oxygen species (ROS) and subsequent apoptosis. Induction of ROS was confirmed by flow cytometry and reversed by co-treatment with the antioxidant N-acetyl-cysteine (NAC). NAC also significantly reversed vanilloid cytotoxicity in cell proliferation assays. Dose-dependent induction of apoptosis with capsazepine treatment was demonstrated by FACS analyses and c-PARP expression in treated cells. Our in vivo xenograft studies showed that intra-tumoral injections of capsazepine exhibited high effectiveness in suppressing tumor growth with no identifiable toxicities. Conclusions These findings confirm TRPV1 channel expression in OSCC. However anti-tumor effects of vanilloids are independent of TRPV1 activation and are most likely due to ROS induction and subsequent apoptosis. Importantly, these studies demonstrate capsazepine is a potential therapeutic candidate for OSCC. PMID:24434067

  1. Ouabain enhances ADPKD cell apoptosis via the intrinsic pathway

    Directory of Open Access Journals (Sweden)

    Gustavo eBlanco

    2016-03-01

    Full Text Available Progression of autosomal dominant polycystic kidney disease (ADPKD is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3nM also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells. This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key executioner caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells. Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression.

  2. Germ cell apoptosis induced by progesterone in rats

    Institute of Scientific and Technical Information of China (English)

    Cui Yu-gui; Liao Ting-ting; Liu Jia-yin; Jia Yue; Cai Rui-fen; Gao Li; Wang Xing-hai; Tong Jian-sun; Ma Ding-zhi; Zhang Cai-ting; Wang Xue-song

    2007-01-01

    Objectives: To document the effect of progesterone exposure with large dose and long term on spermatogenesis,especially on the germ cell apoptosis in rats.This study was also to evaluate the toxicity of progesterone in the reproductive system when administered with large doses and long term in men.Methods: Groups of adult male SD rats were administered with 37.5, 75 and 150 mg/kg depotmedroxyprogesterone acetate (DMPA) per two-weeks for 12 or 18 weeks.At the end of treatment, each male rat was paired with one adult female SD rat to estimate the reproductive function.Serum testosterone concentration was analyzed in duplicate by radioimmunoassay (RIA).The pathological changes of testes, epididymis, and prostate were checked under light microscopic, epididymis was also used for sperm count, and fresh testis tissue was used for apoptosis assessment by flow cytometry.Results.After treatment with DMPA, weights of gonad, the ratio of testes/body, the ratio of epididymides/body,and the ratio of prostate/body decreased significantly (P<0.01).The level of serum testosterone, sperm count, sperm activity decreased significantly(P<0.01) while abnormality of sperm increased significantly (P<0.01).The embryonic number in uterus of pairing female rat decreased significantly after DMPA treatment.Compared with control, the number and the ratio of apoptotic germ cell increased dramatically (P<0.01) along with dose increase or treating prolongation of DMPA, which analyzed by flow cytometry.Conclusion: In summary, in addition to inhibition of pituitary gonadotrophin and subsequently deprivation of androgen, progesterone (DMPA)inhibits spermatogenesis by the induced germ cell apoptosis.The reproductive toxicity of DMPA administrated with large doses and long term is confirmed.

  3. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  4. Aortic Cell Apoptosis in Rat Primary Aldosteronism Model

    Institute of Scientific and Technical Information of China (English)

    闫永吉; 欧阳金芝; 王超; 吴准; 马鑫; 李宏召; 徐华; 胡争; 李俊; 王保军; 史涛坪; 龚道静; 倪栋; 张旭

    2010-01-01

    This study aimed to determine whether aldosterone could induce vascular cell apoptosis in vivo.Thirty-two male rats were randomly divided into 4 groups:vehicle(control),aldosterone,aldosterone plus eplerenone or hydralazine.They were then implanted with an osmotic mini-pump that infused either aldosterone or the vehicle.Systolic blood pressure(SBP) was measured weekly by the tail-cuff method.After 8 weeks,plasma aldosterone concentration(PAC) and renin activity(PRA) were determined by radioimmunoassay.Aorti...

  5. Senescence and apoptosis in carcinogenesis of cervical squamous carcinoma.

    Science.gov (United States)

    Feng, Wei; Xiao, Jianguo; Zhang, Zhihong; Rosen, Daniel G; Brown, Robert E; Liu, Jinsong; Duan, Xiuzhen

    2007-09-01

    Senescence and apoptosis are two key mechanisms that protect against cancer development. Many cell cycle regulators, such as p14(ARF), p15(INK4b) and p16(INK4a), are important in G1 cell cycle arrest and oncogene-induced senescence. The bcl-2 protein is one of the key components that control apoptosis, while the p53 protein plays key roles in both mechanisms. The genes of these key regulator proteins are often mutated or deleted in various malignancies. It is unknown how senescence and apoptosis are regulated in one of the most common tumors of the female genital tract, cervical squamous cell carcinoma (SCC). In this study the, expression of senescence, apoptosis and proliferation markers in normal cervical epithelium, cervical intraepithelial neoplasia (CIN) and SCC are characterized via immunohistochemical staining for p14(ARF), p15(INK4b), p16(INK4a), bcl-2, p53 and Ki-67 in tissue microarray blocks containing 20 samples each of normal cervix, moderate-to-severe cervical dysplasia (CIN II-III) and invasive SCC. Samples are derived from 60 total cases of cervical biopsies and cervical conizations. Results showed that the proliferation marker, Ki-67, is markedly increased, and the senescence markers, p15(INK4b), p16(INK4a) and p14(ARF) are overexpressed in both dysplasia and carcinoma. P53 immunostain is negative in all normal cervical tissue, and positive in dysplasia and carcinoma. Although the expression of bcl-2 is increased in dysplasia, this marker is negative in approximately half of SCC cases. These results suggest that some senescence pathways are activated and are still maintained in cervical dysplasia and carcinoma. However proliferation is increased and carcinogenesis is not thwarted, leading to eventual development of cervical cancer. Other mechanisms, such as those that account for the apparent overexpression of p53 and paradoxical loss of bcl-2 expression in some SCC cases, as well as additional senescence and apoptotic pathways, may play key roles

  6. Bacterial lipopolysaccharide induces apoptosis in the trout ovary

    Directory of Open Access Journals (Sweden)

    Krasnov Aleksei

    2006-08-01

    Full Text Available Abstract Background In mammals it is well known that infections can lead to alterations in reproductive function. As part of the innate immune response, a number of cytokines and other immune factors is produced during bacterial infection or after treatment with lipopolysaccharide (LPS and acts on the reproductive system. In fish, LPS can also induce an innate immune response but little is known about the activation of the immune system by LPS on reproduction in fish. Therefore, we conducted studies to examine the in vivo and in vitro effects of lipopolysaccharide (LPS on the reproductive function of sexually mature female trout. Methods In saline- and LPS -injected brook trout, we measured the concentration of plasma steroids as well as the in vitro steroidogenic response (testosterone and 17alpha-hydroxyprogesterone of ovarian follicles to luteinizing hormone (LH, the ability of 17alpha,20beta-dihydroxy-4-pregnen-3-one to induce germinal vesicle breakdown (GVBD in vitro, and that of epinephrine to stimulate follicular contraction in vitro. We also examined the direct effects of LPS in vitro on steroid production, GVBD and contraction in brook trout ovarian follicles. The incidence of apoptosis was evaluated by TUNEL analysis. Furthermore, we examined the gene expression pattern in the ovary of saline- and LPS-injected rainbow trout by microarray analysis. Results LPS treatment in vivo did not affect plasma testosterone concentration or the basal in vitro production of steroids, although a small but significant potentiation of the effects of LH on testosterone production in vitro was observed in ovarian follicles from LPS-treated fish. In addition, LPS increased the plasma concentration of cortisol. LPS treatment in vitro did not affect the basal or LH-stimulated steroid production in brook trout ovarian follicles. In addition, we did not observe any effects of LPS in vivo or in vitro on GVBD or follicular contraction. Therefore, LPS did not

  7. Localisation of Protein Kinase C in Apoptosis and Neurite Outgrowth

    OpenAIRE

    Schultz, Anna

    2005-01-01

    Protein kinase C (PKC) is a family of serine/threonine kinases, which are subgrouped into classical (a, bI, bII, g), novel (d, e, h, q) and atypical (z, i/l) isoforms. One major aim of this thesis work was to investigate if altered levels of PKC isoforms influence the apoptotic responses of malignant cell-lines. We show that overexpression of PKCd or PKCq renders SK-N-BE(2) neuroblastoma cells sensitive to apoptosis induced by phorbol esters or C2-ceramide. Moreover, overexpression of PKCa, P...

  8. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B

    2009-01-01

    Nuclear autoantigens from apoptotic cells are believed to drive the immunological response in systemic lupus erythematosus (SLE). Conflicting data exist as to the possible renal origin of apoptotic cells in SLE patients with nephritis. We assessed the level of renal cell apoptosis in kidney...... biopsies from 35 patients with lupus nephritis by means of terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labeling (TUNEL). Five samples of normal kidney tissue served as control specimens. We did not observe apoptotic glomerular cells in any...... cells constitute a quantitatively important source of auto-antibody-inducing nuclear auto-antigens in human lupus nephritis....

  9. Cupressus lusitanica (Cupressaceae) leaf extract induces apoptosis in cancer cells.

    Science.gov (United States)

    Lopéz, L; Villavicencio, M A; Albores, A; Martínez, M; de la Garza, J; Meléndez-Zajgla, J; Maldonado, V

    2002-05-01

    A crude ethanolic extract of Cupressus lusitanica Mill. leaves demonstrate cytotoxicity in a panel of cancer cell lines. Cell death was due to apoptosis, as assessed by morphologic features (chromatin condensation and apoptotic bodies formation) and specific DNA fragmentation detected by in situ end-labeling of DNA breaks (TUNEL). The apoptotic cell death was induced timely in a dose-dependent manner. Despite the absence of changes in the expression levels of antiapoptotic protein Bcl-2, proapoptotic Bax protein variants omega and delta were increased. These results warrant further research of possible antitumor compounds in this plant.

  10. Baicalin prevents Candida albicans infections via increasing its apoptosis rate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shulong; Fu, Yingyuan, E-mail: yingyuanfu@126.com; Wu, Xiuzhen; Zhou, Zhixing; Xu, Jing; Zeng, Xiaoping; Kuang, Nanzhen; Zeng, Yurong

    2014-08-15

    Highlights: • Baicalin increases the ratio of the G0/G1 stages and C. albicans apoptosis. • Baicalin decreases the proliferation index of C. albicans. • Baicalin inhibits the biosynthesis of DNA, RNA and protein in C. albicans. • Baicalin depresses Succinate Dehydrogenase and Ca{sup 2+}–Mg{sup 2+} ATPase in C. albicans. • Baicalin increases the endocytic free Ca{sup 2+} concentration in C. albicans. - Abstract: Background: These experiments were employed to explore the mechanisms underlying baicalin action on Candida albicans. Methodology and principal findings: We detected the baicalin inhibition effects on three isotope-labeled precursors of {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C. albicans using the isotope incorporation technology. The activities of Succinate Dehydrogenase (SDH), cytochrome oxidase (CCO) and Ca{sup 2+}–Mg{sup 2+} ATPase, cytosolic Ca{sup 2+} concentration, the cell cycle and apoptosis, as well as the ultrastructure of C.albicans were also tested. We found that baicalin inhibited {sup 3}H-UdR, {sup 3}H-TdR and {sup 3}H-leucine incorporation into C.albicans (P < 0.005). The activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase of C.albicans in baicalin groups were lower than those in control group (P < 0.05). Ca{sup 2+} concentrations of C. albicans in baicalin groups were much higher than those in control group (P < 0.05). The ratio of C.albicans at the G0/G1 stage increased in baicalin groups in dose dependent manner (P < 0.01). There were a significant differences in the apoptosis rate of C.albicans between baicalin and control groups (P < 0.01). After 12–48 h incubation with baicalin (1 mg/ml), C. albicans shown to be markedly damaged under transmission electron micrographs. Innovation and significance: Baicalin can increase the apoptosis rate of C. albicans. These effects of Baicalin may involved in its inhibiting the activities of the SDH and Ca{sup 2+}–Mg{sup 2+} ATPase, increasing

  11. Role of Autophagy and Apoptosis in the Postinfluenza Bacterial Pneumonia

    Directory of Open Access Journals (Sweden)

    Zhen Qin

    2016-01-01

    Full Text Available The risk of influenza A virus (IAV is more likely caused by secondary bacterial infections. During the past decades, a great amount of studies have been conducted on increased morbidity from secondary bacterial infections following influenza and provide an increasing number of explanations for the mechanisms underlying the infections. In this paper, we first review the recent research progress that IAV infection increased susceptibility to bacterial infection. We then propose an assumption that autophagy and apoptosis manipulation are beneficial to antagonize post-IAV bacterial infection and discuss the clinical significance.

  12. Cell apoptosis and regeneration of hepatocellular carcinoma after transarterial chemoembolization

    Institute of Scientific and Technical Information of China (English)

    Zhen Li; Dao-Yu Hu; Qian Chu; Jian-Hong Wu; Chun Gao; Yu-Qing Zhang; Yan-Rong Huang

    2004-01-01

    AIM: To evaluate whether cell apoptosis and regeneration were existed in normal liver cells adjacent to carcinoma after transarterial chemoembolization (TACE).METHODS: Fifty rabbits with hepatic carcinoma were divided into 5 groups at random: group A (control group),groups B and C (TACE treatment groups), groups D and E (partial hepatectomy groups). There were 10 rabbits in each group. Rabbits in groups B-E were treated by transarterial chemoembolization (TACE) and partial hepatectomy (PH)respectively. The changes of S-phase cell fraction (SPF),proliferation index (PI) and cell apoptosis in the normal liver tissue were determined with flow cytometry (FCM) after operations on the first and third days. We determined the mitosis index (MI) with histo-pathological method and the apoptosis index (AI) with TUNEL method at the same time. RESULTS: Twenty-four hours after operations, compared with control group, the rabbits in TACE group had much higher index of SPF, PI and MI (MI: t=4.89, P<0.001; SPF:t=5.27, P<0.001; PI: t=4.87, P<0.001). Moreover, the proliferation of liver cells in TACE group was much weaker than that of the cells treated by partial hepatectomy, and the differences were significant (MI: t=7.02, P<0.001;SPF:t=4.06, P<0.001; PI: t=2.70, P<0.05). Seventy-two h after operations, FCM showed a small sub-G1 peak in TACE group and PH group, compared with the control group, but there was no difference between them (t=0.41, P>0.05).TACE showed that AI in the treated rabbits was higher than that in control group (t=3.07, P<0.05), and there were no differences between TACE group and PH group, either(t=0.93, P>0.05).CONCLUSION: Cell apoptosis and regeneration exist in rabbit liver tissues after TACE in some degree, which may be associated with the selective embolization of iodised oil, chemotherapeutic drug and free radical damage.

  13. Intense exercise can cause excessive apoptosis and synapse plasticity damage in rat hippocampus through Ca2+ overload and endoplasmic reticulum stress-induced apoptosis pathway

    Institute of Scientific and Technical Information of China (English)

    Ding Yi; Chang Cunqing; Xie Lan; Chen Zhimin; Ai Hua

    2014-01-01

    Background Intense exercise can cause injury and apoptosis,but few studies have reported its effect on the central nervous system (CNS).The initial reason for hippocampus injury is the excitotoxicity of glutamate and calcium overload.Intracellular free Ca2+ ([Ca2+]i) overload may trigger the apoptosis pathway and neuron damage.The aim of this study was to investigate whether intense exercise could cause hippocampus apoptosis and neuron damage and then to determine which pathway was activated by this apoptosis.Methods We used one bout of swimming exhaustion rats as models.Intracellular [Ca2+]i was measured to estimate the calcium overload by Fura-2/AM immediately after exhaustion; glial fibrillary acidic protein (GFAP) and synaptophysin (SYP)immunofluorescence were performed for estimating astrocyte activation and synapse plasticity 24 hours after exhaustion.Apoptosis cells were displayed using dUTP nick end labelling (TUNEL) stain; endoplasmic reticulum (ER) stress-induced apoptosis pathway and mitochondrial apoptosis pathway were synchronously detected by Western blotting.Results An increasing level of intracellular [Ca2+]i (P <0.01) was found in the hippocampus immediately after exhaustion.GFAP and SYP immunofluorescence showed that the astrocytes are activated,and the synapse plasticity collapsed significantly 24 hours after exhaustion.TUNEL stain showed that the number of apoptosis cells were notably raised (P <0.01); Western blotting of the apoptosis pathway showed increasing levels of caspase-3 cleavage (P <0.01),Bax (P <0.01),caspase-12 cleavage (P <0.01),C/EBP-homologous protein (CHOP) (P <0.01),and phospho-Junaminoterminal kinases (p-JNK; P <0.01) and decreasing level of Bcl-2 (P <0.01).Our results proved that exhaustion can induce hippocampus injury and apoptosis by [Ca2+]i overload,with collapsed synaptic plasticity as the injury pattern and ER stress-induced apoptosis as the activated pathway.Conclusion Intense exercise can cause

  14. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Lin, E-mail: pchen@dal.ca [Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Easton, Alexander S., E-mail: alexander.easton@dal.ca [Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia (Canada)

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10{sup -5} mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  15. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    Directory of Open Access Journals (Sweden)

    Jingfei Huang

    Full Text Available Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS generation, activation of mitochondrial permeability transition pores (MPTPs and loss of mitochondrial membrane potential (MMP were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP inhibitor cyclosporin A (CsA, which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  16. Which CIDE are you on? Apoptosis and energy metabolism.

    Science.gov (United States)

    Yonezawa, Tomo; Kurata, Riho; Kimura, Minoru; Inoko, Hidetoshi

    2011-01-01

    Around 1998, cell death-inducing DNA fragmentation factor-alpha (DFFA)-like effector (CIDE) proteins including CIDEA, CIDEB and CIDEC/fat specific protein 27 (Fsp27) were first identified by their sequence homology with the N-terminal domain of the DNA fragmentation factor (DFF). Indeed, in vitro analysis revealed that all three CIDE proteins are involved in apoptosis. However, recent gene-targeting studies have provided novel insights into the physiological function of CIDE proteins. Mice deficient in each CIDE protein exhibit lean phenotypes, a reduction of lipid droplet size in white adipose tissue and increased metabolic rate. Thus, all CIDE proteins play an important role in energy metabolism and lipid droplet formation. More recently, a glycoproteomics approach has shown that post-translational regulation of CIDE proteins via glycosylation modulates transforming growth factor (TGF)-beta 1-dependent apoptosis. Another recent study using mouse embryonic fibroblasts derived from CIDEA-deficient mice revealed that 5'AMP-activated protein kinase (AMPK) activity is regulated by CIDEA-mediated ubiquitin-dependent proteasomal degradation via a protein interaction with the AMPK beta subunit. Even after a decade of study, the physiological roles of CIDE proteins have still not been completely elucidated. This review aims to shed light on the novel functions of CIDE proteins and their physiological roles.

  17. Environmental adjuvants, apoptosis and the censorship over autoimmunity.

    Science.gov (United States)

    Rovere-Querini, Patrizia; Manfredi, Angelo A; Sabbadini, Maria Grazia

    2005-11-01

    Alterations during apoptosis lead to the activation of autoreactive T cells and the production of autoantibodies. This article discusses the pathogenic potential of cells dying in vivo, dissecting the role of signals that favor immune responses (adjuvants) and the influence of genetic backgrounds. Diverse factors determine whether apoptosis leads or not to a self-sustaining, clinically apparent autoimmune disease. The in vivo accumulation of uncleared dying cells per se is not sufficient to cause disease. However, dying cells are antigenic and their complementation with immune adjuvants causes lethal diseases in predisposed lupus-prone animals. At least some adjuvant signals directly target the function and the activation state of antigen presenting cells. Several laboratories are aggressively pursuing the molecular identification of endogenous adjuvants. Sodium monourate and the high mobility group B1 protein (HMGB1) are, among those identified so far, well known to rheumatologists. However, even the complementation of apoptotic cells with potent adjuvant signals fail to cause clinical autoimmunity in most strains: autoantibodies generated are transient, do not undergo to epitope/spreading and do not cause disease. Novel tools for drug development will derive from the molecular identification of the constraints that prevent autoimmunity in normal subjects.

  18. Ferutinin, an apoptosis inducing terpenoid from Ferula ovina.

    Science.gov (United States)

    Matin, Maryam Moghaddam; Nakhaeizadeh, Hossein; Bahrami, Ahamd Reza; Iranshahi, Mehrdad; Arghiani, Nahid; Rassouli, Fatemeh Behnam

    2014-01-01

    A current hurdle in cancer management is the intrinsic or acquired resistance of cancer cells to chemical agents that restricts the efficacy of therapeutic strategies. Accordingly, there is an increasing desire to discover new natural compounds with selective toxicity to combat malignancies. In present study, the cytotoxic and apoptosis- inducing activities of ferutinin, a terpenoid derivative from Ferula ovina, were investigated on human breast (MCF7) and bladder (TCC) cancer cells as well as normal fibroblasts (HFF3).The toxicity and DNA damage inducing effects of ferutinin were studied by MTT and comet assays, DAPI and PI staining and DNA laddering. The IC50 values of ferutinin were identified and compared with routine prescribed drugs, doxorubicin and vincristine, by MTT test. Alkaline comet assay and DAPI staining revealed DNA damage due to ferutinin, which was significantly (p<0.001) higher in MCF7 and TCC than HFF3 cells. Apoptosis induction was evidenced by PI staining and DNA laddering. Our results suggest that ferutinin could be considered as an effective anticancer agent for future in vivo and clinical experiments.

  19. Apoptosis in rat transient focal cerebral ischemic stroke: clinical implications

    Institute of Scientific and Technical Information of China (English)

    Shoushu Jiao; Jue Wang Gal Hever; Rongzheng Kuang; Jean-Claude Louis; Ella Magal

    2000-01-01

    @@In the early phase of cerebral ischemia, factors threatening neuronal survival in the penumbra include mainly glutamate excitotoxicity, free radical damage and energy failure resulting from recurrent depolarization waves. However, at later times, other mechanisms come into play. The initial ischemic event activates a variety of genetic programs that unfold over the course of hours and days. Both positron emission tomography and magnetic resonance based techniques demonstrate that the development of irretrievable tissue damage is relatively slow, progressing over the course of several days in some cases, and a viable tissue, defined by hemodynamic and metabolic criteria,is still present many hours after stroke in human or in monkey. These findings suggest that the brain can potentially be “rescued” from infarction many hours after onset of ischemia and challenge the widespread notion of an early and short “therapeutic window” (~3-6h). This realization is of critical importance for stroke therapy because most patients reach medical attention at a time when current therapeutic strategies may no longer be effective. Therefore, it would be highly desirable to develop therapeutic interventions that can be instituted many hours after the onset of ischemia. We believe that addressing the mechanisms of delayed cell death is key to a successful therapy. The studies presented here were designed to document the potential contribution of apoptosis to ischemia induced neuronal death. We will discuss the morphological, biochemical and pharmacological evidence for apoptosis in the ischemic stroke.

  20. Re: Engineered Nanoparticles Induce Cell Apoptosis: Potential for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-09-01

    Full Text Available Engineered nanoparticles (ENPs have been widely applied in industry, biology and medicine recently (i.e. clothes, sunscreens, cosmetics, foods, diagnostic medicine, imaging and drug delivery. There are many kinds of manufactured nanomaterial products including TiO2, ZnO, CeO2, Fe2O3, and CuO (as metal oxide nanoparticles as well as gold, silver, platinum and palladium (as metal nanoparticles, and other carbon-based ENP’s such as carbon nanotububes and quantum dots. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs and cause toxic effects. In many researches, ENP effects on the cancer cells of different organs with related cell apoptosis were noted (AgNP, nano-Cr2O3, Au-Fe2O3 NPs, nano-TiO2, nano-HAP, nano-Se, MoO3 nanoplate, Realgar nanoparticles. ENPs, with their unique properties, such as surface charge, particle size, composition and surface modification with tissue recognition ligands or antibodies, has been increasingly explored as a tool to carry small molecular weight drugs as well as macromolecules for cancer therapy, thus generating the new concept “nanocarrier”. Direct induction of cell apoptosis by ENPs provides an opportunity for cancer treatment. In the century of nanomedicine that depends on development of the nanotechnology, ENPs have a great potential for application in cancer treatment with minimal side effects.

  1. CIRRHOSIS INDUCES APOPTOSIS IN RENAL TISSUE THROUGH INTRACELLULAR OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Keli Cristina Simões da SILVEIRA

    2015-03-01

    Full Text Available Background Renal failure is a frequent and serious complication in patients with decompensated cirrhosis. Objectives We aimed to evaluate the renal oxidative stress, cell damage and impaired cell function in animal model of cirrhosis. Methods Secondary biliary cirrhosis was induced in rats by ligation of the common bile duct. We measured TBARS, ROS and mitochondrial membrane potential in kidney as markers of oxidative stress, and activities of the antioxidant enzymes. Relative cell viability was determined by trypan blue dye-exclusion assay. Annexin V-PE was used with a vital dye, 7-AAD, to distinguish apoptotic from necrotic cells and comet assay was used for determined DNA integrity in single cells. Results In bile duct ligation animals there was significant increase in the kidney lipoperoxidation and an increase of the level of intracellular ROS. There was too an increase in the activity of all antioxidant enzymes evaluated in the kidney. The percentage viability was above 90% in the control group and in bile duct ligation was 64.66% and the dominant cell death type was apoptosis. DNA damage was observed in the bile duct ligation. There was a decreased in the mitochondrial membrane potential from 71.40% ± 6.35% to 34.48% ± 11.40% in bile duct ligation. Conclusions These results indicate that intracellular increase of ROS cause damage in the DNA and apoptosis getting worse the renal function in cirrhosis.

  2. Apoptosis during embryonic tissue remodeling is accompanied by cell senescence

    Science.gov (United States)

    Lorda-Diez, Carlos I.; Garcia-Riart, Beatriz; Montero, Juan A.; Rodriguez-León, Joaquín; Garcia-Porrero, Juan A; Hurle, Juan M.

    2015-01-01

    This study re-examined the dying process in the interdigital tissue during the formation of free digits in the developing limbs. We demonstrated that the interdigital dying process was associated with cell senescence, as deduced by induction of β-gal activity, mitotic arrest, and transcriptional up-regulation of p21 together with many components of the senescence-associated secretory phenotype. We also found overlapping domains of expression of members of the Btg/Tob gene family of antiproliferative factors in the regressing interdigits. Notably, Btg2 was up-regulated during interdigit remodeling in species with free digits but not in the webbed foot of the duck. We also demonstrate that oxidative stress promoted the expression of Btg2, and that FGF2 and IGF1 which are survival signals for embryonic limb mesenchyme inhibited Btg2 expression. Btg2 overexpression in vivo and in vitro induced all the observed changes during interdigit regression, including oxidative stress, arrest of cell cycle progression, transcriptional regulation of senescence markers, and caspase-mediated apoptosis. Consistent with the central role of p21 on cell senescence, the transcriptional effects induced by overexpression of Btg2 are attenuated by silencing p21. Our findings indicate that cell senescence and apoptosis are complementary processes in the regression of embryonic tissues and share common regulatory signals. PMID:26568417

  3. Cysteine protease activation and apoptosis in Murine norovirus infection

    Directory of Open Access Journals (Sweden)

    Ettayebi Khalil

    2009-09-01

    Full Text Available Abstract Background Noroviruses are the leading cause of viral gastroenteritis. Because a suitable in vitro culture system for the human virus has yet to be developed, many basic details of the infection process are unknown. Murine norovirus (MNV serves as a model system for the study of norovirus infection. Recently it was shown that infection of RAW 264.7 cells involved a novel apoptotic pathway involving survivin. Results Using a different set of approaches, the up-regulation of caspases, DNA condensation/fragmentation, and membrane blebbing, all of which are markers of apoptosis, were confirmed. Live cell imaging and activity-based protein profiling showed that activation of caspase-like proteases occurred within two hours of infection, followed by morphological changes to the cells. MNV infection in the presence of caspase inhibitors proceeded via a distinct pathway of rapid cellular necrosis and reduced viral production. Affinity purification of activity-based protein profiling targets and identification by peptide mass fingerprinting showed that the cysteine protease cathepsin B was activated early in infection, establishing this protein as an upstream activator of the intrinsic apoptotic pathway. Conclusion This work adds cathepsin B to the noncanonical programmed cell death induced by MNV, and provides data suggesting that the virus may induce apoptosis to expand the window of time for viral replication. This work also highlights the significant power of activity-based protein profiling in the study of viral pathogenesis.

  4. Targeting Apoptosis Pathways in Cancer with Alantolactone and Isoalantolactone

    Directory of Open Access Journals (Sweden)

    Azhar Rasul

    2013-01-01

    Full Text Available Alantolactone and isoalantolactone, main bioactive compounds that are present in many medicinal plants such as Inula helenium, L. Inula japonica, Aucklandia lappa, Inula racemosa, and Radix inulae, have been found to have various pharmacological actions including anti-inflammatory, antimicrobial, and anticancer properties, with no significant toxicity. Recently, the anticancer activity of alantolactone and isoalantolactone has been extensively investigated. Here, our aim is to review their natural sources and their anticancer activity with specific emphasis on mechanism of actions, by which these compounds act on apoptosis pathways. Based on the literature and also on our previous results, alantolactone and isoalantolactone induce apoptosis by targeting multiple cellular signaling pathways that are frequently deregulated in cancers and suggest that their simultaneous targeting by these compounds could result in efficacious and selective killing of cancer cells. This review suggests that alantolactone and isoalantolactone are potential promising anticancer candidates, but additional studies and clinical trials are required to determine their specific intracellular sites of actions and derivative targets in order to fully understand the mechanisms of therapeutic effects to further validate in cancer chemotherapy.

  5. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females.

    Directory of Open Access Journals (Sweden)

    Sara Andux

    2008-12-01

    Full Text Available In women, oocytes arrest development at the end of prophase of meiosis I and remain quiescent for years. Over time, the quality and quantity of these oocytes decreases, resulting in fewer pregnancies and an increased occurrence of birth defects. We used the nematode Caenorhabditis elegans to study how oocyte quality is regulated during aging. To assay quality, we determine the fraction of oocytes that produce viable eggs after fertilization. Our results show that oocyte quality declines in aging nematodes, as in humans. This decline affects oocytes arrested in late prophase, waiting for a signal to mature, and also oocytes that develop later in life. Furthermore, mutations that block all cell deaths result in a severe, early decline in oocyte quality, and this effect increases with age. However, mutations that block only somatic cell deaths or DNA-damage-induced deaths do not lower oocyte quality. Two lines of evidence imply that most developmentally programmed germ cell deaths promote the proper allocation of resources among oocytes, rather than eliminate oocytes with damaged chromosomes. First, oocyte quality is lowered by mutations that do not prevent germ cell deaths but do block the engulfment and recycling of cell corpses. Second, the decrease in quality caused by apoptosis mutants is mirrored by a decrease in the size of many mature oocytes. We conclude that competition for resources is a serious problem in aging germ lines, and that apoptosis helps alleviate this problem.

  6. Structural studies of Bcl-2-family regulators of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, P.W. [Argonne National Lab., IL (United States). Center for Mechanistic Biology and Biotechnology]|[Northwestern Univ., Evanston, IL (United States). Dept. of Biomedical Engineering; Cai, X.; Schiffer, M. [Argonne National Lab., IL (United States). Center for Mechanistic Biology and Biotechnology

    1996-06-01

    The Bcl-2 family of proteins includes about a dozen different proteins which share two small regions of amino acid homology but otherwise exhibit rather modest sequence similarities. The members of this family function as molecular regulators of apoptosis, some as accelerators of cell death and others as inhibitors of apoptosis. The authors analyzed the predicted secondary structures of Bcl-2-family proteins and found that a series of four amphipathic helices, three short {beta}-strands, and a carboxyl-terminal transmembrane helix were conserved throughout the family. Since the Bcl-2-family proteins do not have homology with any proteins of known three-dimensional structure, it seems likely that the tertiary structure assumed by these conserved Bcl-2-family structural elements will represent a completely new protein fold. The authors have prepared recombinant versions of particular proteins of the Bcl-2-family so that the can analyze their molecular structures experimentally. In addition, since some of the Bcl-2-family members homodimerize, they are using small-zone size-exclusion chromatography to analyze the homodimerization of individual, purified Bcl-2-family proteins in order to determine the association and rate constants for these dimerization reactions using computer-simulation methods previously developed in the group. Since certain of these proteins also interest with each other to form heterodimers, the authors also hope to extend the analyses to similarly analyze the heterodimerization of pairs of purified Bcl-2-family proteins.

  7. Germ cell apoptosis induced by Ureaplasma urealyticum infection

    Institute of Scientific and Technical Information of China (English)

    Chen XU; Mei-Ge LU; Jing-Sheng FENG; Qiang-Su Guo; Yi-Fei WANG

    2001-01-01

    Aim: To study the effect of Ureaplasma urealyticum (UU) infection on germ cell apoptosis of male rats. Methods: Male rats were infected artificially with UU serotype 8 (T960) . Morphological changes of germ cells in the seminiferous tubules and the lumen of the epididymides were observed under the light microscope. Fluorescence-conjugated polyclonal antibodies to Fas and Fas ligand (FasL) were used to localize Fas and FasL. TUNEL staining of germ cells and Sertoli cells was performed by the AKPase method. TUNEL-positive rate ( % positive cells) and TUNEL-positive area (area occupied by stained cells) were analysed by KS400 Image Analysis System. The DNA laddering analysis was performed by agarose gels electrophoresis. Results: In those rats infected with UU: (1) Exfoliated germ cells were dramatically increased. Many multinucleated giant cells were found in the seminiferous tubules and the lumen of the epididymides. (2) The number of TUNEL-positive cells and the TUNEL-positive area were significantly increased.(3) The expression of Fas and FasL in germ cells and Sertoli cells was up-regulated. (4) Discrete bands of fragmented DNA were found in the testicular cells. Conclusion: In male rats, germ cell apoptosis was increased in UU infection.

  8. Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats

    Institute of Scientific and Technical Information of China (English)

    Emey Suhana MOHD AZAMAI; Suhaniza SULAIMAN; Shafina Hanim MOHD HABIB; Mee Lee LOOI; Srijit DAS; Nor Aini ABDUL HAMID; Wan Zurinah WANG NGAH; Yasmin Anum MOHD YUSOF

    2009-01-01

    Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200-250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatoctyes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats.

  9. Modulation of apoptosis by V protein mumps virus

    Directory of Open Access Journals (Sweden)

    Herrera-Camacho Irma

    2011-05-01

    Full Text Available Abstract Background The Urabe AM9 vaccine strain of mumps virus contains two variants of V protein: VWT (of HN-A1081 viral population and VGly (of HN-G1081. The V protein is a promoting factor of viral replication by blocking the IFN antiviral pathway. Findings We studied the relationship between V protein variants and IFN-α2b-induced apoptosis. V proteins decrease activation of the extrinsic IFN-α2b-induced apoptotic pathway monitored by the caspase 8 activity, being the effect greater with the VWT protein. Both V proteins decrease the activity of caspase 9 of the intrinsic apoptotic pathway. In a system without IFN, the VWT and VGly proteins expression promotes activation of caspases 3 and 7. However, when the cellular system was stimulated with IFN-α, this activity decreased partially. TUNEL assay shows that for treatment with IFN-α and ibuprofen of cervical adenocarcinoma cells there is nuclear DNA fragmentation but the V protein expression reduces this process. Conclusions The reduction in the levels of caspases and DNA fragmentation, suggesting that V protein, particularly VWT protein of Urabe AM9 vaccine strain, modulates apoptosis. In addition, the VWT protein shows a protective role for cell proliferation in the presence of antiproliferative signals.

  10. Effect of triamcinolone in keloids morphological changes and cell apoptosis

    Directory of Open Access Journals (Sweden)

    João Márcio Prazeres dos Santos

    2015-06-01

    Full Text Available OBJECTIVE:to assess the effects of injectable triamcinolone on keloid scars length, height and thickness, and on the number of cells undergoing apoptosis.METHODS:This study consists in a prospective, controlled, randomized, single-blinded clinical trial, conducted with fifteen patients with ear keloids divided into two groups: group 1 - seven patients undergoing keloid excisions, and group 2 - eight patients undergoing keloid excisions after three sessions of infiltration with one ml of Triamcinolone hexacetonide (20mg/ml with three week intervals between them and between the last session and surgery. The two groups were homogeneous regarding age, gender and evolution of the keloid scar. The keloid scars of patients in group 2 were measured for the length, height and thickness before triamcinolone injection and before surgery. A blinded observer performed morphological detailing and quantification of cells in hematoxylin-eosin-stained surgical specimens. An apoptotic index was created.RESULTS: The apoptotic index in group 1 was 56.82, and in group 2, 68.55, showing no significant difference as for apoptosis (p=0.0971. The reduction in keloid dimensions in Group 2 was 10.12% in length (p=0.6598, 11.94% in height (p=0.4981 and 15.62% in thickness (p=0.4027.CONCLUSION:This study concluded that the infiltration of triamcinolone in keloid scars did not increase the number of apoptosit and did not reduce keloids' size, length, height or thickness.

  11. Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles.

    Science.gov (United States)

    Zirin, Jonathan; Cheng, Daojun; Dhanyasi, Nagaraju; Cho, Julio; Dura, Jean-Maurice; Vijayraghavan, Krishnaswamy; Perrimon, Norbert

    2013-11-15

    One of the most dramatic examples of programmed cell death occurs during Drosophila metamorphosis, when most of the larval tissues are destroyed in a process termed histolysis. Much of our understanding of this process comes from analyses of salivary gland and midgut cell death. In contrast, relatively little is known about the degradation of the larval musculature. Here, we analyze the programmed destruction of the abdominal dorsal exterior oblique muscle (DEOM) which occurs during the first 24h of metamorphosis. We find that ecdysone signaling through Ecdysone receptor isoform B1 is required cell autonomously for the muscle death. Furthermore, we show that the orphan nuclear receptor FTZ-F1, opposed by another nuclear receptor, HR39, plays a critical role in the timing of DEOM histolysis. Finally, we show that unlike the histolysis of salivary gland and midgut, abdominal muscle death occurs by apoptosis, and does not require autophagy. Thus, there is no set rule as to the role of autophagy and apoptosis during Drosophila histolysis.

  12. Ad-IRF-1 Induces Apoptosis in Esophageal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Gregory A. Watson

    2006-01-01

    Full Text Available The nuclear transcription factor interferon regulatory factor-1 (IRF-1 is a putative tumor suppressor, but the expression and function of IRF-1 in esophageal adenocarcinoma (EA remain unknown. We hypothesized that IRF-1 expression was reduced or lost in EA and that restoration of IRF-1 would result in the apoptosis of EA cells in vitro and the inhibition of tumor growth in vivo. Three EA cell lines were used to examine IRF-1 expression, IFN-γ responsiveness, and the effects of IRF-1 overexpression using a recombinant adenoviral vector (Ad-IRF-1. All three EA cell lines produced IRF-1 protein following IFN-γ stimulation, although IFN-γ did not induce cell death. In contrast, Ad-IRF-1 infection resulted in high levels of IRF-1 protein and triggered apoptosis in all three EA cell lines. Potential mechanisms for the differential response to IFN-γ versus Ad-IRF-1-such as modulation of c-Met or extracellular regulated kinase signaling, or altered expression of IRF-2, Fas, or survivin-were investigated, but none of these mechanisms can account for this observation. In vivo administration of IRF-1 in a murine model of EA modestly inhibited tumor growth, but did not lead to tumor regression. Strategies aimed at increasing or restoring IRF-1 expression may have therapeutic benefits in EA.

  13. Stressed to death: implication of lymphocyte apoptosis for psychoneuroimmunology

    Science.gov (United States)

    Shi, Yufang; Devadas, Satish; Greeneltch, Kristy M.; Yin, Deling; Allan Mufson, R.; Zhou, Jian-nian

    2003-01-01

    Psychological and physical stressors best exemplify the intercommunication of the immune and the nervous systems. It has been shown that stress significantly impacts leukocyte cellularity and immune responses and alters susceptibility to various diseases. While acute stress has been shown to enhance immune responses, chronic stress often leads to immunosuppression. Among many criteria examined upon exposure to chronic stress, the reduction in lymphocyte mitogenic response and lymphocyte cellularity are commonly assessed. We have reported that chronic restraint stress could induce lymphocyte reduction, an effect dependent on endogenous opioids. Interestingly, the effect of endogenous opioids was found to be exerted through increasing the expression of a cell death receptor, Fas, and an increased sensitivity of lymphocytes to apoptosis. Stress-induced lymphocyte reduction was not affected by adrenalectomy. In this review, based on available literature and our recent data, we will discuss the role of the hypothalamic-pituitary-adrenal axis and endogenous opioids and examine the mechanisms by which chronic stress modulates lymphocyte apoptosis.

  14. Procyanidin induces apoptosis of esophageal adenocarcinoma cells via JNK activation of c-Jun. : Procyanidin induces apoptosis of esophageal adenocarcinoma cells via JNK activation of c-Jun.

    NARCIS (Netherlands)

    Connor, Carol A; Adriaens, Michiel; Pierini, Roberto; Johnson, Ian T; Belshaw, Nigel J

    2014-01-01

    Procyanidins are polymeric flavanols found in fruits and vegetables and have shown anticarcinogenic/chemopreventive properties. We previously showed that oligomeric procyanidin extracted from apples induced cell cycle arrest and apoptosis in esophageal adenocarcinoma (OA) cells. To understand the me

  15. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    Science.gov (United States)

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  16. Novel X-linked inhibitor of apoptosis inhibiting compound as sensitizer for TRAIL-mediated apoptosis in chronic lymphocytic leukaemia with poor prognosis.

    Science.gov (United States)

    Frenzel, Lukas P; Patz, Michaela; Pallasch, Christian P; Brinker, Reinhild; Claasen, Julia; Schulz, Alexandra; Hallek, Michael; Kashkar, Hamid; Wendtner, Clemens-Martin

    2011-01-01

    Given that aggressive DNA damaging chemotherapy shows suboptimal efficacy in chronic lymphocytic leukaemia (CLL), alternative therapeutic approaches are needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to induce tumour-specific apoptosis. However, apoptosis might be inhibited by elevated levels of X-linked inhibitor of apoptosis (XIAP). Use of XIAP-inhibiting compounds might sensitize primary CLL cells towards TRAIL-mediated apoptosis. A novel small molecule, compound A (CA), an inhibitor of XIAP, was used in combination with TRAIL to induce apoptosis in primary CLL cells (n = 48). XIAP was significantly more highly expressed in primary CLL cells (n = 28) compared to healthy B cells (n = 16) (P = 0·02). Our data obtained by specific knock-down of XIAP by siRNA identified XIAP as the key factor conferring resistance to TRAIL in CLL. Combined treatment with CA/TRAIL significantly increased apoptosis compared to untreated (P = 8·5 × 10⁻¹⁰), solely CA (P = 4·1 × 10⁻¹²) or TRAIL treated (P = 4·8 × 10⁻¹⁰) CLL cells. CA rendered 40 of 48 (83·3%) primary CLL samples susceptible to TRAIL-mediated apoptosis. In particular, cells derived from patients with poor prognosis CLL (ZAP-70(+) , IGHV unmutated, 17p-) were highly responsive to this drug combination. Our highly-effective XIAP inhibitor CA, in concert with TRAIL, shows potential for the treatment of CLL cases with poor prognosis and therefore warrants further clinical investigation.

  17. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway

    OpenAIRE

    ZHAO, XIANGQIAN; Jiang, Kai; Liang, Bin; Huang, Xiaoqiang

    2015-01-01

    Xanthohumol may prevent and cure diabetes and atherosis, have oxidation resistance and antiviral function as well as anticancer effect preventing cancer cell metastasis. We investigate whether the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Human liver cancer HepG2 cell were treated with 10, 20, 30 and 40 µM xanthohumol for 48 h. The present study showed that the anticancer effect of xanthohumol ...

  18. Angiotensin Ⅱ promotes the expression of glomerular IQGAP1 and apoptosis of glomerular cells

    Institute of Scientific and Technical Information of China (English)

    刘以鹏

    2013-01-01

    Objective To evaluate the effects of AngⅡon the expression of IQ domain GTPase-activating protein1(IQ-GAP1) and apoptosis of glomerular cells,and to explorethe role of IQGAP1in AngⅡ-induced apoptosis of

  19. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    Science.gov (United States)

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  20. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway.

    Science.gov (United States)

    Wang, Wen-Ke; Lu, Qing-Hua; Zhang, Jia-Ning; Wang, Ben; Liu, Xiang-Juan; An, Feng-Shuang; Qin, Wei-Dong; Chen, Xue-Ying; Dong, Wen-Qian; Zhang, Cheng; Zhang, Yun; Zhang, Ming-Xiang

    2014-11-01

    Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short-hairpin RNA significantly decreased HG-induced cell apoptosis by reducing caspase-3 activation and ratio of Bcl2-associated X protein to B-cell lymphoma/leukemia-2 (bax/bcl-2). Furthermore, HG activated E26 transformation-specific sequence-1 (Ets-1), and HMGB1 inhibition attenuated HG-induced activation of Ets-1 via extracellular signal-regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets-1 significantly decreased HG-induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin-treated diabetic mice. Inhibition of HMGB1 by short-hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets-1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia-induced cardiomyocyte apoptosis by down-regulating ERK-dependent activation of Ets-1.

  1. A role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Geist, Marie Aavang; Veng, Lone Merete

    2006-01-01

    Microtubule disruption by colchicine induces apoptosis in selected neuronal populations. However, little is known about the upstream death signalling events mediating the neurotoxicity. We investigated first whether colchicine-induced granule cell apoptosis activates the c-Jun N-terminal kinase...

  2. Induction of apoptosis by (-)-gossypol-enriched cottonseed oil in human breast cancer cells

    Science.gov (United States)

    Induction of apoptosis is one of the mechanisms of chemotherapeutic agents against breast cancer. In addition, recent studies have shown that diets containing polyphenolic components possess anticancer activities either in vitro or in vivo by inhibiting cell proliferation and inducing apoptosis. T...

  3. Investigating the evolution of apoptosis in malaria parasites: the importance of ecology

    Directory of Open Access Journals (Sweden)

    Pollitt Laura C

    2010-11-01

    Full Text Available Abstract Apoptosis is a precisely regulated process of cell death which occurs widely in multicellular organisms and is essential for normal development and immune defences. In recent years, interest has grown in the occurrence of apoptosis in unicellular organisms. In particular, as apoptosis has been reported in a wide range of species, including protozoan malaria parasites and trypanosomes, it may provide a novel target for intervention. However, it is important to understand when and why parasites employ an apoptosis strategy before the likely long- and short-term success of such an intervention can be evaluated. The occurrence of apoptosis in unicellular parasites provides a challenge for evolutionary theory to explain as organisms are expected to have evolved to maximise their own proliferation, not death. One possible explanation is that protozoan parasites undergo apoptosis in order to gain a group benefit from controlling their density as this prevents premature vector mortality. However, experimental manipulations to examine the ultimate causes behind apoptosis in parasites are lacking. In this review, we focus on malaria parasites to outline how an evolutionary framework can help make predictions about the ecological circumstances under which apoptosis could evolve. We then highlight the ecological considerations that should be taken into account when designing evolutionary experiments involving markers of cell death, and we call for collaboration between researchers in different fields to identify and develop appropriate markers in reference to parasite ecology and to resolve debates on terminology.

  4. MG132 Induced Apoptosis Pathway in HL-60 Cells and Impact of Allogeneic Mixed Lymphocyte Reaction

    Institute of Scientific and Technical Information of China (English)

    Yong-ming Zhou; Wei Guo; Hao Zhou; Jin-hua Zhang; Zhi-ping Liu; Mei-xia Yu

    2009-01-01

    Objective: To investigate the proteasome inhibitor MG132-induced apoptosis pathway in HL-60 cells and the role of allogeneic mixed lymphocyte reaction.Methods: Cell apoptosis was analyzed by flow cytometry. The expressions of p21 protein, p27 protein and p53 protein in HL-60 cells treated with MG132 were measured by Western blot. The proliferation of, peripheral blood mononuclear cells (PBMNCs) after treatment with 75 Gy irradiated HL-60 cells treated with MG132 was measured with CCK-8.Results: High-dose MG132 induced apoptosis in HL-60 cells. No significant change was observed in MG132-induced apoptosis after inhibiting caspase-8 and caspase-9 pathway. The expressions of p21 protein and p27 protein increased in MG132-induced apoptosis. HL-60 cells treated with low-dose MG132 improved the proliferation of PBMNCs from healthy volunteers.Conclusion: High-dose MG132 induced apoptosis and directly killed HL-60 cells. MG132 induced apoptosis in a caspase-8- and caspase-9-independent pathway. p21 protein and p27 protein were involved in MG132-induced apoptosis in HL-60 cells. HL-60 cells treated with Low-dose MG132 improved the effect of promoting the proliferation of PBMNCs from healthy volunteers.

  5. Apoptosis in the human periodontal membrane evaluated in primary and permanent teeth

    DEFF Research Database (Denmark)

    Bille, Marie-Louise Bastholm; Thomsen, Bjarke; Kjær, Inger

    2011-01-01

    for apoptosis and epithelial cells of Malassez in the periodontal membrane. All teeth examined were extracted in connection with treatment. Results. Apoptosis was seen in close proximity to the root surface and within the epithelial cells of Malassez. This pattern of apoptotis is similar in the periodontal...

  6. Involvement of apoptosis in host-parasite interactions in the zebra mussel.

    Directory of Open Access Journals (Sweden)

    Laëtitia Minguez

    Full Text Available The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism.

  7. Changes of p38 Mitogen-activated Protein Kinase and Apoptosis after Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    Xin-yu Zhang; Chu-song Zhou; Zheng-da Kuang

    2005-01-01

    @@ There were very few studies about signal transduction of apoptosis of the spinal cord injury (SCI). We applied spinal cord compression rats model (Nystrom's method) to study the changes of p38 mitogen-activated protein kinase(MAPK) and its relationship with apoptosis.

  8. Propolis suppresses tumor angiogenesis by inducing apoptosis in tube-forming endothelial cells.

    Science.gov (United States)

    Ohta, Toshiro; Kunimasa, Kazuhiro; Kobayashi, Tomomi; Sakamoto, Miwa; Kaji, Kazuhiko

    2008-09-01

    We have reported that propolis suppresses tumor-induced angiogenesis in vivo and in vitro, but antiangiogenic mechanism of propolis at cellular level remains unclear. In this study, we observed that propolis not only inhibited tube formation but also induced apoptosis of endothelial cells. These results suggest that propolis exerts its antiangiogenic effects at least in part through induction of apoptosis.

  9. DR3 regulation of apoptosis of naive T-lymphocytes in children with acute infectious mononucleosis.

    Science.gov (United States)

    Filatova, Elena Nikolaevna; Anisenkova, Elena Viktorovna; Presnyakova, Nataliya Borisovna; Utkin, Oleg Vladimirovich

    2016-09-01

    Acute infectious mononucleosis (AIM) is a widespread viral disease that mostly affects children. Development of AIM is accompanied by a change in the ratio of immune cells. This is provided by means of different biological processes including the regulation of apoptosis of naive T-cells. One of the potential regulators of apoptosis of T-lymphocytes is a death receptor 3 (DR3). We have studied the role of DR3 in the regulation of apoptosis of naive CD4(+) (nTh) and CD8(+) (nCTL) T-cells in healthy children and children with AIM. In healthy children as well as in children with AIM, the activation of DR3 is accompanied by inhibition of apoptosis of nTh. In healthy children, the stimulation of DR3 resulted in the increase in apoptosis of nCTL. On the contrary, in children with AIM, the level of apoptosis of nCTL decreased after DR3 activation, which is a positive contribution to the antiviral immune response. In children with AIM, nCTL are characterized by reduced level of apoptosis as compared with healthy children. These results indicate that DR3 can be involved in the reduction of sensitivity of nCTL to apoptosis in children with AIM.

  10. Par-4/NF-κB Mediates the Apoptosis of Islet β Cells Induced by Glucolipotoxicity

    Directory of Open Access Journals (Sweden)

    Wu QiNan

    2016-01-01

    Full Text Available Apoptosis of islet β cells is a primary pathogenic feature of type 2 diabetes, and ER stress and mitochondrial dysfunction play important roles in this process. Previous research has shown that prostate apoptosis response-4 (Par-4/NF-κB induces cancer cell apoptosis through endoplasmic reticulum (ER stress and mitochondrial dysfunction. However, the mechanism by which Par-4/NF-κB induces islet β cell apoptosis remains unknown. We used a high glucose/palmitate intervention to mimic type 2 diabetes in vitro. We demonstrated that the high glucose/palmitate intervention induced the expression and secretion of Par-4. It also causes increased expression and activation of NF-κB, which induced NIT-1 cell apoptosis and dysfunction. Overexpression of Par-4 potentiates these effects, whereas downregulation of Par-4 attenuates them. Inhibition of NF-κB inhibited the Par-4-induced apoptosis. Furthermore, these effects occurred through the ER stress cell membrane and mitochondrial pathway of apoptosis. Our findings reveal a novel role for Par-4/NF-κB in islet β cell apoptosis and type 2 diabetes.

  11. Hormonal regulation of apoptosis in the ovary under normal physiological and pathological conditions

    NARCIS (Netherlands)

    Slot, Karin Annemarie

    2005-01-01

    Programmed cell death or apoptosis plays an important role in normal reproductive function. Since apoptosis attributes to the exhaustion of the oocyte/follicle reserve, either directly through germ cell death or indirectly through follicular atresia, this process has been proposed to be the major me

  12. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  13. Noxa/Mcl-1 balance regulates susceptibility of cells to camptothecin-induced apoptosis.

    Science.gov (United States)

    Mei, Yide; Xie, Chongwei; Xie, Wei; Tian, Xu; Li, Mei; Wu, Mian

    2007-10-01

    Although camptothecin (CPT) has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that BH3-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay and cAMP response element binding protein (CREB) knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA) significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA) was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa and Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa and Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.

  14. Inhibition of p53 deSUMOylation Exacerbates Puromycin Aminonucleoside-Induced Apoptosis in Podocytes

    Directory of Open Access Journals (Sweden)

    Lingyu Wang

    2014-11-01

    Full Text Available Apoptosis is a major cause of reduced podocyte numbers, which leads to proteinuria and/or glomerulosclerosis. Emerging evidence has indicated that deSUMOylation, a dynamic post-translational modification that reverses SUMOylation, is involved in the apoptosis of Burkitt’s lymphoma cells and cardiomyocytes; however, the impact of deSUMOylation on podocyte apoptosis remains unexplored. The p53 protein plays a major role in the pathogenesis of podocyte apoptosis, and p53 can be SUMOylated. Therefore, in the present study, we evaluated the effect of p53 deSUMOylation, which is regulated by sentrin/SUMO-specific protease 1 (SENP1, on podocyte apoptosis. Our results showed that SENP1 deficiency significantly increases puromycin aminonucleoside (PAN-induced podocyte apoptosis. Moreover, SENP1 knockdown results in the accumulation of SUMOylated p53 protein and the increased expression of the p53 target pro-apoptotic genes, BAX, Noxa and PUMA, in podocytes during PAN stimulation. Thus, SENP1 may be essential for preventing podocyte apoptosis, at least partly through regulating the functions of p53 protein via deSUMOylation. The regulation of deSUMOylation may provide a novel strategy for the treatment of glomerular disorders that involve podocyte apoptosis.

  15. FasL and TRAIL Induce Epidermal Apoptosis and Skin Ulceration Upon Exposure to Leishmania major

    Science.gov (United States)

    Eidsmo, Liv; Fluur, Caroline; Rethi, Bence; Eriksson Ygberg, Sofia; Ruffin, Nicolas; De Milito, Angelo; Akuffo, Hannah; Chiodi, Francesca

    2007-01-01

    Receptor-mediated apoptosis is proposed as an important regulator of keratinocyte homeostasis in human epidermis. We have previously reported that Fas/FasL interactions in epidermis are altered during cutaneous leishmaniasis (CL) and that keratinocyte death through apoptosis may play a pathogenic role for skin ulceration. To further investigate the alterations of apoptosis during CL, a keratinocyte cell line (HaCaT) and primary human epidermal keratinocytes were incubated with supernatants from Leishmania major-infected peripheral blood mononuclear cells. An apoptosis-specific microarray was used to assess mRNA expression in HaCaT cells exposed to supernatants derived from L. major-infected cultures. Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression were significantly up-regulated, and apoptosis was detected in both HaCaT and human epidermal keratinocyte cells. The keratinocyte apoptosis was partly inhibited through blocking of Fas or FasL and even more efficiently through TRAIL neutralization. Up-regulation of Fas on keratinocytes in epidermis and the presence of FasL-expressing macrophages and T cells in dermis were previously reported by us. In this study, keratinocytes expressing TRAIL, as well as the proapoptotic receptor TRAIL-R2, were detected in skin biopsies from CL cases. We propose that activation of Fas and TRAIL apoptosis pathways, in the presence of inflammatory mediators at the site of infection, leads to tissue destruction and ulceration during CL. PMID:17200196

  16. Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis

    Directory of Open Access Journals (Sweden)

    Teresa Anglada

    2016-01-01

    Full Text Available In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated defective cell line, as Ataxia-Telangiectasia (AT cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70–85% of the AT viable cells (TUNEL-negative carried ≥10 γH2AX foci/cell, while only 12–27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis.

  17. Actinobacillus pleuropneumoniae serotype 10 derived ApxI induces apoptosis in porcine alveolar macrophages.

    Science.gov (United States)

    Chien, Maw-Sheng; Chan, You-Yu; Chen, Zeng-Weng; Wu, Chi-Ming; Liao, Jiunn-Wang; Chen, Ter-Hsin; Lee, Wei-Cheng; Yeh, Kuang-Sheng; Hsuan, Shih-Ling

    2009-03-30

    Actinobacillus pleuropneumoniae (AP) is the causative agent of swine pleuropneumonia, a fibrinous, exudative, hemorrhagic, necrotizing pleuropneumonia affecting all ages of pigs. Actinobacillus pleuropneumoniae exotoxins (Apx) are one of the major virulence factors of AP. Due to the complex nature of Apx toxins produced by AP, little is known regarding the interactions of individual species of Apx toxin with target cells. The objective of this study was to examine whether AP serotype 10-derived exotoxin, ApxI, caused apoptosis in porcine alveolar macrophages (PAMs) and to delineate the underlying signaling pathways. Isolated PAMs were stimulated with different concentrations of native ApxI and monitored for apoptosis using Hoechst staining, TUNEL, and DNA laddering assays. The ApxI-stimulated PAMs exhibited typical morphological features of apoptosis, including condensation of chromatin, formation of apoptotic bodies and DNA laddering. ApxI-induced apoptosis in a concentration- and time-dependent manner. Furthermore, to delineate the signaling events involved in ApxI-induced apoptosis, it was observed that caspase 3 was activated in ApxI-stimulated PAMs. Ablation of caspase 3 activity via specific inhibitors protected PAMs from apoptosis by ApxI. This study is the first to demonstrate that native ApxI causes apoptosis in PAMs at low concentrations and that these apoptotic events are mediated via a caspase 3-dependent pathway. These findings suggest a role of ApxI in AP infection as it might impair the host defense system through the induction of apoptosis in PAMs.

  18. Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection

    Directory of Open Access Journals (Sweden)

    Pilar Alberdi

    2016-07-01

    Full Text Available Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human and animal granulocytic anaplasmosis and tick-borne fever of ruminants. This obligate intracellular bacterium evolved to use common strategies to establish infection in both vertebrate hosts and tick vectors. Herein, we discuss the different strategies used by the pathogen to modulate cell apoptosis and establish infection in host cells. In vertebrate neutrophils and human promyelocytic cells HL-60, both pro-apoptotic and anti-apoptotic factors have been reported. Tissue-specific differences in tick response to infection and differential regulation of apoptosis pathways have been observed in adult female midguts and salivary glands in response to infection with A. phagocytophilum. In tick midguts, pathogen inhibits apoptosis through the Janus kinase/signal transducers and activators of transcription (JAK/STAT pathway, while in salivary glands, the intrinsic apoptosis pathways is inhibited but tick cells respond with the activation of the extrinsic apoptosis pathway. In Ixodes scapularis ISE6 cells, bacterial infection down-regulates mitochondrial porin and manipulates protein processing in the endoplasmic reticulum and cell glucose metabolism to inhibit apoptosis and facilitate infection, whereas in IRE/CTVM20 tick cells, inhibition of apoptosis appears to be regulated by lower caspase levels. These results suggest that A. phagocytophilum uses different mechanisms to inhibit apoptosis for infection of both vertebrate and invertebrate hosts.

  19. Erythropoietin protects epithelial cells from excessive autophagy and apoptosis in experimental neonatal necrotizing enterocolitis.

    Directory of Open Access Journals (Sweden)

    Yueyue Yu

    Full Text Available Neonatal necrotizing enterocolitis (NEC is a devastating gastrointestinal disease of preterm infants. Increased intestinal epithelium permeability is an early event in NEC pathogenesis. Autophagy and apoptosis are induced by multiple stress pathways which may impact the intestinal barrier, and they have been associated with pathogenesis of diverse gastrointestinal diseases including inflammatory bowel disease. Using both in vitro and in vivo models, this study investigates autophagy and apoptosis under experimental NEC stresses. Furthermore this study evaluates the effect of erythropoietin (Epo, a component of breast milk previously shown to decrease the incidence of NEC and to preserve intestinal barrier function, on intestinal autophagy and apoptosis. It was found that autophagy and apoptosis are both rapidly up regulated in NEC in vivo as indicated by increased expression of the autophagy markers Beclin 1 and LC3II, and by evidence of apoptosis by TUNEL and cleaved caspase-3 staining. In the rat NEC experimental model, autophagy preceded the onset of apoptosis in intestine. In vitro studies suggested that Epo supplementation significantly decreased both autophagy and apoptosis via the Akt/mTOR signaling pathway and the MAPK/ERK pathway respectively. These results suggest that Epo protects intestinal epithelium from excessive autophagy and apoptosis in experimental NEC.

  20. A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    NARCIS (Netherlands)

    R. Palchaudhuri (Rahul); M.J. Lambrecht (Michael J.); R.C. Botham (Rachel C.); K.C. Partlow (Kathryn C.); T.J. vanHam (Tjakko J.); K.S. Putt (Karson S.); L.T. Nguyen (Laurie T.); S.-H. Kim (Seok-Ho); R.T. Peterson (Randall); T.M. Fan (Timothy M.); P.J. Hergenrother (Paul J.)

    2015-01-01

    textabstractApoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, na

  1. Apoptosis in rat gastric antrum: Evidence that regulation by food intake depends on nitric oxide synthase

    DEFF Research Database (Denmark)

    Cao, Bao-Hong; Mortensen, Kirsten; Tornehave, Ditte;

    2000-01-01

    The turnover of the epithelium of the gastrointestinal tract is regulated by a balance between cell multiplication and cell loss. We examined the effects of starvation on apoptosis in endocrine and other epithelial cells of rat antropyloric mucosa. Apoptosis was determined by the TUNEL reaction...

  2. Akt is translocated to the mitochondria during etoposide-induced apoptosis of HeLa cells.

    Science.gov (United States)

    Park, Byoungduck; Je, Young-Tae; Chun, Kwang-Hoon

    2015-11-01

    Akt, or protein kinase B, is a key serine-threonine kinase, which exerts anti-apoptotic effects and promotes cell proliferation in response to various stimuli. Recently, however, it was demonstrated that Akt exhibits a proapoptotic role in certain contexts. During etoposide‑induced apoptosis of HeLa cells, Akt enhances the interaction of second mitochondria‑derived activator of caspases/direct IAP binding protein with low pI (Smac/DIABLO) and X‑linked inhibitor of apoptosis protein by phosphorylating Smac at serine 67, and thus promotes apoptosis. However, the detailed mechanisms underlying Akt regulation in etoposide‑mediated apoptosis remain to be determined. The present study investigated whether etoposide triggers the translocation of Akt into the mitochondria. It was found that Akt activity was increased and sustained during apoptosis triggered by etoposide in HeLa cells. During apoptosis, Akt was translocated from the cytoplasm into the mitochondria in a phosphoinositide 3‑kinase-dependent manner at the early and late stages of apoptosis. Concomitantly, the depletion of Akt in the nuclear fraction was observed after etoposide treatment from analysis of confocal microscopy. The results suggest that etoposide‑stimulated Akt is translocated into the mitochondria, thereby possibly enhancing its interaction with Smac and promoting apoptosis in HeLa cells. These results indicate that Akt may be a promising candidate for a pro-apoptotic approach in cancer treatment.

  3. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Yide Mei

    2007-10-01

    Full Text Available Although camptothecin (CPT has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that 131-113-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay, cAMP response element binding protein (CREB knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa, Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa, Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis.

  4. Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, J.B.; Nielsen, Ole Haagen

    2008-01-01

    BACKGROUND: From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC...

  5. Il-4 and IL-13, but not IL-10, protect human synoviocytes from apoptosis.

    NARCIS (Netherlands)

    Relic, B.; Guicheux, J.; Mezin, F.; Lubberts, G.J.H.; Togninalli, D.; Garcia, I.; Berg, W.B. van den; Guerne, P.A.

    2001-01-01

    Interleukin-4, which has been contemplated for the treatment of rheumatoid arthritis and/or osteoarthritis because of its anticatabolic properties, has also been shown to modulate apoptosis. Because inadequate apoptosis is thought to contribute to synovial hyperplasia, we have investigated the abili

  6. Nicotinamide-Induced Apoptosis Can Be Enhanced by Melatonin in Mouse Myeloma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guiyou; SHENG Hongzhi; LIU Jia

    2006-01-01

    The mechanism of apoptosis induced by nicotinamide was investigated by treating mouse myeloma cells (Sp2/0) with various concentrations of nicotinamide. The typical hallmarks of apoptosis, including chromatin condensation and DNA fragmentation, were detected when cells were treated with nicotinamide at concentrations of 30, 40, 50, and 60 mmol/L. The apoptosis percentage increased with increasing nicotinamide concentration. Interestingly, the strong antioxidant melatonin did not restrain the apoptosis induced by nicotinamide in mouse myeloma cells but greatly increased the induction of nicotinamide on apoptosis. When cells were preincubated with 0.1, 1, and 10 mmol/L melatonin before nicotinamide induction, the percentage of apoptosis induced by 50 mmol/L nicotinamide markedly increased with increasing melatonin concentration. These results suggest that apoptosis induced by nicotinamide has no relationship with oxidative stress and melatonin could enhance nicotinamide-induced apoptosis in mouse myeloma cells by stimulating cell division in a certain manner. Nicotinamide may provide a new method to treat some kinds of tumors with no damage to normal tissues.

  7. CSE1L/CAS, a microtubule-associated protein, inhibits taxol (paclitaxel)-induced apoptosis but enhances cancer cell apoptosis induced by various chemotherapeutic drugs.

    Science.gov (United States)

    Liao, Ching-Fong; Luo, Shue-Fen; Shen, Tzu-Yun; Lin, Chin-Huang; Chien, Jung-Tsun; Du, Shin-Yi; Jiang, Ming-Chung

    2008-03-31

    CSE1L/CAS, a microtubule-associated, cellular apoptosis susceptibility protein, is highly expressed in various cancers. Microtubules are the target of paclitaxel-induced apoptosis. We studied the effects of increased or reduced CAS expression on cancer cell apoptosis induced by chemotherapeutic drugs including paclitaxel. Our results showed that CAS overexpression enhanced apoptosis induced by doxorubicin, 5-fluorouracil, cisplatin, and tamoxifen, but inhibited paclitaxel-induced apoptosis of cancer cells. Reductions in CAS produced opposite results. CAS overexpression enhanced p53 accumulation induced by doxorubicin, 5-fluorouracil, cisplatin, tamoxifen, and etoposide. CAS was associated with alpha-tubulin and beta-tubulin and enhanced the association between alpha-tubulin and beta-tubulin. Paclitaxel can induce G2/M phase cell cycle arrest and microtubule aster formation during apoptosis induction, but CAS overexpression reduced paclitaxel-induced G2/M phase cell cycle arrest and microtubule aster formation. Our results indicate that CAS may play an important role in regulating the cytotoxicities of chemotherapeutic drugs used in cancer chemotherapy against cancer cells.

  8. Cancer-targeted functional gold nanoparticles for apoptosis induction and real-time imaging based on FRET

    Science.gov (United States)

    Chen, Wei-Hai; Luo, Guo-Feng; Xu, Xiao-Ding; Jia, Hui-Zhen; Lei, Qi; Han, Kai; Zhang, Xian-Zheng

    2014-07-01

    A versatile gold nanoparticle-based multifunctional RB-DEVD-AuNP-DTP has been developed to induce the targeted apoptosis of cancer cells and image in real time the progress of the apoptosis. The multifunctional nanoparticles were demonstrated to have the ability to initiate mitochondria-dependent apoptosis and activate caspase-3 for real-time imaging of the progression of apoptosis.A versatile gold nanoparticle-based multifunctional RB-DEVD-AuNP-DTP has been developed to induce the targeted apoptosis of cancer cells and image in real time the progress of the apoptosis. The multifunctional nanoparticles were demonstrated to have the ability to initiate mitochondria-dependent apoptosis and activate caspase-3 for real-time imaging of the progression of apoptosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02516d

  9. Drug-induced caspase 8 upregulation sensitises cisplatin-resistant ovarian carcinoma cells to rhTRAIL-induced apoptosis

    NARCIS (Netherlands)

    Duiker, E. W.; Meijer, A.; van der Bilt, A. R. M.; Meersma, G. J.; Kooi, N.; van der Zee, A. G. J.; de Vries, E. G.; de Jong, S.

    2011-01-01

    BACKGROUND: Drug resistance is a major problem in ovarian cancer. Triggering apoptosis using death ligands such as tumour necrosis factor-related apoptosis inducing ligand (TRAIL) might overcome chemoresistance. METHODS: We investigated whether acquired cisplatin resistance affects sensitivity to re

  10. Effect of amlodipine on apoptosis of human breast carcinoma MDA-MB-231 cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective: To elucidate the effects of amlodipine on the proliferation and apoptosis of human breast carcinoma MDA-MB-231 cells. Methods: Light microscopy was used to determine the effects of amiodipine on cell morphology; Flow cytometry was used to quantitate cells undergoing apoptosis; the expression of a cell cycle-related protein, proliferating cell nuclear antigen (PCNA) and an antiapoptosis protein, Bcl-2 were assessed by immunocytochemistry. Results: Amlodipine concentration of 8.25 Ixmol/L (1/2 of IC50) affected the morphology, decreased the expression of PCNA and Bcl-2 and induced apoptosis of human breast carcinoma MDA-MB-231 cells. Conclusion: The effect of amlodipine on the antiproliferation of human breast carcinoma MDA-MB-231 cells is related to inducement of apoptosis, and the decrease of the expression of Bcl-2 and PCNA may be the possible mechanism for proliferation inhibitory and inducement of apoptosis.

  11. Changes of Apoptosis in Rats of Acute Ischemic Renal Injury under Treatment of Tetrandrine

    Institute of Scientific and Technical Information of China (English)

    钱玲梅; 王笑云; 冷静

    2002-01-01

    ObjectiveTo elucidate the effect of tetrandrine on acute ischemic renal injury and its relation with apoptosis.MethodsA model for bilateral post-ischemic renal injury in rats was developed by clamping renal pedicles for 45 min.Renal tissular DNA fragmentation analysis and renal tissular HE staining were used.Also quantitative analysis of apoptosis in injured renal tubular epithelium was carried out by using TdT-mediated dUTP nick and labeling (TUNEL).ResultsApoptosis of renal tubular epithelium increased in acute ischemic renal injury.Tetrandrine could remarkably decrease the level of apoptosis in injured renal tubule while protecting renal tissue against the ischemic injuries.ConclusionTetrandrine could adjust the level of apoptosis in renal tubular epithelium and alleviate renal tissular injury.``

  12. Changes of Apoptosis in Rats of Acute Ischemic Renal Injury under Treatment of Tetrandrine

    Institute of Scientific and Technical Information of China (English)

    钱玲梅; 王笑云; 等

    2002-01-01

    Objective To elucidate the effect of tetrandrine on acute ischemic renal injury and its relation with apoptosis.Methods A model for bilateral post-ischemic renal injury in rats was developed by clamping renal pedicles for 45 min.Renal tissular DNA fragmentation analysis and renal tissular HE staining were used.Also quantitative analysis of apoptosis in injured renal tubular epithelium was carried out by using TdT-mediated dUTP nick and labeling(TUNEL).Results Apoptosis of renal tubular epithelium increased in acute ischemic renal injury.Tetrandrine could remarkably decrease the level of apoptosis in injured renal tubule while protecting renal tissue against the ischemic injuries.Conclusion Tetrandrine could adjust the level of apoptosis in renal tubular epithelium and alleviate renal tissular injury.

  13. A role for ADAM12 in breast tumor progression and stromal cell apoptosis

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Frohlich, Camilla; Albrechtsen, Reidar;

    2005-01-01

    of stromal fibroblasts in tumor initiation and progression has been elucidated. Here, we show that stromal cell apoptosis occurs in human breast carcinoma but is only rarely seen in nonmalignant breast lesions. Furthermore, we show that ADAM12, a disintegrin and metalloprotease up-regulated in human breast...... cancer, accelerates tumor progression in a mouse breast cancer model. ADAM12 does not influence tumor cell proliferation but rather confers both decreased tumor cell apoptosis and increased stromal cell apoptosis. This dual role of ADAM12 in governing cell survival is underscored by the finding that ADAM......12 increases the apoptotic sensitivity of nonneoplastic cells in vitro while rendering tumor cells more resistant to apoptosis. Together, these results show that the ability of ADAM12 to influence apoptosis may contribute to tumor progression....

  14. Molecular Mechanisms Regulating Ocular Apoptosis in Zebrafish gdf6a Mutants

    DEFF Research Database (Denmark)

    Pant, Sameer D.; March, Lindsey D.; Famulski, Jakub K.

    2013-01-01

    occurs 28 hours post fertilization (hpf) in gdf6a(-/-) mutants that is mediated independently of p53 by intrinsic mechanisms involving Bax proteins. Also, gdf6a(-/-) mutants exhibit markedly increased p38 MAP kinase activation that can be inhibited to significantly reduce retinal apoptosis. A reduction...... in retinal smad1 expression was also noted in gdf6a(-/-) mutants. CONCLUSIONS. gdf6a(-/-)-induced apoptosis is characterized by the involvement of intrinsic apoptotic pathways, p38 MAP kinases, and dysregulated smad expression. Modulation of key mediators can inhibit retinal apoptosis offering potential......PURPOSE. To characterize the molecular mechanisms underlying retinal apoptosis induced by loss of Gdf6, a TGF beta ligand. METHODS. The role of Gdf6 in regulating apoptosis was studied using a zebrafish gdf6a(-/-) mutant, which encodes a truncated, nonfunctional protein. To investigate whether...

  15. Apoptosis during β-mercaptoethanol-induced differentiation of adult adipose-derived stromal cells into neurons

    Institute of Scientific and Technical Information of China (English)

    Yanan Cai; Xiaodong Yuan; Ya Ou; Yanhui Lu

    2011-01-01

    β-mercaptoethanol can induce adipose-derived stromal cells to rapidly and efficiently differentiate into neurons in vitro. However, because of the short survival time of the differentiated cells, clinical applications for this technique are limited. As such, we examined apoptosis of neurons differentiated from adipose-derived stromal cells induced with β-mercaptoethanol in vitro using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and transmission electron microscopy. The results revealed that the number of surviving cells decreased and apoptosis rate increased as induction time extended. Taken together, these results suggest that apoptosis occurring in the process of adipose-derived stromal cells differentiating into neurons is the main cause of cell death. However, the mechanism underlying cellular apoptosis should be researched further to develop methods of controlling apoptosis for clinical applications.

  16. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    Science.gov (United States)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization.

  17. Targeting IAP (inhibitor of apoptosis) proteins for therapeutic intervention in tumors.

    Science.gov (United States)

    Vucic, Domagoj

    2008-03-01

    Apoptosis, or programmed cell death, is a cell suicide process with a major role in development and homeostasis in vertebrates and invertebrates. Dysregulation of apoptosis leading to early cell death or the absence of normal cell death contributes to a number of disease conditions including neurodegenerative diseases and cancer. Inhibition of apoptosis enhances the survival of cancer cells and facilitates their escape from immune surveillance and cytotoxic therapies. Inhibitor of apoptosis (IAP) proteins, a family of anti-apoptotic regulators that block cell death in response to diverse stimuli through interactions with inducers and effectors of apoptosis are among the principal molecules contributing to this phenomenon. IAP proteins are expressed in the majority of human malignancies at elevated levels and play an active role in promoting tumor maintenance through the inhibition of cellular death and participation in signaling pathways associated with malignancies. Herein, the role of IAP proteins in cancer and strategies toward targeting IAP proteins for therapeutic intervention will be discussed.

  18. Tissue Inhibitor of Metalloproteinase-4 Triggers Apoptosis in Cervical Cancer Cells.

    Science.gov (United States)

    Lizarraga, Floria; Ceballos-Cancino, Gisela; Espinosa, Magali; Vazquez-Santillan, Karla; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2015-01-01

    Tissue inhibitor of metalloproteinase-4 (TIMP-4) is a member of extracellular matrix (ECM) metalloproteinases inhibitors that has pleiotropic functions. However, TIMP-4 roles in carcinogenesis are not well understood. Cell viability and flow cytometer assays were employed to evaluate cell death differences between H-Vector and H-TIMP-4 cell lines. Immunobloting and semi-quantitative RT-PCR were used to evaluate the expression of apoptosis regulators. We showed that TIMP-4 has apoptosis-sensitizing effects towards several death stimuli. Consistent with these findings, regulators of apoptosis from Inhibitors of Apoptosis Proteins (IAP), FLICE-like inhibitor proteins (FLIP) and Bcl-2 family members were modulated by TIMP-4. In addition, TIMP-4 knockdown resulted in cell survival increase after serum deprivation, as assessed by clonogenic cell analyses. This report shows that TIMP-4 regulates carcinogenesis through apoptosis activation in cervical cancer cells. Understanding TIMP-4 effects in tumorigenesis may provide clues for future therapies.

  19. Tissue Inhibitor of Metalloproteinase-4 Triggers Apoptosis in Cervical Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Floria Lizarraga

    Full Text Available Tissue inhibitor of metalloproteinase-4 (TIMP-4 is a member of extracellular matrix (ECM metalloproteinases inhibitors that has pleiotropic functions. However, TIMP-4 roles in carcinogenesis are not well understood. Cell viability and flow cytometer assays were employed to evaluate cell death differences between H-Vector and H-TIMP-4 cell lines. Immunobloting and semi-quantitative RT-PCR were used to evaluate the expression of apoptosis regulators. We showed that TIMP-4 has apoptosis-sensitizing effects towards several death stimuli. Consistent with these findings, regulators of apoptosis from Inhibitors of Apoptosis Proteins (IAP, FLICE-like inhibitor proteins (FLIP and Bcl-2 family members were modulated by TIMP-4. In addition, TIMP-4 knockdown resulted in cell survival increase after serum deprivation, as assessed by clonogenic cell analyses. This report shows that TIMP-4 regulates carcinogenesis through apoptosis activation in cervical cancer cells. Understanding TIMP-4 effects in tumorigenesis may provide clues for future therapies.

  20. Study on Taxol in Inhibiting Human Leukemia Cell Proliferation and Inducing Apoptosis

    Institute of Scientific and Technical Information of China (English)

    赵小英; 张晓红; 徐磊; 张行

    2004-01-01

    Objective: To explore the effects of Taxol in inhibiting human leukemia k562 cell proliferation and inducing apoptosis in vitro. Methods: Human leukemia K562 cells were treated with Taxol of different concentrations for 12-72 hrs. Cell proliferation was evaluated by MTT assay and morphological changes of apoptosis were examined by microscopy. Cell apoptosis was determined by flow cytometry (FCM) and DNA gel electrophoresis. Results: Growth of K562 cells was inhibited by Taxol with an IC50 value of 0.84 μg/mi.Typical nuclear condensation and apoptosis bodies were observed as early as 24 hrs after a 0.5 μg/ml Taxol treatment; Apoptotic rate of the Taxol-treated K562 cells increased from 3.7% to 24.0% in 24 hrs. No DNA ladder was observed by DNA gel electrophoresis. Conclusion: Taxol could inhibit K562 cell growth and induce apoptosis in vitro.

  1. Radiolabeled Apoptosis Imaging Agents for Early Detection of Response to Therapy

    Directory of Open Access Journals (Sweden)

    Kazuma Ogawa

    2014-01-01

    Full Text Available Since apoptosis plays an important role in maintaining homeostasis and is associated with responses to therapy, molecular imaging of apoptotic cells could be useful for early detection of therapeutic effects, particularly in oncology. Radiolabeled annexin V compounds are the hallmark in apoptosis imaging in vivo. These compounds are reviewed from the genesis of apoptosis (cell death imaging agents up to recent years. They have some disadvantages, including slow clearance and immunogenicity, because they are protein-based imaging agents. For this reason, several studies have been conducted in recent years to develop low molecule apoptosis imaging agents. In this review, radiolabeled phosphatidylserine targeted peptides, radiolabeled bis(zinc(II-dipicolylamine complex, radiolabeled 5-fluoropentyl-2-methyl-malonic acid (ML-10, caspase-3 activity imaging agents, radiolabeled duramycin, and radiolabeled phosphonium cation are reviewed as promising low-molecular-weight apoptosis imaging agents.

  2. Molecular imaging of apoptosis in cardiovascular diseases; Molekulare Bildgebung der Apoptose bei kardiovaskulaeren Erkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, I.; Greschus, S.; Willinek, W.; Lohmaier, S.; Block, W.; Traeber, F.; Schild, H. [Bonn Univ. (Germany). Radiologische Universitaetsklinik; Heverhagen, J.T. [Marburg Univ. (Germany). Klinik fuer Strahlendiagnostik; Behe, M. [Marburg Univ. (Germany). Klinik fuer Nuklearmedizin; Wilhelm, K. [Radiologische Universitaetsklinik Bonn (Germany). FE Chirurgie

    2007-08-15

    Molecular imaging of functional parameters such as apoptosis (programmed cell death) in vivo opens new possibilities in clinical diagnostic and scientific research. Especially in the case of cardiovascular diseases that are mainly responsible for both morbidity and mortality in Western industrial nations, innovative non-invasive examination strategies are necessary for early diagnosis of these diseases. Since apoptosis unlike necrosis is present even after minor alterations of the microenvironment of cells and has been shown to be involved in a large number of cardiovascular diseases, there are currently several experimental studies underway with the goal of imaging apoptosis in vivo. The review discusses the basics of apoptosis in myocardial infarction, myocarditis, atherosclerosis, restenosis after angioplasty and stent implantation, currently used imaging techniques, achieved results, and future possibilities for molecular imaging of apoptosis. (orig.)

  3. STAT6 mediates apoptosis of human coronary arterial endothelial cells by interleukin-13.

    Science.gov (United States)

    Nishimura, Yuki; Nitto, Takeaki; Inoue, Teruo; Node, Koichi

    2008-03-01

    Interleukin (IL)-13 is a cytokine produced by type 2 helper T cells that has pathophysiological roles in allergic inflammation and fibrosis formation. IL-13 shares many functional properties with IL-4, which promotes apoptosis of endothelial cells (ECs). We here investigated the effects of IL-13 on apoptosis using human coronary artery endothelial cells (HCAECs). Assessment by WST-1 assay demonstrated that IL-13 as well as IL-4 significantly inhibited cell growth. IL-13 significantly attenuated the cell viability and induced apoptosis of HCAECs as well. Expression of mRNA for vascular endothelial cell growth factor, which maintains survival of ECs, was significantly diminished by IL-13. The effects of IL-13 and IL-4 were abolished by depletion of STAT6 using RNA interference. These results suggest that IL-13 attenuates EC viability by inducing apoptosis, and that STAT6 plays pivotal roles on IL-13- and IL-4-induced apoptosis in ECs.

  4. Cyclosporine Inhibits Apoptosis in Experimental Murine Xerophthalamia Conjunctival Epithelium

    Institute of Scientific and Technical Information of China (English)

    SUN Jinghua; WANG Jingxin

    2006-01-01

    This study examined the inhibitory effect of topical cyclosporine (CsA) treatment on conjunctiva epithelial apoptosis in a murine model of xerophthalamia. Dry eye was induced in 3 groups of C57BL6 mice by subcutaneous injection of scopolamine (t.i.d) and exposure to an air draft and low-humidity environment for 16 h each day for 12 days. The dry eye control group received no topical treatment; another group received 1 μL of 0.05 % CsA topically (t.i.d, dry eye+CsA); and the third group received 1 μL of the castor oil vehicle of CsA topically (t.i.d, dry eye + vehicle). Normal mice were used as untreated controls. Twelve days later, the mice were killed, and their conjunctivas were excised. The number of the conjunctival goblet cells was counted in tissue sections stained with periodic acid Schiff (PAS) reagent. Their conjunctiva epithelium had been investigated by immuno-histochemical staining to detect the goblet cells and the expression of Caspase-3, Bax and bcl-2.Our results showed that compared with dry eye control and dry eye mice + vehicle groups, the number of conjunctival epithelial goblet cells was significantly greater in the untreated controls and dry eye mice receiving CsA (P <0.01 for both groups). There was no significant difference in the number of conjunctival epithelial goblet cells between the dry eye control and dry eye+vehicle group. It was also true of the number of conjunctival epithelial goblet cells when comparison was made between the normal group and the dry eye+CsA group. Expressions of Caspas-3 and Bax were increased and ex-pression of bcl-2 was decreased in conjunctival epithelial cells in dry eye control and dry eye mice+vehicle groups. There was a significant positive correlation between goblet cell number and the number of cells that expressed bcl-2, and a negative correlation between goblet cells and Caspase-3 and Bax expression. It is concluded that the topical use of CsA could significantly reduce conjuncti-val epithelial

  5. NF-κB p65 recruited SHP regulates PDCD5-mediated apoptosis in cancer cells.

    Science.gov (United States)

    Murshed, Farhan; Farhana, Lulu; Dawson, Marcia I; Fontana, Joseph A

    2014-03-01

    Transcription factor NF-κB promotes cell proliferation in response to cell injury. Increasing evidence, however, suggests that NF-κB can also play an apoptotic role depending on the stimulus and cell type. We have previously demonstrated that novel retinoid 4-[3-Cl-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC)-mediated apoptosis in breast carcinoma cells requires activation of canonical and non-canonical NF-κB pathways. The mechanism NF-κB uses to induce apoptosis remains largely unknown. NF-κB subunit p65 (RelA) was identified as one potent transcriptional activator in 3-Cl-AHPC-mediated apoptosis in cells. Here we used ChIP-on-chip to identify NF-κB p65 genes activated in 3-Cl-AHPC mediated apoptosis. This paper focuses on one hit: pro-apoptotic protein programmed cell death 5 (PDCD5). 3-Cl-AHPC mediated apoptosis in MDA-MB-468 had three related effects on PDCD5: NF-κB p65 binding to the PDCD5 gene, enhanced PDCD5 promoter activity, and increased PDCD5 protein expression. Furthermore, 3-Cl-AHPC increased orphan nuclear receptor small heterodimer partner (SHP) mRNA expression, increased SHP protein bound to NF-κB p65, and found the SHP/NF-κB p65 complex attached to the PDCD5 gene. PDCD5 triggered apoptosis through increased Bax protein and release of cytochrome C from mitochondria to cytosol. Lastly, knockdown of PDCD5 protein expression blocked 3-Cl-AHPC mediated apoptosis, while over-expression of PDCD5 enhanced apoptosis, suggesting PDCD5 is necessary and sufficient for NF-κB p65 mediated apoptosis. Our results demonstrate a novel pathway for NF-κB p65 in regulating apoptosis through SHP and PDCD5.

  6. Infection-induced bystander-apoptosis of monocytes is TNF-alpha-mediated.

    Directory of Open Access Journals (Sweden)

    Stephan Dreschers

    Full Text Available Phagocytosis induced cell death (PICD is crucial for controlling phagocyte effector cells, such as monocytes, at sites of infection, and essentially contributes to termination of inflammation. Here we tested the hypothesis, that during PICD bystander apoptosis of non-phagocyting monocytes occurs, that apoptosis induction is mediated via tumor necrosis factor-alpha (TNF-α and that TNF-α secretion and -signalling is causal. Monocytes were infected with Escherichia coli (E. coli, expressing green fluorescent protein (GFP, or a pH-sensitive Eos-fluorescent protein (EOS-FP. Monocyte phenotype, phagocytic activity, apoptosis, TNF-receptor (TNFR-1, -2-expression and TNF-α production were analyzed. Apoptosis occured in phagocyting and non-phagocyting, bystander monocytes. Bacterial transport to the phagolysosome was no prerequisite for apoptosis induction, and desensitized monocytes from PICD, as confirmed by EOS-FP expressing E. coli. Co-cultivation with non-infected carboxyfluorescein-succinimidyl-ester- (CFSE- labelled monocytes resulted in significant apoptotic cell death of non-infected bystander monocytes. This process required protein de-novo synthesis and still occurred in a diminished way in the absence of cell-cell contact. E. coli induced a robust TNF-α production, leading to TNF-mediated apoptosis in monocytes. Neutralization with an anti-TNF-α antibody reduced monocyte bystander apoptosis significantly. In contrast to TNFR2, the pro-apoptotic TNFR1 was down-regulated on the monocyte surface, internalized 30 min. p.i. and led to apoptosis predominantly in monocytes without phagocyting bacteria by themselves. Our results suggest, that apoptosis of bystander monocytes occurs after infection with E. coli via internalization of TNFR1, and indicate a relevant role for TNF-α. Modifying monocyte apoptosis in sepsis may be a future therapeutic option.

  7. Will imaging of apoptosis play a role in clinical care? A tale of mice and men.

    Science.gov (United States)

    Blankenberg, F G; Strauss, H W

    2001-01-01

    Programmed cell death (apoptosis) plays a role in the pathophysiology of many diseases and in the outcome of treatment. Apoptosis is the likely mechanism behind the cytoreductive effects of standard chemotherapeutic and radiation treatments, rejection of organ transplants, cellular damage in collagen vascular disorders, and delayed cell death due to hypoxic-ischemic injury in myocardial infarction and neonatal hypoxic ischemic injury. Observations about the role of apoptosis have fueled the development of novel agents and treatment strategies specifically aimed at inducing or inhibiting apoptosis. Despite these research developments there are no clinical entities where specific measures of apoptosis are used in either diagnosis or patient management. Part of the difficulty in bridging the gap between the basic science understanding of apoptosis and the clinical application of this information is the lack of a sensitive marker to monitor programmed cell death in association with disease progression or regression. Technetium-99m labeled annexin V localizes at sites of apoptosis in-vivo, due to its nanomolar affinity for membrane bound phosphatidylserine. Radiolabeled annexin V imaging permits identification of the site and extent of apoptosis in experimental animals. Annexin V has been successfully used in animal models to image organ transplant rejection, characterize successful therapy of tumors, pinpoint acute myocardial infarction, and identify hypoxic ischemic brain injury of the newborn and adult. Early studies in human subjects suggest that 99mTc annexin imaging will be also be useful to identify rejection in transplant recipients, localize acute myocardial infarction, and characterize the effectiveness of a single treatment in patients with tumors. This review describes the imaging approaches to detect and monitor apoptosis in-vivo that are presently in early clinical trials. The preliminary data are extrapolated to identify conditions where apoptosis imaging

  8. Candidate tumour suppressor Fau regulates apoptosis in human cells: an essential role for Bcl-G.

    Science.gov (United States)

    Pickard, Mark R; Mourtada-Maarabouni, Mirna; Williams, Gwyn T

    2011-09-01

    FAU, which encodes a ubiquitin-like protein (termed FUBI) with ribosomal protein S30 as a carboxy-terminal extension, has recently been identified as a pro-apoptotic regulatory gene. This activity may be mediated by Bcl-G (a pro-apoptotic member of the Bcl-2 family) which can be covalently modified by FUBI. FAU gene expression has been shown to be down-regulated in human breast, prostate and ovarian tumours, and this down-regulation is strongly associated with poor prognosis in breast cancer. We demonstrate here that ectopic FAU expression increases basal apoptosis in human T-cell lines and 293T/17 cells, whereas it has only a transient stimulatory effect on ultraviolet-C (UVC)-induced apoptosis. Conversely, siRNA-mediated silencing of FAU gene expression has no effect on basal apoptosis, but attenuates UV-induced apoptosis. Importantly, prior knockdown of Bcl-G expression ablates the stimulation of basal apoptosis by FAU, consistent with an essential downstream role for Bcl-G, itself a candidate tumour suppressor, in mediating the apoptosis regulatory role of FAU. In 293T/17 cells, Bcl-G knockdown also attenuates UV-induced apoptosis, so that Bcl-G may constitute a common factor in the pathways by which both FAU and UV-irradiation induce apoptosis. UV irradiation increases Bcl-G mRNA levels, providing an explanation for the transient nature of the effect of ectopic FAU expression on UV-induced apoptosis. Since failure of apoptosis is fundamental to the development of many cancers, the pro-apoptotic activity of the Fau/Bcl-G pathway offers an attractive explanation for the putative tumour suppressor role of FAU.

  9. Saving Death: Apoptosis for Intervention in Transplantation and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Alice Li

    2006-01-01

    Full Text Available Long considered immunologically “bland,” apoptotic cells are now recognized as important modulators of immune responses. The role of apoptosis in immunological homeostasis has been inferred from several findings, for example, induction of tolerance after injection of apoptotic cells and the capacity of APCs like macrophages and DCs to induce and maintain tolerance after phagocytosis of dead cells. Processing of apoptotic cells by DCs is of particular interest, because DCs are the only known APCs capable of activating naïve T lymphocytes to become effector or regulatory cells. In that regard, recent evidence suggests that phagocytosis of apoptotic cells by DCs can induce Tregs, a finding that has significant implications for the treatment of a variety of immune-mediated inflammatory disorders. Here, we review the relationship between apoptotic cells, DCs, and Tregs, and its impact on prevention of transplant rejection and treatment of autoimmune diseases.

  10. Apoptosis and systemic autoimmunity: the dendritic cell connection

    Directory of Open Access Journals (Sweden)

    AA Manfredi

    2009-12-01

    Full Text Available Much effort has been devoted in recent years to the events linking recognition and disposal of apoptotic cells to sustained immunity towards the antigens they contain. Programmed death via apoptosis indeed provides most of the raw material the immune system exploits to establish self tolerance, i.e. to learn how to distinguish between self constituents and foreign antigens, belonging to invading pathogens. In parallel, events occurring during cell death may enable a restricted array of molecules endowed with diverse structure, function and intracellular distribution to satisfy the requirement to evoke and maintain autoimmune responses. Dendritic cells (DCs, the most potent antigen presenting cells, appear to play a crucial role. Here we will discuss some of the constrains regulating the access of dying cells’ antigens to DCs, as well as censorship mechanisms that prevent their maturation and the full explication of their antigen presenting function.

  11. Docosahexaenoic acid induces apoptosis in primary chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Romain Guièze

    2015-12-01

    Full Text Available Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6 is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 μM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity.

  12. Apoptosis at inflection point in liquid culture of budding yeasts.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hagiwara

    Full Text Available Budding yeasts are highly suitable for aging studies, because the number of bud scars (stage proportionally correlates with age. Its maximum stages are known to reach at 20-30 stages on an isolated agar medium. However, their stage dynamics in a liquid culture is virtually unknown. We investigate the population dynamics by counting scars in each cell. Here one cell division produces one new cell and one bud scar. This simple rule leads to a conservation law: "The total number of bud scars is equal to the total number of cells." We find a large discrepancy: extremely fewer cells with over 5 scars than expected. Almost all cells with 6 or more scars disappear within a short period of time in the late log phase (corresponds to the inflection point. This discrepancy is confirmed directly by the microscopic observations of broken cells. This finding implies apoptosis in older cells (6 scars or more.

  13. HEAVY METALS INDUCE APOPTOSIS IN LIVER OF MICE

    Directory of Open Access Journals (Sweden)

    Khalid H. Gathwan

    2012-05-01

    Full Text Available Cadmium (C d and zinc (Zn are an industrial and environmental pollutant of aquatic system has attracted the attention of research's all over the world. In the present study the toxic effects of zinc (Zn and Cadmium (C d on the liver of male mice. Male Balb /c mice weighing 32-34 gm, 70 days old, were treated orally with (1-10 mg/kg body wt. CdCl2 and 1-8 mg/kg body wt. ZnCl2. The body weight, liver weight, histological examination of liver, along with DNA ladder for apoptosis was studied. Cadmium and zinc induced both a time, and dose dependent increase in apoptotic, severity of necrosis. Liver weight, body weight decreased with increase of dose. It has been concluded that cadmium and zinc caused necrotic effect in liver and apoptotic as well as decrease body weight and liver weight.

  14. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Junxiong Chen

    2015-10-01

    Full Text Available The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases.

  15. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Li Hailan

    2011-12-01

    Full Text Available Abstract Background Phosphatidylcholine (PPC formulation is used for lipolytic injection, even though its mechanism of action is not well understood. Methods The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD, and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. Results PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations Conclusions PPC results in apoptosis of 3T3-L1 cells.

  16. Safrole induces apoptosis in human oral cancer HSC-3 cells.

    Science.gov (United States)

    Yu, F-S; Yang, J-S; Yu, C-S; Lu, C-C; Chiang, J-H; Lin, C-W; Chung, J-G

    2011-02-01

    Phytochemicals have been used as potential chemopreventive or chemotherapeutic agents. However, there are data suggesting a mutagenic effect of some phytochemicals. We hypothesized that safrole would have anticancer effects on human oral squamous cell carcinoma HSC-3 cells. Safrole decreased the percentage of viable HSC-3 cells via induction of apoptosis by an increased level of cytosolic Ca(2+) and a reduction in the mitochondrial membrane potential (ΔΨ(m)). Changes in the membrane potential were associated with changes in the Bax, release of cytochrome c from mitochondria, and activation of downstream caspases-9 and -3, resulting in apoptotic cell death. In vivo studies also showed that safrole reduced the size and volume of an HSC-3 solid tumor on a xenograft athymic nu/nu mouse model. Western blotting and flow cytometric analysis studies confirmed that safrole-mediated apoptotic cell death of HSC-3 cells is regulated by cytosolic Ca(2+) and by mitochondria- and Fas-dependent pathways.

  17. The apoptosis of HEL cells induced by hydroxyures

    Institute of Scientific and Technical Information of China (English)

    GUICHANGYUN; CHUJIANG; 等

    1997-01-01

    Hydroxyurea has been used to synchronize cultured cells to S-phase and used to treat patients with sicklecell anemia.Recently,we found that hydroxyurea can induce the apoptosis of HEL(human erythroleukemia) cells.The induced HEL cells showed ultrastructurally chromatin condensation with regular crescents at the nuclear edges and apoptotic bodies.However,the cells of K562,another human erythroleukemia cell line,did not show such morphological changes.Under fluoroscope,the HEL cells after induction of ten displayed a clear reduction in nuclear diameter and nuclear chromatin cleavage and condensation and the presence of nuclear ring and apoptotic bodies.Analysis with flow cytometry showed that the percentage of apoptotic cells is about 30-40% after HEL cells were induced by hydroxyurea for 3 days.DNA ladder can be observed by electrophoretic analysis.

  18. DMPD: Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11207583 Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies...ml) Show Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. PubmedI...D 11207583 Title Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategie

  19. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2009-10-06

    Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.British Journal of Cancer advance online publication, 6 October 2009; doi:10.1038\\/sj.bjc.6605308 www.bjcancer.com.

  20. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2012-01-31

    BACKGROUND: Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS: MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS: Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION: Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.

  1. Ginger (Zingiber officinale) induces apoptosis in Trichomonas vaginalis in vitro

    Science.gov (United States)

    Arbabi, Mohsen; Delavari, Mahdi; Fakhrieh Kashan, Zohre; Taghizadeh, Mohsen; Hooshyar, Hossein

    2016-01-01

    Background: Trichomoniasis is the most common sexually transmitted protozoan diseases in the worldwide. Metronidazole is the choice drug for trichomoniasis treatment, however, metronidazole resistant Trichomonas vaginalis (T.vaginalis) has been reported. Natural products are the source of most new drugs, and Zingiber officinale (Ginger) is widely used ingredient in the traditional medicine. Objective: The aim of the present study was to determine the effect of different concentrations of the ginger ethanol extract on the growth of T.vaginalis trophozoites in vitro. Materials and Methods: In this experimental study, 970 women who were attend in Kashan health centers were examined for T. vaginalis. Of them, 23 samples were infected with T.vaginalis. Three T. vaginalis isolates were cultured in a TYI-S-33 medium. The effect of ginger ethanol extracts and its toxicity in different concentrations (25, 50, 100, 200, 400, 800 µg/ml) on mouse macrophages were measured in triplicate exam by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The effect of ginger on apoptosis induction was determined by Flow cytometry. Results: The IC50 of ginger and metronidazole were 93.8 and 0.0326 µg/ml, respectively. 12, 24 and 48 hr after adding different concentrations of extract on mouse macrophages, fatality rates in maximum dose (800 µg/ml) were 0.19, 0.26 and 0.31 respectively. Flow cytometry results showed the apoptosis rate following treatment with different concentrations of the extract after 48 hr were 17, 28.5, 42.1, 58.8, 76.3 and 100% respectively, while in the control group was 2.9%. Conclusion: Ginger ethanol extract induces programmed death in T. vaginalis. It is recommended that due to the known teratogenic effect of metronidazole, ginger can be considered as an alternative drug for metronidazole. PMID:27981254

  2. Inducible resistance to Fas—mediated apoptosis in B cells

    Institute of Scientific and Technical Information of China (English)

    ROTHSTEINTHOMASL

    2000-01-01

    Apoptosis produced in B cells through Fas(APO-1,CD95) triggering is regulated by signals derived from other surface receptors:CD40 engagement produces upregulation of Fas expression and marked susceptibility to Fas-induced cell death,whereas antigen receptor engagement,or IL-4R engagement,inhibits Fas killing and in so doing induces a state of Fas-resistance,even in otherwise sensitive,CD40-stimulated targets.Surface immunoglobulin and IL-4R utilize at least partially distinct path ways to produce Fas-resistance that differentially depend on PKC and STAT6,respectively.Further,surface immunoglobulin signaling for inducible Fas-resistance bypasses Btk,requires NF-κB,and entails new macromolecular synthesis.Terminal effectors of B cell Fas-resistance include the known anti-apoptotic gene products,Bcl-XL and FLIP,and a novel anti-apoptotic gene that encodes FAIM (Fas Apoptosis Inhibitory Molecule).faim was identified by differential display and exists in two alternatively spliced forms;faim-S is broadly expressed,but faim-L expression is tissue-specific.The FAIM sequence is highly evolu tionarily conserved,suggesting an important role for this molecule throughout phylogeny.Inducible resistance to Fas killing is hypothesized to protect foreign antigen-specific B cells during potentially hazardous interactions with FasL-bearing T cells,whereas autoreactive B cells fail to become Fas-resistant and are deleted via Fas-dependent cytotoxicity.Inadvertent or aberrant acquisition of Fas-resistance may permit autoreactive B cells to escape Fas deletion,and malignant lymphocytes to impede anti-tumor immunity.

  3. Inducible resistance to Fas-mediated apoptosis in B cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Apoptosis produced in B cells through Fas (APO-1, CD95) triggering is regulated by signals derived from other surface receptors: CD40 engagement produces upregulation of Fas expression and marked susceptibility to Fas-induced cell death, whereas antigen receptor engagement, or IL-4R engagement, inhibits Fas killing and in so doing induces a state of Fas-resistance, even in otherwise sensitive, CD40-stimulated targets. Surface immunoglobulin and IL-4R utilize at least partially distinct pathways to produce Fas-resistance that differentially depend on PKC and STAT6, respectively. Further, surface immunoglobulin signaling for inducible Fas-resistance bypasses Btk, requires NF-кB, and entails new macromolecular synthesis. Terminal effectors of B cell Fas-resistance include the known anti-apoptotic gene products, Bcl-xL and FLIP, and a novel anti-apoptotic gene that encodes FAIM (Fas Apoptosis Inhibitory Molecule). faim was identified by differential display and exists in two alternatively spliced forms; faim-S is broadly expressed, but faim-L expression is tissue-specific. The FAIM sequence is highly evolutionarily conserved, suggesting an important role for this molecule throughout phylogeny. Inducible resistance to Fas killing is hypothesized to protect foreign antigen-specific B cells during potentially hazardous interactions with FasL-bearing T cells, whereas autoreactive B cells fail to become Fas-resistant and are deleted via Fas-dependent cytotoxicity. Inadvertent or aberrant acquisition of Fas-resistance may permit autoreactive B cells to escape Fas deletion, and malignant lymphocytes to impede anti-tumor immunity.

  4. Plumbagin reverses proliferation and resistance to apoptosis in experimental PAH.

    Science.gov (United States)

    Courboulin, Audrey; Barrier, Marjorie; Perreault, Tanya; Bonnet, Pierre; Tremblay, Veronique L; Paulin, Roxane; Tremblay, Eve; Lambert, Caroline; Jacob, Maria H; Bonnet, Sandra N; Provencher, Steeve; Bonnet, Sébastien

    2012-09-01

    Like cancer, pulmonary arterial hypertension (PAH) is characterised by a pro-proliferative and anti-apoptotic phenotype. In PAH, pulmonary artery smooth muscle cell (PASMC) proliferation is enhanced and apoptosis suppressed. The sustainability of this phenotype requires the activation of pro-survival transcription factors, such as signal transducer and activator of transcription (STAT)3 and nuclear factor of activated T-cells (NFAT). There are no drugs currently available that are able to efficiently and safely inhibit this axis. We hypothesised that plumbagin (PLB), a natural organic compound known to block STAT3 in cancer cells, would reverse experimental pulmonary hypertension. Using human PAH-PASMC, we demonstrated in vitro that PLB inhibits the activation of the STAT3/NFAT axis, increasing the voltage-gated K(+) current bone morphogenetic protein receptor type II (BMPR2), and decreasing intracellular Ca(2+) concentration ([Ca(2+)](i)), rho-associated coiled-coil containing protein kinase (ROCK)1 and interleukin (IL)-6, contributing to the inhibition of PAH-PASMC proliferation and resistance to apoptosis (proliferating cell nuclear antigen (PCNA), TUNEL, Ki67 and anexine V). In vivo, PLB oral administration decreases distal pulmonary artery remodelling, mean pulmonary artery pressure and right ventricular hypertrophy without affecting systemic circulation in both monocrotaline- and suden/chronic hypoxia-induced PAH in rats. This study demonstrates that the STAT3/NFAT axis can be therapeutically targeted by PLB in human PAH-PASMC and experimental PAH rat models. Thus, PLB could be considered a specific and attractive future therapeutic strategy for PAH.

  5. Oxidative stress in NSC-741909-induced apoptosis of cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-04-01

    Full Text Available Abstract Background NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. Methods The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. Results Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. Conclusion Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.

  6. The roles of Bcl-xL in modulating apoptosis during development of Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Calderon-Segura Maria

    2005-09-01

    Full Text Available Abstract Background Apoptosis is a common and essential aspect of development. It is particularly prevalent in the central nervous system and during remodelling processes such as formation of the digits and in amphibian metamorphosis. Apoptosis, which is dependent upon a balance between pro- and anti-apoptotic factors, also enables the embryo to rid itself of cells damaged by gamma irradiation. In this study, the roles of the anti-apoptotic factor Bcl-xL in protecting cells from apoptosis were examined in Xenopus laevis embryos using transgenesis to overexpress the XR11 gene, which encodes Bcl-xL. The effects on developmental, thyroid hormone-induced and γ-radiation-induced apoptosis in embryos were examined in these transgenic animals. Results Apoptosis was abrogated in XR11 transgenic embryos. However, the transgene did not prevent the apoptotic response of tadpoles to thyroid hormone during metamorphosis. Post-metamorphic XR11 frogs were reared to sexual maturity, thus allowing us to produce second-generation embryos and enabling us to distinguish between the maternal and zygotic contributions of Bcl-xL to the γ-radiation apoptotic response. Wild-type embryos irradiated before the mid-blastula transition (MBT underwent normal cell division until reaching the MBT, after which they underwent massive, catastrophic apoptosis. Over-expression of Bcl-xL derived from XR11 females, but not males, provided partial protection from apoptosis. Maternal expression of XR11 was also sufficient to abrogate apoptosis triggered by post-MBT γ-radiation. Tolerance to post-MBT γ-radiation from zygotically-derived XR11 was acquired gradually after the MBT in spite of abundant XR11 protein synthesis. Conclusion Our data suggest that Bcl-xL is an effective counterbalance to proapoptotic factors during embryonic development but has no apparent effect on the thyroid hormone-induced apoptosis that occurs during metamorphosis. Furthermore, post-MBT apoptosis

  7. The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation.

    Science.gov (United States)

    St-Louis, Marie-Claude; Archambault, Denis

    2007-10-10

    We have previously showed that equine arteritis virus (EAV), an arterivirus, induces apoptosis in vitro. To determine the caspase activation pathways involved in EAV-induced apoptosis, target cells were treated with peptide inhibitors of apoptosis Z-VAD-FMK (pan-caspase inhibitor), Z-IETD-FMK (caspase-8-specific inhibitor) or Z-LEHD-FMK (caspase-9-specific inhibitor) 4 h prior to infection with the EAV T1329 Canadian isolate. Significant inhibition of apoptosis was obtained with all peptide inhibitors used. Furthermore, apoptosis was inhibited in cells expressing the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase (HSV2-R1) or hsp70, two proteins which are known to inhibit apoptosis associated with caspase-8 activation and cytochrome c release-dependent caspase-9 activation, respectively. Given the activation of Bid and the translocation of cytochrome c within the cytoplasm, the overall results indicate that EAV induces apoptosis initiated by caspase-8 activation and subsequent mitochondria-dependent caspase-9 activation.

  8. 15-lipoxygenase-1 mediates cyclooxygenase-2 inhibitor induced apoptosis in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It has been found that expression of 15-lipoxygenasc-1(15-LOX-1) and its main product,13-C-hydroxyoctadecadienoic acid (13-S-HODE),are decreased in human colorectal and esophageal cancers and that nonsteroidal anti-inflammatory drugs(NSAIDs) can therspeutically induce 15-LOC-1 expression to trigger apoptosis in those cancer cells independently COX-2.We found that a specific COX-2 inhibitor SC-236 similarly induce apoptosis in gastric cancer cells,although the mechanisms of these effects remain to be defined.In the present study,we tested whether SC-236 induced apoptosis through up-regulation of 15-LOX-1 in gastric cancer cells.We found that,(a) SC-236 inhibited growth of gastric cancer cells mainly by apoptosis induced;(b) SC-236 induced 15-LOX-1 expression and increased endogenous 13-S-HODE product,instead of 15-S-HETE during apoptosis in gastric cancer cells without 15-LOX-1 expression before treatment by SC-236;(c)sc-236 didn't effect expression of COX-1,COX-2,5-LOX and 12-LOX;and (d)15-LOX-1 inhibition suppressed SC-236 induced apoptosis.These findings demonstrated that SC-236 induced apoptosis in gastric cancer cells via up-regulation of 25-LOX-1.They also support the concept that the loss of the proapopotic role of 15-LOX-1 in epithelial cancers is not limited to human colorectal and esophageal cancers.

  9. Effect of Bcl-2 and caspase-3 on calcium distribution in apoptosis of HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Apoptosis manifests in two major execution programs downstream of the death signal: the caspase pathway and organelle dysfunction. An important antiapoptosis factor, Bcl-2 protein, contributes in caspase pathway of apoptosis. Calcium, an important intracellular signal element in cells, is also observed to have changes during apoptosis, which maybe affected by Bcl2 protein. We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells, there's a change of intracellular calcium distribution, moving from cytoplast especially Golgi's apparatus to nucleus and accumulating there with the highest concentration. We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells, which can be inhibited by overexpression of Bcl-2 protein. No sign of apoptosis or intracellular calcium movement from Golgi's apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO, a specific inhibitor of caspase-3. The results indicate that activated caspase-3 can promote the movement of intracellular calcium from Golgi's apparatus to nucleus, and the process is inhibited by Ac-DEVD-CHO (inhibitor of caspas-3), and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase3. Calcium relocalization in apoptosis seems to be irreversible, which is different from the intracellular calcium changes caused by growth factor.

  10. A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    Directory of Open Access Journals (Sweden)

    Rahul Palchaudhuri

    2015-12-01

    Full Text Available Apoptosis is generally believed to be a process that requires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Raptinal-induced apoptosis proceeds with unparalleled speed. The rapid phenotype enabled identification of the critical roles of mitochondrial voltage-dependent anion channel function, mitochondrial membrane potential/coupled respiration, and mitochondrial complex I, III, and IV function for apoptosis induction. Use of Raptinal in whole organisms demonstrates its utility for studying apoptosis in vivo for a variety of applications. Overall, rapid inducers of apoptosis are powerful tools that will be used in a variety of settings to generate further insight into the apoptotic machinery.

  11. A novel schiff base zinc coordination compound inhibits proliferation and induces apoptosis of human osteosarcoma cells.

    Science.gov (United States)

    Yan, Ming; Pang, Li; Ma, Tan-tan; Zhao, Cheng-liang; Zhang, Nan; Yu, Bing-xin; Xia, Yan

    2015-10-01

    Various kinds of schiff base metal complexes have been proven to induce apoptosis of tumor cells. However, it remains largely unknown whether schiff base zinc complexes induce apoptosis in human cancer cells. Here, we synthesized a novel schiff base zinc coordination compound (SBZCC) and investigated its effects on the growth, proliferation and apoptosis of human osteosarcoma MG-63 cells. A novel SBZCC was synthesized by chemical processes and used to treat MG-63 cells. The cell viability was determined by CCK-8 assay. The cell cycle progression, mitochondrial membrane potential and apoptotic cells were analyzed by flow cytometry. The apoptosis-related proteins levels were determined by immunoblotting. Treatment of MG-63 cells with SBZCC resulted in inhibition of cell proliferation and cell cycle arrest at G1 phase. Moreover, SBZCC significantly reduced the mitochondrial membrane potential and induced apoptosis, accompanied with increased Bax/Bcl-2 and FlasL/Fas expression as well as caspase-3/8/9 cleavage. Our results demonstrated that the synthesized novel SBZCC could inhibit the proliferation and induce apoptosis of MG-63 cells via activating both the mitochondrial and cell death receptor apoptosis pathways, suggesting that SBZCC is a promising agent for the development as anticancer drugs.

  12. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    Directory of Open Access Journals (Sweden)

    Lefeng Wang

    2017-01-01

    Full Text Available Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC, leading to barrier dysfunction and acute respiratory distress syndrome (ARDS. Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix] of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.

  13. Mechanism of apoptosis of human osteosarcoma M-G63 induced by arsenic trioxide

    Institute of Scientific and Technical Information of China (English)

    XIAO Tao; LI Kang-hua; FANG Jian-zhen; WANG Wan-chun; LI Gui-yuan

    2005-01-01

    Objective To observe the apoptosis of osteosarcoma MG-63 cells induced by As2O3 and to explore its possible mechanisms. Methods The flowcytometric analysis and transmission electronmicroscope were performed to investigate the inducing apoptosis and inhibitative of As2O3 on osteosarcoma MG-63 cells. In order to study mechanism of apoptosis in MG-63 cells treated with As2 O3, microarray was performed. The down-regulated gene was confirmed by RT-PCR, Northern-blotting. Results After treated with As2O3, hypodiploid peak before G0/G1 phase was observed in MG-63 cells through FCM analysis. Loss of microvilli, condensation and fragmentation of nuclear chromatin, condensation of cytoplasmic organelles, dilatation of the endoplasmic reticulum shrinkage of cells and alterations in cell membranes and apoptosis bodies which were observed in MG-63 cells treated with As2O3 by transmission electronmicroscope. The results of microarray show that As2 O3 induced MG-63 cell apoptosis involves down-regulation of IEX-1 and the down-regulated gene is confirmed by RT-PCR and Northern-blotting.Conclusion The results show that As2 O3 selectively inhibits growth of the solid tumor MG-63 cells by triggering apoptosis and indicates MG-63 induced by As2O3 cell apoptosis may through the IEX-1 pathway.

  14. GDNF protects enteric glia from apoptosis: evidence for an autocrine loop

    Directory of Open Access Journals (Sweden)

    Steinkamp Martin

    2012-01-01

    Full Text Available Abstract Background Enteric glia cells (EGC play an important role in the maintenance of intestinal mucosa integrity. During the course of acute Crohn's disease (CD, mucosal EGC progressively undergo apoptosis, though the mechanisms are largely unknown. We investigated the role of Glial-derived neurotrophic factor (GDNF in the regulation of EGC apoptosis. Methods GDNF expression and EGC apoptosis were determined by immunofluorescence using specimen from CD patients. In primary rat EGC cultures, GDNF receptors were assessed by western blot and indirect immunofluorescence microscopy. Apoptosis in cultured EGC was induced by TNF-α and IFN-γ, and the influence of GDNF on apoptosis was measured upon addition of GDNF or neutralizing anti-GDNF antibody. Results Increased GDNF expression and Caspase 3/7 activities were detected in in specimen of CD patients but not in healthy controls. Moreover, inactivation of GDNF sensitized in EGC cell to IFN-γ/TNF-α induced apoptosis. Conclusions This study proposes the existence of an autocrine anti-apoptotic loop in EGC cells which is operative in Crohn's disease and dependent of GDNF. Alterations in this novel EGC self-protecting mechanism could lead to a higher susceptibility towards apoptosis and thus contribute to disruption of the mucosal integrity and severity of inflammation in CD.

  15. Increased apoptosis in third-trimester placental tissue from gestations complicated by PIH

    Institute of Scientific and Technical Information of China (English)

    王林; 辛晓燕; 王哲; 冯骥良

    2003-01-01

    Objective: To investigate a possible role of apoptosis in the pathophysiologic mechanisms of PIH (pregnancy-induced hypertension syndrome).Methods: In this study, placental samples were obtained from 16 uncomplicated third-trimester pregnancies and from 16 cases of PIH.We used light microscopy, electron microscopy to identify apoptosis.Light microscopy was used to quantify their incidence of apoptosis.Electron microscopy was used to confirm the occurrence of apoptosis.Results: Apoptosis has been conclusively demonstrated within human third-trimester placental tissue.Medians and interquartile ranges of normal placenta (n=16) was 0.12% (0.08%-0.19%); Medians and interquartile ranges of PIH group (n=16) was 0.37% (0.15%-0.49%).Compared to normal placentas, the incidence of apoptosis was higher in placentas from gestations complicated by PIH (P<0.05, T'-test).Conclusion: Placental apoptosis increases significantly in PIH, and it may play a role in the pathophysiologic mechanisms of this syndrome.

  16. The JNK inhibitor SP600129 enhances apoptosis of HCC cells induced by the tumor suppressor WWOX

    Science.gov (United States)

    Aderca, Ileana; Moser, Catherine D.; Veerasamy, Manivannan; Bani-Hani, Ahmad H.; Bonilla-Guerrero, Ruben; Ahmed, Kadra; Shire, Abdirashid; Cazanave, Sophie C.; Montoya, Damian P.; Mettler, Teresa A.; Burgart, Lawrence J.; Nagorney, David M.; Thibodeau, Stephen N.; Cunningham, Julie M.; Lai, Jin-Ping; Roberts, Lewis R.

    2008-01-01

    Background/Aims The FRA16D fragile site gene WWOX is a tumor suppressor that participates in p53-mediated apoptosis. The c-jun N-terminal kinase JNK1 interacts with WWOX and inhibits apoptosis. We investigated the function of WWOX in human hepatocellular carcinoma (HCC) and the effect of JNK inhibition on WWOX-mediated apoptosis. Methods Allelic imbalance on chromosome 16 was analyzed in 73 HCCs using 53 microsatellite markers. WWOX mRNA in HCC cell lines and primary HCCs was measured by real-time RT-PCR. Effects of WWOX on proliferation and apoptosis and the interaction between WWOX and JNK inhibition were examined. Results Loss on chromosome 16 occurred in 34 of 73 HCCs. Of 11 HCC cell lines, 2 had low, 7 intermediate, and 2 had high WWOX mRNA. Of 51 primary tumors, 23 had low WWOX mRNA. Forced expression of WWOX in SNU387 cells decreased FGF2-mediated proliferation and enhanced apoptosis induced by staurosporine and the JNK inhibitor SP600129. Conversely, knockdown of WWOX in SNU449 cells using shRNA targeting WWOX increased proliferation and resistance to SP600129 induced apoptosis. Conclusions WWOX induces apoptosis and inhibits human HCC cell growth through a mechanism enhanced by JNK inhibition. PMID:18620777

  17. Bak and Bax function to limit adenovirus replication through apoptosis induction.

    Science.gov (United States)

    Cuconati, Andrea; Degenhardt, Kurt; Sundararajan, Ramya; Anschel, Alan; White, Eileen

    2002-05-01

    Adenovirus infection and expression of E1A induces both proliferation and apoptosis, the latter of which is blocked by the adenovirus Bcl-2 homologue E1B 19K. The mechanism of apoptosis induction and the role that it plays in productive infection are not known. Unlike apoptosis mediated by death receptors, infection with proapoptotic E1B 19K mutant viruses did not induce cleavage of Bid but nonetheless induced changes in Bak and Bax conformation, Bak-Bax interaction, caspase 9 and 3 activation, and apoptosis. In wild-type-adenovirus-infected cells, in which E1B 19K inhibits apoptosis, E1B 19K was bound to Bak, precluding Bak-Bax interaction and changes in Bax conformation. Infection with E1B 19K mutant viruses induced apoptosis in wild-type and Bax- or Bak-deficient baby mouse kidney cells but not in those deficient for both Bax and Bak. Furthermore, Bax and Bak deficiency dramatically increased E1A expression and virus replication. Thus, Bax- and Bak-mediated apoptosis severely limits adenoviral replication, demonstrating that Bax and Bak function as an antiviral response at the cellular level.

  18. Apoptosis induced by Ginkgo biloba (EGb761 in melanoma cells is Mcl-1-dependent.

    Directory of Open Access Journals (Sweden)

    Yufang Wang

    Full Text Available Melanoma is an aggressive skin cancer. Unfortunately, there is currently no chemotherapeutic agent available to significantly prolong the survival of the most patients with metastatic melanomas. Here we report that the Ginkgo biloba extract (EGb761, one of the most widely sold herbal supplements in the world, potently induces apoptosis in human melanoma cells by disturbing the balance between pro- and anti-apoptosis Bcl-2 family proteins. Treatment with EGb761 induced varying degrees of apoptosis in melanoma cell lines but not in melanocytes. Induction of apoptosis was caspase-dependent and appeared to be mediated by the mitochondrial pathway, in that it was associated with reduction in mitochondrial membrane potential and activation of Bax and Bak. Although EGb761 did not cause significant change in the expression levels of the BH3-only Bcl-2 family proteins Bim, Puma, Noxa, and Bad, it significantly downregulated Mcl-1 in sensitive but not resistant melanoma cells, suggesting a major role of Mcl-1 in regulating apoptosis of melanoma cells induced by EGb761. Indeed, siRNA knockdown of Mcl-1 enhanced EGb761-induced apoptosis, which was associated with increased activation of Bax and Bak. Taken together, these results demonstrate that EGb761 kills melanoma cells through the mitochondrial apoptotic pathway, and that Mcl-1 is a major regulator of sensitivity of melanoma cells to apoptosis induced by EGb761. Therefore, EGb761 with or without in combination with targeting Mcl-1 may be a useful strategy in the treatment of melanoma.

  19. Hydroxyl Radical Induced Apoptosis Is Closely Related to Changes in Cellular Energy/Redox Metabolism

    Institute of Scientific and Technical Information of China (English)

    贺雨虹; 陈晶; 任建国; 隋森芳; 蔡国平

    2003-01-01

    Reactive oxygen species (ROS), including the hydroxyl radical (·OH), are known to be potential modulators of apoptosis.However, the biochemical mechanisms underlying apoptosis induced by·OH, namely how the radical induces a cell to die, are poorly understood.The present work highlights the changes of the energy/redox status during apoptosis by exogenous· OH-treatment.HeLa cells were induced to undergo typical apoptosis by·OH generated directly via the Fe2+-mediated Fenton reaction.The thermodynamics study indicated that the· OH-treatment increased the cellular heat output in the first hours, and then the cellular thermodynamics shifted to endothermic.The data demonstrates that the mitochondria are actively involved in· OH-treatment induced apoptosis, with the cellular oxygen consumption rapidly decreasing after the·OH-treatment for only 0.5 h.But DNA fragmentation, which is the major characteristic of apoptosis, took place 16 h after · OH-treatment.The results suggest that alteration of the energy/redox metabolism and the energy/redox status may be the primary causes among the early events of· OH-induced apoptosis.

  20. Stress-activated signaling responses leading to apoptosis following photodynamic therapy

    Science.gov (United States)

    Oleinick, Nancy L.; He, Jin; Xue, Liang-yan; Separovic, Duska

    1998-05-01

    Photodynamic treatment with the phthalocyanine Pc 4, a mitochondrially localizing photosensitizer, is an efficient inducer of cell death by apoptosis, a cell suicide pathway that can be triggered by physiological stimuli as well as by various types of cellular damage. Upon exposure of the dye- loaded cells to red light, several stress signalling pathways are rapidly activated. In murine L5178Y-R lymphoblasts, caspase activation and other hallmarks of the final phase of apoptosis are observed within a few minutes post-PDT. In Chinese hamster CHO-K1 cells, the first signs of apoptosis are not observed for 1 - 2 hours. The possible involvement of three parallel mitogen-activated protein kinase (MAPK) signalling pathways has been investigated. The extracellular- regulated kinases (ERK-1 and ERK-2), that are thought to promote cell growth, are not appreciably altered by PDT. However, PDT causes marked activation of the stress-activated protein kinase (SAPK) cascade in both cell types and of the p38/HOG-type kinase in CHO cells. Both of these latter pathways have been demonstrated to be associated with apoptosis. A specific inhibitor of the ERK pathway did not alter PDT-induced apoptosis; however, an inhibitor of the p38 pathway partially blocked PDT-induced apoptosis. Blockage of the SAPK pathway is being pursued by a genetic approach. It appears that the SAPK and p38 pathways may participate in signaling apoptosis in response to PDT with Pc 4.

  1. Peri-nuclear clustering of mitochondria is triggered during aluminum maltolate induced apoptosis.

    Science.gov (United States)

    Dewitt, David A; Hurd, Jennifer A; Fox, Nena; Townsend, Brigitte E; Griffioen, Kathleen J S; Ghribi, Othman; Savory, John

    2006-07-01

    Synapse loss and neuronal death are key features of Alzheimer's disease pathology. Disrupted axonal transport of mitochondria is a potential mechanism that could contribute to both. As the major producer of ATP in the cell, transport of mitochondria to the synapse is required for synapse maintenance. However, mitochondria also play an important role in the regulation of apoptosis. Investigation of aluminum (Al) maltolate induced apoptosis in human NT2 cells led us to explore the relationship between apoptosis related changes and the disruption of mitochondrial transport. Similar to that observed with tau over expression, NT2 cells exhibit peri-nuclear clustering of mitochondria following treatment with Al maltolate. Neuritic processes largely lacked mitochondria, except in axonal swellings. Similar, but more rapid results were observed following staurosporine administration, indicating that the clustering effect was not specific to Al maltolate. Organelle clustering and transport disruption preceded apoptosis. Incubation with the caspase inhibitor zVAD-FMK effectively blocked apoptosis, however failed to prevent organelle clustering. Thus, transport disruption is associated with the initiation, but not necessarily the completion of apoptosis. These results, together with observed transport defects and apoptosis related changes in Alzheimer disease brain suggest that mitochondrial transport disruption may play a significant role in synapse loss and thus the pathogenesis or Alzheimer's disease.

  2. Effect of arsenic, cadmium and lead on the induction of apoptosis of normal human mononuclear cells

    Science.gov (United States)

    DE LA FUENTE, H; PORTALES-PÉREZ, D; BARANDA, L; DÍAZ-BARRIGA, F; SAAVEDRA-ALANÍS, V; LAYSECA, E; GONZÁLEZ-AMARO, R

    2002-01-01

    The aim of this work was to investigate the effect of cadmium, lead and arsenic on the apoptosis of human immune cells. Peripheral blood mononuclear cells (MNC) were incubated with increasing concentrations of these metals and then cellular apoptosis was determined by flow cytometry and by DNA electrophoresis. We found that arsenic induced a significant level of apoptosis at 15 μm after 48h of incubation. Cadmium had a similar effect, but at higher concentrations (65 μm). In addition, cadmium exerted a cytotoxic effect on MNC that seemed to be independent of the induction of apoptosis. In contrast, concentrations of lead as high as 500 μm were nontoxic and did not induce a significant degree of apoptosis. Additional experiments showed that arsenic at concentrations as low as 1·0 μm had a significant pro-apoptotic effect when cells were cultured in the presence of this pollutant for more than 72. Non-T cells were more susceptible than T lymphocytes to the effect of arsenic and cadmium. Interestingly, MNC from children chronically exposed to arsenic showed a high basal rate of apoptosis and a diminished in vitro sensibility to this metalloid. Our results indicate that both arsenic and cadmium are able to induce apoptosis of lymphoid cells, and suggest that this phenomenon may contribute to their immunotoxic effect in vivo. PMID:12100024

  3. Comparative Study of Apoptosis-related Gene Loci in Human, Mouse and Rat Genomes

    Institute of Scientific and Technical Information of China (English)

    Yan-Bin YIN; Yong ZHANG; Peng YU; Jing-Chu LUO; Ying JIANG; Song-Gang LI

    2005-01-01

    Many genes are involved in mammalian cell apoptosis pathway. These apoptosis genes often contain characteristic functional domains, and can be classified into at least 15 functional groups, according to previous reports. Using an integrated bioinformatics platform for motif or domain search from three public mammalian proteomes (International Protein Index database for human, mouse, and rat), we systematically cataloged all of the proteins involved in mammalian apoptosis pathway. By localizing those proteins onto the genomes, we obtained a gene locus centric apoptosis gene catalog for human, mouse and rat.Further phylogenetic analysis showed that most of the apoptosis related gene loci are conserved among these three mammals. Interestingly, about one-third of apoptosis gene loci form gene clusters on mammal chromosomes, and exist in the three species, which indicated that mammalian apoptosis gene orders are also conserved. In addition, some tandem duplicated gene loci were revealed by comparing gene loci clusters in the three species. All data produced in this work were stored in a relational database and may be viewed at http://pcas.cbi.pku.edu.cn/database/apd.php.

  4. Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis.

    Science.gov (United States)

    Imre, Gergely; Heering, Jan; Takeda, Armelle-Natsuo; Husmann, Matthias; Thiede, Bernd; zu Heringdorf, Dagmar Meyer; Green, Douglas R; van der Goot, F Gisou; Sinha, Bhanu; Dötsch, Volker; Rajalingam, Krishnaraj

    2012-05-30

    Bacterial pathogens modulate host cell apoptosis to establish a successful infection. Pore-forming toxins (PFTs) secreted by pathogenic bacteria are major virulence factors and have been shown to induce various forms of cell death in infected cells. Here we demonstrate that the highly conserved caspase-2 is required for PFT-mediated apoptosis. Despite being the second mammalian caspase to be identified, the role of caspase-2 during apoptosis remains enigmatic. We show that caspase-2 functions as an initiator caspase during Staphylococcus aureus α-toxin- and Aeromonas aerolysin-mediated apoptosis in epithelial cells. Downregulation of caspase-2 leads to a strong inhibition of PFT-mediated apoptosis. Activation of caspase-2 is PIDDosome-independent, and endogenous caspase-2 is recruited to a high-molecular-weight complex in α-toxin-treated cells. Interestingly, prevention of PFT-induced potassium efflux inhibits the formation of caspase-2 complex, leading to its inactivation, thus resisting apoptosis. These results revealed a thus far unknown, obligatory role for caspase-2 as an initiator caspase during PFT-mediated apoptosis.

  5. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission.

    Science.gov (United States)

    Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun

    2015-09-01

    Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment.

  6. Puerarin induces mitochondria-dependent apoptosis in hypoxic human pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Chan Chen

    Full Text Available BACKGROUND: Pulmonary vascular medial hypertrophy in hypoxic pulmonary arterial hypertension (PAH is caused in part by decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs. Puerarin, an isoflavone purified from the Chinese medicinal herb kudzu, ameliorates chronic hypoxic PAH in animal models. Here we investigated the effects of puerarin on apoptosis of hypoxic human PASMCs (HPASMCs, and to determine the possible underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: HPASMCs were cultured for 24 h in normoxia or hypoxia (5% O₂ conditions with and without puerarin. Cell number and viability were determined with a hemacytometer or a cell counting kit. Apoptosis was detected with a TUNEL test, rhodamine-123 (R-123 fluorescence, a colorimetric assay, western blots, immunohistochemical staining and RT-PCR. Hypoxia inhibited mitochondria-dependent apoptosis and promoted HPASMC growth. In contrast, after puerarin (50 µM or more intervention, cell growth was inhibited and apoptosis was observed. Puerarin-induced apoptosis in hypoxic HPASMCs was accompanied by reduced mitochondrial membrane potential, cytochrome c release from the mitochondria, caspase-9 activation, and Bcl-2 down-regulation with concurrent Bax up-regulation. CONCLUSIONS/SIGNIFICANCE: Puerarin promoted apoptosis in hypoxic HPASMCs by acting on the mitochondria-dependent pathway. These results suggest a new mechanism of puerarin relevant to the management of clinical hypoxic pulmonary hypertension.

  7. Puerarin Induces Mitochondria-Dependent Apoptosis in Hypoxic Human Pulmonary Arterial Smooth Muscle Cells

    Science.gov (United States)

    Chen, Chan; Chen, Chun; Wang, Zhiyi; Wang, Liangxing; Yang, Lehe; Ding, Minjiao; Ding, Cheng; Sun, Yu; Lin, Quan; Huang, Xiaoying; Du, Xiaohong; Zhao, Xiaowei; Wang, Chuangyi

    2012-01-01

    Background Pulmonary vascular medial hypertrophy in hypoxic pulmonary arterial hypertension (PAH) is caused in part by decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Puerarin, an isoflavone purified from the Chinese medicinal herb kudzu, ameliorates chronic hypoxic PAH in animal models. Here we investigated the effects of puerarin on apoptosis of hypoxic human PASMCs (HPASMCs), and to determine the possible underlying mechanisms. Methodology/Principal Findings HPASMCs were cultured for 24 h in normoxia or hypoxia (5% O2) conditions with and without puerarin. Cell number and viability were determined with a hemacytometer or a cell counting kit. Apoptosis was detected with a TUNEL test, rhodamine-123 (R-123) fluorescence, a colorimetric assay, western blots, immunohistochemical staining and RT-PCR. Hypoxia inhibited mitochondria-dependent apoptosis and promoted HPASMC growth. In contrast, after puerarin (50 µM or more) intervention, cell growth was inhibited and apoptosis was observed. Puerarin-induced apoptosis in hypoxic HPASMCs was accompanied by reduced mitochondrial membrane potential, cytochrome c release from the mitochondria, caspase-9 activation, and Bcl-2 down-regulation with concurrent Bax up-regulation. Conclusions/Significance Puerarin promoted apoptosis in hypoxic HPASMCs by acting on the mitochondria-dependent pathway. These results suggest a new mechanism of puerarin relevant to the management of clinical hypoxic pulmonary hypertension. PMID:22457823

  8. From the Gla domain to a novel small-molecule detector of apoptosis

    Institute of Scientific and Technical Information of China (English)

    Avi Cohen; Anat Shirvan; Galit Levin; Hagit Grimberg; Ayelet Reshef; Ilan Ziv

    2009-01-01

    Apoptosis plays a pivotal role in the etiology or pathogenesis of numerous medical disorders, and thus, target-ing of apoptotic cells may substantially advance patient care. In our quest for novel low-molecular-weight probes for apoptosis, we focused on the uncommon amino acid γ-carboxyglutamic acid (Gla), which plays a vital role in the binding of clotting factors to negatively charged phosphofipid surfaces. Based on the aikyl-malonic acid motif of Gia, we have developed and now present ML-10 (2-(5-fluoro-pentyl)-2-methyl-malonic acid, MW=206 Da), the pro-totypical member of a novel family of small-molecule detectors of apoptosis. ML-10 was found to perform selective uptake and accumulation in apoptotic cells, while being excluded from either viable or necrotic cells. ML-10 uptake correlates with the apoptotic hallmarks of caspase activation, Annexin-V binding and disruption of mitochondrial membrane potential. The malonate moiety was found to be crucial for ML-10 function in apoptosis detection. ML-10 responds to a unique complex of features of the cell in early apoptosis, comprising irreversible loss of membrane potential, permanent acidification of cell membrane and cytoplasm, and preservation of membrane integrity. ML-10 is therefore the most compact apoptosis probe known to date. Due to its fluorine atom, ML-10 is amenable to radio-labeling with the 18SF isotope, towards its potential future use for clinical positron emission tomography imaging of apoptosis.

  9. Bupivacaine induces apoptosis through caspase-dependent and -independent pathways in canine mammary tumor cells.

    Science.gov (United States)

    Chiu, Yi-Shu; Cheng, Yeong-Hsiang; Lin, Sui-Wen; Chang, Te-Sheng; Liou, Chian-Jiun; Lai, Yu-Shen

    2015-06-01

    Local anesthetics have been reported to induce apoptosis in various cell lines. In this study, we showed that bupivacaine also induced apoptosis in DTK-SME cells, a vimentin(+)/AE1(+)/CK7(+)/HSP27(+), tumorigenic, immortalized, canine mammary tumor cell line. Bupivacaine induced apoptosis in DTK-SME cells in a time- and concentration-dependent manner. Apoptosis-associated morphological changes, including cell shrinkage and rounding, chromatin condensation, and formation of apoptotic bodies, were observed in the bupivacaine-treated DTK-SME cells. Apoptosis was further confirmed with annexin V staining, TUNEL staining, and DNA laddering assays. At the molecular level, the activation of caspases-3, -8, and -9 corresponded well to the degree of DNA fragmentation triggered by bupivacaine. We also demonstrated that the pan-caspase inhibitor, z-VAD-fmk, only partially inhibited the apoptosis induced by bupivacaine. Moreover, treated cells increased expression of endonuclease G, a death effector that acts independently of caspases. Our data suggested that bupivacaine-induced apoptosis occurs through both caspase-dependent and caspase-independent apoptotic pathways.

  10. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL.

    Science.gov (United States)

    Rosati, Emanuela; Sabatini, Rita; Rampino, Giuliana; De Falco, Filomena; Di Ianni, Mauro; Falzetti, Franca; Fettucciari, Katia; Bartoli, Andrea; Screpanti, Isabella; Marconi, Pierfrancesco

    2010-10-14

    A better understanding of apoptotic signaling in B-chronic lymphocytic leukemia (B-CLL) cells may help to define new therapeutic strategies. This study investigated endoplasmic reticulum (ER) stress signaling in spontaneous apoptosis of B-CLL cells and whether manipulating ER stress increases their apoptosis. Results show that a novel ER stress-triggered caspase cascade, initiated by caspase-4 and involving caspase-8 and -3, plays an important role in spontaneous B-CLL cell apoptosis. ER stress-induced apoptosis in B-CLL cells also involves CHOP/GADD153 up-regulation, increased JNK1/2 phosphorylation, and caspase-8-mediated cleavage of Bap31 to Bap20, known to propagate apoptotic signals from ER to mitochondria. In ex vivo B-CLL cells, some apoptotic events associated with mitochondrial pathway also occur, including mitochondrial cytochrome c release and caspase-9 processing. However, pharmacologic inhibition studies show that caspase-9 plays a minor role in B-CLL cell apoptosis. ER stress also triggers survival signals in B-CLL cells by increasing BiP/GRP78 expression. Manipulating ER signaling by siRNA down-regulation of BiP/GRP78 or treating B-CLL cells with 2 well-known ER stress-inducers, tunicamycin and thapsigargin, increases their apoptosis. Overall, our findings show that ER triggers an essential pathway for B-CLL cell apoptosis and suggest that genetic and pharmacologic manipulation of ER signaling could represent an important therapeutic strategy.

  11. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent.

  12. Expression of Bcl-2 inhibited Fas-mediated apoptosis in human hepatocellular carcinoma BEL-7404 cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Apoptosis plays an important role in embryonic development, tissue remodeling, immune regulation and tumor regression. Two groups of molecules (Bcl-2 family and"Death factor"family) are involved in regulating apoptosis. In order to know about the effect of Bcl-2 on apoptosis induced by Fas, a typical member of"Death factor" family, the transfection experiments with expression vectors pcDNA3-fland pcDNA3-bcl-2 were performed in BEL-7404 cells, a human hepatocellular carcinoma cell line which expresses endogenous Fas, but not FasL and Bcl2. The data showed that the expression of FasL in pcDNA3fl transfected hepatoma cells obviously induced the apoptosis of the cells. However, the overexpression of Bcl-2 in pcDNA3bcl-2 transfected 7404/b-16 cells counteracted pcDNA3-fltransient transfection mediated apoptosis. Further study by cotransfection experiments indicated that Bid but not Bax (both were pro-apoptotic proteins of Bcl-2 family) blocked the inhibitory effect of Bcl-2 on Fas-mediated apoptosis. These results suggested that Fas-mediated apoptosis in human hcpatoma cells is possibly regulated by Bcl-2 family proteins via mitochondria pathway.

  13. Independent regulation of reovirus membrane penetration and apoptosis by the mu1 phi domain.

    Directory of Open Access Journals (Sweden)

    Pranav Danthi

    2008-12-01

    Full Text Available Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein mu1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of mu1 indicates that the mu1 phi domain is sufficient to elicit a cell death response. To evaluate the contribution of the mu1 phi domain to the induction of apoptosis following reovirus infection, phi mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in phi diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in phi affect the apoptotic potential of reovirus, suggesting that phi initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective phi mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the phi domain of mu1 plays an important regulatory role in reovirus-induced apoptosis and disease.

  14. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.

    Science.gov (United States)

    Kim, Eun-Ae; Jang, Ji-Hoon; Lee, Yun-Han; Sung, Eon-Gi; Song, In-Hwan; Kim, Joo-Young; Kim, Suji; Sohn, Ho-Yong; Lee, Tae-Jin

    2014-07-01

    Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not definitely known in cancer cells. In this study, we found that dioscin treatment induced cell death in dose-dependent manner in breast cancer cells such as MDA-MB-231, MDA-MB-453, and T47D cells. Dioscin decreased expressions of Bcl-2 and cIAP-1 proteins, which were down-regulated at the transcriptional level. Conversely, Mcl-1 protein level was down-regulated by facilitating ubiquitin/proteasome-mediated Mcl-1 degradation in dioscin-treated cells. Pretreatment with z-VAD fails to attenuate dioscin-induced cell death as well as caspase-mediated events such as cleavages of procaspase-3 and PARP. In addition, dioscin treatment increased the population of annexin V positive cells and induced DNA fragmentation in a dose-dependent manner in MDA-MB-231 cells. Furthermore, apoptosis inducing factor (AIF) was released from the mitochondria and translocated to the nucleus. Suppression in AIF expression by siRNA reduced dioscin-induced apoptosis in MDA-MB-231 cells. Taken together, our results demonstrate that dioscin-induced cell death was mediated via AIF-facilitating caspase-independent pathway as well as down-regulating anti-apoptotic proteins such as Bcl-2, cIAP-1, and Mcl-1 in breast cancer cells.

  15. Human neuronal apoptosis secondary to traumatic brain injury and the regulative role of apoptosis-related genes

    Institute of Scientific and Technical Information of China (English)

    杨树源; 雪亮

    2004-01-01

    Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes.Methods: Specimens of brain were collected from cases of traumatic brain injury in humans. The histological and cellular morphology was examined by light and electron microscopy. The extent of DNA injury to cortical neurons was detected by using TUNEL. By in situ hybridisation and immunohistochemistry the mRNA changes and protein expression of Bcl-2, Bax, p53, and caspase 3 p20 subunit were observed.Results: Apoptotic neurons appeared following traumatic brain injury, peaked at 24 hours and lasted for 7 days. In normal brain tissue activated caspase 3 was rare,but a short time after trauma it became activated. The activity peaked at 20-28 hours and remained higher than normal for 5-7 days. There was no expression of Bcl-2 mRNA and Bcl-2 protein in normal brain tissue but 8 hours after injury their expression became evident and then increased, peaked at 2-3 days and remained higher than normal for 5-7 days. The primary expression of Bax-mRNA and Bax protein was high in normal brain tissue. At 20-28 hours they increased and remained high for 2-3 days; on the 7th days they returned to a normal level. In normal brain tissue, p53mRNA and P53 were minimally expressed.Increased expression was detected at the 8th hour, and decreased at 20-28 hours but still remained higher than normal on the 5th day.Conclusions: Following traumatic injury to the human brain, apoptotic neurons appear around the focus of trauma. The mRNA and protein expression of Bcl-2, Bax and p53 and the activity of caspase 3 enzyme are increased.

  16. A Triterpenoid from Thalictrum fortunei Induces Apoptosis in BEL-7402 Cells Through the P53-Induced Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Lvyi Chen

    2011-11-01

    Full Text Available Thalictrum fortunei S. Moore, a perennial plant distributed in the southeastern part of China, has been used in Traditional Chinese Medicine for thousands of years for its antitumor, antibacterial and immunoregulatory effects. In order to investigate the active components and the mechanism of the anti-tumor effects of Thalictrum fortunei, the growth inhibitory effects of eight triterpenoids isolated from the aerial parts of the plant on tumor cell lines were examined by 3-(4,5-dimethylthiazoy1-3,5-diphenyltetrazolium bromide (MTT assay. The MTT-assay results showed that the inhibitory activity of 3-O-β-D-glucopyranosyl-(1→4-β-D-fucopyranosyl(22S,24Z-cycloart-24-en-3β,22,26-triol 26-O-β-D-glucopyranoside (1 was stronger than that of the other seven tested triterpenoids on human hepatoma Bel-7402 cell line (Bel-7402, human colon lovo cells (LoVo, human non-small cells lung cancer NCIH-460 cells (NCIH-460 and human gastric carcinoma SGC-7901 cells (SGC-7901 after 48 h treatment in vitro, with the IC50 values of 66.4, 84.8, 73.5, 89.6 μM, respectively. Moreover, the antitumor mechanism of compound 1 on Bel-7402 cell was explored through nucleus dyeing, fluorescence assay, flow cytometry and western blot. The flow cytometric analysis results revealed that compound 1 caused apoptosis and mitochondrial membrane potential (MMP loss in Bel-7402 cells. A fluorescence assay indicated that intracellular reactive oxygen species (ROS were markedly provoked by compound 1 treatment compared to control cells. Immunoblot results showed that compound 1 significantly increased the expression levels of cleaved caspase-3, P53 and Bax protein, and decreased the expression level of Bcl-2 protein. These findings indicate that compound 1 inhibits the growth activity of tumor cells, probably through the P53 protein-induced apoptosis pathway.

  17. Inhibition of microvascular endothelial cell apoptosis by angiopoietin-1 and the involvement of cytochrome C

    Institute of Scientific and Technical Information of China (English)

    SHI Lian-guo; ZHANG Guo-ping; JIN Hui-ming

    2006-01-01

    Background Angiopoietin-1 (Ang-1) is an endothelial-specific growth factor that can promote angiogenesis.Studies demonstrated that Ang-1 can inhibit apoptosis of umbilical endothelial cells, but so far little is known about its effects on apoptosis of microvascular endothelial cells. With the apoptotic model of murinecerebral-derived microvascular endothelial cells (bEnd.3) induced by serum-free culture,we attempted to clarify the molecular mechanism of bEnd.3 apoptosis, particularly its relation to cytochrome C (Cyt C).Methods The cultured microvascular endothelial cell strain, bEnd.3 cell, was employed. An apoptotic model of bEnd.3 was established by serum-free culture. Flow cytometry after Annexin labeling and PI staining were used to assess the apoptotic effects of Ang-1 on bEnd.3, and the expression of Bax/Bcl-2, caspase 8, caspase 3, and Cyt C were detected with Western blotting and ELISA.Results The apoptotic rate of bEnd.3 cells after stimulation with Ang-1 (100 ng/L) in serum-free medium was significantly higher than that in control group. Ang-1 inhibited early-stage apoptosis more than late-stage apoptosis provided by propidium iodide (PI) and AnnexinV double staining. The inhibition of Ang-1 on bEnd.3cell apoptosis was strengthened with the increase in concentration (0-400 ng/ml). Ang-1 could decrease the expression of Bax, caspase3 and 8, and increase that of Bcl-2. The results of ELISA indicated that Ang-1significantly decreased CytC content in cytoplasm and increase that in mitochondria.Conclusions Ang-1 could inhibit bEnd.3 apoptosis induced by serum-free medium culture. The apoptosis was associated with decreased Bax expression, increased Bcl-2 expression, which result in Cyt C transferring from mitochondria to cytoplasm, and then caspases activation are reduced and cell apoptosis is suppressed.

  18. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes.

    Science.gov (United States)

    Schöneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cells but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad.

  19. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    Science.gov (United States)

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  20. Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells

    Science.gov (United States)

    Mulvey, Christine S.; Sherwood, Carly A.; Bigio, Irving J.

    2009-11-01

    Apoptosis-programmed cell death-is a cellular process exhibiting distinct biochemical and morphological changes. An understanding of the early morphological changes that a cell undergoes during apoptosis can provide the opportunity to monitor apoptosis in tissue, yielding diagnostic and prognostic information. There is avid interest regarding the involvement of apoptosis in cancer. The initial response of a tumor to successful cancer treatment is often massive apoptosis. Current apoptosis detection methods require cell culture disruption. Our aim is to develop a nondisruptive optical method to monitor apoptosis in living cells and tissues. This would allow for real-time evaluation of apoptotic progression of the same cell culture over time without alteration. Elastic scattering spectroscopy (ESS) is used to monitor changes in light-scattering properties of cells in vitro due to apoptotic morphology changes. We develop a simple instrument capable of wavelength-resolved ESS measurements from cell cultures in the backward direction. Using Mie theory, we also develop an algorithm that extracts the size distribution of scatterers in the sample. The instrument and algorithm are validated with microsphere suspensions. For cell studies, Chinese hamster ovary (CHO) cells are cultured to confluence on plates and are rendered apoptotic with staurosporine. Backscattering measurements are performed on pairs of treated and control samples at a sequence of times up to 6-h post-treatment. Initial results indicate that ESS is capable of discriminating between treated and control samples as early as 10- to 15-min post-treatment, much earlier than is sensed by standard assays for apoptosis. Extracted size distributions from treated and control samples show a decrease in Rayleigh and 150-nm scatterers, relative to control samples, with a corresponding increase in 200-nm particles. Work continues to correlate these size distributions with underlying morphology. To our knowledge, this

  1. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  2. Norcantharidin induces apoptosis in HeLa cells through caspase, MAPK, and mitochondrial pathways

    Institute of Scientific and Technical Information of China (English)

    Wei-weiAN; Xian-fengGONG; Min-weiWANG; Shin-ichiTASHIRO; SatoshiONODERA; TakashiIKEJIMA

    2004-01-01

    AIM: To investigate the mechanism of norcantharidin (NCTD)-induced HeLa cell apoptosis. METHODS: HeLa cell growth inhibition was measured by MTT method. Apoptosis was detected by Hoechst 33258 staining and agarose gel electrophoresis. Caspase activities were assayed using caspase apoptosis detection kit. Western blot analysis was used to evaluate the level of ICAD, ERK/p-ERK, JNK/p-JNK, and Bcl-X.L/Bax expression. RESULTS: Norcantharidin inhibited HeLa cell growth in a time- and dose-dependent manner. HeLa cells treated with norcantharidin showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. Caspase family inhibitor (z-VAD-fmk), caspase-8, -9 inhibitor (z-IETD-fmk, Ac-LEHD-CHO, respectively) and caspase-3 inhibitor (z-DEVD-fmk) partially prevent norcantharidin-induced apoptosis, but initiator caspase-1 inhibitor (Ac-YVAD-fmk) did not. The activities of caspase-3, -8, and -9 were up-regulated after norcantharidin treatment. Furthermore, NCTD-induced activation of caspase-3 resulted in the degradation of the inhibitor of caspase-activated DNase (ICAD). Up-regulation of mitochondrial Bax expression and down-regulation of Bcl-xLexpression also participated in the apoptosis induced by NCTD. Although p38 MAPK inhibitor (SB203580) failed to block cell death, ERK MAPK inhibitor (PD98059) and JNK MAPK inhibitor (SP600125) had marked inhibitory effects on norcantharidin-induced apoptosis. Moreover, the phosphorylation of JNK were up-regulated followed by delayed ERK phosphorylation after treatment with NCTD, suggesting that ERK and JNK were both responsible for NCTD-induced apoptosis in HeLa cells and worked at different stages. CONCLUSION: The cytotoxic effect of NCTD on HeLa cells was mainly due to apoptosis. The anti-tumor mechanism of NCTD might involve caspses, mitochondrial, and MAPKs pathways.

  3. Norcantharidin induces apoptosis in HeLa cells through caspase,MAPK,and mitochondrial pathways

    Institute of Scientific and Technical Information of China (English)

    Wei-wei AN; Xian-feng GONG; Min-wei WANG; Shin-ichi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2004-01-01

    AIM: To investigate the mechanism of norcantharidin (NCTD)-induced HeLa cell apoptosis. METHODS: HeLa cell growth inhibition was measured by MTT method. Apoptosis was detected by Hoechst 33258 staining and agarose gel electrophoresis. Caspase activities were assayed using caspase apoptosis detection kit. Western blot analysis was used to evaluate the level of ICAD, ERK/p-ERK, JNK/p-JNK, and Bcl-XL/Bax expression. RESULTS:Norcantharidin inhibited HeLa cell growth in a time- and dose-dependent manner. HeLa cells treated with norcantharidin showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. Caspase family inhibitor (z-VAD-fmk), caspase-8, -9 inhibitor (z-IETD-fmk, Ac-LEHD-CHO,respectively) and caspase-3 inhibitor (z-DEVD-fmk) partially prevent norcantharidin-induced apoptosis, but initiator caspase-1 inhibitor (Ac-YVAD-fmk) did not. The activities of caspase-3, -8, and -9 were up-regulated after norcantharidin treatment. Furthermore, NCTD-induced activation of caspase-3 resulted in the degradation of the inhibitor of caspase-activated DNase (ICAD). Up-regulation of mitochondrial Bax expression and down-regulation of Bcl-xL expression also participated in the apoptosis induced by NCTD. Although p38 MAPK inhibitor (SB203580)failed to block cell death, ERK MAPK inhibitor (PD98059) and JNK MAPK inhibitor (SP600125) had marked inhibitory effects on norcantharidin-induced apoptosis. Moreover, the phosphorylation of JNK were up-regulated followed by delayed ERK phosphorylation after treatment with NCTD, suggesting that ERK and JNK were both responsible for NCTD-induced apoptosis in HeLa cells and worked at different stages. CONCLUSION: The cytotoxic effect of NCTD on HeLa cells was mainly due to apoptosis. The anti-tumor mechanism of NCTD might involve caspses, mitochondrial, and MAPKs pathways.

  4. Sophisticated framework between cell cycle arrest and apoptosis induction based on p53 dynamics.

    Science.gov (United States)

    Hamada, Hiroyuki; Tashima, Yoshihiko; Kisaka, Yu; Iwamoto, Kazunari; Hanai, Taizo; Eguchi, Yukihiro; Okamoto, Masahiro

    2009-01-01

    The tumor suppressor, p53, regulates several gene expressions that are related to the DNA repair protein, cell cycle arrest and apoptosis induction, which activates the implementation of both cell cycle arrest and induction of apoptosis. However, it is not clear how p53 specifically regulates the implementation of these functions. By applying several well-known kinetic mathematical models, we constructed a novel model that described the influence that DNA damage has on the implementation of both the G2/M phase cell cycle arrest and the intrinsic apoptosis induction via its activation of the p53 synthesis process. The model, which consisted of 32 dependent variables and 115 kinetic parameters, was used to examine interference by DNA damage in the implementation of both G2/M phase cell cycle arrest and intrinsic apoptosis induction. A low DNA damage promoted slightly the synthesis of p53, which showed a sigmoidal behavior with time. In contrast, in the case of a high DNA damage, the p53 showed an oscillation behavior with time. Regardless of the DNA damage level, there were delays in the G2/M progression. The intrinsic apoptosis was only induced in situations where grave DNA damage produced an oscillation of p53. In addition, to wreck the equilibrium between Bcl-2 and Bax the induction of apoptosis required an extreme activation of p53 produced by the oscillation dynamics, and was only implemented after the release of the G2/M phase arrest. When the p53 oscillation is observed, there is possibility that the cell implements the apoptosis induction. Moreover, in contrast to the cell cycle arrest system, the apoptosis induction system is responsible for safeguarding the system that suppresses malignant transformations. The results of these experiments will be useful in the future for elucidating of the dominant factors that determine the cell fate such as normal cell cycles, cell cycle arrest and apoptosis.

  5. PUMA is invovled in ischemia/reperfusion-induced apoptosis of mouse cerebral astrocytes.

    Science.gov (United States)

    Chen, H; Tian, M; Jin, L; Jia, H; Jin, Y

    2015-01-22

    PUMA (p53-upregulated modulator of apoptosis), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and p53-independent forms of apoptosis. PUMA has been invovled in the onset and progress of several diseases, including cancer, acquired immunodeficiency syndrome, and ischemic brain disease. Although many studies have shown that ischemia and reperfusion (I/R) can induce the apoptosis of astrocytes, the role of PUMA in I/R-mediated apoptosis of cerebral astrocyte apoptosis remains unclear. To mimic in vivo I/R conditions, primary mouse cerebral astrocytes were incubated in a combinational cultural condition of oxygen, glucose, and serum deprivation (OSGD) for 1 h followed by reperfusion (OSGD/R). Cell death determination assays and cell viability assays indicated that OSGD and OSGD/R induce the apoptosis of primary cerebral astrocytes. The expression of PUMA was significantly elevated in primary cerebral astrocytes during OSGD/R. Moreover, targeted down-regulation of PUMA by siRNA transfection significantly decreased the OSGD/R-induced apoptosis of primary cerebral astrocytes. We also found that OSGD and OSGD/R triggered the release of cytochrome c in astrocytes, indicating the dependence on a mitochondrial apoptotic pathway. Reactive oxygen species (ROS) was extremely generated during OSGD and OSGD/R, and the elimination of ROS by treated with N-acetyl-L-cysteine (NAC) remarkably inhibited the expression of PUMA and the apoptosis of primary cerebral astrocytes. The activation of Caspase 3 and Caspase 9 was extremely elevated in primary cerebral astrocytes during OSGD. In addition, we found that knockdown of PUMA led to the depressed expression of Bax, cleaved caspase-9 and caspase-3 during OSGD/R. These results indicate that PUMA is invovled in the apoptosis of cerebral astrocytes upon I/R injury.

  6. Oncogenic Ras promotes butyrate-induced apoptosis through inhibition of gelsolin expression.

    Science.gov (United States)

    Klampfer, Lidija; Huang, Jie; Sasazuki, Takehiko; Shirasawa, Senji; Augenlicht, Leonard

    2004-08-27

    Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.

  7. Apoptosis of peripheral blood leukocytes from rabbits infected with non-haemagglutinating strains of rabbit haemorrhagic disease virus (RHDV).

    Science.gov (United States)

    Niedźwiedzka-Rystwej, Paulina; Deptuła, Wiesław

    2012-09-15

    The report demonstrates that the induction of apoptosis in peripheral blood granulocytes and lymphocytes of rabbits infected with three non-haemagglutinating RHDV strains (English Rainham, German Frankfurt, and Spanish Asturias) is a crucial determinant of the pathogenesis of rabbit haemorrhagic disease. Apoptosis was measured by flow cytometric detection of caspase activity. These studies demonstrated that the investigated RHDV (rabbit haemorrhagic disease virus) viral strains affected leukocyte apoptosis to varying degrees. Enhanced leukocyte apoptosis was detected between 4 and 36 h after infection and was more pronounced in lymphocytes than in granulocytes. The data presented here thus provide a preliminary understanding of the kinetics of apoptosis in leukocytes of rabbits infected with RHDV.

  8. The role of p53 and pRB in apoptosis and cancer

    DEFF Research Database (Denmark)

    Hickman, Emma S; Moroni, M Cristina; Helin, Kristian

    2002-01-01

    Loss of function of both the p53 pathway and the retinoblastoma protein (pRB) pathway plays a significant role in the development of most human cancers. Loss of pRB results in deregulated cell proliferation and apoptosis, whereas loss of p53 desensitizes cells to checkpoint signals, including...... apoptosis. In the past two years, mouse genetics and gene expression profiling have led to major advances in our understanding of how the pRB and p53 pathways regulate apoptosis and thus the development of tumours....

  9. Ce4+-Induced Apoptosis of Taxus cuspidata Cells in Suspension Culture

    Institute of Scientific and Technical Information of China (English)

    葛志强; 元英进; 王艳东; 马振毅; 胡宗定

    2002-01-01

    The standard detection hallmarks of apoptosis of Taxus cuspidata cells in suspension culture with Ce4+ were studied. The condensation and margination of chromatin were observed under the electron microscopy. DNA fragmentation ranged "DNA ladder" on agarose gel electrophoresis. TdT-mediated dUTP nick end labeling (TUNEL) analysis of the cells reveals that the nuclear DNA strand breaks can be identified by labeling free 3′-OH termini. These results suggest that Ce4+ can induce apoptosis of Taxus cuspidata cells and also indicate that there is a certain relationship between apoptosis and secondary metabolite product-Taxol.

  10. Supravital fluorometric apoptosis detection in a single mouse embryo using lab-on-a-chip.

    Science.gov (United States)

    Walczak, Rafał; Śniadek, Patrycja; Dziuban, Jan A; Kluger, Joanna; Soyta, Anna Chełmońska

    2011-10-07

    Detection of apoptosis is one of the main criteria of preimplantation embryo growth potential assessment. Recent developments in lab-on-a-chip techniques has led to apoptosis detection and monitoring on a single cell or embryo level. However, single embryo apoptosis detection without a change in embryo developmental competence and post-examination "recovery" still remains a challenge. In this paper we present a lab-on-a-chip, co-working with miniaturized optical instrumentation, which allows supravital examination of single embryos for the presence of apoptotic blastomers with full after lab-on-a-chip study "recovery" and maintenance of their further developmental capacity.

  11. Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions.

    Directory of Open Access Journals (Sweden)

    Shannan Cao

    Full Text Available In human pathological conditions, the acidification of local environment is a frequent feature, such as tumor and inflammation. As the pH of microenvironment alters, the functions of immune cells are about to change. It makes the extracellular acidification a key modulator of innate immunity. Here we detected the impact of extracellular acidification on neutrophil apoptosis and functions, including cell death, respiratory burst, migration and phagocytosis. As a result, we found that under the acid environment, neutrophil apoptosis delayed, respiratory burst inhibited, polarization augmented, chemotaxis differed, endocytosis enhanced and bacteria killing suppressed. These findings suggested that extracellular acidification acts as a key regulator of neutrophil apoptosis and functions.

  12. Livin abrogates apoptosis of SPC-A1 cell by regulating JNKI signaling pathway.

    Science.gov (United States)

    Chen, Yu-Sheng; Li, Hong-Ru; Lin, Ming; Chen, Gang; Xie, Bao-Song; Xu, Neng-Luan; Lin, Li-Fang

    2010-06-01

    Livin, a novel member of inhibitors of apoptosis protein, is highly expressed in tumor tissues. It is a potential target in tumor therapy. Silencing its gene expression has been found to promote tumor cell apoptosis or increase tumor sensitivity to therapies. This paper studied the effect of livin anti-apoptotic activity and examined its molecular mechanisms. In the study, higher levels of cell apoptosis were measured by FACS in the experiment group with livin expression silenced than that in controls (P SPC-A1 by activating JNK1 signaling pathway and inhibiting caspase-3 activation.

  13. Model for Osteosarcoma-9 as a potent factor in cell survival and resistance to apoptosis

    Science.gov (United States)

    Vourvouhaki, Ekaterini; Carvalho, Carla; Aguiar, Paulo

    2007-07-01

    In this paper we use a simple model to explore the function of the gene Osteosarcoma-9 (OS-9). We are particularly interested in understanding the role of this gene as a potent anti-apoptotic factor. The theoretical description is constrained by experimental data from induction of apoptosis in cells where OS-9 is overexpressed. The data available suggest that OS-9 promotes cell viability and confers resistance to apoptosis, potentially implicating OS-9 in the survival of cancer cells. Three different apoptosis-inducing mechanisms were tested and are modeled here. A more complex and realistic model is also discussed.

  14. APOPTOSIS OF DIFFERENT MYOCARDIAL CELLS CONTRIBUTES TO LEFT VENTRICULAR REMODELING IN SPONTANEOUSLY HYPERTENSIVE RATS

    Institute of Scientific and Technical Information of China (English)

    陈卫兵; 殷明; 秦永文

    2001-01-01

    Objective To study the change and role of apoptosis in hypertensive left ventricular remodeling. Methods Hearts from 16-week-old spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats(WKY) were investigated. Apoptosis in left ventricle sections was assessed by in situ end-labeling technique(TUNEL), the feature and type of cells undergoing apoptosis were identified uitrastructurally by transmission electron microscope (ECM). Additionally, localization of Fas protein-a mediator of apoptotic cell death was ex-

  15. Induction of apoptosis in purified animal and plant nuclei by Xenopus egg extracts

    Institute of Scientific and Technical Information of China (English)

    JIANGZHENGFAN; SHANZHU; 等

    1999-01-01

    We have developed a cell-free system that can trigger the nuclei purified from mouse liver and suspensioncultured carrot cells to undergo apoptosis as defined by the formation of apoptotic bodies and nucleosomal DNA fragments.The effects of different divalent cations and cycloheximide on DNA cleavage in this system were assessed.The fact that nuclei of plant cells can be induced to undergo apoptosis in a cell-free animal system suggests that animals and plants share a common signal transduction pathway triggering in the initiation stage of apoptosis.

  16. [Experimental study on induction of apoptosis of leukemic cells by Boswellia carterii Birdw extractive].

    Science.gov (United States)

    Qi, Z; Zhang, G; Zhu, W

    1999-01-01

    The purpose of the study was to investigate the apoptosis of leukemic cells induced by Boswellia Carterii Birdw(BCB). The target leukemia cell line HL60 and bone marrow leukemic cells from 30 acute non-lymphocytic leukemic(ANLL) patients (3 M1 11 M2a 10 M3 1 M4a 5 M5b) were studied. Apoptosis was detected by morphological observation, DNA electrophoresis, percentage of DNA fragmentation test and flow cytometric cell cycle analysis. It is concluded that BCB can induce apoptosis in ANLL cells and HL60 cells.

  17. AGING OF HUMAN MATURE ERYTHROCYTES IS LIKE A PROCESS OF APOPTOSIS IN ENUCLEATED CELL

    Institute of Scientific and Technical Information of China (English)

    潘华珍; 冯立明; 卢红; 许彩民; 张平诚; 张之南

    1998-01-01

    Apoptosis of nucleated cells is well known, but bow about the unnucleated cells is still not elucidated.In the present paper, the morphological and biochemical features of the aged eryshrocytes were observed and compared with the characteristic events of apoptosis. Membrane of aged erythrocytes tends to shrink,protrude, from vesicle and lose lipid asymmetry. Aged erythrocytes were removed by phagocytosis. Both of the events are very similar to the apoptotic nucleated cells. The authors suggested that aging of erythrocytes is also a process of apoptosis.

  18. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  19. Graveoline isolated from ethanolic extract of Ruta graveolens triggers apoptosis and autophagy in skin melanoma cells: a novel apoptosis-independent autophagic signaling pathway.

    Science.gov (United States)

    Ghosh, Samrat; Bishayee, Kausik; Khuda-Bukhsh, Anisur Rahman

    2014-08-01

    Anti-cancer drugs generally kill cancer cells by apoptosis but fail to do so when they become resistant and escape apoptosis signals. But these resistant cells can still be killed by autophagy. Therefore, drugs having both apoptotic and autophagic abilities are solicited in effective cancer management. In search of such a drug, we examined the efficacy of graveoline, a bioactive compound isolated from Ruta graveolens on skin melanoma A375 cells through the use of specific signaling cascades and their inhibitors. Cytotoxicity of graveoline was tested by conducting MTT assay. Induction of autophagy and apoptosis was checked. Expression of related proteins and their localization were studied by conducting immunoblot assay and through confocal microscopy, respectively. We found graveoline-induced Beclin-1 associated autophagy in A375 cells and 3-methyladenine, an inhibitor of autophagy did not affect apoptosis. Conversely, caspase inhibitor that blocked apoptosis did not affect autophagic cell death, suggesting thereby that these two were independent events. Use of reactive oxygen species (ROS) scavengers inhibited cell death, but blocking autophagy did not affect graveoline-induced ROS generation, suggesting that ROS generation ensued autophagy. Thus, graveoline-induced both apoptotic and autophagic cell death in skin melanoma cells, a desirable quality in effective anti-cancer drug design.

  20. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors.

    Science.gov (United States)

    Kim, Ji-Hun; Kim, Yu Chul; Park, Byoungduck

    2016-02-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent anticancer agent possessing the ability to induce apoptosis in various cancer cells but not in non‑malignant cells. However, certain type of cancer cells are resistant to TRAIL‑induced apoptosis and some acquire resistance after the first treatment. So development of an agent that can reduce or avoid resistance in TRAIL‑induced apoptosis has garnered significant attention. The present study evaluated the anticancer potential of hispolon in TRAIL‑induced apoptosis and indicated hispolon can sensitize cancer cells to TRAIL. As the mechanism of action was examined, hispolon was found to activate caspase‑3, caspase‑8 and caspase‑9, while downregulating the expression of cell survival proteins such as cFLIP, Bcl‑2 and Bcl‑xL and upregulating the expression of Bax and truncated Bid. We also found hispolon induced death receptors in a non‑cell type‑specific manner. Upregulation of death receptors by hispolon was found to be p53-independent but linked to the induction of CAAT enhancer binding protein homologous protein (CHOP). Overall, hispolon was demonstrated to potentiate the apoptotic effects of TRAIL through downregulation of anti‑apoptotic proteins and upregulation of death receptors linked with CHOP and pERK elevation.