WorldWideScience

Sample records for apoptosis related genes

  1. Identification of apoptosis-related PLZF target genes

    International Nuclear Information System (INIS)

    Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes; Campillo, Jose Antonio; Parrado, Antonio

    2007-01-01

    The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localization is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression

  2. Expression and functional analysis of apoptosis-related gene ...

    African Journals Online (AJOL)

    The BmICAD gene was obtained from the fifth instar larvae of the silkworm by RTPCR and over-expressed in Escherichia coli as His-tagged fusion proteins. Subcellular localization of the protein indicated that BmICAD was found in the cytoplasm near the nucleus. RNAi assay indicated that the apoptosis rate of Bm5 cells ...

  3. Expression profiling of apoptosis-related genes in enterocytes isolated from patients with ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole H

    2013-01-01

    in normal and inflamed colonic epithelial cells. An apoptosis-specific gene array expression profiling system of 96 genes was used to determine the expression profile of apoptosis-related genes. Epithelial cells isolated from three patients with active ulcerative colitis were pooled and compared to pooled...

  4. Intracellular high cholesterol content disorders the clock genes, apoptosis-related genes and fibrinolytic-related genes rhythmic expressions in human plaque-derived vascular smooth muscle cells.

    Science.gov (United States)

    Lin, Changpo; Tang, Xiao; Xu, Lirong; Qian, Ruizhe; Shi, Zhenyu; Wang, Lixin; Cai, Tingting; Yan, Dong; Fu, Weiguo; Guo, Daqiao

    2017-07-10

    The clock genes are involved in regulating cardiovascular functions, and their expression disorders would lead to circadian rhythm disruptions of clock-controlled genes (CCGs), resulting in atherosclerotic plaque formation and rupture. Our previous study revealed the rhythmic expression of clock genes were attenuated in human plaque-derived vascular smooth muscle cells (PVSMCs), but failed to detect the downstream CCGs expressions and the underlying molecular mechanism. In this study, we examined the difference of CCGs rhythmic expression between human normal carotid VSMCs (NVSMCs) and PVSMCs. Furthermore, we compared the cholesterol and triglycerides levels between two groups and the link to clock genes and CCGs expressions. Seven health donors' normal carotids and 19 carotid plaques yielded viable cultured NVSMCs and PVSMCs. The expression levels of target genes were measured by quantitative real-time PCR and Western-blot. The intracellular cholesterol and triglycerides levels were measured by kits. The circadian expressions of apoptosis-related genes and fibrinolytic-related genes were disordered. Besides, the cholesterol levels were significant higher in PVSMCs. After treated with cholesterol or oxidized low density lipoprotein (ox-LDL), the expressions of clock genes were inhibited; and the rhythmic expressions of clock genes, apoptosis-related genes and fibrinolytic-related genes were disturbed in NVSMCs, which were similar to PVSMCs. The results suggested that intracellular high cholesterol content of PVSMCs would lead to the disorders of clock genes and CCGs rhythmic expressions. And further studies should be conducted to demonstrate the specific molecular mechanisms involved.

  5. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    International Nuclear Information System (INIS)

    Seong, J. S.

    1997-01-01

    To analyze the involvement of apoptosis regulatory genes p53, p21 waf1/cip1 , bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21 waf1/cip1 , and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21 waf1/cip1 , although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21 waf1/cip1 as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21 waf1/cip1 . These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author)

  6. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Seong, J. S. [Yonsei Univ., Seoul (Korea, Republic of). Coll. of Medicine; Hunter, N. R.; Milas, L. [Texas Univ., Houston, TX (United States)

    1997-09-01

    To analyze the involvement of apoptosis regulatory genes p53, p21{sup waf1/cip1}, bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21{sup waf1/cip1}, and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21{sup waf1/cip1}, although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21{sup waf1/cip1} as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21{sup waf1/cip1}. These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author).

  7. Studies on hematopoietic cell apoptosis and the relative gene expression in irradiated mouse bone marrow

    International Nuclear Information System (INIS)

    Peng Ruiyun; Wang Dewen; Xiong Chengqi; Gao Yabing; Yang Hong; Cui Yufang; Wang Baozhen

    2001-01-01

    Objective: To study apoptosis and expressions bcl-2 and p53 in irradiated mouse bone marrow. Methods: LACA mice were irradiated with 60 Co γ-rays. By means of in situ terminal labelling, in situ hybridization and image analysis, the authors studied radiation-induced apoptosis of hematopoietic cells and the expressions of bcl-2 and p53. Results: The characteristics of apoptosis appeared in hematopoietic cells at 6 hrs after irradiation. The expression of bcl-2 was obviously decreased when apoptosis of hematopoietic cells occurred, whereas it increased in the early recovery phase; p53 protein increased during both apoptosis of hematopoietic cells and the recovery phase, and mutant type p53 DNA was positive only in the recovery phase. Conclusion: Radiation may induced apoptosis of hematopoietic cells in a dose-dependent manner; Both bcl-2 and p53 genes play an important role in apoptosis and recovery phase

  8. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas.

    Science.gov (United States)

    Paul, Jean-Yves; Becker, Douglas K; Dickman, Martin B; Harding, Robert M; Khanna, Harjeet K; Dale, James L

    2011-12-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. [Construction of subtractive cDNA library of apoptosis-related genes in NB4 cells treated by arsenic trioxide].

    Science.gov (United States)

    Di, Chunhong; Gu, Shaohua; Tan, Xiaohua; Xian, Lingling; Wu, Qihan; Yang, Lei

    2009-02-01

    Construct the gene library of apoptosis related genes in acute promyelocytic leukemia (APL) cell line NB4 cells treated by arsenic trioxide to clarify the apoptotic mechanism of NB4 cells. APL cell line NB4 cells treated with or without arsenic trioxide for 24 hours. Total RNA was extracted and suppress subtractive hybridization (SSH) was conducted according to the manual. With the cDNA of the apoptosis cells as the tester and that of control cells as the driver, forward and reverse hybridization was performed. Differentially expressed genes were linked with pGEM-Teasy cloning vector and transformed into E. coli DH5alpha. The positive clones were screened by blue and white spot. PCR were used to amplify these genes. The subtractive cDNA libraries related with apoptosis of NB4 cells were successfully constructed. The constructed subtractive libraries are suitable for further study on the functional genes associated with apoptosis ofNB4 cells induced by arsenic trioxide.

  10. Differential gene expression in human hepatocellular carcinoma Hep3B cells induced by apoptosis-related gene BNIPL-2.

    Science.gov (United States)

    Xie, Li; Qin, Wen-Xin; He, Xiang-Huo; Shu, Hui-Qun; Yao, Gen-Fu; Wan, Da-Fang; Gu, Jian-Ren

    2004-05-01

    Bcl-2/adenovirus E1B 19 ku interacting protein 2-like (BNIPL-2) is a novel protein recently identified in our laboratory. BNIPL-2 is homologous to human BNIP-2, a potentially proapoptotic protein, and can interact with Bcl-2 and Cdc42GAP and promote apoptosis in BEL-7402 cells. Here we report the gene-expression profile regulated by BNIPL-2 in human hepatocarcinoma Hep3B cells and the analysis of its potential roles in cell apoptosis. BNIPL-2 was overexpressed in Hep3B cells using tetracycline inducible or Tet-on system. Screened by Western blot, the cells with low background and high induction fold of BNIPL-2 were obtained. We performed Atlas human cDNA expression array hybridization on these cells and analyzed the data with Quantarray software to identify BNIPL-2-regulated genes and their expression profile. RT-PCR was used to confirm the altered expression level of part of genes identified by the Atlas array hybridization. Fifteen of 588 genes spotted on the Atlas membrane showed altered expression levels in BNIPL-2-transfected Hep3B-Tet-on cells, in which 8 genes involved in cell apoptosis or growth inhibition were up-regulated and 7 genes involved in cellular proliferation were down-regulated following overexpression of BNIPL-2. cDNA array is a powerful tool to explore gene expression profiles under inducible conditions. The data obtained using the cDNA expression microarray technology indicates that BNIPL-2 may play its roles in apoptosis through regulating the expression of genes associated with cell apoptosis, growth inhibition and cell proliferation.

  11. [Effects of four dental alloys on apoptosis related gene and protein expression of fibroblast L929].

    Science.gov (United States)

    Meng, He; Ding, Jie; Li, Ren; Liang, Ruiying; Wu, Wenhui

    2013-06-01

    To investigate the effects of the leaching liquids of 4 differents kinds of dental alloys (Au alloy, Ag-Pd alloy, Co-Cr alloy, Ni-Cr alloy) on apoptosis related gene and protein of fibroblast L929. The L929 cells of mouse were treated in vitro with leaching liquids of 4 different kinds of dental alloys, Au alloy (group A), Ag-Pd alloy(group B), Co-Cr alloy(group C) and Ni-Cr alloy(group D). The RPMI1640 cell medium containing 10% fetal calf serum was served as a control(group E). The effects of these alloys on the expression of caspase-3, 8, 9 of L929 cells were examined by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry method. Results After 48 h culture, the mRNA levels of caspase-3 and caspase-9 demonstrated significant differences between the groups expect group A and group E. The mRNA levels of caspase-8 had no change in all groups. The expression of caspase-3 and caspase-9 were significant differences between the groups expect group A and C, group B and D. The expression of caspase-8 had no change in all grotps. The leaching liquids of 4 different kinds of dental alloys expect Au alloy may induce cell appotosis through mitochondrion pathway.

  12. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines.

    Science.gov (United States)

    Montazeri, Maryam; Sadeghizadeh, Majid; Pilehvar-Soltanahmadi, Yones; Zarghami, Faraz; Khodi, Samaneh; Mohaghegh, Mina; Sadeghzadeh, Hadi; Zarghami, Nosratollah

    2016-07-25

    The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Differential Expression of Apoptosis Related Genes in Selected Strains of Aedes aegypti with Different Susceptibilities to Dengue Virus

    OpenAIRE

    Ocampo, Clara B.; Caicedo, Paola A.; Jaramillo, Gloria; Bedoya, Raul Ursic; Baron, Olga; Serrato, Idalba M.; Cooper, Dawn M.; Lowenberger, Carl

    2013-01-01

    Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential ex...

  14. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells.

    Science.gov (United States)

    Yamagata, Kazuo; Izawa, Yuri; Onodera, Daiki; Tagami, Motoki

    2018-04-01

    Previous studies indicated that chlorogenic acid, a compound present in many fruits and vegetables, has anti-cancer activities. We report that chlorogenic acid regulates the expression of apoptosis-related genes and self-renewal-related stem cell markers in cancer cells. The lung cancer cell line A549 was cultured with or without chlorogenic acid. The presence of chlorogenic acid decreased cell proliferation as measured by MTT activity. Polymerase chain reaction (PCR) showed that treatment of cells with chlorogenic acid reduced the expression of BCL2 but increased that of both BAX and CASP3. Chlorogenic acid enhanced annexin V expression as measured using fluorescently labeled annexin V. Chlorogenic acid also induced p38 MAPK and JNK gene expression. Meanwhile, several agents, including SB203580 (p38 MAP kinase inhibitor), N-acetylcysteine (antioxidant inhibitor), dipyridamole (phosphodiesterase inhibitor), and apocynin (NADPH-oxidase inhibitor) blocked chlorogenic acid-induced BAX gene expression. Chlorogenic acid reduced gene expression levels of stem cell-associated markers NANOG, POU5F1, and SOX2. Together these results indicate that chlorogenic acid affects the expression of apoptosis-related genes that are part of oxidative stress and p38 MAP-dependent pathways, as well as genes encoding stem cell markers. In conclusion, chlorogenic acid may contribute to the polyphenolic anti-cancer effect associated with consumption of vegetables and fruits.

  15. Differential Expression of Apoptosis Related Genes in Selected Strains of Aedes aegypti with Different Susceptibilities to Dengue Virus

    Science.gov (United States)

    Ocampo, Clara B.; Caicedo, Paola A.; Jaramillo, Gloria; Ursic Bedoya, Raul; Baron, Olga; Serrato, Idalba M.; Cooper, Dawn M.; Lowenberger, Carl

    2013-01-01

    Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain. PMID:23593426

  16. Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus.

    Directory of Open Access Journals (Sweden)

    Clara B Ocampo

    Full Text Available Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2 and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1 and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain.

  17. Expression of the apoptosis-related genes Bcl-2 and p53 in clinical samples from endometrial carcinoma patients.

    Science.gov (United States)

    González-Rodilla, Irene; Verna, Virginia; Muñoz, Ana-Belén; Estévez, José; Boix, Mercedes; Schneider, José

    2011-12-01

    Although alterations in the mechanisms of apoptosis are an integral part of the tumor phenotype, their precise role in endometrial carcinoma is still obscure. The aim was to determine whether Bcl-2 plays a similar biological role in endometrial cancer as in breast cancer, endometrial cancer being also a hormone-dependent tumor. The expression of the apoptosis-related Bcl-2 and p53 genes, together with Ki67, E-cadherin, c-erb-B2 and estrogen and progesterone receptors were studied in 136 formalin-fixed, paraffin-embedded endometrial carcinoma samples by means of immunohistochemistry. Bcl-2 expression correlated directly and significantly with E-cadherin (r=0.22, p=0.011) estrogen receptor (r=0.18, p=0.04) and progesterone receptor expression (r=0.30, p=0.0006), and inversely with surgical stage (r=-0.20, p=0.024). Mutant p53 expression was directly and significantly associated with increasing patient age (r=0.25, p=0.007), tumor grade (r=0.37, pKi67 (r=0.47, pbreast cancer, apoptosis is hormonally regulated to some degree also in endometrial cancer.

  18. Attenuation of endoplasmic reticulum stress-related myocardial apoptosis by SERCA2a gene delivery in ischemic heart disease.

    Science.gov (United States)

    Xin, Wei; Lu, Xiaochun; Li, Xiaoying; Niu, Kun; Cai, Jimei

    2011-01-01

    Previous studies suggested that endoplasmic reticulum (ER) stress-associated apoptosis plays an important role in the pathogenesis of ischemic heart disease. Gene transfer of sarco/endoplasmic reticulum Ca(2+) ATPase 2a (SERCA2a) attenuates myocardial apoptosis in a variety of heart failure models. This study is to investigate the effects of SERCA2a gene delivery on the myocardial apoptosis and ER stress pathway in a porcine ischemic heart disease model. Eighteen pigs were either subjected to ameroid implantation in the coronary artery or sham operation. Eight wks after gene delivery, the protein level and activity of SERCA2a were measured. Myocardial apoptosis was determined using terminal deoxynucleotidyl transferase-mediated DNA nick-end labeling assay. Regional myocardial perfusion and function were evaluated by (99m)Tc-sestamibi ((99m)Tc-MIBI) single photon emission computed tomography and echocardiography. The ER stress signaling was assessed by Western blot. SERCA2a protein level and activity were significantly decreased in the ischemic myocardium and restored to normal after SERCA2a gene transfer. Restoration of SERCA2a expression significantly improved the cardiac function, although no improvement of regional myocardial perfusion was detected. Restoration of SERCA2a significantly attenuated myocardial apoptosis and reversed the activation of unfolded protein response (UPR) pathway and the ER stress-associated apoptosis pathways. These findings demonstrate a robust role of SERCA2a in attenuation of ischemic myocardial apoptosis, correlating with reverse activation of the ER stress-associated apoptosis pathways, suggesting that the beneficial effects of SERCA2a gene transfer may involve the attenuation of ER stress-associated myocardial apoptosis.

  19. Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients

    NARCIS (Netherlands)

    MC Langemeijer, Saskia; Mariani, Niccolo; Knops, Ruth; Gilissen, Christian; Woestenenk, Rob; de Witte, Theo; Huls, Gerwin; van der Reijden, Bert A.; Jansen, Joop H.

    2016-01-01

    Although the vast majority of patients with a myelodysplastic syndrome (MDS) suffer from cytopenias, the bone marrow is usually normocellular or hypercellular. Apoptosis of hematopoietic cells in the bone marrow has been implicated in this phenomenon. However, in MDS it remains only partially

  20. Regulation of Microtubule, Apoptosis, and Cell Cycle-Related Genes by Taxotere in Prostate Cancer Cells Analyzed by Microarray

    Directory of Open Access Journals (Sweden)

    Yiwei Li

    2004-03-01

    Full Text Available Taxotere showed antitumor activity against solid tumors including prostate cancer. However, the molecular mechanism(s of action of Taxotere has not been fully elucidated. In order to establish such molecular mechanism(s in both hormone-insensitive (PC3 and hormone-sensitive (LNCaP prostate cancer cells, comprehensive gene expression profiles were obtained by Affymetrix Human Genome U133A Array. The RNA from the cells treated with 2 nM Taxotere was subjected to microarray analysis. We found that a total of 166, 365, and 1785 genes showed greater than twofold change in PC3 cells after 6, 36, and 72 hours of treatment, respectively compared to 57, 823, and 964 genes in LNCaP cells. The expression of tubulin was decreased, whereas the expression of microtubuleassociated proteins was increased in Taxotere-treated prostate cancer cells, confirming the microtubuletargeting effect of Taxotere. Clustering analysis showed downregulation of some genes for cell proliferation and cell cycle. In contrast, Taxotere upregulated some genes that are related to induction of apoptosis and cell cycle arrest. From these results, we conclude that Taxotere caused alterations of a large number of genes, many of which may contribute to the molecular mechanism(s by which Taxotere affects prostate cancer cells. Further molecular studies are needed in order to determine the cause and effect relationships between these genes altered by Taxotere. Nevertheless, our results could be further exploited for devising strategies to optimize therapeutic effects of Taxotere for the treatment of prostate cancer.

  1. Immunohistochemical detection of Ki67 in breast cancer correlates with transcriptional regulation of genes related to apoptosis and cell death.

    Science.gov (United States)

    Tan, Puay-Hoon; Bay, Boon-Huat; Yip, George; Selvarajan, Sathiyamoorthy; Tan, Patrick; Wu, Jeanie; Lee, Chee-How; Li, Kuo-Bin

    2005-03-01

    Ki67 is a nuclear protein that is tightly linked to the cell cycle. It is a marker of cell proliferation and has been used to stratify good and poor prognostic categories in invasive breast cancer. Its correlation with gene expression patterns has not been fully elucidated. In this study, Ki67 immunohistochemistry using the MIB-1 antibody was performed on sections cut from 21 formalin-fixed, paraffin-embedded invasive breast cancers. Scoring was determined as nil (no immunostaining), low (10% or less immunopositivity) or high (>10% immunoreactive cells) respectively. The relationship of Ki67 immunohistochemical detection with clinicopathologic parameters was evaluated. Using Affymetrix U133A GeneChips, expression profiles for these tumors were generated and correlated with Ki67 immunohistochemical findings. Analysis of variance was used to define genes that were differentially regulated between the groups. Real-time polymerase chain reaction (PCR) was used to confirm the presence of a downregulated gene. Our results showed high, low and nil Ki67 immunostaining in nine (43%), six (28.5%) and six (28.5%) invasive breast cancers respectively, with increased Ki67 protein expression correlating with high histologic grade (P=0.02), mitotic score (P=0.001) and estrogen receptor immunonegativity (P=0.002). Expression profiling trends of the Ki67 gene mirrored the observed proportions of immunostained cells when the Ki67 immunoscore was >10%. Genes related to apoptosis and cell death (bcl2, MAP2K4, TNF10) were noted to be downregulated in tumors that disclosed >40% Ki67 immunostaining (Pbreast cancers.

  2. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3

    OpenAIRE

    SONG, YALI; ZHANG, GONG; ZHU, XIULAN; PANG, ZHANJUN; XING, FUQI; QUAN, SONG

    2012-01-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-...

  3. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish.

    Science.gov (United States)

    Félix, Luís M; Serafim, Cindy; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-09-05

    Increasing evidence supports that ketamine, a widely used anaesthetic, potentiates apoptosis during development through the mitochondrial pathway of apoptosis. Defects in the apoptotic machinery can cause or contribute to the developmental abnormalities previously described in ketamine-exposed zebrafish. The involvement of the apoptotic machinery in ketamine-induced teratogenicity was addressed by assessing the apoptotic signals at 8 and 24 hpf following 20min exposure to ketamine at three stages of early zebrafish embryo development (256 cell, 50% epiboly and 1-4 somites stages). Exposure at the 256-cell stage to ketamine induced an up-regulation of casp8 and pcna at 8 hpf while changes in pcna at the mRNA level were observed at 24 hpf. After the 50% epiboly stage exposure, the mRNA levels of casp9 were increased at 8 and 24 hpf while aifm1 was affected at 24 hpf. Both tp53 and pcna expressions were increased at 8 hpf. After exposure during the 1-4 somites stage, no meaningful changes on transcript levels were observed. The distribution of apoptotic cells and the caspase-like enzymatic activities of caspase-3 and -9 were not affected by ketamine exposure. It is proposed that ketamine exposure at the 256-cell stage induced a cooperative mechanism between proliferation and cellular death while following exposure at the 50% epiboly, a p53-dependent and -independent caspase activation may occur. Finally, at the 1-4 somites stage, the defence mechanisms are already fully in place to protect against ketamine-insult. Thus, ketamine teratogenicity seems to be dependent on the functional mechanisms present in each developmental stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The effects of benzene exposure on apoptosis in epithelial lung cells: localization by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and the immunocytochemical localization of apoptosis-related gene products.

    Science.gov (United States)

    Weaver, C V; Liu, S-P; Lu, J-F; Lin, B-S

    2007-05-01

    Although benzene, a well-known human carcinogen, has been shown to induce apoptosis in vitro, no studies have been carried out to confirm and characterize its role in activating apoptosis in vivo. The present study investigated the effects of benzene inhalation on the epithelial cells lining the respiratory tract including bronchioles, terminal bronchioles, respiratory bronchioles and alveoli of male Sprague-Dawley rats. Inhalation of benzene 300 ppm for 7 days induced apoptotic changes in the parenchymal components in the lung that significantly exceeded the events of programmed cell death in normal control tissues. Apoptosis was confirmed by the electrophoretic analysis of internucleosomal DNA fragmentation of benzene-exposed lung tissues, which exhibited 180-200 bp laddering subunits indicative of genomic DNA degradation. Furthermore, semi-quantitative analysis of intracellular localization of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling TUNEL) showed a significant (p respiratory bronchiolar 60.8% segmental epithelial components as well as alveolar (55%) epithelia. Analysis of immunohistochemical expression of apoptosis-related gene products also supported the hypothesis that benzene can induce apoptosis in chemosensitive target cells in the lung parenchyma. Quantitative immunhistochemistry showed a statistically significant increase p respiratory system that demonstrates that benzene inhalation induces lung cell apoptosis as confirmed by DNA electrophoresis, in situ nick end labeling, and the upregulation of apoptosis-related gene products that facilitate caspase-cleaved enzymes which lead to cell degradation via programmed cell death. These responses may represent an important defense mechanism within the parenchymal cells of the respiratory system that reduce mutational hazard and the potential carcinogenic effects of benzene-initiated pathogenesis.

  5. The myb-related gene stonewall induces both hyperplasia and cell death in Drosophila: rescue of fly lethality by coexpression of apoptosis inducers.

    Science.gov (United States)

    Brun, S; Rincheval-Arnold, A; Colin, J; Risler, Y; Mignotte, B; Guénal, I

    2006-10-01

    We carried out gain-of-function mutagenesis screening and identified a mutant in which GAL4 induction led to both hyperplasia and apoptosis. The gene involved was identified as stonewall (stwl), a myb-related gene involved in germ cell proliferation and differentiation during oogenesis. As observed with dmyb, the ectopic expression of stwl(UY823) inhibited endoreplication in salivary glands. We also found that stwl(UY823) overexpression, like overexpression of the wild-type gene, activated G1/S transition and apoptosis. The apoptosis triggered by stwl(UY823) expression is correlated to induction of the proapoptotic gene reaper. Finally, the death of flies induced by ectopic stwl(UY823) expression is efficiently prevented in vivo by triggering cell death in stwl(UY823)-expressing cells. Our results suggest that stwl(UY823) kills flies by causing inappropriate cell cycle entry, and that triggering the death of these overproliferating cells or slowing their proliferation restores viability.

  6. Knockdown of microRNA-29a regulates the expression of apoptosis-related genes in MCF-7 breast carcinoma cells.

    Science.gov (United States)

    Khamisipour, Gholamreza; Mansourabadi, Elham; Naeimi, Behrouz; Moazzeni, Ali; Tahmasebi, Rahim; Hasanpour, Mojtaba; Mohammadi, Majid Mosahebi; Mansourabadi, Zahra; Shamsian, Shakib

    2018-02-01

    MicroRNA (miR), as non-coding small RNA, are key regulators of cancer-related biological cell processes and contribute to tumor growth through regulation of groups of pro- and anti-apoptotic genes. The present study aimed to investigate the effects of miR-29a on the expression of genes involved in apoptosis, including p21, B-cell lymphoma 2 (BCL-2), p53 and survivin. The MCF-7 breast cancer cell line was transfected with anti-miR-29a and treated with Taxol in subdivided treatment groups including: Scramble; anti-miR-29a; anti-miR-29a + Taxol; Taxol; and control. Expression levels of p21, BCL-2, p53 and survivin were evaluated using reverse transcription-quantitative polymerase chain reaction. miR-29a knockdown resulted in p21 and p53 upregulation and a decrease in survivin expression. These results indicated that miR-29a inhibition regulates apoptosis. The present data suggested that miR-29a inhibition may be a promising strategy for the induction of apoptosis of tumor cells.

  7. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-07-01

    Full Text Available Masoumeh Falah,1,2 Mohammad Najafi,2 Massoud Houshmand,3 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran Abstract: Age-related hearing impairment (ARHI is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. Keywords: age-related hearing impairment (ARHI, presbycusis, biomarker, treatment

  8. H3N2 canine influenza virus causes severe morbidity in dogs with induction of genes related to inflammation and apoptosis

    Science.gov (United States)

    2013-01-01

    Dogs are companion animals that live in close proximity with humans. Canine H3N2 influenza virus has been isolated from pet dogs that showed severe respiratory signs and other clinical symptoms such as fever, reduced body weight, and interstitial pneumonia. The canine H3N2 influenza virus can be highly transmissible among dogs via aerosols. When we analyzed global gene expression in the lungs of infected dogs, the genes associated with the immune response and cell death were greatly elevated. Taken together, our results suggest that canine H3N2 influenza virus can be easily transmitted among dogs, and that severe pneumonia in the infected dogs may be partially due to the elevated expression of genes related to inflammation and apoptosis. PMID:24090140

  9. Abnormal apoptosis of trophoblastic cells is related to the up-regulation of CYP11A gene in placenta of preeclampsia patients.

    Directory of Open Access Journals (Sweden)

    Guolin He

    Full Text Available Abnormal placenta trophoblast proliferation and apoptosis is related to the pathogenesis of preeclampsia. Emerging evidence has also indicated that key pregnancy-associated hormones, such as hCG, progesterone, are found in high concentration at the maternal-fetal interface. The purpose of this study was to investigate the expression of CYP11A, a key enzyme in steroid hormone synthesis and metabolism, in normal pregnancy and severe preeclampsia placenta and to explore the underlying mechanism of the relationship between the altered CYP11A expression and onset of preeclampsia. Immunohistochemistry method was used to study the localization of CYP11A-encoded protein P450scc in the placenta; reverse transcription polymerase chain reaction (RT-PCR and Western blotting were used to examine CYP11A expression at mRNA and protein levels in patients with severe preeclampsia and normal placental tissue. CYP11A overexpression in trophoblastic cells was used to evaluate the effect on viability. TUNEL staining was used to determine whether overexpression of CYP11A could affect trophoblastic cell apoptosis. The results showed that CYP11A was selectively expressed in the cytoplasm of the placental trophoblastic cells. CYP11A expression were significantly increased in severe preeclampsia compared with normal pregnancy in both mRNA and protein levels. Multiple regression analysis indicated that CYP11A gene expression was positively correlated to ALT level and Plt, while negatively correlated to INR. Overexpression of CYP11A reduced trophoblastic cell proliferation and induced HTR8/SVneo cells apoptosis through activation of activated caspase-3 expression. These results suggest that abnormally high expression of CYP11A inhibits trophoblastic proliferation and increases apoptosis and therefore could be involved in the pathogenesis of preeclampsia.

  10. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway.

    Science.gov (United States)

    Kim, Joo-Young; Yi, Bo-Rim; Go, Ryeo-Eun; Hwang, Kyung-A; Nam, Ki-Hoan; Choi, Kyung-Chul

    2014-05-01

    Methoxychlor and triclosan are emergent or suspected endocrine-disrupting chemicals (EDCs). Methoxychlor [MXC; 1,1,1-trichlor-2,2-bis (4-methoxyphenyl) ethane] is an organochlorine pesticide that has been primarily used since dichlorodiphenyltrichloroethane (DDT) was banned. In addition, triclosan (TCS) is used as a common component of soaps, deodorants, toothpastes, and other hygiene products at concentrations up to 0.3%. In the present study, the potential impact of MXC and TCS on ovarian cancer cell growth and underlying mechanism(s) was examined following their treatments in BG-1 ovarian cancer cells. As results, MXC and TCS induced BG-1 cell growth via regulating cyclin D1, p21 and Bax genes related with cell cycle and apoptosis. A methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay confirmed that the proliferation of BG-1 ovarian cancer cells was stimulated by MXC (10(-6), 10(-7), 10(-8), and 10(-9)M) or TCS (10(-6), 10(-7), 10(-8), and 10(-9)M). Treatment of BG-1 cells with MXC or TCS resulted in the upregulation of cyclin D1 and downregulation of p21 and Bax transcriptions. In addition, the protein level of cyclin D1 was increased by MXC or TCS while p21 and Bax protein levels appeared to be reduced in these cells. Furthermore, MXC- or TCS-induced alterations of these genes were reversed in the presence of ICI 182,780 (10(-7)M), suggesting that the changes in these gene expressions may be regulated by an ER-dependent signaling pathway. In conclusion, the results of our investigation indicate that two potential EDCs, MXC and TCS, may stimulate ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an ER-dependent pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Cell cycle and apoptosis genes in atherosclerosis

    NARCIS (Netherlands)

    Boesten, Lianne Simone Mirjam

    2006-01-01

    The work described in this thesis was aimed at identifying the role of cell cycle and apoptosis genes in atherosclerosis. Atherosclerosis is the primary cause of cardiovascular disease, a disorder occurring in the large and medium-sized arteries of the body. Although in the beginning 90s promising

  12. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  13. Intracellular glutathione content, developmental competence and expression of apoptosis-related genes associated with G6PDH-activity in goat oocyte.

    Science.gov (United States)

    Abazari-Kia, Amir Hossein; Mohammadi-Sangcheshmeh, Abdollah; Dehghani-Mohammadabadi, Maryam; Jamshidi-Adegani, Fatemeh; Veshkini, Arash; Zhandi, Mahdi; Cinar, Mehmet Ulas; Salehi, Mohammad

    2014-03-01

    To associate glucose-6-phosphate dehydrogenase (G6PDH) activity in goat oocytes with intracellular glutathione (GSH) content, meiotic competence, developmental potential, and relative abundance of Bax and Bcl-2 genes transcripts. Goat oocytes were exposed to brilliant cresyl blue (BCB) staining test and categorized into BCB(+) (blue-cytoplasm), and BCB(-) (colorless-cytoplasm) groups. A group of oocytes were not exposed to BCB test and was considered as a control group. After maturation in vitro, a group of oocytes were used for determination of nuclear status and intracellular GSH content while another group was subjected to parthenogenetic activation followed by in vitro embryo culture. We found that BCB(+) oocytes not only yielded higher rate of maturation, but also showed an increased level of intracellular GSH content than BCB(-) and control oocytes. Furthermore, BCB(+) oocytes produced more blastocysts than BCB(-) and control oocytes. Our data revealed that the expression of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) genes were interacted with G6PDH-activity in mature oocyte, their surrounding cumulus cells, and blastocyst-stage embryos. The results of this study demonstrate that selection of goat oocytes based on G6PDH-activity through the BCB test improves their developmental competence, increases intracellular GSH content, and affects the expression of the apoptosis-related genes.

  14. [Effects of different dental alloys on cytotoxic and apoptosis related genes expression of mouse fibroblast cells L929].

    Science.gov (United States)

    Meng, He; Han, Dong; Zhan, De-Song

    2009-08-01

    To investigate effects of the leaching liquids of 5 different kinds of dental alloys on L929 cells at cell level and molecular level. The fibroblast L929 cells of mouse were cultivated in vitro in leaching liquids of 5 different kinds of dental alloys, Au alloy (n = 8), Ag-Pt alloy (n = 8), Co-Cr alloy (n = 8), Ni-Cr alloy (n = 8), and Cu alloy (n = 8). The RPMI 1640 cell medium containing 10% fetal beef serum was used as control. The cytotoxicities of the 5 dental alloys were evaluated by means of methyl thiazolyl tetrazolium (MTT), and the effects of these alloys on the expression of caspase-3, caspase-8, and caspase-9 mRNA of L929 cells were examined using reverse transcription polymerase chain reaction (RT-PCR) method. After 48 hours culture the cytotoxicity of Cu alloy group was in Grade 4 and those of the other groups were all in Grade 0. The mRNA levels of caspase-8 had no change in all groups (P > 0.05). The mRNA levels of caspase-3 were as follows: Cu alloy (0.474 +/- 0.001), the negative control (0.527 +/- 0.003), Au alloy (0.528 +/- 0.013), Co-Cr alloy (0.615 +/- 0.007), Ag-Pd alloy (0.673 +/- 0.009), and Ni-Cr alloy (0.803 +/- 0.037). The mRNA levels of caspase-9 were as follows: Cu alloy (0.532 +/- 0.041), Au alloy (0.574 +/- 0.013), the negative control (0.578 +/- 0.010), Co-Cr alloy (0.617 +/- 0.009), Ag-Pd alloy (0.703 +/- 0.018), and Ni-Cr alloy (0.811 +/- 0.037). There were significant differences between the groups except the negative control group and Au alloy group. The Cu alloy shows the highest cytotoxicity, and the leaching liquids of 5 different kinds of dental alloys may induce cell apoptosis through mitochondrion pathway.

  15. Early ecotoxic effects of ZnO nanoparticle chronic exposure in Mytilus galloprovincialis revealed by transcription of apoptosis and antioxidant-related genes.

    Science.gov (United States)

    Li, Jiji; Schiavo, Simona; Xiangli, Dong; Rametta, Gabriella; Miglietta, Maria Lucia; Oliviero, Maria; Changwen, Wu; Manzo, Sonia

    2018-04-01

    Recently, China became one of the largest nanomaterial markets in the world. The wide use of ZnO nanoparticles in a number of products implies an increasing release in marine environment and consequently the evaluation of the potential effects upon marine organisms largely cultured in China for commercial purposes, such as invertebrate bivalves is a current need. To this aim, survival, bioaccumulation, and transcription pattern of key genes, p53, PDRP, SOD, CAT, and GST, involved in DNA damage/repair and antioxidation, in Mytilus galloprovincialis digestive gland, exposed to ZnO NPs (ions. Starting from 72 h, increasing mortality values along the exposure time were observed for all ZnO compounds. The highest difference was evident after 28 d when NPs resulted three times more toxic than bulk, (LC 50 ) = 0.78 mg Zn/L (confidence limits: 0.64, 1.00) and 2.62 mg Zn/L (confidence limits: 1.00, 4.00), respectively. For ZnSO 4 the (LC 50 ) was always the lowest reaching the minimum value at 28 d 0.25 mg Zn/L (confidence limits: 0.10-0.40). Digestive gland showed higher uptake rate of ionic Zn respect to ZnO NPs and bulk during the first three days of exposure. In particular at the end of the exposure time (28 d) at 1 mg Zn/L the rank of Zn uptake rate was Zinc ion > ZnO NPs > ZnO bulk. The relative expression of investigated genes evidenced that distinct actions of apoptosis and antioxidation occurred in M. galloprovincialis exposed to ZnO NPs with a peculiar pattern dependent on exposure time and concentration. Application of the qRT-PCR technique revealed evidence of sensitivity to the nanomaterial since the first time of exposure.

  16. Apoptosis Induction by Polygonum minus Is Related to Antioxidant Capacity, Alterations in Expression of Apoptotic-Related Genes, and S-Phase Cell Cycle Arrest in HepG2 Cell Line

    Directory of Open Access Journals (Sweden)

    Mohd Alfazari Mohd Ghazali

    2014-01-01

    Full Text Available Polygonum minus (Polygonaceae is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1–F7. Antioxidant activity was measured via total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH, and ferric reducing antioxidant power (FRAP assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16±6.2 mg GAE/g extract, DPPH; EC50: 30.5±3.2 μg/mL, FRAP; 1169±20.3 μmol Fe (II/mg extract and selective antiproliferative effect (IC50: 25.75±1.5 μg/mL. F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3 and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects.

  17. beta-catenin siRNA regulation of apoptosis- and angiogenesis-related gene expression in hepatocellular carcinoma cells: potential uses for gene therapy.

    Science.gov (United States)

    Wang, Xin-Hong; Sun, Xun; Meng, Xiang-Wei; Lv, Zhi-Wu; Du, Ya-Ju; Zhu, Yan; Chen, Jing; Kong, De-Xia; Jin, Shi-Zhu

    2010-10-01

    The molecular mechanism responsible for hepatocellular carcinoma (HCC) development remains to be defined although a number of gene pathways have been shown to play an active role, such as Wnt/beta-catenin signaling. In this study, beta-catenin small interfering RNA (siRNA) was designed, synthesized, and transfected into HCC HepG2 cells. RT-PCR and western blot assays were performed to detect expression of altered genes and proteins, and the MTT assay was used to detect cell viability. Our data showed that beta-catenin mRNA and protein expression levels were effectively knocked down by beta-catenin siRNA and subsequently, tumor cell proliferation was significantly suppressed. Flow cytometry assay showed that tumor cells were arrested at the G0/G1 phase of the cell cycles. Molecularly, expression of Smad3, p-caspase-3, and Grp78 protein were upregulated after 72 h of beta-catenin siRNA transfection, whereas expression of TERT, caspase-3, XIAP, MMP-2, MMP-9, VEGF-A, VEGF-c, and bFGF protein were reduced. However, there was no change between the expression of STAT3 and the HSP27 protein following transfection. The results from the current study demonstrated the importance of the Wnt/beta-catenin signaling pathway in regulation of gene expression in HCC. Further studies are required to investigate the role of this pathway in HCC development and targeting of this pathway to control HCC.

  18. Gene Expression Profiling of Apoptosis Regulators in Patients with Sepsis

    NARCIS (Netherlands)

    Hoogerwerf, Jacobien J.; van Zoelen, Marieke A.; Wiersinga, W. Joost; van 't Veer, Cornelis; de Vos, Alex F.; de Boer, Anita; Schultz, Marcus J.; Hooibrink, Berend; de Jonge, Evert; van der Poll, Tom

    2010-01-01

    Introduction: Sepsis is associated with a dysregulation of apoptosis in immune cells, which has been implicated in both immunosuppression and multiple organ failure. We describe the expression profiles of genes encoding key regulators of apoptosis in highly purified monocytes, granulocytes and CD4+

  19. [Gene Expression Profile of Apoptosis in Leukemia Cells Induced by Hsp90 Selective inhibitor 17-AAG].

    Science.gov (United States)

    Wang, Na-Na; Li, Zhi-Heng; Tao, Yan-Fang; Xu, Li-Xiao; Pan, Jian; Hu, Shao-Yan

    2016-06-01

    To investigate the apoptotic effects of Hsp90 selective inhibitor 17-AAG on human leukemia HL-60 and NB4 cells and analyse its possible mechanism. CCK-8 assay was used to quantify the growth inhibition of cells after exposure to 17-AAG for 24 hours. Flow cytometrve with annexin V/propidium iodide staining was used to detect apoptosis of leukemia cells. Then Western blot was used to detect the activation of apoptosis related protein caspase-3 and PARP level. Gene expression profile of NB4 cells treated with 17-AAG was analyzed with real-time PCR arrays. The inhibition of leukemia cell proliferation displayed a dose-dependent manner. Annexin V assay, cell cycle analysis and activation of PARP demonstrate that 17-AAG induced apoptosis leukemia cells. Real-time PCR array analysis showed that expression of 56 genes significantly up-regulated and expression of 23 genes were significantly down-regulated after 17-AAG treatment. The 17-AAG can inhibit the proliferation and induce the apoptosis of leukemia cells. After leukemia cells are treated with 17-AAG, the significant changes of apoptosis-related genes occured, and the cell apoptosis occurs via activating apoptosis related signaling pathway.

  20. Validation of the Antiproliferative Effects of Organic Extracts from the Green Husk of Juglans regia L. on PC-3 Human Prostate Cancer Cells by Assessment of Apoptosis-Related Genes

    Directory of Open Access Journals (Sweden)

    Ali A. Alshatwi

    2012-01-01

    Full Text Available With the increased use of plant-based cancer chemotherapy, exploring the antiproliferative effects of phytochemicals for anticancer drug design has gained considerable attention worldwide. This study was undertaken to investigate the effect of walnut green husk extracts on cell proliferation and to determine the possible molecular mechanism of extract-induced cell death by quantifying the expression of Bcl-2, Bax, caspases-3, and Tp53. PC-3 human prostate cancer cells. In this study, we found that green husk extracts suppressed proliferation and induced apoptosis in a dose- and time-dependent manner by modulating expression of apoptosis-related genes. This involved DNA fragmentation (determined by TUNEL assay and significant changes in levels of mRNA and the expression of corresponding proteins. An increase in expressions of Bax, caspase-3, and tp53 genes and their corresponding proteins was detected using real-time PCR and western blot analysis in PC-3 cells treated with the green husk organic extracts. In contrast, Bcl2 expression was downregulated after exposure to the extracts. Our data suggest the presence of bioactive compound(s in walnut green husks that are capable of killing prostate carcinoma cells by inducing apoptosis and that the husks are a candidate source of anticancer drugs.

  1. H2O2-induced mild stress in relation with in vitro ovine oocyte developmental competence: implications for blastocyst apoptosis and related genes expression.

    Science.gov (United States)

    Nikdel, K; Aminafshar, M; Mohammadi-Sangcheshmeh, A; EmamJomeh-Kashan, N; Seyedjafari, E

    2017-05-20

    In this study, in vitro maturation was performed in presence of various concentrations (0, 10, 100, or 1000 µM) of H2O2. The intracellular glutathione (GSH) level, fertilization, cleavage, and blastocyst rates, total cell number, and apoptotic cell number and expression of Bax, Bcl-2, and p53 genes in blastocyst-stage embryos were studied. At 10 μM H2O2 concentration, a higher GSH level was detected in comparison to the other groups while oocytes exposed to 1000 μM H2O2 had the lowest GSH level. Treatment of oocytes with 1000 μM H2O2 decreased the rate of two pronuclei formation as compared with other groups. A higher rate of blastocyst formation was seen in 100 μM H2O2 group as compared with the control group. However, exogenous H2O2 in maturation medium did not affect total cell numbers and apoptotic cell ratio at the blastocyst stage. Moreover, mRNA transcript abundance of Bax, Bcl-2, and p53 genes was similar between blastocysts derived from H2O2-induced oocytes and control blastocysts. Treatment of oocytes with H2O2 at mild level during in vitro maturation had a positive effect on GSH level and this, in turn, may lead to improvement in preimplantation embryonic development.

  2. Impact of broiler egg storage on the relative expression of selected blastoderm genes associated with apoptosis, oxidative stress, and fatty acid metabolism

    Science.gov (United States)

    Cool temperature storage of eggs prior to incubation is a frequent practice by commercial broiler hatcheries. However, continued storage beyond 7 days leads to a progressively increase in the rate of early embryonic mortality. In this study, we examined the relative expression of 31 genes associat...

  3. Gene Network Exploration of Crosstalk between Apoptosis and Autophagy in Chronic Myelogenous Leukemia

    Directory of Open Access Journals (Sweden)

    Fengfeng Wang

    2015-01-01

    Full Text Available Background. Gene expression levels change to adapt the stress, such as starvation, toxin, and radiation. The changes are signals transmitted through molecular interactions, eventually leading to two cellular fates, apoptosis and autophagy. Due to genetic variations, the signals may not be effectively transmitted to modulate apoptotic and autophagic responses. Such aberrant modulation may lead to carcinogenesis and drug resistance. The balance between apoptosis and autophagy becomes very crucial in coping with the stress. Though there have been evidences illustrating the apoptosis-autophagy interplay, the underlying mechanism and the participation of the regulators including transcription factors (TFs and microRNAs (miRNAs remain unclear. Results. Gene network is a graphical illustration for exploring the functional linkages and the potential coordinate regulations of genes. Microarray dataset for the study of chronic myeloid leukemia was obtained from Gene Expression Omnibus. The expression profiles of those genes related to apoptosis and autophagy, including MCL1, BCL2, ATG, beclin-1, BAX, BAK, E2F, cMYC, PI3K, AKT, BAD, and LC3, were extracted from the dataset to construct the gene networks. Conclusion. The network analysis of these genes explored the underlying mechanisms and the roles of TFs and miRNAs for the crosstalk between apoptosis and autophagy.

  4. Dietary intervention of cow ghee and soybean oil on expression of cell cycle and apoptosis related genes in normal and carcinogen treated rat mammary gland.

    Science.gov (United States)

    Rani, Rita; Kansal, Vinod Kumar; Kaushal, Deepti; De, Sachinandan

    2011-06-01

    The present study investigated the effect of cow ghee (clarified butter fat) versus soybean oil on the expression of cyclins A and D1, and apoptosis regulating Bax, Bcl-2 and PKC-α genes in mammary gland of normal and 7,12-dimethylbenz(a)anthracene (DMBA) treated rats. Two groups of 21 days old female rats were fed for 44 weeks diet containing cow ghee or soybean oil (10%). The animals were given DMBA (30 mg/kg body weight) through oral intubation after 5 weeks feeding. Another two groups fed similarly but not given DMBA served as respective controls. In control groups, the expression of cyclin A was similar on both cow ghee and soybean oil, but that of cyclin D1 was more on soybean oil diet. However, in DMBA treated groups, the expression levels of cyclins A and D1 were significantly greater on soybean oil than on cow ghee. The expression levels of Bax, Bcl-2 and PKC-α were similar in two control groups. However, in tumor tissue expression levels of Bcl-2 and PKC-α were significantly lower in cow ghee fed rats than in soybean oil fed ones, but Bax was similarly expressed in both DMBA treated groups. The pro-apoptotic ratio Bax/Bcl-2 increased and the anti-apoptotic ratio PKC-α(Bcl-2/Bax) decreased in cow ghee group compared to soybean oil group in DMBA treated rats. Hence, the decreased expressions of cyclins A and D1, Bcl-2 and PKC-α mediate the mechanism by which cow ghee protects from mammary carcinogenesis.

  5. Apoptosis, proliferation and p53, cyclin D1, and retinoblastoma gene expression in relation to radiation response in transitional cell carcinoma of the bladder

    International Nuclear Information System (INIS)

    Moonen, Luc; Ong, Francisca; Gallee, Maarten; Verheij, Marcel; Horenblas, Simon; Hart, Augustinus A.M.; Bartelink, Harry

    2001-01-01

    Purpose: To determine whether the apoptotic index, the Ki67 index, and the expression of the p53, cyclin D1, and retinoblastoma genes correlate with local control, overall survival, and time to distant metastases in invasive bladder cancer treated with external beam radiation. Methods and Materials: Paraffin-embedded pretreatment biopsies from 83 patients with invasive transitional cell carcinoma of the bladder were scored morphologically for apoptosis and immunohistochemically for Ki67, p53, cyclin D1, and retinoblastoma gene expression. Survival analysis methods were used to assess overall survival, local control, and freedom from distant metastases. A multiple proportional hazard (PH) regression analysis was performed to study the prognostic value of the above mentioned biologic parameters (all divided into two categories, except Ki67) in addition to classical prognostic factors such as T stage, histologic grade, multifocality of the tumor, and completeness of transurethral resection. All patients were treated with external beam radiation as sole treatment. Median follow-up for the 19 patients still living was 7.5 years. Results: Apoptotic index varied from 0% to 3.4% with a mean of 0.8% and a median of 0.6%. Ki67 index varied from 0% to 60% with a mean of 14% and a median of 12%. P53 protein was detectable in 61% of the tumors. Overexpression of cyclin D1 was observed in 39% of the tumors and loss of retinoblastoma protein in 23% of the tumors. High Ki67 index was found to be significantly associated with p53 expression (p=0.04) and cyclin D1 overexpression (p=0.023). Cyclin D1 overexpression was found more often in Rb-positive tumors than in Rb-negative tumors (p=0.006). Other associations between the markers are less clear. Biologic markers were not correlated with T stage or grade. In the PH analysis local control was found to be significantly better for tumors with wild-type p53 (p=0.028). Also, tumors with an apoptotic index above the median value (0

  6. Do prion protein gene polymorphisms induce apoptosis in non ...

    Indian Academy of Sciences (India)

    2016-01-15

    Jan 15, 2016 ... [Birkan T, Şahin M, Öztel Z and Balcan E 2016 Do prion protein gene polymorphisms induce apoptosis in non-mammals? J. Biosci. 41. 97–107] DOI ... of immune system, neurite outgrowth, oxidative stress and cell death and survival .... in randomly selected visual fields by bright field light and fluorescence ...

  7. Expression of apoptosis-related genes in the mouse skin during the first postnatal catagen stage, focused on localization of Bnip3L and caspase-12

    Czech Academy of Sciences Publication Activity Database

    Veselá, Barbora; Matalová, Eva

    2015-01-01

    Roč. 56, č. 4 (2015), s. 326-335 ISSN 0300-8207 Grant - others:GA ČR(CZ) GAP502/12/1285 Program:GA Institutional support: RVO:67985904 Keywords : apoptosis * Bnip3L * caspase-12 Subject RIV: ED - Physiology Impact factor: 1.411, year: 2015

  8. Urtica dioica Extract Inhibits Proliferation and Induces Apoptosis and Related Gene Expression of Breast Cancer Cells In Vitro and In Vivo.

    Science.gov (United States)

    Mohammadi, Ali; Mansoori, Behzad; Baradaran, Pooneh Chokhachi; Khaze, Vahid; Aghapour, Mahyar; Farhadi, Mehrdad; Baradaran, Behzad

    2017-10-01

    Currently, because the prevalence of breast cancer and its consequent mortality has increased enormously in the female population, a number of studies have been designed to identify natural products with special antitumor properties. The main purpose of the present study was to determine the effect of Urtica dioica on triggering apoptosis and diminishing growth, size, and weight of the tumor in an allograft model of BALB/c mice. In the present study, a BALB/c mouse model of breast cancer (4T1) was used. After emergence of tumor, 2 groups of mice received the extract, 1 group at a dose of 10 mg/kg and 1 group at a dose of 20 mg/kg, by intraperitoneal injection for 28 days. During the test and after removal of the tumor mass, the size and weight of the tumor were measured. To assess the induction of apoptosis in the cancer cells, the TUNEL (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling) assay was performed. The Ki-67 test was used to evaluate tumor proliferation. The results showed that the tumor size in the mice treated with the extract decreased significantly. The weight of the tumor mass in the treated mice after resection was less than that in the control group. The TUNEL assay findings revealed that apoptosis occurred in the treated group. The Ki-67 test findings also demonstrated that administration of the extract suppressed the growth of tumor cells. These results suggest that U. dioica extract can decrease the growth of breast tumors and induce apoptosis in tumor cells; thus, it might represent an ideal therapeutic tool for breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of Khat on apoptosis and related gene Smac/DIABLO expression in the cerebral cortex of rats following transient focal ischemia.

    Science.gov (United States)

    Alsharafi, Walid A; Bi, Fang-Fang; Hu, Yue-Qiang; Mujlli, Hadi M; Xiao, Bo

    2015-01-01

    The leaves of the Khat shrub contain the major alkaloid compounds (cathinone) and cathine. These compounds can induce apoptosis and exacerbate the acute cerebral infarction, but the underlying mechanism is poorly understood. The present study aimed to investigate the effects of Khat treatment on the expression and cellular localization of Smac/Diablo (second mitochondrial activator of caspase) in the cortex of ischemic rat brain. Adult male Sprague-Dawley rats were administered Khat (3g/kg) twice daily for 4 weeks, then underwent left middle cerebral artery occlusion (MCAO) for 2h and reperfusion for 3, 6 and 12h, respectively. The infarction area was evaluated with 2,3,5-triphenyltetrazolium chloride (TTC) staining. Apoptosis was assessed by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL). Smac/DIABLO expression levels in experimental and control groups were examined by immunohistochemistry and Western blot. Khat significantly exacerbates the neurological damage compared with control (pSmac/DIABLO from the mitochondria to the cytosol after reperfusion. Such release of Smac/DIABLO was elevated after the rats were pretreated with Khat. Our results indicate that Khat treatment can induce apoptosis through enhancing the release of Smac/DIABLO from the mitochondria to the cytosol after transient focal ischemia which may be an important mechanism of Khat neurotoxicity. Therefore, Khat chewing should be avoided by people who have cerebrovascular problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Influence of vitamin D on cell cycle, apoptosis, and some apoptosis related molecules in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Nafise Tabasi

    2015-11-01

    Full Text Available Objective(s:Genetic and environmental factors are involved in the pathogenesis of systemic lupus erythematosus (SLE. Autoreactive lymphocytes are cleared through apoptosis and any disturbance in the apoptosis or clearance of apoptotic cells may disturb tolerance and lead to autoimmunity. Vitamin D has anti-proliferative effects and controls cell cycle progression. In this study we investigated the effects of vitamin D on cell cycle and apoptosis induction in lupus patients. Materials and Methods:Isolated peripheral blood mononuclear cells (PBMCs from 25 SLE patients were cultured in the presence of 50 nM of 1,25(OH2D3; then one part of the cells were stained with FITC labeled Annexin V and PI and were analyzed for apoptosis determination. For gene expression assessment of FasL, Bcl-2 and Bax, RNA was extracted from one another part of the cells, cDNA was synthesized and gene expression analysis was performed using Real time PCR. An additional part of the cells were treated with PI and the cell cycle was analyzed using flowcytometer. Results: The mean number of early apoptotic cells in vitamin D treated cells decreased significantly (18.48±7.9% compared to untreated cells (22.02±9.4% (P=0.008. Cell cycle analysis showed a significant increase in G1 phase in vitamin D treated cells (67.33±5.2% compared to non treated ones (60.77±5.7% (P =0.02. Vitamin D up-regulated the expression levels of Bcl-2 by (18.87 fold increase, and down-regulated expression of Bax (23% and FasL (25%. Conclusion:Vitamin D has regulatory effects on cell cycle progression, apoptosis and apoptosis related molecules in lupus patients.

  11. Effects of Urtica dioica dichloromethane extract on cell apoptosis and related gene expression in human breast cancer cell line (MDA-MB-468).

    Science.gov (United States)

    Mohammadi, A; Mansoori, B; Goldar, S; Shanehbandi, D; Khaze, V; Mohammadnejad, L; Baghbani, E; Baradaran, B

    2016-02-29

    Breast cancer is the most common cancer among women in worldwide, especially in developing countries. Therefore, a large number of anticancer agents with herbal origins have been reported against this deadly disease. This study is the first to examine the cytotoxic and apoptotic effects of Urtica dioica in MDA-MB-468, human breast adenocarcinoma cells. The 3-(4,5-dimethylethiazol-2 yl)-2,5- diphenyltetrazolium (MTT) reduction and trypan-blue exclusion assay were performed in MDA-MB-468 cells as well as control cell line L929 to analyze the cytotoxic activity of the dichloromethane extract. In addition, Apoptosis induction of Urtica dioica on the MDA-MB-468 cells was assessed using TUNEL (terminal deoxy transferase (TdT)-mediated dUTP nick- end labeling) assay and DNA fragmentation analysis and real-time polymerase chain reaction (PCR). The results showed that the extract significantly inhibited cell growth and viability without inducing damage to normal control cells. Nuclei Staining in TUNEL and DNA fragments in DNA fragmentation assay and increase in the mRNA expression levels of caspase-3, caspase-9, decrease in the bcl2 and no significant change in the caspase-8 mRNA expression level, showed that the induction of apoptosis was the main mechanism of cell death that induce by Urtica dioica extract. Our results suggest that urtica dioica dichloromethane extract may contain potential bioactive compound(s) for the treatment of breast adenocarcinoma.

  12. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus

    2006-01-01

    ,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. 3 The affected genes encode a large number of signalling proteins and receptors......, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. 4 The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR...

  13. Cloning and Characterization of Genes that Inhibit TRAIL-Induced Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Shu, Hong-Bing

    2003-01-01

    ...). However, some cancer cells are resistant to TRAIL-induced apoptosis (3, 4, 6-13). The purpose of this proposed study is to clone and characterize such inhibitory genes of TRAIL-induced apoptosis...

  14. Cortisol levels and expression of selected stress- and apoptosis-related genes in the embryos of Atlantic cod, Gadus morhua following short-term exposure to air

    DEFF Research Database (Denmark)

    Marlowe, Christopher; Caipang, A.; Fagutao, Ferdinand F.

    2015-01-01

    determined before the application of the stressor and at 0.5, 1 and 24 h post-exposure. There was no significant difference in the total cortisol levels of the fertilized eggs before and after handling stress. There was high expression level of hsp70 and sod before application of the stressor...... and significantly increased at 0.5 h postexposure. The expression levels of cat and gpx were weak to moderate and were not affected by the stressor. The apoptotic genes, mcl1 and NR-13 were highly expressed and significantly increased after exposure to air. Bcl-X1 and Bcl-X2 were moderately expressed in the control...... samples, but only the expression level of Bcl-X1significantly increased following exposure to air. Cluster analysis of the different gene expression levels indicated three categories: those genes that did not show any change in the expression levels post-air exposure; those that had low expression level...

  15. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Nana Pei

    Full Text Available Increased expression of angiotensin II type 2 receptor (AT2R induces apoptosis in numerous tumor cell lines, with either Angiotensin II-dependent or Angiotensin II-independent regulation, but its molecular mechanism remains poorly understood. Here, we used PCR Array analysis to determine the gene and microRNA expression profiles in human prostate cancer cell lines transduced with AT2R recombinant adenovirus. Our results demonstrated that AT2R over expression leads to up-regulation of 6 apoptosis-related genes (TRAIL-R2, BAG3, BNIPI, HRK, Gadd45a, TP53BP2, 2 cytokine genes (IL6 and IL8 and 1 microRNA, and down-regulation of 1 apoptosis-related gene TNFSF10 and 2 cytokine genes (BMP6, BMP7 in transduced DU145 cells. HRK was identified as an up-regulated gene in AT2R-transduced PC-3 cells by real-time RT-PCR. Next, we utilized siRNAs to silence the up-regulated genes to further determine their roles on AT2R overexpression mediated apoptosis. The results showed downregulation of Gadd45a reduced the apoptotic effect by ∼30% in DU145 cells, downregulation of HRK reduced AT2R-mediated apoptosis by more than 50% in PC-3 cells, while downregulation of TRAIL-R2 enhanced AT2R-mediated apoptosis more than 4 times in DU145 cells. We also found that the effects on AT2R-mediated apoptosis caused by downregulation of Gadd45a, TRAIL-R2 and HRK were independent in activation of p38 MAPK, p44/42 MAPK and p53. Taken together, our results demonstrated that TRAIL-R2, Gadd45a and HRK may be novel target genes for further study of the mechanism of AT2R-mediated apoptosis in prostate cancer cells.

  16. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    Science.gov (United States)

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  17. Expression of the apoptosis-related genes BCL-2 and BAD in human breast carcinoma and their associated relationship with chemosensitivity

    Directory of Open Access Journals (Sweden)

    Fan Yuan-ming

    2010-08-01

    Full Text Available Abstract Objective To evaluate the expression of BCL-2 and BAD genes in tissues of breast carcinoma and investigate the relationship between the expression of BCL-2 and BAD in breast cancer cells with chemosensitivity. Methods Immunohistochemical technique was used to detect the expression of BCL-2, BAD in 10 normal breast tissues, 10 breast fibroadenoma tissues, 40 youth human breast carcinoma tissues, 40 menopause human breast carcinoma tissues. And to detect the expression of ER, PR in 80 human breast carcinoma tissues. 20 Surgical samples of breast cancer, diagnosed by pathology, were obtained from The First Affiliated Hospital of Chongqing Medical University. The cancer sample cells were cultured separately in the incubator at 37°C, 5% CO2 in vitro. The rate of inhibition of cancer cells in 4 kinds of anticancer drugs-- Epirubicin Adriamycin (EADM,5-Fluorouracil (5-Fu, Navelbine(NVB and Diaminedichloroplatinum (DDP, were assayed by MTT method. Results The expression of BCL-2, BAD genes in young human breast carcinoma tissues were lower than that in menopause human breast carcinoma tissues (P . There was a negative correlation between the positive expression rate of BCL-2 and histologic grade or the lymph node metastasis (P . There was a positive correlation between the expression rates of BCL-2 and of ER, PR (P . The expression of BAD had no relationship with the expression of ER, PR, histologic grade and the lymph node metastasis(P = NS. Sensitivity rates of 20 breast cancer cells in 0.1 × PPC within 48 h in vitro were 30% EADM,20% 5-Fu,45% NVB and 25% DDP. Respectively, the rate of inhibition of EADM,5- Fu, NVB and DDP were significantly higher in the BCL-2 negative cancer cells than in the BCL-2 positive cancer cells. A negative correlation was found between expression of BCL-2 and chemosensitivity for all the 4 anticancer drugs. The inhibition rates of EADM and NVB were significantly lower in the BAD negative cancer cells than in the

  18. Altered Expression of Signaling Genes in Jurkat Cells upon FTY720 Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Shaoheng He

    2010-09-01

    Full Text Available FTY720, a novel immunosuppressant, has a marked activity in decreasing peripheral blood T lymphocytes upon oral administration. Recent investigations suggest that the action of FTY720 on lymphocytes may result from its ability to induce cell apoptosis. However, the cell signaling mechanism involved in the FTY720-induced cell apoptosis remains unclear. Here we examined the apoptotic signal pathways mediated by FTY720 in Jurkat cells using microarray analysis. The results showed that FTY720 can induce Jurkat cell apoptosis in a dose and time dependent manner as assessed by cell viability, Hoechst 33258 staining, Annexin V binding and DNA fragmentation tests. cDNA microarray analysis showed that 10 µM of FTY720 up-regulated 54 and down-regulated 10 genes in Jurkat cells among the 458 apoptotic genes examined following the 6 h incubation period. At least five-fold increased expression of modulator of apoptosis-1 (MOAP-1, vascular endothelial growth factor (VEGF, tumor necrosis factor receptor-associated factors (TRAF 6, Caspase 2 (CASP 2, E2F transcription factor 1 (E2F 1 and Casapse 5 (CASP 5 genes was observed in microarray analyses; these results were confirmed with reverse transcription polymerase chain reaction (RT-PCR examination. Our findings suggest that the mitochondria related signaling pathways are the key pathways involved in the FTY720-induced apoptosis in Jurkat cells. And our results provide a new insight into the mechanism of FTY720, which allows us to draw the first simple diagram showing the potential pathways mediated by FTY720.

  19. Altered expression of signaling genes in Jurkat cells upon FTY720 induced apoptosis.

    Science.gov (United States)

    Wang, Fang; Tan, Wenfeng; Guo, Dunming; Zhu, Xiaomin; Qian, Keqing; He, Shaoheng

    2010-09-02

    FTY720, a novel immunosuppressant, has a marked activity in decreasing peripheral blood T lymphocytes upon oral administration. Recent investigations suggest that the action of FTY720 on lymphocytes may result from its ability to induce cell apoptosis. However, the cell signaling mechanism involved in the FTY720-induced cell apoptosis remains unclear. Here we examined the apoptotic signal pathways mediated by FTY720 in Jurkat cells using microarray analysis. The results showed that FTY720 can induce Jurkat cell apoptosis in a dose and time dependent manner as assessed by cell viability, Hoechst 33258 staining, Annexin V binding and DNA fragmentation tests. cDNA microarray analysis showed that 10 μM of FTY720 up-regulated 54 and down-regulated 10 genes in Jurkat cells among the 458 apoptotic genes examined following the 6 h incubation period. At least five-fold increased expression of modulator of apoptosis-1 (MOAP-1), vascular endothelial growth factor (VEGF), tumor necrosis factor receptor-associated factors (TRAF 6), Caspase 2 (CASP 2), E2F transcription factor 1 (E2F 1) and Casapse 5 (CASP 5) genes was observed in microarray analyses; these results were confirmed with reverse transcription polymerase chain reaction (RT-PCR) examination. Our findings suggest that the mitochondria related signaling pathways are the key pathways involved in the FTY720-induced apoptosis in Jurkat cells. And our results provide a new insight into the mechanism of FTY720, which allows us to draw the first simple diagram showing the potential pathways mediated by FTY720.

  20. The contribution of p53 and Y chromosome long arm genes to regulation of apoptosis in mouse testis.

    Science.gov (United States)

    Lech, Tomasz; Styrna, Józefa; Kotarska, Katarzyna

    2018-03-01

    Apoptosis of excessive or defective germ cells is a natural process occurring in mammalian testes. Tumour suppressor protein p53 is involved in this process both in developing and adult male gonads. Its contribution to testicular physiology is known to be modified by genetic background. The aim of this study was to evaluate the combined influence of the p53 and Y chromosome long arm genes on male germ cell apoptosis. Knockout of the transformation related protein 53 (Trp53) gene was introduced into congenic strains: B10.BR (intact Y chromosome) and B10.BR-Ydel (Y chromosome with a deletion in the long arm). The level of apoptosis in the testes of 19-day-old and 3-month-old male mice was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labelling (TUNEL) method. The study revealed that although p53 is involved in germ cell apoptosis in peripubertal testes, this process can also be mediated by p53-independent mechanisms. However, activation of p53-independent apoptotic pathways in the absence of the p53 protein requires engagement of the multicopy Yq genes and was not observed in gonads of B10.BR-Ydel-p53-/- males. The role of Yq genes in the regulation of testicular apoptosis seems to be restricted to the initial wave of spermatogenesis and is not evident in adult gonads. The study confirmed, instead, that p53 does participate in spontaneous apoptosis in mature testes.

  1. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Directory of Open Access Journals (Sweden)

    Nakamura Shinichiro

    2011-01-01

    Full Text Available Abstract Background Runt-related transcription factor 3 (RUNX3 is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC. Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91% and tissues (90%. RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.

  2. Gene expression profiling reveals two separate mechanisms regulating apoptosis in rectal carcinomas in vivo

    NARCIS (Netherlands)

    de Bruin, Elza C.; van de Pas, Simone; van de Velde, Cornelis J. H.; van Krieken, J. Han J. M.; Peltenburg, Lucy T. C.; Marijnen, Corrie A. M.; Medema, Jan Paul

    2007-01-01

    The level of apoptosis in rectal carcinomas of patients treated by surgery only predicts local failure; patients with intrinsically high-apoptotic tumors develop less local recurrences than patients with low levels of apoptosis. To identify genes involved in this intrinsic apoptotic process in vivo,

  3. Immunohistochemistry of apoptosis-related proteins in retinoblastoma.

    Science.gov (United States)

    Natalino, Renato José Mendonça; Antoneli, Célia Beatriz Gianotti; Ribeiro, Karina de Cássia Braga; Campos, Antônio Hugo José Fróes Marques; Soares, Fernando Augusto

    2016-12-01

    Retinoblastoma is the most common intraocular malignant neoplasia during childhood and results from the partial or total inactivity of the retinoblastoma protein (pRb). In the absence of pRb, the E2F transcription factors increase the levels of cell cycle proteins as well as some pro-apoptotic proteins. We intended to study the immunohistochemistry profile of apoptotic-related proteins in retinoblastoma. We also evaluated the association between the expression of apoptotic protein and stage of tumor or survivor after a 5year follow up. Apoptosis-related proteins (Apaf-1, Bak, Bax, Bcl-2, Bcl-xL, Bim-long, MDM2, p53, pro-caspase-3, PUMA, Smac/DIABLO and cleaved caspase-3) were evaluated using immunohistochemistry on tissue microarrays which contained samples of retinoblastoma tumors taken from ninety-three patients without any treatment previous to surgery. The immunohistochemistry reactions were evaluated using an optical microscope as well as the ACIS III ® platform. The pro-apoptotic proteins (APAF-1, Bax, p53, PUMA, Smac/DIABLO) were more frequently expressed than the anti-apoptotic proteins (Bcl-2, Bcl-xL and MDM2). The protein Bcl-xL had a negative correlation with cleaved caspase-3, a marker of cell apoptosis. Bcl-xL may be implicated in an apoptosis block. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. The Role of the Prohibition Gene in Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Kinkade, Rebecca; Chellappan, Srikumar P

    2004-01-01

    .... Mutations in the prohibitin gene were subsequently found in sporadic breast tumors. Our experiments in B cells and breast cancer cells suggest that prohibitin protects against apoptosis induced by camptothecin, a topoisomerase 1 inhibitor...

  5. The Role of the Prohibitin Gene in Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Kinkade, Rebecca; Chellappan, Srikumar P

    2005-01-01

    .... Mutations in the prohibitin gene were subsequently found in sporadic breast tumors. Our experiments in B cells and breast cancer cells suggest that prohibitin protects against apoptosis induced by camptothecin, a topoisomerase I inhibitor...

  6. Multiwall Carbon Nanotube-Induced Apoptosis and Antioxidant Gene Expression in the Gills, Liver, and Intestine of Oryzias latipes

    Directory of Open Access Journals (Sweden)

    Jin Wuk Lee

    2015-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs have many attractive properties with potential applications in various fields. Despite their usefulness, however, the associated waste can be hazardous to the environment. To examine adverse effects in aquatic environments, Oryzias latipes were exposed to MWCNTs dispersed in water for 14 days and apoptosis and antioxidant gene expression were observed. This work showed that in gills exposed to 100 mg/L MWCNTs for 4 days, there was significant p53, caspase-3 (Cas3, caspase-8 (Cas8, and caspase-9 (Cas9 gene expression relative to the controls, while catalase (CAT and glutathione-S-transferase (GST expression were reduced. At 14 days, CAT, GST, and metallothionein (MT were induced significantly in the gills and Cas3, Cas8, and Cas9 were induced in the liver. No significant gene induction was seen in intestine. Intracellular reactive oxygen species (ROS were increased significantly only at 14 days. Histologically, no apoptosis was observed with exposure to 100 mg/L MWCNTs for 21 days. The gills were more sensitive to MWCNT toxicity than the other organs. Males had higher apoptosis gene induction than females. These results demonstrated that MWCNTs could cause apoptosis in a manner influenced by tissue and gender in aqueous environments.

  7. Multiwall Carbon Nanotube-Induced Apoptosis and Antioxidant Gene Expression in the Gills, Liver, and Intestine of Oryzias latipes

    Science.gov (United States)

    Lee, Jin Wuk; Kim, Rosa; Lee, Sung Kyu

    2015-01-01

    Multiwall carbon nanotubes (MWCNTs) have many attractive properties with potential applications in various fields. Despite their usefulness, however, the associated waste can be hazardous to the environment. To examine adverse effects in aquatic environments, Oryzias latipes were exposed to MWCNTs dispersed in water for 14 days and apoptosis and antioxidant gene expression were observed. This work showed that in gills exposed to 100 mg/L MWCNTs for 4 days, there was significant p53, caspase-3 (Cas3), caspase-8 (Cas8), and caspase-9 (Cas9) gene expression relative to the controls, while catalase (CAT) and glutathione-S-transferase (GST) expression were reduced. At 14 days, CAT, GST, and metallothionein (MT) were induced significantly in the gills and Cas3, Cas8, and Cas9 were induced in the liver. No significant gene induction was seen in intestine. Intracellular reactive oxygen species (ROS) were increased significantly only at 14 days. Histologically, no apoptosis was observed with exposure to 100 mg/L MWCNTs for 21 days. The gills were more sensitive to MWCNT toxicity than the other organs. Males had higher apoptosis gene induction than females. These results demonstrated that MWCNTs could cause apoptosis in a manner influenced by tissue and gender in aqueous environments. PMID:26146619

  8. Identification of genes regulated by Wnt/β-catenin pathway and involved in apoptosis via microarray analysis

    Directory of Open Access Journals (Sweden)

    Chen Quan

    2006-09-01

    Full Text Available Abstract Background Wnt/β-catenin pathway has critical roles in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of this pathway, little is known regarding Wnt/β-catenin pathway modification of the cellular apoptosis. Methods To identify potential genes regulated by Wnt/β-catenin pathway and involved in apoptosis, we used a stably integrated, inducible RNA interference (RNAi vector to specific inhibit the expression and the transcriptional activity of β-catenin in HeLa cells. Meanwhile, we designed an oligonucleotide microarray covering 1384 apoptosis-related genes. Using oligonucleotide microarrays, a series of differential expression of genes was identified and further confirmed by RT-PCR. Results Stably integrated inducible RNAi vector could effectively suppress β-catenin expression and the transcriptional activity of β-catenin/TCF. Meanwhile, depletion of β-catenin in this manner made the cells more sensitive to apoptosis. 130 genes involved in some important cell-apoptotic pathways, such as PTEN-PI3K-AKT pathway, NF-κB pathway and p53 pathway, showed significant alteration in their expression level after the knockdown of β-catenin. Conclusion Coupling RNAi knockdown with microarray and RT-PCR analyses proves to be a versatile strategy for identifying genes regulated by Wnt/β-catenin pathway and for a better understanding the role of this pathway in apoptosis. Some of the identified β-catenin/TCF directed or indirected target genes may represent excellent targets to limit tumor growth.

  9. Apoptosis Gene Hunting Using Retroviral Expression Cloning: Identification of Vacuolar ATPase Subunit E

    Directory of Open Access Journals (Sweden)

    Claire L. Anderson

    2003-01-01

    Full Text Available Over the past 10-15 years there has been an explosion of interest in apoptosis. The delayed realisation that cell death is an essential part of life for any multicellular organism has meant that, despite the recent and rapid developments of the last decade, the precise biochemical pathways involved in apoptosis remain incomplete and potentially novel genes may, as yet, remain undiscovered. The hunt is therefore on to bridge the remaining gaps in our knowledge. Our contribution to this research effort utilises a functional cloning approach to isolate important regulatory genes involved in apoptosis. This mini-review focuses on the use and advantages of a retroviral expression cloning strategy and describes the isolation and identification of one such potential apoptosis regulatory gene, namely that encoding vacuolar ATPase subunit E.

  10. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed

    2006-01-01

    in cancer. In this regard, several studies have demonstrated an antiapoptotic effect of TIMP-1 in a number of different cell types. Since chemotherapy works by inducing apoptosis in cancer cells, we raised the hypothesis that TIMP-1 promotes resistance against chemotherapeutic drugs. In order to investigate...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...

  11. Mitochondrial pathway of apoptosis and related proteins in placenta ...

    African Journals Online (AJOL)

    eclampsia (PE).This study aimed at evaluating the mitochondrial pathway of apoptosis in placenta of pregnant women with pre-eclampsia and correlate it with severity and pregnancy outcome . Apoptosis was assessed by measuring DNA ...

  12. Effect of C3G gene on apoptosis and proliferation of H9C2 cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Dong-yan YANG

    2015-10-01

    gene silence can induce apoptosis and inhibit proliferation in H9C2 cardiomyocytes, and overexpression of C3G gene can reverse the effects of C3G gene silence affecting in H9C2 cardiomyocytes, characterized by a reduction of apoptosis rate and promotion of proliferation, and they may be related to p-ERK1/2 protein and pro-apoptotic molecule Bax. DOI: 10.11855/j.issn.0577-7402.2015.08.01

  13. Genes involved in immunity and apoptosis are associated with human presbycusis based on microarray analysis.

    Science.gov (United States)

    Dong, Yang; Li, Ming; Liu, Puzhao; Song, Haiyan; Zhao, Yuping; Shi, Jianrong

    2014-06-01

    Genes involved in immunity and apoptosis were associated with human presbycusis. CCR3 and GILZ played an important role in the pathogenesis of presbycusis, probably through regulating chemokine receptor, T-cell apoptosis, or T-cell activation pathways. To identify genes associated with human presbycusis and explore the molecular mechanism of presbycusis. Hearing function was tested by pure-tone audiometry. Microarray analysis was performed to identify presbycusis-correlated genes by Illumina Human-6 BeadChip using the peripheral blood samples of subjects. To identify biological process categories and pathways associated with presbycusis-correlated genes, bioinformatics analysis was carried out by Gene Ontology Tree Machine (GOTM) and database for annotation, visualization, and integrated discovery (DAVID). Quantitative RT-PCR (qRT-PCR) was used to validate the microarray data. Microarray analysis identified 469 up-regulated genes and 323 down-regulated genes. Both the dominant biological processes by Gene Ontology (GO) analysis and the enriched pathways by Kyoto encyclopedia of genes and genomes (KEGG) and BIOCARTA showed that genes involved in immunity and apoptosis were associated with presbycusis. In addition, CCR3, GILZ, CXCL10, and CX3CR1 genes showed consistent difference between groups for both the gene chip and qRT-PCR data. The differences of CCR3 and GILZ between presbycusis patients and controls were statistically significant (p < 0.05).

  14. Do prion protein gene polymorphisms induce apoptosis in non

    Indian Academy of Sciences (India)

    To elucidate the relationship between the SNPs and apoptosis, TUNEL assays and active caspase-3 immunodetection techniques in brain sections of the polymorphic samples were performed. The results revealed that TUNEL-positive cells and active caspase-3-positive cells in the turtles with four polymorphisms were ...

  15. Telomerase activity and apoptosis genes as parameters of ...

    African Journals Online (AJOL)

    It is hypothesized that Down syndrome (DS) patients are associated with abnormalities of the immune system. Accordingly, this study was conducted to measure replicative aging and apoptosis in lymphocytes, which play an important role in the immune system, before and after being biostimulated with He:Ne laser.

  16. Telomerase activity and apoptosis genes as parameters of ...

    African Journals Online (AJOL)

    Ekram Abdel-Salam

    2013-01-23

    Jan 23, 2013 ... Abstract It is hypothesized that Down syndrome (DS) patients are associated with abnormalities of the immune system. Accordingly, this study was conducted to measure replicative aging and apoptosis in lymphocytes, which play an important role in the immune system, before and after being biostimulated ...

  17. Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins

    Czech Academy of Sciences Publication Activity Database

    Park, S.; Cho, D. J.; Anděra, Ladislav; Suh, N.; Kim, I.

    2013-01-01

    Roč. 383, 1-2 (2013), s. 39-48 ISSN 0300-8177 Institutional support: RVO:68378050 Keywords : TRAIL * curcumin * apoptosis * breast cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.388, year: 2013

  18. MicroRNA-138 enhances TRAIL-induced apoptosis through interferon-stimulated gene 15 downregulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zuo, Chaohui; Sheng, Xinyi; Liu, Zhuo; Ma, Min; Xiong, Shuhan; Deng, Hongyu; Li, Sha; Yang, Darong; Wang, Xiaohong; Xiao, Hua; Quan, Hu; Xia, Man

    2017-06-01

    Hepatocellular carcinoma is a leading cause of cancer-related mortality worldwide. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a potential target for cancer therapy. However, many cancer cells are resistant to TRAIL-induced apoptosis and its mechanism is not well understood. In this study, to identify potential therapeutic targets for TRAIL-resistant cancer cells, we compared the expression levels of interferon-stimulated gene 15 in TRAIL-sensitive and TRAIL-resistant hepatocellular carcinoma cell lines. Western blot analysis showed that interferon-stimulated gene 15 expression levels were significantly higher in resistant HLCZ01and Huh7 cells than in sensitive LH86 and SMMC-7721 cells. Interferon-stimulated gene 15 knockdown in resistance cells led to TRAIL sensitivity. Conversely, interferon-stimulated gene 15 overexpression in sensitive cells resulted in TRAIL resistance. Our bioinformatics search detected a putative target sequence for microRNA miR-138 in the 3' untranslated region of the interferon-stimulated gene 15. Real-time quantitative polymerase chain reaction analysis demonstrated that miR-138 was significantly downregulated in TRAIL-resistant cells compared to TRAIL-sensitive cells. Forced expression of miR-138 in resistant cells decreased both messenger RNA and protein levels of interferon-stimulated gene 15, and when exposed to TRAIL, activated poly(adenosine diphosphate-ribose) polymerase, indicating sensitization to TRAIL. The results suggested that miR-138 regulates the interferon-stimulated gene 15 expression by directly targeting the 3' untranslated region of interferon-stimulated gene 15 and modulates the sensitivity to TRAIL-induced apoptosis. MiR-138 may be a target for therapeutic intervention in TRAIL-based drug treatments of resistant hepatocellular carcinoma or could be a biomarker to select patients who may benefit from the treatment.

  19. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells

    Science.gov (United States)

    Wu, Yi-Ying; Tsai, Hwei-Fang; Lin, We-Cheng; Chou, Ai-Hsiang; Chen, Hui-Ting; Yang, Jyh-Chin; Hsu, Ping-I; Hsu, Ping-Ning

    2004-01-01

    AIM: To investigate the relations between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Helicobacter pylori (H pylori) infection in apoptosis of gastric epithelial cells and to assess the expression of TRAIL on the surface of infiltrating T-cells in H pylori-infected gastric mucosa. METHODS: Human gastric epithelial cell lines and primary gastric epithelial cells were co-cultured with H pylori in vitro, then recombinant TRAIL proteins were added to the culture. Apoptosis of gastric epithelial cells was determined by a specific ELISA for cell death. Infiltrating lymphocytes were isolated from H pylori-infected gastric mucosa, and expression of TRAIL in T cells was analyzed by flow cytometry. RESULTS: The apoptosis of gastric epithelial cell lines and primary human gastric epithelial cells was mildly increased by interaction with either TRAIL or H pylori alone. Interestingly, the apoptotic indices were markedly elevated when gastric epithelial cells were incubated with both TRAIL and H pylori (Control vs TRAIL and H pylori: 0.51 ± 0.06 vs 2.29 ± 0.27, P = 0.018). A soluble TRAIL receptor (DR4-Fc) could specifically block the TRAIL-mediated apoptosis. Further studies demonstrated that infiltrating T-cells in gastric mucosa expressed TRAIL on their surfaces, and the induction of TRAIL sensitivity by H pylori was dependent upon direct cell contact of viable bacteria, but not CagA and VacA of H pylori. CONCLUSION: H pylori can sensitize human gastric epithelial cells and enhance susceptibility to TRAIL-mediated apoptosis. Modulation of host cell sensitivity to apoptosis by bacterial interaction adds a new dimension to the immunopathogenesis of H pylori infection. PMID:15285015

  20. Characterization of apoptosis-related oxidoreductases from Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Patrícia Carneiro

    Full Text Available The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins.

  1. Estrogen induces apoptosis in estrogen deprivation-resistant breast cancer through stress responses as identified by global gene expression across time.

    Science.gov (United States)

    Ariazi, Eric A; Cunliffe, Heather E; Lewis-Wambi, Joan S; Slifker, Michael J; Willis, Amanda L; Ramos, Pilar; Tapia, Coya; Kim, Helen R; Yerrum, Smitha; Sharma, Catherine G N; Nicolas, Emmanuelle; Balagurunathan, Yoganand; Ross, Eric A; Jordan, V Craig

    2011-11-22

    In laboratory studies, acquired resistance to long-term antihormonal therapy in breast cancer evolves through two phases over 5 y. Phase I develops within 1 y, and tumor growth occurs with either 17β-estradiol (E(2)) or tamoxifen. Phase II resistance develops after 5 y of therapy, and tamoxifen still stimulates growth; however, E(2) paradoxically induces apoptosis. This finding is the basis for the clinical use of estrogen to treat advanced antihormone-resistant breast cancer. We interrogated E(2)-induced apoptosis by analysis of gene expression across time (2-96 h) in MCF-7 cell variants that were estrogen-dependent (WS8) or resistant to estrogen deprivation and refractory (2A) or sensitive (5C) to E(2)-induced apoptosis. We developed a method termed differential area under the curve analysis that identified genes uniquely regulated by E(2) in 5C cells compared with both WS8 and 2A cells and hence, were associated with E(2)-induced apoptosis. Estrogen signaling, endoplasmic reticulum stress (ERS), and inflammatory response genes were overrepresented among the 5C-specific genes. The identified ERS genes indicated that E(2) inhibited protein folding, translation, and fatty acid synthesis. Meanwhile, the ERS-associated apoptotic genes Bcl-2 interacting mediator of cell death (BIM; BCL2L11) and caspase-4 (CASP4), among others, were induced. Evaluation of a caspase peptide inhibitor panel showed that the CASP4 inhibitor z-LEVD-fmk was the most active at blocking E(2)-induced apoptosis. Furthermore, z-LEVD-fmk completely prevented poly (ADP-ribose) polymerase (PARP) cleavage, E(2)-inhibited growth, and apoptotic morphology. The up-regulated proinflammatory genes included IL, IFN, and arachidonic acid-related genes. Functional testing showed that arachidonic acid and E(2) interacted to superadditively induce apoptosis. Therefore, these data indicate that E(2) induced apoptosis through ERS and inflammatory responses in advanced antihormone-resistant breast cancer.

  2. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  3. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  4. Mycoplasma hyorhinis and Mycoplasma fermentans induce cell apoptosis and changes in gene expression profiles of 32D cells

    Directory of Open Access Journals (Sweden)

    Wenbin Liu

    2011-01-01

    Full Text Available Infection of mycoplasmas has been linked to various human diseases including arthritis, pneumonia, infertility and cancer. While Mycoplasma hyorhinis and Mycoplasma fermentans have been detected in gastric adenocarcinomas, the mechanisms underlyine the pathogenesis are unknown. In this study, cell growth kinetics, Hoechst 33258 staining, DNA ladder assays, Western blotting analysis and cDNA microarray assays were performed to investigate the roles of M. hyorhinis and M. fermentans during infection of mammalian cells. Our data demonstrated that these mycoplasmas inhibid the growth of immortalised cell lines (32D and COS-7 ane tumor cell lines (HeLa and AGS. In addition, the infection of the 32D cell line with M. hyorhinis and M. fermentans induced compression of the nucleus, degradation of the cell genome and dysregulation of the expression of genes related to proliferation, apoptosis, tumorigenesis, signaling pathway and metabolism. Apoptosis related proteins Bcl-2, Bid and p53 were down-regulated, Fas was up-regulated and Bax was dysregulated in mycoplasma-infected 32D cells. Together, our data demonstrated that infection of mycoplasmas inhibitd cele growts through modification of gene expression profiles and post-translation modification of proliferation and apoptosis related proteins.

  5. related apoptosis-inducing ligand in transplastomic tobacco

    African Journals Online (AJOL)

    -inducing ligand (sTRAIL) can, as the whole length TRAIL protein, bind with its receptors and specifically induce the apoptosis of cancer cells; therefore, it has been developed as a potential therapeutic agent for various cancer treatments.

  6. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.

    Directory of Open Access Journals (Sweden)

    Kamalakannan Velmurugan

    2007-07-01

    Full Text Available The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

  7. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death.

    Science.gov (United States)

    Truong-Tran, A Q; Ho, L H; Chai, F; Zalewski, P D

    2000-05-01

    The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to cell death in response to toxins and in disease, offering hope that novel therapies that target apoptotic pathways may be developed. Because Zn levels in the body can be increased in a relatively nontoxic manner, it may be possible to prevent or ameliorate degenerative disorders that are associated with high rates of apoptotic cell death. This review begins with brief introductions that address, first, the cellular biology of Zn, especially the critical labile Zn pools, and, second, the phenomenon of apoptosis. We then review the evidence relating Zn to apoptosis and address three major hypotheses: (1) that a specific pool or pools of intracellular labile Zn regulates apoptosis; (2) that systemic changes in Zn levels in the body, due to dietary factors, altered physiological states or disease, can influence cell susceptibility to apoptosis, and (3) that this altered susceptibility to apoptosis contributes to pathophysiological changes in the body. Other key issues are the identity of the molecular targets of Zn in the apoptotic cascade, the types of cells and tissues most susceptible to Zn-regulated apoptosis, the role of Zn as a coordinate regulator of mitosis and apoptosis and the apparent release of tightly bound intracellular pools of Zn during the later stages of apoptosis. This review concludes with a section highlighting areas of priority for future studies.

  8. Targeted gene delivery in tumor xenografts by the combination of ultrasound-targeted microbubble destruction and polyethylenimine to inhibit survivin gene expression and induce apoptosis

    Directory of Open Access Journals (Sweden)

    Qiu Ri-Xiang

    2010-11-01

    Full Text Available Abstract Background Noninvasive and tissue-specific technologies of gene transfection would be valuable in clinical gene therapy. This present study was designed to determine whether it could enhance gene transfection in vivo by the combination of ultrasound-targeted microbubble destruction (UTMD with polyethylenimine (PEI in tumor xenografts, and illuminate the effects of gene silencing and apoptosis induction with short hairpin RNA (shRNA interference therapy targeting human survivin by this novel technique. Methods Two different expression vectors (pCMV-LUC and pSIREN were incubated with PEI to prepare cationic complexes (PEI/DNA and confirmed by the gel retardation assay. Human cervical carcinoma (Hela tumors were planted subcutaneously in both flanks of nude mice. Tumor-bearing mice were administered by tail vein with PBS, plasmid, plasmid and SonoVue microbubble, PEI/DNA and SonoVue microbubble. One tumor was exposed to ultrasound irradiation, while the other served as control. The feasibility of targeted delivery and tissue specificity facilitated by UTMD and PEI were investigated. Moreover, immunohistochemistry analyses about gene silencing and apoptosis induction were detected. Results Electrophoresis experiment revealed that PEI could condense DNA efficiently. The application of UTMD significantly increases the tissue transfection. Both expression vectors showed that gene expressions were present in all sections of tumors that received ultrasound exposure but not in control tumors. More importantly, the increases in transgene expression were related to UTMD with the presence of PEI significantly. Silencing of the survivin gene could induce apoptosis effectively by downregulating survivin and bcl-2 expression, also cause up-regulation of bax and caspase-3 expression. Conclusions This noninvasive, novel combination of UTMD with PEI could enhance targeted gene delivery and gene expression in tumor xenografts at intravenous administration

  9. [Promoter methylation status of SFRP genes and induced apoptosis by demethylation in Jurkat cells].

    Science.gov (United States)

    Xu, Chengbo; Shen, Jianzhen; Liao, Bin; Fu, Haiying; Zhou, Huarong; Qi, Yan; Huangfu, Zhenping; Chen, Yining; Chen, Jiawei

    2016-01-01

    To study the promoter methylation status of SFRP genes and the effect of 5- aza- 2'- deoxycytidine (5- Aza- CdR)induced apoptosis via Wnt/β- catenin pathway by demethylation in Jurkat cells. Jurkat cells were treated with different concentrations of 5- Aza- CdR. The cell proliferation level of Jurkat cells was detected by MTT assay. Apoptosis was evaluated by flow cytometry. Methylation- spcific PCR (MSP) was used to determine the methylation status of SFRP genes. The expressions of SFRP genes were detected by real time fluorescence quantitative PCR. The mRNA expression levels of survivin, c- myc and cyclin- D1 were analyzed by RT- PCR. Western blot was used to detect the levels of β-catenin protein. Compared with control group, the different concentrations of 5-Aza-CdR could significantly inhibit the proliferation of Jurkat cells in a time-dose dependent manner (P<0.05). After being treated by 5- Aza- CdR for 48 hours, the cell early apoptosis rate in experiment group was significantly higher than that in control group (P<0.05). The promoters of SFRP1, SFRP2, SFRP4, SFRP5 genes were hypermethylation state in the control group, after being treated by 5-Aza-CdR for 72 hours, the brightness of SFRP1, SFRP2, SFRP4, SFRP5 genes' methylation strips weakened in a dose- dependent manner. SFRP mRNA expression increased (P<0.05) when 5- Aza- CdR concentration increased, and the level of β- catenin protein was dampened in a dose- dependent manner (P<0.05). As compared to the control group, the mRNA expressions of associated apoptosis genes survivin, c-myc and cyclin- D1, respectively were obviously down- regulated in a dose- dependent manner (P<0.05). The effect of demethylation could up- regulate SFRP genes expressions by reversing its hypermethylation and induced apoptosis by down-regulation of β-catenin and associated apoptosis genes.

  10. The identification of a novel gene, MAPO2, that is involved in the induction of apoptosis triggered by O⁶-methylguanine.

    Directory of Open Access Journals (Sweden)

    Ryosuke Fujikane

    Full Text Available O⁶-Methylguanine, one of alkylated DNA bases, is especially mutagenic. Cells containing this lesion are eliminated by induction of apoptosis, associated with the function of mismatch repair (MMR proteins. A retrovirus-mediated gene-trap mutagenesis was used to isolate new genes related to the induction of apoptosis, triggered by the treatment with an alkylating agent, N-methyl-N-nitrosourea (MNU. This report describes the identification of a novel gene, MAPO2 (O⁶-methylguanine-induced apoptosis 2, which is originally annotated as C1orf201. The MAPO2 gene is conserved among a wide variety of multicellular organisms and encodes a protein containing characteristic PxPxxY repeats. To elucidate the function of the gene product in the apoptosis pathway, a human cell line derived from HeLa MR cells, in which the MAPO2 gene was stably knocked down by expressing specific miRNA, was constructed. The knockdown cells grew at the same rate as HeLa MR, thus indicating that MAPO2 played no role in the cellular growth. After exposure to MNU, HeLa MR cells and the knockdown cells underwent cell cycle arrest at G₂/M phase, however, the production of the sub-G₁ population in the knockdown cells was significantly suppressed in comparison to that in HeLa MR cells. Moreover, the activation of BAK and caspase-3, and depolarization of mitochondrial membrane, hallmarks for the induction of apoptosis, were also suppressed in the knockdown cells. These results suggest that the MAPO2 gene product might positively contribute to the induction of apoptosis triggered by O⁶-methylguanine.

  11. TAF6delta controls apoptosis and gene expression in the absence of p53.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Wilhelm

    Full Text Available BACKGROUND: Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6delta that can be induced during apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the impact of TAF6delta on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6delta. The induction of endogenous TAF6delta triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6delta activates gene expression independently of cellular p53 status. CONCLUSIONS: Our data define TAF6delta as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53.

  12. Do prion protein gene polymorphisms induce apoptosis in non ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Genetic variations such as single nucleotide polymorphisms (SNPs) in prion protein coding gene, Prnp, greatly affect susceptibility to prion diseases in mammals. Here, the coding region of Prnp was screened for polymorphisms in redeared turtle, Trachemys scripta. Four polymorphisms, L203V, N205I, ...

  13. Determining Semantically Related Significant Genes.

    Science.gov (United States)

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.

  14. Adenovirus carrying gene encoding Haliotis discus discus sialic acid binding lectin induces cancer cell apoptosis.

    Science.gov (United States)

    Yang, Xinyan; Wu, Liqin; Duan, Xuemei; Cui, Lianzhen; Luo, Jingjing; Li, Gongchu

    2014-06-30

    Lectins exist widely in marine bioresources such as bacteria, algae, invertebrate animals and fishes. Some purified marine lectins have been found to elicit cytotoxicity to cancer cells. However, there are few reports describing the cytotoxic effect of marine lectins on cancer cells through virus-mediated gene delivery. We show here that a replication-deficient adenovirus-carrying gene encoding Haliotis discus discus sialic acid binding lectin (Ad.FLAG-HddSBL) suppressed cancer cell proliferation by inducing apoptosis, as compared to the control virus Ad.FLAG. A down-regulated level of anti-apoptosis factor Bcl-2 was suggested to be responsible for the apoptosis induced by Ad.FLAG-HddSBL infection. Further subcellular localization studies revealed that HddSBL distributed in cell membrane, ER, and the nucleus, but not in mitochondria and Golgi apparatus. In contrast, a previously reported mannose-binding lectin Pinellia pedatisecta agglutinin entered the nucleus as well, but did not distribute in inner membrane systems, suggesting differed intracellular sialylation and mannosylation, which may provide different targets for lectin binding. Further cancer-specific controlling of HddSBL expression and animal studies may help to provide insights into a novel way of anti-cancer marine lectin gene therapy. Lectins may provide a reservoir of anti-cancer genes.

  15. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Repression of SRF target genes is critical for Myc-dependent apoptosis of epithelial cells

    Science.gov (United States)

    Wiese, Katrin E; Haikala, Heidi M; von Eyss, Björn; Wolf, Elmar; Esnault, Cyril; Rosenwald, Andreas; Treisman, Richard; Klefström, Juha; Eilers, Martin

    2015-01-01

    Oncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli, and this protects long-lived organisms from cancer development. How cells discriminate physiological from supraphysiological levels of Myc is largely unknown. Here, we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1. Gene expression and ChIP-Sequencing experiments show that high levels of Myc invade target sites that lack consensus E-boxes in a complex with Miz1 and repress transcription. Myc/Miz1-repressed genes encode proteins involved in cell adhesion and migration and include several integrins. Promoters of repressed genes are enriched for binding sites of the serum-response factor (SRF). Restoring SRF activity antagonizes Myc repression of SRF target genes, attenuates Myc-induced apoptosis, and reverts a Myc-dependent decrease in Akt phosphorylation and activity, a well-characterized suppressor of Myc-induced apoptosis. We propose that high levels of Myc engage Miz1 in repressive DNA binding complexes and suppress an SRF-dependent transcriptional program that supports survival of epithelial cells. PMID:25896507

  17. An analysis of growth, differentiation and apoptosis genes with risk of renal cancer.

    Directory of Open Access Journals (Sweden)

    Linda M Dong

    2009-03-01

    Full Text Available We conducted a case-control study of renal cancer (987 cases and 1298 controls in Central and Eastern Europe and analyzed genomic DNA for 319 tagging single-nucleotide polymorphisms (SNPs in 21 genes involved in cellular growth, differentiation and apoptosis using an Illumina Oligo Pool All (OPA. A haplotype-based method (sliding window analysis of consecutive SNPs was used to identify chromosome regions of interest that remained significant at a false discovery rate of 10%. Subsequently, risk estimates were generated for regions with a high level of signal and individual SNPs by unconditional logistic regression adjusting for age, gender and study center. Three regions containing genes associated with renal cancer were identified: caspase 1/5/4/12(CASP 1/5/4/12, epidermal growth factor receptor (EGFR, and insulin-like growth factor binding protein-3 (IGFBP3. We observed that individuals with CASP1/5/4/12 haplotype (spanning area upstream of CASP1 through exon 2 of CASP5 GGGCTCAGT were at higher risk of renal cancer compared to individuals with the most common haplotype (OR:1.40, 95% CI:1.10-1.78, p-value = 0.007. Analysis of EGFR revealed three strong signals within intron 1, particularly a region centered around rs759158 with a global p = 0.006 (GGG: OR:1.26, 95% CI:1.04-1.53 and ATG: OR:1.55, 95% CI:1.14-2.11. A region in IGFBP3 was also associated with increased risk (global p = 0.04. In addition, the number of statistically significant (p-value<0.05 SNP associations observed within these three genes was higher than would be expected by chance on a gene level. To our knowledge, this is the first study to evaluate these genes in relation to renal cancer and there is need to replicate and extend our findings. The specific regions associated with risk may have particular relevance for gene function and/or carcinogenesis. In conclusion, our evaluation has identified common genetic variants in CASP1, CASP5, EGFR, and IGFBP3 that could be

  18. Cisplatin-induced apoptosis and p53 gene status in a cisplatin-resistant human ovarian carcinoma cell line.

    Science.gov (United States)

    Fajac, A; Da Silva, J; Ahomadegbe, J C; Rateau, J G; Bernaudin, J F; Riou, G; Bénard, J

    1996-09-27

    Cisplatin-induced apoptosis and p53 gene status were analyzed in human ovarian carcinoma using a parental IGR-OV1 line and a derived cisplatin-resistant IGR-OV1/DDP subline. Compared with parental cells, cisplatin-resistant cells exhibited a 5-fold higher resistance index and a 2-fold longer doubling time. Cisplatin induced apoptosis in both cell lines, as assessed by cell morphology and the presence of a DNA ladder. However, high concentrations were necessary to induce apoptosis in resistant cells. These cells elicited a 5-fold decrease in the number of platinum atoms bound per nucleotide. IGR-OV1/DDP cells also exhibited enhanced drug efflux and a higher glutathione content. Our data suggest that the levels of cisplatin-DNA lesions are critical for drug sensitivity and apoptosis induction in this in vitro ovarian carcinoma model. Comparative analysis of the p53 gene in sensitive and resistant cells revealed the presence of the same heterozygous mutation in exon 5. A 2-fold increase in p53 mRNA and protein amounts was observed in resistant cells as assessed by Northern and Western blots, respectively. Immunocytochemical staining revealed a higher percentage of p53 stained nuclei in resistant cells. RT-PCR analysis of p53 transcripts showed that both wild-type and mutated alleles were transcribed in sensitive as well as in resistant cells. However, mutated transcripts were 1.5-fold more abundant than wild-type transcripts in sensitive cells, whereas they were 2-fold higher in resistant cells. In addition, mdm-2 protein was over-expressed in resistant cells. Our results address the question of the functionality of p53 protein and its possible role in apoptosis induction in this model. In resistant cells, p53 protein might be inactivated by 2 mechanisms: mutation and complexation with mdm-2 protein. Therefore, the presence of non-functional p53 in resistant cells might be involved in the relative failure of cisplatin-induced apoptosis in these cells.

  19. Effect of mifepristone on invasion gene and apoptosis gene expression in ectopic endometrial tissue of patients with endometriosis

    Directory of Open Access Journals (Sweden)

    Wei Xie

    2017-09-01

    Full Text Available Objective: To study the effect of mifepristone on invasion gene and apoptosis gene expression in ectopic endometrial tissue of patients with endometriosis. Methods: Patients with endometriosis who were treated in People’s Hospital of Dongxihu District Wuhan City between March 2015 and June 2017 were selected as the research subjects and randomly divided into two groups, mifepristone group received mifepristone therapy 3 months before surgery, and control group received no special treatment. The endometriosis lesions were collected after surgical resection to determine the expression of invasion and apoptosis genes. Results: β-catenin, GSK3β, uPA, NK-kB p65, OPN, Ki-67, c-IAP1, Bcl-2, Livin and Id-1 protein expression in endometriosis lesions of mifepristone group were significantly lower than those of control group while PTEN, Smac, Bax and Fas protein expression were significantly higher than those of control group. Conclusion: Preoperative mifepristone therapy can inhibit cell invasion and promote cell apoptosis in endometriosis lesion.

  20. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis.

    Science.gov (United States)

    Wan, Chunyun; Xiang, Jinmei; Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein-protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including 'Fatty acid metabolism', 'Alanine, aspartate, and glutamate metabolism', and 'Biosynthesis of unsaturated fatty acids') and cell signaling pathways (including 'PPAR signaling pathway', 'Adipocytokine signaling pathway', 'TGF-beta signaling pathway', 'MAPK signaling pathway', and 'p53 signaling pathway'). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and unsaturated fatty acids. These

  1. A novel mechanism for p53 to regulate its target gene ECK in signaling apoptosis.

    Science.gov (United States)

    Jin, Y Jenny; Wang, Jianli; Qiao, Changhong; Hei, Tom K; Brandt-Rauf, Paul W; Yin, Yuxin

    2006-10-01

    Transcription factor p53 regulates its target genes through binding to DNA consensus sequence and activating the promoters of its downstream genes. The conventional p53 consensus binding sequence was defined as two copies of the 10-bp motif 5'-PuPuPuC(A/T)(T/A)GPyPyPy-3' with a spacer of 0 to 13 bp, which exists in the regulatory regions of some p53 target genes. However, there is no such p53 consensus sequence in the promoters of a number of p53-responsive genes, suggesting that there might be other mechanisms whereby p53 transactivates the promoters of its target genes. We report here that p53 uses a novel binding mechanism to regulate the transcription of epithelial cell kinase (ECK), a receptor protein-tyrosine kinase implicated in signal transduction. We show that p53 binds to a 10-bp perfect palindromic decanucleotide (GTGACGTCAC) in the ECK promoter, activates the ECK promoter, and increases the transcription of ECK. This palindrome is required for p53-mediated transactivation of the ECK promoter. ECK is highly responsive to oxidative damage that leads to cell death. Ectopic expression of ECK causes spontaneous apoptosis in breast cancer cells. We found that ectopic expression of a mutant ECK fails to induce apoptosis in cancer cells. Our findings show that p53 is a transcriptional regulator of ECK in mediating apoptosis. The discovery of the novel p53-binding motif in the promoter may lead to the identification of a new class of p53 target genes.

  2. miR-25 targets the modulator of apoptosis 1 gene in lung cancer.

    Science.gov (United States)

    Wu, Tangwei; Chen, Weiqun; Kong, Deyong; Li, Xiaoyi; Lu, Hongda; Liu, Shuiyi; Wang, Jing; Du, Lili; Kong, Qingzhi; Huang, Xiaodong; Lu, Zhongxin

    2015-08-01

    To determine the role of miR-25 in non-small cell lung cancer (NSCLC), we first detected miR-25 expression in clinical specimens and lung cancer cell lines by quantitative real-time polymerase chain reaction. The levels of miR-25 were elevated in the plasma of NSCLC patients and NSCLC cell lines. Transfection of A549 and 95-D cells with a miR-25 inhibitor resulted in reduced cell proliferation and enhanced apoptosis. Moreover, the modulator of apoptosis 1 (MOAP1) gene was identified as a novel target of miR-25. The ability of miR-25 to promote cell proliferation and block apoptosis is attributable to its effect on MOAP1 suppression. In addition, miR-25 antagomir significantly inhibited lung cancer growth via upregulation of MOAP1 in a mouse xenograft model. Collectively, these data demonstrate that miR-25 is an important biomarker for lung cancer, and miR-25 promotes cell proliferation and inhibits apoptosis in NSCLC cells by negatively regulating MOAP1 expression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The molecular mechanism of dopamine-induced apoptosis: identification and characterization of genes that mediate dopamine toxicity.

    Science.gov (United States)

    Barzilai, A; Zilkha-Falb, R; Daily, D; Stern, N; Offen, D; Ziv, I; Melamed, E; Shirvan, A

    2000-01-01

    Parkinson's disease (PD) is a progressive neurological disorder caused by rather selective degeneration of the dopaminergic (DA) neurons in the substantia nigra. Though subject to intensive research, the etiology of this nigral neuronal loss is still enigmatic and treatment is basically symptomatic. The current major hypothesis suggests that nigral neuronal death in PD is due to excessive oxidative stress generated by auto- and enzymatic oxidation of the endogenous neurotransmitter dopamine (DA), the formation of neuromelanin and presence of high concentrations of iron. We have found that DA toxicity is mediated through its oxidative metabolites. Whereas thiol-containing antioxidants provided marked protection against DA toxicity, ascorbic acid accelerated DA-induced death. Using the differential display approach, we sought to isolate and characterize genes whose expression is altered in response to DA toxicity. We found an upregulation of the collapsin response mediator protein (CRM) and TCP-1delta in sympathetic neurons, which undergo dopamine-induced apoptosis. The isolation of these genes led us to examine the expression and activity of CRM and TCP-1delta related genes. Indeed, we found a significant induction of mRNAs of the secreted collapsin-1 and the mitochondrial stress protein HSP60. Antibodies directed against collapsin-1 provided marked and prolonged protection of several neuronal cell types from dopamine-induced apoptosis. In a parallel study, using antisense technology, we found that inhibition of TCP-1delta expression significantly reduced DA-induced neuronal death. These findings suggest a functional role for collapsin-1 and TCP-1delta as positive mediators of DA-induced neuronal apoptosis.

  4. Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-06-01

    Full Text Available Abstract Background Human T cell leukemia virus type 1 (HTLV-1 Tax is a potent activator of viral and cellular gene expression that interacts with a number of cellular proteins. Many reports show that Tax is capable of regulating cell cycle progression and apoptosis both positively and negatively. However, it still remains to understand why the Tax oncoprotein induces cell cycle arrest and apoptosis, or whether Tax-induced apoptosis is dependent upon its ability to induce G1 arrest. The present study used time-lapse imaging to explore the spatiotemporal patterns of cell cycle dynamics in Tax-expressing HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator, Fucci2. A large-scale host cell gene profiling approach was also used to identify the genes involved in Tax-mediated cell signaling events related to cellular proliferation and apoptosis. Results Tax-expressing apoptotic cells showed a rounded morphology and detached from the culture dish after cell cycle arrest at the G1 phase. Thus, it appears that Tax induces apoptosis through pathways identical to those involved in G1 arrest. To elucidate the mechanism(s by which Tax induces cell cycle arrest and apoptosis, regulation of host cellular genes by Tax was analyzed using a microarray containing approximately 18,400 human mRNA transcripts. Seventeen genes related to cell cycle regulation were identified as being up or downregulated > 2.0-fold in Tax-expressing cells. Several genes, including SMAD3, JUN, GADD45B, DUSP1 and IL8, were involved in cellular proliferation, responses to cellular stress and DNA damage, or inflammation and immune responses. Additionally, 23 pro- and anti-apoptotic genes were deregulated by Tax, including TNFAIP3, TNFRS9, BIRC3 and IL6. Furthermore, the kinetics of IL8, SMAD3, CDKN1A, GADD45A, GADD45B and IL6 expression were altered following the induction of Tax, and correlated closely with the morphological changes observed by time

  5. Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis.

    Science.gov (United States)

    Arainga, Mariluz; Murakami, Hironobu; Aida, Yoko

    2012-06-22

    Human T cell leukemia virus type 1 (HTLV-1) Tax is a potent activator of viral and cellular gene expression that interacts with a number of cellular proteins. Many reports show that Tax is capable of regulating cell cycle progression and apoptosis both positively and negatively. However, it still remains to understand why the Tax oncoprotein induces cell cycle arrest and apoptosis, or whether Tax-induced apoptosis is dependent upon its ability to induce G1 arrest. The present study used time-lapse imaging to explore the spatiotemporal patterns of cell cycle dynamics in Tax-expressing HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator, Fucci2. A large-scale host cell gene profiling approach was also used to identify the genes involved in Tax-mediated cell signaling events related to cellular proliferation and apoptosis. Tax-expressing apoptotic cells showed a rounded morphology and detached from the culture dish after cell cycle arrest at the G1 phase. Thus, it appears that Tax induces apoptosis through pathways identical to those involved in G1 arrest. To elucidate the mechanism(s) by which Tax induces cell cycle arrest and apoptosis, regulation of host cellular genes by Tax was analyzed using a microarray containing approximately 18,400 human mRNA transcripts. Seventeen genes related to cell cycle regulation were identified as being up or downregulated > 2.0-fold in Tax-expressing cells. Several genes, including SMAD3, JUN, GADD45B, DUSP1 and IL8, were involved in cellular proliferation, responses to cellular stress and DNA damage, or inflammation and immune responses. Additionally, 23 pro- and anti-apoptotic genes were deregulated by Tax, including TNFAIP3, TNFRS9, BIRC3 and IL6. Furthermore, the kinetics of IL8, SMAD3, CDKN1A, GADD45A, GADD45B and IL6 expression were altered following the induction of Tax, and correlated closely with the morphological changes observed by time-lapse imaging. Taken together, the results of this

  6. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  7. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Leopold F Fröhlich

    Full Text Available The lack of knowledge about molecular pathology of uterine sarcomas with a representation of 3-7% of all malignant uterine tumors prevents the establishment of effective therapy protocols. Here, we explored advanced therapeutic options to the previously discovered antitumorigenic effects of the histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA by combined treatment with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L. In addition, we investigated the uterine sarcoma cell lines, MES-SA and ESS-1, regarding the underlying molecular mechanisms of SAHA and TRAIL-induced apoptosis and their resistance towards TRAIL. Compared to single SAHA or TRAIL treatment, the combination of SAHA with TRAIL led to complete cell death of both tumor cell lines after 24 to 48 hours. In contrast to single SAHA treatment, apoptosis occured faster and was more pronounced in ESS-1 cells than in MES-SA cells. Induction of SAHA- and TRAIL-induced apoptosis was accompanied by upregulation of the intrinsic apoptotic pathway via reduction of mitochondrial membrane potential, caspase-3, -6, and -7 activation, and PARP cleavage, but was also found to be partially caspase-independent. Apoptosis resistance was caused by reduced expression of caspase-8 and DR 4/TRAIL-R1 in ESS-1 and MES-SA cells, respectively, due to epigenetic silencing by DNA hypermethylation of gene promoter sequences. Treatment with the demethylating agent 5-Aza-2'-deoxycytidine or gene transfer therefore restored gene expression and increased the sensitivity of both cell lines against TRAIL-induced apoptosis. Our data provide evidence that deregulation of epigenetic silencing by histone acetylation and DNA hypermethylation might play a fundamental role in the origin of uterine sarcomas. Therefore, tumor growth might be efficiently overcome by a cytotoxic combinatorial treatment of HDAC inhibitors with TRAIL.

  8. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes.

    Science.gov (United States)

    Moradzadeh, Maliheh; Tabarraei, Alijan; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Mohamadkhani, Ashraf; Erfanian, Saiedeh; Sahebkar, Amirhossein

    2018-02-01

    Acute promyelocytic leukemia (APL) is one of the most life-threatening hematological malignancies. Defects in the cell growth and apoptotic pathways are responsible for both disease pathogenesis and treatment resistance. Therefore, pro-apoptotic agents are potential candidates for APL treatment. Kaempferol is a flavonoid with antioxidant and anti-tumor properties. This study was designed to investigate the cytotoxic, pro-apoptotic, and differentiation-inducing effects of kaempferol on HL-60 and NB4 leukemia cells. Resazurin assay was used to determine cell viability following treatment with kaempferol (12.5-100 μM) and all-trans retinoic acid (ATRA; 10 μM; used as a positive control). Apoptosis and differentiation were also detected using propidium iodide and NBT staining techniques, respectively. Furthermore, the expression levels of genes involved in apoptosis (PI3 K, AKT, BCL2, BAX, p53, p21, PTEN, CASP3, CASP8, and CASP9), differentiation (PML-RAR and HDAC1), and multi-drug resistance (ABCB1 and ABCC1) were determined using quantitative real-time PCR. The protein expressions of Bax/Bcl2 and casp3 were confirmed using Western blot. The results showed that kaempferol decreased cell viability and increased subG1 population in the tested leukemic cells. This effect was associated with decreased expression of Akt, BCL2, ABCB1, and ABCC1 genes, while the expression of CASP3 and BAX/BCL-2 ratio were significantly increased at both gene and protein levels. Kaempferol promoted apoptosis and inhibited multidrug resistance in a concentration-dependent manner, without any differential effect on leukemic cells. In conclusion, this study suggested that kaempferol may be utilized as an appropriate alternative for ATRA in APL patients. © 2017 Wiley Periodicals, Inc.

  9. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  10. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV infection via targeting runt-related transcription factor 1 (RUNX1

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhao

    2016-02-01

    Full Text Available Transmissible gastroenteritis virus (TGEV, belonging to the coronaviridae family, is the key cause of the fatal diarrhea of piglets and results in many pathological processes. microRNAs (miRNAs play a key role in the regulation of virus-induced apoptosis. During the process of apoptosis induced by TGEV infection in PK-15 cells, the miR-27b is notably down-regulated. Thus, we speculate that miR-27b is involved in regulating the process of apoptosis in PK-15 cells. In this study we demonstrated that the over-expression of miR-27b led to the inhibition of TGEV-induced apoptosis, reduction of Bax protein level, and decrease of caspase-3 and −9 activities. Conversely, silencing of miR-27b by miR-27b inhibitors enhanced apoptosis via up-regulating Bax expression and promoting the activities of caspase-3 and −9 in TGEV-infected cells. Subsequently, the runt-related transcription factor 1 (RUNX1 is a candidate target of miR-27b predicted by bioinformatics search. We further identified that the miR-27b directly bound to the 3′ UTR of RUNX1 mRNA and suppressed RUNX1 expression, which indicates RUNX1 is the direct target gene of miR-27b. The over-expression of RUNX1 increased apoptosis and knockdown RUNX1blocked apoptosis of viral-infected cells via regulating Bax expression and the activities of caspase-3 and −9. Our data reveal that miR-27b may repress the mitochondrial pathway of apoptosis by targeting RUNX1, indicating that TGEV may induce apoptosis via down-regulating miR-27b and that miR-27b may act as a target for therapeutic intervention.

  11. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV) infection via targeting runt-related transcription factor 1 (RUNX1).

    Science.gov (United States)

    Zhao, Xiaomin; Song, Xiangjun; Bai, Xiaoyuan; Fei, Naijiao; Huang, Yong; Zhao, Zhimin; Du, Qian; Zhang, Hongling; Zhang, Liang; Tong, Dewen

    2016-01-01

    Transmissible gastroenteritis virus (TGEV), belonging to the coronaviridae family, is the key cause of the fatal diarrhea of piglets and results in many pathological processes. microRNAs (miRNAs) play a key role in the regulation of virus-induced apoptosis. During the process of apoptosis induced by TGEV infection in PK-15 cells, the miR-27b is notably down-regulated. Thus, we speculate that miR-27b is involved in regulating the process of apoptosis in PK-15 cells. In this study we demonstrated that the over-expression of miR-27b led to the inhibition of TGEV-induced apoptosis, reduction of Bax protein level, and decrease of caspase-3 and -9 activities. Conversely, silencing of miR-27b by miR-27b inhibitors enhanced apoptosis via up-regulating Bax expression and promoting the activities of caspase-3 and -9 in TGEV-infected cells. Subsequently, the runt-related transcription factor 1 (RUNX1) is a candidate target of miR-27b predicted by bioinformatics search. We further identified that the miR-27b directly bound to the 3' UTR of RUNX1 mRNA and suppressed RUNX1 expression, which indicates RUNX1 is the direct target gene of miR-27b. The over-expression of RUNX1 increased apoptosis and knockdown RUNX1blocked apoptosis of viral-infected cells via regulating Bax expression and the activities of caspase-3 and -9. Our data reveal that miR-27b may repress the mitochondrial pathway of apoptosis by targeting RUNX1, indicating that TGEV may induce apoptosis via down-regulating miR-27b and that miR-27b may act as a target for therapeutic intervention.

  12. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells

    OpenAIRE

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-01-01

    Andrographolide, a natural compound isolated from Andrographis paniculata, has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL)....

  13. Effects of low dose radiation on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Fei Conghe; Shen Fangzhen; Liang Jun

    2003-01-01

    Objective: To study the effect of low dose radiation (LDR) on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice. Methods: Kunming stain male mice were implanted with S180 sarcoma cells in the left inguen subcutaneously as an in situ experimental animal model. Seven days after implantation, the mice were given 75 mGy whole-body γ-irradiation. At 24 and 48 h after irradiation, all mice were sacrificed to measure the tumor volume, and tumor cell apoptosis, cell cycle progression were analyzed by flow cytometry. The expression of apoptosis-related protein bcl-2 and the apoptotic rate of tumor cells were observed by immunohistochemistry and electron microscopy. Results: Tumor growth was significantly slowed down after LDR (P 1 phase and the expression of bcl-2 protein decreased at 24 h. Apoptotic rate of tumor cells increased significantly at 48 h after LDR. Conclusion: LDR could cause a G 1 -phase arrest and increase the apoptosis of tumor cells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. The organized immune function and anti-tumor ability are markedly increased after LDR. The study provides practical evidence of clinical application to cancer treatment

  14. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  15. Assessment of the inflammatory factor as well as invasion and apoptosis gene expression in endometriosis model rats after mifepristone intervention

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2017-05-01

    Full Text Available Objective: To study the effect of mifepristone intervention on the inflammatory factor as well as invasion and apoptosis gene expression in endometriosis lesions of endometriosis model rats. Method: SD female rats were selected as experimental animals, divided into model group (EMs group and mifepristone group (RU486 group and made into endometriosis models, then the EMs group received saline intervention and RU486 group received 2.6 mg/kg/d RU486 intervention. 4 weeks after intervention, endometriosis lesions were anatomized to determine the expression of inflammatory factors (COX-2, PGE2, TNF-α, IL-1β and IL-6, invasion genes (OPN, MMP2, MMP9, uPA and S100A6 as well as apoptosis genes (Bcl-2, Livin, Smac and PTEN. Results: COX-2, PGE2, TNF-α, IL-1β, IL-6, OPN, MMP2, MMP9, uPA, S100A6, Bcl-2 and Livin protein expression in endometriosis lesions of Ru486 group were significantly lower than those of EMs group while Smac and PTEN protein expression were higher than those of EMs group. Conclusion: Mifepristone for endometriosis model rats can inhibit the expression of inflammatory factors, invasion genes and anti-apoptosis genes, and increase the expression of pro-apoptosis genes.

  16. [Downregulation of HSP70 gene expression and apoptosis in human hepatocellular carcinoma SMMC-7721 cells induced by nimesulide in vitro].

    Science.gov (United States)

    Yin, Guo-zhi; Tu, Kang-sheng; Han, Shao-shan; Wang, Jun; Liu, Qing-guang; Yao, Ying-min

    2012-09-01

    To investigate the effect of nimesulide on cell apoptosis and possible mechanism in human hepatocellular carcinoma SMMC-7721 cells. SMMC-7721 cells were treated with nimesulide at different concentrations. Cell viability was assessed by MTT assay. Cell apoptosis rate was determined with flow cytometry. The cleavage activity of PARP and caspase-9 and the expression of HSP70 were evaluated using RT-PCR and Western blotting. The influence of HSP70 on cell apoptosis was observed using RNA interference silencing HSP70 expression. Nimesulide significantly inhibited cell growth in SMMC-7721 cells in a time- and concentration-dependent manner, and induced cell apoptosis in a concentration-dependent manner. Moreover, nimesulide promoted the cleavage of caspase-9 and PARP and inhibited the mRNA and protein expression of HSP70. Through the specific inhibition on HSP70 gene with siRNA, cell apoptosis increased, and the apoptosis was enhanced by the cleavage activity of caspase-9 and PARP. Nimesulide could inhibit cell growth and induce apoptosis in human hepatocellular carcinoma SMMC-7721 cells via the downregulation of HSP70.

  17. Expression and functional analysis of apoptosis-related gene ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... then incubated with 4′-6-diamidino-2-phenylindole (diluted 1:2000 in. PBS; Promega) at room temperature for 15 min, and washed three times in PBST. Cells were examined using a Nikon ECLIPSE. TE2000-E Confocal Microscope; images were analyzed using EZ-. C1software. RNAi and cell transfection.

  18. Radiation-induced apoptosis in relation to acute impairment of rat salivary gland function

    NARCIS (Netherlands)

    Paardekooper, GMRM; Cammelli, S; Zeilstra, LJW; Coppes, RP; Konings, AWT

    Purpose: To find an answer to the question: Are the acute radiation effects on salivary gland function, as seen in earlier studies, causally related to radiation-induced apoptosis? Materials and methods: Rat parotid and submandibular glands were X-irradiated with doses up to 25 Gy and morphological

  19. Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells

    Science.gov (United States)

    Lai, Fangfang; Singh, Amar; King, Mary Lou

    2012-01-01

    Nanos is expressed in multipotent cells, stem cells and primordial germ cells (PGCs) of organisms as diverse as jellyfish and humans. It functions together with Pumilio to translationally repress targeted mRNAs. Here we show by loss-of-function experiments that Xenopus Nanos1 is required to preserve PGC fate. Morpholino knockdown of maternal Nanos1 resulted in a striking decrease in PGCs and a loss of germ cells from the gonads. Lineage tracing and TUNEL staining reveal that Nanos1-deficient PGCs fail to migrate out of the endoderm. They appear to undergo apoptosis rather than convert to normal endoderm. Whereas normal PGCs do not become transcriptionally active until neurula, Nanos1-depleted PGCs prematurely exhibit a hyperphosphorylated RNA polymerase II C-terminal domain at the midblastula transition. Furthermore, they inappropriately express somatic genes characteristic of endoderm regulated by maternal VegT, including Xsox17α, Bix4, Mixer, GATA4 and Edd. We further demonstrate that Pumilio specifically binds VegT RNA in vitro and represses, along with Nanos1, VegT translation within PGCs. Repressed VegT RNA in wild-type PGCs is significantly less stable than VegT in Nanos1-depleted PGCs. Our data indicate that maternal VegT RNA is an authentic target of Nanos1/Pumilio translational repression. We propose that Nanos1 functions to translationally repress RNAs that normally specify endoderm and promote apoptosis, thus preserving the germline. PMID:22399685

  20. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  1. [Effect of MTRR gene on apoptosis and autophagy pathways in multiresistant epithelial ovarian cancer].

    Science.gov (United States)

    Chen, J; Wang, Q; Zhang, W; Li, L

    2016-04-25

    To explore the effect of down-regulated methionine synthase reductase(MTRR)gene on the apoptosis and autophagy pathway, and offer a possible approach for the MTRR to reverse the multi-resistant ovarian cancer. (1)The experiment was divided into 3 groups, SKOV3/DDP-MTRRi(down-regulated MTRR group), SKOV3/DDP-NC(negative control group), and SKOV3/DDP(blank control group). Different concentration of cisplatin(0, 1, 2, and 4 μg/ml)treated on 3 groups cells. The apoptosis rate was measured by flow cytometry(FCM). Autophagy was detected by immunofluorescence. Autophagy microtubule associated protein light chain 3β(LC3B)and p62 were detected by western blot. The formation of autophagosome of cells was observed by transmission electron microscope.(2)Detection of autophagy and apoptosis of SKOV3/DDP-MTRRi induced by rapamycin. The experiment was divided into 4 groups included rapamycin group(5 nmol/L rapamycin), rapamycin+cisplatin group(5 nmol/L rapamycin+ 4 μg/ml cisplatin), cisplatin group(4 μg/ml cisplatin)and blank control group. LC3B and p62 protein were detected by western blot. The survival rate cells were detected by methyl thiazolyl tetrazolium(MTT)method. The apoptosis rate was measured by FCM.(3)The 3 groups cells(SKOV3/DDP, SKOV3/DDP-NC and SKOV3/DDP-MTRRi)induced by a certain concentration of cisplatin(4 μg/ml)after 48 hours, then detecting the protein expression of caspase, Bcl-2 family in apoptosis pathway and the key proteins in phosphatidylinositol-3 kinase(PI3K)/protein kinase B(Akt)autophagy pathways by western blot, getting the time when the proteins' expression changed. (1)The 3 groups cells(SKOV3/DDP, SKOV3/DDP-NC, and SKOV3/DDP-MTRRi)induced by a certain concentration of cisplatin(4 μg/ml)after 48 hours, apoptosis and autophagy of 3 groups of cells were gradually increased with the increased concentration of cisplatin. The apoptosis rate of SKOV3/DDP-MTRRi cells[(26.2 ± 1.4)%]were significantly increased compared with the SKOV3/DDP-NC cells or

  2. Distribution of apoptotic cells and apoptosis-related molecules in the developing murine palatine rugae.

    Science.gov (United States)

    Amasaki, Hajime; Ogawa, Miyuki; Nagasao, Jun; Mutoh, Ken-ichiro; Ichihara, Nobutsune; Asari, Masao

    2002-12-01

    Distribution of apoptotic cells and expression of the apoptosis-related factors p53, bcl-2 and bad during morphogenesis of the murine palatine rugae (PR) were examined histochemically using the terminal deoxynucleotidyl transferase-mediated UTP nick end-labeling (TUNEL) technique and specific antibodies against apoptosis and cell cycle-related molecules. Formation of the PR rudiment was controlled by cell proliferation and apoptosis in the palatal epithelium. TUNEL-positive cells were detected only at the epithelial placode area at 12.5-13.5 days post coitus (dpc), but only a few cells were positive at the protruding PR area at 14.5-16.5 dpc. Bcl-2 protein was expressed mainly in the areas outside of those containing TUNEL-positive cells at 15.5 -6.5 dpc. P53 protein was not detected throughout gestation. Bad was detected in the epithelial layer at 13.5 and 15.5 dpc and overlapping the apoptotic area at 13.5-15.5 dpc. Apoptosis of palatal epithelial cells might therefore involve spatiotemporally regulated expression of bad during murine PR development.

  3. PageRank analysis reveals topologically expressed genes correspond to psoriasis and their functions are associated with apoptosis resistance.

    Science.gov (United States)

    Zeng, Xue; Zhao, Jingjing; Wu, Xiaohong; Shi, Hongbo; Liu, Wali; Cui, Bingnan; Yang, Li; Ding, Xu; Song, Ping

    2016-05-01

    Psoriasis is an inflammatory skin disease. Deceleration in keratinocyte apoptosis is the most significant pathological change observed in psoriasis. To detect a meaningful correlation between the genes and gene functions associated with the mechanism underlying psoriasis, 927 differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus database, GSE13355 [false discovery rate (FDR) 1] with the package in R langue. The selected DEGs were further constructed using the search tool for the retrieval of interacting genes, in order to analyze the interaction network between the DEGs. Subsequent to PageRank analysis, 14 topological hub genes were identified, and the functions and pathways in the hub genes network were analyzed. The top‑ranked hub gene, estrogen receptor‑1 (ESR1) is downregulated in psoriasis, exhibited binding sites enriched with genes possessing anti‑apoptotic functions. The ESR1 gene encodes estrogen receptor α (ERα); a reduced level of ERα expression provides a crucial foundation in response to the anti‑apoptotic activity of psoriatic keratinocytes by activating the expression of anti‑apoptotic genes. Furthermore, it was detected that the pathway that is associated most significantly with psoriasis is the pathways in cancer. Pathways in cancer may protect psoriatic cells from apoptosis by inhibition of ESR1 expression. The present study provides support towards the investigation of ESR1 gene function and elucidates that the interaction with anti‑apoptotic genes is involved in the underlying biological mechanisms of resistance to apoptosis in psoriasis. However, further investigation is required to confirm the present results.

  4. Modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by Helicobacter pylori in immune pathogenesis of gastric mucosal damage.

    Science.gov (United States)

    Tsai, Hwei-Fang; Hsu, Ping-Ning

    2017-02-01

    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, gastric carcinoma, and gastric mucosa-associated lymphoid tissue lymphomas. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Enhanced gastric epithelial cell apoptosis during H. pylori infection was suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells. Human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death-receptor signaling. The induction of TRAIL sensitivity by H. pylori is dependent upon the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex through downregulation of cellular FLICE-inhibitory protein. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, significant increases in CCR6 + CD3 + T cell infiltration in the gastric mucosa was observed, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These mechanisms initiate chemokine-mediated T lymphocyte trafficking into inflamed epithelium and induce mucosal injury during Helicobacter infection. This article will review recent findings on the interactions of H. pylori with host-epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation and mucosal damage. Copyright © 2016. Published by Elsevier B.V.

  5. Apoptosis induced by radionuclide 153Sm and expression of relevant genes in three different cancer cells

    International Nuclear Information System (INIS)

    Zou Baomin; Duan Xiaoyi; Chen Wei; Hu Guoying

    2003-01-01

    To study apoptosis of PC-3, ER-75-30 and A549 cells induced by radionuclide 153 Sm and the expression of bcl-2, bax in apoptosis cells, MTT assay was used to detect the anti-tumor effect, light microscope, transmission electron microscope, flow cytometer were used to detect apoptosis, while image analysis was used to detect the expression of bcl-2 and bax. 153 Sm showed anti-tumor effect and could induce tumor cell apoptosis. Both bcl-2 and bax played an important role in apoptosis. Different kind of cells had different sensitivity to 153 Sm

  6. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  7. The centella asiatica juice effects on DNA damage, apoptosis and gene expression in hepatocellular carcinoma (HCC).

    Science.gov (United States)

    Hussin, Faridah; Eshkoor, Sima Ataollahi; Rahmat, Asmah; Othman, Fauziah; Akim, Abdah

    2014-01-20

    This paper is to investigate the effects of Centella asiatica on HepG2 (human hepatocellular liver carcinoma cell line). Centella asiatica is native to the Southeast Asia that is used as a traditional medicine. This study aims to determine the chemopreventive effects of the Centella asiatica juice on human HepG2 cell line. Different methods including flow cytometry, comet assay and reverse transcription-polymerase chain reaction (RT-PCR) were used to show the effects of juice exposure on the level of DNA damage and the reduction of cancerous cells. MTT assay is a colorimetric method applied to measure the toxic effects of juice on cells. The Centella asiatica juice was not toxic to normal cells. It showed cytotoxic effects on tumor cells in a dose dependent manner. Apoptosis in cells was started after being exposed for 72 hr of dose dependent. It was found that the higher percentage of apoptotic cell death and DNA damage was at the concentration above 0.1%. In addition, the juice exposure caused the reduction of c-myc gene expression and the enhancement of c-fos and c-erbB2 gene expressions in tumor cells. It was concluded that the Centella asiatica juice reduced liver tumor cells. Thus, it has the potential to be used as a chemopreventive agent to prevent and treat liver cancer.

  8. Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis

    NARCIS (Netherlands)

    Koschny, Ronald; Holland, Heidrun; Sykora, Jaromir; Haas, Tobias L.; Sprick, Martin R.; Ganten, Tom M.; Krupp, Wolfgang; Bauer, Manfred; Ahnert, Peter; Meixensberger, Jürgen; Walczak, Henning

    2007-01-01

    Malignant gliomas are the most aggressive human brain tumors without any curative treatment. The antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gliomas has thus far only been thoroughly established in tumor cell lines. In the present study, we investigated the

  9. Roscovitine sensitizes leukemia and lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis

    Czech Academy of Sciences Publication Activity Database

    Molinsky, J.; Klánová, M.; Koc, Michal; Beranová, Lenka; Anděra, Ladislav; Ludvíková, Z.; Bohmova, M.; Gasova, Z.; Strnad, Miroslav; Ivánek, R.; Trněný, M.; Nečas, E.; Živný, J.; Klener, P.

    2013-01-01

    Roč. 54, č. 2 (2013), s. 372-380 ISSN 1042-8194 R&D Projects: GA MZd NS10287 Institutional research plan: CEZ:AV0Z50380511 Institutional support: RVO:68378050 Keywords : roscovitine * TRAIL * synergism * apoptosis * leukemia * lymphoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.605, year: 2013

  10. Apoptosis induction and attenuation of inflammatory gene expression in murine macrophages via multitherapeutic nanomembranes

    International Nuclear Information System (INIS)

    Pierstorff, Erik; Krucoff, Max; Ho, Dean

    2008-01-01

    The realization of optimized therapeutic delivery is impaired by the challenge of localized drug activity and by the dangers of systemic cytotoxicity which often contribute to patient treatment complications. Here we demonstrate the block copolymer-mediated deposition and release of multiple therapeutics which include an LXRα/β agonist 3-((4-methoxyphenyl)amino)-4-phenyl-1-(phenylmethyl)-1H-pyrrole-2,5-dione (LXRa) and doxorubicin hydrochloride (Dox) at the air-water interface via Langmuir-Blodgett deposition, as well as copolymer-mediated potent drug elution toward the Raw 264.7 murine macrophage cell line. The resultant copolymer-therapeutic hybrid serves as a localized platform that can be functionalized with virtually any drug due to the integrated hydrophilic and hydrophobic components of the polymer structure. In addition, the sequestering function of the copolymer to anchor the drugs to implant surfaces can enhance delivery specificity when compared to systemic drug administration. Confirmation of drug functionality was confirmed via suppression of the interleukin 6 (Il-6) and tumor necrosis factor alpha (TNFα) inflammatory cytokines (LXRa), as well as DNA fragmentation analysis (Dox). Furthermore, the fragmentation assays and gene expression analysis demonstrated the innate biocompatibility of the copolymeric material at the gene expression level via the confirmed absence of material-induced apoptosis and a lack of inflammatory gene expression. This modality enables layer-by-layer control of agonist and chemotherapeutic functionalization at the nanoscale for the localization of drug dosage, while simultaneously utilizing the copolymer platform as an anchoring mechanism for drug sequestering, all with an innate material thickness of 4 nm per layer, which is orders of magnitude thinner than existing commercial technologies. Furthermore, these studies comprehensively confirmed the potential translational applicability of copolymeric nanomaterials as

  11. Effect of hTERC and FOXP3 gene magnification in condyloma acuminate lesion on the immune response and cell apoptosis

    Directory of Open Access Journals (Sweden)

    Jia-Lin Wu

    2017-04-01

    Full Text Available Objective: To study the effect of hTERC and FOXP3 gene amplification in condyloma acuminate lesions on the immune response and cell apoptosis. Methods: The condyloma acuminate lesions diagnosed between May 2014 and October 2016 and the normal skin tissue from circumcision during the same period were collected to extract RNA and then determine hTERC, FOXP3 and apoptosis-related gene mRNA amplification, and after protein extraction, the protein levels of immune response-related cytokines were determined. Results: hTERC, FOXP3, Livin and Survivin gene mRNA amplification as well as IL-4 and IL-10 protein levels in condyloma acuminatum lesions were significantly higher than those in normal skin tissue while TRAIL, Caspase-3 and PDCD4 mRNA amplification as well as IL-2 and TNF-α protein levels were significantly lower than those in normal skin tissue; IL-2 and TNF-α protein levels in condyloma acuminatum lesions with high FOXP3 mRNA expression were significantly lower than those in condyloma acuminatum lesions with low FOXP3 mRNA expression while IL-4 and IL-10 protein levels were significantly higher than those in condyloma acuminatum lesions with low FOXP3 mRNA expression; Livin and Survivin mRNA amplification in condyloma acuminatum lesions with high hTERC mRNA expression were significantly higher than those in condyloma acuminatum lesions with low hTERC mRNA expression while TRAIL, Caspase-3 and PDCD4 mRNA amplification were significantly lower than those in condyloma acuminatum lesions with low hTERC mRNA expression. Conclusion: Highly expressed hTERC and FOXP3 genes in condyloma acuminatum lesions can inhibit apoptosis and inhibit antiviral immune response respectively.

  12. Immunohistochemical detection of the apoptosis-related proteins FADD, FLICE, and FLIP in Langerhans cell histiocytosis

    DEFF Research Database (Denmark)

    Bank, Micha I; Gudbrand, Charlotte; Lundegaard, Pia Rengtved

    2005-01-01

    FLICE, and FLIP. The clinical outcome of the disease could not be correlated to the expression of the investigated proteins. This study shows a high expression of the apoptosis-related proteins FADD, active FLICE, and FLIP in pLCs. The authors previously showed that pLCs express Fas and Fas ligand......Langerhans cell histiocytosis (LCH) is characterized by an accumulation of dendritic Langerhans cells in granulomatous lesions in various organs. The etiology of LCH remains enigmatic. Fas/APO-1/CD95 belongs to the "death receptor" family of apoptosis regulators and has been implicated...... in the downregulation of immune responses. The authors examined the expression of three proteins that are engaged in the Fas signaling cascade-FADD/Fas-associated death domain-containing protein, FLICE/FADD-like interleukin-1beta-converting enzyme (both pro-apoptotic), and FLIP/FLICE-inhibitory protein (anti...

  13. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis.

    Science.gov (United States)

    Kohlhaas, Susan L; Craxton, Andrew; Sun, Xiao-Ming; Pinkoski, Michael J; Cohen, Gerald M

    2007-04-27

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is selectively toxic to tumor compared with normal cells. Other members of the TNF family of death ligands (TNF, CD95L) engage their respective receptors (TNF-R1 and CD95), resulting in internalization of receptor and ligand and recruitment of adaptor proteins to the caspase activation platform known as the death-inducing signaling complex (DISC). Recently, TNF-R1 and CD95 have been shown to induce apoptosis with an absolute requirement for internalization of their corresponding receptors in the formation of a DISC. We show that TRAIL and its receptors are rapidly endocytosed in a time- and concentration-dependent manner. Blockade of receptor internalization with hyperosmotic sucrose did not inhibit TRAIL-induced apoptosis but, rather, amplified the apoptotic signaling of TRAIL. Plate-bound and soluble TRAIL induced similar levels of apoptosis. Together these results suggest that neither ligand nor receptor internalization is required for TRAIL-induced apoptosis. Internalization of TRAIL is mediated primarily by clathrin-dependent endocytosis and also by clathrin-independent pathways. Inhibition of clathrin-dependent internalization by overexpression of dominant negative forms of dynamin or AP180 did not inhibit TRAIL-induced apoptosis. Consistent with the finding that neither internalization of TRAIL nor its receptors is required for transmission of its apoptotic signal, recruitment of FADD (Fas-associated death domain) and procaspase-8 to form the TRAIL-associated DISC occurred at 4 degrees C, independent of endocytosis. Our findings demonstrate that TRAIL and TRAIL receptor 1/2, unlike TNF-TNF-R1 or CD95L-CD95, do not require internalization for formation of the DISC, activation of caspase-8, or transmission of an apoptotic signal in BJAB type I cells.

  14. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells

    International Nuclear Information System (INIS)

    Hsin, I-Lun; Hsiao, Yueh-Chieh; Wu, Ming-Fang; Jan, Ming-Shiou; Tang, Sheau-Chung; Lin, Yu-Wen; Hsu, Chung-Ping; Ko, Jiunn-Liang

    2012-01-01

    Endoplasmic reticulum (ER) stress is activated under severe cellular conditions. GADD153, a member of the C/EBP family, is an unfolded protein response (UPR) responsive transcription factor. Increased levels of lipocalin 2, an acute phase protein, have been found in several epithelial cancers. The aim of this study is to investigate the function of lipocalin 2 in lung cancer cells under ER stress. Treatment with thapsigargin, an ER stress activator, led to increases in cytotoxicity, ER stress, apoptosis, and lipocalin 2 expression in A549 cells. GADD153 silencing decreased lipocalin 2 expression in A549 cells. On chromatin immunoprecipitation assay, ER stress increased GADD153 DNA binding to lipocalin 2 promoter. Furthermore, silencing of lipocalin 2 mitigated ER stress-mediated apoptosis in A549 cells. Our findings demonstrated that lipocalin 2 is a new GADD153 target gene that mediates ER stress-induced apoptosis. Highlights: ► We demonstrate that Lipocalin 2 is a new GADD153 target gene. ► Lipocalin 2 mediates ER stress-induced apoptosis. ► ER stress-induced lipocalin 2 expression is calcium-independent in A549 cells. ► Lipocalin 2 dose not play a major role in ER stress-induced autophagy.

  15. Novel Combination BMP7 and HGF Gene Therapy Instigates Selective Myofibroblast Apoptosis and Reduces Corneal Haze In Vivo

    Science.gov (United States)

    Gupta, Suneel; Fink, Michael K.; Ghosh, Arkasubhra; Tripathi, Ratnakar; Sinha, Prashant R.; Sharma, Ajay; Hesemann, Nathan P.; Chaurasia, Shyam S.; Giuliano, Elizabeth A.; Mohan, Rajiv R.

    2018-01-01

    Purpose We tested the potential of bone morphogenic protein 7 (BMP7) and hepatocyte growth factor (HGF) combination gene therapy to treat preformed corneal fibrosis using established rabbit in vivo and human in vitro models. Methods Eighteen New Zealand White rabbits were used. Corneal fibrosis was produced by alkali injury. Twenty-four hours after scar formation, cornea received topically either balanced salt solution (BSS; n = 6), polyethylenimine-conjugated gold nanoparticle (PEI2-GNP)-naked plasmid (n = 6) or PEI2-GNP plasmids expressing BMP7 and HGF genes (n = 6). Donor human corneas were used to obtain primary human corneal fibroblasts and myofibroblasts for mechanistic studies. Gene therapy effects on corneal fibrosis and ocular safety were evaluated by slit-lamp microscope, stereo microscopes, quantitative real-time PCR, immunofluorescence, TUNEL, modified MacDonald-Shadduck scoring system, and Draize tests. Results PEI2-GNP–mediated BMP7+HGF gene therapy significantly decreased corneal fibrosis in live rabbits in vivo (Fantes scale was 0.6 in BMP7+HGF-treated eyes compared to 3.3 in −therapy group; P 104 gene copies per microgram DNA of BMP7 and HGF genes. The recombinant HGF rendered apoptosis in corneal myofibroblasts but not in fibroblasts. Localized topical BMP7+HGF therapy showed no ocular toxicity. Conclusions Localized topical BMP7+HGF gene therapy treats corneal fibrosis and restores transparency in vivo mitigating excessive healing and rendering selective apoptosis in myofibroblasts. PMID:29490341

  16. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2013-01-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  17. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A. [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Novosibirsk State University, Novosibirsk, Pirogova str., 2, 630090 (Russian Federation)

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  18. PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells.

    Science.gov (United States)

    Sun, C-G; Zhuang, J; Teng, W-J; Wang, Z; Du, S-S

    2015-05-29

    We explored whether p53 upregulated modulator of apoptosis (PUMA) gene transfection could enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells. The liposome-mediated recombinant eukaryotic expression vector PU-MA-pCDNA3 and empty vector plasmid were stably transfected into MCF-7 cells. Epirubicin (0.01-100 μM) was applied to MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells for 72 h. The MTT assay was used to calculate the cell survival rate in each group, and the 50% inhibitory concentration (IC50) was calculated. The IC50 values of epirubicin in MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells were 13 ± 1.4, 1.8 ± 0.2, and 10.7 ± 1.3 μM, respectively. The sensitivity of MCF-7/PUMA cells to epirubicin increased 7.2-fold. Epirubicin induced apoptosis in MCF-7 cells dose-dependently, but MCF-7/PUMA cell-induced apoptosis was more significant compared to controls. Low concentrations of epirubicin (0.1 μM) caused low levels of apoptosis of MCF-7/pCDNA3 (1.15 ± 0.26%) and MCF-7 cells (0.9 ± 0.24%), but significantly induced apoptosis of MCF-7/PUMA cells (6.44 ± 1.46%). High epirubicin concentration (1 μM) induced apoptosis in each group, but the epirubicin MCF-7/PUMA apoptosis rate (35.47 ± 9.36%) was significantly higher than that of MCF-7 (12.6 ± 3.73%) and MCF-7/ pCDNA3 (15.2 ± 5.17%) cells (P PUMA protein expression in MCF-7/PUMA cells was significantly higher than that in MCF-7 and MCF-7/pCDNA3 cells by Western blot analysis. There-fore, stable transfection of PUMA can significantly enhance epirubicin-induced apoptosis sensitivity of MCF-7 breast cancer cells.

  19. Endothelial repair capacity and apoptosis are inversely related in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Sanja Jelic,  David J Lederer

    2009-11-01

    Full Text Available Sanja Jelic1,  David J Lederer1, Tessa Adams1, Margherita Padeletti1, Paolo C Colombo2, Phillip Factor1, Thierry H Le Jemtel31Division of Pulmonary, Allergy, and Critical Care Medicine, 2Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY, USA; 3Division of Cardiology, Tulane University School of Medicine, New Orleans, LA, USAPurpose: To investigate the impact of obstructive sleep apnea (OSA on endothelial repair capacity and apoptosis in the absence of potentially confounding factors including obesity. Patients and methods: Sixteen patients with a body mass index <30 and newly diagnosed OSA and 16 controls were studied. Circulating levels of endothelial progenitor cells, a marker of endothelial repair capacity, and endothelial microparticles, a marker of endothelial apoptosis, were quantified before and after four-week therapy with continuous positive airway pressure (CPAP. Endothelial cell apoptotic rate was also quantified in freshly harvested venous endothelial cells. Vascular reactivity was measured by flow-mediated dilation.Results: Before treatment, endothelial microparticle levels were greater and endothelial progenitor cell levels were lower in patients with OSA than in controls (P < 0.001 for both. Levels of endothelial microparticles and progenitors cells were inversely related (r = -0.67, P < 0.001. Endothelial progenitor cell levels increased after effective treatment (P = 0.036. Conclusions: In the absence of any co-morbid conditions including obesity, OSA alone impairs endothelial repair capacity and promotes endothelial apoptosis. These early endothelial alterations may underlie accelerated atherosclerosis and increased cardiovascular risk in OSA. Keywords: sleep apnea, endothelium, apoptosis, endothelial repair capacity

  20. Modulators of Response to Tumor Necrosis-Related Apoptosis-Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    National Research Council Canada - National Science Library

    Behbakht, Kian

    2008-01-01

    .... More effective therapies are urgently needed. One of the most promising therapies in development for ovarian cancer is the use of either the Tumor Necrosis Factor-related Apoptosis Inducing Ligand (TRAIL...

  1. Fuzzy clustering analysis of osteosarcoma related genes.

    Science.gov (United States)

    Chen, Kai; Wu, Dajiang; Bai, Yushu; Zhu, Xiaodong; Chen, Ziqiang; Wang, Chuanfeng; Zhao, Yingchuan; Li, Ming

    2014-07-01

    Osteosarcoma is the most common malignant bone-tumor with a peak manifestation during the second and third decade of life. In order to explore the influence of genetic factors on the mechanism of osteosarcoma by analyzing the inter relationship between osteosarcoma and its related genes, and then provide potential genetic references for the prevention, diagnosis and treatment of osteosarcoma, we collected osteosarcoma related gene sequences in Genebank of National Center for Biotechnology Information (NCBI) and local alignment analysis for a pair of sequences was carried out to identify the measurement association among related sequences. Then fuzzy clustering method was used for clustering analysis so as to contact the unknown genes through the consistent osteosarcoma related genes in one class. From the result of fuzzy clustering analysis, we could classify the osteosarcoma related genes into two groups and deduced that the genes clustered into one group had similar function. Based on this knowledge, we found more genes related to the pathogenesis of osteosarcoma and these genes could exert similar function as Runx2, a risk factor confirmed in osteosarcoma, this study may help better understand the genetic mechanism and provide new molecular markers and therapies for osteosarcoma.

  2. Effect of silencing HOXA5 gene expression using RNA interference on cell cycle and apoptosis in Jurkat cells.

    Science.gov (United States)

    Huang, Hui-Ping; Liu, Wen-Jun; Guo, Qu-Lian; Bai, Yong-Qi

    2016-03-01

    Acute lymphocytic leukemia (ALL) is a common malignant tumor with a high morbidity rate among children, accounting for approximately 80% of leukemia cases. Although there have been improvements in the treatment of patients frequent relapse lead to a poor prognosis. The aim of the present study was to determine whether HOXA5 may be used as a target for gene therapy in leukemia in order to provide a new treatment. Mononuclear cells were extracted from the bone marrow according to the clinical research aims. After testing for ALL in the acute stage, the relative mRNA and protein expression of HOXA5 was detected in the ALL remission groups (n=25 cases per group) and the control group [n=20 cases, immune thrombocytopenia (ITP)]. Gene silencing by RNA interference (RNAi) was used to investigate the effect of silencing HOXA5 after small interfering RNA (siRNA) transfection to Jurkat cells. The HOXA5-specific siRNA was transfected to Jurkat cells using lipofectamine. The experiment was divided into the experimental group (liposomal transfection of HOXA5 targeting siRNA), the negative control group (liposomal transfection of cells with negative control siRNA) and the control group (plus an equal amount of cells and culture media only). Western blotting and quantitative fluorescent polymerase chain reaction (QF‑PCR) were used to detect the relative HOXA5 mRNA expression and protein distribution in each cell group. Cell distribution in the cell cycle and the rate of cells undergoing apoptosis were determined using flow cytometry. The expression of HOXA5 at the mRNA and protein levels in the acute phase of ALL was significantly higher than that in ALL in the remission and control groups. In cells transfected with HOXA5-specific siRNA, the expression of HOXA5 at the mRNA and protein levels decreased significantly (PJurkat cells, thus inhibiting cell proliferation.

  3. Post-operative infection and sepsis in humans is associated with deficient gene expression of γc cytokines and their apoptosis mediators.

    LENUS (Irish Health Repository)

    White, Mary

    2011-06-01

    Lymphocyte homeostasis is dependent on the γc cytokines. We hypothesised that sepsis in humans is associated with differential gene expression of the γc cytokines and their associated apoptosis mediators.

  4. Cloning arbuscule-related genes from mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen

    2000-01-01

    Until recently little was known about the identity of the genes expressed in the arbuscules of mycorrhizas, due in part to problems associated with cloning genes from the tissues of an obligate symbiont. However, the combination of advanced molecular techniques, innovative use of the materials...... available and fortuitous cloning has resulted in the recent identification of a number of arbuscule-related genes. This article provides a brief summary of the genes involved in arbuscule development, function and regulation, and the techniques used to study them. Molecular techniques include differential...

  5. Immunohistochemical detection of the apoptosis-related proteins FADD, FLICE, and FLIP in Langerhans cell histiocytosis

    DEFF Research Database (Denmark)

    Bank, Micha I; Gudbrand, Charlotte; Lundegaard, Pia Rengtved

    2005-01-01

    -apoptotic)-in lesions from LCH patients. Immunohistochemistry was performed on paraffin-embedded tissue specimens from 43 children with LCH. The infiltrates were scored according to the amount of positive pathologic Langerhans cells (pLCs). In all investigated specimens, the majority of the pLCs expressed FADD, active...... FLICE, and FLIP. The clinical outcome of the disease could not be correlated to the expression of the investigated proteins. This study shows a high expression of the apoptosis-related proteins FADD, active FLICE, and FLIP in pLCs. The authors previously showed that pLCs express Fas and Fas ligand...

  6. A Transcriptome Analysis Suggests Apoptosis-Related Signaling Pathways in Hemocytes of Spodoptera litura After Parasitization by Microplitis bicoloratus

    Science.gov (United States)

    Zhang, Yan; Yu, Dongshuai; Yang, Minjun; Yang, Yang; Hu, Jiansheng; Luo, Kaijun

    2014-01-01

    Microplitis bicoloratus parasitism induction of apoptotic DNA fragmentation of host Spodoptera litura hemocytes has been reported. However, how M. bicoloratus parasitism regulates the host signaling pathways to induce DNA fragmentation during apoptosis remains unclear. To address this question, we performed a new RNAseq-based comparative analysis of the hemocytes transcriptomes of non-parasitized and parasitized S. litura. We were able to assemble a total of more than 11.63 Gbp sequence, to yield 20,571 unigenes. At least six main protein families encoded by M. bicoloratus bracovirus are expressed in the parasitized host hemocytes: Ankyrin-repeat, Ben domain, C-type lectin, Egf-like and Mucin-like, protein tyrosine phosphatase. The analysis indicated that during DNA fragmentation and cell death, 299 genes were up-regulated and 2,441 genes were down-regulated. Data on five signaling pathways related with cell death, the gap junctions, Ca2+, PI3K/Akt, NF-κB, ATM/p53 revealed that CypD, which is involved in forming a Permeability Transition Pore Complex (PTPC) to alter mitochondrial membrane permeabilization (MMP), was dramatically up-regulated. The qRT-PCR also provided that the key genes for cell survival were down-regulated under M. bicoloratus parasitism, including those encoding Inx1, Inx2 and Inx3 of the gap junction signaling pathway, p110 subunit of the PI3K/Akt signaling pathway, and the p50 and p65 subunit of the NF-κB signaling pathway. These findings suggest that M. bicoloratus parasitism may regulate host mitochondria to trigger internucleosomal DNA fragmentation. This study will facilitate the identification of immunosuppression-related genes and also improves our understanding of molecular mechanisms underlying polydnavirus-parasitoid-host interaction. PMID:25350281

  7. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activation...

  8. Wild-type p53 gene transfer into mutated p53 HT29 cells improves sensitivity to photodynamic therapy via induction of apoptosis.

    Science.gov (United States)

    Barberi-Heyob, Muriel; Védrine, Pierre-Olivier; Merlin, Jean-Louis; Millon, Régine; Abecassis, Joseph; Poupon, Marie-France; Guillemin, François

    2004-04-01

    Photodynamic therapy (PDT) is an effective local cancer treatment that induces cytotoxicity through the intracellular generation of reactive oxygen species. It is generally thought that p53 regulates chemotherapy and radiation therapy responsiveness via apoptosis induction control. The current study investigated whether cellular sensitivity to PDT is increased when a wild-type (wt) p53 status is restored by gene transfer in the established HT9blk Ala273-mutant p53 human colon cancer cell line. The photosensitizer accumulation was similar in both cell lines, and survival measurements using MTT test and clonogenic assays demonstrated that wt p53 transfected cells (HT29A4) were significantly more sensitive to chlorin e6-mediated PDT. P53 protein expression and its functionality as a transcription factor demonstrated through the induction of mdm2 transactivation, were not found to be directly involved in this differential photosensitivity. However, induction of caspase 3 activation (2.6-fold), leading to significant apoptosis induction 24-h after PDT was observed in HT29A4 cells. These results suggest that the introduction of wt p53 in HT29A4 potentiates the cell sensitivity to PDT through the induction of apoptosis in relation to p53 mutational status, but independently of p53 expression level and transcriptional activity.

  9. Physician Education: Apoptosis.

    Science.gov (United States)

    Kataoka; Tsuruo

    1996-01-01

    apoptosis include those that cause DNA damage such as radiation and anticancer drugs, those that are mediated by the TNF receptor and Fas receptor (the so-called "death signal receptors"), and the deprivation of cytokines that supply survival signals such as IL-3 and erythropoietin. The tumor suppressor gene p53 plays a very important role in apoptosis induced by damage to DNA. This has been demonstrated by studying resistance to apoptosis of cells derived from p53 knockout mice [2]. Other than the irritations that induce apoptosis, molecules that have been strongly implicated as major players in the drama of apoptosis include the Bcl-2 family proteins and the IL-1 converting enzyme (ICE) and its homolog proteases (caspase family). Both groups of proteins show homology with proteins that affect cell death in nematodes. It is believed that molecules that contribute to cell death have been well conserved in multicellular organisms all the way from the relatively primitive nematodes to mammals including humans. It was discovered that Bcl-2 suppressed apoptosis induced in IL-3 dependent cells by deprivation of IL-3 [3]. It has since become the gene around which apoptosis research revolves. Recently, it has become clear that cell death involving the Bcl-2 protein is under the control of similar proteins from the same family [4]. It is interesting that the phenomenon of cell death may be regulated by the balance of the molecules involved in it. APOPTOSIS ABNORMALITIES AND DISEASE: Physiological cell death plays a major role in the growth and permanent maintenance of the human body [5]. In the process of forming the nervous system, neurons that do not form proper connections die. Physiological cell death also accompanies the removal of virus-infected cells by cytotoxic T cells, the elimination of autoreactive immune cells, the formation of the gut, the reconstitution of cartilage and bone, etc. When physiological cell death that normally should occur is inhibited, inappropriate

  10. Transfection of wild type ADVP53 gene into human brain tumor cell lines has a radiosensitizing effect independent of apoptosis

    International Nuclear Information System (INIS)

    Geng, L.; Walter, S; Vaughan, A.T.M.

    1997-01-01

    Purpose: Despite attempts with a variety of therapeutic approaches there has been little impact on the survival of patients with Glioblastoma multiforme, with median survivals reported of approximately 12 months. In this study a replication restricted adenovirus vector is used to transfer the wild type p53 gene into two cell lines derived from a human astrocytoma U87MG or glioblastoma T98G, to determine its ability to act as a radiosensitizer in conjunction with conventional radiotherapy. Methods: An adenovirus vector containing the human wild type p53 (Advp53) gene was used in addition to a control vector containing the β-galactosidase (Advγgal) reporter gene. To achieve cellular incorporation both vectors were incubated with cells for 30 minutes - washed and returned to culture. The successful incorporation of each vector was determined by either a p53 assay using either a western blotting or flow cytometry techniques, or specific staining for β-galactosidase activity. The presence of each vector was assayed until the constructs were eliminated from the cell. To determine the effects of these vectors on cell survival sufficient vector was added to produce a measurable reduction in clonogenic survival and this value was used in subsequent irradiation experiments. To determine the ability of wild type p53 to induce apoptosis the cells were examined from 1 to 5 days after irradiation by H and E staining for the characteristic morphology indicating an apoptotic process. Results: Both the Advp53 and Advβgal vectors were successfully incorporated into each cell line. Expression of each gene was reduced to approximately half by 5 days and virtually eliminated by 15 days after transfection in both lines. At the doses used the wild type Advp53 adenovirus was toxic to both cell lines giving surviving fractions between 39-74%. When this toxicity was taken into account the presence of the Advp53 gene had a radiosensitizing effect in each cell line. To determine the

  11. Prognostic role of sensitive-to-apoptosis gene expression in rectal cancer

    DEFF Research Database (Denmark)

    Ozden, Sevgi A; Ozyurt, Hazan; Ozgen, Zerrin

    2011-01-01

    To investigate the association between prognosis of rectal cancer treated with chemoradiotherapy (CRT) and expression of sensitive-to-apoptosis (SAG), B-cell lymphoma-extra large (Bcl-X(L)) and Bcl-2 homologous antagonist/killer (Bak).......To investigate the association between prognosis of rectal cancer treated with chemoradiotherapy (CRT) and expression of sensitive-to-apoptosis (SAG), B-cell lymphoma-extra large (Bcl-X(L)) and Bcl-2 homologous antagonist/killer (Bak)....

  12. Functional role of ALK-related signal cascades on modulation of epithelial-mesenchymal transition and apoptosis in uterine carcinosarcoma.

    Science.gov (United States)

    Inoue, H; Hashimura, M; Akiya, M; Chiba, R; Saegusa, M

    2017-02-14

    Anaplastic lymphoma kinase (ALK), which is a receptor tyrosine kinase, is essentially and transiently expressed in the developing nervous system. Recently, the deregulated expression of full-length ALK has been observed in some primary solid tumors, but little is known about its involvement in the tumorigenesis of uterine carcinosarcomas (UCSs). Here we examined the functional role of the ALK gene in UCSs. Regulation and function of the ALK gene were assessed using two endometrial carcinoma cell lines. Expression of ALK and its related molecules were also investigated using clinical samples of UCSs. In cell lines, ALK promoter activity was significantly increased by transfection of Sox11 and N-myc, which are known to contribute to neuronal properties. Cells stably overexpressing full-length ALK showed an enhancement of EMT properties mediated by TGF-β1 and HGF, along with an increase in phosphorylated (p) Akt and nuclear p65. Overexpression of p65 also led to transactivation of Twist1 gene, known as an EMT inducer. Finally, treatment of the stable ALK-overexpressing cells with doxorubicin resulted in inhibition of apoptosis with progressive increase in the expression ratio of both pAkt and bcl2 relative to total Akt and bax, respectively. In clinical samples, strong cytoplasmic ALK immunoreactivity and mRNA signals without rearrangement or amplification of the ALK locus were frequently observed in UCSs, particularly in the sarcomatous components. Further, ALK IHC score was found to be positively correlated with Sox11, N-myc, Twist1, and bcl2 scores. ALK-related signal cascades containing Akt, NF-κB, Twist1, and bcl2 may participate in initial signaling for divergent sarcomatous differentiation driven from carcinomatous components in UCSs through induction of the EMT process and inhibition of apoptotic features.

  13. Crude extract of garlic induced caspase-3 gene expression leading to apoptosis in human colon cancer cells.

    Science.gov (United States)

    Su, Chin-Cheng; Chen, Guang-Wei; Tan, Tzu-Wei; Lin, Jaung-Gung; Chung, Jing-Gung

    2006-01-01

    Garlic (Allium sativum) is a popular spice, a remedy for a variety of ailments and is also known for its medicinal uses as an antibiotic, antithrombotic and antineoplastic agent. Epidemiological and animal studies have shown that garlic consumption reduces the incidence of cancer e.g. in the stomach, colon, breast and cervix. The aim of this study was to investigate whether garlic extract has any influence on caspase-3 activity and gene expression and on the signal induction of apoptosis in vitro. As an assay system, the flow cytometry assay, Western blotting and cDNA microarray were applied in human colon cancer colo 205 cells. Our results indicated that garlic extract, when administered to the colo 205 cell cultures, reduced the percetange of viable cells, induced apoptosis, increased the levels of Bax, cytochrome c and caspase-3, but decreased the level of Bcl-2. The results also showed that raw extract of garlic decreased the mitochondrial membrane potential and increased the caspase-3 activity and gene expression. We conclude that crude extract of garlic can induce apoptosis in colo 205 cells through caspase -3 activity, by means of a mitochondrial-dependent mechanism.

  14. TNF-related apoptosis-inducing ligand deficiency enhances survival in murine colon ascendens stent peritonitis

    Directory of Open Access Journals (Sweden)

    Beyer K

    2016-06-01

    Full Text Available Katharina Beyer,1 Laura Stollhof,1 Christian Poetschke,2 Wolfram von Bernstorff,1 Lars Ivo Partecke,1 Stephan Diedrich,1 Stefan Maier,1 Barbara M Bröker,2 Claus-Dieter Heidecke1 1Department of General, Visceral, Thoracic, and Vascular Surgery, 2Institute of Immunology, University of Greifswald, Greifswald, GermanyBackground: Apart from inducing apoptosis in tumor cells, tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL influences inflammatory reactions. Murine colon ascendens stent peritonitis (CASP represents a model of diffuse peritonitis. Recently, it has been demonstrated that administration of exogenous TRAIL not only induces apoptosis in neutrophils but also enhances survival in this model. The aim of this study was to examine the impact of genetic TRAIL deficiency on the course of CASP.Methods: Peritonitis was induced in 6- to 8-week-old female TRAIL−/− mice as well as in wild-type mice. The sepsis severity score and survival of mice were monitored. Bacterial loads in blood as well as in the lymphoid organs were examined. Additionally, the number of apoptotic cells within the lymphoid organs was determined.Results: As early as 8 hours postinduction of CASP, TRAIL−/− mice were significantly more affected by sepsis than wild-type mice, as measured by the sepsis severity score. However, during the further course of sepsis, TRAIL deficiency led to significantly decreased sepsis severity scores, resulting in an enhanced overall survival in TRAIL−/− mice. The better survival of TRAIL−/− mice was accompanied by a decreased bacterial load within the blood. In marked contrast, the number of apoptotic cells within the lymphoid organs was highly increased in TRAIL−/− mice 20 hours after induction of CASP.Conclusion: Hence, exogenous and endogenous TRAIL is protective during the early phase of sepsis, while endogenous TRAIL appears to be detrimental in the later course of this disease.Keywords: CASP, mice

  15. UHRF1 gene silencing inhibits cell proliferation and promotes cell apoptosis in human cervical squamous cell carcinoma CaSki cells.

    Science.gov (United States)

    Ge, Ting-Ting; Yang, Meng; Chen, Zhuo; Lou, Ge; Gu, Tao

    2016-07-19

    Up-regulation of UHRF1 has been observed in a variety of cancers and appears to serve as an independent prognostic factor. To explore the effect of UHRF1 gene silencing on apoptosis and proliferation of cervical squamous cell carcinoma (CSCC) CaSki cells. This study consisted of 47 CSCC tissues and 40 normal cervical tissues. The CaSki cells were assigned into Blank group (CaSki cells not transfected), NC group (CaSki cells transfected with control siRNA), and UHRF1 Silence group (CaSki cells transfected with UHRF1 siRNA). qRT-PCR and Western blot were used for UHRF1 mRNA and protein expressions, CKK-8 assay for cell proliferation, flow cytometry for cell cycle and apoptosis, Western blot for expressions of apoptosis-related proteins. Nude mice tumor transplant experiment was performed. UHRF1 exhibited higher mRNA and protein expressions in the CSCC tissues than normal cervical tissues (both P cell proliferation ability in the UHRF1 Silence group was reduced when compared with the Blank group and the NC group, the cells at S-G2M stage in the UHRF1 Silence group were dropped when compared with the Blank group and the NC group (P cells at G0/G1 stage were elevated (P cells in the UHRF1 Silence group was increased in comparison with the Blank group and the NC group (P proliferation and enhance apoptosis of the CaSki cells.

  16. Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice.

    Science.gov (United States)

    Dedera, D A; Waller, E K; LeBrun, D P; Sen-Majumdar, A; Stevens, M E; Barsh, G S; Cleary, M L

    1993-09-10

    Expression of the homeobox fusion gene E2A-PBX1 under control of the immunoglobulin heavy chain enhancer efficiently induced malignancies in transgenic mice. All animals died before 5 months of age with lymphomas that demonstrated phenotypes consistent with transitional intermediate thymocytes (CD4+/CD8+/CD3med). E2A-PBX1 also markedly altered lymphoid development in pretumorous animals, reducing the number of thymocytes and bone marrow B lineage progenitors to 20% of normal levels. In spite of the observed reductions in lymphoid cells, premalignant animals contained significantly increased numbers of cycling thymocytes, but a higher proportion was also undergoing apoptosis, suggesting that increased cell death resulted in the marked lymphopenias. These data indicate that the chimeric homeodomain protein E2A-PBX1 paradoxically induces both proliferation and apoptosis in lymphoid cells, suggesting an in vivo association between nuclear oncogene-induced cell cycle progression and programed cell death.

  17. Effects of recombinant adenoviral vector containing IRE1α gene on proliferation and apoptosis of ATDC5 stem cells

    Directory of Open Access Journals (Sweden)

    Xiang-zhu LI

    2013-09-01

    Full Text Available Objective To construct the recombinant adenoviral vector containing human IRE1α (type I transmembrane protein kinase/endoribonucleasegene, and investigate its effects on proliferation and apoptosis of ATDC5 stem cells. Methods  By using pAdEasyTM adenovirus vector system, the recombinant shuttle vectors of IRE1α full-length gene(pAdTrack-IRE1αand RNase+Kinasedomain(pAdTrack-R+Kwere constructed, and then transferred with pAdEasy-1 to generate recombinant adenovirus plasmid pAd-IRE1α and pAd-R+K by electroporation method. Subsequently, the plasmids were transfected into HEK-293 cells to pack and amplify the recombinant adenovirus Ad-IRE1α and Ad-R+K. The expression of recombinant adenovirus was detected by PCR. The ATDC5 cells wereinfected in vitro by recombinant adenovirus Ad-IRE1α and Ad-R+K, the infection efficiency of green fluorescent protein(GFPwas observed, and the influence of Ad-IRE1α and Ad-R+K on the proliferation and apoptosis of ATDC5 cells under endoplasmic reticulum stress(ERS or non-ERS was detected by flow cytometry(FCM. Results Restriction endonuclease digestion analysis and PCR indicated that the recombinant adenovirus vector Ad-IRE1α andAd-R+K was successfully constructed. FCM detection showed that under ERS conditions, the G1 phasedcreased and S phase increased in ATDC5 cells after transfected by Ad-IRE1α and Ad-R+K, meanwhile the apoptosis rate increased significantly(P<0.05. Conclusion Infection of recombinant adenovirus containing IRE1α gene may promote the proliferation and apoptosis of ATDC5cells.

  18. High Glucose Predisposes Gene Expression and ERK Phosphorylation to Apoptosis and Impaired Glucose-Stimulated Insulin Secretion via the Cytoskeleton

    Science.gov (United States)

    Yeo, Ronne Wee Yeh; Yang, Kaiyuan; Li, GuoDong; Lim, Sai Kiang

    2012-01-01

    Chronic high glucose (HG) inflicts glucotoxicity on vulnerable cell types such as pancreatic β cells and contributes to insulin resistance and impaired insulin secretion in diabetic patients. To identify HG-induced cellular aberrations that are candidate mediators of glucotoxicity in pancreatic β cells, we analyzed gene expression in ERoSHK6, a mouse insulin-secreting cell line after chronic HG exposure (six-day exposure to 33.3 mM glucose). Chronic HG exposure which reduced glucose-stimulated insulin secretion (GSIS) increased transcript levels of 185 genes that clustered primarily in 5 processes namely cellular growth and proliferation; cell death; cellular assembly and organization; cell morphology; and cell-to-cell signaling and interaction. The former two were validated by increased apoptosis of ERoSHK6 cells after chronic HG exposure and reaffirmed the vulnerability of β cells to glucotoxicity. The three remaining processes were partially substantiated by changes in cellular morphology and structure, and instigated an investigation of the cytoskeleton and cell-cell adhesion. These studies revealed a depolymerized actin cytoskeleton that lacked actin stress fibers anchored at vinculin-containing focal adhesion sites as well as loss of E-cadherin-mediated cell-cell adherence after exposure to chronic HG, and were concomitant with constitutive ERK1/2 phosphorylation that was refractory to serum and glucose deprivation. Although inhibition of ERK phosphorylation by PD98059 promoted actin polymerization, it increased apoptosis and GSIS impairment. These findings suggest that ERK phosphorylation is a proximate regulator of cellular processes targeted by chronic HG-induced gene expression and that dynamic actin polymerization and depolymerization is important in β cell survival and function. Therefore, chronic HG alters gene expression and signal transduction to predispose the cytoskeleton towards apoptosis and GSIS impairment. PMID:23024780

  19. Upregulated ROS production induced by the proteasome inhibitor MG-132 on XBP1 gene expression and cell apoptosis in Tca-8113 cells.

    Science.gov (United States)

    Chen, Hai-ying; Ren, Xiao-yan; Wang, Wei-hua; Zhang, Ying-xin; Chen, Shuang-feng; Zhang, Bin; Wang, Le-xin

    2014-07-01

    Exposure of Tca-8113 cells to proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal (MG-132) causing apoptosis is associated with endoplasmic reticulum (ER) stress. X-box-binding protein-1 (XBP1) is an important regulator of a subset of genes active during ER stress, which is related to cell survival and is required for tumor growth. The present study is to evaluate the effect of MG-132 on ROS production, XBP1 gene expression, tumor necrosis factor receptor-associated factor 2 (TRAF2), ASK1 and c-jun protein expression in tongue squamous cell carcinoma cell line Tca-8113 cells. ROS production was measured by reactive oxygen species assay. X-box binding protein-1 (XBP1) mRNA was analyzed by real-time-PCR, TRAF2, ASK1 and c-jun protein were investigated by western blot and immunocytochemistry respectively. The result indicated that ROS production, TRAF2, ASK1 and c-jun were elevated in MG-132 treated cells. Giving ROS scavenger N-acetyl-L-cysteine (NAC) largely prevented the effects of MG-132. Furthermore, treating with MG-132 lead to decreased XBP1 mRNA expression but could not completely block the expression of XBP1. Taken together, these findings provide the evidence that MG-132 induced ER stress lead to Tca-8113 cells apoptosis through ROS generation and TRAF2-ASK1-JNK signal pathway activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Morphological adaptation of sheep's rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis.

    Science.gov (United States)

    Xu, Lei; Wang, Yue; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong

    2018-01-01

    The objectives of this study were to characterize changes in the relative mRNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium (RE) of sheep during high-grain (HG) diet adaptation. Twenty sheep were assigned to four groups with five animals each. These animals were assigned to different periods of HG diet (containing 40% forage and 60% concentrate mix) feeding. The HG groups received an HG diet for 7 (G7, n  = 5), 14 (G14, n  = 5) and 28 d (G28, n  = 5), respectively. In contrast, the control group (CON, n  = 5) was fed the forage-based diet for 28 d. The results showed that HG feeding linearly decreased ( P  Bad mRNA expression tended to decrease (cubic, P  = 0.053) after HG feeding. These results demonstrated sequential changes in rumen papillae size, cell cycle regulation and the genes involved in proliferation and apoptosis as time elapsed in feeding a high-grain diet to sheep.

  1. Relative expression of genes related with cold tolerance in ...

    African Journals Online (AJOL)

    Low temperature is one of the main abiotic stresses affecting rice yield in Chile. Alterations in phenology and physiology of the crop are observed after a cold event. The objective of this work was to study the relative expression of genes related with cold stress in Chilean cultivars of rice. For this, we analyzed the expression ...

  2. Screening for candidate genes related to breast cancer with cDNA microarray analysis

    Directory of Open Access Journals (Sweden)

    Yu-Juan Xiang

    2015-06-01

    Full Text Available Objective: The aim of this study was to reveal the exact changes during the occurrence of breast cancer to explore significant new and promising genes or factors related to this disease. Methods: We compared the gene expression profiles of breast cancer tissues with its uninvolved normal breast tissues as controls using the cDNA microarray analysis in seven breast cancer patients. Further, one representative gene, named IFI30, was quantitatively analyzed by real-time PCR to confirm the result of the cDNA microarray analysis. Results: A total of 427 genes were identified with significantly differential expression, 221 genes were up-regulated and 206 genes were down-regulated. And the result of cDNA microarray analysis was validated by detection of IFI30 mRNA level changes by real-time PCR. Genes for cell proliferation, cell cycle, cell division, mitosis, apoptosis, and immune response were enriched in the up-regulated genes, while genes for cell adhesion, proteolysis, and transport were significantly enriched in the down-regulated genes in breast cancer tissues compared with normal breast tissues by a gene ontology analysis. Conclusion: Our present study revealed a range of differentially expressed genes between breast cancer tissues and normal breast tissues, and provide candidate genes for further study focusing on the pathogenesis and new biomarkers for breast cancer. Keywords: Breast neoplasms, Candidate genes, Microarray

  3. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  4. Effects of cyclin D1 gene silencing on cell proliferation, cell cycle, and apoptosis of hepatocellular carcinoma cells.

    Science.gov (United States)

    Chen, Jin; Li, Xue; Cheng, Qi; Ning, Deng; Ma, Jie; Zhang, Zhi-Ping; Chen, Xiao-Ping; Jiang, Li

    2018-02-01

    This study aims to investigate the effects of Cyclin D1 silencing on cell cycle, cell proliferation, and apoptosis of hepatocellular carcinoma cells (HCC). Cells were divided into the blank group, negative control group (HCC cells transfected with control shRNA), Cyclin D1 shRNA group (HCC cells transfected with Cyclin D1 shRNA), and the normal group (human normal liver L-02 cells). Expressions of Cyclin D1, Caspase-3, Bcl-2, and C-myc were detected by RT-qPCR and Western blotting. Cell proliferation was detected by Cell Counting Kit-8. Cell cycle and apoptosis were detected by flow cytometry. Tumor xenograft in nude mice was performed to detect in vivo tumorigenesis. HCC tissues and HCC cells exhibited elevated expression levels of Cyclin D1. Cyclin D1 expression levels was found to be correlated with tumor size and tumor staging. Compared with the normal group, the blank group showed enhanced cell proliferation, a reduction in the amount of cells in G0/G1 phase, increased number cells in S and G2/M phase, reduced apoptosis, elevated expressions of Cyclin D1, Bcl-2, and C-myc, decreased Caspase-3 activity and significant tumorigenicity. In comparison with the blank group, the Cyclin D1 shRNA group revealed weakened cell proliferation, reduced cells in S and G2/M phase, increased cells in G0/G1 phase, increased Annexin V positive cell ratio, decreased expression of Cyclin D1, Bcl-2, and C-myc, elevated Caspase-3 activity and inhibited tumorigenicity. In conclusion, Cyclin D1 gene silencing suppresses cell proliferation and inhibits cell apoptosis, which may be a new target approach in the treatment and management for HCC. © 2017 Wiley Periodicals, Inc.

  5. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    DEFF Research Database (Denmark)

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studie...... with focus on pancreatic islet cell inflammation and β-cell apoptosis....

  6. Sugarcane genes related to mitochondrial function

    Directory of Open Access Journals (Sweden)

    Fonseca Ghislaine V.

    2001-01-01

    Full Text Available Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST database for the presence of expressed sequence tags (ESTs with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.

  7. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  8. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.M.; Pang, A.X., E-mail: zhaoliming515@126.com [Department of Nuclear Medicine, Linyi People' s Hospital, Linyi (China); Department of Urology, Linyi People' s Hospital, Linyi (China)

    2017-10-01

    Iodine-131 ({sup 131}I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following {sup 131}I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with {sup 131}I. They were then assessed for {sup 131}I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and {sup 131}I or with a NF-kB inhibitor of BMS-345541 and {sup 131}I, non-transfected SW579 cells were assessed in JNK/NFkB pathways. It was observed that {sup 131}I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G{sub 0}/G{sub 1} phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and {sup 131}I, the non transfected SW579 cell lines significantly inhibited JNK pathway, NF-kB pathway and the expression of BTG2. However, when treated with BMS-345541 and {sup 131}I, only the NF-kB pathway was suppressed. {sup 131}I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF--κB pathways. (author)

  9. Thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell apoptosis in breast cancer cells.

    Science.gov (United States)

    Kong, H; Tao, L; Qi, K; Wang, Y; Li, Q; Du, J; Huang, Z

    2013-09-01

    The present study was conducted to explore the efficacy of suicide gene therapy with thymidine kinase (TK) in combination with cytosine deaminase (CD) for breast cancer. The expression of CD/TK was detected in the infected cells by RT-PCR. The killing effect on MCF-7 cells following treatment was analyzed by MTT assay. The morphological characteristics of the cells were observed by electron microscopy, and the distribution of the cell cycle was analyzed by flow cytometry. Caspase‑3 and -8 activities were detected by absorption spectrometry. Cytotoxic assays showed that cells transfected with CD/TK became more sensitive to the prodrugs. Morphological features characteristic of apoptosis were noted in the MCF‑7 cells via electron microscopy. The experimental data showed that the proportion of MCF-7 cells during the different phases of the cell cycle varied significantly following treatment with the prodrugs. The activity of caspase‑3 gradually increased following treatment with increasing concentrations of the prodrugs. We conclude that the TK/ganciclovir and CD/5-fluorocytosine suicide gene system used here induces apoptosis in breast cancer cells, and provides a promising treatment modality for breast cancer.

  10. Effects of high-LET radiation on neural cells in culture: apoptosis induction, cell toxicity and gene expression

    Science.gov (United States)

    Vazquez, M.; Otto, S.; Estevez, L.; Rios, D.; Pena, L.; Anderson, C.

    Despite the fact that some in vivo studies suggest that chronic low-dose exposure to HZE particles might produce effects similar to aging and neurodegeneration, the basic mechanisms of HZE particle neurotoxicity remain to be elucidated. The goal of these experiments is to establish neural cellular models to evaluate the capacity of low- and high-LET radiation, to induce cell damage and apoptosis. In the present study we measured apoptosis, cell toxicity and gene expression induced by low fluences-doses of heavy ions, protons and photons using neuronal precursor cells (NT2, STRATAGENE) and post-mitotic neurons as models for adult neural cell system. Using heavy ions accelerated at AGS (BNL) and HIMAC (Chiba, Japan), and protons (Loma Linda) we study the neurotoxic effects of a variety of heavy particles (1 and 0.6 GeV/n Fe, 580 MeV/n Si, 290 MeV/n C, 550 MeV/n Ar; LET ranging from 13 to148 keV/μm), and 255 MeV/n protons. Apoptosis Induction: We measured the induction of apoptosis by flow cytometry using a FACSCalibur to detect the expression of Annexin V, as an early marker in the apoptotic pathway, in NT-2 cells. The ApoAlert Annexin V assay is based on the observation that soon after initiating apoptosis, most cell types translocate phosphatidylserine (PS) from the inner face of the plasma membrane to the cell surface. Once on the cell surface, PS can be easily detected by staining with a FITC conjugate of Annexin V, a protein that has a strong natural affinity for PS. Externalization of PS occurs earlier than the nuclear changes associated with apoptosis, so the ApoAlert Assay detects apoptotic cells significantly earlier than do DNA-based assays. Exposing NT-2 cells to Fe ions and protons induced a strong dose- and time-dependent induction of apoptosis with the peak of apoptosis appearing at 72 hours post-irradiation. It was determined that Fe ion exposure were more effective to induce apoptosis in comparison to protons and gamma rays, suggesting an high RBE

  11. Post operative infection and sepsis in humans is associated with deficient gene expression of gammac cytokines and their apoptosis mediators.

    LENUS (Irish Health Repository)

    White, Mary

    2011-06-28

    Abstract Introduction Lymphocyte homeostasis is dependent on the γc cytokines. We hypothesised that sepsis in humans is associated with differential gene expression of the γc cytokines and their associated apoptosis mediators. Methods The study population consisted of a total of 60 patients with severe sepsis, 15 with gram negative bacteraemia, 10 healthy controls and 60 patients undergoing elective lung resection surgery. Pneumonia was diagnosed by CDC NNIC criteria. Gene expression in peripheral blood leukocytes (PBLs) of interleukin (IL)-2, 7, 15 and interferon (IFN)-γ, Bax, Bim, Bcl-2 was determined by qRT-PCR and IL-2 and IL-7 serum protein levels by ELISA. Gene expression of IL-2, 7 and IFN-γ was measured in peripheral blood leukocytes (PBL), cultured in the presence of lipopolysacharide (LPS) and CD3 binding antibody (CD3ab) Results IL-2 gene expression was lower in the bacteraemia group compared with controls, and lower still in the sepsis group (P < 0.0001). IL-7 gene expression was similar in controls and bacteraemia, but lower in sepsis (P < 0.0001). IL-15 gene expression was similar in the three groups. Bcl-2 gene expression was less (P < 0.0001) and Bim gene expression was greater (P = 0.0003) in severe sepsis compared to bacteraemic and healthy controls. Bax gene expression was similar in the three groups. In lung resection surgery patients, post-operative pneumonia was associated with a perioperative decrease in IL-2 mRNA (P < 0.0001) and IL-7 mRNA (P = 0.003). IL-2 protein levels were reduced in sepsis and bacteraemia compared to controls (P = 0.02) but similar in pneumonia and non-pneumonia groups. IL-7 protein levels were similar in all groups. In cultured PBLs, IFN-γ gene expression was decreased in response to LPS and increased in response to CD3ab with sepsis: IL-7 gene expression increased in response to LPS in controls and to CD3ab with sepsis; Bcl-2 gene expression decreased in response to combined CD3ab and IL-2 with sepsis

  12. Gene Ontology and KEGG Enrichment Analyses of Genes Related to Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2014-01-01

    Full Text Available Identifying disease genes is one of the most important topics in biomedicine and may facilitate studies on the mechanisms underlying disease. Age-related macular degeneration (AMD is a serious eye disease; it typically affects older adults and results in a loss of vision due to retina damage. In this study, we attempt to develop an effective method for distinguishing AMD-related genes. Gene ontology and KEGG enrichment analyses of known AMD-related genes were performed, and a classification system was established. In detail, each gene was encoded into a vector by extracting enrichment scores of the gene set, including it and its direct neighbors in STRING, and gene ontology terms or KEGG pathways. Then certain feature-selection methods, including minimum redundancy maximum relevance and incremental feature selection, were adopted to extract key features for the classification system. As a result, 720 GO terms and 11 KEGG pathways were deemed the most important factors for predicting AMD-related genes.

  13. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis.

    Science.gov (United States)

    Kanatli, Irem; Akkaya, Bahar; Uysal, Hilmi; Kahraman, Sevim; Sanlioglu, Ahter Dilsad

    2017-02-01

    Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis

    DEFF Research Database (Denmark)

    Tafesse, Fikadu G.; Vacaru, Ana M.; Bosma, Elleke Fenna

    2014-01-01

    a mitochondrial pathway of apoptosis. Blocking de novo ceramide synthesis, stimulating ceramide export from the ER or targeting a bacterial ceramidase to mitochondria rescues SMSr-deficient cells from apoptosis. We also show that SMSr-catalyzed CPE production, although essential, is not sufficient to suppress...... ceramide-induced cell death and that SMSr-mediated ceramide homeostasis requires the N-terminal sterile a-motif, or SAM domain, of the enzyme. These results define ER ceramides as bona fide transducers of mitochondrial apoptosis and indicate a primary role of SMSr in monitoring ER ceramide levels...

  15. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1.

    Science.gov (United States)

    Yao, Jie; Qin, Li; Miao, Sen; Wang, Xiangshan; Wu, Xuejian

    2016-09-01

    There is increasing evidence that microRNAs (miRs) are implicated in tumor development and progression; however, their specific roles in osteosarcoma are not well understood. The aim of the present study was to investigate the role of miR-506 in the pathogenesis of osteosarcoma. The expression levels of miR-506 and astrocyte elevated gene-1 (AEG-1) mRNA were detected using quantitative polymerase chain reaction, and the protein levels of AEG-1, β-catenin, c-myc and cyclin D1 were determined using western blot analysis. The effects of miR-506 and AEG-1 on cell viability, colony forming ability and apoptosis were assessed using MTT assay, colony formation assay, and flow cytometry, respectively. Lucifer reporter assays were used to demonstrate whether AEG-1 is a direct target of miR-506. The present study identified that miR-506 was downregulated in osteosarcoma tissues and cells. Overexpression of miR-506 suppressed the proliferation and induced apoptosis in osteosarcoma cells in vitro and inhibited tumor formation in vivo . Overexpression of miR-506 significantly inhibited the luciferase activity of AEG-1 with a wild-type 3'-untranslated region, providing clear evidence that AEG-1 was a direct and functional downstream target of miR-506. Similar to the overexpression of miR-506, downregulation of AEG-1 lead to an inhibitory effect on osteosarcoma in vitro . Furthermore, overexpression of miR-506 or downregulation of AEG-1 inhibited the Wnt/β-catenin signaling pathway, and inhibition of this pathway by β-catenin small interfering RNA or CGP049090, a small molecule inhibitor, suppressed cell proliferation and induced apoptosis in vitro . Overall, the present data indicated that miR-506 functions as a tumor suppressor by targeting AEG-1 in osteosarcoma via the regulation of the Wnt/β-catenin signaling pathway.

  16. [Change in gene expression of inflammation-related genes induced in multiple organ dysfunction syndrome induced by infection of injuries in rat].

    Science.gov (United States)

    Ban, Yu; Shen, Hong; Li, Tan-shi

    2007-03-01

    To study the changes in inflammation-related gene expression in liver tissue during the course of multiple organ dysfunction syndrome (MODS) induced by infection of injuries and its implication. The rats model with MODS following trauma and infection was reproduced in rat. Liver tissue was harvested. The differences of gene expressions between the simple trauma group and MODS group were detected by means of cDNA microarray. Comparison between the two groups, differentially expressed genes included enhanced expression of genes related both of tissue damage and repair. There was also up-regulation of expression of both inflammation-related and anti-inflammation related genes. A few genes appeared down-regulated. The differences of expression extent were significant. There were up-regulation of some genes related to apoptosis and fibrosis. Differential expressions of genes in the liver tissue include both that related to the inflammation and anti-inflammation, with down-regulation and up-regulation at the same time. There is a difference in the intensity. There is also an expression of genes related to intrinsic protection, as manifested by co-existence of systemic inflammatory response syndrome (SIRS) and compensation anti-inflammatory response syndrome (CARS) under the condition of MODS. There is an imbalance in inflammatory reaction. The simultaneous up-regulation of the tissue damage and repair related genes suggests that cellular injury is accompanied by repair in the organs during the course of MODS.

  17. Apoptosis by antitumor agents and other factors in relation to cell cycle checkpoints

    International Nuclear Information System (INIS)

    Kondo, Sohei

    1995-01-01

    More than a cancer patients died in 1993 after treatment with antineoplastic derivatives of 5-fluorouracil and the antiherpes drug Sorivudine. This paper gives a short review of previous reports showing that killing of cells by 5-fluorouracil and other antitumor agents, including radiation at high doses, results from activation of apoptosis in the G2 phase. On the other hand, apoptosis of lymphocytes by radiation at low doses and treatment with other agents is known to occur in the G1 phase. The cells dying in the G1 or G2 phase could share the same final self-killing steps. For these common steps, I assume a mitotic catastrophe model, in which commitment to self-killing results from premature activation of the mitosis machinery, and propose a concept of a 'G1/G2 death circuit' for cells dying in the G1/G2 phase by short circuit to the M phase. Based on this model, reported modes of cell death, spontaneously occurring or after treatment with various agents, are classified by the phase of dying cells. The associations of incomplete apoptosis with production of chromosomal aberrations and prevention of tumorigenesis by complete apoptosis of carcinogen-treated cells are discussed. A presumptive rule for differentiation of G1 apoptosis and G2 apoptosis is proposed. (author)

  18. Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    In-Su Kim

    2017-02-01

    Full Text Available We employed transcriptome analysis of epidermal growth factor receptor related gene expression changes in cellular and animal models of Parkinson’s disease (PD. We used a well-known Parkinsonian toxin 1-methyl-4-phenylpyridine (MPP+ to induce neuronal apoptosis in the human neuroblastoma SH-SY5Y cell line. The MPP+-treatment of SH-SY5Y cells was capable of inducing neuro-apoptosis, but it remains unclear what kinds of transcriptional genes are affected by MPP+ toxicity. Therefore the pathways that were significantly perturbed in MPP+ treated human neuroblastoma SH-SY5Y cells were identified based on genome-wide gene expression data at two time points (24 and 48 h. We found that the Epidermal Growth Factor Receptor (EGFR pathway-related genes showed significantly differential expression at all time points. The EGFR pathway has been linked to diverse cellular events such as proliferation, differentiation, and apoptosis. Further, to evaluate the functional significance of the altered EGFR related gene expression observed in MPP+-treated SH-SY5Y cells, the EGFR related GJB2 (Cx26 gene expression was analyzed in an MPP+-intoxicated animal PD model. Our findings identify that the EGFR signaling pathway and its related genes, such as Cx26, might play a significant role in dopaminergic (DAergic neuronal cell death during the process of neuro-apoptosis and therefore can be focused on as potential targets for therapeutic intervention.

  19. RNAi mediated gene silencing of ITPA using a targeted nanocarrier: Apoptosis induction in SKBR3 cancer cells.

    Science.gov (United States)

    Charbgoo, Fahimeh; Behmanesh, Mehrdad; Nikkhah, Maryam; Kane, Eric G

    2017-08-01

    A pure nucleotide pool is required for high-fidelity DNA replication and prevention of carcinogenesis in living cells. Human inosine triphosphatase (ITPase), encoded by the ITPA gene, plays a critical role in maintaining the purity of the cellular nucleotide pool by excluding nucleotides that enhance mutagenesis. ITPase is a nucleoside triphosphate pyrophosphatase that hydrolyzes the non-canonical nucleotides inosine triphosphate (ITP) and xanthine triphosphate (XTP). The monophosphate products of ITPase reactions are subsequently excluded from the nucleotide pool and the improper substitution of ITP and XTP into DNA and RNA is prevented. Previous studies show that deficiency in ITPA can suppress cellular growth and enhance DNA instability. In this study, we evaluated the influence of effective ITPA down-regulation on the induction of apoptosis in a human cancer cell line using folate-single wall nanotubes (SWNT) as a targeted nanocarrier. We assessed whether SWNT enhances IPTA-siRNA transfection efficiency in cancer cells using folate as a homing device. Since folate receptor is considerably overexpressed in cancer cells, conjugation of SWNTs to folate could enhance their cancer-specific penetrance. We found that nanocarrier mediated ITPA-siRNA transfection into SKBR3 cells caused significant reduction of ITPA mRNA expression level and complete down-regulation of the ITPase protein product. The silencing of ITPA led to promotion of apoptosis in SWNT-treated SKBR3 cancer cells. © 2017 John Wiley & Sons Australia, Ltd.

  20. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis.

    Science.gov (United States)

    Liu, Haidan; Li, Wei; Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-08-30

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.

  1. Expression profile analysis of mycotoxin-related genes in cartilage with endemic osteochondropathy kashin-beck disease

    Directory of Open Access Journals (Sweden)

    Zhang Feng

    2012-07-01

    Full Text Available Abstract Background Kashin-Beck Disease (KBD is an endemic osteochondropathy. Mycotoxins are believed to play an important role in the pathogenesis of KBD. Because the molecular mechanism of mycotoxin-induced cartilage lesions remains unclear, there is not effective treatment for KBD now. To identify key genes involved in the mycotoxin-induced cartilage lesions, we compared the expression profiles of mycotoxin-related genes (MRG between KBD cartilage and healthy cartilage. Methods Total RNA was isolated from cartilage samples, following by being amplified, labeled and hybridized to Agilent human whole genome microarray chip. qRT-PCR was conducted to validate the microarray data. 1,167 MRG were derived from the environmentally related genomic database Toxicogenomics. The microarray data of MRG was subjected to single gene and gene ontology (GO expression analysis for identifying differently expressed genes and GO. Results We identified 7 up-regulated MRG and 2 down-regulated MRG in KBD cartilage, involved in collagen, apoptosis, metabolism and growth & development. GO expression analysis found that 4 apoptosis-related GO and 5 growth & development-related GO were significantly up-regulated in KBD cartilage. Conclusions Based on the results of previous and our studies, we suggest that mycotoxins might contribute to the development of KBD through dysfunction of MRG involved in collagen, apoptosis and growth & development in cartilage.

  2. RESISTANCE-RELATED GENE TRANSCRIPTION AND ...

    African Journals Online (AJOL)

    jdx

    2014-02-05

    Feb 5, 2014 ... and salicylic acid signaling is used to initiate apoptosis at the site of the pathogen's entry. The dying cells can, how- ever, support the growth of necrotrophic pathogens. (Doehlemannetal.,2008). .... independent reverse transcription (RT) reactions were pooled from each leaf processed (three biological ...

  3. Effects of surgical and chemical castration on spatial learning ability in relation to cell proliferation and apoptosis in hippocampus.

    Science.gov (United States)

    Shin, Mal-Soon; Chung, Kyung Jin; Ko, Il-Gyu; Kim, Sang-Hoon; Jin, Jun-Jang; Kim, Sung-Eun; Lee, Jae-Min; Ji, Eun-Sang; Kim, Tae-Woon; Cho, Han-Sam; Kim, Chang Hee; Cho, Young-Sam; Kim, Chang-Ju; Kim, Khae-Hawn

    2016-04-01

    Chemical castration using luteinizing hormone-releasing hormone agonists and/or anti-androgens is an alternative to surgical castration. Goserelin and bicalutamide are representative drugs used for chemical castration. The effects of chemical castration on sexual functions are well documented; however, the possibility that chemical castration might induce undesirable effects on brain functions has been raised. We investigated the effects of chemical castration and surgical castration on spatial learning ability in relation to cell proliferation and apoptosis in hippocampus. Bilateral orchiectomy was performed for surgical castration, and chemical castration was induced by treatment with goserelin or bicalutamide for 28 days. To find out the effects of goserelin and bicalutamide with those of orchiectomy on the spatial learning ability, radial eight-arm maze test was performed. To find out the effects of goserelin and bicalutamide with those of orchiectomy in relation to cell proliferation and apoptosis in the hippocampus, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, and immunohistochemistry for 5-bromo-2'-deoxyuridine, doublecortin, and caspase-3 were performed. Western blot for brain-derived neurotrophic factor, tyrosine kinase receptor B, Bax, and Bcl-2 in the hippocampus was also performed. Orchiectomy caused deterioration of spatial learning ability with suppression of cell proliferation and enhancement of apoptosis in the hippocampus. However, treatment with goserelin and bicalutamide had no effect on spatial learning ability. Cell proliferation and apoptosis were not altered by treatment with goserelin and bicalutamide either. Surgical castration causes deterioration of spatial learning ability, while chemical castration does not impair spatial learning ability. We should find out further mechanisms affect to the relationship between androgen level and neurogenesis and neuronal apoptosis.

  4. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  5. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    International Nuclear Information System (INIS)

    Pinar, Beatriz; Henríquez-Hernández, Luis Alberto; Lara, Pedro C; Bordon, Elisa; Rodriguez-Gallego, Carlos; Lloret, Marta; Nuñez, Maria Isabel; De Almodovar, Mariano Ruiz

    2010-01-01

    DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity

  6. Insights on the involvement of (-)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration.

    Science.gov (United States)

    Karthikeyan, Bose; Harini, Lakshminarasimhan; Krishnakumar, Vaithilingam; Kannan, Velu Rajesh; Sundar, Krishnan; Kathiresan, Thandavarayan

    2017-01-01

    Endoplasmic reticulum (ER) stress-mediated apoptosis is a well-known factor in the pathogenesis of age-related macular degeneration (AMD). ER stress leads to accumulation of misfolded proteins, which in turn activates unfolded protein response (UPR) of the cell for its survival. The prolonged UPR of ER stress promotes cell death; however, the transition between adaptation and ER stress-induced apoptosis has not been clearly understood. Hence, the present study investigates the regulatory effect of (-)-epigallocatechin gallate (EGCG) on ER stress-induced by hydrogen peroxide (H 2 O 2 ) and disturbance of calcium homeostasis by thapsigargin (TG) in mouse retinal pigment epithelial (MRPE) cells. The oxidant molecules influenced MRPE cells showed an increased level of intracellular calcium [Ca 2+ ] i in ER and transferred to mitochondria through ER-mitochondrial tether site then increased ROS production. EGCG restores [Ca 2+ ] i homeostasis by decreasing ROS production through inhibition of prohibitin1 which regulate ER-mitochondrial tether site and inhibit apoptosis. Effect of EGCG on ER stress-mediated apoptosis was elucidated by exploring the UPR signalling pathways. EGCG downregulated GRP78, CHOP, PERK, ERO1α, IRE1α, cleaved PARP, cleaved caspase 3, caspase 12 and upregulated expression of calnexinin MRPE cells. In addition to this, inhibition of apoptosis by EGCG was also confirmed with expression of proteins Akt, PTEN and GSK3β. MRPE cells with EGCG upregulates phosphorylation of Akt at ser473 and phospho ser380 of PTEN, but phosphorylation at ser9 of GSK3β was inhibited. Further, constitutively active (myristoylated) CA-Akt transfected in MRPE cells had an increased Akt activity in EGCG influenced cells. These findings strongly suggest that antioxidant molecules inhibit cell death through the proper balancing of [Ca 2+ ] i and ROS production in order to maintain UPR of ER in MRPE cells. Thus, modulation of UPR signalling may provide a potential target for

  7. Cytokine regulation of pro- and anti-apoptotic genes in rat hepatocytes: NF-kappaB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis

    NARCIS (Netherlands)

    Schoemaker, Marieke H.; Ros, Jenny E.; Homan, Manon; Trautwein, Christian; Liston, Peter; Poelstra, Klaas; van Goor, Harry; Jansen, Peter L. M.; Moshage, Han

    2002-01-01

    BACKGROUND/AIMS: In acute liver failure, hepatocytes are exposed to various cytokines that activate both cell survival and apoptotic pathways. NF-kappaB is a central transcription factor in these responses. Recent studies indicate that blocking NF-kappaB causes apoptosis, indicating the existence of

  8. Regulation of IAP (Inhibitor of Apoptosis) Gene Expression by the p53 Tumor Suppressor Protein

    National Research Council Canada - National Science Library

    Murphy, Maureen

    2003-01-01

    The goal of the work proposed in this application, which has just completed Year 1, was to analyze the ability of the p53 tumor suppressor protein to repress the anti-apoptotic genes survivin and cIAP-2...

  9. Handling gene redundancy in microarray data using Grey Relational Analysis.

    Science.gov (United States)

    Zhang, Li-Juan; Li, Zhou-Jun; Chen, Huo-Wang

    2008-01-01

    Gene selection is one of the important and frequently used techniques for microarray data classification. In this paper, we introduce a new metric to measure gene-class relevance and gene-gene redundancy. The new metric is based on Grey Relational Analysis (GRA), called Grey Relational Grade (GRG), and never used in gene selection before. Based on the GRG, we develop a new gene selection method, which uses GRG to group similar genes to clusters, and then select informative genes from each cluster to avoid redundancy. Experiments on public data sets demonstrate the effectiveness of the proposed method.

  10. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors

    International Nuclear Information System (INIS)

    Wang, Changdong; Ma, Yongping; Hu, Qiongwen; Xie, Tingting; Wu, Jiayan; Zeng, Fan; Song, Fangzhou

    2016-01-01

    Directly targeting therapeutic suicide gene to a solid tumor is a hopeful approach for cancer gene therapy. Treatment of a solid tumor by an effective vector for a suicide gene remains a challenge. Given the lack of effective treatments, we constructed a bifidobacterial recombinant thymidine kinase (BF-rTK) -ganciclovir (GCV) targeting system (BKV) to meet this requirement and to explore antitumor mechanisms. Bifidobacterium (BF) or BF-rTK was injected intratumorally with or without ganciclovir in a human colo320 intestinal xenograft tumor model. The tumor tissues were analyzed using apoptosis antibody arrays, real time PCR and western blot. The colo320 cell was analyzed by the gene silencing method. Autophagy and necroptosis were also detected in colo320 cell. Meanwhile, three human digestive system xenograft tumor models (colorectal cancer colo320, gastric cancer MKN-45 and liver cancer SSMC-7721) and a breast cancer (MDA-MB-231) model were employed to validate the universality of BF-rTK + GCV in solid tumor gene therapy. The survival rate was evaluated in three human cancer models after the BF-rTK + GCV intratumor treatment. The analysis of inflammatory markers (TNF-α) in tumor indicated that BF-rTK + GCV significantly inhibited TNF-α expression. The results suggested that BF-rTK + GCV induced tumor apoptosis without autophagy and necroptosis occurrence. The apoptosis was transduced by multiple signaling pathways mediated by FasL and TNFR2 and mainly activated the mitochondrial control of apoptosis via Bid and Bim, which was rescued by silencing Bid or/and Bim. However, BF + GCV only induced apoptosis via Fas/FasL signal pathway accompanied with increased P53 expression. We further found that BF-rTK + GCV inhibited the expression of the inflammatory maker of TNF-α. However, BF-rTK + GCV did not result in necroptosis and autophagy. BF-rTK + GCV induced tumor apoptosis mediated by FasL and TNFR2 through the mitochondrial control of apoptosis via Bid and Bim

  11. The zinc finger homeodomain-2 gene of Drosophila controls Notch targets and regulates apoptosis in the tarsal segments.

    Science.gov (United States)

    Guarner, Ana; Manjón, Cristina; Edwards, Kevin; Steller, Hermann; Suzanne, Magali; Sánchez-Herrero, Ernesto

    2014-01-15

    The development of the Drosophila leg is a good model to study processes of pattern formation, cell death and segmentation. Such processes require the coordinate activity of different genes and signaling pathways that progressively subdivide the leg territory into smaller domains. One of the main pathways needed for leg development is the Notch pathway, required for determining the proximo-distal axis of the leg and for the formation of the joints that separate different leg segments. The mechanisms required to coordinate such events are largely unknown. We describe here that the zinc finger homeodomain-2 (zfh-2) gene is highly expressed in cells that will form the leg joints and needed to establish a correct size and pattern in the distal leg. There is an early requirement of zfh-2 to establish the correct proximo-distal axis, but zfh-2 is also needed at late third instar to form the joint between the fourth and fifth tarsal segments. The expression of zfh-2 requires Notch activity but zfh-2 is necessary, in turn, to activate Notch targets such as Enhancer of split and big brain. zfh-2 is controlled by the Drosophila activator protein 2 gene and regulates the late expression of tarsal-less. In the absence of zfh-2 many cells ectopically express the pro-apoptotic gene head involution defective, activate caspase-3 and are positive for acridine orange, indicating they undergo apoptosis. Our results demonstrate the key role of zfh-2 in the control of cell death and Notch signaling during leg development. © 2013 Published by Elsevier Inc.

  12. [Prolonged exposure to crystalline silica Min-U-Sil-5 influences apoptosis or extracellular matrix genes expression in human bronchial epithelial cells].

    Science.gov (United States)

    Gambelunghe, A; Antognelli, C; Murgia, N; dell'Omo, M; Talesa, V N; Muzi, G

    2011-01-01

    Crystalline silica (Min-U-Sil-5) induces oxidative stress in human bronchial epithelial cells (BEAS-2B), through the intracellular accumulation of ROS that cause oxidative damage leading to the degradation of extracellular matrix (ECM) proteins and to the loss of cell adhesion molecules inducing apoptosis and genotoxic damage. This paper briefly summarizes some of the recent findings from our laboratories with emphasis on the molecular events by which the cronic and cumulative exposure to crystalline silica can induce cellular damage that promotes changes in extracellular matrix and in apoptosis gene expression.

  13. Expression of Interactive Genes Associated with Apoptosis and Their Prognostic Value for Ovarian Serous Adenocarcinoma.

    Science.gov (United States)

    Shin, Kyusik; Kim, Ki Hyung; Yoon, Man Soo; Suh, Dong Soo; Lee, Ji Young; Kim, Ari; Eo, Wankyu

    2016-01-01

    Malignant ovarian tumor is one of the leading causes of worldwide cancer death. It is usually characterized by insidious onset and late diagnosis because of the absence of symptoms, allowing ovarian cancer cases to progress rapidly and become unresectable. The tumor suppressor, p53, plays an important role in regulating cell cycles and apoptosis. p53 is regulated by several molecules, and it interacts with other apoptotic proteins. To compare the prognosis of ovarian serous carcinoma and evaluate the expression of DNA-PKcs, Akt3, GSK-3β, and p53 in cancerous cells. DNA-PKcs, Akt3, GSK-3β, and p53 expression levels were scored using immunohistochemistry staining of tissue samples from 132 women with ovarian serous adenocarcinoma. Expression was confirmed by real-time RT-PCR. Analyses were stratified by age, tumor grades, cancer stages and serum CA 125 levels. Significant differences in DNA-PKcs, Akt3, and p53 expression were observed between participants with different stages and tumor grades of ovarian serous adenocarcinoma. DNA-PKcs and p53 expression increased along with increasing tumor grade. Meanwhile, DNA-PKcs, Akt3, and p53 expression increased along with increasing cancer stage, and with a decrease in 5-year overall survival rate. This study shows that elevated expression of DNA-PKcs, Akt3, and p53 in ovarian serous adenocarcinoma tissues are an indication of more advanced disease and worse prognosis.

  14. Functions of the AP-2α gene in activating apoptosis and inhibiting proliferation of gastric cancer cells bothin vitroandin vivo.

    Science.gov (United States)

    Zeng, Changqing; Liu, Zhimin; Zhang, Jian; Fang, Hongwei; Fang, Cheng; Wang, Yueming; Seeruttun, Sharvesh Raj; Chen, Jun; Huang, Liangxiang; Wang, Wei

    2017-10-01

    This study was designed to investigate the potential function of the activating protein 2α (AP-2α) gene in controlling the proliferation and apoptosis of gastric cancer. Gastric cancer cell line MCG-803 cells and normal cell line GES-1 cells were selected to transfect pcDNA3.1(+)-AP-2α and pcDNA3.1(+) plasmids, respectively. Both mRNA and protein levels of AP-2α in each group transfected with the pcDNA3.1(+)-AP-2α plasmids were up-regulated after 48 h by real-time PCR and Western blotting analysis, leading to marked proliferation inhibition and significant cell cycle arrest. pcDNA3.1(+)-AP-2α reduced tumor tissue growth in a subcutaneous tumor gastric carcinoma nude mouse model. Protein over-expression of AP-2α in the nude mouse model was accompanied by down-regulation of Blc-2 and ErbB2, resulting in the up-regulation of caspase-3, -8, and -9, ERα and p21 WAF1/CIP1 . The reintroduction of the AP-2α gene by pcDNA3.1 could inhibit gastric tumor growth in vitro and in vivo , which may be an alternative future therapeutic molecular target for human gastric cancer.

  15. Serine/Threonine Kinase 35, a Target Gene of STAT3, Regulates the Proliferation and Apoptosis of Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Zhong Wu

    2018-01-01

    Full Text Available Background/Aims: Serine/threonine kinase 35 (STK35 may be associated with Parkinson disease and human colorectal cancer, but there have been no reports on the expression levels or roles of STK35 in osteosarcoma. Methods: STK35 mRNA expression was determined in osteosarcoma and bone cyst tissues by real-time PCR. Cell proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8 assay and flow cytometry analysis, respectively. Results: STK35 was up-regulated in osteosarcoma tissues as indicated by analyzing publicly available expression data (GEO dataset E-MEXP-3628 and real-time PCR analysis on our own cohort. We subsequently investigated the effects of STK35 knockdown on two osteosarcoma cell lines, MG63 and U2OS. STK35 knockdown inhibited the growth of osteosarcoma cells in vitro and in xenograft tumors. Meanwhile, STK35 knockdown enhanced apoptosis. Expression of the active forms and the activity of two major executioner caspases, caspase 3 and caspase 7, were also increased in osteosarcoma cells with STK35 silenced. Additionally, Gene Set Enrichment Analysis (GSEA identified that the JAK/STAT signaling pathway was positively correlated with STK35 expression. The mRNA expression of STK35 was repressed by STAT3 small interfering RNA (siRNA, but not by siRNA of STAT4, STAT5A or STAT6. A luciferase reporter assay further demonstrated that STAT3 transcriptionally regulated STK35 expression. A chromatin immunoprecipitation (ChIP assay confirmed the direct recruitment of STAT3 to the STK35 promoter. The promotion effects of STAT3 knockdown on cell apoptosis were partially abolished by STK35 overexpression. Furthermore, STK35 mRNA expression was positively correlated with STAT3 mRNA expression in osteosarcoma tissues by Pearson correlation analysis. Conclusions: These results collectively reveal that STAT3 regulates the transcription of STK35 in osteosarcoma. STK35 may exert an oncogenic role in osteosarcoma.

  16. Regulation of cell proliferation and apoptosis in neuroblastoma cells by ccp1, a FGF2 downstream gene

    Directory of Open Access Journals (Sweden)

    Inman Gareth J

    2010-11-01

    Full Text Available Abstract Background Coiled-coil domain containing 115 (Ccdc115 or coiled coil protein-1 (ccp1 was previously identified as a downstream gene of Fibroblast Growth Factor 2 (FGF2 highly expressed in embryonic and adult brain. However, its function has not been characterised to date. Here we hypothesized that ccp1 may be a downstream effecter of FGF2, promoting cell proliferation and protecting from apoptosis. Methods Forced ccp1 expression in mouse embryonic fibroblast (MEF and neuroblastoma SK-N-SH cell line, as well as down-regulation of ccp1 expression by siRNA in NIH3T3, was used to characterize the role of ccp1. Results Ccp1 over-expression increased cell proliferation, whereas down-regulation of ccp1 expression reduced it. Ccp1 was able to increase cell proliferation in the absence of serum. Furthermore, ccp1 reduced apoptosis upon withdrawal of serum in SK-N-SH. The mitogen-activated protein kinase (MAPK or ERK Kinase (MEK inhibitor, U0126, only partially inhibited the ccp1-dependent BrdU incorporation, indicating that other signaling pathway may be involved in ccp1-induced cell proliferation. Induction of Sprouty (SPRY upon FGF2 treatment was accelerated in ccp1 over-expressing cells. Conclusions All together, the results showed that ccp1 regulates cell number by promoting proliferation and suppressing cell death. FGF2 was shown to enhance the effects of ccp1, however, it is likely that other mitogenic factors present in the serum can also enhance the effects. Whether these effects are mediated by FGF2 influencing the ccp1 function or by increasing the ccp1 expression level is still unclear. At least some of the proliferative regulation by ccp1 is mediated by MAPK, however other signaling pathways are likely to be involved.

  17. The prognostic significance of apoptosis-related biological markers in Chinese gastric cancer patients.

    Directory of Open Access Journals (Sweden)

    Xiaowen Liu

    Full Text Available BACKGROUND AND OBJECTIVE: The prognosis varied among the patients with the same stage, therefore there was a need for new prognostic and predictive factors. The aim of this study was to evaluate the relationship of apoptosis-related biological markers such as p53, bcl-2, bax, and c-myc, and clinicopathological features and their prognostic value. METHODS: From 1996 to 2007, 4426 patients had undergone curative D2 gastrectomy for gastric cancer at Fudan University Shanghai Cancer Center. Among 501 patients, the expression levels of p53, bcl-2, bax, and c-myc were examined by immunohistochemistry. The prognostic value of biological markers and the correlation between biological markers and other clinicopathological factors were investigated. RESULTS: There were 339 males and 162 females with a mean age of 57. The percentages of positive expression of p53, bcl-2, bax, and c-myc were 65%, 22%, 43%, and 58%, respectively. There was a strong correlation between p53, bax, and c-myc expression (P=0.00. There was significant association between bcl-2, and bax expression (P<0.05. p53 expression correlated with histological grade (P=0.01; bcl-2 expression with pathological stage (P=0.00; bax expression with male (P=0.02, histological grade (P=0.01, Borrmann type (P=0.01, tumor location (P=0.00, lymph node metastasis (P=0.03, and pathological stage (P=0.03; c-myc expression with Borrmann type (P=0.00. bcl-2 expression was related with good survival in univariate analysis (P=0.01. Multivariate analysis showed that bcl-2 expression and pathological stage were defined as independent prognostic factors. There were significant differences of overall 5-year survival rates according to bcl-2 expression or not in stage IIB (P=0.03. CONCLUSION: The expression of bcl-2 was an independent prognostic factor for patients with gastric cancer; it might be a candidate for the gastric cancer staging system.

  18. [Changes of endoplasmic reticulum stress- and apoptosis-related factors in rat cerebral cortex following controlled hypotension].

    Science.gov (United States)

    Zhang, Jianxing; Li, Hongying; Zhou, Guobin; Wang, Yan

    2014-12-01

    To investigate the changes of endoplasmic reticulum stress (ERS)- and apoptosis-related factors in rat cerebral cortex following controlled hypotension. Twenty-four healthy male SD rats were randomly divided into 4 equal groups, including a sham hypotension group (group A) and 3 hypotension groups with the mean arterial pressure maintained for 60 min at 70 mmHg (group B), 50 mmHg (group) and 30 mmHg (group D) with sodium nitroprusside and esmolol. All the rats received an equal volume of fluid infusion. Twelve hours after controlled hypotension, the rats were sacrificed to examine the protein expressions of Bax, Bcl-2, glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and caspase-12 in the cortex with Western blotting. GRP78 mRNA expression was measured by RT-PCR, and the cell apoptosis was evaluated by TUNEL staining. Compared with those in group A, GRP78 mRNA and protein expressions of GRP78, CHOP, caspase-12 related with ERS increased significantly in groups C and D (P0.05). Apoptotic cells and Bax expression increased and Bcl-2 expression decreased significantly in groups C and D (P0.05); such changes were more prominent in group D than in group C (Pcontrolled hypotension (70 mmHg) does not induce neuronal injury in rat cerebral cortex, but severe hypertension (lower than 50 mmHg) can cause neuronal ERS and apoptosis.

  19. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization.

    Science.gov (United States)

    Liu, Qiu-Ning; Zhu, Bao-Jian; Wang, Lei; Wei, Guo-Qing; Dai, Li-Shang; Lin, Kun-Zhang; Sun, Yu; Qiu, Jian-Feng; Fu, Wei-Wei; Liu, Chao-Liang

    2013-11-01

    Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney.

    Directory of Open Access Journals (Sweden)

    Shue Dong Chung

    Full Text Available Exacerbated oxidative stress and inflammation may induce three types of programmed cell death, autophagy, apoptosis and pyroptosis in unilateral ureteral obstruction (UUO kidney. Sulforaphane activating NF-E2-related nuclear factor erythroid-2 (Nrf-2 signaling may ameliorate UUO-induced renal damage. UUO was induced in the left kidney of female Wistar rats. The level of renal blood flow, cortical and medullary oxygen tension and reactive oxygen species (ROS was evaluated. Fibrosis, ED-1 (macrophage/monocyte infiltration, oxidative stress, autophagy, apoptosis and pyroptosis were evaluated by immunohistochemistry and Western blot in UUO kidneys. Effects of sulforaphane, an Nrf-2 activator, on Nrf-2- and mitochondrial stress-related proteins and renal injury were examined. UUO decreased renal blood flow and oxygen tension and increased renal ROS, 3-nitrotyrosine stain, ED-1 infiltration and fibrosis. Enhanced renal tubular Beclin-1 expression started at 4 h UUO and further enhanced at 3d UUO, whereas increased Atg-5-Atg12 and LC3-II expression were found at 3d UUO. Increased renal Bax/Bcl-2 ratio, caspase 3 and PARP fragments, apoptosis formation associated with increased caspase 1 and IL-1β expression for pyroptosis formation were started from 3d UUO. UUO reduced nuclear Nrf-2 translocation, increased cytosolic and inhibitory Nrf-2 expression, increased cytosolic Bax translocation to mitochondrial and enhanced mitochondrial Cytochrome c release into cytosol of the UUO kidneys. Sulforaphane significantly increased nuclear Nrf-2 translocation and decreased mitochondrial Bax translocation and Cytochrome c release into cytosol resulting in decreased renal injury. In conclusion, sulforaphane via activating Nrf-2 signaling preserved mitochondrial function and suppressed UUO-induced renal oxidative stress, inflammation, fibrosis, autophagy, apoptosis and pyroptosis.

  1. Beta-mangostin from Cratoxylum arborescens activates the intrinsic apoptosis pathway through reactive oxygen species with downregulation of the HSP70 gene in the HL60 cells associated with a G0/G1cell-cycle arrest.

    Science.gov (United States)

    Omer, Fatima Abdelmutaal Ahmed; Hashim, Najihah Binti Mohd; Ibrahim, Mohamed Yousif; Dehghan, Firouzeh; Yahayu, Maizatulakmal; Karimian, Hamed; Salim, Landa Zeenelabdin Ali; Mohan, Syam

    2017-11-01

    Xanthones are phytochemical compounds found in a number of fruits and vegetables. Characteristically, they are noted to be made of diverse properties based on their biological, biochemical, and pharmacological actions. Accordingly, the apoptosis mechanisms induced by beta-mangostin, a xanthone compound isolated from Cratoxylum arborescens in the human promyelocytic leukemia cell line (HL60) in vitro, were examined in this study. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was done to estimate the cytotoxicity effect of β-mangostin on the HL60 cell line. Acridine orange/propidium iodide and Hoechst 33342 dyes and Annexin V tests were conducted to detect the apoptosis features. Caspase-3 and caspase-9 activities; reactive oxygen species; real-time polymerase chain reaction for Bcl-2, Bax, caspase-3, and caspase-9 Hsp70 genes; and western blot for p53, cytochrome c, and pro- and cleavage-caspase-3 and caspase-9 were assessed to examine the apoptosis mechanism. Cell-cycle analysis conducted revealed that β-mangostin inhibited the growth of HL60 at 58 µM in 24 h. The administration of β-mangostin with HL60 caused cell morphological changes related to apoptosis which increased the number of early and late apoptotic cells. The β-mangostin-catalyzed apoptosis action through caspase-3, caspase-7, and caspase-9 activation overproduced reactive oxygen species which downregulated the expression of antiapoptotic genes Bcl-2 and HSP70. Conversely, the expression of the apoptotic genes Bax, caspase-3, and caspase-9 were upregulated. Meanwhile, at the protein level, β-mangostin activated the formation of cleaved caspase-3 and caspase-9 and also upregulated the p53. β-mangostin arrested the cell cycle at the G 0 /G 1 phase. Overall, the results for β-mangostin showed an antiproliferative effect in HL60 via stopping the cell cycle at the G 0 /G 1 phase and prompted the intrinsic apoptosis pathway.

  2. Transforming growth factor-β-stimulated clone-22 (TSC-22) is an androgen regulated gene that enhances apoptosis in prostate cancer following IGF-IR inhibition

    Science.gov (United States)

    Sprenger, Cynthia C. T.; Haugk, Kathleen; Sun, Shihua; Coleman, Ilsa; Nelson, Peter S.; Vessella, Robert L.; Ludwig, Dale L.; Wu, Jennifer D.; Plymate, Stephen R.

    2009-01-01

    Purpose Inhibition of IGF signaling using the human IGF-IR monoclonal antibody A12 is most effective at inducing apoptosis in prostate cancer xenografts in the presence of androgen. We undertook this study to determine mechanisms for increased apoptosis by A12 in the presence of androgens. Experimental Methods The castrate-resistant human xenograft LuCaP 35V was implanted into intact or castrate SCID mice and treated with A12 weekly. After six weeks of tumor growth animals were sacrificed and tumors removed and analyzed for cell cycle distribution/apoptosis and cDNA arrays were performed. Results In castrate mice the tumors were delayed in G2 with no apoptosis; in contrast tumors from intact mice underwent apoptosis with either a G1 or G2 delay. TSC-22 was significantly elevated in tumors from the intact mice compared to castrate mice, especially in those tumors with the highest levels of apoptosis. In order to further determine the function of TSC-22, we transfected various human prostate cancer cell lines with a plasmid expressing TSC-22. Cell lines overexpressing TSC-22 demonstrated an increase in apoptosis and a delay in G1. When these cell lines were placed subcutaneously in SCID mice a decreased number of animals formed tumors and the rate of tumor growth was decreased compared to control tumors. Conclusions These data indicate that IGF-IR inhibition in the presence of androgen has an enhanced effect on decreasing tumor growth, in part, through increased expression of the tumor suppressor gene TSC-22. PMID:19996218

  3. Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer.

    Science.gov (United States)

    Ganten, Tom M; Sykora, Jaromir; Koschny, Ronald; Batke, Emanuela; Aulmann, Sebastian; Mansmann, Ulrich; Stremmel, Wolfgang; Sinn, Hans-Peter; Walczak, Henning

    2009-10-01

    TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis upon binding to TRAIL receptors 1 and 2 (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL-R3 (DcR1) and TRAIL-R4 (DcR2) have no or only a truncated cytoplasmic death domain. Consequently, they cannot induce apoptosis and instead have been proposed to inhibit apoptosis induction by TRAIL. Agonists for the apoptosis-inducing TRAIL-R1 and TRAIL-R2 are currently tested in clinical trials. To determine the expression pattern of all surface-bound TRAIL receptors and their prognostic clinical value, we investigated tumour samples of 311 patients with breast cancer by immunohistochemistry. TRAIL receptor expression profiles were correlated with clinico-pathological data, disease-free survival and overall survival. TRAIL-R1 was more strongly expressed in better differentiated tumours, and correlated positively with surrogate markers of a better prognosis (hormone receptor status, Bcl-2, negative nodal status), but negatively with the expression of Her2/neu and the proliferation marker Ki67. In contrast, TRAIL-R2 and TRAIL-R4 expression correlated with higher tumour grades, higher Ki67 index, higher Her2/neu expression and a positive nodal status at the time of diagnosis, but with lower expression of Bcl-2. Thus, the TRAIL receptor expression pattern was predictive of nodal status. Patients with grade 1 and 2 tumours, who had TRAIL-R2 but no TRAIL-R1, showed a positive lymph node status in 47% of the cases. Vice versa, only 19% had a positive nodal status with high TRAIL-R1 but low TRAIL-R2. Most strikingly, TRAIL-R4 and -R2 expression negatively correlated with overall survival of breast cancer patients. Although TRAIL-R2 correlated with more aggressive tumour behaviour, mammary carcinoma could be sensitised to TRAIL-R2-induced apoptosis, suggesting that TRAIL-R2 might therefore be used to therapeutically target such tumours. Hence, determination of the TRAIL receptor expression profile may aid in defining which breast

  4. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    Science.gov (United States)

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  5. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy

    International Nuclear Information System (INIS)

    Gopinath, P; Ghosh, Siddhartha Sankar; Gogoi, Sonit Kumar; Chattopadhyay, Arun

    2008-01-01

    The impact of manufactured nanomaterials on human health and the environment is a major concern for commercial use of nanotechnology based products. A judicious choice of selective usage, lower nanomaterial concentration and use in combination with conventional therapeutic materials may provide the best solution. For example, silver nanoparticles (Ag NPs) are known to be bactericidal and also cytotoxic to mammalian cells. Herein, we investigate the molecular mechanism of Ag NP mediated cytotoxicity in both cancer and non-cancer cells and find that optimum particle concentration leads to programmed cell death in vitro. Also, the benefit of the cytotoxic effects of Ag NPs was tested for therapeutic use in conjunction with conventional gene therapy. The synergistic effect of Ag NPs on the uracil phosphoribosyltransferase expression system sensitized the cells more towards treatment with the drug 5-fluorouracil. Induction of the apoptotic pathway makes Ag NPs a representative of a new chemosensitization strategy for future application in gene therapy

  6. Secreted Frizzled related protein-4 (sFRP4) promotes epidermal differentiation and apoptosis

    International Nuclear Information System (INIS)

    Maganga, Richard; Giles, Natalie; Adcroft, Katharine; Unni, Ambili; Keeney, Diane; Wood, Fiona; Fear, Mark; Dharmarajan, Arunasalam

    2008-01-01

    The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown. We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin. These data suggest sFRP4 promotes epidermal differentiation.

  7. Expression of apoptosis-regulating genes in the rat prostate following botulinum toxin type a injection

    Directory of Open Access Journals (Sweden)

    Gorgal Tiago

    2012-01-01

    Full Text Available Abstract Background Onabotulinumtoxin A (OnabotA injection has been investigated as a novel treatment for benign prostatic enlargement caused by benign prostatic hyperplasia. An OnabotA - induced volume reduction caused by sympathetic fibers impairment has been proposed as a potential mechanism of action. Our aim was to investigate the expression of apoptosis-regulating proteins in the rat prostate following OnabotA intraprostatic injection. Methods Adult Wistar rats were injected in the ventral lobes of the prostate with 10 U of OnabotA or saline. A set of OnabotA-injected animals was further treated with 0.5 mg/kg of phenylephrine (PHE subcutaneously daily. All animals were sacrificed after 1 week and had their prostates harvested. Immunohistochemical staining was performed for Bax, Bcl-xL and caspase-3 proteins and visualized by the avidin-biotin method. The optical density of the glandular cells was also determined, with measurement of differences between average optical densities for each group. Results Saline-treated animals showed intense epithelial staining for Bcl-xL and a faint labelling for both Bax and Caspase-3. OnabotA-treated rats showed a reduced epithelial staining of Bcl-xL and a consistently increased Bax and Caspase-3 staining when compared with saline-treated animals. PHE-treated animals showed a stronger Bcl-xL staining and reduced staining of both Bax and Caspase-3 when compared to the OnabotA group. Mean signal intensity measurements for each immunoreaction confirmed a significant decrease of the signal intensity for Bcl-xL and a significant increase of the signal intensity for Bax and Caspase 3 in OnabotA-injected animals when compared with the control group. In OnabotA+PHE treated animals mean signal intensity for Bcl-xL, Bax and Caspase 3 immunoreactions was identical to that of the control animals. Conclusions These results support the hypothesis that OnabotA activates apoptotic pathways in the rat prostate through a

  8. Expression of Cyt-c-Mediated Mitochondrial Apoptosis-Related Proteins in Rat Renal Proximal Tubules during Development.

    Science.gov (United States)

    Song, Xiao-Feng; Tian, He; Zhang, Ping; Zhang, Zhen-Xing

    2017-01-01

    Apoptosis regulates embryogenesis, organ metamorphosis and tissue homeostasis. Mitochondrial signaling is an apoptotic pathway, in which Cyt-c and Apaf-1 are transformed into an apoptosome, which activates procaspase-9 and triggers apoptosis. This study evaluated Cyt-c, Apaf-1 and caspase-9 expression during renal development. Kidneys from embryonic (E) 16-, 18-, and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups were obtained. Immunohistochemical analysis, dual-labeled immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) technique assay and Western blot were performed in addition to histological analysis. Immunohistochemistry showed that Cyt-c was strongly expressed in proximal and distal tubules (DTs) at all time points. Caspase-9 and Apaf-1 were strongly expressed in proximal tubules (PTs) but only weakly expressed in DTs. Dual-labeled immunofluorescence showed that most tubules expressed both Cyt-c and Apaf-1, except for some tubules that only expressed Cyt-c. The TUNEL assay showed a greater percentage of apoptotic cells in PTs compared to DTs. Apaf-1 and cleaved caspase-9 protein expression gradually increased during the embryonic period and peaked during the early postnatal period but apparently declined from P7. Cyt-c protein expression was weak during the embryonic period but obviously increased after P1. This study showed that PTs are more sensitive to apoptosis than DTs during rat renal development, even though both tubule segments contain a large number of mitochondria. Furthermore, Cyt-c-mediated mitochondrial apoptosis-related proteins play an important role in PTs during the early postnatal kidney development. © 2016 S. Karger AG, Basel.

  9. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy.

    Science.gov (United States)

    Kim, Seong Muk; Oh, Ji Hyeon; Park, Soon A; Ryu, Chung Heon; Lim, Jung Yeon; Kim, Dal-Soo; Chang, Jong Wook; Oh, Wonil; Jeun, Sin-Soo

    2010-12-01

    Irradiation is a standard therapy for gliomas and many other cancers. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for cancer gene therapy. Here, we show that tumor irradiation enhances the tumor tropism of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and the therapeutic effect of TRAIL delivered by UCB-MSCs. The sequential treatment with irradiation followed by TRAIL-secreting UCB-MSCs (MSC-TRAIL) synergistically enhanced apoptosis in either TRAIL-sensitive or TRAIL-resistant glioma cells by upregulating the death receptor 5 and by inducing caspase activation. Migration assays showed greater MSC migration toward irradiated glioma cells and the tumor site in glioma-bearing mice compared with unirradiated tumors. Irradiated glioma cells had increased expression of interleukin-8 (IL-8), which leads to the upregulation of the IL-8 receptor on MSCs. This upregulation, which is involved in the migratory capacity of UCB-MSCs, was confirmed by siRNA inhibition and an antibody-neutralizing assay. In vivo survival experiments in orthotopic xenografted mice showed that MSC-based TRAIL gene delivery to irradiated tumors had greater therapeutic efficacy than a single treatment. These results suggest that clinically relevant tumor irradiation increases the therapeutic efficacy of MSC-TRAIL by increasing tropism of MSCs and TRAIL-induced apoptosis, which may be a more useful strategy for cancer gene therapy.

  10. Construction of differentially expressed genes library of bighead carp (Aristichthys nobilis) exposed to microcystin-lr using ssh and expression profile of related genes.

    Science.gov (United States)

    Cui, Zhihui; Zhang, Kaiyue; Qu, Xiancheng; Liu, Qigen

    2011-12-01

    Microcystins (MCs) are hepatotoxic cyclic heptapeptides produced by cyanobacteria (blue-green algae). There are more than 70 MCs variants of which the most common and widely studied is MC-LR. We screened the hepatocellular differentially expressed genes against MC-LR in the bighead carp (Aristichthys nobilis). Suppression subtractive hybridization was used to construct the forward subtracted and reverse subtracted cDNA libraries, and one hundred and thirty two positive clones (seventy one in forward library and sixty one in reverse library) were randomly selected and sequenced. Finally, fifty five reliable sequences from the forward subtracted library were used in a homology search by BLASTn and BLASTx, as were 57 reliable sequences from the reverse subtracted library. Furthermore, eight analyzed sequences from the forward subtracted cDNA library and seven from the reverse subtracted library were found to be non-homologous sequences. The screening identified genes induced by MC-LR in both libraries that are involved in various processes, such as energy metabolism, immunity, and apoptosis. Some are cytoskeleton- and transportation-related genes, while signal transduction-related genes were also found. Significant genes, such as the apoptosis-related gene p53 and the proto-oncogene c-myc, are involved in inhibition of the MC-LR response in the reverse subtracted library. In addition, several immune-related genes, which play an important role in antioxidation and detoxification of MC-LR, were characterized and identified in both of the subtracted libraries. The study provides the basic data to further identify the genes and molecular mechanism of detoxification of microcystins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Guodong [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Peng, Tao; Zhou, Xuhong [Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Yuan, Yulin, E-mail: yuanyulin19620120@126.com [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China)

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  12. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis--CREB and NF-kappaB as key regulators.

    Science.gov (United States)

    Park, Jin Mo; Greten, Florian R; Wong, Athena; Westrick, Randal J; Arthur, J Simon C; Otsu, Kinya; Hoffmann, Alexander; Montminy, Marc; Karin, Michael

    2005-09-01

    Certain microbes evade host innate immunity by killing activated macrophages with the help of virulence factors that target prosurvival pathways. For instance, infection of macrophages with the TLR4-activating bacterium Bacillus anthracis triggers an apoptotic response due to inhibition of p38 MAP kinase activation by the bacterial-produced lethal toxin. Other pathogens induce macrophage apoptosis by preventing activation of NF-kappaB, which depends on IkappaB kinase beta (IKKbeta). To better understand how p38 and NF-kappaB maintain macrophage survival, we searched for target genes whose products prevent TLR4-induced apoptosis and a p38-dependent transcription factor required for their induction. Here we describe key roles for transcription factor CREB, a target for p38 signaling, and the plasminogen activator 2 (PAI-2) gene, a target for CREB, in maintenance of macrophage survival.

  13. Modulators of Response to Tumor Necrosis-related Apoptosis Inducing Ligand (TRAIL) Therapy in Ovarian Cancer

    Science.gov (United States)

    2011-05-01

    Poor Survival. Cancer Res 67: 3036–3042. 22. Fulda S, Scaffidi C, Pietsch T, Krammer PH, Peter ME, et al. (1998) Activation of the CD95 (APO-1/Fas...in ovarian carcinoma causes resistance to TRAIL-mediated apoptosis and is associated with poor survival. Cancer Res 2007; 67:3036-42. 19. Yu Y ...ovarian cancer in remission. 315 Therapeutic efficacy of folate receptor α blockade with MORAb-003 in ovarian cancer W. A. Spannuth1, Y . G. Lin1, W. M

  14. Effect on HIV-1 gene expression, Tat-Vpr interaction and cell apoptosis by natural variants of HIV-1 Tat exon 1 and Vpr from Northern India.

    Directory of Open Access Journals (Sweden)

    Sneh Lata

    Full Text Available BACKGROUND: Since HIV-1 Tat and Vpr genes are involved in promoter transactivation, apoptosis, etc, we carried out studies to find out nature and extent of natural variation in the two genes from seropositive patients from Northern India and determined their functional implications. METHODS: HIV-1 tat exon 1 and vpr were amplified from the genomic DNA isolated from the blood of HIV-1 infected individuals using specific primers by Polymerase Chain reaction (PCR and subjected to extensive genetic analysis (CLUSTAL W, Simplot etc. Their expression was monitored by generating myc fusion clones. Tat exon 1 and Vpr variants were co-transfected with the reporter gene construct (LTR-luc and their transactivation potential was monitored by measuring luciferase activity. Apoptosis and cell cycle analysis was done by Propidium Iodide (PI staining followed by FACS. RESULTS: Exon 1 of tat was amplified from 21 samples and vpr was amplified from 16 samples. One of the Tat exon 1 variants showed phylogenetic relatedness to subtype B & C and turned out to be a unique recombinant. Two of the Vpr variants were B/C/D recombinants. These natural variations were found to have no impact on the stability of Tat and Vpr. These variants differed in their ability to transactivate B LTR and C LTR promoters. B/C recombinant Tat showed better co-operative interaction with Vpr. B/C/D recombination in Vpr was found to have no effect on its co-operativity with Tat. Recombinant Tat (B/C induced more apoptosis than wild type B and C Tat. The B/C/D recombination in Vpr did not affect its G2 arrest induction potential but reduced its apoptosis induction ability. CONCLUSIONS: Extensive sequence and region-specific variations were observed in Tat and Vpr genes from HIV-1 infected individuals from Northern India. These variations have functional implications & therefore important for the pathogenicity of virus.

  15. Cloning and identification of two unique genes involved in UV induced apoptosis on human keratinocyte (HaCaT) cell line.

    Science.gov (United States)

    Gupta, Nishma; Raman, Govindarajan; Banerjee, Gautam

    2004-01-01

    Differential gene regulation during UVB induced apoptosis of human keratinocyte cell line (HaCaT) has been investigated. Rapid amplification of polymorphic DNA (RAPD)-PCR was done to identify novel/unique genes in the purified apoptotic and non-apoptotic populations. Two genes were identified and cloned in pGemT vector. One of these genes (apgene-1) was upregulated in UV induced apoptotic cells and in the non apoptotic cells exposed to UV. The other gene (apgene-2) was not detected in apoptotic cells but expressed in non-apoptotic/non necrotic cells that had been exposed to UV. The presence of apgene-1 mRNA was not detected in camptothecin induced apoptotic as well as non apoptotic cells. Apgene-2 was not detected in camptothecin induced apoptotic cells but expressed in non-apoptotic/non necrotic cells. This data indicates differential regulation of these two genes during UV and chemical induced apoptosis in human keratinocytes. Additionally, since apgene-2 was upregulated in the non necrotic/non apoptotic population could be involved in protection.

  16. Molecular cloning of the apoptosis-related calcium-binding protein AsALG-2 in Avena sativa.

    Science.gov (United States)

    Hoat, Trinh Xuan; Nakayashiki, Hitoshi; Yang, Qian; Tosa, Yukio; Mayama, Shigeyuki

    2013-04-01

    Victorin, the host-selective toxin produced by the fungus Cochliobolus victoriae, induces programmed cell death (PCD) in victorin-sensitive oat lines with characteristic features of animal apoptosis, such as mitochondrial permeability transition, chromatin condensation, nuclear DNA laddering and rRNA/mRNA degradation. In this study, we characterized a calcium-binding protein, namely AsALG-2, which might have a role in the victorin-induced PCD. AsALG-2 is homologous to the Apoptosis-Linked Gene ALG-2 identified in mammalian cells. Northern blot analysis revealed that the accumulation of AsALG-2 transcripts increased during victorin-induced PCD, but not during necrotic cell death. Salicylic acid, chitosan and chitin strongly activated the expression of general defence response genes, such as PR-10; however, neither induced cell death nor the accumulation of AsALG-2 mRNA. Pharmacological studies indicated that victorin-induced DNA laddering and AsALG-2 expression were regulated through similar pathways. The calcium channel blocker, nifedipine, moderately inhibited the accumulation of AsALG-2 mRNA during cell death. Trifluoperazine (calmodulin antagonist) and K252a (serine-threonine kinase inhibitor) reduced the victorin-induced phytoalexin accumulation, but did not prevent the victorin-induced DNA laddering or accumulation of AsALG-2 mRNA. Taken together, our investigations suggest that there is a calcium-mediated signalling pathway in animal and plant PCD in common. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  17. Pre-Treatment with Either L-Carnitine or Piracetam Increases Ultrasound-Mediated Gene Transfection by Reducing Sonoporation-Associated Apoptosis.

    Science.gov (United States)

    Liao, Wei-Hao; Wu, Chueh-Hung; Chen, Wen-Shiang

    2018-03-14

    Sonoporation, the use of ultrasound to alter the permeability of cell membranes, is a non-viral technique used to facilitate gene delivery, possibly by opening transient pores in the cell membrane. However, sonoporation may have negative bio-effects on cells, such as causing apoptosis, which limits its efficacy in gene delivery. In this study, we investigated whether pre-treatment with either L-carnitine or piracetam could protect cells from undergoing apoptosis after sonoporation and the possible mechanisms. We found that either L-carnitine or piracetam can promote gene transfection without reducing cell viability, possibly by reducing cavitation-induced reactive oxygen species generation, reversing alterations of mitochondrial membrane potential, preventing caspase-3/7 activity and facilitating mitochondrial ATP production. In conclusion, pre-treatment with either L-carnitine or piracetam could protect cells from sonoporation-associated apoptosis by preserving mitochondrial function. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  18. Iron homeostasis related genes in rice

    Directory of Open Access Journals (Sweden)

    Gross Jeferson

    2003-01-01

    Full Text Available Iron is essential for plants. However, excess iron is toxic, leading to oxidative stress and decreased productivity. Therefore, plants must use finely tuned mechanisms to keep iron homeostasis in each of their organs, tissues, cells and organelles. A few of the genes involved in iron homeostasis in plants have been identified recently, and we used some of their protein sequences as queries to look for corresponding genes in the rice (Oryza sativa genome. We have assigned possible functions to thirty-nine new rice genes. Together with four previously reported sequences, we analyzed a total of forty-three genes belonging to five known protein families: eighteen YS (Yellow Stripe, two FRO (Fe3+-chelate reductase oxidase, thirteen ZIP (Zinc regulated transporter / Iron regulated transporter Protein, eight NRAMP (Natural Resistance - Associated Macrophage Protein, and two Ferritin proteins. The possible cellular localization and number of potential transmembrane domains were evaluated, and phylogenetic analysis performed for each gene family. Annotation of genomic sequences was performed. The presence and number of homologues in each gene family in rice and Arabidopsis is discussed in light of the established iron acquisition strategies used by each one of these two plants.

  19. SU-E-T-245: MR Guided Focused Ultrasound Increased PARP Related Apoptosis On Prostate Cancer in Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L; Chen, X; Cvetkovic, D; Gupta, R; Yang, D; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Our previous study demonstrated that significant tumor growth delay was observed in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. Temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals were euthanized at pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level, which is the intensity of the DAB reaction. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality might be able to synergize with PARP inhibitors to achieve better result.

  20. SU-E-T-245: MR Guided Focused Ultrasound Increased PARP Related Apoptosis On Prostate Cancer in Vivo

    International Nuclear Information System (INIS)

    Chen, L; Chen, X; Cvetkovic, D; Gupta, R; Yang, D; Ma, C

    2014-01-01

    Purpose: Our previous study demonstrated that significant tumor growth delay was observed in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. Temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals were euthanized at pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level, which is the intensity of the DAB reaction. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality might be able to synergize with PARP inhibitors to achieve better result

  1. Evaluation of potential prognostic value of Bmi-1 gene product and selected markers of proliferation (Ki-67 and apoptosis (p53 in the neuroblastoma group of tumors

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-02-01

    Full Text Available Introduction: Cancer in children is a very important issue in pediatrics. The least satisfactory treatment outcome occurs among patients with clinically advanced neuroblastomas. Despite much research, the biology of this tumor still remains unclear, and new prognostic factors are sought. The Bmi-1 gene product is a currently highly investigated protein which belongs to the Polycomb group (PcG and has been identified as a regulator of primary neural crest cells. It is believed that Bmi‑1 and N-myc act together and are both involved in the pathogenesis of neuroblastoma. The aim of the study was to assess the potential prognostic value of Bmi-1 protein and its relations with mechanisms of proliferation and apoptosis in the neuroblastoma group of tumors.Material/Methods: 29 formalin-fixed and paraffin-embedded neuroblastoma tissue sections were examined using mouse monoclonal antibodies anti-Bmi-1, anti-p53 and anti-Ki-67 according to the manufacturer’s instructions.Results: There were found statistically significant correlations between Bmi-1 expression and tumor histology and age of patients.Conclusions: Bmi-1 seems to be a promising marker in the neuroblastoma group of tumors whose expression correlates with widely accepted prognostic parameters. The pattern of BMI-1 expression may indicate that the examined protein is also involved in maturation processes in tumor tissue.

  2. Suppression of protein tyrosine phosphatase PTPN22 gene induces apoptosis in T-cell leukemia cell line (Jurkat) through the AKT and ERK pathways.

    Science.gov (United States)

    Baghbani, Elham; Baradaran, Behzad; Pak, Fatemeh; Mohammadnejad, Leila; Shanehbandi, Daryoush; Mansoori, Behzad; Khaze, Vahid; Montazami, Noushin; Mohammadi, Ali; Kokhaei, Parviz

    2017-02-01

    The aim of this study was to investigate the effect of specific PTPN22 small interfering RNAs (siRNAs) on the viability and induction of apoptosis in Jurkat cells and to evaluate apoptosis signaling pathways. In this study, Jurkat cells were transfected with specific PTPN22 siRNA. Relative PTPN22 mRNA expression was measured by Quantitative Real-time PCR. Western blotting was performed to determine the protein levels of PTPN22, AKT, P-AKT, ERK, and P-ERK. The cytotoxic effects of PTPN22 siRNA were determined using the MTT assay. Apoptosis was quantified using TUNEL assay and flow cytometry. Results showed that in Jurkat cells after transfection with PTPN22 siRNA, the expression of PTPN22 in both mRNA and protein levels was effectively reduced. Moreover, siRNA transfection induced apoptosis on the viability of T-cell acute leukemia cells. More importantly, PTPN22 positively regulated the anti-apoptotic AKT kinase, which provides a powerful survival signal to T-ALL cells as well as the suppression of PTPN22 down regulated ERK activity. Our results suggest that the PTPN22 specific siRNA effectively decreases the viability of T-cell acute leukemia cells, induces apoptosis in this cell line, and therefore could be considered as a potent adjuvant in T-ALL therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism

    Directory of Open Access Journals (Sweden)

    Song Ju-Xian

    2012-01-01

    Full Text Available Abstract Background Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Methods Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-binding probe Hoechst 33258. The production of reactive oxidative species (ROS and loss of mitochondrial membrane potential (ΔΨm were determined by fluorescent staining with DCFH-DA and Rhodanmine 123, respectively. The expression of Bax, Bcl-2, cleaved caspase-3 and phosphorylated ERK1/2 was determined by the Western blots. Results Baicalein significantly increased viability and decreased rotenone-induced death of SH-SY5Y cells in a dose-dependent manner. Pre- and subsequent co-treatment with baicalein preserved the cell morphology and attenuated the nuclear apoptotic characteristics triggered by rotenone. Baicalein antagonized rotenone-induced overproduction of ROS, loss of ΔΨm, the increased expression of Bax, cleaved caspase-3 and phosphorylated ERK1/2 and the decreased expression of Bcl-2. Conclusion The antioxidative effect, mitochondrial protection and modulation of anti-and pro-apoptotic proteins are related to the neuroprotective effects of baicalein against rotenone induced cell death in SH-SY5Y cells.

  4. Phytochemical composition, antibacterial and anticancer activities of Trifolium cherleri extract on lung cancer cell line (A549 and analysis of caspase 3 and caspase 9 apoptosis genes expression

    Directory of Open Access Journals (Sweden)

    Amir Mirzaie

    2017-08-01

    Methods: This experimental study was performed in Islamic Azad University, from December 2016 to February 2017. At first, the phytochemical constituents of T. cherleri extract were determined using gas chromatography-mass spectrometry (GC-MS method. Subsequently, the antibacterial activity of the extract was evaluated against some gram positive and negative pathogenic bacteria included Staphylococcus aureus ATCC 25923, Streptococcus pyogenes ATCC 19615, Salmonella enteritidis ATCC 13076 and Listeria monocytogenes ATCC 35152 via minimum inhibitory concentration (MIC method. Moreover, anticancer potential of extract was examined by colorimetric MTT assay toward lung cancer (A549 cell line. Then, the evaluation of caspase 3 and 9 apoptosis gene expression was determined using Real-Time Polymerase Chain Reaction (Real-Time PCR technique. Moreover, the Real-Time PCR was performed using relative quantitative method. Results: The phytochemical analyses of T. cherleri extract showed the 20 major components and the most frequent component was belonged to hexadecanoic acid, ethyl ester (20.7% and 2-Pentadecanone, 6,10,14-trimethyl (19.9%. The extract had maximum antibacterial effects against Staphylococcus aureus and Streptococcus pyogenes. There was a dose dependent increase in the cytotoxicity effect of extract against A549 cancer cell. Moreover, the Real-Time PCR results indicated that the caspase 3 and caspase 9 gene expression was significantly up-regulated 2.57±0.27 (P<0.05, and 3.3±0.46 (P<0.05, respectively. Conclusion: The results of this study showed that the T. cherleri extract had significant anti-bacterial and anti-cancer effects and it appear that the extract has potential uses for pharmaceutical industries. Moreover, it could be considered as a promising source for novel drug compounds, but more studies are needed.

  5. Anisakis pegreffii (Nematoda: Anisakidae products modulate oxidative stress and apoptosis-related biomarkers in human cell lines

    Directory of Open Access Journals (Sweden)

    Concetta Maria Messina

    2016-11-01

    Full Text Available Abstract Background In countries with elevated prevalence of zoonotic anisakiasis and high awareness of this parasitosis, a considerable number of cases that associate Anisakis sp. (Nematoda, Anisakidae and different bowel carcinomas have been described. Although neoplasia and embedded larvae were observed sharing the common site affected by chronic inflammation, no association between the nematode and malignancy were directly proved. Similarly, no data are available about the effect of secretory and excretory products of infecting larvae at the host’s cellular level, except in respect to allergenic interaction. Methods To test the mechanisms by which human non-immune cells respond to the larvae, we exposed the fibroblast cell line HS-68 to two Anisakis products (ES, excretory/secretory products; and EC, crude extract and evaluated molecular markers related to stress response, oxidative stress, inflammation and apoptosis, such as p53, HSP70, TNF-α, c-jun and c-fos, employing cell viability assay, spectrophotometry, immunoblotting and qPCR. Results Both Anisakis products led to increased production of reactive oxygen species (ROS, especially in EC-treated cells. While the ES treatment induces activation of kinases suggesting inflammation and cell proliferation (or inhibition of apoptosis, in EC-treated cells, other signaling pathways indicate the inhibition of apoptosis, marked by strong upregulation of Hsp70. Elevated induction of p53 in fibroblasts treated by both Anisakis products, suggests a significantly negative effect on the host DNA. Conclusions This study shows that in vitro cell response to Anisakis products can result in at least two different scenarios, which in both cases lead to inflammation and DNA damage. Although these preliminary results are far from proving a relationship between the parasite and cancer, they are the first to support the existence of conditions where such changes are feasible.

  6. Anisakis pegreffii (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines.

    Science.gov (United States)

    Messina, Concetta Maria; Pizzo, Federica; Santulli, Andrea; Bušelić, Ivana; Boban, Mate; Orhanović, Stjepan; Mladineo, Ivona

    2016-11-25

    In countries with elevated prevalence of zoonotic anisakiasis and high awareness of this parasitosis, a considerable number of cases that associate Anisakis sp. (Nematoda, Anisakidae) and different bowel carcinomas have been described. Although neoplasia and embedded larvae were observed sharing the common site affected by chronic inflammation, no association between the nematode and malignancy were directly proved. Similarly, no data are available about the effect of secretory and excretory products of infecting larvae at the host's cellular level, except in respect to allergenic interaction. To test the mechanisms by which human non-immune cells respond to the larvae, we exposed the fibroblast cell line HS-68 to two Anisakis products (ES, excretory/secretory products; and EC, crude extract) and evaluated molecular markers related to stress response, oxidative stress, inflammation and apoptosis, such as p53, HSP70, TNF-α, c-jun and c-fos, employing cell viability assay, spectrophotometry, immunoblotting and qPCR. Both Anisakis products led to increased production of reactive oxygen species (ROS), especially in EC-treated cells. While the ES treatment induces activation of kinases suggesting inflammation and cell proliferation (or inhibition of apoptosis), in EC-treated cells, other signaling pathways indicate the inhibition of apoptosis, marked by strong upregulation of Hsp70. Elevated induction of p53 in fibroblasts treated by both Anisakis products, suggests a significantly negative effect on the host DNA. This study shows that in vitro cell response to Anisakis products can result in at least two different scenarios, which in both cases lead to inflammation and DNA damage. Although these preliminary results are far from proving a relationship between the parasite and cancer, they are the first to support the existence of conditions where such changes are feasible.

  7. Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport

    Science.gov (United States)

    Helm, Jared R.; Bentley, Marvin; Thorsen, Kevin D.; Wang, Ting; Foltz, Lauren; Oorschot, Viola; Klumperman, Judith; Hay, Jesse C.

    2014-01-01

    Luminal calcium released from secretory organelles has been suggested to play a regulatory role in vesicle transport at several steps in the secretory pathway; however, its functional roles and effector pathways have not been elucidated. Here we demonstrate for the first time that specific luminal calcium depletion leads to a significant decrease in endoplasmic reticulum (ER)-to-Golgi transport rates in intact cells. Ultrastructural analysis revealed that luminal calcium depletion is accompanied by increased accumulation of intermediate compartment proteins in COPII buds and clusters of unfused COPII vesicles at ER exit sites. Furthermore, we present several lines of evidence suggesting that luminal calcium affected transport at least in part through calcium-dependent interactions between apoptosis-linked gene-2 (ALG-2) and the Sec31A proline-rich region: 1) targeted disruption of ALG-2/Sec31A interactions caused severe defects in ER-to-Golgi transport in intact cells; 2) effects of luminal calcium and ALG-2/Sec31A interactions on transport mutually required each other; and 3) Sec31A function in transport required luminal calcium. Morphological phenotypes of disrupted ALG-2/Sec31A interactions were characterized. We found that ALG-2/Sec31A interactions were not required for the localization of Sec31A to ER exit sites per se but appeared to acutely regulate the stability and trafficking of the cargo receptor p24 and the distribution of the vesicle tether protein p115. These results represent the first outline of a mechanism that connects luminal calcium to specific protein interactions regulating vesicle trafficking machinery. PMID:25006245

  8. Up regulation of K A I 1 gene expression and apoptosis effect of imatinib mesylate in gastric adenocarcinoma (AGS cell line

    Directory of Open Access Journals (Sweden)

    eyed Ataollah Sadat Shandiz

    2016-02-01

    Full Text Available Objective: To evaluate the effect of imatinib mesylate on KAI1 gene expression and apoptosis properties in human gastric carcinoma AGS cell line. Methods: Cell viability was assessed by MTT assay and quantitative real time PCR method was applied for investigation of Bax, Bcl-2, and KAI1 gene expression in AGS cells. The quantity of KAI1, Bax, and Bcl-2 compared to GAPDH gene expressions were examined using the formula 2-∆∆Ct. Furthermore, cell apoptosis/necrosis was carried out by annexin V/PI staining and quantified with flow cytometry after treatment with imatinib. Results: Imatinib mesylate was showed to have a dose-dependent toxicity effect against AGS cells. KAI1/GAPDH gene expression ratios were 1.07 ± 0.02 (P > 0.05, 1.68 ± 0.19 (P > 0.05, 3.60 ± 0.55 (P < 0.05, 6.54 ± 0.27 (P < 0.001 for 20, 50, 80 and 100 μmol/L of imatinib concentrations. The mRNA levels of Bax detected by real-time PCR after treatment with imatinib mesylate were significantly increased. Also, the number of apoptotic cells was increased from 3.72% (statistically significant; P < 0.05 in untreated AGS cells to 21.72%, 83.04% and 85.80%, respectively, following treatment with 20, 40, and 60 μmol/L imatinib mesylate. Conclusions: The results suggest that imatinib mesylate can induce apoptosis pathway in a dose-dependent mode and might modulate metastasis by up regulating KAI1 gene expression in human gastric carcinoma AGS cell line.

  9. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells.

    Science.gov (United States)

    Gong, Yuanqi; Lan, Haibing; Yu, Zhihong; Wang, Meng; Wang, Shu; Chen, Yu; Rao, Haiwei; Li, Jingying; Sheng, Zhiyong; Shao, Jianghua

    2017-09-16

    Sepsis-related acute lung injury (ALI) is characterized by excessive lung inflammation and apoptosis of alveolar epithelial cells resulting in acute hypoxemic respiratory failure. Recent studies indicated that anaerobic glycolysis play an important role in sepsis. However, whether inhibition of aerobic glycolysis exhibits beneficial effect on sepsis-induced ALI is not known. In vivo, a cecal ligation and puncture (CLP)-induced ALI mouse model was set up and mice treated with glycolytic inhibitor 3PO after CLP. The mice treated with the 3PO ameliorated the survival rate, histopathological changes, lung inflammation, lactate increased and lung apoptosis of mice with CLP-induced sepsis. In vitro, the exposure of human alveolar epithelial A549 cells to lipopolysaccharide (LPS) resulted in cell apoptosis, inflammatory cytokine production, enhanced glycolytic flux and reactive oxygen species (ROS) increased. While these changes were attenuated by 3PO treatment. Sequentially, treatment of A549 cells with lactate caused cell apoptosis and enhancement of ROS. Pretreatment with N-acetylcysteine (NAC) significantly lowered LPS and lactate-induced the generation of ROS and cell apoptosis in A549 cells. Therefore, these results indicate that anaerobic glycolysis may be an important contributor in cell apoptosis of sepsis-related ALI. Moreover, LPS specifically induces apoptotic insults to A549 cell through lactate-mediated enhancement of ROS. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Gene expression profiling of hepatitis B- and hepatitis C-related hepatocellular carcinoma using graphical Gaussian modeling.

    Science.gov (United States)

    Ueda, Teruyuki; Honda, Masao; Horimoto, Katsuhisa; Aburatani, Sachiyo; Saito, Shigeru; Yamashita, Taro; Sakai, Yoshio; Nakamura, Mikiko; Takatori, Hajime; Sunagozaka, Hajime; Kaneko, Shuichi

    2013-04-01

    Gene expression profiling of hepatocellular carcinoma (HCC) and background liver has been studied extensively; however, the relationship between the gene expression profiles of different lesions has not been assessed. We examined the expression profiles of 34 HCC specimens (17 hepatitis B virus [HBV]-related and 17 hepatitis C virus [HCV]-related) and 71 non-tumor liver specimens (36 chronic hepatitis B [CH-B] and 35 chronic hepatitis C [CH-C]) using an in-house cDNA microarray consisting of liver-predominant genes. Graphical Gaussian modeling (GGM) was applied to elucidate the interactions of gene clusters among the HCC and non-tumor lesions. In CH-B-related HCC, the expression of vascular endothelial growth factor-family signaling and regulation of T cell differentiation, apoptosis, and survival, as well as development-related genes was up-regulated. In CH-C-related HCC, the expression of ectodermal development and cell proliferation, wnt receptor signaling, cell adhesion, and defense response genes was also up-regulated. Many of the metabolism-related genes were down-regulated in both CH-B- and CH-C-related HCC. GGM analysis of the HCC and non-tumor lesions revealed that DNA damage response genes were associated with AP1 signaling in non-tumor lesions, which mediates the expression of many genes in CH-B-related HCC. In contrast, signal transducer and activator of transcription 1 and phosphatase and tensin homolog were associated with early growth response protein 1 signaling in non-tumor lesions, which potentially promotes angiogenesis, fibrogenesis, and tumorigenesis in CH-C-related HCC. Gene expression profiling of HCC and non-tumor lesions revealed the predisposing changes of gene expression in HCC. This approach has potential for the early diagnosis and possible prevention of HCC. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Zhang, Pengyu; Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells.

  12. TNF-related apoptosis-inducing ligand (TRAIL) for bone sarcoma treatment: Pre-clinical and clinical data.

    Science.gov (United States)

    Gamie, Zakareya; Kapriniotis, Konstantinos; Papanikolaou, Dimitra; Haagensen, Emma; Da Conceicao Ribeiro, Ricardo; Dalgarno, Kenneth; Krippner-Heidenreich, Anja; Gerrand, Craig; Tsiridis, Eleftherios; Rankin, Kenneth Samora

    2017-11-28

    Bone sarcomas are rare, highly malignant mesenchymal tumours that affect teenagers and young adults, as well as older patients. Despite intensive, multimodal therapy, patients with bone sarcomas have poor 5-year survival, close to 50%, with lack of improvement over recent decades. TNF-related apoptosis-inducing ligand (TRAIL), a member of the tumour necrosis factor (TNF) ligand superfamily (TNFLSF), has been found to induce apoptosis in cancer cells while sparing nontransformed cells, and may therefore offer a promising new approach to treatment. We cover the existing preclinical and clinical evidence about the use of TRAIL and other death receptor agonists in bone sarcoma treatment. In vitro studies indicate that TRAIL and other death receptor agonists are generally potent against bone sarcoma cell lines. Ewing's sarcoma cell lines present the highest sensitivity, whereas osteosarcoma and chondrosarcoma cell lines are considered less sensitive. In vivo studies also demonstrate satisfactory results, especially in Ewing's sarcoma xenograft models. However, the few clinical trials in the literature show only low or moderate efficacy of TRAIL in treating bone sarcoma. Potential strategies to overcome the in vivo resistance reported include co-administration with other drugs and the potential to deliver TRAIL on the surface of primed mesenchymal or immune cells and the use of targeted single chain antibodies such as scFv-scTRAIL. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. NO-Releasing Enmein-Type Diterpenoid Derivatives with Selective Antiproliferative Activity and Effects on Apoptosis-Related Proteins

    Directory of Open Access Journals (Sweden)

    Dahong Li

    2016-09-01

    Full Text Available A series of nine enmein-type ent-kaurane diterpenoid and furoxan-based nitric oxide (NO donor hybrids (10a–i were designed and synthesized from commercially available oridonin (1. These hybrids were evaluated for their antiproliferative activity against Bel-7402, K562, MGC-803, and CaEs-17 human cancer cell lines and L-02 normal liver cells. The antiproliferative activity against tumor cells was stronger than the lead compound 1 and parent molecule 9 in most cases. Especially, compound 10f showed the strongest activity against human hepatocarcinoma Bel-7402 cell line with an IC50 of 0.81 μM and could also release 33.7 μmol/L NO at the time point of 60 min. Compounds 10a–i also showed cytotoxic selectivity between tumor and normal liver cells with IC50 ranging from 22.1 to 33.9 μM. Furthermore, the apoptotic properties on Bel-7402 cells revealed that 10f could induce S phase cell cycle arrest and apoptosis at low micromolar concentrations. The effects of 10f on apoptosis-related proteins were also investigated. The potent antiproliferative activities and mechanistic studies warrant further preclinical investigations.

  14. Retracted: Silencing of the COPS3 Gene by siRNA Reduces Proliferation of Lung Cancer Cells Most Likely via Induction of Cell Cycle Arrest and Apoptosis

    Science.gov (United States)

    2017-11-17

    Retraction: Retracted: Silencing of the COPS3 Gene by siRNA Reduces Proliferation of Lung Cancer Cells Most Likely via Induction of Cell Cycle Arrest and Apoptosis Asian Pacific Journal of Cancer Prevention has retracted the article titled “Silencing of the COPS3 Gene by siRNA Reduces Proliferation of Lung Cancer Cells Most Likely via Induction of Cell Cycle Arrest and Apoptosis”(1) for reason of similarity with a series of articles identified by Byrne and Labbé (2). Xue-Mei Wang, Jiu-Wei Cui1&, Wei Li , Lu Cai, Wei Song , Guan-Jun Wang 1. Xue-Mei Wang, Jiu-Wei Cui1&, Wei Li , Lu Cai, Wei Song , Guan-Jun Wang. Silencing of the COPS3 Gene by siRNA Reduces Proliferation of Lung Cancer Cells Most Likely via Induction of Cell Cycle Arrest and Apoptosis. Asian Pac J Cancer Prev. 2012;13(5):1823-7. 2. J. A. Byrne and C. Labbé, “Striking similarities between publications from China describing single gene knockdown experiments in human cancer cell lines,” Scientometrics, vol. 110, no. 3, pp. 1471–1493, 2017. Authors did not respond to request for comment.

  15. Effects of C-myc gene silencing on interleukin-1β-induced rat chondrocyte cell proliferation, apoptosis and cytokine expression.

    Science.gov (United States)

    Zou, Jian; Li, Xiao-Lin; Shi, Zhong-Min; Xue, Jian-Feng

    2017-06-14

    This study explores the effects of C-myc gene silencing on cell proliferation, apoptosis and cytokine expression in interleukin (IL)-1β-induced rat chondrocytes. Primary chondrocytes were obtained from 40 Sprague-Dawley rats. For in vitro C-myc3-shRNA transfection, chondrocytes were assigned to a blank 1, model 1, IL-1β + C-myc3-shRNA, C-myc3-shRNA, (IL-1β + C-myc3-shRNA) + C-myc overexpression, C-myc3-shRNA + C-myc overexpression or IL-1β + C-myc-Con group. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to detect C-myc, PCNA and cyclin D1 mRNA and protein expression. Cell proliferation was analyzed via CCK-8 assay and cell cycle while apoptosis was measured through flow cytometry. ELISA was utilized to assess the levels of metallopeptidase 13 (MMP-13), IL-6 and tumor necrosis factor-α (TNF-α). Both the qRT-PCR and Western blotting results demonstrated that C-myc3-shRNA transfection inhibits C-myc expression and promotes PCNA and cyclin D1 expression. In comparison to the model 1 group, all groups except the (IL-1β + C-myc3-shRNA) + C-myc overexpression and IL-1β + C-myc-Con groups showed increases in cell proliferation and S phase cell count and decreases in G 0 /G 1 phase cell count, cell apoptosis and MMP-13, IL-6 and TNF-α levels. The model 1, C-myc3-shRNA and C-myc3-shRNA + C-myc overexpression groups displayed higher cell proliferation and S phase cell count and reduced G 0 /G 1 phase cell count, cell apoptosis and MMP-13, IL-6 and TNF-α levels than the IL-1β + C-myc3-shRNA group. In comparison to the model 1 and C-myc3-shRNA + C-myc overexpression groups, the C-myc3-shRNA group promoted cell proliferation and S phase cell counts but suppressed G 0 /G 1 phase cell count, cell apoptosis and MMP-13, IL-6 and TNF-α levels. In conclusion, the study demonstrates that C-myc gene silencing can promote cell proliferation and inhibit cell apoptosis and cytokine expression in IL-1

  16. Effects of PKM2 Gene Silencing on the Proliferation and Apoptosis of Colorectal Cancer LS-147T and SW620 Cells.

    Science.gov (United States)

    Ao, Ran; Guan, Lin; Wang, Ying; Wang, Jia-Ni

    2017-01-01

    This paper aims to explore the effects of pyruvate kinase (PK) M2 gene silencing on the proliferation and apoptosis of colorectal cancer (CRC) LS-147T and SW620 cells. CRC LS-147T and SW620 cells highly expressing PKM2 were randomly selected by quantitative real-time polymerase chain reaction (qRT-PCR) and then assigned into the blank (no transfection), PKM2-shRNA (transfection with shRNA) and empty plasmid (transfection with empty plasmid) groups. Immunofluorescence was applied to detect PKM2 protein expression. qRT-PCR and Western blotting were conducted to assess mRNA and protein expression of PKM2, p53 and p21. The cell counting kit-8 (CCK-8) assay was used to assess cell proliferation. Flow cytometry was used to assess the cell cycle and apoptosis rate, and a senescence-associated β-galactosidase staining kit was used to assess cell senescence. PKM2 exhibited high mRNA expression among CRC LS-147T and SW620 cells with remarkable protein expression noted in the cytoplasm and nucleus. The PKM2-shRNA group exhibited reduced PKM2 mRNA and protein expression, whereas p53 and p21 expression was increased compared with the blank and empty plasmid groups. Cell proliferation in PKM2-shRNA cells decreased significantly compared with the blank group and empty plasmid groups. The PKM2-shRNA group exhibited more cells in the G1 phase and fewer cells in the G2/M phase compared with the blank and empty plasmid groups. In addition, the PKM2-shRNA group exhibited significantly increased apoptosis rates and β-galactosidase activity compared with the blank and empty plasmid groups. Our study demonstrates that PKM2 gene silencing suppresses proliferation and promotes apoptosis in LS-147T and SW620 cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Apoptosis signaling and radiation protection

    International Nuclear Information System (INIS)

    Morita, Akinori; Suzuki, Norio; Hosoi, Yoshio

    2005-01-01

    Radiation protection by apoptosis control is the suppression of cell death in highly radiosensitive tissues. This paper describes the outline of radiation-induced apoptosis framework, apoptosis-concerned target molecules possibly related to apoptosis by radiation and their inhibitors. Although there are intrinsic (via mitochondria) and extrinsic (via death receptor) pathways in apoptosis, this review mainly mentions the former which is more important in radiation-induced apoptosis. Those molecules known at present in the apoptosis are caspase, Bcl-2 family and p53. Caspase, a group of cystein proteases, initiates apoptosis but its inhibition is known not always to result in apoptosis suppression, suggesting the existence of caspase-independent pathways. Bcl-2 family involves apoptosis-suppressing (possessing BH domains) and -promoting (lacking BH domains or possessing BH3 domain alone/BH3-only protein) groups. Two p53-transcription-dependent and one -independent pathways in p53-induced apoptosis are known and p53 can be a most possible target molecule since it positions at the start of apoptosis. Authors have found a vanadate inactivates p53. Inhibitors affecting upstream molecules of apoptosis will be the most useful candidate for apoptosis suppression/radiation protection. (S.I.) 106 refs

  18. Research progress on related genes for primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Ailijiang·Aierken

    2014-04-01

    Full Text Available Primary open angle glaucoma(POAGis the main cause of blindness with visual field damage and optic nerve degeneration. In recent years, a lot of researches have been done, showing that genetic factors and gene mutation play an important role in POAG. There are more than 20 related POAG genes. Now we will review the related genes of POAG, especially the well known causative genes of MYOC, OPTN, WDR36, and CAV1/CAV2, in terms of their locations, structures, research progress, et al, and provide a reference for genetic research in primary open-angle glaucoma.

  19. NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer.

    Science.gov (United States)

    Vaish, Vivek; Piplani, Honit; Rana, Chandan; Vaiphei, Kim; Sanyal, Sankar Nath

    2013-06-01

    This study aims to investigate the unclear molecular relationship involved in the activation of intrinsic pathway of apoptosis and NSAID-activated gene-1 (NAG-1) induction as a putative target in NSAIDs-mediated chemoprevention of colorectal cancer. Male Sprague-Dawley rats were administered with a colon-specific pro-carcinogen, 1,2-dimethylhydrazine dihydrochloride to achieve the early stages of colorectal cancer. Histopathological examination was performed for the analysis of neoplastic lesions while flow cytometry was performed for the relative quantification of intracellular reactive oxygen species (ROS), differential mitochondrial membrane potential (MMP or ΔΨ(M)), and apoptotic events. Various target biomolecules were analyzed either for their mRNA or protein expression profiles via RT-PCR and quantitative Real-Time PCR, or Western blotting and immunofluorescence, respectively. Enhanced gene as well as protein expression of pro-apoptotic agents was observed with the daily oral administration of two NSAIDs viz. Sulindac (cyclooxygenase (COX)-non-specific) and Celecoxib (a selective COX-2 inhibitor). A significant increase in early growth response-1 (EGR-1) protein expression and nuclear localization in NSAIDs co-administered animals may have positively regulated the expression of NAG-1 with a significant enhancement of intracellular ROS in turn decreasing the ΔΨ(M) to initiate apoptosis. In silico molecular docking analysis also showed that Sulindac and Celecoxib can block the active site pocket of B-cell lymphoma-extra large (Bcl-xL, anti-apoptotic transmembrane mitochondrial protein) which could be a putative mechanism followed by these NSAIDs to overcome anti-apoptotic properties of the molecule. NSAIDs-mediated up-regulation of EGR-1 and thereby NAG-1 along with implication of higher ROS load may positively regulate the intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer.

  20. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    Science.gov (United States)

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (Pazithromycin-treated rats (Pazithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (PAzithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Casodex treatment induces hypoxia-related gene expression in the LNCaP prostate cancer progression model

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Velliyur K

    2005-03-01

    Full Text Available Abstract Background The changes in gene expression profile as prostate cancer progresses from an androgen-dependent disease to an androgen-independent disease are still largely unknown. Methods We examined the gene expression profile in the LNCaP prostate cancer progression model during chronic treatment with Casodex using cDNA microarrays consisting of 2305 randomly chosen genes. Results Our studies revealed a representative collection of genes whose expression was differentially regulated in LNCaP cells upon treatment with Casodex. A set of 15 genes were shown to be highly expressed in Casodex-treated LNCaP cells compared to the reference sample. This set of highly expressed genes represents a signature collection unique to prostate cancer since their expression was significantly greater than that of the collective pool of ten cancer cell lines of the reference sample. The highly expressed signature collection included the hypoxia-related genes membrane metallo-endopeptidase (MME, cyclin G2, and Bcl2/adenovirus E1B 19 kDa (BNIP3. Given the roles of these genes in angiogenesis, cell cycle regulation, and apoptosis, we further analyzed their expression and concluded that these genes may be involved in the molecular changes that lead to androgen-independence in prostate cancer. Conclusion Our data indicate that one of the mechanisms of Casodex action in prostate cancer cells is induction of hypoxic gene expression.

  2. Consequences of recurrent gene flow from crops to wild relatives.

    OpenAIRE

    Haygood, Ralph; Ives, Anthony R; Andow, David A

    2003-01-01

    Concern about gene flow from crops to wild relatives has become widespread with the increasing cultivation of transgenic crops. Possible consequences of such gene flow include genetic assimilation, wherein crop genes replace wild ones, and demographic swamping, wherein hybrids are less fertile than their wild parents, and wild populations shrink. Using mathematical models of a wild population recurrently receiving pollen from a genetically fixed crop, we find that the conditions for genetic a...

  3. Predicting disease-related genes using integrated biomedical networks

    OpenAIRE

    Peng, Jiajie; Bai, Kun; Shang, Xuequn; Wang, Guohua; Xue, Hansheng; Jin, Shuilin; Cheng, Liang; Wang, Yadong; Chen, Jin

    2017-01-01

    Background Identifying the genes associated to human diseases is crucial for disease diagnosis and drug design. Computational approaches, esp. the network-based approaches, have been recently developed to identify disease-related genes effectively from the existing biomedical networks. Meanwhile, the advance in biotechnology enables researchers to produce multi-omics data, enriching our understanding on human diseases, and revealing the complex relationships between genes and diseases. Howeve...

  4. [Construction of anti-sense cDNA library of human breast cancer cells during apoptosis induced by trichostatin A and preliminary screening of essential genes].

    Science.gov (United States)

    Ma, Xiao-Li; Wang, Bei-Bei; Wu, Peng; Lu, Yun-Ping; Zhou, Jian-Feng; Ma, Ding

    2009-02-24

    To construct an anti-sense cDNA library of human breast cancer cells to screen essential genes with anti-tumor effects on apoptosis of human breast cancer cells induced by trichostatin A. Poly (A)(+)RNA was extracted from human breast cancer cells of the line MCF-7 treated by trichostatin A for 0, 12, 24, 36, 48, 60, or 72 h. cDNA were synthesized and inserted reversely into PCEP 4 vector to construct an anti-sense cDNA library. HeLa cells were transfected with the library DNA or blank PCEP 4 vector as control group. All the transfected cells were screened by 200 nmol/L trichostatin A and 200 microg/ml hygromycin B. Screening was stopped when the control cells died. Then the surviving cell clones were amplified and Hirt DNA was extracted. Several expressed sequence tags were thus obtained. The data were analyzed by bioinformatics and interested EST fragment was chosen for preliminary functional screening. An anti-sense cDNA library was constructed containing 2 x 10(6) independent clones with an insert efficiency of more than 90%; DNA sequencing and bioinformatic analysis suggested that the No.27 survival clone was zinc transporter LIV1 showing a strong resistance against trichostatin A-induced apoptosis during functional screening. An anti-sense cDNA library with high quantity and quality has been successfully constructed; LIV1 gene may be one of the essential genes with anti-tumor effects on apoptosis induced by trichostatin A.

  5. Expression of the antiapoptotic gene seladin-1 and octreotide-induced apoptosis in growth hormone-secreting and nonfunctioning pituitary adenomas.

    Science.gov (United States)

    Luciani, Paola; Gelmini, Stefania; Ferrante, Emanuele; Lania, Andrea; Benvenuti, Susanna; Baglioni, Silvana; Mantovani, Giovanna; Cellai, Ilaria; Ammannati, Franco; Spada, Anna; Serio, Mario; Peri, Alessandro

    2005-11-01

    Seladin-1 (from selective Alzheimer's disease indicator-1) is a recently discovered gene that has been found to be down-regulated in brain regions affected by Alzheimer's disease. Seladin-1 effectively protects neurons against beta-amyloid-mediated toxicity and prevents apoptosis via inhibition of the activation of caspase-3, a key mediator of the apoptotic cascade. Although seladin-1 is expressed in the pituitary gland, no study addressed the expression or the function of this gene in pituitary adenomas. The aim of the present study was to determine the expression level of the seladin-1 gene in pituitary tumors, i.e. GH-secreting and nonfunctioning pituitary adenomas (NFPA), and to determine whether differential expression might be associated with different somatostatin (sst)-induced apoptosis. We found by quantitative real-time RT-PCR that the expression level of seladin-1 was significantly higher in NFPA (n = 21) than in GH-secreting adenomas (n = 30; mean +/- se, 25.69 +/- 6.39 vs. 8.02 +/- 2.68 pg/microg total RNA; P = 0.006). Although the amount of activated caspase-3 did not differ between the two groups of tumors, in primary cell cultures, octreotide was able to increase apoptosis, evaluated by the level of cleaved cytokeratin 18 and the presence of apoptotic nuclei, in GH-secreting adenomas, but not in NFPA. This different response was not attributable to differences in the amount of transcript of sst receptors 2 and 5, which was similar in the two groups of tumors. Our results suggest that differential seladin-1 expression in pituitary adenomas may be associated with a different apoptotic response to sst analogs.

  6. Effect of lycium barbarum polysaccharides on high glucose-induced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Ma

    2017-05-01

    Full Text Available Objective: To study the effect of lycium barbarum polysaccharides (LBP on high glucoseinduced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current. Methods: RGC-5 retinal ganglion cell lines were cultured and divided into control group, high glucose group and LBP group that were treated with normal DMEM, highglucose DMEM as well as high-glucose DMEM containing 500 ng/mL LBP respectively. After treatment, the Annexin V-FITC/PI kits were used to measure the number of apoptotic cells, fluorescence quantitative PCR kits were used to determine the expression of apoptosis genes and antioxidant genes, and patch clamp was used to test delayed rectifier potassium current. Results: 12, 24, 36 and 48 h after intervention, the number of apoptotic cells of high glucose group was significantly higher than that of control group, and the number of apoptotic cells of LBP group was significantly lower than that of high glucose group (P<0.05; 24 and 48 h after intervention, c-fos, c-jun, caspase-3, caspase-9, Nrf-2, NQO1 and HO-1 mRNA expression as well as potassium current amplitude (IK and maximum conductance (Gmax of high glucose group were significantly higher than those of control group while half maximum activation voltage (V1/2 was significantly lower than that of control group (P<0.05; c-fos, c-jun, caspase-3 and caspase-9 mRNA expression as well as IK and Gmax of LBP group were significantly lower than those of high glucose group, while Nrf-2, NQO1 and HO-1 mRNA expression as well as V1/2 of LBP group were significantly higher than those of high glucose group (P<0.05. Conclusions: LBP can reduce the high glucose-induced retinal ganglion cell apoptosis and inhibit the delayed rectifier potassium current amplitude.

  7. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers

    Science.gov (United States)

    Pereira, M. M.; Raposo, N. R. B.; Brayner, R.; Teixeira, E. M.; Oliveira, V.; Quintão, C. C. R.; Camargo, L. S. A.; Mattoso, L. H. C.; Brandão, H. M.

    2013-02-01

    Cellulose nanofibers (CNF) have mechanical properties that make them very attractive for applications in the construction of polymeric matrices, drug delivery and tissue engineering. However, little is known about their impact on mammalian cells. The objective of this study was to evaluate the cytotoxicity of CNF and their effect on gene expression of fibroblasts cultured in vitro. The morphology of CNF was analyzed by transmission electron microscopy and the surface charge by Zeta potential. Cell viability was analyzed by flow cytometry assay and gene expression of biomarkers focused on cell stress response such as Heat shock protein 70.1 (HSP70.1) and Peroxiredoxin 1 (PRDX1) and apoptosis as B-cell leukemia (BCL-2) and BCL-2 associated X protein (BAX) by RT-PCR assay. Low concentrations of CNF (0.02-100 μg ml-1) did not cause cell death; however, at concentrations above 200 μg ml-1, the nanofibers significantly decreased cell viability (86.41 ± 5.37%). The exposure to high concentrations of CNF (2000 and 5000 μg ml-1) resulted in increased HSP70.1, PRDX1 and BAX gene expression. The current study concludes that, under the conditions tested, high concentrations (2000 and 5000 μg ml-1) of CNF cause decreased cell viability and affect the expression of stress- and apoptosis-associated molecular markers.

  8. GARNET – gene set analysis with exploration of annotation relations

    Directory of Open Access Journals (Sweden)

    Seo Jihae

    2011-02-01

    Full Text Available Abstract Background Gene set analysis is a powerful method of deducing biological meaning for an a priori defined set of genes. Numerous tools have been developed to test statistical enrichment or depletion in specific pathways or gene ontology (GO terms. Major difficulties towards biological interpretation are integrating diverse types of annotation categories and exploring the relationships between annotation terms of similar information. Results GARNET (Gene Annotation Relationship NEtwork Tools is an integrative platform for gene set analysis with many novel features. It includes tools for retrieval of genes from annotation database, statistical analysis & visualization of annotation relationships, and managing gene sets. In an effort to allow access to a full spectrum of amassed biological knowledge, we have integrated a variety of annotation data that include the GO, domain, disease, drug, chromosomal location, and custom-defined annotations. Diverse types of molecular networks (pathways, transcription and microRNA regulations, protein-protein interaction are also included. The pair-wise relationship between annotation gene sets was calculated using kappa statistics. GARNET consists of three modules - gene set manager, gene set analysis and gene set retrieval, which are tightly integrated to provide virtually automatic analysis for gene sets. A dedicated viewer for annotation network has been developed to facilitate exploration of the related annotations. Conclusions GARNET (gene annotation relationship network tools is an integrative platform for diverse types of gene set analysis, where complex relationships among gene annotations can be easily explored with an intuitive network visualization tool (http://garnet.isysbio.org/ or http://ercsb.ewha.ac.kr/garnet/.

  9. Downregulation of the long non-coding RNA taurine-upregulated gene 1 inhibits glioma cell proliferation and invasion and promotes apoptosis.

    Science.gov (United States)

    Zhao, Zhijun; Wang, Bin; Hao, Junhai; Man, Weitao; Chang, Yongkai; Ma, Shunchang; Hu, Yeshuai; Liu, Fusheng; Yang, Jun

    2018-03-01

    Expression of the long non-coding RNA taurine-upregulated gene 1 (TUG1) is associated with various aggressive tumors. The present study aimed to investigate the biological function of TUG1 in regulating apoptosis, proliferation, invasion and cell cycle distribution in human glioma U251 cells. Lentivirus-mediated TUG1-specific microRNA was transfected into U251 cells to abrogate the expression of TUG1. Flow cytometry analysis was used to examine the cell cycle distribution and apoptosis of U251 cells. Cellular proliferation was examined using Cell Counting Kit-8 (CCK-8) assays and invasion was examined by Transwell assays. The apoptotic rate of cells in the TUG1-knockdown group was significantly higher than in the negative control (NC) group (11.58 vs. 9.14%, PTUG1-knockdown group was lower compared with that of the NC group. A Transwell invasion assay was performed, which revealed that the number of invaded cells from the TUG1-knockdown group was the less compared with that of the NC group. In addition, the G 0 /G 1 phase population was significantly increased within the treated group (44.85 vs. 38.45%, PTUG1 may inhibit proliferation and invasion, and promote glioma U251 cell apoptosis. In addition, knockdown of TUG1 may have an effect on cell cycle arrest. The data presented in the current study indicated that TUG1 may be a novel therapeutic target for glioma.

  10. Effect of tetrabrombisphenol A on induction of apoptosis in the testes and changes in expression of selected testicular genes in CD1 mice

    Czech Academy of Sciences Publication Activity Database

    Žatecká, Eva; Děd, Lukáš; Elzeinová, Fatima; Kubátová, Alena; Dorosh, Andriy; Margaryan, Hasmik; Dostálová, Pavla; Pěknicová, Jana

    2013-01-01

    Roč. 35, č. 1 (2013), s. 32-39 ISSN 0890-6238 R&D Projects: GA MŠk 2B06151; GA MŠk 1M06011; GA MZd NS10009; GA ČR GA523/09/1793 Grant - others:GA ČR(CZ) GD524/05/H536 Program:GD Institutional research plan: CEZ:AV0Z50520701 Keywords : tetrabromobisphenol A * fertility * reproductive parameters * spermatogenesis * histopathology of testes * apoptosis * gene expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.771, year: 2013

  11. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  12. Preliminary characterization of a death-related gene in silkworm ...

    African Journals Online (AJOL)

    Through RT-PCR analysis of death-related protein gene in different tissues and different developmental stage of B. mori, it showed the distributed condition of the gene. It was widely expressed in various tissues and mainly expressed in testis, malphigian vessels, posterior intestine, silk gland. Meanwhile, it was widely ...

  13. Preliminary characterization of a death-related gene in silkworm ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Through RT-PCR analysis of death-related protein gene in different tissues and different developmental stage of B. mori, it showed the ... like") protein is a Drosophila member of the caspase gene family; it encodes a 128 kDa ... obtain the map of location in chromatosome. cDNA and protein analysis were ...

  14. A genetic screen for modifiers of Drosophila caspase Dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes

    Directory of Open Access Journals (Sweden)

    Ahnn Joohong

    2010-01-01

    Full Text Available Abstract Background Caspases are cysteine proteases with essential functions in the apoptotic pathway; their proteolytic activity toward various substrates is associated with the morphological changes of cells. Recent reports have described non-apoptotic functions of caspases, including autophagy. In this report, we searched for novel modifiers of the phenotype of Dcp-1 gain-of-function (GF animals by screening promoter element- inserted Drosophila melanogaster lines (EP lines. Results We screened ~15,000 EP lines and identified 72 Dcp-1-interacting genes that were classified into 10 groups based on their functions and pathways: 4 apoptosis signaling genes, 10 autophagy genes, 5 insulin/IGF and TOR signaling pathway genes, 6 MAP kinase and JNK signaling pathway genes, 4 ecdysone signaling genes, 6 ubiquitination genes, 11 various developmental signaling genes, 12 transcription factors, 3 translation factors, and 11 other unclassified genes including 5 functionally undefined genes. Among them, insulin/IGF and TOR signaling pathway, MAP kinase and JNK signaling pathway, and ecdysone signaling are known to be involved in autophagy. Together with the identification of autophagy genes, the results of our screen suggest that autophagy counteracts Dcp-1-induced apoptosis. Consistent with this idea, we show that expression of eGFP-Atg5 rescued the eye phenotype caused by Dcp-1 GF. Paradoxically, we found that over-expression of full-length Dcp-1 induced autophagy, as Atg8b-GFP, an indicator of autophagy, was increased in the eye imaginal discs and in the S2 cell line. Taken together, these data suggest that autophagy suppresses Dcp-1-mediated apoptotic cell death, whereas Dcp-1 positively regulates autophagy, possibly through feedback regulation. Conclusions We identified a number of Dcp-1 modifiers that genetically interact with Dcp-1-induced cell death. Our results showing that Dcp-1 and autophagy-related genes influence each other will aid future

  15. TUG1 promotes lens epithelial cell apoptosis by regulating miR-421/caspase-3 axis in age-related cataract.

    Science.gov (United States)

    Li, Guoxing; Song, Huiyang; Chen, Lei; Yang, Weihua; Nan, Kaihui; Lu, Peirong

    2017-07-01

    Age-related cataract is among the most common chronic disorders of ageing and the apoptosis of lens epithelial cells contributes to non-congenital cataract development. We amid to explore the role of TUG1 and miR-421 in the age-related cataract. The expression level of TUG1, miR-421 and caspase-3 were detected by RT-qPCR. The apoptotic-related protein, caspase-3, Bax and blc-2 were analyzed by western blot. We performed ultraviolet (UV) irradiation to induce SAR01/04 cell apoptosis which was analyzed by flow cytometry. RIP pull-down and luciferase reporter assay were used to verified the combination and regulating among TUG1, miR-421 and caspase-3. Here, we observed that the expression level of TUG1 and caspase-3 in the anterior lens capsules of age-related cataract were significantly higher and miR-421 was significantly lower than that in the normal anterior lens capsules. The apoptosis-related protein, caspase-3, Bax and blc-2 were abnormal expression in the anterior lens capsules of age-related cataract tissue. Our data showed that the expression level of TUG1 and caspase-3 and cell apoptosis rate in SAR01/04 cells treated with UV irradiation was remarkably higher than that in the control. TUG1 negatively regulated miR-421 expression and promoted UV irradiation-induced SAR01/04 cell apoptosis. However, miR-421 inhibitor and pcDNA-caspase-3 could reverse the action of the SRA01/04 cell apoptosis by si-TUG1, which suggested TUG1 promoted UV irradiation-induced apoptosis through downregulating miR-421 expression. Furthermore, this study confirmed TUG1 could been in combination with miR-421, and TUG1 and caspase-3 were both a directly target of miR-421. TUG1 modulated lens epithelial cell apoptosis through miR-421/caspase-3 axis. These findings will offer a novel insight into the pathogenesis of cataract. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. State-related alterations of gene expression in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael

    2012-01-01

    on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. Results:  A total of 17......Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... have been found in numerous studies. It is unclear whether such alterations are related to specific mood states. As a biphasic disorder, mood state-related alterations in gene expression have the potential to point to markers of disease activity, and trait-related alterations might indicate...

  17. gef Gene Expression in MCF-7 Breast Cancer Cells is Associated with a Better Prognosis and Induction of Apoptosis by p53-Mediated Signaling Pathway

    Science.gov (United States)

    Boulaiz, Houria; Álvarez, Pablo J.; Prados, Jose; Marchal, Juan; Melguizo, Consolación; Carrillo, Esmeralda; Peran, Macarena; Rodríguez, Fernando; Ramírez, Alberto; Ortíz, Raúl; Aránega, Antonia

    2011-01-01

    Breast cancer research has developed rapidly in the past few decades, leading to longer survival times for patients and opening up the possibility of developing curative treatments for advanced breast cancer. Our increasing knowledge of the biological pathways associated with the progression and development of breast cancer, alongside the failure of conventional treatments, has prompted us to explore gene therapy as an alternative therapeutic strategy. We previously reported that gef gene from E. coli has shown considerable cytotoxic effects in breast cancer cells. However, its action mechanism has not been elucidated. Indirect immunofluorescence technique using flow cytometry and immunocytochemical analysis were used to detect breast cancer markers: estrogen (ER) and progesterone (PR) hormonal receptors, human epidermal growth factor receptor-2 proto-oncogene (c-erbB-2), ki-67 antigen and p53 protein. gef gene induces an increase in ER and PR expressions and a decrease in ki-67 and c-erbB-2 gene expressions, indicating a better prognosis and response to treatment and a longer disease-free interval and survival. It also increased p53 expression, suggesting that gef-induced apoptosis is regulated by a p53-mediated signaling pathway. These findings support the hypothesis that the gef gene offers a new approach to gene therapy in breast cancer. PMID:22174609

  18. Modulator of Apoptosis 1: A Highly Regulated RASSF1A-Interacting BH3-Like Protein

    OpenAIRE

    Law, Jennifer; Yu, Victor C.; Baksh, Shairaz

    2012-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in both the intrinsic and extrinsic modes of cell death or apoptosis. MOAP-1 is part of the Ras association domain family 1A (RASSF1A)/MOAP-1 pro-apoptotic extrinsic signaling pathway that regulates apoptosis by utilizing death receptors such as tumor necrosis factor α (TNF α ) or TNF-related apoptosis-inducing ligand (TRAIL) to inhibit abnormal growth. RASSF1A is a bona fide tumor suppressor gene that is epigenetica...

  19. Rare disease relations through common genes and protein interactions.

    Science.gov (United States)

    Fernandez-Novo, Sara; Pazos, Florencio; Chagoyen, Monica

    2016-06-01

    ODCs (Orphan Disease Connections), available at http://csbg.cnb.csic.es/odcs, is a novel resource to explore potential molecular relations between rare diseases. These molecular relations have been established through the integration of disease susceptibility genes and human protein-protein interactions. The database currently contains 54,941 relations between 3032 diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  1. Phase analysis of circadian-related genes in two tissues

    Directory of Open Access Journals (Sweden)

    Li Leping

    2006-02-01

    Full Text Available Abstract Background Recent circadian clock studies using gene expression microarray in two different tissues of mouse have revealed not all circadian-related genes are synchronized in phase or peak expression times across tissues in vivo. Instead, some circadian-related genes may be delayed by 4–8 hrs in peak expression in one tissue relative to the other. These interesting biological observations prompt a statistical question regarding how to distinguish the synchronized genes from genes that are systematically lagged in phase/peak expression time across two tissues. Results We propose a set of techniques from circular statistics to analyze phase angles of circadian-related genes in two tissues. We first estimate the phases of a cycling gene separately in each tissue, which are then used to estimate the paired angular difference of the phase angles of the gene in the two tissues. These differences are modeled as a mixture of two von Mises distributions which enables us to cluster genes into two groups; one group having synchronized transcripts with the same phase in the two tissues, the other containing transcripts with a discrepancy in phase between the two tissues. For each cluster of genes we assess the association of phases across the tissue types using circular-circular regression. We also develop a bootstrap methodology based on a circular-circular regression model to evaluate the improvement in fit provided by allowing two components versus a one-component von-Mises model. Conclusion We applied our proposed methodologies to the circadian-related genes common to heart and liver tissues in Storch et al. 2, and found that an estimated 80% of circadian-related transcripts common to heart and liver tissues were synchronized in phase, and the other 20% of transcripts were lagged about 8 hours in liver relative to heart. The bootstrap p-value for being one cluster is 0.063, which suggests the possibility of two clusters. Our methodologies can

  2. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  3. The significance of intestinal apoptosis

    International Nuclear Information System (INIS)

    Potten, C.S.

    1997-01-01

    Apoptosis occurs at a low level spontaneously in the small intestine (SI). The levels can be raised by a variety of cytotoxic agents including radiation. The apoptosis induced by radiation, and some drugs and the spontaneous apoptosis, show some specificity for the stem cells in the small intestinal crypt. In the colon, these agents target transit cells in the mid crypt. p53 expression is elevated at the same time as apoptosis in the SI but not in the cells undergoing apoptosis. The expression of bcl-2, a survival gene, is largely absent in the SI, but is expressed, albeit weakly, in the stem cells in the colon. Spontaneous apoptosis is observed in p53 null mice which also develop normally suggesting that spontaneous and developmental apoptosis are p53 independent and that spontaneous apoptosis is part of the homeostatic mechanisms maintaining stem cell numbers. Radiation induced apoptosis is completely absent at these early times post-irradiation in p53 nulls. In bel-2 null mice, the levels of spontaneous and radiation induced apoptosis are elevated in the colon. Bax, a death gene, is expressed on the villus and inter-crypt table in the colon suggesting that cells at the end of their lifespan initiate apoptosis. It has been suggested that apoptosis in the SI is a protective mechanism against carcinogenesis in the stem cells of the SI which rarely develops cancer. Cells that possess genetic damage detected. In the large bowel, this mechanism is not effective due to the action of bcl-2. Thus stem cells may persist in this tissue with genetic damage resulting in a higher cancer risk. Furthermore, the lack of spontaneous apoptosis in the colon may result in a gradual increase of the stem cells with time resulting in more ells at risk. (author)

  4. Effects of shRNA-Mediated Silencing of PKM2 Gene on Aerobic Glycolysis, Cell Migration, Cell Invasion, and Apoptosis in Colorectal Cancer Cells.

    Science.gov (United States)

    Yan, Xiao-Ling; Zhang, Xue-Bin; Ao, Ran; Guan, Lin

    2017-12-01

    This study aims to explore the effects of shRNA-mediated silencing on Pyruvate kinase type M2 (PKM2) gene during aerobic glycolysis in colorectal cancer (CRC) cells. CRC tissues and adjacent normal tissues were obtained from 136 patients diagnosed with qRT-PCR, Western blotting, and immunohistochemistry (IHC) were performed to detect mRNA and protein expressions of PKM2. CRC cells were divided into a blank, vector, and PKM2-shRNA groups. Hexokinase (HK) and PKM2 activity were both determined by glucose-6-phosphate dehydrogenase (G-6-PD) coupled colorimetric assay and enzyme coupling rate method. The extracellular lactate concentration was measured by ultraviolet spectrophotometer and caspase activity was measured using spectrophotometry. The proliferation, cell cycle, apoptosis, invasion, and migration of CRC cells were detected by cell counting kit-8 (CCK-8) assay, flow cytometry, transwell assay, and scratch test. Three groups of nude mice were injected with 0.2 mL single-cell suspension from the blank, vector, and PKM2-shRNA groups, respectively. PKM2 protein content in CRC tissues was higher than that in adjacent normal tissues. Results showed that the PKM2-shRNA group exhibited significantly lower mRNA and protein expressions of PKM2, decreased PKM2 activity, reduced lactate metabolism level, increased cell apoptosis rate, elevated caspase-3 and caspase-9 activity, weakened proliferation, and a reduction in cell invasion and migration ability compared to the vector and blank groups. The optical density (OD) value was lower in the PKM2-shRNA group than in the blank and vector groups. These findings indicate that shRNA-mediated silencing of PKM2 gene promotes apoptosis and inhibits aerobic glycolysis, proliferation, migration, and invasion in CRC cells. J. Cell. Biochem. 118: 4792-4803, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Autophagy-related genes in Helicobacter pylori infection.

    Science.gov (United States)

    Tanaka, Shingo; Nagashima, Hiroyuki; Uotani, Takahiro; Graham, David Y; Yamaoka, Yoshio

    2017-06-01

    In vitro studies have shown that Helicobacter pylori (H. pylori) infection induces autophagy in gastric epithelial cells. However, prolonged exposure to H. pylori reduces autophagy by preventing maturation of the autolysosome. The alterations of the autophagy-related genes in H. pylori infection are not yet fully understood. We analyzed autophagy-related gene expression in H. pylori-infected gastric mucosa compared with uninfected gastric mucosa obtained from 136 Bhutanese volunteers with mild dyspeptic symptoms. We also studied single nucleotide polymorphisms (SNPs) of autophagy-related gene in 283 Bhutanese participants to identify the influence on susceptibility to H. pylori infection. Microarray analysis of 226 autophagy-related genes showed that 16 genes were upregulated (7%) and nine were downregulated (4%). We used quantitative reverse transcriptase polymerase chain reaction to measure mRNA levels of the downregulated genes (ATG16L1, ATG5, ATG4D, and ATG9A) that were core molecules of autophagy. ATG16L1 and ATG5 mRNA levels in H. pylori-positive specimens (n=86) were significantly less than those in H. pylori-negative specimens (n=50). ATG16L1 mRNA levels were inversely related to H. pylori density. We also compared SNPs of ATG16L1 (rs2241880) among 206 H. pylori-positive and 77 H. pylori-negative subjects. The odds ratio for the presence of H. pylori in the GG genotype was 0.40 (95% CI: 0.18-0.91) relative to the AA/AG genotypes. Autophagy-related gene expression profiling using high-throughput microarray analysis indicated that downregulation of core autophagy machinery genes may depress autophagy functions and possibly provide a better intracellular habit for H. pylori in gastric epithelial cells. © 2017 John Wiley & Sons Ltd.

  6. Low-density Lipoprotein Receptor-related Protein-1 (LRP1) Mediates Autophagy and Apoptosis Caused by Helicobacter pylori VacA*

    OpenAIRE

    Yahiro, Kinnosuke; Satoh, Mamoru; Nakano, Masayuki; Hisatsune, Junzo; Isomoto, Hajime; Sap, Jan; Suzuki, Hidekazu; Nomura, Fumio; Noda, Masatoshi; Moss, Joel; Hirayama, Toshiya

    2012-01-01

    In Helicobacter pylori infection, vacuolating cytotoxin (VacA)-induced mitochondrial damage leading to apoptosis is believed to be a major cause of cell death. It has also been proposed that VacA-induced autophagy serves as a host mechanism to limit toxin-induced cellular damage. Apoptosis and autophagy are two dynamic and opposing processes that must be balanced to regulate cell death and survival. Here we identify the low-density lipoprotein receptor-related protein-1 (LRP1) as the VacA rec...

  7. Identifying aging-related genes in mouse hippocampus using gateway nodes.

    Science.gov (United States)

    Dempsey, Kathryn M; Ali, Hesham H

    2014-05-27

    in the aging mouse hippocampus related to synaptic plasticity and apoptosis. Additionally, this model identifies a novel set of aging genes previously uncharacterized in the hippocampus. This research can be viewed as a first-step for identifying the processes behind comparative experiments in aging that is applicable to any type of temporal multi-state network.

  8. CLP induces apoptosis in human leukemia K562 cells through Ca(2+) regulating extracellular-related protein kinase ERK activation.

    Science.gov (United States)

    Wang, C L; Ng, T B; Cao, X H; Jiang, Y; Liu, Z K; Wen, T Y; Liu, F

    2009-04-18

    The cyclic lipopeptide (CLP) has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in CLP-induced apoptosis are still uncharacterized in human leukemic K562 cells. The current study investigated the molecular mechanism of action of CLP, purified from Bacillus natto T-2. CLP-induced a sustained increase in concentration of intracellular Ca(2+). This increase in [Ca(2+)]i was associated with CLP-induced cell apoptosis and ERK phosphorylation. CLP-induced cell apoptosis was reversed by PD98059 (an inhibitor of ERK), but not by SB203580 (an inhibitor of p38) and SP200125 (an inhibitor of JNK), suggesting that the action of CLP on K562 cells was via ERK, but not via p38 and JNK. On the other hand, pretreatment with Bapta-AM, a well-known calcium chelator, partially blocked CLP-induced apoptosis, indicating that the elevation of [Ca(2+)]i may play an important role in the apoptosis. Collectively, in K562 cells, CLP-induced an increase in [Ca(2+)]i which evoked ERK phosphorylation. This ERK phosphorylation subsequently activated Bax, cytochrome c and caspase-3 leading to apoptosis.

  9. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway

    Directory of Open Access Journals (Sweden)

    Li Chen

    2014-04-01

    Full Text Available Dicitrinone B, a rare carbon-bridged citrinin dimer, was isolated from the marine-derived fungus, Penicillium citrinum. It was reported to have antitumor effects on tumor cells previously; however, the details of the mechanism remain unclear. In this study, we found that dicitrinone B inhibited the proliferation of multiple tumor types. Among them, the human malignant melanoma cell, A375, was confirmed to be the most sensitive. Morphologic evaluation, cell cycle arrest and apoptosis rate analysis results showed that dicitrinone B significantly induced A375 cell apoptosis. Subsequent observation of reactive oxygen species (ROS accumulation and mitochondrial membrane potential (MMP reduction revealed that the apoptosis induced by dicitrinone B may be triggered by over-producing ROS. Further studies indicated that the apoptosis was associated with both intrinsic and extrinsic apoptosis pathways under the regulation of Bcl-2 family proteins. Caspase-9, caspase-8 and caspase-3 were activated during the process, leading to PARP cleavage. The pan-caspase inhibitor, Z-VAD-FMK, could reverse dicitrinone B-induced apoptosis, suggesting that it is a caspase-dependent pathway. Our data for the first time showed that dicitrinone B inhibits the proliferation of tumor cells by inducing cell apoptosis. Moreover, compared with the first-line chemotherapy drug, 5-fluorouracil (5-Fu, dicitrinone B showed much more potent anticancer efficacy, suggesting that it might serve as a potential antitumor agent.

  10. Osteoprotegerin and tumor necrosis factor-related apoptosis-inducing ligand as prognostic factors in rheumatoid arthritis: results from the ESPOIR cohort

    NARCIS (Netherlands)

    Audo, Rachel; Daien, Claire; Papon, Laura; Lukas, Cédric; Vittecoq, Olivier; Hahne, Michael; Combe, Bernard; Morel, Jacques

    2015-01-01

    We previously reported that low ratio of osteoprotegerin (OPG) to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was associated with Disease Activity Score in 28 joints (DAS28) remission at 6 months in patients with early rheumatoid arthritis (RA). Here, we aimed to evaluate the

  11. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol—A Natural Compound Present in Humulus lupulus L.

    Directory of Open Access Journals (Sweden)

    Małgorzata Kłósek

    2016-06-01

    Full Text Available TRAIL (tumor necrosis factor-related apoptosis-inducing ligand is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT and lactate dehydrogenase assay (LDH. The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2 and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis.

  12. Identification of low Ca(2+) stress-induced embryo apoptosis response genes in Arachis hypogaea by SSH-associated library lift (SSHaLL).

    Science.gov (United States)

    Chen, Hua; Zhang, Chong; Cai, Tie Cheng; Deng, Ye; Zhou, Shuangbiao; Zheng, Yixiong; Ma, Shiwei; Tang, Ronghua; Varshney, Rajeev K; Zhuang, Weijian

    2016-02-01

    Calcium is a universal signal in the regulation of wide aspects in biology, but few are known about the function of calcium in the control of early embryo development. Ca(2+) deficiency in soil induces early embryo abortion in peanut, producing empty pods, which is a general problem; however, the underlying mechanism remains unclear. In this study, embryo abortion was characterized to be caused by apoptosis marked with cell wall degradation. Using a method of SSH cDNA libraries associated with library lift (SSHaLL), 62 differentially expressed genes were isolated from young peanut embryos. These genes were classified to be stress responses, catabolic process, carbohydrate and lipid metabolism, embryo morphogenesis, regulation, etc. The cell retardation with cell wall degradation was caused by up-regulated cell wall hydrolases and down-regulated cellular synthases genes. HsfA4a, which was characterized to be important to embryo development, was significantly down-regulated under Ca(2+) -deficient conditions from 15 days after pegging (DAP) to 30 DAP. Two AhCYP707A4 genes, encoding abscisic acid (ABA) 8'-hydroxylases, key enzymes for ABA catabolism, were up-regulated by 21-fold under Ca(2+) -deficient conditions upstream of HsfA4a, reducing the ABA level in early embryos. Over-expression of AhCYP707A4 in Nicotiana benthamiana showed a phenotype of low ABA content with high numbers of aborted embryos, small pods and less seeds, which confirms that AhCYP707A4 is a key player in regulation of Ca(2+) deficiency-induced embryo abortion via ABA-mediated apoptosis. The results elucidated the mechanism of low Ca(2+) -induced embryo abortion and described the method for other fields of study. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Identification of highly related references about gene-disease association.

    Science.gov (United States)

    Liu, Rey-Long; Shih, Chia-Chun

    2014-08-25

    Curation of gene-disease associations published in literature should be based on careful and frequent survey of the references that are highly related to specific gene-disease associations. Retrieval of the references is thus essential for timely and complete curation. We present a technique CRFref (Conclusive, Rich, and Focused References) that, given a gene-disease pair , ranks high those biomedical references that are likely to provide conclusive, rich, and focused results about g and d. Such references are expected to be highly related to the association between g and d. CRFref ranks candidate references based on their scores. To estimate the score of a reference r, CRFref estimates and integrates three measures: degree of conclusiveness, degree of richness, and degree of focus of r with respect to . To evaluate CRFref, experiments are conducted on over one hundred thousand references for over one thousand gene-disease pairs. Experimental results show that CRFref performs significantly better than several typical types of baselines in ranking high those references that expert curators select to develop the summaries for specific gene-disease associations. CRFref is a good technique to rank high those references that are highly related to specific gene-disease associations. It can be incorporated into existing search engines to prioritize biomedical references for curators and researchers, as well as those text mining systems that aim at the study of gene-disease associations.

  14. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Science.gov (United States)

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-10-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  15. Novel reciprocal regulation of cAMP signaling and apoptosis by orphan G-protein-coupled receptor GPRC5A gene expression

    International Nuclear Information System (INIS)

    Hirano, Minoru; Zang, Liqing; Oka, Takehiko; Ito, Yoshiyuki; Shimada, Yasuhito; Nishimura, Yuhei; Tanaka, Toshio

    2006-01-01

    GPRC5A is a member of G-protein-coupled receptors, which was originally identified as an all-trans-retinoic acid-induced gene. Although recent studies reported that this gene was highly expressed in the cancer cell lines and that GPRC5A might positively regulate cell proliferation, its mechanism remains unknown. We investigated the upstream and downstream signaling of GPRC5A and its biological function, and found that cAMP signaling is the novel GPRC5A induction pathway. When GPRC5A gene was overexpressed, intracellular cAMP concentration was decreased, and Gsα gene expression was downregulated. On the other hand, RNA interference of GPRC5A increased mRNA levels of Gsα and intracellular cAMP, reduced cell number, and induced apoptosis. Conversely, cell number was increased by GPRC5A overexpression. We first report the novel negative feedback model of cAMP signaling through GPRC5A gene expression. This evidence explains one of the mechanisms of the GPRC5A-regulated cell growth in some cancer cell lines

  16. Cyclosporine A-induced apoptosis in renal tubular cells is related to oxidative damage and mitochondrial fission.

    Science.gov (United States)

    de Arriba, Gabriel; Calvino, Miryam; Benito, Selma; Parra, Trinidad

    2013-03-27

    Cyclosporine A (CsA) nephrotoxicity has been linked to reactive oxygen species (ROS) production in renal cells. We have demonstrated that the antioxidant Vitamin E (Vit E) abolished renal toxicity in vivo and in vitro models. As one of the main sources of intracellular ROS are mitochondria, we studied the effects of CsA on several mitochondrial functions in LLC-PK1 cells. CsA induced ROS synthesis and decreased reduced glutathione (GSH). The drug decreased mitochondrial membrane potential (ΔΨm) and induced physiological modifications in both the inner (IMM) and the outer mitochondrial membranes (OMM). In the IMM, CsA provoked mitochondrial permeability transition pores (MPTP) and cytochrome c was liberated into the intermembrane space. CsA also induced pore formation in the OMM, allowing that intermembrane space contents can reach cytosol. Furthermore, CsA altered the mitochondrial dynamics, inducing an increase in mitochondrial fission; CsA increased the expression of dynamin related protein 1 (Drp1) that contributes to mitochondrial fission, and decreased the expression of mitofusin 2 (Mfn2) and optic atrophy protein 1 (Opa1), proteins involved in the fusion process. All these phenomena were related to apoptosis. These effects were inhibited when cells were treated with the antioxidant Vit E suggesting that they were mediated by the synthesis of ROS. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. A computational study identifies HIV progression-related genes using mRMR and shortest path tracing.

    Directory of Open Access Journals (Sweden)

    Chengcheng Ma

    Full Text Available Since statistical relationships between HIV load and CD4+ T cell loss have been demonstrated to be weak, searching for host factors contributing to the pathogenesis of HIV infection becomes a key point for both understanding the disease pathology and developing treatments. We applied Maximum Relevance Minimum Redundancy (mRMR algorithm to a set of microarray data generated from the CD4+ T cells of viremic non-progressors (VNPs and rapid progressors (RPs to identify host factors associated with the different responses to HIV infection. Using mRMR algorithm, 147 gene had been identified. Furthermore, we constructed a weighted molecular interaction network with the existing protein-protein interaction data from STRING database and identified 1331 genes on the shortest-paths among the genes identified with mRMR. Functional analysis shows that the functions relating to apoptosis play important roles during the pathogenesis of HIV infection. These results bring new insights of understanding HIV progression.

  18. The Role of PPAR Ligands in Controlling Growth-Related Gene Expression and their Interaction with Lipoperoxidation Products

    Directory of Open Access Journals (Sweden)

    Giuseppina Barrera

    2008-01-01

    Full Text Available Peroxisome proliferators-activated receptors (PPARs are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. The three PPAR isoforms (, and / have been found to play a pleiotropic role in cell fat metabolism. Furthermore, in recent years, evidence has been found regarding the antiproliferative, proapoptotic, and differentiation-promoting activities displayed by PPAR ligands, particularly by PPAR ligands. PPAR ligands affect the expression of different growth-related genes through both PPAR-dependent and PPAR-independent mechanisms. Moreover, an interaction between PPAR ligands and other molecules which strengthen the effects of PPAR ligands has been described. Here we review the action of PPAR on the control of gene expression with particular regard to the effect of PPAR ligands on the expression of genes involved in the regulation of cell-cycle, differentiation, and apoptosis. Moreover, the interaction between PPAR ligands and 4-hydroxynonenal (HNE, the major product of the lipid peroxidation, has been reviewed.

  19. Cytotoxicity and analysis of apoptosis gene expression in colon cancer cell line treated with cell extract of Lactobacillus casei as indigenous probiotic bacterium

    Directory of Open Access Journals (Sweden)

    Amir Mirzaie

    2017-03-01

    Full Text Available Background and aim: Nowadays, the probiotic bacteria such as lactobacilli are known as prevention factor for various disease especially cancer. The aim of this study was to investigate the cytotoxic effect of Lactobacillus casei PTCC 1608 cell extract as probiotic bacteria on colon cancer cell line (HT29 and analysis of Bax and Bcl2 apoptosis gene expression. Methods: In this experimental study, the cell extract of heat killed L. casei was prepared in 0.01, 0.1, 1, 10, 100 and 1000 µg/ml concentration and subsequently, the cytotoxicity of various cell extracts on HT29 and HEC293 cell lines were evaluated in 24 hours using MTT assay. Moreover, the Bax and Bcl2 apoptosis gene expression level in HT29 cell line was analyzed using Real Time PCR. The apoptotic effects of cell extract was determined using Flow-cytometry technique. Finally, the collected data were statistically analyzed using one-way anal­ysis of variance with the SPSS/18 software. Results: The results of MTT test show that cell extracts of L. casei is able to reduce the survival rate of HT29 cell line to 0.95±0.44, 73.45±0.21, 51.49±0.87, 39.5±0.45 and 19.7±0.55. In addition to, the Real Time PCR results indicated the expression level of Bax and Bcl2 was increased and decreased respectively, in HT29 cell line (2.76 ± 0.54 (P<0.05, 0.21 ± 0.43 (P< 0.05 in 24 h. Moreover, the flow cytometry results indicated the 35.62 % apoptosis in HT29 cell line treated with IC50 value. Conclusion: The results show that the cell extract of L. casei PTCC 1608 could induced the apoptosis in HT29 cell line and it had low toxicity on HEC293 cell line. Therefore, it seems that L. casei has potential uses as probiotic for pharmaceutical applications including prevention and treatment of colon cancer.

  20. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  1. A complex network analysis of hypertension-related genes

    Science.gov (United States)

    Wang, Huan; Xu, Chuan-Yun; Hu, Jing-Bo; Cao, Ke-Fei

    2014-01-01

    In this paper, a network of hypertension-related genes is constructed by analyzing the correlations of gene expression data among the Dahl salt-sensitive rat and two consomic rat strains. The numerical calculations show that this sparse and assortative network has small-world and scale-free properties. Further, 16 key hub genes (Col4a1, Lcn2, Cdk4, etc.) are determined by introducing an integrated centrality and have been confirmed by biological/medical research to play important roles in hypertension.

  2. Resistance-related gene transcription and antioxidant enzyme ...

    African Journals Online (AJOL)

    The two tobacco relatives of Nicotiana alata and Nicotiana longiflora display a high level of resistance against Colletotrichum nicotianae and the two genes NTF6 and NtPAL related to pathogen defense transcription were higher in N. alata and N. longiflora than the commercial cv. K326. Inoculation with C. nicotianae ...

  3. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    OpenAIRE

    Orit Adato; Noga Ninyo; Uri Gophna; Sagi Snir

    2015-01-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally ...

  4. [Depression and treatment. Apoptosis, neuroplasticity and antidepressants].

    Science.gov (United States)

    Arantes-Gonçalves, Filipe; Coelho, Rui

    2006-01-01

    Depression's neurobiology begins to be better understood. The last decade data considers neuroplasticity and stress as implicated factors on the pathophisiology of depression. Because antidepressants have a lag-time on their action it is possible that inhibition of neurotransmitters recaptation is not sufficient to explain long term changes. For that purpose, neurogenesis increase, nervous fibers sprouting, new synapses and stabilization of the old ones can be responsible for those changes. AMPc-MAPcinases-CREB-BDNF cellular cascade can play a significant role in the mechanisms of dendritic restructuration, hippocampal neurogenesis increase and nervous cells survival. The aim of this article is to discuss if apoptosis could play a key role as an ethiopathogenic factor on the patogenesis of depression. It was done a medline search for references with apoptosis, stress, neuroplasticity, depression and antidepressants key-words. It were found 101 original or review references about these subjects. Stress plays a key role in the etiopathogeny of depression. Its deletery effects on apoptosis and neuroplasticity can be changed by antidepressants. Neurogenesis' increase is necessary for their action. This increase is reached with chronic antidepressant treatment and not with other psychotropic drugs which means some pharmacological specificity of antidepressants. AMPc, CREB, BDNF and Bcl-2 can be considered as target genes in antidepressant synthesis. At the level of this neurotrophic factors apoptosis might be included in the neuroplastic model of depression and play a prominent role in etiopathogeny of depression. To confirm that, we need more research on the field to know which are the mechanisms that trigger apoptosis and its biological significance. In relation to the last one, we can say that is possible to be physiological apoptosis in deteriorated neurons death which cannot make strong connections and pathological apoptosis because of stress via, namely, HPA axis.

  5. Increased levels of circulating IL-16 and apoptosis markers are related to the activity of Whipple's disease.

    Directory of Open Access Journals (Sweden)

    Marie Benoit

    Full Text Available BACKGROUND: Whipple's disease (WD is an infectious disease caused by Tropheryma whipplei, which replicates in macrophages and induces the release of interleukin (IL-16, a substrate of caspase 3, and macrophage apoptosis. The disease is characterized by intestinal, cardiac or neurological manifestations; its diagnosis is based on invasive analysis requiring tissue biopsies or cerebrospinal fluid puncture. The disease progression is slow and often complicated by relapses despite empirical antibiotic treatment. METHODOLOGY/PRINCIPAL FINDINGS: We monitored circulating levels of IL-16 and nucleosomes in 36 French patients with WD; among them, some patients were enrolled in a longitudinal follow-up. As compared to control subjects, the circulating levels of both IL-16 and nucleosomes were increased in untreated patients with WD presenting as intestinal, cardiac or neurological manifestations. This finding was specific to WD since the circulating levels of IL-16 and nucleosomes were not increased in patients with unrelated inflammatory diseases such as inflammatory bowel disease or Q fever endocarditis. We also found that increased levels of IL-16 and nucleosomes were related to the activity of the disease. Indeed, successful antibiotic treatment decreased those levels down to those of control subjects. In contrast, patients who suffered from relapses exhibited circulating levels of IL-16 and nucleosomes as high as those of untreated patients. CONCLUSIONS/SIGNIFICANCE: Circulating levels of both IL-16 and nucleosomes were increased in WD. This finding provides simple and non-invasive tools for the diagnosis and the prognosis of WD.

  6. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells.

    Science.gov (United States)

    Schwertheim, Suzan; Wein, Frederik; Lennartz, Klaus; Worm, Karl; Schmid, Kurt Werner; Sheu-Grabellus, Sien-Yi

    2017-07-01

    The therapy of unresectable advanced thyroid carcinomas shows unfavorable outcome. Constitutive nuclear factor-κB (NF-κB) activation in thyroid carcinomas frequently contributes to therapeutic resistance; the radioiodine therapy often fails due to the loss of differentiated functions in advanced thyroid carcinomas. Curcumin is known for its anticancer properties in a series of cancers, but only few studies have focused on thyroid cancer. Our aim was to evaluate curcumin's molecular mechanisms and to estimate if curcumin could be a new therapeutic option in advanced thyroid cancer. Human thyroid cancer cell lines TPC-1 (papillary), FTC-133 (follicular), and BHT-101 (anaplastic) were treated with curcumin. Using real-time PCR analysis, we investigated microRNA (miRNA) and mRNA expression levels. Cell cycle, Annexin V/PI staining, and caspase-3 activity analysis were performed to detect apoptosis. NF-κB p65 activity and cell proliferation were analyzed using appropriate ELISA-based colorimetric assay kits. Treatment with 50 μM curcumin significantly increased the mRNA expression of the differentiation genes thyroglobulin (TG) and sodium iodide symporter (NIS) in all three cell lines and induced inhibition of cell proliferation, apoptosis, and decrease of NF-κB p65 activity. The miRNA expression analyses showed a significant deregulation of miRNA-200c, -21, -let7c, -26a, and -125b, known to regulate cell differentiation and tumor progression. Curcumin arrested cell growth at the G2/M phase. Curcumin increases the expression of redifferentiation markers and induces G2/M arrest, apoptosis, and downregulation of NF-κB activity in thyroid carcinoma cells. Thus, curcumin appears to be a promising agent to overcome resistance to the conventional cancer therapy.

  7. N-Myc Downstream-Regulated Gene 2 (Ndrg2) Is Involved in Ischemia-Hypoxia-Induced Astrocyte Apoptosis: a Novel Target for Stroke Therapy.

    Science.gov (United States)

    Ma, Yu-Long; Zhang, Li-Xia; Liu, Guang-Lin; Fan, Yanhong; Peng, Ye; Hou, Wu-Gang

    2017-07-01

    Nearly all clinical trials that have attempted to develop effective strategies against ischemic stroke have failed, excluding those for thrombolysis, and most of these trials focused only on preventing neuronal loss. However, astrocytes have gradually become a target for neuroprotection in stroke. In previous studies, we showed that the newly identified molecular N-myc downstream-regulated gene 2 (Ndrg2) is specifically expressed in astrocytes in the brain and involved in some neurodegenerative diseases. However, the role of NDRG2 in ischemic stroke remained unclear. In this study, we investigated the role of NDRG2 in middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia and in oxygen-glucose deprivation (OGD)-induced cellular apoptosis in the M1800 astrocyte cell line. NDRG2 mRNA and protein expression began to increase at 6 and 2 h after reperfusion and peaked at 24 h in the ischemic penumbra and in M1800 cells, as detected by RT-PCR and Western blotting. Double immunofluorescence staining showed that the number of apoptotic cells increased as the NDRG2-positive signal increased and that the NDRG2 signal was sometimes co-localized with TUNEL-positive cells and translocated from the cytoplasm to the nucleus in both the ischemic penumbra and the M1800 cells. Using a lentivirus, we successfully constructed two stable astrocytic cell lines in which NDRG2 expression was significantly up- or down-regulated. NDRG2 silencing had a proliferative effect and reduced the percentage of apoptotic cells, reactive oxygen species (ROS) production, and cleaved Caspase-3 protein expression following OGD, whereas NDRG2 over-expression had the opposite effects. In conclusion, NDRG2 is involved in astrocyte apoptosis following ischemic-hypoxic injury, and inhibiting NDRG2 expression significantly reduces ROS production and astrocyte apoptosis. These findings provide insight into the role of NDRG2 in ischemic-hypoxic injury and provide potential targets for future

  8. Calcitonin gene-related peptide antagonism and cluster headache

    DEFF Research Database (Denmark)

    Ashina, Håkan; Newman, Lawrence; Ashina, Sait

    2017-01-01

    Calcitonin gene-related peptide (CGRP) is a key signaling molecule involved in migraine pathophysiology. Efficacy of CGRP monoclonal antibodies and antagonists in migraine treatment has fueled an increasing interest in the prospect of treating cluster headache (CH) with CGRP antagonism. The exact...... role of CGRP and its mechanism of action in CH have not been fully clarified. A search for original studies and randomized controlled trials (RCTs) published in English was performed in PubMed and in ClinicalTrials.gov . The search term used was "cluster headache and calcitonin gene related peptide......" and "primary headaches and calcitonin gene related peptide." Reference lists of identified articles were also searched for additional relevant papers. Human experimental studies have reported elevated plasma CGRP levels during both spontaneous and glyceryl trinitrate-induced cluster attacks. CGRP may play...

  9. GENES QUE INTERVIENEN EN LA SUSCEPTIBILIDAD INDIVIDUAL A LA APOPTOSIS DE LAS CÉLULAS GERMINALES MASCULINAS

    OpenAIRE

    MENDEZ PALACIOS, NESTOR

    2013-01-01

    El balance entre la proliferación y la muerte celular juega un papel fundamental en la producción de gametos. Al inicio de la espermatogénesis durante la pubertad se hace notoria la aparición de una ola de muerte por apoptosis de las células germinales en las que BAX promueve la muerte de las células germinales durante las etapas finales de diferenciación celular, sin embargo, la asociación de BAX con BCL-2 es clave para la supervivencia celular. Las hormonas esteroides también tienen un pape...

  10. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, E. Y.; Madireddi, M. T.; Gopalkrishnan, R. V.; Leszczyniecka, M.; Su, Z. Z.; Lebedeva, I. V.; Kang, D. C.; Jian, H.; Lin, J. J.; Alexandre, D.; Chen, Y.; Vozhilla, N.; Mei, M. X.; Christiansen, K. A.; Sivo, F.; Goldstein, N. I.; Chada, S.; Huberman, E.; Pestka, S.; Fisher, P. B.; Biochip Technology Center; Columbia Univ.; Introgen Therapeutics Inc.; UMDNJ-Robert Wood Johnson Medical School

    2001-10-25

    Abnormalities in cellular differentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell differentiation. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful effects occur when mda-7 is expressed in normal epithelial or fibroblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Hu-mda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-beta plus MEZ. Mda-7 expression is also induced during megakaryocyte differentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-beta+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-beta+MEZ and

  11. Reoxygenation of human coronary smooth muscle cells suppresses HIF-1{alpha} gene expression and augments radiation-induced growth delay and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Grumann, T.; Arab, A.; Bode, C.; Hehrlein, C. [Dept. of Cardiology, Univ. Clinic of Freiburg (Germany); Guttenberger, R. [Dept. of Radiotherapy, Univ. Clinic of Freiburg (Germany)

    2006-01-01

    Background and Purpose: Catheter-based coronary brachytherapy with {beta}- and {gamma}-radiation is an evidence-based method to prevent restenosis after percutaneous transluminal coronary angioplasty (PTCA) and stent implantation, but the outcome may be PTCA are hypoxic. A lack of oxygen decreases the effect of low LET (linear energy transfer) irradiation. The authors assumed that reoxygenation of hypoxic human coronary smooth muscle cells (HCSMCs) improves the results of coronary brachytherapy. The expression of hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) gene, and the rates of growth and apoptosis of hypoxic and reoxygenated HCSMCs after {gamma}-iradiation were therefore analyzed. Material and Methods: An in vitro model of megacolonies of HCSMCs was developed. After exposure to chronic hypoxia the HCSMCs were irradiated with graded doses of 2, 4, 8, and 16 Gy using a {sup 60}Co source either under hypoxia (pO{sub 2}<3 mmHg) or after reoxygenation (pO{sub 2}{approx}150 mmHg). RT-PCR (reverse transcription-polymerase chain reaction) analysis was used to quantify HIF-1{alpha} gene expression and the growth of HCSMC megacolonies was measured serially. The oxygen enhancement ratio (OER) was calculate from the specific growth delay. Apoptosis of HCSMCs was quantified by counting cells with specific DNA strand breaks using the TUNEL assy. Results: HIF-1{alpha} gene expression was markedly suppressed in reoxygenated cells versus hypoxic cells 30 min after {gamma}-irradiation at all radiation doses (158{+-}46% vs. 1,675{+-}1,211%; p<0.01). Apoptosis was markedly increased in reoxygenated HCSMCs. The OER was 1.8(95% CI[confidence interval]1.3-2.4). Therefore, reoxygenated HCSMCs require 44% less radiation dose to achieve the equivalent biological radiation effect compared to hypoxic HCSMCs. Conclusion: Reoxygenation of coronary smooth muscle cells should be considered an option to increase efficacy of coronary brachytherapy. This could be used to reduce radiation dose

  12. Traditional Chinese Medicine Curcumin Sensitizes Human Colon Cancer to Radiation by Altering the Expression of DNA Repair-related Genes.

    Science.gov (United States)

    Yang, Guangen; Qiu, Jianming; Wang, Dong; Tao, Yong; Song, Yihuan; Wang, Hongtao; Tang, Juping; Wang, Xing; Sun, Y U; Yang, Zhijian; Hoffman, Robert M

    2018-01-01

    The aim of the present study was to investigate the radio-sensitizing efficacy of curcumin, a traditional Chinese medicine (TCM) on colon cancer cells in vitro and in vivo. Human colon cancer HT-29 cells were treated with curcumin (2.5 μM), irradiation (10 Gy) and the combination of irradiation and curcumin. Cell proliferation was assessed using the MTT assay. Apoptotic cells were detected by Annexin V-PE/7-AAD analysis. PCR was performed to determine differential-expression profiling of 95 DNA-repair genes in irradiated cells and cells treated with both irradiation and curcumin. Differentially-expressed genes were confirmed by Western blotting. In vivo radio-sensitizing efficacy of curcumin was assessed in a xenograft mouse model of HT-29 colon cancer. Curcumin was administrated daily by intraperitoneal injection at 20 mg/kg/dose. Mice received irradiation (10 Gy) twice weekly. Apoptosis of the cancer cells following treatment was determined by TUNEL staining. Irradiation induced proliferation inhibition and apoptosis of HT-29 cells in vitro. Concurrent curcumin treatment sensitized the HT-29 tumor to irradiation (phuman colon cancer in vitro and in vivo to radiation. Downregulation of LIG4 and PNKP and upregulation of XRCC5 and CCNH DNA-repair-related genes were involved in the radio-sensitizing efficacy of curcumin in colon cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Gene-network analysis identifies susceptibility genes related to glycobiology in autism.

    Directory of Open Access Journals (Sweden)

    Bert van der Zwaag

    Full Text Available The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD, and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD.

  14. Visually Relating Gene Expression and in vivo DNA Binding Data

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  15. [Prosapogenin A inhibits cell growth of MCF7 via downregulating STAT3 and glycometabolism-related gene].

    Science.gov (United States)

    Wang, Tian-xiao; Shi, Xiao-yan; Cong, Yue; Zhang, Zhong-qing; Liu, Ying-hua

    2013-09-01

    This study is to investigate the inhibitory effect and mechanism of prosapogenin A (PSA) on MCF7. MTT assay was performed to determine the inhibitory effect of PSA on MCF7 cells. PI/Hoechst 33342 double staining was used to detect cell apoptosis. RT-PCR was used to test the mRNA levels of STAT3, GLUT1, HK and PFKL. Western blotting was performed to determine the expression of STAT3 and pSTAT3 protein in MCF7 cells. The results showed that PSA could dose-dependently inhibit cell growth of MCF7 followed by IC50 of 9.65 micrmol x L(-1) and promote cell apoptosis of MCF7. Reduced mRNA levels of STAT3, HK and PFKL were observed in MCF7 cells treated with 5 micromol x L(-1) of PSA. PSA also decreased the level of pSTAT3 protein. STAT3 siRNA caused decrease of mRNA of GLUT1, HK and PFKL which indicated STAT3 could regulate the expressions of GLUT1, HK and PFKL. The results suggested that PSA could inhibit cell growth and promote cell apoptosis of MCF7 via inhibition of STAT3 and glycometabolism-related gene.

  16. High presence/absence gene variability in defense-related gene clusters of Cucumis melo.

    Science.gov (United States)

    González, Víctor M; Aventín, Núria; Centeno, Emilio; Puigdomènech, Pere

    2013-11-12

    Changes in the copy number of DNA sequences are one of the main mechanisms generating genome variability in eukaryotes. These changes are often related to phenotypic effects such as genetic disorders or novel pathogen resistance. The increasing availability of genome sequences through the application of next-generation massive sequencing technologies has allowed the study of genomic polymorphisms at both the interspecific and intraspecific levels, thus helping to understand how species adapt to changing environments through genome variability. Data on gene presence/absence variation (PAV) in melon was obtained by resequencing a cultivated accession and an old-relative melon variety, and using previously obtained resequencing data from three other melon cultivars, among them DHL92, on which the current draft melon genome sequence is based. A total of 1,697 PAV events were detected, involving 4.4% of the predicted melon gene complement. In all, an average 1.5% of genes were absent from each analyzed cultivar as compared to the DHL92 reference genome. The most populated functional category among the 304 PAV genes of known function was that of stress response proteins (30% of all classified PAVs). Our results suggest that genes from multi-copy families are five times more likely to be affected by PAV than singleton genes. Also, the chance of genes present in the genome in tandem arrays being affected by PAV is double that of isolated genes, with PAV genes tending to be in longer clusters. The highest concentration of PAV events detected in the melon genome was found in a 1.1 Mb region of linkage group V, which also shows the highest density of melon stress-response genes. In particular, this region contains the longest continuous gene-containing PAV sequence so far identified in melon. The first genome-wide report of PAV variation among several melon cultivars is presented here. Multi-copy and clustered genes, especially those with putative stress-response functions

  17. Leukocyte apoptosis as a predictor of radiosensitivity in Fanconi anemia

    International Nuclear Information System (INIS)

    Petrovic, Sandra; Leskovac, Andreja; Joksic, Ivana; Filipovic, Jelena; Joksic, Gordana; Vujic, Dragana; Guc-Scekic, Marija

    2013-01-01

    Fanconi anemia (FA) is a rare cancer-prone genetic disease characterized by impaired oxygen metabolism and defects in DNA damage repair. Response of FA cells to ionizing radiation has been an issue intensively debated in the literature. To study in vitro radiosensitivity in patients suffering from FA and their parents (heterozygous carriers), we determined radiation-induced leukocyte apoptosis using flow cytometry. As TP53 gene is involved in the control of apoptosis, we studied its status in FA lymphocytes using dual colour fluorescence in situ hybridization (FISH). FA patients and female heterozygous carriers display radiosensitive response to ionizing radiation seen as abnormal elimination of cells via apoptosis. By employment of FISH, the TP53 allele loss in FA lymphocytes was not observed. In diseases related to oxidative stress, determination of radiation-induced apoptosis is the method of choice for testing the radiosensitivity. (author)

  18. Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean) Cattle.

    Science.gov (United States)

    Lim, Dajeong; Lee, Seung-Hwan; Kim, Nam-Kuk; Cho, Yong-Min; Chai, Han-Ha; Seong, Hwan-Hoo; Kim, Heebal

    2013-01-01

    Marbling (intramuscular fat) is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the 'marbling score' trait and systemically analyzed the network topology in Hanwoo (Korean cattle). As a result, we determined 3 modules (gene groups) that showed statistically significant results for marbling score. In particular, one module (denoted as red) has a statistically significant result for marbling score (p = 0.008) and intramuscular fat (p = 0.02) and water capacity (p = 0.006). From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA) have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.

  19. Gene Co-expression Analysis to Characterize Genes Related to Marbling Trait in Hanwoo (Korean Cattle

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2013-01-01

    Full Text Available Marbling (intramuscular fat is an important trait that affects meat quality and is a casual factor determining the price of beef in the Korean beef market. It is a complex trait and has many biological pathways related to muscle and fat. There is a need to identify functional modules or genes related to marbling traits and investigate their relationships through a weighted gene co-expression network analysis based on the system level. Therefore, we investigated the co-expression relationships of genes related to the ‘marbling score’ trait and systemically analyzed the network topology in Hanwoo (Korean cattle. As a result, we determined 3 modules (gene groups that showed statistically significant results for marbling score. In particular, one module (denoted as red has a statistically significant result for marbling score (p = 0.008 and intramuscular fat (p = 0.02 and water capacity (p = 0.006. From functional enrichment and relationship analysis of the red module, the pathway hub genes (IL6, CHRNE, RB1, INHBA and NPPA have a direct interaction relationship and share the biological functions related to fat or muscle, such as adipogenesis or muscle growth. This is the first gene network study with m.logissimus in Hanwoo to observe co-expression patterns in divergent marbling phenotypes. It may provide insights into the functional mechanisms of the marbling trait.

  20. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Directory of Open Access Journals (Sweden)

    Orit Adato

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT, the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM. Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  1. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  2. The Innate Immune-Related Genes in Catfish

    Science.gov (United States)

    Gao, Lei; He, Chongbo; Liu, Xueguang; Su, Hao; Gao, Xianggang; Li, Yunfeng; Liu, Weidong

    2012-01-01

    Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa). In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish. PMID:23203058

  3. TYK2, a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic β-Cells

    DEFF Research Database (Denmark)

    Marroqui, Laura; Dos Santos, Reinaldo Sousa; Fløyel, Tina

    2015-01-01

    histocompatibility complex (MHC) class I proteins, a hallmark of early β-cell inflammation in type 1 diabetes. Importantly, TYK2 inhibition prevented PIC-induced β-cell apoptosis via the mitochondrial pathway of cell death. The present findings suggest that TYK2 regulates apoptotic and proinflammatory pathways...... in pancreatic β-cells via modulation of IFNα signaling, subsequent increase in MHC class I protein, and modulation of chemokines such as CXCL10 that are important for recruitment of T cells to the islets.......Pancreatic β-cells are destroyed by an autoimmune attack in type 1 diabetes. Linkage and genome-wide association studies point to >50 loci that are associated with the disease in the human genome. Pathway analysis of candidate genes expressed in human islets identified a central role for interferon...

  4. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice

    Directory of Open Access Journals (Sweden)

    Fu Na

    2010-10-01

    Full Text Available Abstract Objective Heme oxygenase-1 (HO-1, the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant properties. However, the role of HO-1 on hepatocyte apoptosis remains unclear. We aim to elucidate the effects of HO-1 on oxidative stress related hepatocellular apoptosis in nutritional steatohepatitis in mice. Methods C57BL/6J mice were fed with methionine-choline deficient (MCD diet for four weeks to induce hepatic steatohepatitis. HO-1 chemical inducer (hemin, HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX and/or adenovirus carrying HO-1 gene (Ad-HO-1 were administered to mice, respectively. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL assay, the mRNA and protein expression of apoptosis related genes were assayed by quantitative real-time PCR and Western blot. Results Hepatocyte signs of oxidative related apoptotic injury were presented in mice fed with MCD diet for 4 weeks. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver histology, which was associated with decreased hepatic lipid peroxidation content, reduced number of apoptotic cells by TUNEL staining, down-regulated expression of pro-apoptosis related genes including Fas/FasL, Bax, caspase-3 and caspase-9, reduced expression of cytochrome p4502E1 (CYP2E1, inhibited cytochrome c (Cyt-c release, and up-regulated expression of anti-apoptosis gene Bcl-2. Whereas, inhibition of HO-1 by ZnPP-IX caused oxidative stress related hepatic injury, which concomitant with increased number of TUNEL positive cells and up-regulated expression of pro-apoptosis related genes. Conclusions The present study provided evidences for the protective role of HO-1 in preventing nutritional steatohepatitis through suppressing hepatocyte apoptosis in mice.

  5. Gene-environment interactions of circadian-related genes for cardiometabolic traits

    Science.gov (United States)

    Objective: Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153,...

  6. Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits

    DEFF Research Database (Denmark)

    Dashti, Hassan S; Follis, Jack L; Smith, Caren E

    2015-01-01

    OBJECTIVE: Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs13871...

  7. Comprehensive analysis of gene expression patterns of hedgehog-related genes

    Directory of Open Access Journals (Sweden)

    Baillie David

    2006-10-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome encodes ten proteins that share sequence similarity with the Hedgehog signaling molecule through their C-terminal autoprocessing Hint/Hog domain. These proteins contain novel N-terminal domains, and C. elegans encodes dozens of additional proteins containing only these N-terminal domains. These gene families are called warthog, groundhog, ground-like and quahog, collectively called hedgehog (hh-related genes. Previously, the expression pattern of seventeen genes was examined, which showed that they are primarily expressed in the ectoderm. Results With the completion of the C. elegans genome sequence in November 2002, we reexamined and identified 61 hh-related ORFs. Further, we identified 49 hh-related ORFs in C. briggsae. ORF analysis revealed that 30% of the genes still had errors in their predictions and we improved these predictions here. We performed a comprehensive expression analysis using GFP fusions of the putative intergenic regulatory sequence with one or two transgenic lines for most genes. The hh-related genes are expressed in one or a few of the following tissues: hypodermis, seam cells, excretory duct and pore cells, vulval epithelial cells, rectal epithelial cells, pharyngeal muscle or marginal cells, arcade cells, support cells of sensory organs, and neuronal cells. Using time-lapse recordings, we discovered that some hh-related genes are expressed in a cyclical fashion in phase with molting during larval development. We also generated several translational GFP fusions, but they did not show any subcellular localization. In addition, we also studied the expression patterns of two genes with similarity to Drosophila frizzled, T23D8.1 and F27E11.3A, and the ortholog of the Drosophila gene dally-like, gpn-1, which is a heparan sulfate proteoglycan. The two frizzled homologs are expressed in a few neurons in the head, and gpn-1 is expressed in the pharynx. Finally, we compare the

  8. Silver Nanoparticles Biosynthesized Using Achillea biebersteinii Flower Extract: Apoptosis Induction in MCF-7 Cells via Caspase Activation and Regulation of Bax and Bcl-2 Gene Expression

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2015-02-01

    Full Text Available Silver nanoparticles (Ag-NPs, the most popular nanoparticles, possess unique properties. Achillea biebersteinii is a plant of the Asteraceae family rich in active antitumor components. The aim of this research was the characterization and investigation of the cytotoxic properties of Ag-NPs synthesized using A. biebersteinii flower extract, on a human breast cancer cell line. The Ag-NPs were synthesized after approximately 180 min of reaction at 40 °C, then they were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and dynamic light scattering (DLS. The anti-apoptosis effect of Ag-NPs on the MCF-7 cell line was investigated by MTT assay, DAPI and acridine orange staining and caspase activity. The transcriptional expression of bax, bcl-2, caspase-3, -8 and -9 were also evaluated by RT-PCR. The TEM images revealed that the Ag-NPs morphology had a different shape. The DLS indicated that the average hydrodynamic diameter of the biosynthesized Ag-NPs was around 12 nm. By UV-visible spectroscopy the strongest absorbance peak was observed at 460 nm. The FTIR results also showed interaction between the plant extract and Ag-NPs due to the similarity in the peak patterns. The EDS results showed that Ag-NPs display an absorption peak at 3 keV, indicating the presence of the element silver. The Ag-NPs caused a dose-dependent decrease in cell viability, fragmentation in nucleic acid, inhibited the proliferation and induction of apoptosis on MCF-7 by suppressing specific cell cycle genes, and simulation programmed cell dead genes. Further investigation is required to establish the potential of this novel and promising approach in cancer therapy.

  9. Effects of salmon calcitonin and calcitonin gene related peptide ...

    African Journals Online (AJOL)

    The aim of this investigation was to examine and compare the effects of calcitonin gene related peptide (CGRP) and salmon calcitonin (sCT) on gastric lesions and mucosal barrier components such as mucus and phospholipids in rats exposed to cold + restraint stress (CRS). Twenty-eight Wistar albino rats (150 – 200 g) ...

  10. Characterization of two CYP77 gene family members related to ...

    Indian Academy of Sciences (India)

    [Yue Y., Peng H., Sun J., Yang Z., Yang H., Liu G. and Hu H. 2016 Characterization of two CYP77 gene family members related to development of ornamental ... of the largest families in plants, participate in numerous reac- tions of the plant ... real-time quantitative polymerase chain reaction (RT-qPCR), indicating that they ...

  11. Different stress-related gene expression in depression and suicide

    NARCIS (Netherlands)

    Zhao, J; Qi, X-R; Gao, S-F; Lu, J; van Wamelen, D J; Kamphuis, W; Bao, A-M; Swaab, D F

    OBJECTIVE: Suicide occurs in some, but not all depressed patients. So far, it remains unknown whether the studied stress-related candidate genes change in depression, suicide or both. The prefrontal cortex (PFC) is involved in, among other things, impulse control and inhibitory behavior and plays an

  12. Involvement of calcitonin gene-related peptide in migraine

    DEFF Research Database (Denmark)

    Lassen, L H; Jacobsen, V B; Haderslev, P A

    2008-01-01

    Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...

  13. Lentivirus-Mediated Knockdown of Astrocyte Elevated Gene-1 Inhibits Growth and Induces Apoptosis through MAPK Pathways in Human Retinoblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Ying Chang

    Full Text Available To explore expression and function of astrocyte elevated gene-1 (AEG-1 in human retinoblastoma (RB.The expression of AEG-1 in histological sections of human RBs and in RB cell lines was examined using immunohistochemical staining and RT-PCR and Western blotting respectively. We knocked down AEG-1 gene levels by AEG-1-siRNA lentivirus transfection of human RB cell lines SO-RB50 and Y79, and using an MTT assay, we assessed the role of AEG-1 on RB cell proliferation. The biological significance of lentivirus transfection induced AEG-1 down-regulation was examined by assessing the apoptosis rate in the transfected RB cells by Annexin V-APC staining and flow cytometry. We additionally measured the expression of Bcl-2, Bax, cleaved-caspase-3 and caspase-3, and the phosphorylation and non-phosphorylation alternation of MAPKs.AEG-1 expression was detected to be strongly positive in the histological slides of 35 out of 54 (65% patients with RB. AEG-1 expression increased significantly (P<0.05 with tumor stage. In the RB cell lines SO-RB50, Y79 and WERI-RB1 as compared with retinal pigment epithelium cells, expression of AEG-1 mRNA and AEG-1 protein was significantly higher. In AEG-1-siRNA lentivirus transfected cell cultures as compared with negative control lentivirus transfected cell cultures, levels of AEG-1 mRNA and of AEG-1 protein (P<0.05 and cell growth rates (P<0.01 were significantly lower, and apoptosis rate (P<0.001, Bax/Bcl-2 ratio and cleaved-caspase-3 protein level were significantly increased. The P-ERK/ERK ratio was significantly decreased in the AEG-1-siRNA lentivirus transfected cell lines.Expression of AEG-1 was associated with RB, in histological slides of patients and in cell culture experiments. Lentivirus transfection induced knockdown of AEG-1 had a tumor suppressive effect, potentially by tumor cell apoptosis induction through inhibition of ERK.

  14. Apoptosis in chondrogenesis of human mesenchymal stem cells: effect of serum and medium supplements.

    Science.gov (United States)

    Wang, Chien-Yuan; Chen, Ling-Lan; Kuo, Pei-Yin; Chang, Jia-Ling; Wang, Yng-Jiin; Hung, Shih-Chieh

    2010-04-01

    Apoptosis is an inevitable process during development and is evident in the formation of articular cartilage and endochondral ossification of growth plate. Mesenchymal stem cells (MSCs) can serve as alternative sources for cell therapy in focal chondral lesions or diffuse osteoarthritis. But there are few, if any, studies investigating apoptosis during chondrogenesis by MSCs. The aim of this study was to find the better condition to prevent apoptosis during chondrogenesis by MSCs. Apoptosis were evaluated in MSCs induced in different chondrogenic media by the use of Annexin V, TUNEL staining, lysosomal labeling with lysotracker and immunostaining of apoptotic markers. We found apparent apoptosis was demonstrated by Annexin V, TUNEL staining and lysosomal labeling during chondrogenesis. Meanwhile, the degree of apoptosis was related to the reagents of the defined chondrogenic medium. Adding serum in medium increased apoptosis, however, TGF-beta1 inhibited apoptosis. The apoptosis was associated with the activation of caspase-3, the increase in the Bax/Bcl-2 ratio, the loss of lysosomal integrity, and the increase of PARP-cleavage. Pro-inflammatory cytokines, IL-1alpha, IL-1beta and TNFalpha did not induce any increase in apoptosis. Interestingly, the inhibition of apoptosis by serum free medium supplemented with ITS was also associated with an increase in the expression of type II collagen, and a decrease in the expression of type X collagen, Runx2, and other osteogenic genes, while TGF-beta1 increased the expression of Sox9, type II and type X collagen and decreased the expression of osteogenic genes. These data suggest apoptosis occurs during chondrogenesis by MSCs by cell death intrinsic pathway activation and this process may be modulated by culture conditions.

  15. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking.

    Science.gov (United States)

    Yamada, Kazuhiro; Asai, Kazuhisa; Nagayasu, Fumihiro; Sato, Kanako; Ijiri, Naoki; Yoshii, Naoko; Imahashi, Yumiko; Watanabe, Tetsuya; Tochino, Yoshihiro; Kanazawa, Hiroshi; Hirata, Kazuto

    2016-02-09

    Cigarette smoking-induced oxidative stress is known to be a key mechanism in COPD pathogenesis. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a central transcription factor that regulates the antioxidant defense system. The aim of this study was to compare Nrf2 expression in COPD subjects and control subjects, and to determine the role of Nrf2 in protecting against oxidative stress-induced apoptosis. We enrolled 8 COPD subjects and 7 control subjects in this study. We performed bronchial brushing by bronchoscopy and obtained bronchial epithelial cells from the airways. Nrf2 expression in bronchial epithelial cells was evaluated by real-time PCR and Western blotting. We examined the effect of 10 or 15 % cigarette smoke extract (CSE) induced A549 cells apoptosis using a time-lapse cell imaging assay with caspase-3/7 activation detecting reagent and performed Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling assay for confirming A549 cells apoptosis. We also examined the effects of Nrf2 knockdown and, 0.1, 0.5, and 1.0 mM N-acetyl cysteine on CSE-induced apoptosis. Statistical analyses were performed using t-test, paired t-test or an analysis of variance followed by the Tukey-Kramer method. Nrf2 mRNA expression in COPD subjects was significantly lower than that in control subjects and Nrf2 mRNA were negatively correlated with pack year. Nrf2 protein in COPD subjects was significantly lower than that in control subjects. CSE-induced A549 cells apoptosis was increased in a time-, concentration-dependent manner, and was significantly increased by Nrf2 knockdown. N-acetyl cysteine significantly ameliorated CSE-induced apoptosis. Nrf2 expression was lower in COPD patients than in control subjects. Nrf2 might have a protective role against apoptosis caused by CSE-induced oxidative stress. These results suggest an involvement of Nrf2 in COPD and administration of antioxidants to patients with COPD might be a basic therapeutic option.

  16. Predisposition to apoptosis in keratin 8-null liver is related to inactivation of NF-κB and SAPKs but not decreased c-Flip

    Directory of Open Access Journals (Sweden)

    Jongeun Lee

    2013-05-01

    Keratin 8 and 18 (K8/K18 are major intermediate filament proteins of liver hepatocytes. They provide mechanical and nonmechanical stability, thereby protecting cells from stress. Hence, K8-null mice are highly sensitive to Fas-mediated liver cell apoptosis. However, the role of c-Flip protein in K8-null related susceptibility to liver injury is controversial. Here we analyzed c-Flip protein expression in various K8 or K18 null/mutant transgenic livers and show that they are similar in all analyzed transgenic livers and that previously reported c-Flip protein changes are due to antibody cross-reaction with mouse K18. Furthermore, analysis of various apoptosis- or cell survival-related proteins demonstrated that inhibition of phosphorylation of NF-κB and various stress activated protein kinases (SAPKs, such as p38 MAPK, p44/42 MAPK and JNK1/2, is related to the higher sensitivity of K8-null hepatocytes whose nuclear NF-κB is rapidly depleted through Fas-mediated apoptosis. Notably, we found that NF-κB and the studied protein kinases are associated with the K8/K18 complex and are released upon phosphorylation. Therefore, interaction of keratins with cell survival-related protein kinases and transcription factors is another important factor for hepatocyte survival.

  17. Proteomic Investigation of the Sinulariolide-Treated Melanoma Cells A375: Effects on the Cell Apoptosis through Mitochondrial-Related Pathway and Activation of Caspase Cascade

    Directory of Open Access Journals (Sweden)

    Yu-Jen Wu

    2013-07-01

    Full Text Available Sinulariolide is an active compound isolated from the cultured soft coral Sinularia flexibilis. In this study, we investigated the effects of sinulariolide on A375 melanoma cell growth and protein expression. Sinulariolide suppressed the proliferation and migration of melanoma cells in a concentration-dependent manner and was found to induce both early and late apoptosis by flow cytometric analysis. Comparative proteomic analysis was conducted to investigate the effects of sinulariolide at the molecular level by comparison between the protein profiles of melanoma cells treated with sinulariolide and those without treatment. Two-dimensional gel electrophoresis (2-DE master maps of control and treated A375 cells were generated by analysis with PDQuest software. Comparison between these maps showed up- and downregulation of 21 proteins, seven of which were upregulated and 14 were downregulated. The proteomics studies described here identify some proteins that are involved in mitochondrial dysfunction and apoptosis-associated proteins, including heat shock protein 60, heat shock protein beta-1, ubiquinol cytochrome c reductase complex core protein 1, isocitrate dehydrogenase (NAD subunit alpha (down-regulated, and prohibitin (up-regulated, in A375 melanoma cells exposed to sinulariolide. Sinulariolide-induced apoptosis is relevant to mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by the loss of mitochondrial membrane potential, release of cytochrome c, and activation of Bax, Bad and caspase-3/-9, as well as suppression of p-Bad, Bcl-xL and Bcl-2. Taken together, our results show that sinulariolide-induced apoptosis might be related to activation of the caspase cascade and mitochondria dysfunction pathways. Our results suggest that sinulariolide merits further evaluation as a chemotherapeutic agent for human melanoma.

  18. Genetic Variants in the Apoptosis Gene BCL2L1 Improve Response to Interferon-Based Treatment of Hepatitis C Virus Genotype 3 Infection

    DEFF Research Database (Denmark)

    Clausen, Louise Nygaard; Weis, Nina; Ladelund, Steen

    2015-01-01

    Genetic variation upstream of the apoptosis pathway has been associated with outcome of hepatitis C virus (HCV) infection. We investigated genetic polymorphisms in the intrinsic apoptosis pathway to assess their influence on sustained virological response (SVR) to pegylated interferon-α and ribav......Genetic variation upstream of the apoptosis pathway has been associated with outcome of hepatitis C virus (HCV) infection. We investigated genetic polymorphisms in the intrinsic apoptosis pathway to assess their influence on sustained virological response (SVR) to pegylated interferon...

  19. Expression of isgylation related genes in regenerating rat liver

    Directory of Open Access Journals (Sweden)

    Kuklin A. V.

    2015-10-01

    Full Text Available Our recent studies have revealed the early up-regulated expression of interferon alpha (IFNα in the liver, induced by partial hepatectomy. The role of this cytokine of innate immune response in liver regeneration is still controversial. Aim. To analyze expression of canonical interferon-stimulated genes Ube1l, Ube2l6, Trim25, Usp18 and Isg15 during the liver transition from quiescence to proliferation induced by partial hepatectomy, and acute phase response induced by laparotomy. These genes are responsible for posttranslational modification of proteins by ISGylation. The expression of genes encoding TATA binding protein (TBP and 18S rRNA served as indirect general markers of transcriptional and translational activities. Methods. The abundance of investigated RNAs was assessed in total liver RNA by real time RT–qPCR. Results. Partial hepatecomy induced steady upregulation of the Tbp and 18S rRNA genes expression during 12 hours post-surgery and downregulation or no change in expression of ISGylation-related genes during the first 3 hours followed by slight upregulation at 12 hours. The level of Isg15 transcripts was permanently below that of the control during the prereplicative period. Laparotomy induced a continuous downregulation of Tbp and 18S rRNA expression and early (1–3h upregulation of ISGylation–related transcripts followed by a sharp drop at 6 hours and slight increase/decrease at 12 hours. The changes in the abundance of Ifnα and ISGylation-related mRNAs were oppositely directed at each stage of the response to partial hepatectomy and laparotomy. Conclusion. We suggest that the expression of ISGylation-related genes does not depend on the expression of Ifnα gene after both surgeries. The indirect indices of transcription and translation as well as the expression of ISGylation-relaled genes are principally different in response to partial hepatectomy and laparotomy and argue for the high specificity of innate immune response.

  20. Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    Li CongJun

    2006-09-01

    Full Text Available Abstract Background Global gene expression profiles of bovine kidney epithelial cells regulated by sodium butyrate were investigated with high-density oligonucleotide microarrays. The bovine microarray with 86,191 distinct 60mer oligonucleotides, each with 4 replicates, was designed and produced with Maskless Array Synthesizer technology. These oligonucleotides represent approximately 45,383 unique cattle sequences. Results 450 genes significantly regulated by butyrate with a median False Discovery Rate (FDR = 0 % were identified. The majority of these genes were repressed by butyrate and associated with cell cycle control. The expression levels of 30 selected genes identified by the microarray were confirmed using real-time PCR. The results from real-time PCR positively correlated (R = 0.867 with the results from the microarray. Conclusion This study presented the genes related to multiple signal pathways such as cell cycle control and apoptosis. The profound changes in gene expression elucidate the molecular basis for the pleiotropic effects of butyrate on biological processes. These findings enable better recognition of the full range of beneficial roles butyrate may play during cattle energy metabolism, cell growth and proliferation, and possibly in fighting gastrointestinal pathogens.

  1. A widespread class of reverse transcriptase-related cellular genes.

    Science.gov (United States)

    Gladyshev, Eugene A; Arkhipova, Irina R

    2011-12-20

    Reverse transcriptases (RTs) polymerize DNA on RNA templates. They fall into several structurally related but distinct classes and form an assemblage of RT-like enzymes that, in addition to RTs, also includes certain viral RNA-dependent RNA polymerases (RdRP) synthesizing RNA on RNA templates. It is generally believed that most RT-like enzymes originate from retrotransposons or viruses and have no specific function in the host cell, with telomerases being the only notable exception. Here we report on the discovery and properties of a unique class of RT-related cellular genes collectively named rvt. We present evidence that rvts are not components of retrotransposons or viruses, but single-copy genes with a characteristic domain structure that may contain introns in evolutionarily conserved positions, occur in syntenic regions, and evolve under purifying selection. These genes can be found in all major taxonomic groups including protists, fungi, animals, plants, and even bacteria, although they exhibit patchy phylogenetic distribution in each kingdom. We also show that the RVT protein purified from one of its natural hosts, Neurospora crassa, exists in a multimeric form and has the ability to polymerize NTPs as well as dNTPs in vitro, with a strong preference for NTPs, using Mn(2+) as a cofactor. The existence of a previously unknown class of single-copy RT-related genes calls for reevaluation of the current views on evolution and functional roles of RNA-dependent polymerases in living cells.

  2. Differential activation of CD95-mediated apoptosis related proteins in proximal and distal tubules during rat renal development.

    Science.gov (United States)

    Song, Xiao-Feng; Tian, He; Zhang, Zhen-Xing

    2016-10-01

    The CD95-mediated apoptotic pathway is the best characterized of the death receptor-mediated apoptotic pathways. The present study characterized localization and expression of proteins involved in CD95-mediated apoptosis during rat renal development. Kidneys were obtained from embryonic (E) 18 and 20-day-old fetuses and postnatal (P) 1-, 3-, 5-, 7-, 14-, and 21-day-old pups. Immunohistochemical characterization revealed that CD95, FasL and cleaved caspase-3 were strongly expressed in proximal tubules and weakly expressed in distal tubules, but that expression of caspase-8 in distal tubules was stronger than that in proximal tubules. Results from terminal deoxynucleotidyl transferase dUTP nick end labeling assays showed that levels of apoptosis in proximal tubules slowly increased after E18, while those of distal tubules slowly decreased after P5. Western blotting demonstrated that expression of CD95, FasL and FADD was very weak during embryonic development, but rapidly increased at P14. Expression of cleaved caspase-3 was maintained at high levels after P1, while caspase-8 expression gradually reached a peak at P7. Results from this study reveal that the CD95-mediated apoptotic pathway is a key driver of apoptosis in proximal tubules during late postnatal kidney development in rats and suggest that apoptosis in distal tubules is mediated by a different apoptotic pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The expression of apoptosis-related proteins Bcl-2 and Ki67 in endometrium of ovulatory menstrual cycles

    NARCIS (Netherlands)

    Mertens, Helena J. M. M.; Heineman, Maas J.; Evers, Johannes L. H.

    2002-01-01

    BACKGROUND: During the menstrual cycle, a rapid sequence of proliferation, differentiation and cell death occurs in the human endometrium. Mechanisms involved in cell proliferation have been studied extensively. Apoptosis has recently been recognized to be a physiologic phenomenon. The aim of this

  4. The expression of apoptosis-related proteins Bcl-2 and Ki67 in endometrium of ovulatory menstrual cycles

    NARCIS (Netherlands)

    Mertens, HJMM; Heineman, MJ; Evers, JLH

    2002-01-01

    Background. During the menstrual cycle, a rapid sequence of proliferation, differentiation and cell death occurs in the human endometrium. Mechanisms involved in cell proliferation have been studied extensively. Apoptosis has recently been recognized to be a physiologic phenomenon. The aim of this

  5. Apoptosis-related factors (Fas receptor, Fas ligand, FADD) in early tooth development of the field vole (Microtus agrestis)

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Tucker, A. S.; Míšek, Ivan

    2005-01-01

    Roč. 50, - (2005), s. 165-169 ISSN 0003-9969 R&D Projects: GA ČR GP204/02/P112; GA MŠk(CZ) 1K04101 Institutional research plan: CEZ:AV0Z50450515 Keywords : dental apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.288, year: 2005

  6. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang; Xiao, Shaobo; Chen, Huanchun

    2014-01-01

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis

  7. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail: wangdang511@126.com; Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  8. Cloning of the relative genes of endocrine exophthalmos

    International Nuclear Information System (INIS)

    Zheng, JG

    2004-01-01

    Aim: In order to clarify the pathogenesis of endocrine exophthalmos, and lay foundations for finding the new functions of its relative genes, the cloning of its relative genes was carried out. Methods: The thyroid tissues of 10 hyperthyroidism patients, 5 of them with endocrine exophthalmos and 5 without that, were obtained. Their mRNA were collected respectively by using Quick Prep Micro mRNA purification kit. Then the same amount of the mRNA from 5 patients with endocrine exophthalmos was added into an eppendorf tube to form a mRNA pool. And that of the 5 patients without endocrine exophthalmos was also prepared as the other pool. As a model, the pool was used to synthesize the single and double chains of cDNA through SMART Tm PCR cDNA Synthesis Kit. The double chains cDNA from the endocrine exophthalmos patients, being used as tester, and that from the patients without endocrine exophthalmos, being used as driver, were digested by restriction endonucleases Hae III to get the fragments which was less than 500 bases. The tester cDNA was ligated with adapt or 1 or 2 respectively. Then the subtractive suppressive hybridization was performed between tester and driver cDNA. And the efficacies of subtraction were measured. The differential genes between the thyroid tissues of endocrine exophthalmos and the thyroid tissues without endocrine exophthalmos were obtained through two cycles of subtractive hybridization and two cycles PCR. The differential genes were cloned into the vector of pT-Adv, and then transformed into E.coliDH5a. 48 white clonies were selected to build the subtractive suppressive library of the relative genes of endocrine exophthalmos. The primer 2 was applied for the colony PCR of the relative genes. The amplified genes were obtained and purified by using Quaqwich Spine PCR Purification Kit. According to the principle of random primer, the double chains cDNA from the thyroid tissues with or without endocrine exophthalmos were digested by Hae III

  9. Th17-related genes and celiac disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Luz María Medrano

    Full Text Available Th17 cells are known to be involved in several autoimmune or inflammatory diseases. In celiac disease (CD, recent studies suggest an implication of those cells in disease pathogenesis. We aimed at studying the role of genes relevant for the Th17 immune response in CD susceptibility. A total of 101 single nucleotide polymorphisms (SNPs, mainly selected to cover most of the variability present in 16 Th17-related genes (IL23R, RORC, IL6R, IL17A, IL17F, CCR6, IL6, JAK2, TNFSF15, IL23A, IL22, STAT3, TBX21, SOCS3, IL12RB1 and IL17RA, were genotyped in 735 CD patients and 549 ethnically matched healthy controls. Case-control comparisons for each SNP and for the haplotypes resulting from the SNPs studied in each gene were performed using chi-square tests. Gene-gene interactions were also evaluated following different methodological approaches. No significant results emerged after performing the appropriate statistical corrections. Our results seem to discard a relevant role of Th17 cells on CD risk.

  10. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene.

    Directory of Open Access Journals (Sweden)

    Hesheng Ou

    Full Text Available The present study is to investigate the role of microRNA-21 (miR-21 in nasopharyngeal carcinoma (NPC and the mechanisms of regulation of PTEN by miR-21. Fifty-four tissue samples were collected from 42 patients with NPC and 12 healthy controls. Human NPC cell lines CNE-1, CNE-2, TWO3 and C666-1 were used for cell assays. To investigate the expression of miR-21, RT-PCR was employed. RT-PCR, Western blotting, and immunohistochemistry were used to measure the expression of STAT3 mRNA and STAT3 protein. To test the effect of miR-21 on the cell growth and apoptosis of NPC cells in vitro, transfection of CNE1 and CNE2 cell lines and flow cytometry were performed. TUNEL assay was used to detect DNA fragmentation. To validate whether miR-21 directly recognizes the 3'-UTRs of PTEN mRNA, luciferase reporter assay was employed. miR-21 expression was increased in NPC tissues compared with control and the same result was found in NPC cell lines. Notably, increased expression of miR-21 was directly related to advanced clinical stage and lymph node metastasis. STAT3, a transcription factor activated by IL-6, directly activated miR-21 in transformed NPC cell lines. Furthermore, miR-21 markedly inhibited PTEN tumor suppressor, leading to increased AKT activity. Both in vitro and in vivo assays revealed that miR-21 enhanced NPC cell proliferation and suppressed apoptosis. miR-21, activated by STAT3, induced proliferation and suppressed apoptosis in NPC by targeting PTEN-AKT pathway.

  11. Apoptosis in HEp-2 cells infected with Ureaplasma diversum

    Directory of Open Access Journals (Sweden)

    Aline Teixeira Amorim

    2014-01-01

    Full Text Available BACKGROUND: Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location ofUreaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversuminvasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. RESULTS: The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. CONCLUSIONS: The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS. Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.

  12. Apoptosis in HEp-2 cells infected with Ureaplasma diversum.

    Science.gov (United States)

    Amorim, Aline Teixeira; Marques, Lucas Miranda; Santos, Angelita Maria Oliveira Gusmão; Martins, Hellen Braga; Barbosa, Maysa Santos; Rezende, Izadora Souza; Andrade, Ewerton Ferraz; Campos, Guilherme Barreto; Lobão, Tássia Neves; Cortez, Beatriz Araujo; Monezi, Telma Alvez; Machado-Santelli, Glaucia Maria; Timenetsky, Jorge

    2014-09-04

    Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.

  13. Mitochondrial-related gene expression profiles suggest an important role of PGC-1alpha in the compensatory mechanism of endemic dilated cardiomyopathy

    International Nuclear Information System (INIS)

    He, Shu-Lan; Tan, Wu-Hong; Zhang, Zeng-Tie; Zhang, Feng; Qu, Cheng-Juan; Lei, Yan-Xia; Zhu, Yan-He; Yu, Han-Jie; Xiang, You-Zhang

    2013-01-01

    Keshan disease (KD) is an endemic dilated cardiomyopathy with unclear etiology. In this study, we compared mitochondrial-related gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from 16 KD patients and 16 normal controls in KD areas. Total RNA was isolated, amplified, labeled and hybridized to Agilent human 4×44k whole genome microarrays. Mitochondrial-related genes were screened out by the Third-Generation Human Mitochondria-Focused cDNA Microarray (hMitChip3). Quantitative real-time PCR, immunohistochemical and biochemical parameters related mitochondrial metabolism were conducted to validate our microarray results. In KD samples, 34 up-regulated genes (ratios≥2.0) were detected by significance analysis of microarrays and ingenuity systems pathway analysis (IPA). The highest ranked molecular and cellular functions of the differentially regulated genes were closely related to amino acid metabolism, free radical scavenging, carbohydrate metabolism, and energy production. Using IPA, 40 significant pathways and four significant networks, involved mainly in apoptosis, mitochondrion dysfunction, and nuclear receptor signaling were identified. Based on our results, we suggest that PGC-1alpha regulated energy metabolism and anti-apoptosis might play an important role in the compensatory mechanism of KD. Our results may lead to the identification of potential diagnostic biomarkers for KD in PBMCs, and may help to understand the pathogenesis of KD. Highlights: • Thirty-four up-regulated genes were detected in KD versus health controls. • Forty pathways and four networks were detected in KD. • PGC-1alpha regulated energy metabolism and anti-apoptosis in KD

  14. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration1234

    Science.gov (United States)

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-01-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)–related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. PMID:24829491

  15. Genome-wide gene expression array identifies novel genes related to disease severity and excessive daytime sleepiness in patients with obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Yung-Che Chen

    Full Text Available We aimed to identify novel molecular associations between chronic intermittent hypoxia with re-oxygenation and adverse consequences in obstructive sleep apnea (OSA. We analyzed gene expression profiles of peripheral blood mononuclear cells from 48 patients with sleep-disordered breathing stratified into four groups: primary snoring (PS, moderate to severe OSA (MSO, very severe OSA (VSO, and very severe OSA patients on long-term continuous positive airway pressure treatment (VSOC. Comparisons of the microarray gene expression data identified eight genes up-regulated with OSA and down-regulated with CPAP treatment, and five genes down-regulated with OSA and up-regulated with CPAP treatment. Protein expression levels of two genes related to endothelial tight junction (AMOT P130, and PLEKHH3, and three genes related to anti-or pro-apoptosis (BIRC3, ADAR1 P150, and LGALS3 were all increased in the VSO group, while AMOT P130 was further increased, and PLEKHH3, BIRC3, and ADAR1 P150 were all decreased in the VSOC group. Subgroup analyses revealed that AMOT P130 protein expression was increased in OSA patients with excessive daytime sleepiness, BIRC3 protein expression was decreased in OSA patients with hypertension, and LGALS3 protein expression was increased in OSA patients with chronic kidney disease. In vitro short-term intermittent hypoxia with re-oxygenation experiment showed immediate over-expression of ADAR1 P150. In conclusion, we identified a novel association between AMOT/PLEKHH3/BIRC3/ADAR1/LGALS3 over-expressions and high severity index in OSA patients. AMOT and GALIG may constitute an important determinant for the development of hypersomnia and kidney injury, respectively, while BIRC3 may play a protective role in the development of hypertension.

  16. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation.

    Science.gov (United States)

    Cho, Youngmi; Turner, Nancy D; Davidson, Laurie A; Chapkin, Robert S; Carroll, Raymond J; Lupton, Joanne R

    2014-03-01

    DNA methylation and histone acetylation contribute to the transcriptional regulation of genes involved in apoptosis. We have demonstrated that docosahexaenoic acid (DHA, 22:6 n-3) and butyrate enhance colonocyte apoptosis. To determine if DHA and/or butyrate elevate apoptosis through epigenetic mechanisms thereby restoring the transcription of apoptosis-related genes, we examined global methylation; gene-specific promoter methylation of 24 apoptosis-related genes; transcription levels of Cideb, Dapk1, and Tnfrsf25; and global histone acetylation in the HCT-116 colon cancer cell line. Cells were treated with combinations of (50 µM) DHA or linoleic acid (18:2 n-6), (5 mM) butyrate or an inhibitor of DNA methyltransferases, and 5-aza-2'-deoxycytidine (5-Aza-dC, 2 µM). Among highly methylated genes, the combination of DHA and butyrate significantly reduced methylation of the proapoptotic Bcl2l11, Cideb, Dapk1, Ltbr, and Tnfrsf25 genes compared to untreated control cells. DHA treatment reduced the methylation of Cideb, Dapk1, and Tnfrsf25. These data suggest that the induction of apoptosis by DHA and butyrate is mediated, in part, through changes in the methylation state of apoptosis-related genes.

  17. Mutation of a Nopp140 gene dao-5 alters rDNA transcription and increases germ cell apoptosis in C. elegans.

    Science.gov (United States)

    Lee, C-C; Tsai, Y-T; Kao, C-W; Lee, L-W; Lai, H-J; Ma, T-H; Chang, Y-S; Yeh, N-H; Lo, S J

    2014-04-10

    Human diseases of impaired ribosome biogenesis resulting from disruption of rRNA biosynthesis or loss of ribosomal components are collectively described as 'ribosomopathies'. Treacher Collins syndrome (TCS), a representative human ribosomopathy with craniofacial abnormalities, is attributed to mutations in the tcof1 gene that has a homologous gene called nopp140. Previous studies demonstrated that the dao-5 (dauer and aged animal overexpression gene 5) of Caenorhabditis elegans is a member of nopp140 gene family and plays a role in nucleogenesis in the early embryo. Here, we established a C. elegans model for studying Nopp140-associated ribosomopathy. A null dao-5 mutant ok542 with a semi-infertile phenotype showed a delay in gonadogenesis, as well as a higher incidence of germline apoptosis. These phenotypes in dao-5(ok542) are likely resulted from inefficient rDNA transcription that was observed by run-on analyses and chromatin immunoprecipitation (ChIP) assays measuring the RNA Pol I occupancy on the rDNA promoter. ChIP assays further showed that the modifications of acetylated histone 4 (H4Ac) and dimethylation at the lysine 9 of histone 3 (H3K9me2) around the rDNA promoter were altered in dao-5 mutants compared with the N2 wild type. In addition, activated CEP-1 (a C. elegans p53 homolog) activity was also linked to the loss of DAO-5 in terms of the transcriptional upregulation of two CEP-1 downstream effectors, EGL-1 and CED-13. We propose that the dao-5 mutant of C. elegans can be a valuable model for studying human Nopp140-associated ribosomopathy at the cellular and molecular levels.

  18. Calcitonin gene-related peptide promotes the wound healing of human bronchial epithelial cells via PKC and MAPK pathways.

    Science.gov (United States)

    Zhou, Yong; Zhang, Min; Sun, Guo-Ying; Liu, Yong-Ping; Ran, Wen-Zhuo; Peng, Li; Guan, Cha-Xiang

    2013-06-10

    Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide derived from the calcitonin gene. CGRP is widely distributed in the central and peripheral neuronal systems. In the lung, CGRP could modulate dendritic cell function, stimulate proliferation of alveolar epithelial cells and mediate lung injury in mice. In this study, we investigated the effect of CGRP on the wound healing of human bronchial epithelial cells (HBECs) in vitro. The results showed that CGRP accelerated the recovery of wound area of monolayer HBECs in a dose-dependent manner. CGRP inhibited the lipopolysaccharide-induced apoptosis in HBECs. The percentage of S phase and G2/M phase was increased in HBECs after CGRP treatment. CGRP upregulated the expression of Ki67 in a dose-dependent manner. Some pathway inhibitors were used to investigate the signal pathway in which CGRP was involved. We found out that PKC pathway inhibitor (H-7) and MAPK pathway inhibitor (PD98059) could partially attenuate the effect of CGRP, which indicated that CGRP might promote the wound healing of HBECs via PKC and/or MAPK dependent pathway by accelerating migration and proliferation, and inhibiting apoptosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Incorporating gene ontology into fuzzy relational clustering of microarray gene expression data.

    Science.gov (United States)

    Paul, Animesh Kumar; Shill, Pintu Chandra

    2018-01-01

    The product of gene expression works together in the cell for each living organism in order to achieve different biological processes. Many proteins are involved in different roles depending on the environment of the organism for the functioning of the cell. In this paper, we propose gene ontology (GO) annotations based semi-supervised clustering algorithm called GO fuzzy relational clustering (GO-FRC) where one gene is allowed to be assigned to multiple clusters which are the most biologically relevant behavior of genes. In the clustering process, GO-FRC utilizes useful biological knowledge which is available in the form of a gene ontology, as a prior knowledge along with the gene expression data. The prior knowledge helps to improve the coherence of the groups concerning the knowledge field. The proposed GO-FRC has been tested on the two yeast (Saccharomyces cerevisiae) expression profiles datasets (Eisen and Dream5 yeast datasets) and compared with other state-of-the-art clustering algorithms. Experimental results imply that GO-FRC is able to produce more biologically relevant clusters with the use of the small amount of GO annotations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Inhibition of apoptosis by BCL2 prevents leukemic transformation of a murine myelodysplastic syndrome

    Science.gov (United States)

    Saw, Jesslyn; Jowett, Jeremy B. M.; Aplan, Peter D.; Strasser, Andreas; Jane, Stephen M.; Curtis, David J.

    2012-01-01

    Programmed cell death or apoptosis is a prominent feature of low-risk myelodysplastic syndromes (MDS), although the underlying mechanism remains controversial. High-risk MDS have less apoptosis associated with increased expression of the prosurvival BCL2-related proteins. To address the mechanism and pathogenic role of apoptosis and BCL2 expression in MDS, we used a mouse model resembling human MDS, in which the fusion protein NUP98-HOXD13 (NHD13) of the chromosomal translocation t(2;11)(q31;p15) is expressed in hematopoietic cells. Hematopoietic stem and progenitor cells from 3-month-old mice had increased rates of apoptosis associated with increased cell cycling and DNA damage. Gene expression profiling of these MDS progenitors revealed a specific reduction in Bcl2. Restoration of Bcl2 expression by a BCL2 transgene blocked apoptosis of the MDS progenitors, which corrected the macrocytic anemia. Blocking apoptosis also restored cell-cycle quiescence and reduced DNA damage in the MDS progenitors. We expected that preventing apoptosis would accelerate malignant transformation to acute myeloid leukemia (AML). However, contrary to expectations, preventing apoptosis of premalignant cells abrogated transformation to AML. In contrast to the current dogma that overcoming apoptosis is an important step toward cancer, this work demonstrates that gaining a survival advantage of premalignant cells may delay or prevent leukemic progression. PMID:22855610

  1. Relation of calcitonin gene-related peptide to systemic vasodilatation and central hypovolaemia in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Bendtsen, Flemming; Schifter, S

    1996-01-01

    BACKGROUND: The aetiology of the reduced systemic vascular resistance and abnormal 'filling' of the vascular bed in cirrhosis is still obscure. As increased concentrations of the potent vasodilator calcitonin gene-related peptide (CGRP) have recently been reported in cirrhosis, we related CGRP......-central blood volume (P abnormal distribution of the blood volume, which may lead to abnormal sodium and water handling....

  2. Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis.

    Science.gov (United States)

    Ji, Qianqian; Zhu, Kongju; Liu, Zhiguo; Song, Zhenwei; Huang, Yuankai; Zhao, Haijing; Chen, Yaosheng; He, Zuyong; Mo, Delin; Cong, Peiqing

    2013-03-15

    Trichostain A (TSA), an inhibitor of histone deacetylases, improved developmental competence of SCNT embryos in many species, apparently by improved epigenetic reprogramming. The objective of the present study was to determine the effects of TSA-induced apoptosis in cloned porcine embryos. At various developmental stages, a comet assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were used to detect apoptosis, and real-time polymerase chain reaction was used to assess expression of genes related to apoptosis and pluripotency. In this study, TSA significantly induced apoptosis (in a dose-dependent manner) at the one-, two-, and four-cell stages. However, in blastocyst stage embryos, TSA decreased the apoptotic index (P < 0.05). Expression levels of Caspase 3 were higher in TSA-treated versus control embryos at the two-cell stage (not statistically significant). The expression ratio of antiapoptotic Bcl-xl gene to proapoptotic Bax gene, an indicator of antiapoptotic potential, was higher in TSA-treated groups at the one-, two-, and four-cell and blastocyst stages. Furthermore, expression levels of pluripotency-related genes, namely, Oct4 and Nanog, were elevated at the morula stage (P < 0.05) in TSA treatment groups. We concluded that inducing apoptosis might be a mechanism by which TSA promotes development of reconstructed embryos. At the initial stage of apoptosis induction, abnormal cells were removed, thereby enhancing proliferation of healthy cells and improving embryo quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. X irradiation combined with TNF alpha-related apoptosis-inducing ligand (TRAIL) reduces hypoxic regions of human gastric adenocarcinoma xenografts in SCID mice

    International Nuclear Information System (INIS)

    Takahashi, Momoko; Yasui, Hironobu; Ogura, Aki; Asanuma, Taketoshi; Inanami, Osamu; Kubota, Nobuo; Tsujitani, Michihiko; Kuwabara, Mikinori

    2008-01-01

    Our previous study showed that X irradiation induced the expression of death receptor DR5 on the cell surface in tumor cell lines under not only normoxia but also hypoxia. X irradiation combined with TNF α-related apoptosis-inducing ligand (TRAIL), which is the ligand of DR5, induced apoptosis in vitro (Takahashi et al., (2007) Journal of Radiation Research, 48: 461-468). In this report, we examined the in vivo antitumor efficacy of X irradiation combined with TRAIL treatment in tumor xenograft models derived from human gastric adenocarcinoma MKN45 and MKN28 cells in severe combined immunodeficiency (SCID) mice. X irradiation combined with TRAIL synergistically suppressed the tumor growth rates in the xenograft models derived from MKN45 and MKN28 cells, which have wild type Tp53 and mutated Tp53, respectively, indicating that the antitumor effects occurred in a Tp53-independent manner. Histological analysis showed that the combination of X irradiation and TRAIL induced caspase-3-dependent apoptotic cell death. Moreover, the immunohistochemical detection of hypoxic regions using the hypoxic marker pimonidazole revealed that caspase-3-dependent apoptosis occurred in the hypoxic regions in the tumors. These results indicated that X irradiation combined with TRAIL may be a useful treatment to reduce tumor growth in not only normoxic but also hypoxic regions. (author)

  4. Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia.

    Science.gov (United States)

    Wang, Xinfeng; Zhang, Lina; Zhao, Fan; Xu, Ruirong; Jiang, Jie; Zhang, Chenglu; Liu, Hong; Huang, Hongming

    2018-04-13

    This study aimed to investigate the correlation of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1) with clinicopathological feature and prognosis, and to explore its effect on cell proliferation and apoptosis as well as the relevant target genes in adult acute myeloid leukemia (AML). LncRNA TUG1 expression was detected in bone marrow samples from 186 AML patients and 62 controls. Blank mimic, lncRNA TUG1 mimic, blank inhibitor, and lncRNA TUG1 inhibitor lentivirus vectors were transfected in KG-1 cells. Rescue experiment was performed by transfection of lncRNA TUG1 inhibitor and aurora kinase A (AURKA) mimic lentivirus vectors. Cell proliferation, apoptosis, RNA, and protein expressions were determined by CKK-8, annexin V-FITC-propidium iodide, quantitative polymerase chain reaction, and western blot assays. LncRNA TUG1 expression was higher in AML patients compared to controls and correlated with higher white blood cell counts, monosomal karyotype, FLT3-ITD mutation, poor-risk stratification, and poor prognosis, which independently predicted worse event-free survival and overall survival. In vitro, lncRNA TUG1 expression was higher in AML cell lines (KG-1, MOLM-14, HL-60, NB-4, and THP-1 cells) compared to controls. LncRNA TUG1 mimic promoted cell proliferation and decreased cell apoptosis rate, while lncRNA TUG1 inhibitor repressed cell proliferation and increased cell apoptosis rate. Rescue experiment showed that AURKA attenuated the influence of lncRNA TUG1 on AML cell proliferation and apoptosis. In conclusion, lncRNA TUG1 associates with advanced disease and worse prognosis in adult AML patients, and it induces AML cell proliferation and represses cell apoptosis via targeting AURKA.

  5. Sex steroid-related candidate genes in psychiatric disorders.

    Science.gov (United States)

    Westberg, Lars; Eriksson, Elias

    2008-07-01

    Sex steroids readily pass the blood-brain barrier, and receptors for them are abundant in brain areas important for the regulation of emotions, cognition and behaviour. Animal experiments have revealed both important early effects of these hormones on brain development and their ongoing influence on brain morphology and neurotransmission in the adult organism. The important effects of sex steroids on human behaviour are illustrated by, for example, the effect of reduced levels of these hormones on sexual drive and conditions such as premenstrual dysphoric disorder, perimenopausal dysphoria, postpartum depression, postpartum psychosis, dysphoria induced by oral contraceptives or hormonal replacement therapy and anabolic steroid-induced aggression. The fact that men and women (as groups) differ with respect to the prevalence of several psychiatric disorders, certain aspects of cognitive function and certain personality traits may possibly also reflect an influence of sex steroids on human behaviour. The heritability of most behavioural traits, including personality, cognitive abilities and susceptibility to psychiatric illness, is considerable, but as yet, only few genes of definite importance in this context have been identified. Given the important role of sex steroids for brain function, it is unfortunate that relatively few studies so far have addressed the possible influence of sex steroid-related genes on interindividual differences with respect to personality, cognition and susceptibility to psychiatric disorders. To facilitate further research in this area, this review provides information on several such genes and summarizes what is currently known with respect to their possible influence on brain function.

  6. Glucocorticoid Receptor Related Genes: Genotype And Brain Gene Expression Relationships To Suicide And Major Depressive Disorder

    Science.gov (United States)

    Pantazatos, Spiro P.; Huang, Yung-yu; Rosoklija, Gorazd B.; Dwork, Andrew J.; Burke, Ainsley; Arango, Victoria; Oquendo, Maria A.; Mann, J. John

    2016-01-01

    Introduction We tested the relationship between genotype, gene expression and suicidal behavior and MDD in live subjects and postmortem samples for three genes, associated with the hypothalamic-pituitary-adrenal axis, suicidal behavior and major depressive disorder (MDD); FK506 binding protein 5 (FKBP5), Spindle and kinetochore-associated protein 2 (SKA2) and Glucocorticoid Receptor (NR3C1). Materials and Methods Single-nucleotide polymorphisms (SNPs) and haplotypes were tested for association with suicidal behavior and MDD in a live (N=277) and a postmortem sample (N=209). RNA-seq was used to examine gene and isoform-level brain expression postmortem (Brodmann Area 9) (N=59). Expression quantitative trait loci (eQTL) relationships were examined using a public database (UK Brain Expression Consortium). Results We identified a haplotype within the FKBP5 gene, present in 47% of the live subjects, that was associated with increased risk of suicide attempt (OR=1.58, t=6.03, p=0.014). Six SNPs on this gene, three SNPs on SKA2 and one near NR3C1 showed before-adjustment association with attempted suicide, and two SNPs of SKA2 with suicide death, but none stayed significant after adjustment for multiple testing. Only the SKA2 SNPs were related to expression in the prefrontal cortex. One NR3C1 transcript had lower expression in suicide relative to non-suicide sudden death cases (b=-0.48, SE=0.12, t=-4.02, adjusted p=0.004). Conclusion We have identified an association of FKBP5 haplotype with risk of suicide attempt and found an association between suicide and altered NR3C1 gene expression in the prefrontal cortex. Our findings further implicate hypothalamic pituitary axis dysfunction in suicidal behavior. PMID:27030168

  7. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus

    2006-01-01

    1 Spironolactone (SPIR) binds to cytoplasmic mineralocorticoid receptors (MR) and functions as an aldosterone antagonist. Recently, the drug was shown to have an early suppressive effect on several immunoactive and proinflammatory cytokines. 2 To elucidate the mechanism behind this, the four MR-b...... affects genes controlled by the transcription factors NF-kappaB, CEBPbeta and MYC. 5 These observations provide new insight into the non-MR-mediated effects of SPIR....

  8. Vitamin D and Related Genes, Race and Prostate Cancer Aggressiveness

    Science.gov (United States)

    2015-12-29

    D-related gene polymorphisms and prostate cancer aggressiveness. TagSNPs (n=315) in 13 genes (VDR, GC, CYP24A1, CYP27A1 , CYP27B1, CYP2R1, CYP3A4...1.02-2.10) 0.0409 *Abbreviations: CASR: Calcium sensing receptor; CYP24A1: Cytochrome P450 24A1; CYP27A1 : Cytochrome P450 27A1; CYP27B1: Cytochrome...CYP24A1, CYP27A1 , CYP27B1, CYP2R1, CYP3A4, DHCR7, CASR, NADSYN1, RXRA, RXRB, RXRG) were genotyped using Illumina GoldenGate or Sequenom assays in 524

  9. Expression of P2X7R in breast cancer tissue and the induction of apoptosis by the gene-specific shRNA in MCF-7 cells.

    Science.gov (United States)

    Tan, Chao; Han, L I; Zou, Lili; Luo, Chunhua; Liu, Aihua; Sheng, Xiejing; Xi, Dee

    2015-10-01

    The aim of the present study was to investigate the effects of P2X7R short hairpin (sh)RNA on the proliferation and apoptosis of MCF-7 cells, and to detect the expression of P2X7R in breast cancer and MCF-7 cells. In order to detect the expression of P2X7R in normal breast and breast cancer tissues, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot analysis and immunohistochemistry were performed. A P2X7-targeted shRNA sequence and a scrambled sequence were inserted into the pLKO.1 expression vector, and MCF-7 cells with stable transfection of P2X7R-shRNA and P2X7R-scrambled shRNA (control) were selected. qRT-PCR was used to detect the mRNA expression levels of P2X7R in the MCF-7 cells transfected with P2X7R-shRNA and scrambled shRNA. In addition, protein expression levels of P2X7R in the fresh tumor tissues were detected by western blot analysis. An MTT assay was used to detect the proliferation rate at different time points, while flow cytometry was used to detect the growth inhibition and apoptosis rate of the stably transfected MCF-7 cells. P2X7R expression levels in the breast cancer tissues were higher when compared with the normal breast tissue, and a positive correlation was observed with the estrogen receptor (ER + ), as shown by qRT-PCR, western blot analysis and immunohistochemistry. Plasmids expressing P2X7 gene-specific shRNA and scrambled shRNA were constructed and transfected into MCF-7 cells. The qRT-PCR results revealed lower mRNA expression levels of P2X7 in the P2X7R-shRNA cells when compared with the scrambled shRNA cells. Furthermore, western blot analysis demonstrated that P2X7 protein was highly expressed in the MCF-7 cells transfected with scrambled shRNA, while low expression was observed in the P2X7R-shRNA-transfected cells. Following transfection of the recombinant plasmids into the MCF-7 cells, the proliferation rate in each group was analyzed. The P2X7R-shRNA and KN-62 groups were shown to have

  10. [Isolation of maize genes related to aluminum tolerance].

    Science.gov (United States)

    Tang, Hua; Zheng, Yong-Lian; He, Li-Yuan; Li, Jian-Sheng

    2005-10-01

    To investigate gene expression profile in response to aluminum stress and to cloning the key genes related to aluminum tolerance, are crucial to genetic improvement of plant aluminum tolerance. In this study, suppression subtractive hybridization method was adopted to construct SSH-cDNA libraries at seedling stage of two maize inbred lines (Fig. 1), of which Mo17 is sensitive to aluminum toxicity and TL94B is tolerant. As a result, a forward SSH-cDNA library including 762 clones and a reverse SSH-cDNA library including 382 clones were constructed for Mo17. In the same way, a forward SSH-cDNA library including 760 clones and a reverse SSH-cDNA library including 380 clones were constructed for TL94B. Identification of these SSH-cDNA libraries shows that the length of inserted fragments ranges from 250 bp to 1.0 kb (Fig. 2), of which nearly 18% are positive clones. Through differential hybridization screening (Fig. 3), 124 and 47 positive clones were screened from forward and reverse SSH-cDNA libraries of Mo17 respectively; 103 and 64 positive clones from forward and reverse SSH-cDNA libraries of TL94B respectively. Total 338 positive clones from four SSH-cDNA libraries were sequenced, and all of the sequences of inserted fragments were analyzed using bioinformatical methods. A total of 232 kinds of EST sequences were obtained. Among these ESTs, 70.2% had significant homology with known genes, and the remaining 29.8% were function-unknown including 21 kinds of newly found ESTs (Table 1). An aluminum tolerant gene, GDP dissociation inhibitor gene, was detected its expression character by Northern hybridization (Fig. 4). These results indicate that the responses of maize to aluminum stress involve the interactions among different signal/metabolism pathways, such as signal transduction of stress-related factors, transcription and regulation of responsive genes, synthesis and transport of substances, changes in cell structures and functions.

  11. Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo.

    Science.gov (United States)

    Dutta, Smritikana; Biswas, Prasun; Chakraborty, Sukanya; Mitra, Devrani; Pal, Amita; Das, Malay

    2018-03-10

    Bamboo is an important member of the family Poaceae and has many inflorescence and flowering features rarely observed in other plant groups. It retains an unusual form of perennialism by having a long vegetative phase that can extend up to 120 years, followed by flowering and death of the plants. In contrast to a large number of studies conducted on the annual, reference plants Arabidopsis thaliana and rice, molecular studies to characterize flowering pathways in perennial bamboo are lacking. Since photoperiod plays a crucial role in flower induction in most plants, important genes involved in this pathway have been studied in the field grown Bambusa tulda, which flowers after 40-50 years. We identified several genes from B. tulda, including four related to the circadian clock [LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION1 (TOC1), ZEITLUPE (ZTL) and GIGANTEA (GI)], two circadian clock response integrators [CONSTANS A (COA), CONSTANS B (COB)] and four floral pathway integrators [FLOWERING LOCUS T1, 2, 3, 4 (FT1, 2, 3, 4)]. These genes were amplified from either gDNA and/or cDNA using degenerate as well as gene specific primers based on homologous sequences obtained from related monocot species. The sequence identity and phylogenetic comparisons revealed their close relationships to homologs identified in the temperate bamboo Phyllostachys edulis. While the four BtFT homologs were highly similar to each other, BtCOA possessed a full-length B-box domain that was truncated in BtCOB. Analysis of the spatial expression of these genes in selected flowering and non-flowering tissue stages indicated their possible involvement in flowering. The diurnal expression patterns of the clock genes were comparable to their homologs in rice, except for BtZTL. Among multiple BtCO and BtFT homologs, the diurnal pattern of only BtCOA and BtFT3, 4 were synchronized in the flower inductive tissue, but not in the non-flowering tissues. This study elucidates the photoperiodic

  12. Andrographolide induces apoptosis in B16F-10 melanoma cells by inhibiting NF-κB-mediated bcl-2 activation and modulating p53-induced caspase-3 gene expression.

    Science.gov (United States)

    Pratheeshkumar, P; Sheeja, K; Kuttan, Girija

    2012-02-01

    Cancer is a disorder characterized by uncontrolled proliferation and reduced apoptosis. Inducing apoptosis is an efficient method of treating cancers. In this study, we investigated the effect of andrographolide on the induction of apoptosis as well as its regulatory effect on the activation of transcription factors in B16F-10 melanoma cells. Treatment of B16F-10 cells with nontoxic concentration of andrographolide showed the presence of apoptotic bodies and induced DNA fragmentation in a dose-dependent manner. Cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays also confirmed the observation. The proapoptotic genes p53, Bax, caspase-9, and caspase-3 were found upregulated in andrographolide-treated cells, whereas the antiapoptotic gene bcl-2 was downregulated. This study also reveals that andrographolide treatment could alter the production and expression of proinflammatory cytokines and could inhibit the activation and nuclear translocation of p65, p50, and c-Rel subunits of nuclear factor-κB (NF-κB), and other transcription factors such as c-fos, activated transcription factor-2, and cyclic adenosine monophosphate response element-binding protein in B16F-10 melanoma cells. These results suggest that andrographolide induces apoptosis via inhibiting NF-κB-induced bcl-2-mediated survival signaling and modulating p53-induced caspase-3-mediated proapoptotic signaling.

  13. Cytotoxic and Apoptosis-Inducing Activity of Plants from the Family Asparagaceae in Relation to Human Alveolar Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Y.N. Kamalova

    2016-06-01

    Full Text Available Cancer is known as the second major mortality cause. The number of new cases is increasing every year. Thus, it is urgent for scientists to search for alternative drugs with selective antitumor action and minimal side effects. It is known that some plant metabolites exhibit antioxidant, cytotoxic, and antitumor activity, while at the same time being less toxic than modern allopathic drugs. In this work, we have investigated the cytotoxic and apoptosis-inducing effects of extracts obtained from plants of the family Asparagaceae on A549 human lung adenocarcinoma cells. The analysis has been performed using flow cytofluorometry. If extracts showed cytotoxicity, the apoptosis-inducing action has been evaluated at the concentration of 50 μg/mL; in other cases, the analyzed concentration range was 50–300 μg/mL. On the basis of the experiments carried out, the following conclusions have been made. Extracts of the leaves and rhizomes of Sansevieria cylindrica and Sansevieria trifasciata do not possess antitumor activity. Extracts of the leaves of Polianthes tuberosa and Furcraea gigantea, which were cytotoxic at high concentrations, cause cell death at 50 μg/mL in the amount of 21.35 ± 1.86 and 15.6 ± 3.23, respectively. Extracts of Polianthes tuberosa bulbs and Yucca filamentosa leaves are able to induce apoptosis at higher concentrations. When the concentration reaches 100 μg/mL, the proportion of apoptotic cells for these plants is 45.76 ± 1.34 and 11.33 ± 0.07, respectively. The number of dead cells at the concentration of 300 μg/mL increased up to 73.33 ± 3.05 and 81.75 ± 4.07. The results have great importance for development of new drugs based on metabolites from these plant extracts.

  14. Calcitonin gene-related peptide and calcitonin in man

    International Nuclear Information System (INIS)

    Fischer, J.A.; Henke, H.; Petermann, J.B.; Tschopp, F.A.

    1985-01-01

    Calcitonin gene-related peptide has been identified in the human brain, spinal cord, pituitary and thyroid glands as assessed by RIA and RRA. An immunoreactive and receptoractive peak coeluting with synthetic hCGRP on gel permeation chromatography and HPLC has been recognized. The levels measured by RRA are generally higher than those by RIA. Different characteristics of hCGRP and sCT binding sites and the distinct regional distribution evaluated with membranes and receptor autoradiography indicate separate receptors of the two peptides. Our results suggest different physiological roles of CGRP and CT in the central nervous system which remain to be discovered. (Auth.)

  15. Cantharidin Induced Oral Squamous Cell Carcinoma Cell Apoptosis via the JNK-Regulated Mitochondria and Endoplasmic Reticulum Stress-Related Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Chin-Chuan Su

    Full Text Available Oral cancer is a subtype of head and neck cancer which represents 2.65% of all human malignancies. Most of oral cancer is histopathologically diagnosed as oral squamous cell carcinoma (OSCC. OSCC is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. How to prevention and treatment of OSCC is important and imperative. Here, we investigated the therapeutic effect and molecular mechanism of cantharidin, an active compound isolated from blister beetles, on OSCC in vitro. Results showed that cantharidin significantly decreased cell viability in human tongue squamous carcinoma-derived SAS, CAL-27, and SCC-4 cell lines. The further mechanistic studies were carried out in SAS cells. Cantharidin also significantly increased apoptosis-related signals, including caspase-9, caspase-7 and caspase-3 proteins. Besides, cantharidin decreased mitochondrial transmembrane potential (MMP and induced cytochrome c and apoptosis inducing factor (AIF release. Cantharidin also increased Bax, Bid, and Bak protein expressions and decreased Bcl-2 protein expression. Cantharidin could also increase the endoplasmic reticulum (ER stress signals, including the expressions of phosphorylated eIF-2α and CHOP, but not Grp78 and Grp94. Furthermore, cantharidin reduced pro-caspase-12 protein expression. In signals of mitogen-activated protein kinases, cantharidin increased the phosphorylation of JNK, but not ERK and p38. Transfection of shRNA-JNK to OSCC cells effectively reversed the cantharidin-induced cell apoptotic signals, including the mitochondrial and ER stress-related signaling molecules. Taken together, these findings suggest that cantharidin induces apoptosis in OSCC cells via the JNK-regulated mitochondria and ER stress-related signaling pathways.

  16. Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster.

    Science.gov (United States)

    Manta, Areti K; Papadopoulou, Deppie; Polyzos, Alexander P; Fragopoulou, Adamantia F; Skouroliakou, Aikaterini S; Thanos, Dimitris; Stravopodis, Dimitrios J; Margaritis, Lukas H

    2017-04-03

    The daily use by people of wireless communication devices has increased exponentially in the last decade, begetting concerns regarding its potential health hazards. Drosophila melanogaster four days-old adult female flies were exposed for 30 min to radiation emitted by a commercial mobile phone at a SAR of 0.15 W/kg and a SAE of 270 J/kg. ROS levels and apoptotic follicles were assayed in parallel with a genome-wide microarrays analysis. ROS cellular contents were found to increase by 1.6-fold (x), immediately after the end of exposure, in follicles of pre-choriogenic stages (germarium - stage 10), while sporadically generated apoptotic follicles (germarium 2b and stages 7-9) presented with an averaged 2x upregulation in their sub-population mass, 4 h after fly's irradiation with mobile device. Microarray analysis revealed 168 genes being differentially expressed, 2 h post-exposure, in response to radiofrequency (RF) electromagnetic field-radiation exposure (≥1.25x, P mobile-phone radiation for 30 min has an immediate impact on ROS production in animal's ovary, which seems to cause a global, systemic and non-targeted transcriptional reprogramming of gene expression, 2 h post-exposure, being finally followed by induction of apoptosis 4 h after the end of exposure. Conclusively, this unique type of pulsed radiation, mainly being derived from daily used mobile phones, seems capable of mobilizing critical cytopathic mechanisms, and altering fundamental genetic programs and networks in D. melanogaster.

  17. Astaxanthin Attenuates Early Acute Kidney Injury Following Severe Burns in Rats by Ameliorating Oxidative Stress and Mitochondrial-Related Apoptosis

    Directory of Open Access Journals (Sweden)

    Song-Xue Guo

    2015-04-01

    Full Text Available Early acute kidney injury (AKI is a devastating complication in critical burn patients, and it is associated with severe morbidity and mortality. The mechanism of AKI is multifactorial. Astaxanthin (ATX is a natural compound that is widely distributed in marine organisms; it is a strong antioxidant and exhibits other biological effects that have been well studied in various traumatic injuries and diseases. Hence, we attempted to explore the potential protection of ATX against early post burn AKI and its possible mechanisms of action. The classic severe burn rat model was utilized for the histological and biochemical assessments of the therapeutic value and mechanisms of action of ATX. Upon ATX treatment, renal tubular injury and the levels of serum creatinine and neutrophil gelatinase-associated lipocalin were improved. Furthermore, relief of oxidative stress and tubular apoptosis in rat kidneys post burn was also observed. Additionally, ATX administration increased Akt and Bad phosphorylation and further down-regulated the expression of other downstream pro-apoptotic proteins (cytochrome c and caspase-3/9; these effects were reversed by the PI3K inhibitor LY294002. Moreover, the protective effect of ATX presents a dose-dependent enhancement. The data above suggested that ATX protects against early AKI following severe burns in rats, which was attributed to its ability to ameliorate oxidative stress and inhibit apoptosis by modulating the mitochondrial-apoptotic pathway, regarded as the Akt/Bad/Caspases signalling cascade.

  18. Longevity-Related Gene Transcriptomic Signature in Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Manal S. Fawzy

    2018-01-01

    Full Text Available Glioblastoma multiforme (GBM (grade IV astrocytoma has been assumed to be the most fatal type of glioma with low survival and high recurrence rates, even after prompt surgical removal and aggressive courses of treatment. Transcriptional reprogramming to stem cell-like state could explain some of the deregulated molecular signatures in GBM disease. The present study aimed to quantify the expression profiling of longevity-related transcriptional factors SOX2, OCT3/4, and NANOG to evaluate their diagnostic and performance values in high-grade gliomas. Forty-four specimens were obtained from glioblastoma patients (10 females and 34 males. Quantitative real-time polymerase chain reaction was applied for relative gene expression quantification. In silico network analysis was executed. NANOG and OCT3/4 mRNA expression levels were significantly downregulated while that of SOX2 was upregulated in cancer compared to noncancer tissues. Receiver operating characteristic curve analysis showed high diagnostic performance of NANOG and OCT3/4 than SOX2. However, the aberrant expressions of the genes studied were not associated with the prognostic variables in the current population. In conclusion, the current study highlighted the aberrant expression of certain longevity-associated transcription factors in glioblastoma multiforme which may direct the attention towards new strategies in the treatment of such lethal disease.

  19. Transport of Magnesium by a Bacterial Nramp-Related Gene

    Science.gov (United States)

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  20. Changing expression of the genes related to human hair graying.

    Science.gov (United States)

    Choi, Young Jin; Yoon, Tae Jin; Lee, Young Ho

    2008-01-01

    Hair graying is one of the prototypical signs of human aging, but its mechanism is largely unknown. To elucidate the mechanism of hair graying, we investigated gene expression related to melanogenesis in human hair. The key molecules in melanogenesis, microphthalmia-associated transcription factor-M (MITF-M), Sox10, Pax3, tyrosine related protein-1 (TRP-1), and tyrosinase, were absent or greatly reduced in the bulbs of white hair compared to black hair. Melanocyte stem cells (MSCs) or melanocytes express markers for neural crest cells, Sox10, Pax3, and MITF-M. Taken together, our data suggest that hair graying is caused by defective migration of MSCs into the bulb area of hair.

  1. Calcitonin gene-related peptide in cervicogenic headache

    DEFF Research Database (Denmark)

    Frese, Amalie; Schilgen, M; Edvinsson, L

    2005-01-01

    in cervicogenic headache (CEH). The objective of this study was to investigate CGRP plasma levels in CEH patients in relation to headache state. To compare plasma CGRP levels between the peripheral and the cranial circulation. Blood from both external jugular veins and from the antecubital vein was drawn from 11......Trigeminovascular activation is involved in the pathophysiology of migraine and cluster headache. The marker evaluated best for trigeminovascular activation is calcitonin gene-related peptide (CGRP) in the cranial circulation. It is unknown whether trigeminovascular activation plays any role...... patients with CEH. Plasma CGRP levels were measured by radioimmunoassay. No difference was found between CGRP levels assessed on days with and without headache. There was no difference between CGRP levels from the symptomatic and the asymptomatic external jugular vein and the antecubital vein...

  2. Cyclooxygenase inhibitors induce apoptosis in oral cavity cancer cells by increased expression of nonsteroidal anti-inflammatory drug-activated gene

    International Nuclear Information System (INIS)

    Kim, Kyung-Su; Yoon, Joo-Heon; Kim, Jin Kook; Baek, Seung Joon; Eling, Thomas E.; Lee, Won Jae; Ryu, Ji-Hwan; Lee, Jeung Gweon; Lee, Joo-Hwan; Yoo, Jong-Bum

    2004-01-01

    We have investigated whether NAG-1 is induced in oral cavity cancer cells by various NSAIDs and if apoptosis induced by NSAIDs can be linked directly with the induction of NAG-1. NAG-1 expression was increased by diclofenac, aceclofenac, indomethacin, ibuprofen, and sulindac sulfide, in the order of NAG-1 induction, but not by acetaminophen, piroxicam or NS-398. Diclofenac was the most effective NAG-1 inducer. Incubation with diclofenac inhibited cell proliferation and induced apoptosis. The expression of NAG-1 was observed in advance of the induction of apoptosis. Conditioned medium from NAG-1-overexpressing Drosophila cells inhibited SCC 1483 cells proliferation and induced apoptosis. In summary, some NSAIDs induce NAG-1 expression in oral cavity cancer cells and the induced NAG-1 protein appears to mediate apoptosis. Therefore, NSAIDs may be considered as a possible chemopreventive agent against oral cavity cancer

  3. On the relation between gene flow theory and genetic gain

    Directory of Open Access Journals (Sweden)

    Woolliams John A

    2000-01-01

    Full Text Available Abstract In conventional gene flow theory the rate of genetic gain is calculated as the summed products of genetic selection differential and asymptotic proportion of genes deriving from sex-age groups. Recent studies have shown that asymptotic proportions of genes predicted from conventional gene flow theory may deviate considerably from true proportions. However, the rate of genetic gain predicted from conventional gene flow theory was accurate. The current note shows that the connection between asymptotic proportions of genes and rate of genetic gain that is embodied in conventional gene flow theory is invalid, even though genetic gain may be predicted correctly from it.

  4. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL but not its receptors during oral cancer progression

    Directory of Open Access Journals (Sweden)

    Muller Susan

    2007-06-01

    Full Text Available Abstract Background TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5 and two decoy (DcR1, and DcR2 receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM, oral premalignancies (OPM, and primary and metastatic oral squamous cell carcinomas (OSCC in order to characterize the changes in their expression patterns during OSCC initiation and progression. Methods DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Results Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Conclusion Loss of TRAIL expression is an early event during oral

  5. GRtoGR: a system for mapping GO relations to gene relations.

    Science.gov (United States)

    Taha, Kamal

    2013-12-01

    We introduce in this paper a biological search engine called GRtoGR. Given a set of S genes, GRtoGR would determine from GO graph the most significant Lowest Common Ancestor (LCA) of the GO terms annotating the set S. This significant LCA annotates the genes that are the most semantically related to the set S. The framework of GRtoGR refines the concept of LCA by introducing the concepts of Relevant Lowest Common Ancestor (RLCA) and Semantically Relevant Lowest Common Ancestor (SRLCA). A SRLCA is the most significant LCA of the GO terms annotating the set S. We observe that the existence of the GO terms annotating the set S is dependent on the existence of this SRLCA in GO graph. That is, the terms annotating a given set of genes usually have existence dependency relationships with the SRLCA of these terms. We evaluated GRtoGR experimentally and compared it with nine other methods. Results showed marked improvement.

  6. MicroRNA-1185 Induces Endothelial Cell Apoptosis by Targeting UVRAG and KRIT1

    Directory of Open Access Journals (Sweden)

    Haoyuan Deng

    2017-04-01

    Full Text Available Background/Aims: Atherosclerosis is a multifactorial chronic disease and is the main cause of death and impairment in the world. Endothelial injury and apoptosis play a crucial role in the onset and development of atherosclerosis. MicroRNAs (miRNAs have been proven to be involved in the pathogenesis of atherosclerosis. However, studies of the functional role of apoptosis-related miRNAs in the endothelium during atherogenesis are limited. Methods: Cell injury and apoptosis were measured in five types of cells transfected with miR-1185 or co-transfected with miR-1185 and its inhibitor. Bioinformatics analysis and a luciferase reporter assay were used to confirm the targets of miR-1185. The effects of the targets of miR-1185 on endothelial apoptosis were determined using small-interfering RNA. Results: In this study, we first report that miR-1185 significantly promoted apoptosis in endothelial cells but not in vascular smooth muscle cells and macrophages. A mechanistic analysis showed that ultraviolet irradiation resistance-associated gene (UVRAG and krev1 interaction trapped gene 1 (KRIT1, targets of miR-1185, mediated miR-1185-induced endothelial cell apoptosis. Conclusion: The results revealed the impact of miR-1185 on endothelial apoptosis, suggesting that miR-1185 may be a potential target for the prevention and treatment of atherosclerosis.

  7. Evolution of xyloglucan-related genes in green plants.

    Science.gov (United States)

    Del Bem, Luiz Eduardo V; Vincentz, Michel G A

    2010-11-05

    The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase) and mobilization/degradation (β-(1→4)-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4)-glucan synthase from the cellulose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Our data support the idea that a primordial xyloglucan-like polymer emerged in

  8. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Mukesh Meena

    2017-08-01

    Full Text Available Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs and non-host specific toxins (nHSTs which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs. The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.

  9. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Science.gov (United States)

    Meena, Mukesh; Gupta, Sanjay K.; Swapnil, Prashant; Zehra, Andleeb; Dubey, Manish K.; Upadhyay, Ram S.

    2017-01-01

    Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs) and non-host specific toxins (nHSTs) which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs). The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs) which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST) data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future. PMID:28848500

  10. RNAi screen reveals a role of SPHK2 in dengue virus-mediated apoptosis in hepatic cell lines.

    Directory of Open Access Journals (Sweden)

    Atthapan Morchang

    Full Text Available Hepatic dysfunction is a feature of dengue virus (DENV infection. Hepatic biopsy specimens obtained from fatal cases of DENV infection show apoptosis, which relates to the pathogenesis of DENV infection. However, how DENV induced liver injury is not fully understood. In this study, we aim to identify the factors that influence cell death by employing an apoptosis-related siRNA library screening. Our results show the effect of 558 gene silencing on caspase 3-mediated apoptosis in DENV-infected Huh7 cells. The majority of genes that contributed to apoptosis were the apoptosis-related kinase enzymes. Tumor necrosis factor superfamily member 12 (TNFSF12, and sphingosine kinase 2 (SPHK2, were selected as the candidate genes to further validate their influences on DENV-induced apoptosis. Transfection of siRNA targeting SPHK2 but not TNFSF12 genes reduced apoptosis determined by Annexin V/PI staining. Knockdown of SPHK2 did not reduce caspase 8 activity; however, did significantly reduce caspase 9 activity, suggesting its involvement of SPHK2 in the intrinsic pathway of apoptosis. Treatment of ABC294649, an inhibitor of SPHK2, reduced the caspase 3 activity, suggesting the involvement of its kinase activity in apoptosis. Knockdown of SPHK2 significantly reduced caspase 3 activity not only in DENV-infected Huh7 cells but also in DENV-infected HepG2 cells. Our results were consistent across all of the four serotypes of DENV infection, which supports the pro-apoptotic role of SPHK2 in DENV-infected liver cells.

  11. [Effects of Electroacupuncture Intervention on Oxygen Free Radicals and Expression of Apoptosis-related Proteins in Rats with Ischemic Learning and Memory Disorder].

    Science.gov (United States)

    Hou, Zhi-tao; Sun, Zhong-ren; Liu, Song-tao; Xiong, Sheng-biao; Liu, Yi-tian; Han, Xiao-xia; Sun, Hong-fang; Han, Yu-sheng; Yin, Hong-na; Xu, Jin-qiao; Li, Dong-dong

    2015-12-01

    To observe the effect of electroacupuncture (EA) therapy on levels of oxygen free radicals (OFR) and hippocampal apoptosis-related protein expression in ischemic learning-memory disorder rats so as to investigate its mechanisms underlying improvement of ischemic learning-memory impairment. A total of 60 SD rats were randomly divided into sham operation (sham), model, medication, and EA groups, with 15 rats in each group. The learning-memory disorder model was made by occlusion of bilateral carotid arteries. EA (2- 3 Hz, 2 mA) was applied to "Zhi San Zhen" ["Shenting" (GV 24) and bilateral "Benshen" (GB 13)] for 30 min, once a day for 3 weeks. The rats of the medication group were treated by lavage of Aricept (0.03 mg . kg(-1) . d(-1)), once daily for 3 weeks. The rats' learning-memory ability was detected by Morris water maze tests and the state of hippocampal apoptosis cells was observed by light microscope after TUNEL staining and the expression of hippocampal Bcl-2, Bax and Caspase-3 proteins was detected by immunohistochemistry. Serum and hippocampal superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) contents were detected by chemical colorimetric analysis. Compared with the sham group, the escape latencies (place-navigation) after modeling were evidently prolonged, and the times of target-platform crossing in 90 sec (spatial probe test) considerably reduced in the model group (Plearning-memory ability. After the treatment for 21 d, the increased escape latency and the reduced target-platform crossing time in both EA and medication groups were reversed in comparison with the model group (Pmemory ability, and the effect of the EA group was significantly superior to that of the medication group (Plearning-memory ability in ischemic learning-memory disorder rats which may be associated with its effects in reducing blood and hippocampal OFR contents and hippocampal cellular apoptosis.

  12. Apoptosis and DNA Methylation

    International Nuclear Information System (INIS)

    Meng, Huan X.; Hackett, James A.; Nestor, Colm; Dunican, Donncha S.; Madej, Monika; Reddington, James P.; Pennings, Sari; Harrison, David J.; Meehan, Richard R.

    2011-01-01

    Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG

  13. MiR-139-3p is related to left ventricular hypertrophy and cardiomyocyte apoptosis in two-kidney one-clip hypertensive rats

    Directory of Open Access Journals (Sweden)

    Yang Xiaomin

    2015-01-01

    Full Text Available MicroRNAs (miRNAs are important post-transcriptional regulators of gene expression in many physiological and pathological processes. Previous studies have reported the role of miR-139-3p in cancer. However, its specific roles and functions in the heart undergoing hypertrophy have yet to be fully elucidated. In the present study, a significant upregulation of miR-139-3p expression was demonstrated in the left ventricular myocardium of two-kidney one-clip (2K1C hypertensive rats using microarray and quantitative real-time PCR (qRT-PCR. Based on computational analysis, we observed that miR-139-3p can control the expression of mitogen-activated protein kinase 1 (MAPK1 as a target gene, which is essential for the induction of cardiac hypertrophy and cardiomyocyte apoptosis. This study provides first information that the highly expressed miR-139-3p might be closely involved in MAPK1-mediated cardiac hypertrophy and cardiomyocyte apoptotic processes in 2K1C rat.

  14. The T-cell anergy induced by Leishmania amazonensis antigens is related with defective antigen presentation and apoptosis

    Directory of Open Access Journals (Sweden)

    Roberta O. Pinheiro

    2004-09-01

    Full Text Available Leishmania amazonensis is the main agent of diffuse cutaneous leishmaniasis, a disease associated with anergic immune responses. In this study we show that the crude antigen of Leishmania amazonensis (LaAg but not L. braziliensis promastigotes (LbAg contains substances that suppress mitogenic and spontaneous proliferative responses of T cells. The suppressive substances in LaAg are thermoresistant (100ºC/1h and partially dependent on protease activity. T cell anergy was not due to a decreased production of growth factors as it was not reverted by addition of exogenous IL-2, IL-4, IFN-gamma or IL-12. LaAg did not inhibit anti-CD3-induced T cell activation, suggesting that anergy was due to a defect in antigen presentation. It was also not due to cell necrosis, but was accompanied by expressive DNA fragmentation in lymph node cells, indicative of apoptosis. Although pre-incubation of macrophages with LaAg prevented their capacity to present antigens, this effect was not due to apoptosis of the former. These results suggest that the T cell anergy found in diffuse leishmaniasis may be the result of parasite antigen-driven apoptosis of those cells following defective antigen presentation.A Leishmania amazonensis é o principal agente etiológico da leishmaniose cutânea difusa, uma doença associada a respostas imunes anérgicas. Neste estudo nós mostramos que o extrato bruto de promastigotas de Leishmania amazonensis (LaAg, mas não de L. braziliensis (LbAg, contém substâncias que suprimem respostas proliferativas, espontâneas e mitogênicas, de células T. As substâncias supressoras no LaAg são termo-resistentes (100°C/1h e parcialmente dependentes da atividade de proteases. A anergia de células T não foi devida à diminuição na produção de fatores de crescimento, uma vez que não foi revertida pela adição de: IL-2, IL-4, IFN-gama ou IL-12. O LaAg não inibiu a ativação de células T induzida por anti-CD3, sugerindo que a anergia

  15. The significance of expression of autophagy-related gene Beclin, Bcl-2, and Bax in breast cancer tissues.

    Science.gov (United States)

    Yao, Qing; Chen, Jianghao; Lv, Yonggang; Wang, Ting; Zhang, Juliang; Fan, Jing; Wang, Ling

    2011-12-01

    The purpose of this study was to detect the expression of autophagy-related gene Beclin1 and apoptosis-related genes Bcl-2 and Bax in breast cancer tissues, to investigate their relationship and significance to the occurrence and development of breast cancer, and to provide an experimental basis for the biological treatment of breast cancer in the future. Human breast cancer tissues and relatively healthy breast tissue adjacent to the tumor were collected during surgical resection. By using RT-PCR and western blot, the mRNA and protein expressions of Beclin1, Bcl-2, and Bax were detected in the breast cancer tissues and the relatively healthy, adjacent tissues. The correlations of these expressions with the occurrence, development, and clinicopathology of breast cancer were analyzed. The mRNA and protein expressions of Beclin1 and Bcl-2 in breast cancer tissues were significantly lower than those in the relatively healthy, adjacent breast tissues (p breast cancer tissues from patients positive for lymph node metastasis were significantly lower than those negative for lymph node metastasis (p breast cancer tissues from patients positive for distant metastasis were significantly lower than those negative for distant metastasis (p breast cancer tissues from patients positive for ki67 were significantly lower than those negative for ki67 (p breast cancer tissues, the mRNA and protein expressions of Bax were up-regulated (p breast cancer tissues from patients positive for lymph node metastasis were significantly higher than those negative for lymph node metastasis (p breast cancer tissues from patients positive for distant metastasis were significantly higher than those in patients negative for distant metastasis (p  0.05). The correlation of Bcl-2 and Bax mRNA with Beclin1 mRNA expressed in breast cancer tissues were both statistically significant (p apoptosis is associated with the tumorigenesis and tumor progression of breast cancer. The joint

  16. Evolution of xyloglucan-related genes in green plants

    Directory of Open Access Journals (Sweden)

    Vincentz Michel GA

    2010-11-01

    Full Text Available Abstract Background The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta and is the main hemicellulose in non-graminaceous angiosperms. Results In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase and mobilization/degradation (β-(1→4-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4-glucan synthase from the celullose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Conclusions Our data support the idea that a

  17. Evolution of xyloglucan-related genes in green plants

    Science.gov (United States)

    2010-01-01

    Background The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. Results In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase) and mobilization/degradation (β-(1→4)-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4)-glucan synthase from the celullose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Conclusions Our data support the idea that a primordial xyloglucan

  18. Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery.

    Science.gov (United States)

    Verstraeten, Aline; Alaerts, Maaike; Van Laer, Lut; Loeys, Bart

    2016-06-01

    Marfan syndrome (MFS) is a rare, autosomal-dominant, multisystem disorder, presenting with skeletal, ocular, skin, and cardiovascular symptoms. Significant clinical overlap with other systemic connective tissue diseases, including Loeys-Dietz syndrome (LDS), Shprintzen-Goldberg syndrome (SGS), and the MASS phenotype, has been documented. In MFS and LDS, the cardiovascular manifestations account for the major cause of patient morbidity and mortality, rendering them the main target for therapeutic intervention. Over the past decades, gene identification studies confidently linked the aforementioned syndromes, as well as nonsyndromic aneurysmal disease, to genetic defects in proteins related to the transforming growth factor (TGF)-β pathway, greatly expanding our knowledge on the disease mechanisms and providing us with novel therapeutic targets. As a result, the focus of the developing pharmacological treatment strategies is shifting from hemodynamic stress management to TGF-β antagonism. In this review, we discuss the insights that have been gained in the molecular biology of MFS and related disorders over the past 25 years. © 2016 WILEY PERIODICALS, INC.

  19. Induction of factors of apoptosis in human tumor cells by low doses of radon

    International Nuclear Information System (INIS)

    Soto, J.; Martin, A.; Cos, S.; Gonzalez-Lamuno, D.

    1997-01-01

    The possibility of modification of genes related with apoptosis in tumor cells calls for a multidisciplinary experiment which describes the conditions and characteristics of such modification. In this work low radiation doses from radon were used in the irradiation of tumor cells of human mammary glands. After irradiation, the cells incubate for three days, after which they are counted and a total extraction of ARN is effected. Through bimolecular techniques, inverse transcription and polymerase chain reaction, the expression of genes involved in apoptosis is studied. The results found indicate that, in the cell line denominated MCF-7, the genes bcl-2, bcl-xL and bax are expressed. In the irradiated cells, the levels of expression of bcl x increase with respect to the control and induce the expression of the form bcl-xS, the protein of which induces apoptosis

  20. Kaempferol Sensitizes Human Ovarian Cancer Cells-OVCAR-3 and SKOV-3 to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis via JNK/ERK-CHOP Pathway and Up-Regulation of Death Receptors 4 and 5.

    Science.gov (United States)

    Zhao, Yingmei; Tian, Binqiang; Wang, Yong; Ding, Haiying

    2017-10-26

    BACKGROUND Ovarian cancer is the most common gynecological malignancies in women, with high mortality rates worldwide. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) superfamily which preferentially induces apoptosis of cancer cells. However, acquired resistance to TRAIL hampers its therapeutic application. Identification of compounds that sensitize cancer cells to TRAIL is vital in combating resistance to TRAIL. The effect of kaempferol, a flavonoid enhancing TRAIL-induced apoptosis in ovarian cancer cells, was investigated in this study. MATERIAL AND METHODS The cytotoxic effects of TRAIL (25 ng/mL) and kaempferol (20-100 µM) on human ovarian cancer cells OVCAR-3 and SKOV-3 were assessed. Effect of kaempferol on the expression patterns of cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, c-FLIP) and apoptotic proteins (caspase-3, caspase-8, caspase-9, Bax) were studied. The influence of kaempferol on expression of DR4 and DR5 death receptors on the cell surface and protein and mRNA levels was also analyzed. Apoptosis following silencing of DR5 and CHOP by small interfering RNA (siRNA), and activation of MAP kinases were analyzed as well. RESULTS Kaempferol enhanced apoptosis and drastically up-regulated DR4, DR5, CHOP, JNK, ERK1/2, p38 and apoptotic protein expression with decline in the expression of anti-apoptotic proteins. Further transfection with siRNA specific to CHOP and DR5 indicated the involvement of CHOP in DR5 up-regulation and also the contribution of DR5 in kaempferol-enhanced TRAIL-induced apoptosis. CONCLUSIONS Kaempferol sensitized ovarian cancer cells to TRAIL-induced apoptosis via up-regulation of DR4 and DR5 through ERK/JNK/CHOP pathways.

  1. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Chun-Mei; Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei; Sun, Wen-Sheng; Liu, Yu-Gang; Jia, Ji-Hui

    2011-01-01

    Highlights: → miR-29c was significantly downregulated in HBV-related HCC. → TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. → Overexpression of miR-29c suppressed TNFAIP3. → miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  2. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Mei [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China); Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Sun, Wen-Sheng [Institute of Immunology, Shandong University School of Medicine, Jinan 250012 (China); Liu, Yu-Gang, E-mail: liu.yugang@sdu.edu.cn [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Jia, Ji-Hui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China)

    2011-08-05

    Highlights: {yields} miR-29c was significantly downregulated in HBV-related HCC. {yields} TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. {yields} Overexpression of miR-29c suppressed TNFAIP3. {yields} miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  3. Rhopalurus junceus scorpion venom induces apoptosis in the triple negative human breast cancer cell line MDA-MB-231

    OpenAIRE

    Díaz-García, Alexis; Ruiz-Fuentes, Jenny Laura; Rodríguez-Sánchez, Hermis; Fraga Castro, José A

    2017-01-01

    Rhopalurus junceus scorpion venom has demonstrated high cytotoxic activity in epithelial cancer cells. In the present study, the effect of scorpion venom on cell viability and apoptosis was evaluated in the MDA-MB-231 human breast carcinoma cell line. Cell viability was analyzed using MTT assay. The cell death event was examined trough end-point RT-PCR to identify the expression of apoptosis-related genes, fluorescent microscopy and mitochondrial membrane potential (ΔΨm) alteration. The resul...

  4. Odd-skipped related 2 regulates genes related to proliferation and development

    International Nuclear Information System (INIS)

    Kawai, Shinji; Abiko, Yoshimitsu; Amano, Atsuo

    2010-01-01

    Cell proliferation is a biological process in which chromosomes replicate in one cell and equally divide into two daughter cells. Our previous findings suggested that Odd-skipped related 2 (Osr2) plays an important role in cellular quiescence and proliferation under epigenetic regulation. However, the mechanism used by Osr2 to establish and maintain proliferation is unknown. To examine the functional role of Osr2 in cell proliferation, we analyzed its downstream target genes using microarray analysis following adenovirus-induced overexpression of Osr2 as well as knockdown with Osr2 siRNA, which showed that Osr2 regulates a multitude of genes involved in proliferation and the cell cycle, as well as development. Additional proliferation assays also indicated that Osr2 likely functions to elicit cell proliferation. Together, these results suggest that Osr2 plays important roles in proliferation and development.

  5. Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits.

    Science.gov (United States)

    Dashti, Hassan S; Follis, Jack L; Smith, Caren E; Tanaka, Toshiko; Garaulet, Marta; Gottlieb, Daniel J; Hruby, Adela; Jacques, Paul F; Kiefte-de Jong, Jessica C; Lamon-Fava, Stefania; Scheer, Frank A J L; Bartz, Traci M; Kovanen, Leena; Wojczynski, Mary K; Frazier-Wood, Alexis C; Ahluwalia, Tarunveer S; Perälä, Mia-Maria; Jonsson, Anna; Muka, Taulant; Kalafati, Ioanna P; Mikkilä, Vera; Ordovás, José M

    2015-08-01

    Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153, MTNR1B-rs10830963, NR1D1-rs2314339) and cardiometabolic traits (fasting glucose [FG], HOMA-insulin resistance, BMI, waist circumference, and HDL-cholesterol) to facilitate personalized recommendations. We conducted inverse-variance weighted, fixed-effect meta-analyses of results of adjusted associations and interactions between dietary intake/sleep duration and selected variants on cardiometabolic traits from 15 cohort studies including up to 28,190 participants of European descent from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We observed significant associations between relative macronutrient intakes and glycemic traits and short sleep duration (<7 h) and higher FG and replicated known MTNR1B associations with glycemic traits. No interactions were evident after accounting for multiple comparisons. However, we observed nominally significant interactions (all P < 0.01) between carbohydrate intake and MTNR1B-rs1387153 for FG with a 0.003 mmol/L higher FG with each additional 1% carbohydrate intake in the presence of the T allele, between sleep duration and CRY2-rs11605924 for HDL-cholesterol with a 0.010 mmol/L higher HDL-cholesterol with each additional hour of sleep in the presence of the A allele, and between long sleep duration (≥9 h) and MTNR1B-rs1387153 for BMI with a 0.60 kg/m(2) higher BMI with long sleep duration in the presence of the T allele relative to normal sleep duration (≥7 to <9 h). Our results suggest that lower carbohydrate intake and normal sleep duration may ameliorate cardiometabolic abnormalities conferred by common circadian-related genetic variants. Until further mechanistic examination of the nominally

  6. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL...... siRNA on drug sensitization of A549 cells to TRAIL treatment. The results showed that treatment of A549 cells with HSP27 siRNA down-regulated HSP27 expression but did not induce significant apoptosis. However, combination of HSP27 siRNA with TRAIL-induced significant apoptosis in TRAIL-resistant A549...... cells. In addition to inducing caspases activation and apoptosis, combined treatment with HSP27 siRNA and TRAIL also increased JNK and p53 expression and activity. Collectively, these findings provide a conclusion that siRNA targeting of the HSP27 gene specifically down-regulated HSP27 expression in A...

  7. Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis.

    Science.gov (United States)

    Fan, Lin-Feng; He, Ping-You; Peng, Yu-Cong; Du, Qing-Hua; Ma, Yi-Jun; Jin, Jian-Xiang; Xu, Hang-Zhe; Li, Jian-Ru; Wang, Zhi-Jiang; Cao, Sheng-Long; Li, Tao; Yan, Feng; Gu, Chi; Wang, Lin; Chen, Gao

    2017-11-01

    Aberrant modulation of mitochondrial dynamic network, which shifts the balance of fusion and fission towards fission, is involved in brain damage of various neurodegenerative diseases including Parkinson's disease, Huntington's disease and Alzheimer's disease. A recent research has shown that the inhibition of mitochondrial fission alleviates early brain injury after experimental subarachnoid hemorrhage, however, the underlying molecular mechanisms have remained to be elucidated. This study was undertaken to characterize the effects of the inhibition of dynamin-related protein-1 (Drp1, a dominator of mitochondrial fission) on blood-brain barrier (BBB) disruption and neuronal apoptosis following SAH and the potential mechanisms. The endovascular perforation model of SAH was performed in adult male Sprague Dawley rats. The results indicated Mdivi-1(a selective Drp1 inhibitor) reversed the morphologic changes of mitochondria and Drp1 translocation, reduced ROS levels, ameliorated the BBB disruption and brain edema remarkably, decreased the expression of MMP-9 and prevented degradation of tight junction proteins-occludin, claudin-5 and ZO-1. Mdivi-1 administration also inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB), leading to decreased expressions of TNF-ɑ, IL-6 and IL-1ß. Moreover, Mdivi-1 treatment attenuated neuronal cell death and improved neurological outcome. To investigate the underlying mechanisms further, we determined that Mdivi-1 reduced p-PERK, p-eIF2α, CHOP, cleaved caspase-3 and Bax expression as well as increased Bcl-2 expression. Rotenone (a selective inhibitor of mitochondrial complexes I) abolished both the anti-BBB disruption and anti-apoptosis effects of Mdivi-1. In conclusion, these data implied that excessive mitochondrial fission might inhibit mitochondrial complex I to become a cause of oxidative stress in SAH, and the inhibition of Drp1 by Mdivi-1 attenuated early brain injury after SAH probably via the suppression

  8. A prolyl-hydroxylase inhibitor, ethyl-3,4-dihydroxybenzoate, induces cell autophagy and apoptosis in esophageal squamous cell carcinoma cells via up-regulation of BNIP3 and N-myc downstream-regulated gene-1.

    Directory of Open Access Journals (Sweden)

    Bo Han

    Full Text Available The protocatechuic acid ethyl ester ethyl-3,4-dihydroxybenzoate is an antioxidant found in the testa of peanut seeds. Previous studies have shown that ethyl-3,4-dihydroxybenzoate can effectively reduce breast cancer cell metastasis by inhibiting prolyl-hydroxylase. In this study, we investigated the cytotoxic effect of ethyl-3,4-dihydroxybenzoate on esophageal squamous cell carcinoma cells in vitro and identified key regulators of ethyl-3,4-dihydroxybenzoate-induced esophageal cancer cell death through transcription expression profiling. Using flow cytometry analysis, we found that ethyl-3,4-dihydroxybenzoate induced S phase accumulation, a loss in mitochondrial membrane permeabilization, and caspase-dependent apoptosis. Moreover, an expression profile analysis identified 46 up- and 9 down-regulated genes in esophageal cancer KYSE 170 cells treated with ethyl-3,4-dihydroxybenzoate. These differentially expressed genes are involved in several signaling pathways associated with cell cycle regulation and cellular metabolism. Consistent with the expression profile results, the transcriptional and protein expression levels of candidate genes NDRG1, BNIP3, AKR1C1, CCNG2 and VEGFA were found to be significantly increased in treated KYSE 170 cells by reverse-transcription PCR and western blot analysis. We also found that protein levels of hypoxia-inducible factor-1α, BNIP3, Beclin and NDRG1 were increased and that enriched expression of BNIP3 and Beclin caused autophagy mediated by microtubule-associated protein 1 light chain 3 in the treated cells. Autophagy and apoptosis were activated together in esophageal cancer cells after exposed to ethyl-3,4-dihydroxybenzoate. Furthermore, knock-down of NDRG1 expression by siRNA significantly attenuated apoptosis in the cancer cells, implying that NDRG1 may be required for ethyl-3,4-dihydroxybenzoate-induced apoptosis. Together, these results suggest that the cytotoxic effects of ethyl-3,4-dihydroxybenzoate

  9. Flower extract of Allium atroviolaceum triggered apoptosis, activated caspase-3 and down-regulated antiapoptotic Bcl-2 gene in HeLa cancer cell line.

    Science.gov (United States)

    Khazaei, Somayeh; Ramachandran, Vasudevan; Abdul Hamid, Roslida; Mohd Esa, Norhaizan; Etemad, Ali; Moradipoor, Sara; Ismail, Patimah

    2017-05-01

    Cervical cancer accounts for the second most frequent cancer and also third leading cause of cancer mortality (15%) among women worldwide. The major problems of chemotherapeutic treatment in cervical cancer are non-specific cytotoxicity and drug resistance. Plant-derived products, known as natural therapies, have been used for thousands of years in cancer treatment with a very low number of side effects. Allium atroviolaceum is a species in the genus Allium and Liliaceae family, which could prove to have beneficial effects on cancer treatment, although there is a lack of corresponding attention. The methanolic extract from the A.atroviolaceum flower displayed marked anticancer activity on HeLa human cervix carcinoma cells with much lower cytotoxic effects on normal cells (3T3). The A.atroviolaceum extract induced apoptosis, confirmed by cell cycle arrest at the sub-G0 (apoptosis) phase, characteristic morphological changes, evident DNA fragmentation, observed by fluorescent microscope, and early and late apoptosis detection by Annexin V. Furthermore, down-regulation of Bcl-2 and activation of caspase-9 and -3 strongly indicated that the mitochondrial pathway was involved in the apoptosis signal pathway. Moreover, combination of A.atroviolaceum extract with doxorubicin revealed a significant reduction of IC 50 and led to a synergistic effect. In summary, A.atroviolaceum displayed a significant anti-tumour effect through apoptosis induction in HeLa cells, suggesting that the A.atroviolaceum flower might have therapeutic potential against cervix carcinoma. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Interaction relationships of osteoarthritis and rheumatoid arthritis related genes.

    Science.gov (United States)

    Zhang, Q; Cheng, B; Yang, C-X; Ge, H-A

    2014-01-01

    Osteoarthritis (OA), also referred to as degenerative joint disease or wear-and-tear arthritis, is caused by the breakdown of joint cartilage. Rheumatoid arthritis (RA) is a chronic, inflammatory type of arthritis. RA is also classified as a kind of autoimmune disease. To find the important genes in RA and OA. Comprehensively compared 3 datasets of RA with 2 datasets of OA, 98 genes were sifted. We explored protein-protein associations processed for the 98 genes by mining famous gene/protein interaction/association database. We found most of those genes appear to play a key role in the anti-inflammatory and immunosuppressive effects. Our research would play a useful role in the diagnosis and treatment of OA and RA.

  11. Discovering implicit entity relation with the gene-citation-gene network.

    Directory of Open Access Journals (Sweden)

    Min Song

    Full Text Available In this paper, we apply the entitymetrics model to our constructed Gene-Citation-Gene (GCG network. Based on the premise there is a hidden, but plausible, relationship between an entity in one article and an entity in its citing article, we constructed a GCG network of gene pairs implicitly connected through citation. We compare the performance of this GCG network to a gene-gene (GG network constructed over the same corpus but which uses gene pairs explicitly connected through traditional co-occurrence. Using 331,411 MEDLINE abstracts collected from 18,323 seed articles and their references, we identify 25 gene pairs. A comparison of these pairs with interactions found in BioGRID reveal that 96% of the gene pairs in the GCG network have known interactions. We measure network performance using degree, weighted degree, closeness, betweenness centrality and PageRank. Combining all measures, we find the GCG network has more gene pairs, but a lower matching rate than the GG network. However, combining top ranked genes in both networks produces a matching rate of 35.53%. By visualizing both the GG and GCG networks, we find that cancer is the most dominant disease associated with the genes in both networks. Overall, the study indicates that the GCG network can be useful for detecting gene interaction in an implicit manner.

  12. IMA: Identifying disease-related genes using MeSH terms and association rules.

    Science.gov (United States)

    Kim, Jeongwoo; Bang, Changbae; Hwang, Hyeonseo; Kim, Doyoung; Park, Chihyun; Park, Sanghyun

    2017-12-01

    Genes play an important role in several diseases. Hence, in biology, identifying relationships between diseases and genes is important for the analysis of diseases, because mutated or dysregulated genes play an important role in pathogenesis. Here, we propose a method to identify disease-related genes using MeSH terms and association rules. We identified genes by analyzing the MeSH terms and extracted information on gene-gene interactions based on association rules. By integrating the extracted interactions, we constructed gene-gene networks and identified disease-related genes. We applied the proposed method to study five cancers, including prostate, lung, breast, stomach, and colorectal cancer, and demonstrated that the proposed method is more useful for identifying disease-related and candidate disease-related genes than previously published methods. In this study, we identified 20 genes for each disease. Among them, we presented 34 important candidate genes with evidence that supports the relationship of the candidate genes with diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Isolation and characterization of Agouti: a diabetes/obesity related gene

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, Richard P. (Knoxville, TN)

    2000-06-27

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  14. Isolation and characterization of Agouti: a diabetes/obesity related gene

    Energy Technology Data Exchange (ETDEWEB)

    Woychik, Richard P. (Knoxville, TN)

    1998-01-01

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  15. Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2 gene-amplified breast cancer cells with primary resistance to HER1/2-targeted therapies

    Energy Technology Data Exchange (ETDEWEB)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cufi, Silvia; Torres-Garcia, Violeta Zenobia [Unit of Translational Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Sauri-Nadal, Tamara; Barco, Sonia Del [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Medical Oncology, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Lopez-Bonet, Eugeni [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Department of Anatomical Pathology, Dr. Josep Trueta University Hospital, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Brunet, Joan [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Medical Oncology, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Martin-Castillo, Begona [Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Unit of Clinical Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Menendez, Javier A., E-mail: jmenendez@idibgi.org [Unit of Translational Research, Catalan Institute of Oncology-Girona, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain); Girona Biomedical Research Institute, Avenida de Francia S/N, E-17007 Girona, Catalonia (Spain)

    2011-04-08

    Highlights: {yields} Intrinsic trastuzumab resistance occurs in {approx}70% of metastatic HER2 + breast carcinomas (BC). {yields} Approximately 15% of early HER2 + BC relapse in spite of treatment with trastuzumab-based therapies. {yields} HER2-independent downstream pro-survival pathways might underlie trastuzumab refractoriness. {yields} Survivin is indispensable for proliferation and survival of HER2 + BC unresponsive to HER2-targeted therapies ab initio. {yields} Survivin antagonists may clinically circumvent the occurrence of de novo resistance to HER2-directed drugs. -- Abstract: Primary resistance of HER2 gene-amplified breast carcinomas (BC) to HER-targeted therapies can be explained in terms of overactive HER2-independent downstream pro-survival pathways. We here confirm that constitutive overexpression of Inhibitor of Apoptosis (IAP) survivin is indispensable for survival of HER2-positive BC cells with intrinsic cross-resistance to multiple HER1/2 inhibitors. The IC{sub 50} values for the HER1/2 Tyrosine Kinase Inhibitors (TKIs) gefitinib, erlotinib and lapatinib were up to 40-fold higher in trastuzumab-unresponsive JIMT-1 cells than in trastuzumab-naive SKBR3 cells. ELISA-based and immunoblotting assays demonstrated that trastuzumab-refractory JIMT-1 cells constitutively expressed {approx}4 times more survivin protein than trastuzumab-responsive SKBR3 cells. In response to trastuzumab, JIMT-1 cells accumulated {approx}10 times more survivin than SKBR3 cells. HER1/2 TKIs failed to down-regulate survivin expression in JIMT-1 cells whereas equimolar doses of HER1/HER2 TKIs drastically depleted survivin protein in SKBR3 cells. ELISA-based detection of histone-associated DNA fragments confirmed that trastuzumab-refractory JIMT-1 cells were intrinsically protected against the apoptotic effects of HER1/2 TKIs. Of note, when we knocked-down survivin expression using siRNA and then added trastuzumab, cell proliferation and colony formation were completely

  16. Characterization of inflammasome-related genes in urine sediments of patients receiving intravesical BCG therapy.

    Science.gov (United States)

    Poli, Giulia; Cochetti, Giovanni; Boni, Andrea; Egidi, Maria Giulia; Brancorsini, Stefano; Mearini, Ettore

    2017-12-01

    Nowadays, the intravesical Bacillus Calmette-Guérin (BCG) instillation is the method of choice for the postsurgical treatment of high-grade nonmuscle-invasive bladder cancer , to reduce both recurrence rate and risk of progression. BCG is hypothesized to correct the immune system disequilibrium occurring during carcinogenesis, through an immunostimulation with detrimental effects for tumoral cells. Inflammation plays a crucial role in tumor progression. The deregulation of inflammasomes upon carcinogenesis underlines its importance both in physiologic and pathologic human conditions. Nucleotide oligomerization domain-like receptors (NLRs) are key components of this molecular platform and the increase in expression of some members of nucleotide oligomerization domain-like receptors family (NLRP3, NLRP4, NLRP9, and NLR family apoptosis inhibitory protein [NAIP]) in urothelial carcinoma was already demonstrated in our previous work. The first aim of the present work was to estimate whether these inflammasome-related genes show alterations during BCG instillations. The expression levels of NLRP3, NLRP4, NLRP9, and NAIP were assessed in the urine sediments from patients, which underwent surgery for superficial high-grade bladder cancer and further subjected to serial BCG instillations. The eventual association between NLR expression and recurrence was also evaluated. The expression of CK20 mRNA as confirmed marker of bladder cancer was also assayed. Urine were sampled from patients harboring high-grade superficial bladder cancer and treated postsurgically with weekly BCG instillations for 6 weeks (induction cycle, I). Urine sediments were processed and resulting RNA was reverse transcribed and used for amplification by real-time PCR. After surgery, CK20 levels decreased significantly whereas NLRP4 and NLRP9 genes showed an increase. NLRP3 and NAIP remained substantially unmodified. CK20 mRNA decreased at the end of the induction cycle. NLRP3 did not show relevant

  17. [Triptolide induces apoptosis of human acute T lymphocytic leukemia Jurkat cells via inhibiting transcription of human endogenous retrovirus HERV-K Np9 gene].

    Science.gov (United States)

    Chen, Jianghua; Zheng, Weiwei; Jiang, Xudong; Lu, Xiaoya; Xu, Rongzhen

    2015-05-01

    To investigate the molecular?mechanisms by which triptolide induces apoptosis of human acute T lymphocytic leukemia Jurkat cells. MTT assay was employed to detect the proliferation inhibition of Jurkat cells by triptolide, and the IC50 was calculated by OriginPro8. Flow cytometry was used to analyze apoptosis of Jurkat cells. Np9 mRNA levels were detected by RT-PCR and analyzed quantitatively by Kodak 1D 3.6 software. Correlation between the inhibition of Np9 transcription and the cell apoptosis was analyzed by SPSS 19.0.Western blotting was employed to determine Np9 downstream signaling molecules c-myc, β-catenin, ERK, AKT and Notch1 protein level in Jurkat cells after exposure to different concentrations of triptolide for 48 h. Triptolide treatment resulted in dose-dependent inhibition of Jurkat cells proliferation and its IC50 was 12.7 nmol/L. Triptolide induced apoptosis of Jurkat cells in dose- dependent manner. Furthermore, triptolide inhibited Np9 mRNA transcription level in Jurakt cells in a dose-dependent manner. There was a correlation between the triptolide-mediated the apoptosis and the inhibition of Np9 transcription of Jurkat cells (R(2)=0.907). Western blotting results displayed that triptolide inhibited transcription levels of Np9 mRNA with a concomitant decrease of its downstream signaling molecules c-myc, β-catenin, ERK, AKT and Notch1 at protein levels. Inhibition of HERV-K Np9 mRNA and its downstream signaling molecules c-myc, β-catenin, ERK, Akt and Notch1 protein might be one of important molecular?mechanisms by which triptolide induces apoptosis of human acute T lymphocytic leukemia Jurkat cells.

  18. LGscore: A method to identify disease-related genes using biological literature and Google data.

    Science.gov (United States)

    Kim, Jeongwoo; Kim, Hyunjin; Yoon, Youngmi; Park, Sanghyun

    2015-04-01

    Since the genome project in 1990s, a number of studies associated with genes have been conducted and researchers have confirmed that genes are involved in disease. For this reason, the identification of the relationships between diseases and genes is important in biology. We propose a method called LGscore, which identifies disease-related genes using Google data and literature data. To implement this method, first, we construct a disease-related gene network using text-mining results. We then extract gene-gene interactions based on co-occurrences in abstract data obtained from PubMed, and calculate the weights of edges in the gene network by means of Z-scoring. The weights contain two values: the frequency and the Google search results. The frequency value is extracted from literature data, and the Google search result is obtained using Google. We assign a score to each gene through a network analysis. We assume that genes with a large number of links and numerous Google search results and frequency values are more likely to be involved in disease. For validation, we investigated the top 20 inferred genes for five different diseases using answer sets. The answer sets comprised six databases that contain information on disease-gene relationships. We identified a significant number of disease-related genes as well as candidate genes for Alzheimer's disease, diabetes, colon cancer, lung cancer, and prostate cancer. Our method was up to 40% more accurate than existing methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Senescence-Related Changes in Gene Expression of Peripheral Blood Mononuclear Cells from Octo/Nonagenarians Compared to Their Offspring

    Directory of Open Access Journals (Sweden)

    Amirah Abdul Rahman

    2013-01-01

    Full Text Available Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs from two groups: octo/nonagenarians (80–99 years old and their offspring (50.2 ± 4.0 years old revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1, cell cycle regulation (CDKN1B, metabolic process (LRPAP1, insulin action (IGF2R, and increased immune and inflammatory response (IL27RA, whereas response to stress (HSPA8, damage stimulus (XRCC6, and chromatin remodelling (TINF2 pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.

  20. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    International Nuclear Information System (INIS)

    Wu, Mingsong; Tu, Tao; Huang, Yunchao; Cao, Yi

    2013-01-01

    two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer-related gene. ERGIC3 may play an active role in the development and progression of lung cancer

  1. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-{kappa}B-STAT3-directed gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu; Ghandhi, Shanaz A.; Zhou, Hongning; Huang, Sarah X.; Chai, Yunfei; Amundson, Sally A.; Hei, Tom K.

    2011-07-01

    Mitochondrial DNA depleted ({rho}{sup 0}) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-{kappa}B and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental {rho}{sup +} HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in {rho}{sup 0} cells compared to {rho}{sup +} HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, {Oota}L17{Beta}, {Oota}L18, {Oota}L19, and {Oota}L28{Beta}) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-{kappa}B and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-{kappa}B/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in {rho}{sup +} HSF, but this response was substantially decreased in {rho}{sup 0} HSF. Suppression of the IKK-NF-{kappa}B pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated {rho}{sup +} HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-{kappa}B activation was partially lost in {rho}{sup 0} HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-{kappa}B targets, further suppressing IL6

  2. Toxic effects of di(2-ethylhexyl)phthalate on mortality, growth, reproduction and stress-related gene expression in the soil nematode Caenorhabditis elegans.

    Science.gov (United States)

    Roh, Ji-Yeon; Jung, In-Ho; Lee, Jai-Young; Choi, Jinhee

    2007-07-31

    In this study, di(2-ethylhexyl)phthalate (DEHP) toxicities to Caenorhabditis elegans were investigated using multiple toxic endpoints, such as mortality, growth, reproduction and stress-related gene expression, focusing on the identification of chemical-induced gene expression as a sensitive biomarker for DEHP monitoring. The possible use of C. elegans as a sentinel organism in the monitoring of soil ecosystem health was also tested by conducting the experiment on the exposure of nematode to field soil. Twenty-four-hour median lethal concentration (LC50) data suggest that DEHP has a relatively high potential of acute toxicity to C. elegans. Decreases in body length and egg number per worm observed after 24h of DEHP exposure may induce long-term alteration in the growth and reproduction of the nematode population. Based on the result from the C. elegans genome array and indicated in the literatures, stress proteins, metallothionein, vitellogenin, xenobiotic metabolism enzymes, apoptosis-related proteins, and antioxidant enzyme genes were selected as stress-related genes and their expression in C. elegans by DEHP exposure was analyzed semi-quantitatively. Expression of heat shock protein (hsp)-16.1 and hsp-16.2 genes was decreased by DEHP exposure. Expression of cytochrome P450 (cyp) 35a2 and glutathione-S-transferease (gst)-4, phase I and phase II of xenobiotic metabolism enzymes, was increased by DEHP exposure in a concentration-dependent manner. An increase in stress-related gene expressions occurred concomitantly with the deterioration on the physiological level, which suggests an increase in expression of those genes may not be considered as a homeostatic response but as a toxicity that might have physiological consequences. The experiment with the soil from the landfill site suggests that the potential of the C. elegans biomarker identified in laboratory conditions should be calibrated and validated for its use in situ.

  3. Transcriptome Analysis of Porcine PBMCs Reveals the Immune Cascade Response and Gene Ontology Terms Related to Cell Death and Fibrosis in the Progression of Liver Failure

    Directory of Open Access Journals (Sweden)

    YiMin Zhang

    2018-01-01

    Full Text Available Background. The key gene sets involved in the progression of acute liver failure (ALF, which has a high mortality rate, remain unclear. This study aims to gain a deeper understanding of the transcriptional response of peripheral blood mononuclear cells (PBMCs following ALF. Methods. ALF was induced by D-galactosamine (D-gal in a porcine model. PBMCs were separated at time zero (baseline group, 36 h (failure group, and 60 h (dying group after D-gal injection. Transcriptional profiling was performed using RNA sequencing and analysed using DAVID bioinformatics resources. Results. Compared with the baseline group, 816 and 1,845 differentially expressed genes (DEGs were identified in the failure and dying groups, respectively. A total of five and two gene ontology (GO term clusters were enriched in 107 GO terms in the failure group and 154 GO terms in the dying group. These GO clusters were primarily immune-related, including genes regulating the inflammasome complex and toll-like receptor signalling pathways. Specifically, GO terms related to cell death, including apoptosis, pyroptosis, and autophagy, and those related to fibrosis, coagulation dysfunction, and hepatic encephalopathy were enriched. Seven Kyoto Encyclopedia of Genes and Genomes (KEGG pathways, cytokine-cytokine receptor interaction, hematopoietic cell lineage, lysosome, rheumatoid arthritis, malaria, and phagosome and pertussis pathways were mapped for DEGs in the failure group. All of these seven KEGG pathways were involved in the 19 KEGG pathways mapped in the dying group. Conclusion. We found that the dramatic PBMC transcriptome changes triggered by ALF progression was predominantly related to immune responses. The enriched GO terms related to cell death, fibrosis, and so on, as indicated by PBMC transcriptome analysis, seem to be useful in elucidating potential key gene sets in the progression of ALF. A better understanding of these gene sets might be of preventive or

  4. A high-throughput quantitative expression analysis of cancer-related genes in human HepG2 cells in response to limonene, a potential anticancer agent.

    Science.gov (United States)

    Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah

    2017-11-14

    Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Evolutionary history of the Rh blood group-related genes in vertebrates.

    Science.gov (United States)

    Kitano, T; Saitou, N

    2000-08-01

    Rh and its homologous Rh50 gene products are considered to form heterotetramers on erythrocyte membranes. Rh protein has Rh blood group antigen sites, while Rh50 protein does not, and is more conserved than Rh protein. We previously determined both Rh and Rh50 gene cDNA coding regions from mouse and rat, and carried out phylogenetic analyses. In this study, we determined Rh50 gene cDNA coding regions from African clawed frog and Japanese medaka fish, and examined the long-term evolution of the Rh blood group and related genes. We constructed the phylogenetic tree from amino acid sequences. Rh50 genes of African clawed frog and Japanese medaka fish formed a cluster with mammalian Rh50 genes. The gene duplication time between Rh and Rh50 genes was estimated to be about 510 million years ago based on this tree. This period roughly corresponds to the Cambrian, before the divergence between jawless fish and jawed vertebrates. We also BLAST-searched an amino acid sequence database, and the Rh blood group and related genes were found to have homology with ammonium transporter genes of many organisms. Ammonium transporter genes can be classified into two major groups (amt alpha and amt beta). Both groups contain genes from three domains (bacteria, archaea, and eukaryota). The Rh blood group and related genes are separated from both amt alpha and beta groups.

  6. Characterization and expression analysis of a Retinoblastoma-related gene from Chinese wild Vitis pseudoreticulata

    Science.gov (United States)

    Retinoblastoma-related (RBR) genes, a conserved gene family in higher eukaryotes, plays an important role in cell differentiation, development and mammalian cell death in animals; however, little is known about its function in plants. In this study, an RBR gene was isolated from the Chinese wild gr...

  7. Gene polymorphisms of TNF-α and IL-10 related to rheumatic heart ...

    African Journals Online (AJOL)

    Objectives: To test the relation of RHD and gene polymorphisms of pro- inflammatory cytokines TNF-α gene at position -308 and anti–inflammatory. IL-10 gene at position -1082. Subjects and Methods: This study included 20 children with chronic rheumatic heart disease (group A) and 10 healthy children as a control group.

  8. Prenatal irradiation: radioinduced apoptosis in developing central nervous system

    International Nuclear Information System (INIS)

    Gisone, P.; Dubner, D.; Michelin, S.; Perez, M.R.; Barboza, M.

    1998-01-01

    Severe mental retardation (SMR) is the most significant effect of prenatal irradiation. The high radiosensitivity of developing brain is related with the chronology of morpho genetic phenomena regarding neuroblast proliferation, neuronal differentiation and migration, synaptogenesis and dendritic arborization. Programmed cell death (apoptosis) normally occurs during development in central nervous system (CNS). Apoptosis is a direct result of the expression of specific genes with a final common pathway leading to a characteristic DNA fragmentation pattern. A wide variety of situations and toxic agents have been reported to result in apoptotic death in developing CNS. The aim of this work was the characterization and quantification of apoptosis using an in vitro model of prenatal irradiation. Primary cell cultures from rat brain cortex of 17 days g.a. were irradiated with a gamma source, with doses between 0.2 Gy to 2 Gy. Apoptosis was evaluated 4 hours and 20 hours after irradiation by hematoxylin/eosin, fluorescent microscopy, flow cytometry and DNA electrophoresis. It was also evaluated the neuro protective effect of L-NAME, SOD and glutathion. A dose-dependent increase in apoptotic cell fraction was observed. A protector effect related with the presence of glutathion was observed. (author) [es

  9. Differential Expression of Genes of the Calvin-Benson Cycle and its Related Genes During Leaf Development in Rice.

    Science.gov (United States)

    Yamaoka, Chihiro; Suzuki, Yuji; Makino, Amane

    2016-01-01

    To understand how the machinery for photosynthetic carbon assimilation is formed and maintained during leaf development, changes in the mRNA levels of the Calvin-Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase and two key enzymes for sucrose synthesis were determined in rice (Oryza sativa L.). According to the patterns of changes in the mRNA levels, these genes were categorized into three groups. Group 1 included most of the genes involved in the carboxylation and reduction phases of the Calvin-Benson cycle, as well as three genes in the regeneration phase. The mRNA levels increased and reached maxima during leaf expansion and then rapidly declined, although there were some variations in the residual mRNA levels in senescent leaves. Group 2 included a number of genes involved in the regeneration phase, one gene in the reduction phase of the Calvin-Benson cycle and one gene in sucrose synthesis. The mRNA levels increased and almost reached maxima before full expansion and then gradually declined. Group 3 included Rubisco activase, one gene involved in the regeneration phase and one gene in sucrose synthesis. The overall pattern was similar to that in group 2 genes except that the mRNA levels reached maxima after the stage of full expansion. Thus, genes of the Calvin-Benson cycle and its related genes were differentially expressed during leaf development in rice, suggesting that such differential gene expression is necessary for formation and maintenance of the machinery of photosynthetic carbon assimilation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. A hybrid network-based method for the detection of disease-related genes

    Science.gov (United States)

    Cui, Ying; Cai, Meng; Dai, Yang; Stanley, H. Eugene

    2018-02-01

    Detecting disease-related genes is crucial in disease diagnosis and drug design. The accepted view is that neighbors of a disease-causing gene in a molecular network tend to cause the same or similar diseases, and network-based methods have been recently developed to identify novel hereditary disease-genes in available biomedical networks. Despite the steady increase in the discovery of disease-associated genes, there is still a large fraction of disease genes that remains under the tip of the iceberg. In this paper we exploit the topological properties of the protein-protein interaction (PPI) network to detect disease-related genes. We compute, analyze, and compare the topological properties of disease genes with non-disease genes in PPI networks. We also design an improved random forest classifier based on these network topological features, and a cross-validation test confirms that our method performs better than previous similar studies.

  11. Pigment Epithelium-Derived Factor Reduces Apoptosis and Pro-Inflammatory Cytokine Gene Expression in a Murine Model of Focal Retinal Degeneration

    Directory of Open Access Journals (Sweden)

    Yujuan Wang

    2013-10-01

    Full Text Available AMD (age-related macular degeneration is a neurodegenerative disease causing irreversible central blindness in the elderly. Apoptosis and inflammation play important roles in AMD pathogenesis. PEDF (pigment epithelium-derived factor is a potent neurotrophic and anti-inflammatory glycoprotein that protects the retinal neurons and photoreceptors against cell death caused by pathological insults. We studied the effects of PEDF on focal retinal lesions in DKO rd8 (Ccl2 −/− /Cx3cr1 −/− on C57BL/6N [Crb1rd8 ] mice, a model for progressive, focal rd (retinal degeneration. First, we found a significant decrease in PEDF transcript expression in DKO rd8 mouse retina and RPE (retinal pigment epithelium than WT (wild-type, C57BL/6N. Next, cultured DKO rd8 RPE cells secreted lower levels of PEDF protein in the media than WT. Then the right eyes of DKO rd8 mice were injected intravitreously with recombinant human PEDF protein (1 μg, followed by a subconjunctival injection of PEDF (3 μg 4 weeks later. The untreated left eyes served as controls. The effect of PEDF was assessed by fundoscopy, ocular histopathology and A2E {[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl 1E,3E,5E,7E-hexatrienyl]-pyridinium} levels, as well as apoptotic and inflammatory molecules. The PEDF-treated eyes showed slower progression or attenuation of the focal retinal lesions, fewer and/or smaller photoreceptor and RPE degeneration, and significantly lower A2E, relative to the untreated eyes. In addition, lower expression of apoptotic and inflammatory molecules were detected in the PEDF-treated than untreated eyes. Our results establish that PEDF potently stabilizes photoreceptor degeneration via suppression of both apoptotic and inflammatory pathways. The multiple beneficial effects of PEDF represent a novel approach for potential AMD treatment.

  12. The novel NF-κB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Kanduri, M; Tobin, G; Åleskog, A; Nilsson, K; Rosenquist, R

    2011-01-01

    Nuclear factor-κB (NF-κB) is an important regulator of cell survival and has been shown to be constitutively active in chronic lymphocytic leukemia (CLL) cells. Recently, a novel NF-κB inhibitor, IMD-0354 (N-(3, 5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide), was shown to specifically inhibit the phosphorylation of IκBα by IkB kinases, thus preventing NF-κB release. In this study, we investigated if IMD-0354 can inhibit NF-κB activation and induce apoptosis in CLL cells in vitro. The rate of increase in apoptosis, drug sensitivity and DNA-binding activity of NF-κB were studied using Annexin V stainings, the fluorometric microculture cytotoxicity assay and electrophoretic mobility shift assay, respectively. Finally, the impact of IMD-0354 treatment on the expression of a set of apoptosis-related genes was investigated. The results clearly show that IMD-0354 induced apoptosis (mean 26%, range 8–48%) in CLL cells, independent of immunoglobulin heavy variable (IGHV) gene mutational status, and showed a dose-dependent cytotoxic effect. IMD-0354 treatment also significantly lowered the DNA-binding activity of NF-κB in CLL cells. In addition, we identified differences in expression levels of pro- and antiapoptotic genes following IMD-0354 treatment. In summary, our novel findings show that IMD-0354 can induce apoptosis in CLL cells, and thus merits further investigation as an anticancer agent in vivo

  13. The novel NF-κB inhibitor IMD-0354 induces apoptosis in chronic lymphocytic leukemia

    Science.gov (United States)

    Kanduri, M; Tobin, G; Åleskog, A; Nilsson, K; Rosenquist, R

    2011-01-01

    Nuclear factor-κB (NF-κB) is an important regulator of cell survival and has been shown to be constitutively active in chronic lymphocytic leukemia (CLL) cells. Recently, a novel NF-κB inhibitor, IMD-0354 (N-(3, 5-bis-trifluoromethyl-phenyl)-5-chloro-2-hydroxy-benzamide), was shown to specifically inhibit the phosphorylation of IκBα by IkB kinases, thus preventing NF-κB release. In this study, we investigated if IMD-0354 can inhibit NF-κB activation and induce apoptosis in CLL cells in vitro. The rate of increase in apoptosis, drug sensitivity and DNA-binding activity of NF-κB were studied using Annexin V stainings, the fluorometric microculture cytotoxicity assay and electrophoretic mobility shift assay, respectively. Finally, the impact of IMD-0354 treatment on the expression of a set of apoptosis-related genes was investigated. The results clearly show that IMD-0354 induced apoptosis (mean 26%, range 8–48%) in CLL cells, independent of immunoglobulin heavy variable (IGHV) gene mutational status, and showed a dose-dependent cytotoxic effect. IMD-0354 treatment also significantly lowered the DNA-binding activity of NF-κB in CLL cells. In addition, we identified differences in expression levels of pro- and antiapoptotic genes following IMD-0354 treatment. In summary, our novel findings show that IMD-0354 can induce apoptosis in CLL cells, and thus merits further investigation as an anticancer agent in vivo. PMID:22829125

  14. A hybrid computational method for the discovery of novel reproduction-related genes.

    Science.gov (United States)

    Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Guohua; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Uncovering the molecular mechanisms underlying reproduction is of great importance to infertility treatment and to the generation of healthy offspring. In this study, we discovered novel reproduction-related genes with a hybrid computational method, integrating three different types of method, which offered new clues for further reproduction research. This method was first executed on a weighted graph, constructed based on known protein-protein interactions, to search the shortest paths connecting any two known reproduction-related genes. Genes occurring in these paths were deemed to have a special relationship with reproduction. These newly discovered genes were filtered with a randomization test. Then, the remaining genes were further selected according to their associations with known reproduction-related genes measured by protein-protein interaction score and alignment score obtained by BLAST. The in-depth analysis of the high confidence novel reproduction genes revealed hidden mechanisms of reproduction and provided guidelines for further experimental validations.

  15. A Systematic Investigation into Aging Related Genes in Brain and Their Relationship with Alzheimer's Disease.

    Science.gov (United States)

    Meng, Guofeng; Zhong, Xiaoyan; Mei, Hongkang

    2016-01-01

    Aging, as a complex biological process, is accompanied by the accumulation of functional loses at different levels, which makes age to be the biggest risk factor to many neurological diseases. Even following decades of investigation, the process of aging is still far from being fully understood, especially at a systematic level. In this study, we identified aging related genes in brain by collecting the ones with sustained and consistent gene expression or DNA methylation changes in the aging process. Functional analysis with Gene Ontology to these genes suggested transcriptional regulators to be the most affected genes in the aging process. Transcription regulation analysis found some transcription factors, especially Specificity Protein 1 (SP1), to play important roles in regulating aging related gene expression. Module-based functional analysis indicated these genes to be associated with many well-known aging related pathways, supporting the validity of our approach to select aging related genes. Finally, we investigated the roles of aging related genes on Alzheimer's Disease (AD). We found that aging and AD related genes both involved some common pathways, which provided a possible explanation why aging made the brain more vulnerable to Alzheimer's Disease.

  16. Sugar signalling and gene expression in relation to carbohydrate ...

    Indian Academy of Sciences (India)

    Transgenic plants with elevated levels of sugars/sugar alcohols like fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usually impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes are expressed only at the time ...

  17. Effects of Phytosterol in Feed on Growth and Related Gene ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of phytosterol in a feed on growth and gene expression of broiler chickens. Methods: Seven isonitrogenous diets with graded levels of polyhydroxy phytosterol(Castastesrone) (15, 20, and 25 g/kg diet) and hydroxyphytosterol (â-sitosterol) (25, 50, and 75 g/kg diet) were used to feed broiler ...

  18. NOD1 gene polymorphisms in relation to aggressive periodontitis

    NARCIS (Netherlands)

    Loos, B.G.; Fiebig, A.; Nothnagel, M.; Jepsen, S.; Groessner-Schreiber, B.; Franke, A.; Jervoe-Storm, P.M.; Schenck, K.; van der Velden, U.; Schreiber, S.

    2009-01-01

    Background: NOD proteins are part of innate immunity mechanisms. They play a role in epithelial barrier functions and inflammatory responses to bacteria. Single nucleotide polymorphisms (SNPs) in the NOD1 gene have proven to be associated with inflammatory bowel disease (IBD) and asthma. Objective:

  19. Sugar signalling and gene expression in relation to carbohydrate ...

    Indian Academy of Sciences (India)

    Unknown

    function of sugars as a nutrient and a signalling molecule complicates the analysis of mechanisms involved in sig- nal transduction pathways (Rolland et al 2001). 3. Signal transduction cascades. Very little is known about the effect that sugars have on expression of genes involved in sugar signalling cascade. The sugar ...

  20. No relation between EFHC2 gene polymorphism and Idiopathic ...

    African Journals Online (AJOL)

    Background: Idiopathic generalized epilepsy (IGE) is an epilepsy form without an underlying brain lesion or neurological indication or symptom. Recent investigations on the genetic origins of IGE and its subtypes report that certain mutations of various ion and non-ion channels genes in the central nervous system may be ...

  1. Sugar signalling and gene expression in relation to carbohydrate ...

    Indian Academy of Sciences (India)

    Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca2+ and calmodulins, results in appropriate gene expression. A variety of ...

  2. Molecular Cloning and Expression of a Novel Gene Related to ...

    African Journals Online (AJOL)

    Lectins have been well studied and proved to play important roles in plant defense but information of legume lectins from non-legume plants has been rarely reported. A new legume lectin gene, designated as SmL1, was cloned from Salvia miltiorrhiza Bunge, a famous traditional Chinese medicinal plant. The cDNA of ...

  3. MicroRNA-134 regulates lung cancer cell H69 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianjun [Respiratory Department, The First Affiliated Hospital, Xi' an Jiaotong University, No. 277, Yanta West Road, Xi' an, Shaanxi (China); Gao, Fei [Ultrasound Department, Hua-shan Central Hospital of Xi' an, No. 8, Wanshou Middle Road, Xi' an, Shaanxi (China); Feng, Sifang; Yang, Tian [Respiratory Department, The First Affiliated Hospital, Xi' an Jiaotong University, No. 277, Yanta West Road, Xi' an, Shaanxi (China); Chen, Mingwei, E-mail: mingweichenxian@163.com [Respiratory Department, The First Affiliated Hospital, Xi' an Jiaotong University, No. 277, Yanta West Road, Xi' an, Shaanxi (China)

    2015-08-28

    MicroRNAs have been shown to act as crucial modulators during carcinogenesis. Recent studies have implied that miR-134 expression associated with epithelial-to-mesenchymal transition phenotype and invasive potential of NSCLC cells. Our study investigated the pathogenic implications of miR-134 in small cell lung cancer (SCLC). Overexpression or inhibition MiR-134 expression by miR-134 mimics or miR-134 inhibitors (anti-miR-134) in SCLC cell lines was detected using qRT-PCR. Lactate dehydrogenase (LDH) assay, MTT assays and flow cytometry were performed in order to clarify the growth and apoptosis of SCLC cells which had been transfected with miR-134 mimics or anti-miR-134. WWOX expression in H69 cells was detected by qRT-PCR and western blot, respectively. The results showed that overexpression miR-134 was significantly promoting SCLC cells growth and inhibit its apoptosis. In addition, reduced miR-134 expression was significantly correlated with cell growth inhibition and apoptosis promotion. Furthermore, transfection of miR-134 mimics into the SCLC cells markedly down-regulated the level of WWOX, whereas, anti-miR-134 up-regulated WWOX expression. We also found that overexpression WWOX attenuate miR-134 induced H69 cells growth, and promote cell apoptosis. Moreover, miR-134 promoted cell proliferation and inhibit apoptosis via the activation of ERK1/2 pathway. These findings suggest that miR-134 may be an ideal diagnostic and prognostic marker, and may be attributed to the molecular therapy of SCLC. - Highlights: • MiR-134 play roles in small cell lung cancer cell growth and apoptosis. • MiR-134 negative regulated the level of WWOX in H69 cells. • WWOX overexpression attenuate miR-134 induced H69 cells growth. • MiR-134 promotes cell growth via the activation of ERK1/2 pathway.

  4. Ethylene-Related Gene Expression Networks in Wood Formation

    Directory of Open Access Journals (Sweden)

    Carolin Seyfferth

    2018-03-01

    Full Text Available Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2 homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and

  5. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons

    OpenAIRE

    Frisina, Robert D.; Ding, Bo; Zhu, Xiaoxia; Walton, Joseph P.

    2016-01-01

    Age-related hearing loss (ARHL) -presbycusis - is the most prevalent neurodegenerative disease and number one communication disorder of our aged population; and affects hundreds of millions of people worldwide. Its prevalence is close to that of cardiovascular disease and arthritis, and can be a precursor to dementia. The auditory perceptual dysfunction is well understood, but knowledge of the biological bases of ARHL is still somewhat lacking. Surprisingly, there are no FDA-approved drugs fo...

  6. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons.

    Science.gov (United States)

    Frisina, Robert D; Ding, Bo; Zhu, Xiaoxia; Walton, Joseph P

    2016-09-23

    Age-related hearing loss (ARHL) -presbycusis - is the most prevalent neurodegenerative disease and number one communication disorder of our aged population; and affects hundreds of millions of people worldwide. Its prevalence is close to that of cardiovascular disease and arthritis, and can be a precursor to dementia. The auditory perceptual dysfunction is well understood, but knowledge of the biological bases of ARHL is still somewhat lacking. Surprisingly, there are no FDA-approved drugs for treatment. Based on our previous studies of human subjects, where we discovered relations between serum aldosterone levels and the severity of ARHL, we treated middle age mice with aldosterone, which normally declines with age in all mammals. We found that hearing thresholds and suprathreshold responses significantly improved in the aldosterone-treated mice compared to the non-treatment group. In terms of cellular and molecular mechanisms underlying this therapeutic effect, additional experiments revealed that spiral ganglion cell survival was significantly improved, mineralocorticoid receptors were upregulated via post-translational protein modifications, and age-related intrinsic and extrinsic apoptotic pathways were blocked by the aldosterone therapy. Taken together, these novel findings pave the way for translational drug development towards the first medication to prevent the progression of ARHL.

  7. Age-related hearing loss: prevention of threshold declines, cell loss and apoptosis in spiral ganglion neurons

    Science.gov (United States)

    Zhu, Xiaoxia; Walton, Joseph P.

    2016-01-01

    Age-related hearing loss (ARHL) -presbycusis - is the most prevalent neurodegenerative disease and number one communication disorder of our aged population; and affects hundreds of millions of people worldwide. Its prevalence is close to that of cardiovascular disease and arthritis, and can be a precursor to dementia. The auditory perceptual dysfunction is well understood, but knowledge of the biological bases of ARHL is still somewhat lacking. Surprisingly, there are no FDA-approved drugs for treatment. Based on our previous studies of human subjects, where we discovered relations between serum aldosterone levels and the severity of ARHL, we treated middle age mice with aldosterone, which normally declines with age in all mammals. We found that hearing thresholds and suprathreshold responses significantly improved in the aldosterone-treated mice compared to the non-treatment group. In terms of cellular and molecular mechanisms underlying this therapeutic effect, additional experiments revealed that spiral ganglion cell survival was significantly improved, mineralocorticoid receptors were upregulated via post-translational protein modifications, and age-related intrinsic and extrinsic apoptotic pathways were blocked by the aldosterone therapy. Taken together, these novel findings pave the way for translational drug development towards the first medication to prevent the progression of ARHL. PMID:27667674

  8. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2017-01-01

    Full Text Available As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients’ personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases.

  9. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation

    International Nuclear Information System (INIS)

    Yamakawa, Nobuhiro; Takahashi, Akihisa; Mori, Eiichiro; Imai, Yuichiro; Ohnishi, Ken; Kirita, Tadaaki; Ohnishi, Takeo; Furusawa, Yoshiya

    2008-01-01

    Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/μm), or Fe-ion beams (200 KeV/μm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/μm, and then decreased at values over 100 KeV/μm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53. (author)

  10. Effect of calcitonin gene-related peptide on the neurogenesis of rat adipose-derived stem cells in vitro.

    Directory of Open Access Journals (Sweden)

    Qin Yang

    Full Text Available Calcitonin gene-related peptide (CGRP promotes neuron recruitment and neurogenic activity. However, no evidence suggests that CGRP affects the ability of stem cells to differentiate toward neurogenesis. In this study, we genetically modified rat adipose-derived stem cells (ADSCs with the CGRP gene (CGRP-ADSCs and subsequently cultured in complete neural-induced medium. The formation of neurospheres, cellular morphology, and proliferative capacity of ADSCs were observed. In addition, the expression of the anti-apoptotic protein Bcl-2 and special markers of neural cells, such as Nestin, MAP2, RIP and GFAP, were evaluated using Western blot and immunocytochemistry analysis. The CGRP-ADSCs displayed a greater proliferation than un-transduced (ADSCs and Vector-transduced (Vector-ADSCs ADSCs (p<0.05, and lower rates of apoptosis, associated with the incremental expression of Bcl-2, were also observed for CGRP-ADSCs. Moreover, upon neural induction, CGRP-ADSCs formed markedly more and larger neurospheres and showed round cell bodies with more branching extensions contacted with neighboring cells widely. Furthermore, the expression levels of Nestin, MAP2, and RIP in CGRP-ADSCs were markedly increased, resulting in higher levels than the other groups (p<0.05; however, GFAP was distinctly undetectable until day 7, when slight GFAP expression was detected among all groups. Wnt signals, primarily Wnt 3a, Wnt 5a and β-catenin, regulate the neural differentiation of ADSCs, and CGRP gene expression apparently depends on canonical Wnt signals to promote the neurogenesis of ADSCs. Consequently, ADSCs genetically modified with CGRP exhibit stronger potential for differentiation and neurogenesis in vitro, potentially reflecting the usefulness of ADSCs as seed cells in therapeutic strategies for spinal cord injury.

  11. Selection of reference genes to quantify relative expression of ochratoxin A-related genes by Penicillium nordicum in dry-cured ham.

    Science.gov (United States)

    Bernáldez, Victoria; Córdoba, Juan J; Andrade, María J; Alía, Alberto; Rodríguez, Alicia

    2017-12-01

    Penicillium nordicum is an important and consistent producer of ochratoxin A (OTA) in NaCl-rich foods such as dry-cured ham. OTA is a toxic secondary metabolite which provokes negative effects on consumer health. Once OTA is produced in ham, this mycotoxin is difficult to remove. Since gene expression always precedes OTA production, analysis of expression of OTA-related genes by reverse transcription real-time PCR (RT-qPCR) could be a valuable tool to predict OTA contamination in ham. However scarce RT-qPCR protocols are properly validated leading to inconsistent data analyses. The objective of this study was to examine reference genes suitable for normalisation in designing and developing new RT-qPCR methods for quantifying the relative expression of genes involved in OTA biosynthesis (otapks and otanps) by P. nordicum on a dry-cured ham model system after 7 days of incubation. Firstly, primers based on three housekeeping genes commonly found in moulds, β-tubulin, COI and ITS, and on the otapks gene were designed. The primer pair F/R-npstr previously developed on the otanps gene was also used. Although most of the designed primers met the requirements needed to be used in qPCR assays, the primer pairs β-tubF1/R1, COI-F1/R1, ITSF2/R2 and otapksF3/R3 for the β-tubulin, COI, ITS and otapks genes, respectively, were selected due to their lowest C q value. Next, the two assumptions of the 2 -ΔΔC T method to evaluate the relative expression of the otapks and otanps genes were fulfilled for two of the three endogenous genes tested, β-tubulin and COI. However, β-tubulin was considered more proper as reference gene than COI under the environmental conditions assayed since its expression values by day 7 were more related to OTA production. Therefore, the two RT-qPCR methods for the analysis of the relative expression of the otapks and otanps genes have been properly validated and can be used as control tools to avoid or minimise the presence of OTA in ham. Copyright

  12. AT1 Receptor Gene Polymorphisms in relation to Postprandial Lipemia

    Directory of Open Access Journals (Sweden)

    B. Klop

    2012-01-01

    Full Text Available Background. Recent data suggest that the renin-angiotensin system may be involved in triglyceride (TG metabolism. We explored the effect of the common A1166C and C573T polymorphisms of the angiotensin II type 1 receptor (AT1R gene on postprandial lipemia. Methods. Eighty-two subjects measured daytime capillary TG, and postprandial lipemia was estimated as incremental area under the TG curve. The C573T and A1166C polymorphisms of the AT1R gene were determined. Results. Postprandial lipemia was significantly higher in homozygous carriers of the 1166-C allele (9.39±8.36 mM*h/L compared to homozygous carriers of the 1166-A allele (2.02±6.20 mM*h/L (P<0.05. Postprandial lipemia was similar for the different C573T polymorphisms. Conclusion. The 1166-C allele of the AT1R gene seems to be associated with increased postprandial lipemia. These data confirm the earlier described relationships between the renin-angiotensin axis and triglyceride metabolism.

  13. Up regulation of serum tumor necrosis factor-related apoptosis inducing ligand in juvenile-onset systemic lupus erythematosus: relations with disease activity, antibodies to double -stranded DNA, nephritis and neutropenia.

    Science.gov (United States)

    Ezzat, Mohamed H M; El-Gammasy, Tarek M A; Shaheen, Kareem Y A; El-Mezdawi, Ramzi A M; Youssef, Mervat S M

    2013-06-01

    Apoptosis is induced by binding of death receptor ligands, members of the tumor necrosis factor (TNF) superfamily, to their cognate receptors. It is suggested that TNF-related apoptosis inducing ligand (TRAIL) is involved in pathogenesis of juvenile-onset systemic lupus erythematosus (JSLE). This study aimed to assess TRAIL concentrations in sera of JSLE children and to determine their potential relationship with disease activity, anti-double-stranded DNA (anti-dsDNA) levels, neutropenia and renal involvement. Circulating levels of TRAIL were measured by enzyme-linked immunosorbent assay (ELISA) in serum samples obtained from 40 JSLE patients (20 with active and 20 with inactive disease) and 20 controls. The mean (SEM) serum TRAIL concentration in JSLE was 1750.7 (440.2) pg/mL. Serum TRAIL concentrations in patients were higher than those in controls (P nephritis compared to classes I and II nephritis (1970 [512] vs. 1330 [331] pg/mL; P lupus nephritis. © 2013 The Authors International Journal of Rheumatic Diseases © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  14. Study on apoptosis of prostate cancer cell induced by 125I seed irradiation

    International Nuclear Information System (INIS)

    Liao Anyan; Wang Junjie; Wang Jidong; Zhuang Hongqing; Zhao Yong

    2007-01-01

    Objective: To explore the mechanism of apoptosis induced by 125 I seed irradiation on PC3 cells. Methods: Human prostate cancer cell line PC3 was treated by irradiation of 125 I (2.77 cGy/h) with various dose. Agarose gel electrophoresis of DNA and flows cytometry were used to detect the apoptosis of PC3 cells and indirect immunofluorescence assay was used to detect the expression of Bcl-2. The activity of Caspase-3 was measured by Caspase Colorimetric Assay Kits. Results: Apoptosis of PC3 cells could be efficiently induced by 125 I seed irradiation. The apoptotic peaks were found by flow cytometry and DNA ladder appeared on 1.8% agarose gel. The activity of Caspase-3 on PC3 cells treated by 125 I seed irradiation was not changed significantly. Bcl-2 gene expression was down-regulated with the sample concentration increased. Conclusion: 125 I irradiation can induce the apoptosis of PC3 cells and the mechanism of apoptosis is related with down regulation of Bcl-2 gene expression and is not related with Caspase-3 activity. (authors)

  15. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    International Nuclear Information System (INIS)

    Noh, Woo Chul; Ham, Yong Ho

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10'-'9M) and tamoxifen (10'-'5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  16. [Phylogenetic analysis of closely related Leuconostoc citreum species based on partial housekeeping genes].

    Science.gov (United States)

    Lv, Qiang; Chen, Ming; Xu, Haiyan; Song, Yuqin; Sun, Zhihong; Dan, Tong; Sun, Tiansong

    2013-07-04

    Using the 16S rRNA, dnaA, murC and pyrG gene sequences, we identified the phylogenetic relationship among closely related Leuconostoc citreum species. Seven Leu. citreum strains originally isolated from sourdough were characterized by PCR methods to amplify the dnaA, murC and pyrG gene sequences, which were determined to assess the suitability as phylogenetic markers. Then, we estimated the genetic distance and constructed the phylogenetic trees including 16S rRNA and above mentioned three housekeeping genes combining with published corresponding sequences. By comparing the phylogenetic trees, the topology of three housekeeping genes trees were consistent with that of 16S rRNA gene. The homology of closely related Leu. citreum species among dnaA, murC, pyrG and 16S rRNA gene sequences were different, ranged from75.5% to 97.2%, 50.2% to 99.7%, 65.0% to 99.8% and 98.5% 100%, respectively. The phylogenetic relationship of three housekeeping genes sequences were highly consistent with the results of 16S rRNA gene sequence, while the genetic distance of these housekeeping genes were extremely high than 16S rRNA gene. Consequently, the dnaA, murC and pyrG gene are suitable for classification and identification closely related Leu. citreum species.

  17. Connecting myelin-related and synaptic dysfunction in schizophrenia with SNP-rich gene expression hubs.

    Science.gov (United States)

    Hegyi, Hedi

    2017-04-06

    Combining genome-wide mapping of SNP-rich regions in schizophrenics and gene expression data in all brain compartments across the human life span revealed that genes with promoters most frequently mutated in schizophrenia are expression hubs interacting with far more genes than the rest of the genome. We summed up the differentially methylated "expression neighbors" of genes that fall into one of 108 distinct schizophrenia-associated loci with high number of SNPs. Surprisingly, the number of expression neighbors of the genes in these loci were 35 times higher for the positively correlating genes (32 times higher for the negatively correlating ones) than for the rest of the ~16000 genes. While the genes in the 108 loci have little known impact in schizophrenia, we identified many more known schizophrenia-related important genes with a high degree of connectedness (e.g. MOBP, SYNGR1 and DGCR6), validating our approach. Both the most connected positive and negative hubs affected synapse-related genes the most, supporting the synaptic origin of schizophrenia. At least half of the top genes in both the correlating and anti-correlating categories are cancer-related, including oncogenes (RRAS and ALDOA), providing further insight into the observed inverse relationship between the two diseases.

  18. Effect of Diazoxide Preconditioning on Cultured Rat Myocardium Microvascular Endothelial Cells against Apoptosis and Relation of PI3K/Akt Pathway

    Directory of Open Access Journals (Sweden)

    Cao Su

    2014-03-01

    Full Text Available Background: Anti-apoptotic mechanism for cell protection on reperfusion may provide a new method to reduce reperfusion injury. Aims: The aim of the present study is to explore the effect of mitochondrial ATP sensitive potassium channel (Mito-KATP opener diazoxide (DZ preconditioning on hypoxia/ reoxygen (H/R injury of rat myocardium microvascular endothelial cells (MMECs against apoptosis and relation of PI3K/Akt pathway. Study Design: Animal experimentation. Methods: The rat MMECs were cultivated, and H/R model was made to imitate ischemia-reperfusion injury. The cells were seeds in 96-wellplates (100μL/hole or in 6cm diameter dishes (2 mL/dish with the density of 1×106/mL and randomly divided into 4 groups (n=6 each: control group (Group N, hypoxia-regoxygen group (Group H/R, Diazoxide preconditioning+H/R group (Group DZ and Diazoxide preconditioning +mitochondrial KATP blocker 5-hydroxydecanoate (5-HD + H/R group (Group DZ+5-HD. The cells were exposed to 2h hypoxia followed by 2h reoxygenation. Diazoxide 100μmol/L and diazoxide 100μmol/L+ 5-HD100μmol/L were added to the culture medium 2h before hypoxia in DZ and DZ+5-HD groups respectively. Each group was observed the proliferation in MTT, apoptotic rate in Annexin V-FITC/PI double standard, cell structure of Hoechst staining, and the levels of PI3K, Akt and p53 mRNA by RT-qPCR. Results: Compared with Group N, apoptotic rate of Group H/R increased (p<0.01 and the vitality decreased significantly (p<0.05, and the expression of PI3K, Akt and p53 mRNA elevated in Group H/R (p<0.05. Compared with Group H/R, apoptotic rate and p53 mRNA level of Group DZ depressed significantly (p<0.01, p<0.05, while the vitality, PI3K and Akt mRNA levels increased (p<0.05. Compared with Group DZ, apoptotic rate and p53 mRNA level of Group DZ+5-HD increased significantly (p<0.01, p<0.05, but the vitality, PI3K and Akt mRNA levels decreased (p<0.05. Conclusion: Under the condition of H/R, mito-KATP opened by DZ

  19. Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS.

    Science.gov (United States)

    Pan, David Z; Garske, Kristina M; Alvarez, Marcus; Bhagat, Yash V; Boocock, James; Nikkola, Elina; Miao, Zong; Raulerson, Chelsea K; Cantor, Rita M; Civelek, Mete; Glastonbury, Craig A; Small, Kerrin S; Boehnke, Michael; Lusis, Aldons J; Sinsheimer, Janet S; Mohlke, Karen L; Laakso, Markku; Pajukanta, Päivi; Ko, Arthur

    2018-04-17

    Increased adiposity is a hallmark of obesity and overweight, which affect 2.2 billion people world-wide. Understanding the genetic and molecular mechanisms that underlie obesity-related phenotypes can help to improve treatment options and drug development. Here we perform promoter Capture Hi-C in human adipocytes to investigate interactions between gene promoters and distal elements as a transcription-regulating mechanism contributing to these phenotypes. We find that promoter-interacting elements in human adipocytes are enriched for adipose-related transcription factor motifs, such as PPARG and CEBPB, and contribute to heritability of cis-regulated gene expression. We further intersect these data with published genome-wide association studies for BMI and BMI-related metabolic traits to identify the genes that are under genetic cis regulation in human adipocytes via chromosomal interactions. This integrative genomics approach identifies four cis-eQTL-eGene relationships associated with BMI or obesity-related traits, including rs4776984 and MAP2K5, which we further confirm by EMSA, and highlights 38 additional candidate genes.

  20. Association of Serum Tumor Necrosis Factor-Related Apoptosis Inducing Ligand with Body Fat Distribution as Assessed by Dual X-Rays Absorptiometry

    Directory of Open Access Journals (Sweden)

    Carlo Cervellati

    2014-01-01

    Full Text Available A low chronic inflammation mediated by cytokine release is considered a major pathogenic mechanism accounting for the higher risk of cardiovascular disease in the overweight/obese population. In this context, although the existence of a possible interaction between soluble tumor necrosis factor- (TNF- related apoptosis inducing ligand (TRAIL and quantity and localization, of adiposity in the body has been hypothesized, no studies have yet investigated this link by radiologic techniques able to assess directly fat mass (FM in different body regions. To address this issue, we assessed body fat distribution by dual X-rays absorptiometry (DXA in a sample of 103 women and investigated the possible association between the derived adiposity measures and serum TRAIL concentration. The level of TRAIL showed a positive and independent correlation with arms FM (P<0.05, trunk FM (P<0.001 and trunk FM% (P<0.05, total FM and total FM% (P<0.001 for both, and an inverse association with legs FM% (P<0.05. Only trunk FM retained a significant correlation (P<0.05 with TRAIL after adjusting for all the other indices of regional adiposity. In conclusion, from our study it emerged a significant and independent association of serum TRAIL levels with overall, and, mainly, central adiposity. Further studies are needed to longitudinally investigate the cause-effect relationship between change in body fat distribution and TRAIL.

  1. miR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED.

    Science.gov (United States)

    Incoronato, Mariarosaria; Garofalo, Michela; Urso, Loredana; Romano, Giulia; Quintavalle, Cristina; Zanca, Ciro; Iaboni, Margherita; Nuovo, Gerald; Croce, Carlo Maria; Condorelli, Gerolama

    2010-05-01

    PED/PEA-15 (PED) is a death effector domain family member of 15 kDa with a broad antiapoptotic function found overexpressed in a number of different human tumors, including lung cancer. To date, the mechanisms that regulate PED expression are unknown. Therefore, we address this point by the identification of microRNAs that in non-small cell lung cancer (NSCLC) modulate PED levels. In this work, we identify miR-212 as a negative regulator of PED expression. We also show that ectopic expression of this miR increases tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death in NSCLC cells. In contrast, inhibition of endogenous miR-212 by use of antago-miR results in increase of PED protein expression and resistance to TRAIL treatment. Besides, in NSCLC, we show both in vitro and in vivo that PED and miR-212 expressions are inversely correlated, that is, PED is upregulated and miR-212 is rarely expressed. In conclusion, these findings suggest that miR-212 should be considered as a tumor suppressor because it negatively regulates the antiapoptotic protein PED and regulates TRAIL sensitivity. (c)2010 AACR.

  2. Colorectal cancer: can nutrients modulate NF-kappaB and apoptosis?

    Science.gov (United States)

    Ravasco, Paula; Aranha, Márcia M; Borralho, Pedro M; Moreira da Silva, Isabel B; Correia, Luís; Fernandes, Afonso; Rodrigues, Cecília M P; Camilo, Maria

    2010-02-01

    NF-kappaB may promote carcinogenesis by altering cell cycle, inflammatory responses and apoptosis-related gene expression, though cell mechanisms relating diet and colorectal cancer (CRC) remain unveiled in humans. This study in patients with CRC aimed to explore potential interactions between the dietary pattern, nutrient intake, expression of NF-kappaB, apoptosis and tumour histological aggressiveness. Usual diet was assessed by diet history; nutrient composition was determined by DIETPLAN software. Histologically classified patient tissue samples (adenoma, adenocarcinoma and normal surrounding mucosa) were obtained via biopsies during colonoscopy (n=16) or surgery (n=8). NF-kappaB expression was determined by immunohistochemistry and apoptosis by TUNEL assay. NF-kappaB expression and apoptosis were higher in tumours (p<0.01), greater along with histological aggressiveness (p<0.01). Highest intake terciles of animal protein, refined carbohydrates, saturated fat, n-6 fatty acids and alcohol were associated with higher NF-kappaB, apoptosis and histological aggressiveness (p<0.01); the opposite tissue characteristics were associated with highest intake terciles of n-3 fatty acids, fibre, vitamin E, flavonoids, isoflavones, beta-carotene and selenium (p<0.002). Additionally, higher n-6:n-3 fatty acids ratio (median 26:1) was associated with higher NF-kappaB (p<0.006) and apoptosis (p<0.01), and more aggressive histology (p<0.01). Conversely, lower n-6:n-3 fatty acids ratio (median 6:1) was associated with lower NF-kappaB (p<0.002) and apoptosis (p<0.002), and less aggressive histology (p<0.002). NF-kappaB expression and apoptosis increased from adenoma to poorly differentiated adenocarcinoma. This degenerative transition, recognized as key in carcinogenesis, appear to have been influenced by a diet promoting a pro-inflammatory milieu that can trigger NF-kappaB. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes

    International Nuclear Information System (INIS)

    Litlekalsoy, Jorunn; Rostad, Kari; Kalland, Karl-Henning; Hostmark, Jens G.; Laerum, Ole Didrik

    2016-01-01

    The purpose of this study was to evaluate invasive and metastatic potential of urothelial cancer by investigating differential expression of various clock genes/proteins participating in the 24 h circadian rhythms and to compare these gene expressions with transcription of other cancer-associated genes. Twenty seven paired samples of tumour and benign tissue collected from patients who underwent cystectomy were analysed and compared to 15 samples of normal bladder tissue taken from patients who underwent cystoscopy for benign prostate hyperplasia (unrelated donors). Immunohistochemical analyses were made for clock and clock-related proteins. In addition, the gene-expression levels of 22 genes (clock genes, casein kinases, oncogenes, tumour suppressor genes and cytokeratins) were analysed by real-time quantitative PCR (qPCR). Considerable up- or down-regulation and altered cellular distribution of different clock proteins, a reduction of casein kinase1A1 (CSNK1A1) and increase of casein kinase alpha 1 E (CSNK1E) were found. The pattern was significantly correlated with simultaneous up-regulation of stimulatory tumour markers, and a down-regulation of several suppressor genes. The pattern was mainly seen in aneuploid high-grade cancers. Considerable alterations were also found in the neighbouring bladder mucosa. The close correlation between altered expression of various clock genes and common tumour markers in urothelial cancer indicates that disturbed function in the cellular clock work may be an important additional mechanism contributing to cancer progression and malignant behaviour. The online version of this article (doi:10.1186/s12885-016-2580-y) contains supplementary material, which is available to authorized users

  4. Time-Dependent Regulation of Apoptosis by AEN and BAX in Response to 2-Aminoanthracene Dietary Consumption.

    Science.gov (United States)

    Gato, Worlanyo Eric; McGee, Stacey R; Hales, Dale B; Means, Jay C

    2014-01-01

    The modulation of the toxic effects of 2-aminoanthracene (2AA) on the liver by apoptosis was investigated. Fisher-344 (F344) rats were exposed to various concentrations of 2AA for 14 and 28 days. The arylamine 2AA is an aromatic hydrocarbon employed in manufacturing chemicals, dyes, inks, and it is also a curing agent in epoxy resins and polyurethanes. 2AA has been detected in tobacco smoke and cooked foods. Analysis of total messenger ribonucleic acid (mRNA) extracts from liver for apoptosis-related gene expression changes in apoptosis enhancing nuclease (AEN), Bcl2-associated X protein (BAX), CASP3, Jun proto-oncogene (JUN), murine double minute-2 p53 binding protein homolog (MDM2), tumor protein p53 (p53), and GAPDH genes by quantitative real-time polymerase chain reaction (qRT-PCR) was coupled with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase-3 (Casp3) activity assays. Specific apoptosis staining result does not seem to show significant difference between control and treated animals. This may be due to freeze-thaw artifacts observed in the liver samples. However, there appears to be a greater level of apoptosis in medium- and high-dose (MD and HD) 2AA treated animals. Analyses of apoptosis-related genes seem to show AEN and BAX as the main targets in the induction of apoptosis in response to 2AA exposure, though p53, MDM2, and JUN may play supporting roles. Dose-dependent increases in mRNA expression were observed in all genes except Casp3. BAX was very highly expressed in the HD rats belonging to the 2-week exposure group. This trend was not observed in the animals treated for 4 weeks. Instead, AEN was rather very highly expressed in the liver of the MD animals that were treated with 2AA for 28 days.

  5. Gene expression profiling reveals candidate genes related to residual feed intake in duodenum of laying ducks.

    Science.gov (United States)

    Zeng, T; Huang, L; Ren, J; Chen, L; Tian, Y; Huang, Y; Zhang, H; Du, J; Lu, L

    2017-12-01

    Feed represents two-thirds of the total costs of poultry production, especially in developing countries. Improvement in feed efficiency would reduce the amount of feed required for production (growth or laying), the production cost, and the amount of nitrogenous waste. The most commonly used measures for feed efficiency are feed conversion ratio (FCR) and residual feed intake (RFI). As a more suitable indicator assessing feed efficiency, RFI is defined as the difference between observed and expected feed intake based on maintenance and growth or laying. However, the genetic and biological mechanisms regulating RFI are largely unknown. Identifying molecular mechanisms explaining divergence in RFI in laying ducks would lead to the development of early detection methods for the selection of more efficient breeding poultry. The objective of this study was to identify duodenum genes and pathways through transcriptional profiling in 2 extreme RFI phenotypes (HRFI and LRFI) of the duck population. Phenotypic aspects of feed efficiency showed that RFI was strongly positive with FCR and feed intake (FI). Transcriptomic analysis identified 35 differentially expressed genes between LRFI and HRFI ducks. These genes play an important role in metabolism, digestibility, secretion, and innate immunity including (), (), (), β (), and (). These results improve our knowledge of the biological basis underlying RFI, which would be useful for further investigations of key candidate genes for RFI and for the development of biomarkers.

  6. A data mining approach for classifying DNA repair genes into ageing-related or non-ageing-related

    Directory of Open Access Journals (Sweden)

    Vasieva Olga

    2011-01-01

    Full Text Available Abstract Background The ageing of the worldwide population means there is a growing need for research on the biology of ageing. DNA damage is likely a key contributor to the ageing process and elucidating the role of different DNA repair systems in ageing is of great interest. In this paper we propose a data mining approach, based on classification methods (decision trees and Naive Bayes, for analysing data about human DNA repair genes. The goal is to build classification models that allow us to discriminate between ageing-related and non-ageing-related DNA repair genes, in order to better understand their different properties. Results The main patterns discovered by the classification methods are as follows: (a the number of protein-protein interactions was a predictor of DNA repair proteins being ageing-related; (b the use of predictor attributes based on protein-protein interactions considerably increased predictive accuracy of attributes based on Gene Ontology (GO annotations; (c GO terms related to "response to stimulus" seem reasonably good predictors of ageing-relatedness for DNA repair genes; (d interaction with the XRCC5 (Ku80 protein is a strong predictor of ageing-relatedness for DNA repair genes; and (e DNA repair genes with a high expression in T lymphocytes are more likely to be ageing-related. Conclusions The above patterns are broadly integrated in an analysis discussing relations between Ku, the non-homologous end joining DNA repair pathway, ageing and lymphocyte development. These patterns and their analysis support non-homologous end joining double strand break repair as central to the ageing-relatedness of DNA repair genes. Our work also showcases the use of protein interaction partners to improve accuracy in data mining methods and our approach could be applied to other ageing-related pathways.

  7. Gene expression changes for antioxidants pathways in the mouse cochlea: relations to age-related hearing deficits.

    Directory of Open Access Journals (Sweden)

    Sherif F Tadros

    Full Text Available Age-related hearing loss - presbycusis - is the number one neurodegenerative disorder and top communication deficit of our aged population. Like many aging disorders of the nervous system, damage from free radicals linked to production of reactive oxygen and/or nitrogen species (ROS and RNS, respectively may play key roles in disease progression. The efficacy of the antioxidant systems, e.g., glutathione and thioredoxin, is an important factor in pathophysiology of the aging nervous system. In this investigation, relations between the expression of antioxidant-related genes in the auditory portion of the inner ear - cochlea, and age-related hearing loss was explored for CBA/CaJ mice. Forty mice were classified into four groups according to age and degree of hearing loss. Cochlear mRNA samples were collected and cDNA generated. Using Affymetrix® GeneChip, the expressions of 56 antioxidant-related gene probes were analyzed to estimate the differences in gene expression between the four subject groups. The expression of Glutathione peroxidase 6, Gpx6; Thioredoxin reductase 1, Txnrd1; Isocitrate dehydrogenase 1, Idh1; and Heat shock protein 1, Hspb1; were significantly different, or showed large fold-change differences between subject groups. The Gpx6, Txnrd1 and Hspb1 gene expression changes were validated using qPCR. The Gpx6 gene was upregulated while the Txnrd1 gene was downregulated with age/hearing loss. The Hspb1 gene was found to be downregulated in middle-aged animals as well as those with mild presbycusis, whereas it was upregulated in those with severe presbycusis. These results facilitate development of future interventions to predict, prevent or slow down the progression of presbycusis.

  8. TNF/TNFR1 pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    International Nuclear Information System (INIS)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing

    2014-01-01

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR 1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR 1 , TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR 1 was suppressed with its siRNA. The protein levels of TNFα, TNFR 1 and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR 1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR 1 , Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR 1 –siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR 1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners.

  9. Lower activation-induced T-cell apoptosis is related to the pathological immune response in secondary infection with hetero-sero