WorldWideScience

Sample records for apoptosis proliferation interaction

  1. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  2. Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation

    OpenAIRE

    Sakao Seiichiro; Tatsumi Koichiro; Voelkel Norbert F

    2009-01-01

    Abstract Severe pulmonary arterial hypertension, whether idiopathic or secondary, is characterized by structural alterations of microscopically small pulmonary arterioles. The vascular lesions in this group of pulmonary hypertensive diseases show actively proliferating endothelial cells without evidence of apoptosis. In this article, we review pathogenetic concepts of severe pulmonary arterial hypertension and explain the term "complex vascular lesion ", commonly named "plexiform lesion", wit...

  3. Molecular basis for the interplay of apoptosis and proliferation mediated by Bcl-xL:Bim interactions in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Highlights: ► Direct role of Bcl-2 protein interactions in cell proliferation is not clear. ► Designed Bcl-xL mutants show opposite effects on apoptosis and proliferation. ► Disrupting Bcl-xL:Bim interaction increased apoptosis in pancreatic cancer. ► Disrupting Bcl-xL:Bim interaction decreased proliferation in pancreatic cancer. ► Bcl-xL:Bim interaction can control both apoptosis and proliferation. -- Abstract: A major mechanism through which cancer cells avoid apoptosis is by promoting the association of anti-apoptotic members of the pro-survival Bcl-2 protein family (like Bcl-2 and Bcl-xL) with BH3 domain-only proteins (like Bim and Bid). Apoptosis and cell proliferation have been shown to be linked for many cancers but the molecular basis for this link is far from understood. We have identified the Bcl-xL:Bim protein–protein interface as a direct regulator of proliferation and apoptosis in pancreatic cancer cells. We were able to predict and subsequently verify experimentally the effect of various Bcl-xL single-point mutants (at the position A142) on binding to Bim by structural analysis and computational modeling of the inter-residue interactions at the Bcl-xL:Bim protein–protein interface. The mutants A142N, A142Q, and A142Y decreased binding of Bim to Bcl-xL and A142S increased this binding. The Bcl-xL mutants, with decreased affinity for Bim, caused an increase in apoptosis and a corresponding decrease in cell proliferation. However, we could prevent these effects by introducing a small interfering RNA (siRNA) targeted at Bim. These results show a novel role played by the Bcl-xL:Bim interaction in regulating proliferation of pancreatic cancer cells at the expense of apoptosis. This study presents a physiologically relevant model of the Bcl-xL:Bim interface that can be used for rational therapeutic design for the inhibition of proliferation and cancer cell resistance to apoptosis.

  4. Molecular basis for the interplay of apoptosis and proliferation mediated by Bcl-xL:Bim interactions in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Abrol, Ravinder, E-mail: abrol@wag.caltech.edu [Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Edderkaoui, Mouad [Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, CA 90073 (United States); Goddard, William A. [Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Pandol, Stephen J., E-mail: stephen.pandol@va.gov [Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, CA 90073 (United States)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Direct role of Bcl-2 protein interactions in cell proliferation is not clear. Black-Right-Pointing-Pointer Designed Bcl-xL mutants show opposite effects on apoptosis and proliferation. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction increased apoptosis in pancreatic cancer. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction decreased proliferation in pancreatic cancer. Black-Right-Pointing-Pointer Bcl-xL:Bim interaction can control both apoptosis and proliferation. -- Abstract: A major mechanism through which cancer cells avoid apoptosis is by promoting the association of anti-apoptotic members of the pro-survival Bcl-2 protein family (like Bcl-2 and Bcl-xL) with BH{sub 3} domain-only proteins (like Bim and Bid). Apoptosis and cell proliferation have been shown to be linked for many cancers but the molecular basis for this link is far from understood. We have identified the Bcl-xL:Bim protein-protein interface as a direct regulator of proliferation and apoptosis in pancreatic cancer cells. We were able to predict and subsequently verify experimentally the effect of various Bcl-xL single-point mutants (at the position A142) on binding to Bim by structural analysis and computational modeling of the inter-residue interactions at the Bcl-xL:Bim protein-protein interface. The mutants A142N, A142Q, and A142Y decreased binding of Bim to Bcl-xL and A142S increased this binding. The Bcl-xL mutants, with decreased affinity for Bim, caused an increase in apoptosis and a corresponding decrease in cell proliferation. However, we could prevent these effects by introducing a small interfering RNA (siRNA) targeted at Bim. These results show a novel role played by the Bcl-xL:Bim interaction in regulating proliferation of pancreatic cancer cells at the expense of apoptosis. This study presents a physiologically relevant model of the Bcl-xL:Bim interface that can be used for rational therapeutic design for the

  5. GW627368X inhibits proliferation and induces apoptosis in cervical cancer by interfering with EP4/EGFR interactive signaling.

    Science.gov (United States)

    Parida, S; Pal, I; Parekh, A; Thakur, B; Bharti, R; Das, S; Mandal, M

    2016-01-01

    PGE2, the major product of cyclooxygenases implicated in carcinogenesis, is significantly upregulated in cervical cancer. PGE2 via prostanoid receptor EP4 stimulates proliferation and motility while inhibiting apoptosis and immune surveillance. It promotes angiogenesis by stimulating the production of pro-angiogenic factors. The present study demonstrates GW627368X, a highly selective competitive EP4 antagonist, which hinders cervical cancer progression by inhibiting EP4/epithelial growth factor receptor (EGFR) interactive signaling. GW627368X reduced protein kinase A (PKA) phosphorylation which in turn leads to decreased cAMP response element-binding protein (CREB) activation. Decreased PKA phosphorylation also directly enhanced Bax activity and in part reduced glycogen synthase kinase 3 (GSK3)β phosphorylation. Owing to the interactive signaling between EP4 and EGFR, GW627368X lowered EGFR phosphorylation in turn reducing Akt, mitogen-activated protein kinase (MAPK) and GSK3β activity significantly. Sublethal dose of GW627368X was found to reduce the nuclear translocation of β-catenin in a time dependent manner along with time-dependent decrease in cytoplasmic as well as whole-cell β-catenin. Decreased CREB and β-catenin transcriptional activity restricts the aberrant transcription of key genes like EP4, cyclooxygenase (COX)-2, vascular endothelial growth factor and c-myc, which ultimately control cell survival, proliferation and angiogenesis. Reduced activity of EGFR resulted in enhanced expression of 15-hydroxyprostaglandin dehydrogenase increasing PGE2 degradation thereby blocking a positive feedback loop. In xenograft model, dose-dependent decrease in cancer proliferation was observed characterized by reduction in tumor mass and volume and a marked decrease in Ki67 expression. A diminished CD31 specific staining signified decreased tumor angiogenesis. Reduced expression of pAkt, pMAPK, pEGFR and COX-2 validated in vitro results. GW627368X therefore

  6. Regulation of apoptosis by peroxisome proliferators.

    Science.gov (United States)

    Roberts, Ruth A; Michel, Cecile; Coyle, Beth; Freathy, Caroline; Cain, Kelvin; Boitier, Eric

    2004-04-01

    Peroxisome proliferators (PPs) constitute a large and chemically diverse family of non-genotoxic rodent hepatocarcinogens that activate the PP-activated receptor alpha (PPARalpha). In order to investigate the hypothesis that PPs elicit their carcinogenic effects through the suppression of apoptosis, we established an in vitro assay for apoptosis using both primary rat hepatocytes and the FaO rat hepatoma cell line. Apoptosis was induced by transforming growth factor beta1 (TGFbeta1), the physiological negative regulator of liver growth. In this system, PPs could suppress both spontaneous and TGFbeta1-induced apoptosis. In order to understand the mechanisms of this regulation of apoptosis, we conducted microarray analysis followed by pathway-specific gene clustering in TGFbeta1-treated cells. After treatment, 76 genes were up-regulated and 185 were down-regulated more than 1.5-fold. Cluster analysis of up-regulated genes revealed three clusters, A-C. Cluster A (4h) was associated with 12% apoptosis and consisted of genes mainly of the cytoskeleton and extracellular matrix such as troponin and the proteoglycan SDC4. In cluster B (8h; 25% apoptosis), there were many pro- and anti-apoptotic genes such as XIAP, BAK1 and BAD, whereas at 16h (40% apoptosis) the regulated genes were mainly those of the cellular stress pathways such as the genes implicated in the activation of the transcription factor NFkappab. Genes found down-regulated in response to TGFbeta1 were mainly those associated with oxidative stress and several genes implicated in glutathione production and maintenance. Thus, TGFbeta1 may induce apoptosis via a down regulation of oxidant defence leading to the generation of reactive oxygen species. The ability of PPs to impact on these apoptosis pathways remains to be determined. To approach this question, we have developed a technique using laser capture microdissection of livers treated with the PP, clofibric acid coupled with gene expression array analysis

  7. Factors influencing ER subtype-mediated cell proliferation and apoptosis

    OpenAIRE

    Evers, N.M.

    2014-01-01

      The aim of the current thesis is to elucidate the role of estrogen receptor (ER)αand ERβin cell proliferation and apoptosis induced by estrogenic compounds. Special attention is paid to the importance of the receptor preference of the estrogenic compounds, the cellular ERα/ERβratio, the role of coregulators, and ER-mediated induction of protein expression. In chapter 1 estrogenic compounds and their interaction with estrogen receptors are described and the two dif...

  8. Effect of Scopoletin on PC3 Cell Proliferation and Apoptosis

    Institute of Scientific and Technical Information of China (English)

    LiuXue-li; ZhangLiang; FuXin-lu; ChenKai; QianBo-chu

    2005-01-01

    To investigate the effect of scopoletin on cell proliferation and apoptosis of PC3 cells.Methods Cell growm curve,MMT assay,and acid phosphatase activity (ACP)were used to determine cell proliferation.Coomassie brillient blue assay was used to measure the content of protein in cells.Light microscope,transmission electronmicroscope,and fluorescence microscope were used to observe scopoletin-induced morphological changes. Apoptosis rate and cell cycle distribution were dctermined by flow cytometry.Results The IC50 of scopoletin for inhibiting PC3,PAA,and Hela cell proliferation was (157±25), (154±51),and (294±100)mg/L,respectively.Scopoletin induced a marked time and concentration-dependent inhibition of PC3 cell proliferation.Scopoletin reduced the protein content and decreased the ACP level in PC3 cells in a concentration dependent manlier.Cells treated by scopoletin showedtypical morphologic changes of apoptosis by light microscope,fluorescence microscope, and transmission electronmicroscope.Apoptosis rate was 0.3%,2.1%,9.3%and 35%for scopoletin 0,100,200,and 400 mg/L,respectively,and cells in G2 phase decreased markedly after being treated with scopoletin.Conclusion Scopoletin inhibited PC3 proliferation by inducing apoptosis of PC3 cells.

  9. Relationship between Cell Proliferation and Apoptosis in Cervical Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the relationship between cell proliferation and apoptosis in cervical carcinoma and its clinical significance.Methods The cell proliferation and apoptosis of cervical epithelial cells in archival formalin-fixed,paraffin-embedded tissue sections of normal cervix ,cervical intraepithelial neoplasms(CN) and cervical squamous carcinoma were tested by using immunohistochemistry assay and DNA nick end-labeling technigue.The proliferation index(PI) and apoptosis index(AI) were calculated and their correlation with clinical and pathological data was analyzed. Results PI was gradually increased,but the AI and AI/PI ratio decreased from normal cervical epithelium,CIN to cervical carcinoma. There was no significant relationship among cell proliferation,apoptosis,clinical stages and pathological grades.High AI was always asso-ciated with a poor prognosis of the patients. Conclusion Cell proliferation and apoptosis allow to distinguish among normal epithelium,CIN and cervical carcinoma and are useful for the assessment of the malignant potential of tumor tissues.

  10. Octreotide inhibits proliferation and induces apoptosis of hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-lin LIU; Li HUO; Lei WANG

    2004-01-01

    AIM: To study the effect of octreotide on cell proliferation and apoptosis in different hepatocellular carcinoma (HCC) cells and hepatocytes. METHODS: The proliferation of HCC cells (HepG2, SMMC-7721) and hepatocytes (L-02) was determined by MTT assay. Apoptosis was detected either by fluorescent staining, transmission electron microscopy or flow cytometry. The content of AFP in the supernatant of cultured HCC cells was determined by electrochemiluminescence immunoassay. The expression of SSTR subtypes was identified by RT-PCR.RESULTS: The proliferation of HCC cells and L-02 cells was inhibited significantly by octreotide (0.25, 0.5, 1.0,2.0 and 4.0 mg/L). However, the apoptosis of HCC cells markedly increased in a concentration-dependent manner.Both the apoptosis index and the percentage of apoptotic cells in L-02 cells were significantly lower than those of HepG2 and SMMC-7721 cells. The content of AFP in the supematant of cultured HepG2 cells treated with octreotide was also statistically reduced. Furthermore, SSTR2 and SSTR4 were positive in both the hepatocellular carcinoma cells and in the L-02 cells. SSTR3 was only expressed in the two heptatocellular carcinoma cells, and SSTR5 was found in the SMMC-7721 cells. No SSTR1 was detected either in HCC cells or L-02 cells. CONCLUSIONS:Apoptosis induction is a major mechanism of octreotide inhibition on hepatocellular cells. SSTR3 is expressed in the HCC cells, but not in the L-02 cells, which suggests a molecular basis for the HCC-selective effects of octreotide.

  11. Obestatin changes proliferation, differentiation and apoptosis of porcine preadipocytes.

    Science.gov (United States)

    Tang, Shengqiu; Dong, Xiaoying; Zhang, Wei

    2014-02-01

    Obestatin, originally identified and purified from rat stomach extracts, was reported to bind to orphan G protein-coupled receptor, GPR39, and inhibit appetite and gastric motility. This study was conducted to investigate the effects of porcine obestatin on proliferation, differentiation and apoptosis of porcine preadipocytes isolated from subcutaneous fat of piglets. At indicated times of culture, morphology of preadipocytes and accumulated lipid droplets within the cells were identified by invert microscope. After treating with obestatin (0, 0.1, 1, 10 and 100nM), cell proliferation was measured by MTT method and protein expression of CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), Caspase-7 and Caspase-9 was determined by Western Blot, mRNA expression of GPR39 and Caspase-3 was analyzed by RT-PCR, and the activity of Caspase-3 was measured by spectrophotometric method. The results showed that obestatin had no effect on GPR39 expression, while promotes the optical density (OD) value of cells, enhanced protein expression of PPARγ and C/EBPa, decreased mRNA expression and activity of Caspase-3, and inhibited protein expression of Caspase-7 and Caspase-9 in a dose-dependent manner. These results suggested that obestatin enhances proliferation and differentiation of preadipocytes promoting PPARγ and C/EBPa expression, and inhibiting preadipocyte apoptosis by decreasing expression of Caspase-3, Caspase-7 and Caspase-9. PMID:24534601

  12. PCBP2 Modulates Neural Apoptosis and Astrocyte Proliferation After Spinal Cord Injury.

    Science.gov (United States)

    Mao, Xingxing; Liu, Jin; Chen, Chen; Zhang, Weidong; Qian, Rong; Chen, Xinlei; Lu, Hongjian; Ge, Jianbing; Zhao, Chengjin; Zhang, Dongmei; Wang, Youhua

    2016-09-01

    PCBP2, a member of the poly(C)-binding protein (PCBP) family, plays a pivotal role in posttranscriptional and translational regulation by interacting with single-stranded poly(C) motifs in target mRNAs. It is reported that several PCBP family members are involved in human malignancies. However, the distribution and function of PCBP2 in the central nervous system (CNS) remain unclear. In this study, we performed an acute spinal cord injury (SCI) model in adult rats and investigated the dynamic changes of PCBP2 expression in the spinal cord. Western blot and immunohistochemistry analysis revealed that PCBP2 presented in normal spinal cord. It gradually increased, reached a peak at 3 day, and then declined to basal levels at 14 days after SCI. We observed that the expression of PCBP2 was enhanced in the gray and white matter. Immunofluorescence indicated that PCBP2 was located in the neurons and astrocytes. Moreover, colocalization of PCBP2/active caspase-3 was detected in neurons, and colocalization of PCBP2/proliferating cell nuclear antigen was detected in astrocytes after SCI. These results indicated that PCBP2 might play an important role in neuronal apoptosis and astrocyte proliferation. In vitro, PCBP2-specific siRNA-transfected neuron showed significantly decrease of neuronal apoptosis and expression of cell cycle related proteins following glutamate stimulation. Meanwhile, PCBP2 knockdown also reduced primary astrocytes proliferation. All above indicated that PCBP2 might play a crucial role in cell proliferation and apoptosis. Collectively, our data suggested that PCBP2 might play important roles in CNS pathophysiology after SCI. PMID:27209304

  13. Host-pathogen interactions during apoptosis

    Indian Academy of Sciences (India)

    Seyed E Hasnain; Rasheeda Begum; K V A Ramaiah; Sudhir Sahdev; E M Shajil; Tarvinder K Taneja; Manjari Mohan; M Athar; Nand K Sah; M Krishnaveni

    2003-04-01

    Host pathogen interaction results in a variety of responses, which include phagocytosis of the pathogen, release of cytokines, secretion of toxins, as well as production of reactive oxygen species (ROS). Recent studies have shown that many pathogens exert control on the processes that regulate apoptosis in the host. The induction of apoptosis upon infection results from a complex interaction of parasite proteins with cellular host proteins. Abrogation of host cell apoptosis is often beneficial for the pathogen and results in a successful host invasion. However, in some cases, it has been shown that induction of apoptosis in the infected cells significantly imparts protection to the host from the pathogen. There is a strong correlation between apoptosis and the host protein translation machinery: the pathogen makes all possible efforts to modify this process so as to inhibit cell suicide and ensure that it can survive and, in some cases, establish latent infection. This review discusses the significance of various pathways/steps during virus-mediated modulation of host cell apoptosis.

  14. HCA520, A NOVEL TUMOR ASSOCIATED ANTIGEN, INVOLVED IN CELL PROLIFERATION AND APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    杨美香; 曲迅; 刘福利; 郑广娟

    2003-01-01

    Objective: Tumor associated antigen encoding gene HCA520 (AF146019) was identified by screening a human hepatocellular carcinoma expressing cDNA library using SEREX technique. In this experiment we studied the effect of HCA520 on cell proliferation and apoptosis. Methods: Gene HCA520 was gained by PCR and transfected into 293 cells. The stable expression cells were obtained by G418 selection. The cell proliferation was measured by [3H]-TdR uptake and apoptosis assay was measured by FACS. Results: Eukaryotic expression plasmid pcDNA3-HCA520 was constructed and its stable transfectants were obtained. Overexpression of HCA520 inhibited the cell proliferation and enhanced cell apoptosis after serum deprivation. Conclusion: HCA520 is a novel tumor associated antigen that can affect cell proliferation and apoptosis.

  15. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    International Nuclear Information System (INIS)

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor α. Proliferation of OPC was assessed by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system

  16. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini)

    OpenAIRE

    Hideya Takahashi; Susumu Hyodo; Tsukasa Abe; Chiyo Takagi; Grau, Gordon E.; Tatsuya Sakamoto

    2014-01-01

    Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini) of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation w...

  17. Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats

    International Nuclear Information System (INIS)

    Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.

  18. Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats

    Energy Technology Data Exchange (ETDEWEB)

    Kutanzi, Kristy R.; Koturbash, Igor [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada); Bronson, Roderick T. [Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 (United States); Pogribny, Igor P., E-mail: igor.pogribny@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada)

    2010-12-10

    Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.

  19. Effects of Imbalance of Apoptosis and Proliferation on Large Bowel Carcinogenesis in Mice

    Institute of Scientific and Technical Information of China (English)

    BaocunSun; ShiwuZhang; XiulanZhao; LanWang

    2004-01-01

    OBJECTIVE To observe the pattern of changes in the proliferation and apoptosis at different stages of large bowel carcinoma in mice, and to explore the effects of the imbalance of apoptosis and proliferation at different stages of large-intestine carcinogenesis.METHODS An experimental animal model for large intestine carcinogenesis of KUNMING-strain mice was used. The carcinomas were induced by subcuteneous injection of dimethylhydrazine (DMH) and the distribution and density changes of proliferating and apoptotic cells observed through multistages toward cancer formation. The animals were killed in groups at the 12th, 18th, 24th,and 32nd weeks of carcinoma induction. The apoptotic and proliferating cells were labeled separately using TUNEL and PCNA immunohistochemical staining methodsRF, RESULTS In the normal mouse mucosa, all the apoptotic cells were situated in the superficial layers, however, the proliferating cells were situated in the basement layers, and the amount of both were small. In the early stage of carcinoma induction, the proliferation and the apoptotic cells slightly increased in amount, but there were no obvious changes in their ratio. In the medium stage, the densities of both distinctly increased, but there were no obvious changes in the ratio. In the late stage, the densities of the proliferating and the apoptotic cells in the non-carcinoma mucosa were higher than those at other stages. The proliferating cells in the dysplastic mucosa increased progressively with the increasing degree of the lesions. Although the apoptotic cells increased, their changes did not occur with the degree of the lesions. Their ratio showed a decreasing tendency with the degree of the lesions.CONCLUSIONS (①The presence of an imbalance between cell proliferation and apoptosis was confirmed in the course of large intestine carcinogenesis in a mouse model. ②In the early stage of carcinoma induction both proliferation and apoptosis were at a low level; in the medium

  20. Tanshinone IIA Inhibits Proliferation and Induces Apoptosis Through the Downregulation of Survivin in Keloid Fibroblasts.

    Science.gov (United States)

    Chen, Gang; Liang, Yimin; Liang, Xiao; Li, Qingfeng; Liu, Dalie

    2016-02-01

    Keloids are considered benign dermal fibroproliferative tumors. Keloid fibroblasts (KFs) persistently proliferate and fail to undergo apoptosis, and no treatment is completely effective against these lesions. Tanshinone IIA induces apoptosis and inhibits the proliferation of various tumor cell types. In this study, we investigated the effect of tanshinone IIA on the regulation of proliferation, cell cycle, and apoptosis in KFs, and investigated potential mechanisms involved in the effects. First, KFs and normal skin fibroblasts (NSFs) were treated with various concentrations of tanshinone IIA. Cell counting kit-8 (CCK-8) was used to assess the proliferative activity of KFs and NSFs, and flow cytometry was used to investigate the cell cycle and apoptosis in KFs. We found that the proliferation of all tanshinone IIA-treated KFs was significantly decreased after treatment for 72 hours (P < 0.001). Also, NSFs treated with tanshinone IIA did not exhibit noticeable effects compared with KFs. In addition, the percentages of G0/G1 cells in all tanshinone IIA-treated KFs were significantly increased after treatment for 72 hours (P < 0.001). And the percentages of cells undergoing early apoptosis in all tanshinone IIA-treated KFs were significantly increased after treatment for 120 hours (P < 0.001). Furthermore, the apoptosis antibody array kit and Western blot analysis revealed that tanshinone IIA decreased survivin expression in KFs (P < 0.001). In conclusion, tanshinone IIA downregulates survivin and deactivates KFs, thus suggesting that tanshinone IIA could serve as a potential clinical keloid treatment. PMID:26101974

  1. Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells

    Science.gov (United States)

    Gu, Yuping; Zhao, Ya; Zhou, Yuru; Xie, Yajun; Ju, Pan; Long, Yaoshui; Liu, Jianing; Ni, Dongsheng; Cao, Fen; Lyu, Zhongshi; Mao, Zhaomin; Hao, Jin; Li, Yiman; Wan, Qianya; Kanyomse, Quist; Liu, Yamin; Ren, Die; Ning, Yating; Li, Xiaofeng; Zhou, Qin; Li, Bing

    2016-01-01

    Nephron progenitor cells surround around the ureteric bud tips (UB) and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM). Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2. PMID:27509493

  2. Cell proliferation and apoptosis in rat mammary glands following combinational exposure to bisphenol A and genistein

    International Nuclear Information System (INIS)

    Humans are exposed to an array of both harmful and beneficial hormonally active compounds in the environment and through diet. Two such chemicals are Bisphenol A (BPA), a plasticizer, and genistein, a component of soy. Prepubertal exposure to BPA increased mammary carcinogenesis, while genistein suppressed cancer in a chemically-induced model of rodent mammary cancer. The purpose of this research was to determine the effects of combinational exposure to genistein and BPA on cell proliferation, apoptosis, and associated proteins as markers of cancer in mammary glands of rats exposed prepubertally to these environmental chemicals. Prepubertal rats (postpartum days (PND) 2–20) were exposed through lactation via nursing dams treated orally with sesame oil (SO), BPA, genistein, or a combination of BPA and genistein (BPA + Gen). Cell proliferation, apoptosis and protein expressions were investigated for mechanistic studies in mammary glands of rats exposed to these environmental chemicals. Prepubertal exposure to genistein increased cell proliferation in mammary glands of PND21 rats, while BPA increased cell proliferation in adult (PND50) rats. Prepubertal combinational exposure to BPA + Gen increased cell proliferation and reduced apoptosis in PND21 rats, but reduced cell proliferation and increased apoptosis in PND50 rats. The altered mechanisms behind these cellular responses appear to be centered on differential protein expression of caspases, PARP, Bad, p21, Akts, PTEN, ER-β and SRCs 1–3, in the rat mammary gland. Prepubertal BPA exposure resulted in increased cell proliferation in mammary glands of PND50 rats, a process associated with increased risk of cancer development in a chemically-induced mammary cancer. On the other hand, genistein stimulated cell proliferation at PND21, a process that correlates with mammary gland maturation and chemoprevention. In contrast to single chemical exposure, combinational exposure to BPA + Gen performed most similarly to

  3. GRP78 is required for cell proliferation and protection from apoptosis in chicken embryo fibroblast cells.

    Science.gov (United States)

    Jeon, M; Choi, H; Lee, S I; Kim, J S; Park, M; Kim, K; Lee, S; Byun, S J

    2016-05-01

    Chicken serum has been suggested as a supplement to promote chicken cell proliferation and development. However, the molecular mechanisms by which chicken serum stimulates chicken cell proliferation remain unknown. Here, we evaluated the effects of chicken serum supplementation on chicken embryo fibroblast (CEF) and DF-1 cell proliferation. We also sought to elucidate the molecular pathways involved in mediating the effects of chicken serum on fibroblasts and DF-1 cells by overexpression of chicken 78 kDa glucose-regulated protein (chGRP78), which is important for cell growth and the prevention of apoptosis. Our data demonstrated that the addition of 5% chicken serum significantly enhanced fibroblast proliferation. Moreover, knockdown of chGRP78 using siRNA decreased fibroblast proliferation and increased apoptosis. Based on these results, we suggest that the chGRP78-mediated signaling pathway plays a critical role in chicken serum-stimulated fibroblast survival and anti-apoptosis. Therefore, our findings have important implications for the maintenance of chicken fibroblast cells through the inhibition of apoptosis and may lead to the development of new treatments for avian disease. PMID:26944959

  4. Quantification of microglial proliferation and apoptosis by flow cytometry

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Wirenfeldt, Martin; Finsen, Bente

    2013-01-01

    have the potential to expand rapidly in response to inflammatory stimuli, injury, or any other pathological changes, due to a high capacity for proliferation. In addition, apoptotic mechanisms can be evoked to retract the microglial population, as reactivity declines. In the normal CNS, a low rate of...

  5. Curcumin regulates hepatoma cell proliferation and apoptosis through the Notch signaling pathway

    OpenAIRE

    Liu, Zheng-cai; Yang, Zhao-Xu; Zhou, Jing-Shi; Zhang, Hong-Tao; Huang, Qi-Ke; Dang, Li-Li; Liu, Guang-Xin; Tao, Kai-shan

    2014-01-01

    Curcumin has become a compound of interest for its antioxidant and anti-neoplastic properties. This study sought to determine the effect of curcumin administration on cell proliferation and apoptosis in hepatoma cells. SMMC-7721 hepatoma cells were treated with 10, 30, or 90 μM curcumin solution, with DMEM alone (negative control), or with 20 mg/L fluorouracil (positive control). MTT colorimetry detected significant differences in the rates of cell proliferation inhibition following curcumin ...

  6. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini

    Directory of Open Access Journals (Sweden)

    Hideya Takahashi

    2014-04-01

    Full Text Available Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species. Methods: Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and 5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen. Results: Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  7. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini)

    Institute of Scientific and Technical Information of China (English)

    Hideya Takahashi; Susumu Hyodo; Tsukasa Abe; Chiyo Takagi; Gordon E Grau; Tatsuya Sakamoto

    2014-01-01

    Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini) of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species.Methods:5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen.Results:Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  8. Upregulation of PRDM5 Is Associated with Astrocyte Proliferation and Neuronal Apoptosis Caused by Lipopolysaccharide.

    Science.gov (United States)

    Zhang, Yu; Liu, Xiaojuan; Xue, Huaqing; Liu, Xiaorong; Dai, Aihua; Song, Yan; Ke, Kaifu; Cao, Maohong

    2016-05-01

    PRDM5 (PR domain containing 5) belongs to PRDM family which consists of transcriptional regulators that modulate cellular processes such as cell growth, differentiation and apoptosis. However, the function of PRDM5 in central nervous system (CNS) inflammatory response is unknown. In recent study, an adult rat neuroinflammation model via lipopolysaccharide (LPS) lateral ventricle injection was constructed. PRDM5 expression was increased in activated astrocytes and apoptotic neurons of the adult rat cerebral cortex after LPS injection. In vitro studies showed that the remarkable upregulation of PRDM5 might be involved in rat primary astrocyte proliferation and rat primary neuronal apoptosis in the cerebral cortex following LPS administration. In addition, using PRDM5 RNA interference both in rat primary asrtocytes and neurons, further indicated that PRDM5 was required for astrocyte proliferation and neuronal apoptosis induced by LPS. Our findings on the cellular signaling pathway may provide a new therapeutic strategy against neuroinflammation in the CNS. PMID:27074744

  9. An imbalance between apoptosis and proliferation contributes to follicular persistence in polycystic ovaries in rats

    Directory of Open Access Journals (Sweden)

    Neme Leandro G

    2009-07-01

    Full Text Available Abstract Background Cystic ovarian disease is an important cause of infertility that affects bovine, ovine, caprine and porcine species and even human beings. Alterations in the ovarian micro-environment of females with follicular cysts could alter the normal processes of proliferation and programmed cell death in ovarian cells. Thus, our objective was to evaluate apoptosis and proliferation in ovarian cystic follicles in rats in order to investigate the cause of cystic follicle formation and persistence. Methods We compared the number of in situ apoptotic cells by TUNEL assay, expression of active caspase-3 and members of Bcl-2 family by immunohistochemistry; and cell proliferation by the expression of the proliferation markers: PCNA and Ki-67. Results The proliferation index was low in granulosa of tertiary and cystic follicles of light exposed rats when compared with tertiary follicles of control animals, while in theca interna only cystic follicles presented low proliferation index when compared with tertiary follicles (p Conclusion These results show that the combination of weak proliferation indices and low apoptosis observed in follicular cysts, could explain the cause of the slow growth of cystic follicles and the maintenance of a static condition without degeneration, which leads to their persistence. These alterations may be due to structural and functional modifications that take place in these cells and could be related to hormonal changes in animals with this condition.

  10. Nitrofen suppresses cell proliferation and promotes mitochondriamediated apoptosis in type Ⅱ pneumocytes

    Institute of Scientific and Technical Information of China (English)

    Qiang-song TONG; Li-duan ZHENG; Shao-tao TANG; Guo-song JIANG; Qing-lan R UAN; Fu-qing ZENC; Ji-hua DONG

    2007-01-01

    Aim: To characterize the molecular mechanisms of nitrofen-induced pulmonary hypoplasia. Methods: After administration of nitrofen to cultured type H A549 pneumocytes, cell proliferation and DNA synthesis were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetry, colony forma-tion assay, flow cytometry and [3H]-thymidine incorporation assay. Apoptosis was measured by terminal transferase-mediated dUTP nick-end-labeling, acridine orange-ethidium bromide staining and flow cytometry. Expression of proliferating cell nuclear antigen (PCNA) and apoptosis-related genes was assayed by immunofluorescence, RT-PCR and Western blot. Results: Nitrofen inhibited the cell proliferation of A549 cells in a dose- and time-dependent manner, accompa-nied by downregulation of PCNA. As a result, the DNA synthesis of nitrofen-treated A549 cells decreased, while cell cycle was arrested at G0/G1 phase. Moreover,nitrofen induced apoptosis of A549 cells, which was not abolished by Z-Val-Aia-Asp(OCH3)- fluoromethylketone. In addition, nitrofen decreased the expression of Bcl-XL, but not of Bcl-2, Bax, and Bak, resulting in a loss of mitochondrial membrane potential and the nuclear translocation of apoptosis-inducing factor (AIF). Meanwhile, nitrofen strongly activated the p38 mitogen-activated protein kinase (p38-MAPK). Pretreatment of cells with SB203580 (5 μmol/L) blocked nitrofen-induced phosphorylation of p38-MAPK and abolished nitrofen-induced AIF translocation and apoptosis in A549 cells. Conclusion: Nitrofen suppresses the proliferation of cultured type Ⅱ pneumocytes accompanied by the downregulation of PCNA, and induces mitochondria-mediated apoptosis involv-ing the activation of p38-MAPK.

  11. The effect of yucca on proliferation, apoptosis, and steroidogenesis of porcine ovarian granulosa cells

    Directory of Open Access Journals (Sweden)

    Aneta Štochmaľová

    2014-02-01

    Full Text Available Yucca shidigera is a medicinal plant native to Mexico. Is a plant widely used in folk medicine to treat a variety of ailmentary disorders, but its action on reproductive processes and possible mechanisms of such action remains unknown. Yucca schidigera extract contains a number of steroidal saponins that, because of their biological activity, have attracted attention from the food industry for many years. Yucca extract is used as a natural feed additive with positive effect to microflora, digestion, metabolism and to improve animal muscle growth. Its extract has been used as a foodstuff and folk medicine to treat a wide variety of diseases for many years. Nevertheless, it remaines unknown, whether consumption of yucca can affect reproductive system. The aim of this study was to examine the effects of yucca on basic ovarian cell functions - proliferation, apoptosis and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without yucca extract (added at doses 0; 1; 10 and 100 μg.mL-1 of medium. Markers of proliferation (% of PCNA-positive cells and apoptosis (% cells containing bax were analysed by immunocytochemistry. Release of steroid hormones (progesterone and testosterone was measured by EIA. It was observed, that addition of yucca inhibited proliferation (expression of PCNA, increased apoptosis (expression of bax, stimulated progesterone and inhibited testosterone release. The ability of yucca to reduce ovarian cell proliferation, to promote ovarian cell apoptosis and affect steroidogenesis demonstrates the direct influence of yucca on female gonads. Furthermore, our observations suggest the multiple sites of action (proliferation, apoptosis, steroidogenesis of yucca on porcine ovarian cell functions. It is not to be excluded, that consumption of yucca can suppress female reproductive functions.

  12. MicroRNA-548a-5p promotes proliferation and inhibits apoptosis in hepatocellular carcinoma cells by targeting Tg737

    Science.gov (United States)

    Zhao, Ge; Wang, Ting; Huang, Qi-Ke; Pu, Meng; Sun, Wei; Zhang, Zhuo-Chao; Ling, Rui; Tao, Kai-Shan

    2016-01-01

    AIM: To investigate whether Tg737 is regulated by microRNA-548a-5p (miR-548a-5p), and correlates with hepatocellular carcinoma (HCC) cell proliferation and apoptosis. METHODS: Assays of loss of function of Tg737 were performed by the colony formation assay, CCK assay and cell cycle assay in HCC cell lines. The interaction between miR-548a-5p and its downstream target, Tg737, was evaluated by a dual-luciferase reporter assay and quantitative real-time polymerase chain reaction. Tg737 was then up-regulated in HCC cells to evaluate its effect on miR-548a-5p regulation. HepG2 cells stably overexpressing miR-548a-5p or miR-control were also subcutaneously inoculated into nude mice to evaluate the effect of miR-548a-5p up-regulation on in vivo tumor growth. As the final step, the effect of miR-548a-5p on the apoptosis induced by cisplatin was evaluated by flow cytometry. RESULTS: Down-regulation of Tg737, which is a target gene of miR-548a-5p, accelerated HCC cell proliferation, and miR-548a-5p promoted HCC cell proliferation in vitro and in vivo. Like the down-regulation of Tg737, overexpression of miR-548a-5p in HCC cell lines promoted cell proliferation, increased colony forming ability and hampered cell apoptosis. In addition, miR-548a-5p overexpression increased HCC cell growth in vivo. MiR-548a-5p down-regulated Tg737 expression through direct contact with its 3’ untranslated region (UTR), and miR-548a-5p expression was negatively correlated with Tg737 levels in HCC specimens. Restoring Tg737 (without the 3’UTR) significantly hampered miR-548a-5p induced cell proliferation, and rescued the miR-548a-5p induced cell proliferation inhibition and apoptosis induced by cisplatin. CONCLUSION: MiR-548a-5p negatively regulates the tumor inhibitor gene Tg737 and promotes tumorigenesis in vitro and in vivo, indicating its potential as a novel therapeutic target for HCC.

  13. Exogenous ghrelin regulates proliferation and apoptosis in the hypotrophic gut mucosa of the rat.

    Science.gov (United States)

    de Segura, Ignacio A Gómez; Vallejo-Cremades, María Teresa; Lomas, Jesús; Sánchez, Miriam F; Caballero, María Isabel; Largo, Carlota; De Miguel, Enrique

    2010-04-01

    Ghrelin is the natural endogenous ligand for growth hormone secretagogue receptors. This peptide regulates energy homeostasis and expenditure and is a potential link between gut absorptive function and growth. We hypothesized that ghrelin may induce a proliferative and antiapoptotic action promoting the recovery of the hypotrophic gut mucosa. Therefore, the aim of the study was to determine the action of exogenous ghrelin following gut mucosal hypotrophia in rats fed an elemental diet. An elemental diet provides readily absorbable simple nutrients and is usually given to patients with absorptive dysfunction. Male Wistar rats (n = 48) were fed the elemental diet for one week to induce mucosal hypotrophy and then treated for another week with systemic ghrelin and pair-fed with either a normoproteic or hyperproteic isocaloric liquid diet. Another group received a standard diet instead of the elemental diet and served as control (normotrophy). The elemental diet induced intestinal hypotrophia characterized by decreased proliferation in the ileum and increased apoptosis in jejunum and ileum. Ghrelin administration restored normal levels of proliferation in the ileum and apoptosis in the jejunum, with partial apoptosis restoration in the ileum. Ghrelin levels in plasma and fundus were increased in all groups, although the highest levels were found in rats treated with exogenous ghrelin. Ghrelin administration has a positive effect in the hypotrophic gut, regulating both proliferation and apoptosis towards a physiological balance counteracting the negative changes induced by an elemental diet in the intestines. PMID:20407078

  14. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma.

    Directory of Open Access Journals (Sweden)

    Songtao Qi

    Full Text Available BACKGROUND: The aim of the present study was to analyze the expression of Zinc finger E-box Binding homeobox 2 (ZEB2 in glioma and to explore the molecular mechanisms of ZEB2 that regulate cell proliferation, migration, invasion, and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Expression of ZEB2 in 90 clinicopathologically characterized glioma patients was analyzed by immunohistochemistry. Furthermore, siRNA targeting ZEB2 was transfected into U251 and U87 glioma cell lines in vitro and proliferation, migration, invasion, and apoptosis were examined separately by MTT assay, Transwell chamber assay, flow cytometry, and western blot. RESULTS: The expression level of ZEB2 protein was significantly increased in glioma tissues compared to normal brain tissues (P<0.001. In addition, high levels of ZEB2 protein were positively correlated with pathology grade classification (P = 0.024 of glioma patients. Knockdown of ZEB2 by siRNA suppressed cell proliferation, migration and invasion, as well as induced cell apoptosis in glioma cells. Furthermore, ZEB2 downregulation was accompanied by decreased expression of CDK4/6, Cyclin D1, Cyclin E, E2F1, and c-myc, while p15 and p21 were upregulated. Lowered expression of ZEB2 enhanced E-cadherin levels but also inhibited β-Catenin, Vimentin, N-cadherin, and Snail expression. Several apoptosis-related regulators such as Caspase-3, Caspase-6, Caspase-9, and Cleaved-PARP were activated while PARP was inhibited after ZEB2 siRNA treatment. CONCLUSION: Overexpression of ZEB2 is an unfavorable factor that may facilitate glioma progression. Knockdown ZEB2 expression by siRNA suppressed cell proliferation, migration, invasion and promoted cell apoptosis in glioma cells.

  15. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    Directory of Open Access Journals (Sweden)

    Xuefei Song

    2015-01-01

    Full Text Available Purpose. The purpose of this study was to determine the impact of cross-linking (CXL on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham’s F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2 during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA. Results. Following CXL, cell viability and proliferation decreased (P0.06. Five hours after CXL, FGFb secretion increased significantly (P=0.037; however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P>0.12. Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours, normalizing after 24 hours.

  16. Effects of HSP70 Antisense Oligonucleotide on the Proliferation and Apoptosis of Human Hepatocellular Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    杨雪; 贺海斌; 杨威; 宋涛; 郭成; 郑鑫; 刘青光

    2010-01-01

    The study investigated the effects of heat shock protein 70(HSP70) antisense oligonucleotide(ASODN) on the proliferation and apoptosis of a human hepatocellular carcinoma cell line(SMMC-7721 cells) in vitro.HSP70 oligonucleotide was transfected into SMMC-7721 cells by the mediation of SofastTM transfection reagent.Inhibition rate of SMMC-7721 cells was determined by using MTT method.Apoptosis rate and cell cycle distribution were measured by flow cytometry.Immunocytochemistry staining was used to observe th...

  17. Effects of Dexamethasone on the proliferation and apoptosis of swine kidney fibroblast induced by TRAIL

    Directory of Open Access Journals (Sweden)

    LI Xin

    2008-10-01

    Full Text Available 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetraz-olium bromide (MTT assay was applied to measure the cell growth. And flow cytometry (FCM was adopted to detect the changes of FRSs cell cycle and apoptosis rate .In addition, the Semiquantitative RT-PCR was using to assessed the regulation of dexamethasone(DEX for Osteoprotegerin(OPG or Ligand of receptor activator of nuclear factor kappa B(RANKL in FRS. The results showed that TRAIL could prompt the growth of swine kidney fibroblast at the concentrations of 0.01–5 mg/L, but TRAIL inhibited the growth of FRS at the concentrations of 10–50 mg/L, but at the concentrations of 10–50 mg/L, TRAIL inhibited the growth of swine kidney fibroblast and even led them to apoptosis. DEX could regulate the effects of cytokines. The effect of DEX on TRAIL is synergies and the effective concentrations of DEX are 10-6–10-10 mol/L. Cell cycle analysis and apoptosis detection showed that the peak concentration of TRAIL inducing FRSs’ proliferation was 5 mg/L. Under this concentration, TRAIL(5 mg/L+DEX (10-8 mol/L group showed that the proliferation index of FRSs (Prl. was increased by 2.49% compared with TRAIL 5 mg/L group(P<0.05; TRAIL10 mg/L showed that the proliferation index apoptosis rate of FRSs was not significant. But TRAIL(10 mg/L + DEX(10-8 mol/L group showed that the G0/G1 phase was increased by 2.36%(P<0.05 and the apoptosis rate was increased by 6.79%(P<0.01 compared with TRAIL 10 mg/L group. Semi-quantitative RT-PCR showed that DEX could inhibit the constitutive OPG and stimulate RANKL mRNA steady-state levels in a dose-dependent manner. These results indicate that TRAIL prompt not only the growth but also the apoptosis of FRSs which depends on the concentrations of TRAIL. The phenomenon is related to the change of cell cycle of FRSs induced by TRAIL and DEX. The OPG/RANK/RANKL system is an important pathway that DEX can mediate the effects of TRAIL on proliferation and apoptosis of FRSs

  18. Effects of dexamethasone on proliferation, differentiation and apoptosis of adult human osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    杨林; 陶天遵; 王新婷; 杜宁; 陈伟珍; 陶树清; 王志成; 吴丽萍

    2003-01-01

    Objective To observe the effects of dexamethasone on proliferation, differentiation and apoptosis of adult human osteoblasts in vitro. Methods Iliac trabecular bone specimens were obtained from adult patients undergoing necessary surgery. After the bone pieces were digested with collagenase-trypsin, osteoblasts were released and incubated at 37℃ in a relative humidity of 95% and 5% CO2. Then, the cells were purified, and their passages were given DMEM-F12 and fetal bovine serum medium. Subsequently, 10-8 mol/L dexamethasone was added into the culture medium to incubate the osteoblasts for three days, and the cells from control groups were incubated without any drugs. All cells were observed continually with phase contrast microscope and transmission electron microscope. Finally, apoptosis was detected by the use of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and biochemical indices, alkaline phosphatase (ALP) and osteocalcin (OCN) were used to determine the effects of dexamethasone on proliferation, differentiation and apoptosis of adult osteoblasts in vitro. Results In the adult osteoblasts obtained by collagenase-trypsin digestion, it achieved high survial, stable biochemical indices and excellent purification. Under the condition of dexamethasone 10-8 mol/L and osteoblasts 10 000/ml, there was significant promotion of ALP and OCN secretion without cell apoptosis.Conclusions Dexamethasone has a significant effect on the proliferation and differentiation of adult osteoblasts in vitro without apoptosis, and dexamethasone at the suggested concentration can be used as positive control in drug studies for osteoporosis treatment.

  19. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence.

    Science.gov (United States)

    Chen, San-Yuan; Liu, Geng-Hung; Chao, Wen-Ying; Shi, Chung-Sheng; Lin, Ching-Yen; Lim, Yun-Ping; Lu, Chieh-Hsiang; Lai, Peng-Yeh; Chen, Hau-Ren; Lee, Ying-Ray

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC) treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells. PMID:27120594

  20. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    Directory of Open Access Journals (Sweden)

    San-Yuan Chen

    2016-04-01

    Full Text Available Oral squamous cell carcinoma (OSCC, an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL, a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS levels in human OSCC cells were investigated. PL effectively inhibited cell growth, caused cell cycle arrest and induced apoptosis and senescence in OSCC cells. Moreover, PL-mediated anti-human OSCC behavior was inhibited by an ROS scavenger N-acetyl-l-cysteine (NAC treatment, suggesting that regulation of ROS was involved in the mechanism of the anticancer activity of PL. These findings suggest that PL suppresses tumor growth by regulating the cell cycle and inducing apoptosis and senescence and is a potential chemotherapy agent for human OSCC cells.

  1. Effective component from verbena officinalis L. inhibits proliferation and induces apoptosis of human choriocarcinoma JAR cells

    Institute of Scientific and Technical Information of China (English)

    Xu Shan; Chen Qi; Xu Chang-fen

    2005-01-01

    Objective: To examine the action of the effective component, 4'-methylether -scutellarein, from Verbena officinalis L. (VOL) on the proliferation and apoptosis of human choriocarcinoma JAR cells.Methods: Cell proliferation was measured by MTT [3-(4, 5-dimethylthiazol-2-yl) -2, 5-diphenyl tetrasodium bromide, MTT] assay and the incorporation of tritiated thymidine (3H-TdR). Apoptosis of cell was evaluated by flow cytometry (FCM) and the characteristic apoptotic DNA ladder by agarose gel electrophoresis, and the morphological changes of apoptotic JAR cells were observed under fluorescence microscopy and electron microscopy (EM). Expressions of apoptosis proteins, poly (ADP-ribose) polymerase (PARP) and caspase-3, -8, and -9 were determined with Western blot.Results: The effective component from VOL inhibited the proliferation of JAR cells in a dose- and time-dependent manner. The treated cell cycle was arrested in S phase and an apoptotic peak was found in S phase using FCM analysis. A typical DNA ladder appeared in the treatment group when analyzed by agarose gel electrophoresis. Using fluorescence microscopy, the percentage of apoptotic cell was 0.9%, 6%, and 14% after treatments of 10, 20, and 40 mg·L-1 of the effective component, respectively, for 48 h. Typical apoptotic changes, such as condensed chromatin and presence of apoptotic bodies, were observed under EM. Treatment with effective component for 48 h and 72 h also induced protein expression of PARP and caspase-3, -8, and -9 as seen by Western blot.Conclusions: The effective component from VOL inhibits cell proliferation and induces apoptosis in human choriocarcinoma JAR cells.

  2. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  3. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence

    OpenAIRE

    San-Yuan Chen; Geng-Hung Liu; Wen-Ying Chao; Chung-Sheng Shi; Ching-Yen Lin; Yun-Ping Lim; Chieh-Hsiang Lu; Peng-Yeh Lai; Hau-Ren Chen; Ying-Ray Lee

    2016-01-01

    Oral squamous cell carcinoma (OSCC), an aggressive cancer originating in the oral cavity, is one of the leading causes of cancer deaths in males worldwide. This study investigated the antitumor activity and mechanisms of piperlongumine (PL), a natural compound isolated from Piper longum L., in human OSCC cells. The effects of PL on cell proliferation, the cell cycle, apoptosis, senescence and reactive oxygen species (ROS) levels in human OSCC cells were investigated. PL effectively inhibited ...

  4. Blocking lhh Signaling Pathway Inhibits the Proliferation and Pro-motes the Apoptosis of PSCs

    Institute of Scientific and Technical Information of China (English)

    Kai XU; Fengjing GUO; Shuwei ZHANG; Cheng LIU; Feixiong WANG; Zhiguo ZHOU; Anmin CHEN

    2009-01-01

    The roles of Indian hedgehog (Ihh) signaling pathway in the proliferation and apoptosis of precartilaginous stem cells (PSCs) were investigated.PSCs,labeled with fibroblast growth factor receptor 3 (FGFR-3),were isolated from neonatal rats by immanomagnetic separation.After identifi-cation with FGFR-3 and Col Ⅱ,the cells were incubated with different concentrations of cyclopamine (cyclo),the specific inhibitor of lhh signaling pathway.The morphologic changes of the cells were observed under the inverted phase contrast microscope.The mRNA expression levels of Ibh,para-thyroid hormonerelated peptide (PTHrP),protein Patched (Ptch),Bcl-2 and p21 were detected by RT-PCR.The protein expression levels of Ihh and Ptch were measured by Western blot.MTT assay was used to examine the effects of cyclo on proliferation of PSCs.Apoptosis rate of PSCs was exam-ined by Annexin V/PI assay of flow cytometric analyses.After PSCs were incubated with cyclo,ob-vious morphologic changes were observed as compared with the control group.The mRNA expres-sion levels of PTHrP,Ptch and Bcl-2 were decreased to varying degrees in a cyclo dose-dependent manner.However,the expression levels of lhh and p21 mRNA were increased.The protein expres-sion of Ptch and Ihh had the same change as the mRNA expression.Meanwhile,cyclo could obvi-ously inhibit the proliferation and promote the apoptosis of PSCs.The results indicated that Ihh sig-naling pathway plays an important role in regulating the proliferation and apoptosis of PSCs,which is probably mediated by Bcl-2 and p21.

  5. Influence of Hyperlipidemia on the Proliferation and Apoptosis of Myocardial Cells in Rabbits

    Directory of Open Access Journals (Sweden)

    Huse Kinscherf

    2015-03-01

    Full Text Available Objective: To establish hyperlipemia models in rabbits fed with high fat diet, observe the changes of serum lipid level, and to explore the effect of hyperlipidemia on the proliferation and apoptosis of myocardial cells in rabbits. Methods: New Zealand white male special rabbits were randomly divided into 2 groups: normal diet group and high-fat-fed group, 10 cases in each group. The rabbits in normal group were fed with ordinary feed while the rabbits in the latter group were fed with high fat diet. The levels of serum TC, TG, HDL-C and LDL-C were detected at 0, 4th, 7th, 10th, 13thweeks for 2 groups. At the end of the 13th week, the pathological changes of myocardial tissues were detected by HE staining, and the proliferation and apoptosis of cardiomyocyte were tested by FCM. Results:After given high fat diet, the level of serum TC, TG, HDL-C and LDL-C in high-fat-fed diet group were significantly increased than in the normal diet group from the 4th week to the 13th week (P<0.01. The construction of cardiomyocyte in the atherogenic diet group had obviously morphological changes. The distribution of G0/G1 phase in high-fat-fed increased significantly than that in the normal diet group (P<0.01, but S phase and proliferation index (PI in decreased significantly than that in the normal diet group (P<0.01. The apoptosis rate in both groups had no statistical difference (P>0.05. Conclusion: Hyperlipidemia can induce the pathological changes of cardiomyocyte in rabbits, inhibit the proliferation of cardiomyocyte, but has no effect on the apoptosis of cardiomycyte in rabbits.

  6. Effects of artemether on the proliferation, apoptosis, and differentiation of keratinocytes: potential application for psoriasis treatment

    OpenAIRE

    Wu, Jie; LI Hong; Li, Ming

    2015-01-01

    Artemether exhibits diverse pharmacological effects and has multiple applications. This study aimed to investigate its antiproliferative and apoptogenic effects on HaCaT cells and keratinocyte differentiation-inducing activity in vivo. WST-8 analysis demonstrated that Artemether can inhibit the proliferation of cultured HaCaT cells in a time- and dose-dependent manner. Annexin V/PI dual staining and JC-1 staining further revealed that Artemether can dose-dependently augment HaCaT apoptosis. T...

  7. Effects of α-adrenoreceptor antagonists on apoptosis and proliferation of pancreatic cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Su-Gang Shen; Dong Zhang; Heng-Tong Hu; Jun-Hui Li; Zheng Wang; Qing-Yong Ma

    2008-01-01

    AIM: To discuss the expression of α-adrenoreceptors in pancreatic cancer cell lines PC-2 and PC-3 and the effects of α1- and α2-adrenoreceptor antagonists, yohimbine and urapidil hydrochloride, on the cell lines in vitro.METHODS: We cultured the human ductal pancreatic adenocarcinoma cell lines PC-2 and PC-3 and analyzed the mRNA expression of α1- and α2-adrenergic receptors by reverse transcription polymerase chain reaction (RT-PCR).The effects of yohimbine and urapidil hydrochloride on cell proliferation were assessed by 3-(4,5-dimethylthiasol-2-yl)2,4,-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using the terminal deoxyribonucleoticlyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay and flow cytometry (FCM).RESULTS: PC-2 expressed rnRNA in α1- and α2-adrenoreceptors. MTT assays showed that urapidil hydrochloride had no effect on PC-3 cell lines. However,exposure to urapidil hydrochloride increased DNA synthesis in PC-2 cell lines as compared to the control group. PC-2 cell lines were sensitive to both drugs. The proliferation of the 2 cell lines was inhibited by yohimbine.Cell proliferation was inhibited by yohimbine via apoptosis induction.CONCLUSION: The expression of α1-and α2-adrenoreceptors is different in PC-2 and PC-3 cell lines,which might be indicative of their different functions. Theα2-adrenoceptor antagonist, yohimbine, can inhibit the proliferation of both cell lines and induce their apoptosis,suggesting that yohimbine can be used as an anticancer drug for apoptosis of PC-2 and PC-3 cells.

  8. Effect of trichostatin A and paclitaxel on the proliferation and apoptosis of lung adenocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Song; ZHANG Qun-cheng; JIANG Shu-juan

    2013-01-01

    Background Histone deacetylase inhibitors can regulate gene expression through modulation of the degree of acetylation of histone and non-histone,thus affecting cell proliferation,survival and chemosensitivity.Histone deacetylase inhibitors combined with paclitaxel may enhance the inhibitory effect of drugs on lung cancer cells.This study aimed to observe the effect of trichostatin A (TSA)/paclitaxel on the proliferation and apoptosis in human A549 lung adenocarcinoma cells,and to investigate its mechanism.Methods A549 cells were cultured in Dulbecco modified Eagle's medium (DMEM) in the presence of paclitaxel and the histone deacetylase inhibitor TSA,and the growth curve was obtained by trypan-blue exclusion assay and cell count.Apoptosis was assessed using Hoechst 33258 staining and flow cytometry analysis,and cell cycle was detected by flow cytometry analysis.The proteins poly ADP-ribose polymerase (PARP),caspase-3,survivin,and tubulin acetylation were detected by Western blotting.Results A significant reduction of proliferation was observed in A549 lung adenocarcinoma cells treated by paclitaxel or TSA.Combined treatment with TSA/paclitaxel caused the greatest inhibition of cell proliferation.The combined treatment with TSA and paclitaxel induced more severe apoptosis,and significantly more cells were arrested in Gz/M phase (P <0.05) then with a single drug.Using Western blotting,we demonstrated that treatment with TSA/paclitaxel led to synergistic increase in acetylated tubulin,PARP,caspase-3,and reduced the expression of survivin.Conclusion TSA and paclitaxel have a synergistic activity that can inhibit cell growth and induce apoptosis.

  9. Dopamine inhibits proliferation, induces differentiation and apoptosis of K562 leukaemia cells

    Institute of Scientific and Technical Information of China (English)

    HE Qun; YUAN Lin-bo

    2007-01-01

    Background Dopamine exerts its effects mainly in nervous system through D1, D2 or D3 receptors. There are few reports dealing with the effects of dopamine on leukaemia cells. However, some dopamine agonists or antagonists do show biological effects on some types of leukaemia cells. Here, we report the effects of dopamine on the proliferation,differentiation and apoptosis of K562 leukaemia cells.Methods Proliferation was determined by MTT assay and cell counting both in liquid and semisolid cultures.Differentiation was verified by morphology, benzidine staining and flow cytometry. Apoptosis was checked by Hoechst 33258 staining and flow cytometry. The two groups were untreated group and treated group (dopamine 10-9 mol/L-10-4mol/L).Results In liquid culture, MTT assay and colony assay, dopamine inhibited proliferation of K562 cells. Inhibition rate was 29.28% at 10-6 mol/L and 36.10% at 10-5 mol/L after culture for 5 days in MTT assay. In benzidine staining and CD71 expression, dopamine induced K562 cells toward erythroid differentiation by increased 155% at 10-6 mol/L and by 171% at 10-5 mol/L after culture for 5 days in benzidine staining. In Hoechst 33258 staining and flow cytometry,dopamine induced K562 cells toward apoptosis. The sub G1 peak stained by PI was 14.23% at 10-4 mol/L dopamine after culture for 3 days compared with the control (0.81%) in flow cytometry.Conclusion Dopamine inhibites proliferation and induces both differentiation and apoptosis of K562 leukaemia cells.

  10. The Effect of Curcumin on Proliferation and Apoptosis in LNCaP Prostate Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Lei Yang; Lianying Zhang; Lijun Chen; Bin Meng; Jiangrui Suo; Hongmin Wang; Hong Xie; Qiuyue Jin; Li Yao; Ruimin Wang

    2006-01-01

    OBJECTIVE To observe the effect of curcumin on proliferation and apoptosis in the prostate cancer LNCaP cell line.METHODS The AXSYMTM system luciferase method was used to examine the effect of various concentratious of curcumin on the content of prostate specific antigen (PSA) in prostate cancer LNCaP cells. A pGL3-PSA luciferase expression vector, containing 640 bp DNA of the PSA gene 5'-promoter region was constructed and transfected into the LNCaP cells with lipofectin. By measuring luciferase activity, the effect of 10 μmol/L, 20 μmol/L, 30 and 40 μmol/L curcumin on the promoter was studied. Effects on cell growth and apoptosis were analyzed by microscopy, the MTT colorimetric assay and flow cytometry Western-blotting was used to measure expression of the androgen receptor (AR) in the LNCaP cells treated with different concentrations of curcumin.RESULTS The results showed that the expression of PSA was inhibited as curcumin reduced the activity of luciferase. Curcumin also caused a sigificant concentration-dependent decrease in AR expession measured by Western-blotting. Cell growth was inhibited and apoptosis was induced.CONCLUSION By inhibiting AR expression, curcumin reduced the function of the PSA promoter and inhibited PSA protein expression. Curcumin decreased the cellular proliferation and induced apoptosis in LNCaP cells in a concention-dependent manner.

  11. Inlfuence of Hyperlipidemia on the Proliferation and Apoptosis of Myocardial Cells in Rabbits

    Institute of Scientific and Technical Information of China (English)

    Huse Kinscherf; Cynthia C Haudenschild; Christian C Chobanian

    2015-01-01

    Objective:To establish hyperlipemia models in rabbits fed with high fat diet, observe the changes of serum lipid level, and to explore the effect of hyperlipidemia on the proliferation and apoptosis of myocardial cells in rabbits. Methods:New Zealand white male special rabbits were randomly divided into 2 groups:normal diet group and high-fat-fed group, 10 cases in each group. The rabbits in normal group were fed with ordinary feed while the rabbits in the latter group were fed with high fat diet. The levels of serum TC, TG, HDL-C and LDL-C were detected at 0, 4th, 7th, 10th, 13th weeks for 2 groups. At the end of the 13th week, the pathological changes of myocardial tissues were detected by HE staining, and the proliferation and apoptosis of cardiomyocyte were tested by FCM. Results:After given high fat diet, the level of serum TC, TG, HDL-C and LDL-C in high-fat-fed diet group were signiifcantly increased than in the normal diet group from the 4th week to the 13th week (P0.05). Conclusion:Hyperlipidemia can induce the pathological changes of cardiomyocyte in rabbits, inhibit the proliferation of cardiomyocyte, but has no effect on the apoptosis of cardiomycyte in rabbits.

  12. Effects of Resveratrol on the Proliferation and Apoptosis in Synoviocytes of Rheumatoid Arthritis

    Institute of Scientific and Technical Information of China (English)

    唐玲丽; 余平; 胡敏; 谢希; 陈新瑞

    2004-01-01

    This study was undertaken to investigate the regulatory effect of Resveratrol (Res) on the proliferation and apoptosis of synoviocytes of patients with rheumatoid arthritis (RA), as the proliferation of synoviocytes of patients was determined by MTT chromatometry and the apoptosis of these cells was assayed with TUNEL flow cytometry. It was found in this experiment that the degree of cell proliferation of the Res-treated group with dosages of 50-400 μM was significantly reduced in comparison with that of the control group, but percentage of the apoptotic cells demonstrated with TUNEL labeling was elevated under treatment with Res at the same dosages in a concentration-dependent manner. The difference between the Restreated group and the control group was quite significant ( P<0.01 ). It is concluded that Res shows a potent anti-proliferative effect on synoviocytes of patients with RA with induction of cell apoptosis, and it is likely a valuable candidate for the chemotherapy and management of patients with RA.

  13. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    International Nuclear Information System (INIS)

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma

  14. A role of ghrelin in canine mammary carcinoma cells proliferation, apoptosis and migration

    Directory of Open Access Journals (Sweden)

    Majchrzak Kinga

    2012-09-01

    Full Text Available Abstract Background Ghrelin is a natural ligand of the growth hormone secretagogue receptor (GHS-R. They are often co-expressed in multiple human tumors and related cancer cell lines what can indicate that the ghrelin/GHS-R axis may have an important role in tumor growth and progression. However, a role of ghrelin in canine tumors remains unknown. Thus, the aim of our study was two-fold: (1 to assess expression of ghrelin and its receptor in canine mammary cancer and (2 to examine the effect of ghrelin on carcinoma cells proliferation, apoptosis, migration and invasion. The expression of ghrelin and its receptor in canine mammary cancer tissues and cell lines (isolated from primary tumors and their metastases was examined using Real-time qPCR and immunohistochemistry. For apoptosis analysis the Annexin V and propidium iodide dual staining was applied whereas cell proliferation was evaluated by MTT assay and BrdU incorporation test. The influence of ghrelin on cancer cells migration and invasion was assessed using Boyden chamber assays and wound healing assay. Results The highest expression of ghrelin was observed in metastatic cancers whereas the lowest expression of ghrelin receptor was detected in tumors of the 3rd grade of malignancy. Higher expression of ghrelin and its receptor was detected in cancer cell lines isolated from metastases than in cell lines isolated from primary tumors. In vitro experiments demonstrated that exposure to low doses of ghrelin stimulates cellular proliferation, inhibits apoptosis and promotes motility and invasion of canine mammary cancer cells. Growth hormone secretagogue receptor inhibitor ([D-Lys3]-GHRP6 as well as RNA interference enhances early apoptosis. Conclusion The presence of ghrelin and GHS-R in all of the examined canine mammary tumors may indicate their biological role in cancer growth and development. Our experiments conducted in vitro confirmed that ghrelin promotes cancer development and

  15. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    International Nuclear Information System (INIS)

    Highlights: ► Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. ► Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. ► Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. ► Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.

  16. Effects of Tumor Suppressor Gene TCF21 on the Proliferation, Migration and Apoptosis of A549 Cells

    Directory of Open Access Journals (Sweden)

    Song HU

    2014-04-01

    Full Text Available Background and objective TCF21, a newly discovered gene, exhibits tumor suppressor function in a variety of tumors. This study aims to observe the effects of TCF21 on the proliferation, apoptosis and migration of A549 human lung adenocarcinoma epithelial cells. Methods TCF21 was overexpressed in A549 cells via lentiviral transfection. Fluorescence-based quantitative polymerase chain reaction and Western blot analysis were used to analyze the expression of the target gene. Transwell, proliferation assay, and flow cytometry were applied to detect the effect of TCF21 overexpression on the migration, proliferation, and apoptosis of A549 cells after transfection. Results The proliferation and migration of A549 cells were inhibited, and the apoptotic rate was increased by overexpressing TCF21. Conclusion The tumor suppressor gene, TCF21, significantly inhibits the proliferation and migration, as well as facilitates early apoptosis of A549 cells.

  17. Morphological changes of cell proliferation and apoptosis in rat jejunal mucosa at different ages

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Jian Li; Qing Li; Jian Zhang; Xiang-Lin Duan

    2003-01-01

    AIM: To study the changes of cell proliferation and apoptosis in rat jejunal epithelium at different ages.METHODS: Cell proliferation and apoptosis of the jejunal mucosal and glandulous epithelia from birth to postnatal 12th month were observed using immunocytochemistry (ICC), and TUNEL method. The height of villus, the thickness of muscle layer and the number of goblet cells in jejunal mucosal and glandulous epithelia were measured by BeiHang analytic software and analyzed by STAT.RESULTS: (1) Proliferating cell nuclear antigen (PCNA) positive cells of jejunal glandulous recess were found and increased in number from birth to the postnatal 3rd month. The number of PCNA positive cells peaked in the postnatal 3rd month, and decreased from then on. (2) The number of apoptotic cells also peaked in the postnatal 3rd month, showing a similar trend to that of the PCNA positive cells. (3) The height of jejunal villus increased after birth, peaked in the postnatal 3rd month and decreased from then on. The jejunal muscle layer became thicker in the postnatal 3rd week and the postnatal 12th month.The number of goblet cells of the jejunal mucosal and glandulous epithelia had a linear correlation with age.CONCLUSION: (1) PCNA positive cells are distributed in the jejunal glandulous recess. (2) Apoptotic cell number peaks in the postnatal 3rd month, indicating that cell proliferation and apoptosis are developed with the formation of digestive metabolism as rat grows to maturity. (3) The thickness of jejunal muscle layer increases to a maximum in the postnatal 3rd week, which may be related to the change in diet from milk to solid food. (4) The number of goblet cells increases rapidly in the postnatal 3rd week, probably due to ingestion of solid food.

  18. Gas1 inhibits cell proliferation and induces apoptosis of human primary gliomas in the absence of Shh.

    Science.gov (United States)

    Domínguez-Monzón, Gabriela; Benítez, Jorge A; Vergara, Paula; Lorenzana, Rodrigo; Segovia, José

    2009-06-01

    Growth arrest specific1 (Gas1) is a protein expressed during development and when cells arrest their growth. The potential of Gas1 as an adjuvant in the treatment of cancer, and its role as a tumor suppressor have also been proposed. In this work we are addressing the molecular mechanisms by which Gas1 induces cell arrest and apoptosis of cancer cells, using primary cultures of human gliomas as a model. We had previously demonstrated the structural relationship between Gas1 and the alpha receptors for the Glial-cell line-Derived Neurotrophic Factor (GDNF) family of ligands, and showed that Gas1 acts by inhibiting the intracellular signaling induced by GDNF. There are also reports indicating that Gas1 positively cooperates with Sonic Hedgehog (Shh) during embryonic development and in this paper we analyzed the potential interactions between Gas1 and Shh. We show that human gliomas do not express Shh, whereas GDNF and the molecular components necessary to transduce its signaling are present in human gliomas. Furthermore, the over-expression of Gas1 induces cell arrest, apoptosis and prevents the activation of Akt, a crucial mediator of survival and cellular proliferation pathways. In the present work, we present evidence demonstrating that Gas1 exerts its effects inhibiting cell growth and inducing apoptosis of glioma cells in the absence of Shh. PMID:19460624

  19. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com [Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Dezfoulian, Omid [Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorram Abad (Iran, Islamic Republic of); Alirezaei, Masoud [Division of Biochemistry, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Rasoulian, Bahram [Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorram Abad (Iran, Islamic Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  20. Effcts of Vitamin C on A549 Cell Proliferation, Apoptosis and Expressions of Caspase, Survivin

    Directory of Open Access Journals (Sweden)

    Lanzhen HUANG

    2010-02-01

    Full Text Available Background and objective It was proven that Vitamin C could inhibit the growth of many types of tumors as an antioxidant. The aim of this study is to explore role of Vitamin C in proliferation and apoptosis of lung carcinoma cell line A549 and the underlying mechanism. Methods A549 cells were cultured in vitro and incubated with Vitamin C. The cell viability was measured by growth curve and clonogentic assay. Flow cytometry was used to analyze cell cycle and detect apoptosis. The levels of expression of Caspase-3 mRNA and Survivin mRNA were detected by RT-PCR. Results Vitamin C of 400 μg/mL, 4 mg/mL significantly inhibited the growth of A549 cell lines (P=0.024, P=0.015, respectively. Flow cytometry showed that the cells major stagnation stayed in the G0/G1 and S phase and the apoptotic rate increased with time prolonged. Vitamin C signifiantly up-ragulated the expression of Caspase-3 mRNA, but had no effect on Survivin mRNA. Conclusion Vitamin C can inhibit the proliferation of A549, block A549 cells in G0/G1 and S phase, and induce apoptosis of A549 cells. Apotosis occurred by up-ragulated the expressionof Caspase-3.

  1. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  2. Effects of p53 overexpression on neoplastic cell pro-liferation and apoptosis in thymic carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate p53 overexpression and its correlation with neoplastic cell proliferation and apoptosis in 20 thymic carcinomas. Methods: 20 surgical samples of thymic carcinoma were collected randomly during the past 15 years in the Guangzhou area. Immunohistochemical staining was performed using LSAB method with anti-p53 monoclonal antibody (DO-7) and proliferating cell nuclear antigen (clone PC 10) as primary antibodies. The p53 index was indicated by the number of p53 positive cells among 100 carcinoma cells. More than 25 percentage of p53 positive cells found in tissue sections was recognized as p53 overexpression. Carcinoma cell proliferation activity was assayed by PCNA index (PI), and apoptosis degree was evaluated by TUNEL (TdT-mediated dUTP-X nick end labeling) index (TI) using Boehringer Mannheim In Situ Death Detection Kit. Results: P53 positive cells could be found in vast majority of thymic carcinomas (19/20) and the overexpression rate reached 35% (7/20). The median PI (40%) of 7 cases with p53 overexpression was higher than that (31%) of 13 cases without p53 overexpression, but there was no statistical significance that existed between these two data (P>0.05). The median TI (0.5/HPF) of 7 p53 overexpression cases was much lower than that (4.5/HPF) of 13 non-overexpression cases, and there was a significant difference statistically (P<0.05). Conclusion: p53 expression was a frequent finding in thymic carcinoma cells, and the p53 overexpression which might represent p53 inactivation or gene mutation was often involved in thymic carcino-genesis. The median PCNA index of p53 overexpression group was higher than that of non-overexpression group though there existed no statistical difference. This indicates that the inhibiting function of p53 on cell proliferation seemed lost in p53 overexpressed thymic carcinomas. It is worthy to be specially mentioned that the inducing function of p53 on cell apoptosis was markedly lost in p53 overexpressed thymic

  3. Effect of evodiamine on the proliferation and apoptosis of A549 human lung cancer cells.

    Science.gov (United States)

    Lin, Li; Ren, Li; Wen, Liujing; Wang, Yu; Qi, Jin

    2016-09-01

    Evodia rutaecarpa is a plant, which has antitumor activity. Evodiamine is an alkaloid with antitumor activity present in E. rutaecarpa and has potential to be developed into a therapeutic antitumor agent. The present study investigated the effect of evodiamine on the proliferation of A549 human lung cancer cells and the mechanism underlying these effects. The results indicated that evodiamine significantly inhibited proliferation, induced apoptosis and the expression of reactive oxygen species, arrested the cell cycle, regulated the expression of Survivin, Bcl-2 and Cyclin B1, regulated the activity of caspase-3/8 and glutathione in tumor cells, and decreased the activity of AKT/nuclear factor‑κB (NF‑κB) and Sonic hedgehog/GLI family zinc finger 1 (SHH/GLI1) signaling pathways in A549 cells. In conclusion, the evodiamine-induced inhibition of the proliferation of A549 lung cancer cells may be attributable to its ability to promote oxidative injury in the cells, induce apoptosis, arrest the cell cycle and regulate the AKT/NF‑κB and SHH/GLI1 signaling pathways, subsequently controlling the expression of tumor‑associated genes. PMID:27485202

  4. Effect of beta-escin sodium on endothelial cells proliferation, migration and apoptosis.

    Science.gov (United States)

    Wang, Xu-Hua; Xu, Bo; Liu, Jing-Tao; Cui, Jing-Rong

    2008-01-01

    beta-Escin, the major active compound in extracts of the horse chestnut Aesculus hippocastanum seed, has shown clinically significant activity in chronic venous insufficiency (CVI). Our previous studies had shown that beta-escin sodium inhibited angiogenesis in chick chorioallantoic membrane (CAM) and in aortic disk assay. In this study, we explored the direct effect of beta-escin sodium on proliferation, migration and apoptosis in human umbilical vein endothelial cells (HUVECs) and ECV304 cells. Sulforhodamine B (SRB) assay showed that beta-escin sodium (10, 20, 40 microg/ml) inhibited endothelial cells (ECs) proliferation dose-dependently. beta-escin sodium also induced ECs apoptosis at 40 microg/ml. Cell migration was evaluated by an improved wound assay: barren spot assay. And the direct effect on cell motility excluding influence of cell proliferation was examined by High Content Screening (HCS, Cellomics) assay. The data indicated that beta-escin sodium suppressed ECs migration and cell motility. Western blot results suggested that beta-escin sodium acts on ECs possibly by increasing expression of thrombospondin-1 (TSP-1), and decreasing expression of PKC-alpha and activation of p44/42 mitogen-activated protein kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK). Our findings give the evidence that beta-escin sodium might have potential anti-angiogenic activity via its direct effects on ECs. PMID:18718875

  5. Apoptosis and autophagy control cell proliferation in the dentate gyrus following hippocampal lesion

    Institute of Scientific and Technical Information of China (English)

    Ju Zhou; Wei Peng; Qi Zhu; Shan Gong; Lidong Shan; Tadashi Hisamitsu; Shiyu Guo; Xinghong Jiang

    2010-01-01

    Brain injuries often result in the promotion of cell proliferation in the hippocampal dentate gyrus(DG),but the number of newborn cells declines with time.However,the cause of this decline remains poorly understood.Elucidation of the fate of these newborn cells will further the understanding of the pathological process and treatment of brain injury.In the present study,the number of newborn cells was quantitatively analyzed using an unbiased stereological method following hippocampal lesion by kainic acid,in combination with detection of apoptosis and autophagy.Results revealed that hippocampal lesion resulted in a significantly increased number of 5-bromo-2-deoxyuridine(BrdU)-positive cells in the DG,which subsequently decreased with time.BrdU/cleaved caspase-3 double-labeled cells were detected in the granular cell layer and hilus of DG.However,expressions of LC3-11,Beclin 1,and p53 were upregulated,and pro-caspase-3 and Bcl-2 were downregulated.Results indicated that hippocampal lesion in adult rats resulted in significant cell proliferation in the DG,which subsequently reduced with time.In addition,results suggested that apoptosis and autophagic processes could regulate cell proliferation in the DG following hippocampal lesion.

  6. Apoptosis, cell proliferation and vitellogenesis during the folliculogenesis and follicular growth in teleost fish.

    Science.gov (United States)

    Thomé, R G; Domingos, F F T; Santos, H B; Martinelli, P M; Sato, Y; Rizzo, E; Bazzoli, N

    2012-02-01

    Aiming to better understand folliculogenesis, this study evaluated cell death and proliferation of ovarian cells, besides cathepsin-D expression in Prochilodus argenteus captured in two sites of the São Francisco River downstream from the Três Marias Dam, Brazil. In the site immediately following the Dam (S1), low levels of dissolved oxygen were registered in the rainy period. The water temperature was higher in the São Francisco River immediately after the confluence with the Abaeté River (S2), regardless of the period. In S1, the ovaries showed smaller oocytes, high caspase-3 enzymatic activity and apoptosis, lower cells in proliferation and GSI, as well as a lesser quantity of cathepsin-D when compared to females captured from S2. Regarding relative frequency of ovarian structures, in the dry period, only oogonia and perinucleolar oocytes were found in fish ovaries from both sites. On the other hand, in the rainy period, the relative frequency of oogonia and perinucleolar oocytes decreased and the vitellogenic oocytes increased in S2. Postovulatory follicles were observed only in S2, whereas atretic follicles occurred at a higher frequency in S1. Our results showed that apoptosis, cell proliferation and cathepsina-D evaluation can be used as biomarkers of environmental impact. PMID:22153985

  7. Apoptosis and cell proliferation in the mouse model of embryonic death induced by Tritrichomonas foetus infection.

    Science.gov (United States)

    Woudwyk, Mariana A; Zanuzzi, Carolina N; Nishida, Fabián; Gimeno, Eduardo J; Soto, Pedro; Monteavaro, Cristina E; Barbeito, Claudio G

    2015-09-01

    Bovine tritrichomonosis is a sexually transmitted disease caused by the protozoon Tritrichomonas foetus and characterised by embryonic-death and abortion. During pregnancy, the processes of cell proliferation and death play a crucial role for blastocyst implantation and the subsequent maintenance of early pregnancy, and their misbalance may lead to the abortion. In this study, we aimed to investigate whether cell proliferation and death may be altered during tritrichomonosis. For this purpose, we used pregnant BALB/c mice as an alternative experimental animal model that has successfully reproduced the infection. We analysed the immunohistochemical expression of active caspase-3 and proliferating cell nuclear (PCNA) antigens in the endometrium of infected mice. We found an increase in the number of caspase-3 positive cells in infected mice that were not pregnant at the necropsy. Besides, the number of positive proliferating cells increased in the uterine luminal epithelium of infected animals killed at 5-7 days post coitum (dpc). Pregnant infected mice killed at 8-11 dpc showed higher proliferation than control animals. We suggest that the cytopathic effect induced by T. foetus in the uteri of infected mice may induce the apoptosis of the epithelial cells and, as a result, promote a compensatory proliferative response. The information described here will be helpful to further study the pathogenesis of the bovine tritrichomonosis. PMID:26028409

  8. Epithelium-Mesenchyme Interactions Control the Activity of Peroxisome Proliferator-Activated Receptor β/δ during Hair Follicle Development

    OpenAIRE

    Di-Poï, Nicolas; Ng, Chuan Young; Tan, Nguan Soon; Yang, Zhongzhou; Hemmings, Brian A.; Desvergne, Béatrice; Michalik, Liliane; Wahli, Walter

    2005-01-01

    Hair follicle morphogenesis depends on a delicate balance between cell proliferation and apoptosis, which involves epithelium-mesenchyme interactions. We show that peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) and Akt1 are highly expressed in follicular keratinocytes throughout hair follicle development. Interestingly, PPARβ/δ- and Akt1-deficient mice exhibit similar retardation of postnatal hair follicle morphogenesis, particularly at the hair peg stage, revealing a new imp...

  9. Effects of paclitaxel on proliferation and apoptosis in human acute myeloid leukemia HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    Yun-feng WAN; Xue-qing GUO; Zheng-hua WANG; Kang YING; Ming-hui YAO

    2004-01-01

    AIM: To investigate the regulatory effect of paclitaxel on proliferation and apoptosis in human acute leukemia HL60 cells. METHODS: HL-60 cell growth was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tertrazolium bromide (MTT) colorimetric assay. Cell cycle kinetics and apoptosis were analyzed by flow cytometry and microscopic examination. In addition, DNA microarrays containing 14400 EST elements were used to investigate the gene expression pattern of HL-60 cells exposed to paclitaxel 1 μmol/L. RESULTS: Paclitaxel inhibited HL-60 cell growth significantly in a dose-dependent and time-dependent manner (P<0.01). Marked cell accumulation in G2/M phase and multinucleated cells were also observed after treatment with paclitaxel 0.1 and 1 μmol/L. Among 14400 EST elements, 277 genes were found to be markedly up- or down-expressed in the HL-60 cells treated with paclitaxel 1 μmol/L for 0.5 h, comprising 210 known genes and 67 unknown genes. CONCLUSION: Paclitaxel suppresses the growth of HL-60 cells in vitro by causing cell-cycle arrest and apoptosis. The results of microarray suggest that paclitaxel initiates apoptosis through multiple mechanisms.

  10. [Effect of thalassemia panel reactive antibody on proliferation and apoptosis of cord blood CD34(+) cells].

    Science.gov (United States)

    Yang, Xing-Ge; Lu, Xue-Liang; Xu, Lü-Hong; Fang, Jian-Pei

    2012-02-01

    The study was purposed to explore the effect of panel reactive antibody (PRA) serum from patients with β-thalassemia on proliferation and apoptosis of the CD34(+)cells from cord blood and its mechanism. CD34(+) cells of umbilical cord blood were incubated with different sera and complement respectively. After incubation, the samples were centrifuged and the supernatants were collected for lactate dehydrogenase (LDH) detection, and the CD34(+) cells were harvested and measured for the apoptosis by flow cytometry with Annexin V/PI. The intracellular DNA synthesis were also quantified by [(3)H]TdR incorporation using liquid scintillation counter. The results showed that concentration of LDH in PRA positive groups was higher as compared with control group, and the DNA synthesis of CD34(+) cells in PRA positive groups were inhibited. There were no differences in the percentage of cell apoptosis and necrosis among different groups. It is concluded that thalassemic serum PRA impairs the cell membrane, inhibits the DNA synthesis, which can be increased by addition of the complement, but PRA had no significant effect on apoptosis of CD34(+) cells. PMID:22391181

  11. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Kopp, Katharina; Krejsgaard, Thorbjørn;

    2010-01-01

    , whereas an activator of Jak3 and NF-¿B, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10......The programmed cell death-10 (PDCD10; also known as cerebral cavernous malformation-3 or CCM3) gene encodes an evolutionarily conserved protein associated with cell apoptosis. Mutations in PDCD10 result in cerebral cavernous malformations, an important cause of cerebral hemorrhage. PDCD10 is...... associated with serine/threonine kinases and phosphatases and modulates the extracellular signal-regulated kinase pathway suggesting a role in the regulation of cellular growth. Here we provide evidence of a constitutive expression of PDCD10 in malignant T cells and cell lines from peripheral blood of...

  12. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells

    Institute of Scientific and Technical Information of China (English)

    Qi-huang JIN; Heng-yi HE; Yu-fang SHI; He LU; Xue-jun ZHANG

    2004-01-01

    AIM: To study the potential function of acetylcholinesterase (AChE) in apoptosis through overexpression of AChE in Normal Rat Kidney (NRK) cells. METHODS: AChE activity was detected by the method of Karnovsky and Roots. Activated caspase-3 was analyzed by Western blotting and immunofiurescence with antibody special to activated caspase-3 fragment. The expression plasmids were constructed in pcDNA3.1 containing AChE gene or a fragment of AChE antisense that were got from RT-PCR. Stable expression cell lines were selected by G418 in cells transfected by lipofection. AChE expression was analyzed by RT-PCR and Western blotting. The proliferation rates of transfected cells were examined by the growth curve and cloning efficiency. MTT assay was used to analyze the cell viability. RESULTS: The proliferation rate of the cells transfected with AChE was retarded and the cloning efficiency was lower (28.2 %±3.1% and 48.7 %±2.1%) than cells transfected with vector (56.1%±0.3 %) or AChE-antisense (77.7 %±2.2 %). After 2 d the various clone types were deprived of serum, the residue cell viability were 10.4 %±4.6 % and 12.6 %±6.7 % in the cells transfected with AChE, and 27.4 %±3.5 % in cells with vector, and 50.3 %±7.8 % in cells with AChE-antisense. CONCLUSION: During apoptosis, increase of AChE protein is to inhibit cell proliferation, and then to promote apoptosis in NRK cells.

  13. Helicobacter pylori Infection in Association with Cell Proliferation,Apoptosis and Prostaglandin E2 Levels

    Institute of Scientific and Technical Information of China (English)

    PAN Kai-feng; ZHANG Yang; ZHANG Lian; MA Jun-ling; FENG Guo-shuang; ZHOU Tong; YOU Wei-cheng

    2007-01-01

    Objective: To evaluate the relationship between H. pylori infection with cell proliferation, apoptosis and PGE2 levels. Methods: A population-based study was conducted in Linqu, a high-risk area of gastric cancer in China. A total of 1523 subjects, aged 35-64, participating in a gastric cancer screening survey were investigated. H. pylori status were determined by 13C-urea breath test, expressions of Ki-67 were assessed by immunohistochemistry, apoptotic cells were detected by terminal deoxynucleotide transferase mediated dUTP nick end-labeling (TUNEL) method, and PGE2 levels were measured by enzyme immunoassay. Results: H. pylori infection was positively associated with cell proliferation activity. The mean and median percentage of Ki-67 labeling index (LI) in subjects with H. pylori positive were 14.1±10.3 and 12.0, significantly higher than those with H. pylori negative (-x±s: 8.4±7.0;median: 5.8;P<0.0001). Moreover, the prevalence rates of H. pylori infection showed a tendency to increase according to severity score of cell apoptosis (Ptrend <0.0001), from score 0 to 3, the percentage of H. pylori positivity increased from 67.5% to 96.7%. Furthermore, The mean and median of PGE2 concentration were 628.84±726.40 pg/mL and 411.33 pg/mL among subjects with H. pylori positive compared with 658.19±575.91pg/mL and 455.97 pg/mL among those with H. pylori negative (P=0.209). Conclusion: H. pylori infection was positively associated with increased cell proliferation and apoptosis activity, suggesting that H. pylori infection plays an important role in the gastric epithelial cell malignant transformation.

  14. WT1 Enhances Proliferation and Impedes Apoptosis in KRAS Mutant NSCLC via Targeting cMyc

    OpenAIRE

    Wu, Chen; Wang, Sihan; Xu, Caihua; Tyler, Andreas; Li, Xingru; Andersson, Charlotta; Oji, Yusuke; Sugiyama, Haruo; Chen, Yijiang; Li, Aihong

    2015-01-01

    Background: A novel link between oncogenic KRAS signalling and WT1 was recently identified. We sought to investigate the role of WT1 and KRAS in proliferation and apoptosis. Methods: KRAS mutations and WT1 (cMyc) expression were detected using Sanger sequencing and real-time PCR in 77 patients with non-small cell lung cancer (NSCLC). Overexpression and knockdown of WT1 were generated with plasmid and siRNA via transient transfection technology in H1299 and H1568 cells. MTT assay for detection...

  15. EFFECTS OF CURCUMIN ON PROLIFERATION AND APOPTOSIS IN ACUTE MYELOID LEUKEMIA CELLS HL-60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the curcumin killing leukemia cells in vitro,. Methods: The myeloid leukemic cell line HL-60 was studied by using cell culture, flow cytometrydetermining DNA content and TUNEL method measuring apoptotic cell percentage. Results: The data showed that curcumin selectively inhibited proliferation of acute myeloid leukemia (AML) HL-60 cell lines in a dose- and time-dependent manner. The growth inhibition rate was gradually increased and reached the peak at concentration of 25 m mol/L curcumin at 24h. The sub-G1 peak appeared after 12h treatment and was increased to 34.4% at 24h. The TUNEL method further certified that apoptotic cells reached 41% at the same phase. Conclusion: curcumin possesses obvious potent of anti-leukemia cell proliferation, which is contributed to the induction of HL-60 cells apoptosis. The concentration and action time of curcumin in vitro provide some reference for clinical use.

  16. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis

    DEFF Research Database (Denmark)

    Stutzin, A; Hoffmann, E K

    2006-01-01

    physiological control. Thus, cell volume is under a tight and dynamic control and abnormal cell volume regulation will ultimately lead to severe cellular dysfunction, including alterations in cell proliferation and cell death. This review describes the different swelling-activated ion channels that participate...... as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis.......Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under...

  17. Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Yan-Qin Zhang; Xiao-Qing Tang; Li Sun; Lin Dong; Yong Qin; Hua-Qing Liu; Hong Xia; Jian-Guo Cao

    2007-01-01

    AIM: To examine whether and how rosiglitazone enhances apoptosis induced by fluorouracil in human colon cancer (HT-29) cells.METHODS: Human colon cancer HT-29 cells were cultured in vitro and treated with fluorouracil and/or rosiglitazone. Proliferation and growth of HT-29 cells were evaluated by MTT assay and trypan blue exclusion methods, respectively. The apoptosis of HT-29 cells was determined by acridine orange/ethidium bromide staining and flow cytometry using PI fluorescence staining. The expressions of peroxisome proliferator-activated receptor y (PPARy), Bcl-2 and Bax in HT-29 cells were analyzed by Western blot.RESULTS: Although rosiglitazone at the concentration below 30 umol/L for 72 h exerted almost no inhibitory effect on proliferation and growth of HT-29 cells, it could significantly enhance fluorouracil-induced HT-29 cell proliferation and growth inhibition. Furthermore, 10 umol/L rosilitazone did not induce apoptosis of HT-29 cells but dramatically enhanced fluorouracil-induced apoptosis of HT-29 cells. However, rosiglitazone did not improve apoptosis induced by fluorouracil in HT-29 cells pretreated with GW9662, a PPARy antagonist. Meanwhile, the expression of Bax and PPARy was up-regulated, while the expression of Bcl-2 was down regulated in HT-29 cells treated with rosiglitazone in a time-dependent manner. However, the effect of rosiglitazone on Bcl-2 and Bax was blocked or diminished in the presence of GW9662.CONCLUSION: Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating PPARγ.

  18. The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells

    International Nuclear Information System (INIS)

    Diverse types of voltage-gated potassium (K+) channels have been shown to be involved in regulation of cell proliferation. The maxi-conductance Ca2+-activated K+ channels (BK channels) may play an important role in the progression of human cancer. To explore the role of BK channels in regulation of apoptosis in human ovarian cancer cells, the effects of the specific BK channel activator NS1619 on induction of apoptosis in A2780 cells were observed. Following treatment with NS1619, cell proliferation was measured by MTT assay. Apoptosis of A2780 cells pretreated with NS1619 was detected by agarose gel electrophoresis of cellular DNA and flow cytometry. Our data demonstrate that NS1619 inhibits the proliferation of A2780 cells in a dosage and time dependent manner IC50 = 31.1 μM, for 48 h pretreatment and induces apoptosis. Western blot analyses showed that the anti-proliferation effect of NS1619 was associated with increased expression of p53, p21, and Bax. These results indicate that BK channels play an important role in regulating proliferation of human ovarian cancer cells and may induce apoptosis through induction of p21Cip1 expression in a p53-dependent manner

  19. The effect of amphiphilic siloxane oligomers on fibroblast and keratinocyte proliferation and apoptosis.

    Science.gov (United States)

    Lynam, Emily C; Xie, Yan; Loli, Bree; Dargaville, Tim R; Leavesley, David I; George, Graeme A; Upton, Zee

    2010-11-01

    The formation of hypertrophic scars (HSF) is a frequent medical outcome of wound repair and often requires further therapy with treatments such as silicone gel sheets (SGS) or apoptosis-inducing agents, including bleomycin. Although widely used, knowledge regarding SGS and their mode of action is limited. Preliminary research has shown that small amounts of amphiphilic silicone present in SGS have the ability to move into skin during treatment. We demonstrate herein that a commercially available analogue of these amphiphilic siloxane species, the rake copolymer GP226, decreases collagen synthesis on exposure to cultures of fibroblasts derived from HSF. By size exclusion chromatography, GP226 was found to be a mixture of siloxane species, containing five fractions of different molecular weight. By studies of collagen production, cell viability and proliferation, it was revealed that a low molecular weight fraction (fraction IV) was the most active, reducing the number of viable cells present after treatment and thereby reducing collagen production as a result. On exposure of fraction IV to human keratinocytes, viability and proliferation were also significantly affected. HSF undergoing apoptosis after application of fraction IV were also detected via real-time microscopy and by using the TUNEL assay. Taken together, these data suggests that these amphiphilic siloxanes could be potential non-invasive substitutes to apoptotic-inducing chemical agents that are currently used as scar treatments. PMID:20725963

  20. TLR3 expression correlates with apoptosis, proliferation and angiogenesis in hepatocellular carcinoma and predicts prognosis

    International Nuclear Information System (INIS)

    Toll-like receptor 3 (TLR3) plays a key role in innate immunity. In the present study, we analyzed tissues of patients with human hepatocellular carcinoma (HCC) to determine the significance of the relationship between TLR3 expression and cell proliferation, apoptosis, hepatitis B virus infections, angiogenesis and prognosis. We collected paraffin-embedded tissues from 85 patients with HCC who had complete histories and were followed for >5 years. The expression and intracellular localization of TLR3 and downstream proteins (TRIF, NF-κB, and IRF3) were detected using immunohistochemistry. Further, we determined the expression of proteins that mediate cell proliferation (Ki67, cyclin D1), apoptosis (survivin, bcl-2, caspases 3, 8, and 9), and angiogenesis (CD34, MMP-2) as well as the HBV proteins HBsAg and HBcAg. Apoptosis in HCC tissues was detected using TUNEL. We conducted dual-labeling immunohistochemical analyses of TLR3 expression and TUNEL activity. TLR3 expression was significantly lower in HCC tissues compared with adjacent tissues. TRIF, NF-κB, and IRF3 correlated positively with TLR3 expression. Survivin and Bcl-2 expression correlated negatively with TLR3. The frequencies of caspases 3, 8, and 9 expression correlated positively with TLR3 signaling proteins. Cytoplasmic TLR3 and serum levels of HBsAg correlated positively. The apoptotic index determined using the TUNEL method and correlated positively with TLR3 expression. TLR3 expression in the cytoplasm correlated positively with TUNEL-positive cells and HBsAg. Ki67 and cyclin D1 correlated negatively with TLR3 expression. MMP-2 expression, microvessel density (CD34+) and endothelial progenitor cells (EPCs) correlated negatively with TLR3 expression. Kaplan–Meier survival analysis shows that TLR3 expression correlated with longer survival. The expression of TLR3 in HCC tissues may exert a synergistic effect on apoptosis and inhibit the proliferation of HCC cells, MMP-2 expression, generation of EPCs

  1. Cell apoptosis and proliferation inhibition of pancreatic cancer induced by sub-threshold focused ultrasound (FUS)

    International Nuclear Information System (INIS)

    Objective: To evaluate the effects of sub-threshold focused ultrasound (FUS) sonication on the pancreatic cancer cell. Materials and methods: The human pancreatic carcinoma cell line PaTu 8988t suspension and pancreatic carcinoma xenograft in nude mice were sonicated by FUS using sub-threshold doses. The temperature at the focus was controlled at below 60 °C. The cell apoptosis in vitro was tested by flow cytometer at 3, 6, 12, 24 and 48 h after FUS sonication. Colony formation was used to evaluate the cell growth inhibition of FUS in vitro. The tumor volume of the xenograft was measured before and after FUS sonication. Then the slides of the tumor were under hematoxylin–eosin (H and E) staining and TdT-mediated dUTP nick end labeling (TUNEL) to evaluate the effect of FUS on pancreatic carcinoma xenograft in vivo. Results: The maximum cell suspension temperature of the FUS sonication group was 55.8 ± 2.17 °C. The cell apoptosis rate peaked at 24 h after FUS sonication, the differences between the FUS sonication group and control group were statistically significant (P 3 and 1085.23 ± 217.13 mm3 (P < 0.05). H and E staining and TUNEL assay showed both necrotic and apoptotic cells. Conclusion: Sub-threshold FUS sonication could induce cell apoptosis and inhibit the proliferation of pancreatic cancer cells.

  2. TRICHOSTATIN A INHIBITS PROLIFERATION, INDUCES APOPTOSIS AND CELL CYCLE ARREST IN HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    XU Zhou-min; WANG Yi-qun; MEI Qi; CHEN Jian; DU Jia; WEI Yan; XU Ying-chun

    2006-01-01

    Objective: The histone deacetylase inhibitors (HDACIS) have been shown to inhibit cancer cell proliferation, stimulate apoptosis, an induce cell cycle arrest. Our purpose was to investigate the antiproliferative effects of a HDACI, trichostatin A (TSA), against human cervical cancer cells (HeLa). Methods: HeLa cells were treated in vitro with various concentrations of TSA. The inhibitory effect of TSA on the growth of HeLa cells was measured by MTT assay. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of TSA. Induction of cell cycle arrest was studied by flow cytometry. Changes in gene expression of p53, p21Waf1 and p27Kip1 were studied by semiquantitative RT-PCR. Results: TSA inhibited cell growth in a time- and dose-dependent manner. Hoechst 33258 staining assay showed that TSA induced apoptosis. Cell cycle analysis indicated that treatment with TSA decreased the proportion of cells in S phase and increased the proportion of cells in G0/G1 and/or G2/M phases of the cell cycle. This was concomitant with overexpression of genes related to malignant phenotype, including an increase in p53, p21Waf1 and p27Kip1. Conclusion: These results suggest that TSA is effective in inhibiting growth of HeLa cells in vitro. The findings raise the possibility that TSA may prove particularly effective in treatment of cervical cancers.

  3. Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2015-01-01

    Full Text Available Tetrandrine (TET, a traditional Chinese medicine, exerts remarkable anticancer activity on various cancer cells. However, little is known about the effect of TET on human prostate cancer cells, and the mechanism of function of TET on prostate cancer has not yet been elucidated. To investigate the effects of TET on the suppression of proliferation, induction of apoptosis, and inhibition of migration and invasion in human prostate cancer cell lines, DU145 and PC-3. Inhibition of growth was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and clone formation assay, and flow cytometry analysis was performed to detect the induction of apoptosis. Activation of poly (ADP-ribose polymerase, caspase-3, Akt, phospho-Akt, Bcl-2, and Bax was analyzed by Western blotting. Wound healing assay and transwell migration assay were used to evaluate the effect of TET on migration and invasion of cancer cells. TET inhibited the growth of DU145 and PC-3 cells in a dose- and time-dependent manner. Cell cloning was inhibited in the presence of TET in DU145 and PC-3 cells. TET suppressed the migration of DU145 and PC-3 cells. Transwell invasion assay showed that TET significantly weakened invasion capacity of DU145 and PC-3 cells. TET exhibited strong inhibitory effect on proliferation, migration, and invasion of prostate cancer cells. In addition, TET induced apoptosis in a dose-dependent manner by activating the caspase cascade and inhibiting phosphoinositide 3-kinase-Akt signal pathway. The accumulating evidence suggests that TET could be a potential therapeutic candidate against prostate cancer in a clinical setting.

  4. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7)

    International Nuclear Information System (INIS)

    The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H2DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly (p < 0.05) increasing in a dose-dependent manner of HAP nanoparticles. Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant (p < 0.05) increase in the level of intracellular ROS in HAP-treated cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.

  5. HERG K+ channels expression in gastric cancers and analysis of its regulation in tumor cell proliferation and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Qing Lü; Huiyu Li; Xiaoming Lu; Guobin Wang

    2009-01-01

    Objective: To investigate the expression of herg 1 gene in tumor tissues from gastric carcinomas and gastric carcinoma cell lines, and study the relationship between HERG K+ channel expressions and tumor cell proliferation and apoptosis. Methods: RT-PCR and PCR assays were used to detect the expression of herg 1 gene in 64 gastric carcinomas and the gastric cancer cell line SGC-7901. Blocking the HERG K+ channels was used to evaluate their effects on tumor cell proliferation and apoptosis. Results:The statistically significant expression of herg 1 gene was detected in all the gastric cancers and SGC-7901 cells, but not in normal tissues. The HERG K+ channel blocker, E-4031, increased the cell population in G0/G1 (P<0.05) and the number of apoptotic tumor cells(P<0.05). Conclusion: HERG K+ channels were expressed in all gastric carcinomas tested and these channels appear to modulate tumor cell proliferation and apoptosis.

  6. CytoregR inhibits growth and proliferation of human adenocarcinoma cells via induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Hassanhi M

    2006-01-01

    Full Text Available Abstract Background Cancer is one of the devastating neovascular diseases that incapacitate so many people the world over. Recent reports from the National Cancer Institute indicate some significant gain therapy and cancer management as seen in the increase in the 5-year survival rate over the past two decades. Although near-perfect cure rate have been reported in the early-stage disease, these data reveal high recurrence rate and serious side effects including second malignancies and fatalities. Most of the currently used anticancer agents are only effective against proliferating cancer cells. Thus attention has been focused on potential anti-cancer agents capable of killing cancer cells independent of the cell cycle state, to ensure effective elimination of most cancer cells. The objective of this study was to test the chemosensitivity and potential mechanism of action of a novel cancer drug, CytoregR, in a panel of human cancer cells. Methods the study was performed using a series of bioassays including Trypan blue exclusion, MTS Growth inhibition, LDH-cytotoxicity, TUNEL-Terminal DNA fragmentation Apoptosis Assay, and the Caspase protease CPP32 activity assays. Results CytoregR induced significant dose- and time-dependent inhibition of growth in all the cells; with significant differences in chemosensitivity (P < 0.05 between the target cells becoming more apparent at 48 hr exposure. CytoregR showed no significant effect on normal cells relative to the tumor cells. Growth inhibition in all the cells was due to induction of apoptosis at lower concentrations of cytoregR (> 1:300. CytoregR-induced caspase protease-3 (CPP32 activation significantly and positively correlated with apoptosis induction and growth inhibition; thus implicating CPP32 as the principal death pathway in cytoregR-induced apoptosis. Conclusion CytoregR exerted a dose-and time-dependent growth inhibitory effect in all the target cells through induction of apoptosis via the

  7. Possible mechanism for the regulation of glucose on proliferation, inhibition and apoptosis of colon cancer cells induced by sodium butyrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To study the effect of glucose on sodium butyrateinduced proliferation inhibition and apoptosis in HT-29 cell line, and explored its possible mechanisms.METHODS: HT-29 cells were grown in RPMI-1640 medium supplemented with 10% fetal calf serum, and were allowed to adhere for 24 h, and then replaced with experimental medium. Cell survival rates were detected by MTT assay. Apoptosis was detected by TUNEL assay. Glucose transport protein 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) mRNA expression was detected by RT-PCR.RESULTS: Low concentration of glucose induced apoptosis and regulated proliferation in HT-29 cell line, and glucose can obviously inhibit the effect of proliferation inhibition and apoptosis induced by sodium butyrate. Glucose also down-regulated the expression of MCT1mRNA (0.28 ± 0.07 vs 0.19 ± 0.10, P < 0.05), and decreased the expression of GLUT1mRNA slightly (0.18 ± 0.04 vs 0.13 ± 0.03, P < 0.05).CONCLUSION: Glucose can regulate the effect of proliferation inhibition and apoptosis induced by sodium butyrate and this influence may be associated with the intracellular concentration of glucose and sodium butyrate.

  8. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    International Nuclear Information System (INIS)

    Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E2 or MPA or with E2+MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E2-treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E2+MPA to multilayered but organised epithelium. The proliferative response to E2 in comparison to control (p < 0.001) was more pronounced than to MPA (p < 0.05) or E2+MPA (p < 0.05) at 7 and 14 days for Ki-67 and PCNA. E2 treatment also decreased the proportion of apoptotic cells after 7 (p < 0.01) and 14 (p < 0.01) days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all hormonal

  9. Effects of estradiol and medroxyprogesterone acetate on morphology, proliferation and apoptosis of human breast tissue in organ cultures

    Directory of Open Access Journals (Sweden)

    Härkönen Pirkko

    2006-10-01

    Full Text Available Abstract Background Human breast tissue undergoes phases of proliferation, differentiation and regression regulated by changes of the levels of circulating sex hormones during the menstrual cycle or aging. Ovarian hormones also likely play a key role in the etiology and biology of breast cancer. Reports concerning the proliferative effects of steroid hormones on the normal epithelium of human breast have been conflicting. Some studies have shown that steroid hormones may predispose breast epithelial cells to malignant changes by stimulating their proliferation, which is known to be regulated tightly by stromal cells. The aim of this study was to investigate the effects of 17β-estradiol and medroxyprogesterone acetate on proliferation, apoptosis, expression of differentiation markers and steroid hormone receptors in breast epithelium using an in vitro model of freshly isolated human breast tissue, in which a proper interaction of breast epithelium and stroma has been maintained. Methods Human breast tissues were obtained from women undergoing surgery for breast tumours. Peritumoral tissues were excised and explants were cultured for 3 weeks in medium supplemented with E2 or MPA or with E2+MPA. Endpoints included histopathological, histomorphometric and immunohistochemical assessment of the breast explants. Results Culture of breast explants for 14 or 21 days with steroid hormones increased proliferative activity and the thickness of acinar and ductal epithelium. E2-treatment led to hyperplastic epithelial morphology, MPA to hypersecretory single-layered epithelium and E2+MPA to multilayered but organised epithelium. The proliferative response to E2 in comparison to control (p was more pronounced than to MPA (p or E2+MPA (p at 7 and 14 days for Ki-67 and PCNA. E2 treatment also decreased the proportion of apoptotic cells after 7 (p and 14 (p days. In addition, the relative number of ERα, ERβ and PR positive epithelial cells was decreased by all

  10. Functional screening identifies miRNAs influencing apoptosis and proliferation in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Lise Lotte Christensen

    Full Text Available MicroRNAs (miRNAs play a critical role in many biological processes and are aberrantly expressed in human cancers. Particular miRNAs function either as tumor suppressors or oncogenes and appear to have diagnostic and prognostic significance. Although numerous miRNAs are dys-regulated in colorectal cancer (CRC only a small fraction has been characterized functionally. Using high-throughput functional screening and miRNA profiling of clinical samples the present study aims at identifying miRNAs important for the control of cellular growth and/or apoptosis in CRC. The high-throughput functional screening was carried out in six CRC cell lines transfected with a pre-miR library including 319 synthetic human pre-miRs. Phenotypic alterations were evaluated by immunostaining of cleaved cPARP (apoptosis or MKI67 (proliferation. Additionally, TaqMan Human MicroRNA Array Set v2.0 was used to profile the expression of 667 miRNAs in 14 normal colon mucosa and 46 microsatellite stable stage II CRC patients. Among the miRNAs that induced growth arrest and apoptosis in the CRC cell lines, and at same time were dys-regulated in the clinical samples, miR-375 was selected for further analysis. Independent in vitro analysis of transient and stable transfected CRC cell lines confirmed that miR-375 reduces cell viability through the induction of apoptotic death. We identified YAP1 as a direct miR-375 target in CRC and show that HELLS and NOLC1 are down-stream targets. Knock-down of YAP1 mimicked the phenotype induced by miR-375 over-expression indicating that miR-375 most likely exerts its pro-apoptotic role through YAP1 and its anti-apoptotic down-stream targets BIRC5 and BCL2L1. Finally, in vivo analysis of mouse xenograft tumors showed that miR-375 expression significantly reduced tumor growth. We conclude that the high-throughput screening successfully identified miRNAs that induce apoptosis and/or inhibit proliferation in CRC cells. Finally, combining the

  11. Survivin antisense compound inhibits proliferation and promotes apoptosis in liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    De-Jian Dai; Cai-De Lu; Ri-Yong Lai; Jun-Ming Guo; Hua Meng; Wei-Sheng Chen; Jun Gu

    2005-01-01

    AIM: To evaluate the effects of survivin on cell proliferation and apoptosis in liver cancer.METHODS: MTT assay was used to generate and optimize phosphorothioate antisense oligonucleotides (ODNs)LipofectamineTM2000 (LiP) compound by varying ODNs (μg):LiP (μL) ratios from 1:0.5 to 1:5. Then, liver cancer cells (HepG2) were transfected with the compound. By using RT-PCR and Western blot, the expression levels of survivin mRNA and proteins were detected in HepG2 cells treated with antisense compounds (ODNs:LiP = 1:4), and compared with those treated with sense compounds (1:4) as control.MTT assay was applied to the determination of cell proliferation in HepG2 cells. Active caspase-3 was evaluated by flow cytometric analysis. The morphological changes were assessed by electron microscopy. Laser scanning confocal microscopy was performed to detect the subcellular localization of survivin proteins in treated and untreated cells.RESULTS: Antisense compounds (1:4) down-regulated survivin expression (mRNA and protein) in a dose-dependent manner with an IC50 of 250 nmol/L. Its maximum effect was achieved at a concentration of 500 nmol/L, at whichmRNA and protein levels were down-regulated by 80%.The similar results were found in MTT assay. Antisense compound (1:4)-treated cells revealed increased caspase3-like protease activity compared with untreated cells.Untreated cells as control were primarily negative for the presence of active-caspase-3. As shown by transmission electron microscopy, treated cells with antisense compounds (1:4) resulted in morphological changes such as blebbing and loss of microvilli, vacuolization in the cytoplasm,condensation of the cytoplasm and nuclei, and fragmented chromatin. Immunofluorescence analysis confirmed the presence of survivin protein pool inside the cytoplasm in untreated cells. Labeled-FITC immunofluorescence staining of survivin clearly showed that survivin was distributed mainly in a spotted form inside the cytoplasm. Whereas

  12. Garcinol inhibits cell proliferation and promotes apoptosis in pancreatic adenocarcinoma cells.

    Science.gov (United States)

    Parasramka, Mansi A; Gupta, Smiti V

    2011-01-01

    Garcinol, or polyisoprenylated benzophenone, isolated from the rind of fruiting bodies of Garcinia indica, has been used in traditional medicine for its potential antiinflammatory and antioxidant properties. The objective of this study was to investigate the effect of garcinol on pancreatic cancer (PaCa) cell viability and proliferation. For this, 2 human PaCa cell lines, BxPC-3 and Panc-1, with wild and mutant k-ras, respectively, were treated with garcinol (0-40 μM). Garcinol significantly (P garcinol's action on PaCa cells was investigated by targeting signaling moieties involved in apoptosis (X-IAP, cIAP, caspase-3, 9, and PARP cleavage), transcription factor NF-κB, believed to contribute toward a chemoresistance phenotype in pancreatic tumors, and molecules associated with neovascularization and metastasis (MMP-9, VEGF, IL-8, and PGE(2)). Garcinol significantly (P garcinol in PaCa. Further studies are warranted, based on our findings. PMID:21462088

  13. Diallyl trisnlfide induces apoptosis and inhibits proliferation of A549 cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Wenjun Li; Bin Hao; Cun Gao; Libo Si; Fei Gao; Hui Tian; Lin Li; Shuhai Li; Weiming Yue; Zhitao Chen; Lei Qi; Wensi Hu; Yingchao Zhu

    2012-01-01

    Lung cancer is the leading cause of cancer-related mortality all over the world.In recent years,pulmonary adenocarcinoma has surpassed squamous cell carcinoma in frequency and is the predominant form of lung cancer in many countries.Epidemiological investigations have shown an inverse relationship between garlic (Allium sativum) consumption and death rate from many cancers.Diallyl trisulfide (DATS) is one of the garlic-derived compounds (also known as:organosulfer compounds,OSC).DATS can induce apoptosis and inhibit the growth of many cancer cell lines.Our study demonstrated that the apoptotic incidents induced by DATS were a mitochondriadependent caspase cascade through a significant decrease of the anti-apoptotic Bcl-2 that resulted in up-regulation of the ratio of Bax/Bcl-2 and the activity of caspase-3,-8,and -9.Eventually,DATS induced the apoptosis and inhibitedthe proliferation in a concentration- and time-dependentmanner.Furthermore,by establishing an animal model of female BALB/c nude mice with A549 xenografts,we found that oral gavage of DATS significantly retarded growth of A549 xenografts in nude mice without causing weight loss or any other side effects compared with the control group.All the evidence both in vitro and in vivo suggested that DATS could be an ideal anti-cancer drug.

  14. Kefir induces apoptosis and inhibits cell proliferation in human acute erythroleukemia.

    Science.gov (United States)

    Jalali, Fatemeh; Sharifi, Mohammadreza; Salehi, Rasoul

    2016-01-01

    Acute erythroleukemia is an uncommon subtype of acute myeloid leukemia which has been considered to be a subtype of AML with a worse prognosis. Intensive chemotherapy is the first line of treatment. In recent years, the effect of kefir on some malignancies has been experimented. Kefir is a kind of beverage, which obtained by incubation of kefir grains with raw milk. Kefir grains are a symbiotic complex of different kinds of yeasts and bacteria, especially lactic acid bacteria which gather in a mostly carbohydrate matrix, named kefiran. We investigated the effect of kefir on acute erythroleukemia cell line (KG-1) and peripheral blood mononuclear cells (PBMCs). The cell line and PBMCs were treated with different doses of kefir and milk and incubated for three different times. We used Polymixin B to block the lipopolysaccharide and NaOH (1 mol/l) to neutralize the acidic media. Viability was detected by MTT assay. Apoptosis and necrosis were assessed by annexin-propidium iodide staining. Our results showed that kefir induced apoptosis and necrosis in KG-1 cell line. It was revealed that kefir decreased proliferation in erythroleukemia cell line. We did not observe a remarkable effect of kefir on PBMCs. Our study suggested that kefir may have potential to be an effective treatment for erythroleukemia. PMID:26708130

  15. Degradation of miR-21 induces apoptosis and inhibits cell proliferation in human hepatocellular carcinoma.

    Science.gov (United States)

    Najafi, Z; Sharifi, M; Javadi, G

    2015-11-01

    MicroRNAs (miRNAs) are small non-coding RNAs, 18-25 nucleotides long and have an important role in post-transcriptional regulation of gene. Several aspects of cellular activities such as cell growth, proliferation and differentiation are regulated by miRNAs. In many cancers and malignancies, up- or downregulation of different miRNAs has been reported. In human hepatocellular carcinoma (HCC), upregulation of miR-21 has been reported in human in vitro studies. Here, we made an assessment of the effect of miR-21 degradation on viability and apoptosis of HCC cell line (HepG2) using locked nucleic acid (LNA). At different time points (24, 48, 72 h) after LNA-anti-miR-21 transfection, 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide assay and Annexin/propidium iodide staining were performed. The results show that miR-21 degradation can decrease the viability of cells, mainly by induction of apoptosis and necrosis. These findings suggest that degradation of miR-21 could be used as a novel approach in treatment of HCC. PMID:26427512

  16. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs.

    Science.gov (United States)

    Bilić-Šobot, Diana; Kubale, Valentina; Škrlep, Martin; Čandek-Potokar, Marjeta; Prevolnik Povše, Maja; Fazarinc, Gregor; Škorjanc, Dejan

    2016-10-01

    This study aimed to evaluate the effect of hydrolysable tannin supplementation on morphology, cell proliferation and apoptosis in the intestine and liver of fattening boars. A total of 24 boars (Landrace × Large white) were assigned to four treatment groups: Control (fed commercial feed mixture) and three experimental groups fed the same diet supplemented with 1%, 2% and 3% of hydrolysable tannin-rich extract. Animals were housed individually with ad libitum access to feed and then slaughtered at 193 d of age and 122 ± 10 kg body weight. Diets supplemented with hydrolysable tannin affected the morphometric traits of the duodenum mucosa as reflected in increased villus height, villus perimeter and mucosal thickness. No effect was observed on other parts of the small intestine. In the large intestine, tannin supplementation reduced mitosis (in the caecum and descending colon) and apoptosis (in the caecum, ascending and descending colon). No detrimental effect of tannin supplementation on liver tissue was observed. The present findings suggest that supplementing boars with hydrolysable tannins at concentrations tested in this experiment has no unfavourable effects on intestinal morphology. On the contrary, it may alter cell debris production in the large intestine and thus reduce intestinal skatole production. PMID:27434497

  17. Modulatory Effects of EPA and DHA on Proliferation and Apoptosis of Pancreatic Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Weikang; LONG Yueping; ZHANG Jinghui; WANG Chunyou

    2007-01-01

    In order to investigate the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the proliferation, apoptosis of pancreatic cancer cell line SW1990 cells and the ex-pression of cyclin E mRNA, the SW1990 cells were treated with different concentrations of EPA or DHA (20, 40, 60 μg/mL) for 0, 12, 24, 36 and 48 h respectively. By using MTT method, the inhibi-tory effects of EPA or DHA on the cell growth were assayed. Real time PCR was used to detect the expression changes of cyclin E mRNA after the SW1990 cells were treated with 40 μg/mL EPA or DHA for different time. Flow eytometry was used to test the changes of apoptostic rate in the SW1990 cells treated with different concentrations of EPA or DHA for 24 h. The results showed that EPA and DHA could inhibit the growth of SW1990 cells in a time- and concentration-dependent manner (P<0.01). EPA or DHA could also significantly inhibit the expression of cyclin E mRNA in a time-dependent manner (P<0.05). EPA or DHA could induce the apoptosis of SW1990 cells in a concentration-dependent manner (P<0.01). It was concluded that ω-3 fatty acid could inhibit the pro- liferation of pancreatic cancer cell line SW1990 cells and promote their apoptosis. The down-regulation of the cyclin E expression by ω-3 fatty acid might be one of the mechanisms for its anti-tumor effect on pancreatic cancer.

  18. Copper toxicity in gills of the teleost fish, Oreochromis niloticus: Effects in apoptosis induction and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Sandra Mariza, E-mail: smonteir@utad.pt [Department of Biology and Environment-CITAB, University of Tras-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Santos, Nuno M.S. dos [Institute for Molecular and Cell Biology, University of Porto (Portugal); Calejo, Margarida [Lab Cell Biology - ICBAS, University of Porto (Portugal); Fontainhas-Fernandes, Antonio [Department of Biology and Environment-CITAB, University of Tras-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Sousa, Mario [Lab Cell Biology - ICBAS, University of Porto (Portugal); Centre for Reproductive Genetics Alberto Barros, Porto (Portugal)

    2009-09-14

    Recent in vitro studies have demonstrated that copper may induce apoptosis triggering the activation of caspase-3, a central effector of apoptotic cell death. However, the precise mechanism of copper-induced apoptosis is still unclear, even less so in Oreochromis niloticus where no caspase genes have been reported so far. This study aimed to assess the in vivo role of copper in apoptosis induction on O. niloticus gill, simultaneously contributing to elucidate the mechanism of copper-induced apoptosis. Caspase-3 gene was partially sequenced and, after in vivo exposures to 40 and 400 {mu}g L{sup -1} of copper, its mRNA expression was evaluated by real-time PCR. Apoptosis was also evaluated by TUNEL assay and cell proliferation identified using an antibody against proliferating cell nuclear antigen (PCNA). The copper concentrations used did not induce the upregulation of caspase-3 gene in O. niloticus gill. In addition, in the gills of fish exposed to copper there was no increase in the estimated relative volume of apoptotic cells, indicating that neither the caspase-3-dependent or caspase-independent apoptotic pathways were induced. On the other hand, the increase in the volumetric density of epithelial proliferating cells suggests a concentration-dependent repair response.

  19. Regulatory effects of ΔFosB on proliferation and apoptosis of MCF-7 breast cancer cells.

    Science.gov (United States)

    Li, Hui; Li, Lihui; Zheng, Huiling; Yao, Xiaotong; Zang, Wenjuan

    2016-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a vital role in tumor angiogenesis, cell migration, and invasiveness because it can degrade almost all basement membrane and extracellular matrix components. MMP-9 has been reported in many cancers including breast cancer, lung cancer, and colon cancer. ΔFosB in mammary epithelial cells has been shown to regulate cell proliferation, differentiation, and death. We found that ΔFosB increased the expression of MMP-9 in MCF-7 breast cancer cells. ΔFosB overexpression in MCF-7 cells increased cellular viability and decreased cell apoptosis. SB-3CT, an inhibitor of MMP-9, promoted apoptosis, inhibited cell proliferation, induced cell cycle arrest, and downregulated the expression of antiapoptotic genes Bcl-2 and Bcl-xl in MCF-7 cells. ΔFosB increased the number of MCF-7 cells in G2/M and S phases, upregulated the expression of Bcl-2 and Bcl-xl, and protected MCF-7 cells from apoptosis induced by MMP-9 inhibition. We also found that ΔFosB overexpression in MCF-7 cells inhibited Ca(2+)-induced apoptosis and promoted cell proliferation. Therefore, ΔFosB may be a potential target in breast cancer cell apoptosis by regulating the expression of MMP-9. PMID:26608367

  20. Artesunate Reduces Proliferation, Interferes DNA Replication and Cell Cycle and Enhances Apoptosis in Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study examined the effect of artesunate (Art) on the proliferation, DNA replication, cell cycles and apoptosis of vascular smooth muscle cells (VSMCs). Primary cultures of VSMCs were established from aortas of mice and artesunate of different concentrations was added into the medium. The number of VSMCs was counted and the curve of cell growth was recorded.The activity of VSMCs was assessed by using MTT method and inhibitory rate was calculated.DNA replication was evaluated by [3 H]-TdR method and apoptosis by DNA laddering and HE staining. Flowmetry was used for simultaneous analysis of cell apoptosis and cell cycles. Compared with the control group, VSMCs proliferation in Art interfering groups were inhibited and [3H]-TdR incorprating rate were decreased as well as cell apoptosis was induced. The progress of cell cycle was blocked in G0/G1 by Art in a dose-dependent manner. It is concluded that Art inhibits VSMCs proliferation by disturbing DNA replication, inducing cell apoptosis and blocking cell cycle in G0/G1 phase.

  1. Copper toxicity in gills of the teleost fish, Oreochromis niloticus: Effects in apoptosis induction and cell proliferation

    International Nuclear Information System (INIS)

    Recent in vitro studies have demonstrated that copper may induce apoptosis triggering the activation of caspase-3, a central effector of apoptotic cell death. However, the precise mechanism of copper-induced apoptosis is still unclear, even less so in Oreochromis niloticus where no caspase genes have been reported so far. This study aimed to assess the in vivo role of copper in apoptosis induction on O. niloticus gill, simultaneously contributing to elucidate the mechanism of copper-induced apoptosis. Caspase-3 gene was partially sequenced and, after in vivo exposures to 40 and 400 μg L-1 of copper, its mRNA expression was evaluated by real-time PCR. Apoptosis was also evaluated by TUNEL assay and cell proliferation identified using an antibody against proliferating cell nuclear antigen (PCNA). The copper concentrations used did not induce the upregulation of caspase-3 gene in O. niloticus gill. In addition, in the gills of fish exposed to copper there was no increase in the estimated relative volume of apoptotic cells, indicating that neither the caspase-3-dependent or caspase-independent apoptotic pathways were induced. On the other hand, the increase in the volumetric density of epithelial proliferating cells suggests a concentration-dependent repair response.

  2. Berbamine inhibits proliferation and induces apoptosis of KU812 cells by increasing Smad3 activity

    Institute of Scientific and Technical Information of China (English)

    Yun LIANG; Xi QIU; Rong-zhen XU; Xiao-ying ZHAO

    2011-01-01

    Objective:The cytotoxic effect of berbamine on chronic myeloid leukemia (CML) cell line KU812 was evaluated,and the mechanisms of its action were explored.Methods:The effect of berbamine on the KU812 cell growth was determined by methyl thiazolyl tetrazolium (MTT) assay.Flow cytometry was used to profile cell cycle alteration upon berbamine treatment.Reverse transcription polymerase chain reaction (RT-PCR) was carried out to determine the transcripts of transforming growth factor-β (TGF-β) receptors (TβRs),Smad3,c-Myc,cyclin D1,p21Cip1 (p21),and p27Kip1 (p27).Changes in the protein levels of total Smad3,phosphorylated Smad3,the downstream targets of Smad3,and specific apoptosis-related factors were evaluated by Western blotting.Results:Berbamine inhibited KU812 cell proliferation in a dose-and time-dependent manner,and the half maximal inhibitory concentration (IC50) values for treatments of 24,48,and 72 h were 5.83,3.43,and 0.75 μg/ml,respectively.Berbamine induced G1 arrest as well as apoptosis in KU812 cells.Transcriptions of Smad3 and p21 were up-regulated,while those of TβRI,TβRII,c-Myc,cyclin D1 and p27 were not changed significantly.The protein levels of both total Smad3 and phosphorylated Smad3 were both up-regulated after berbamine treatment,together with decreased c-Myc and cyclin D1 and increased p21.Meanwhile,the levels of the anti-apoptotic proteins,such as Bcl-2 and Bcl-xL,were decreased,whereas pro-apoptotic Bax was increased.Conclusions:Berbamine suppresses KU812 cell proliferation through induction of cell cycle arrest in G1 and apoptosis.It activates Smad3 without additional stimulation of TGF-β,and alters the levels of the Smad3 downstream targets,including c-Myc,cyclin D1 and p21.Our findings suggest that berbamine is a promising drug in the treatment of advanced stage patients with CML.

  3. Apoptosis, proliferation and p53 gene expression of H. pylori associated gastric epithelial lesions

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhang1; Yuan Yuan; Hua Gao; Ming Dong; Lan Wang; Yue-Hua Gong

    2001-01-01

    AIM: To study the relationship between Helicobacter pylori (H. Pylori) and gastric carcinoma and its possible pathogenesis by H. Pylori. METHODS: DNEL technique and immunohistochemical technique were used to study the state of apoptosis,proliferation and p53 gene expression. A total of 100 gastric mucosal biopsy specimens, including 20 normal mucosa, 30H. Pylori-negative and 30 H. Pylorf-positive gastric precancerous lesions along with 20 gastric carcinomas were studied. RESULTS: There were several apoptotic cells in the superficial epithelium and a few proliferative cells within the neck of gastric glands, and no p53 protein expression in normal mucosa. In gastric carcinoma, there were few apoptotic cells, while there were a large number of proliferative cells, and expression of p53 protein significantly was increased. In the phase of metaplasia, the apoptotic index (Al, 4.36% ± 1.95%), proliferative index (PI, 19.11% ± 6.79%) and positivity of p53 expression (46.7%) in H. Pylori-positive group were higher than those in normal mucosa (P< 0.01). Al in H. Pylori-positive group was higher than that in H. Pylori-negative group (3.81% ±1.76%), PI in H. Pylori-positive group was higher than that in H. Pylori-negative group (12.25% ±5.63%, P<0.01 ). In the phase of dysplasia, Al (2.31% ± 1.10%) in H. Pylori-positive group was lower (3.05% ± 1.29%) than that in H. Pylori-negative group, but PI (33.89% ± 11.65%)wassignificantly higher(22.09± 8018%, P< 0.01). In phases of metaplasia, dysplasia and gastric cancer in the H. Pylori-positive group, Als had an evidently graduall decreasing trend (P < 0.01 ), while Pis had an evidently gradual increasing trend (P< 0.05 or P< 0.01), and there was also a trend of gradual increase in the expression of p53 gene. CONCLUSION: In the course of the formation of gastric carcinoma, proliferation of gastric mucosa can be greatly increased by H. Pylori, and H. Pylori can induce apoptosis in the phase of metaplasia but in the phase of

  4. Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway

    Indian Academy of Sciences (India)

    Di Wang; Jian Chen; Hui Chen; Zhi Duan; Qimei Xu; Meiyan Wei; Lianghua Wang; Meizuo Zhong

    2012-03-01

    Epidemiological studies have indicated that obesity is associated with colorectal cancer. The obesity hormone leptin is considered as a key mediator for cancer development and progression. The present study aims to investigate regulatory effects of leptin on colorectal carcinoma. The expression of leptin and its receptor Ob-R was examined by immunohistochemistry in 108 Chinese patients with colorectal carcinoma. The results showed that leptin/Ob-R expression was significantly associated with T stage, TNM stage, lymph node metastasis, distant metastasis, differentiation and expression of p-mTOR, p-70S6 kinase, and p-Akt. Furthermore, the effects of leptin on proliferation and apoptosis of HCT-116 colon carcinoma cells were determined. The results showed that leptin could stimulate the proliferation and inhibit the apoptosis of HCT-116 colon cells through the PI3K/Akt/mTOR pathway. Ly294002 (a PI3K inhibitor) and rapamycin (an mTOR inhibitor) could prevent the regulatory effects of leptin on the proliferation and apoptosis of HCT-116 cells via abrogating leptin-mediated PI3K/Akt/mTOR pathway. All these results indicated that leptin could regulate proliferation and apoptosis of colorectal carcinoma through the PI3K/Akt/mTOR signalling pathway.

  5. Prognostic significance of an apoptotic index and apoptosis/proliferation ratio for patients with high-grade astrocytomas.

    Science.gov (United States)

    Kuriyama, Hiroko; Lamborn, Kathleen R.; O'Fallon, Judith R.; Iturria, N.; Sebo, Thomas; Schaefer, Paul L.; Scheithauer, Bernd W.; Buckner, Jan C.; Kuriyama, Nagato; Jenkins, Robert B.; Israel, Mark A.

    2002-01-01

    We evaluated the association of spontaneous apoptosis and an apoptosis/proliferation index with survival to determine the potential of such measures to serve as predictive markers for patients with glioblastoma multiforme (GBM). We examined the extent of spontaneous apoptosis in tumors from newly diagnosed patients, 75 with GBM and 21 with anaplastic astrocytoma, who were entered on treatment protocols of the North Central Cancer Treatment Group. In the group of GBM patients, those with a higher apoptotic index tended to live longer ( P = 0.04; Cox proportional hazards model including performance score, age, and extent of resection in a multivariate model). We found that the apoptotic index values for anaplastic astrocytoma patients tended to be lower than those in the GBM patients, although with small sample sizes, the result was not statistically significant ( P = 0.1). We also examined expression of the Ki-67 cell proliferation antigen immunohistochemically using the MIB-1 monoclonal antibody. Ki-67 expression did not provide additional information regarding the survival of patients with GBM. In this group of GBM patients, those patients with higher apoptotic index/proliferation ratios had a better prognosis than did those with a low ratio ( P < 0.021, same model as above). These findings suggest that both apoptosis and a cell death/cell proliferation ratio are associated with patient survival, and they may be useful for either the clinical evaluation of patients with GBM or the stratification of patients for treatment evaluation. PMID:12084348

  6. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2014-12-15

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd{sup 2+} stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.

  7. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    International Nuclear Information System (INIS)

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd2+ stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion

  8. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells

    International Nuclear Information System (INIS)

    Titanium dioxide nanoparticles (TiO2 NPs) are widely used in the chemical, electrical and electronic industries. TiO2 NPs can enter directly into the brain through the olfactory bulb and be deposited in the hippocampus region. We determined the effect of TiO2 NPs on rat and human glial cells, C6 and U373, respectively. We evaluated proliferation by crystal violet staining, internalization of TiO2 NPs, and cellular morphology by TEM analysis, as well as F-actin distribution by immunostaining and cell death by detecting active caspase-3 and DNA fragmentation. TiO2 NPs inhibited proliferation and induced morphological changes that were related with a decrease in immuno-location of F-actin fibers. TiO2 NPs were internalized and formation of vesicles was observed. TiO2 NPs induced apoptosis after 96 h of treatment. Hence, TiO2 NPs had a cytotoxic effect on glial cells, suggesting that exposure to TiO2 NPs could cause brain injury and be hazardous to health.

  9. Mechanism of Thymosin Beta 10 Inhibiting the Apoptosis 
and Prompting Proliferation in A549 Cells

    Directory of Open Access Journals (Sweden)

    Zixuan LI

    2014-11-01

    Full Text Available Background and objective Thymosin beta 10 (Tβ10 is one of β-thymosin family members, has a highly conserved polar 5 kDa peptides. This peptide is now regarded to be a small actin-binding protein and thereby induce depolymerization of the intracellular F-actin networks. Alteration of Tβ10 expression may alter the balance of cell growth, cell death, cell attachment and cell migration. Tβ10 also affects cell metastasis as well as proliferation, apoptosis and vascularization of cancer cells. But function of Tβ10 appear to be rather different between cancer cells, and the molecular mechanisms of β-thymosins to regulate cell apoptosis and proliferation in NSCLC (non-small cell lung cancer cell lines are unclear. In this study, we used lung adenocarcinoma cell line A549, added Tβ10 or down-regulated the expression of Tβ10. We observed the change of apoptosis, proliferation and cell cyclin ability in A549 and the mechanisms underline them were also identified. Methods After A549 was treated with 100 ng/mL recombinant human Tβ10 or siTβ10, apoptosis rate of A549 and cell cycle distribution were detected by flow cytometry (FCM. CCK-8 assay was employed to determine the proliferation of A549. The mRNA level of P53, Caspase-3, Cyclin A and Cyclin E were determined by real-time PCR. The protein level of P53, Caspase-3, Cyclin A and Cyclin E were detected by Western blot. Results Add Tβ10 can inhibit the apoptosis and prompt the proliferation of A549. It can also increase the cell rates of S-phrase and G2/M-phrase, decrease the expression of P53 and Caspase-3, but increase the expression of Cyclin A and Cyclin E. Interferance of Tβ10 can prompt the apoptosis and inhibit the proliferation of A549. It can also increase the cell rates of G0/G1-phrase, increase the expression of P53 and Caspase-3, but decrease the expression of Cyclin A and Cyclin E. Conclusion In lung cancer cell line, Tβ10 can inhibit the apoptosis by increase P53, drive cells into

  10. Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis

    International Nuclear Information System (INIS)

    A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture. RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines. Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death. Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery

  11. Impact of Salinomycin on human cholangiocarcinoma: induction of apoptosis and impairment of tumor cell proliferation in vitro

    Directory of Open Access Journals (Sweden)

    Lieke Thorsten

    2012-10-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a primary liver cancer with increasing incidence worldwide. Despite all efforts made in past years, prognosis remains to be poor. At least in part, this might be explained by a pronounced resistance of CC cells to undergo apoptosis. Thus, new therapeutic strategies are imperatively required. In this study we investigated the effect of Salinomycin, a polyether ionophore antibiotic, on CC cells as an appropriate agent to treat CC. Salinomycin was quite recently identified to induce apoptosis in cancer stem cells and to overcome apoptosis-resistance in several leukemia-cells and other cancer cell lines of different origin. Methods To delineate the effects of Salinomycin on CC, we established an in vitro cell culture model using three different human CC cell lines. After treatment apoptosis as well as migration and proliferation behavior was assessed and additional cell cycle analyses were performed by flowcytometry. Results By demonstrating Annexin V and TUNEL positivity of human CC cells, we provide evidence that Salinomycin reveals the capacity to break apoptosis-resistance in CC cells. Furthermore, we are able to demonstrate that the non-apoptotic cell fraction is characterized by sustainable impaired migration and proliferation. Cell cycle analyses revealed G2-phase accumulation of human CC cells after treatment with Salinomycin. Even though apoptosis is induced in two of three cell lines of CC cells, one cell line remained unaffected in regard of apoptosis but revealed as the other CC cells decreased proliferation and migration. Conclusion In this study, we are able to demonstrate that Salinomycin is an effective agent against previously resistant CC cells and might be a potential candidate for the treatment of CC in the future.

  12. Impact of Salinomycin on human cholangiocarcinoma: induction of apoptosis and impairment of tumor cell proliferation in vitro

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CC) is a primary liver cancer with increasing incidence worldwide. Despite all efforts made in past years, prognosis remains to be poor. At least in part, this might be explained by a pronounced resistance of CC cells to undergo apoptosis. Thus, new therapeutic strategies are imperatively required. In this study we investigated the effect of Salinomycin, a polyether ionophore antibiotic, on CC cells as an appropriate agent to treat CC. Salinomycin was quite recently identified to induce apoptosis in cancer stem cells and to overcome apoptosis-resistance in several leukemia-cells and other cancer cell lines of different origin. To delineate the effects of Salinomycin on CC, we established an in vitro cell culture model using three different human CC cell lines. After treatment apoptosis as well as migration and proliferation behavior was assessed and additional cell cycle analyses were performed by flowcytometry. By demonstrating Annexin V and TUNEL positivity of human CC cells, we provide evidence that Salinomycin reveals the capacity to break apoptosis-resistance in CC cells. Furthermore, we are able to demonstrate that the non-apoptotic cell fraction is characterized by sustainable impaired migration and proliferation. Cell cycle analyses revealed G2-phase accumulation of human CC cells after treatment with Salinomycin. Even though apoptosis is induced in two of three cell lines of CC cells, one cell line remained unaffected in regard of apoptosis but revealed as the other CC cells decreased proliferation and migration. In this study, we are able to demonstrate that Salinomycin is an effective agent against previously resistant CC cells and might be a potential candidate for the treatment of CC in the future

  13. Keratinocyte proliferation, differentiation, and apoptosis-Differential mechanisms of regulation by curcumin, EGCG and apigenin

    International Nuclear Information System (INIS)

    We have proposed that it is important to examine the impact of chemopreventive agents on the function of normal human epidermal keratinocytes since these cells comprise the barrier that protects the body from a range of environmental insults. In this context, it is widely appreciated that cancer may be retarded by consumption or topical application of naturally occurring food-derived chemopreventive agents. Our studies show that (-)-epigallocatechin-3-gallate (EGCG), a green tea-derived polyphenol, acts to enhance the differentiation of normal human keratinocytes as evidenced by its ability to increase involucrin (hINV), transglutaminase type 1 (TG1) and caspase-14 gene expression. EGCG also stimulates keratinocyte morphological differentiation. These actions of EGCG are mediated via activation of a nPKC, Ras, MEKK1, MEK3, p38δ-ERK1/2 signaling cascade which leads to increased activator protein 1 (AP1) and CAATT enhancer binding protein (C/EBP) transcription factor expression, increased binding of these factors to DNA, and increased gene transcription. In contrast, apigenin, a dietary flavonoid derived from plants and vegetables, and curcumin, an agent derived from turmeric, inhibit differentiation by suppressing MAPK signal transduction and reducing API transcription factor level. Curcumin also acts to enhance apoptosis, although EGCG and apigenin do not stimulate apoptosis. In addition, all of these agents inhibit keratinocyte proliferation. These findings indicate that each of these diet-derived chemopreventive agents has a profound impact on normal human keratinocyte function and that they operate via distinct and sometimes opposing mechanisms. However, all are expected to act as chemopreventive agents

  14. Induction of apoptosis and inhibition of proliferation of C6 glioma cells in vitro by tamoxifen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the anti-tumor effect and mechanism of tamoxifen on rat C6 glioma cells. Methods C6 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 3% fetal calf serum (FCS), and treated with tamoxifen of different concentrations, i.e. group A (1.25μmol/L), group B (2.50 μmol/L), group C (5.00 μmol/L), group D (10.00 μmol/L), group E (20.00 μmol/L) and control group (0.00 μmol/L). Morphological changes, MTT assay and 5-bromo-2'-deoxyuriding labeling ratio were assessed. Apoptosis was observed by flow cytometry. Results C6 cells treated with different doses of tamoxifen for 24, 48, and 72 hours became irregular in shape, while cells treated with vehicle grew normally. MTT assay showed that tamoxifen did not suppress C6 cell growth until 72 hours after treatment. Seventy-two hours after treatment, there were significant differences in cell viable rate between group A versus groups C, D and E; so did group B versus group D as well as group E (P<0.05). BrdU incorporation assay indicated significant difference of BrdU labbled index (BrdU LI) among groups A, C, E and control group 48 hours after treatment (P<0.05). And the BrdU LI decreased with the increased concentration of tamoxifen. Flow cytometry (FCM) showed significant difference between treated group and control group at 24, 48, and 72 hours after treatment (P<0.05). Conclusion Tamoxifen significantly suppresses the growth of C6 glioma cells in a time- and dose-dependent manner. The mechanism of tamoxifen suppressing C6 glioma cells may be inhibiting proliferation and inducing apoptosis. Therefore, tamoxifen can be a candidate as a chemotherapy agent for glioma.

  15. miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Tang, Yanping [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Wang, Jian [Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Yan, Zhongjie [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China); Xu, Ruxiang, E-mail: RuxiangXu@yahoo.com [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China)

    2013-06-14

    Highlights: •miR-421 is upregulated in nasopharyngeal carcinoma. •miR-421 induces cell proliferation and apoptosis resistance. •FOXO4 is a direct and functional target of miR-421. -- Abstract: microRNAs have been demonstrated to play important roles in cancer development and progression. Hence, identifying functional microRNAs and better understanding of the underlying molecular mechanisms would provide new clues for the development of targeted cancer therapies. Herein, we reported that a microRNA, miR-421 played an oncogenic role in nasopharyngeal carcinoma. Upregulation of miR-421 induced, whereas inhibition of miR-421 repressed cell proliferation and apoptosis resistance. Furthermore, we found that upregulation of miR-421 inhibited forkhead box protein O4 (FOXO4) signaling pathway following downregulation of p21, p27, Bim and FASL expression by directly targeting FOXO4 3′UTR. Additionally, we demonstrated that FOXO4 expression is critical for miR-421-induced cell growth and apoptosis resistance. Taken together, our findings not only suggest that miR-421 promotes nasopharyngeal carcinoma cell proliferation and anti-apoptosis, but also uncover a novel regulatory mechanism for inactivation of FOXO4 in nasopharyngeal carcinoma.

  16. [Lily polysaccharide 1 enhances the effect of metformin on proliferation and apoptosis of human breast carcinoma cells].

    Science.gov (United States)

    Hou, Jin; Li, Fen; Li, Xinhua; Mei, Qibing; Mi, Man

    2016-06-01

    Objective To investigate the effect of metformin, alone or in combination with Lily polysaccharide 1 (LP1), on cell viability and apoptosis in MCF-7 human breast cancer cells. Methods LP1 (0.5, 1.0 mg/mL) and metformin (5, 10, 20, 50 mmol/L) were added into MCF-7 cell culture medium, followed by incubating for 72 hours in carbon dioxide incubators at 37DegreesCelsius. MCF-7 cell proliferation was determined using MTT assay; the apoptosis and cell cycle of MCF-7 cells were examined using annexin V-FITC/PI double staining combined with flow cytometry; Western blotting was used to determine the content of Bcl-2, Bax, adenosine monophosphate-activated protein kinase (AMPK) and phosphorated AMPK (p-AMPK) proteins. Results Metformin-induced inhibition of MCF-7 cell proliferation was significantly enhanced when 1 mg/mL LP1 was added in. Compared with the control group and the metformin only group, more cells were arrested to G1 and the apoptosis rate was raised obviously in the metformin and LP1 combination group. LP1 promoted the downregulated expression of Bcl-2 and the upregulated expression of Bax induced by metformin, but it didn't show any impact on the metformin-activated AMPK pathway. Conclusion LP1 enhances the proliferation-inhibitory and apoptosis-promoting effect of metformin on human breast carcinoma cells. The mechanism may be related with Bcl-2 downregulation and Bax upregulation. PMID:27371846

  17. Effect of Epigallocatechin-3-gallate (EGCG on cell proliferation inhibition and apoptosis induction in lymphoblastic leukemia cell line

    Directory of Open Access Journals (Sweden)

    Ghasemi-Pirbaluti Masome

    2015-04-01

    Full Text Available Introduction: Acute lymphoblastic leukemia (ALL is one of the malignant proliferations of lymphoid cells in the early stages of differentiation and accounts for ¾ of all cases of childhood leukemia. Available treatment cannot completely treat this disease. Epigallocatechin-3-gallate (EGCG is a polyphenolic compounds in the green tea that has demonstrated to have anticancer and antimitotic properties. The purpose of the present study was the evaluation of the effect of EGCG on the proliferation inhibition and apoptosis induction in a lymphoblastic leukemia cell line. Methods: Jurkat cell line was cultured in standard condition and in different concentrations of EGCG (0-100 micromolar for 24, 48 and 72 hours. Cell viability was measured by MTS assay. Apoptosis induction was assessed by annexin V-FITC and flow cytometry analysis. Results: The MTS assay revealed that EGCG has decreased cell viability with a time and dose dependent manner. The level of cell apoptosis in all used concentrations of EGCG (50, 70 and 100 μm was higher than control group (71%, 40% and 31% respectively vs. 8% and reached to significant level at 100 μm concentration. Conclusion: The study indicated that EGCG is effective on proliferation inhibition and apoptotic induction in Jurkat lymphoblastic cell line. Therefore, the study of the mechanism of apoptosis induction could be a step of progress toward target therapy which might be considered in the future studies.

  18. Peroxisome proliferator-activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Feng-guang YANG; Zhi-wen ZHANG; Dian-qi XIN; Chang-jin SHI; Jie-ping WU; Ying-lu GUO; You-fei GUAN

    2005-01-01

    Aim: To study the effect of peroxisome proliferator-actived receptor γ (PPARγ)ligands on cell proliferation and apoptosis in human renal carcinoma cell lines.Methods: The expression of PPARγ was investigated by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry.The effect of thiazolidinedione (TZD) PPARγ ligands on growth of renal cell carcinoma (RCC) cells was measured by MTT assay and flow cytometric analysis. Cell death ELISA, Hoechst 33342 fluorescent staining and DNA ladder assay were used to observe the effects of PPARγ ligands on apoptosis. Regulatory proteins of cell cycle and apoptosis were detected by Western blot analysis. Results:PPARγ was expressed at much higher levels in renal tumors than in the normal kidney (2.16±0.85 vs 0.90±0.73; P<0.01 ). TZD PPARγ ligands inhibited RCC cell growth in a dose-dependent manner with IC50 values of 7.08 μmol/L and 11.32 μmol/L for pioglitazone, and 5.71 μmol/L and 8.38 μmol/L for troglitazone in 786-O and A498 cells, respectively. Cell cycle analysis showed a G0/G1 arrest in human RCC cells following 24-h exposure to TZD. Analysis of cell cycle regulatory proteins revealed that TZD decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, and Cdk4 but increased the levels of p21 and p27 in a timedependent manner. Furthermore, high doses of TZD induced massive apoptosis in renal cancer cells, with increased Bax expression and decreased Bcl-2 expression.Conclusion: TZD PPARγ ligands showed potent inhibitory effect on proliferation,and could induce apoptosis in RCC cells. These results suggest that ligands for PPARγ have potential antitumor effects on renal carcinoma cells.

  19. Changes of Proliferation and Apoptosis of K562 Cells after Co-culture with Leukemia Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Katja Karjalainen; Carlos E Bueso-Ramos; Hagop M Kantarjian

    2014-01-01

    Objective:To compare the changes of proliferation and apoptosis of K562 cells after co-culture with human leukemia bone marrow mesenchymal stem cells (LMSC). Methods: The prepared cells were randomly divided into SCG group, SCG+0%FBS group, SCG+0%FBS group and CCG+0%FBS group. Cell counting kit-8 (CCK-8) analytic approach was adopted to detect the optical density (OD) of K562 cells in SCG and CCG groups, and the conditions of K562 cell proliferation under different cultured circumstances were compared. Flow cytometer (FCM) was used to detect the changes of K562 cell cycle after co-culture with LMSC, Annexin V/polyimide (PI) lfuorescence labeling method to detect the changes of K562 cell apoptosis after co-culture with LMSC and serum starvation. Results:After co-culture with LMSC, the proliferation of K562 cells was markedly inhibited, and OD in CCG group was conspicuously lower than that in SCG group. Flow cytometer (FCM) detection on cell cycles demonstrated that after co-culture with LMSC, the proportion of cells in gap phases 0~1 (G0~G1) went up notably, whereas that in phase S went down obviously. Besides, the proportion of cells in phases G2~M was on the rise. K562 cell apoptosis in CCG+0%FBS group was more than in SCG+10%FBS group, and less than in SCG+0%FBS group, indicating LMSC had the function of resisting leukemia cell apoptosis. Conclusion: LMSC exerts the effect of inhibiting the proliferation by blocking K562 cell cycles in phases G0~G1, and inhibiting K562 cell apoptosis induced by serum starvation.

  20. Effects of paclitaxel on cell proliferation and apoptosis and its mechanism in human lung adenocarcinoma A549 cells

    Institute of Scientific and Technical Information of China (English)

    Baoan Gao; Chunling Du; Wenbo Ding; Shixiong Chen; Jun Yang

    2006-01-01

    Objective: To investigate the effect of paclitaxel on cell proliferation and apoptosis of human lung adenocarcinoma A549 cells line and its mechanism in vitro. Methods: Cell growth inhibition of paclitaxel on A549 cells was analyzed by MTT assay. Cell apoptosis was detected by DNA cytofluorometry, Hoechst33258 staining when treated with paclitaxel for 48hours. Meanwhile, Cell cycle and apoptotic rate were analyzed by flow cytometry. The protein expressions of Bax and Bcl-2 were studied by Western Blot. Results: Paclitaxel inhibited the proliferation of A549 cells in a time-and dose-dependant manner.Hoechst33258 staining indicated that apoptosis was induced by paclitaxel. After treated for 48 hours, cell apoptosis rates of 25nmol/L, 50 nmol/L and 100 nmol/L paclitaxel groups were 11.52 ± 1.94% ,17.73 ± 2.53%, and 29.32 ± 5.51% respectively,which were significantly higher than those of control group 5.88 ± 1.07%(all P < 0.01 ), and apoptosis rate increased in dose-dependant manner. Meanwhile, G2/M stage cell percentage of 25 nmol/L, 50 nmol/L and 100 nmol/L paclitaxel groups were 42.52± 6.25%, 40.46 ± 5.81%, and 35.34 ± 6.17% respectively,which were significantly higher than that of control group 22.32 ±3.30%(all P < 0.01 ); Western blot showed that paclitaxel increased the expression of Bax and decreased the expression of Bcl-2 in dose-dependant manner. Conclusion: Paclitaxel can inhibit A549 cell proliferation in a time- and dose-dependant manner. Its mechanism may be related to arresting cell cycle in G2/M stage and induce cell apoptosis by up-modulating Bax expression and down-modulating Bcl-2 expression.

  1. Electroacupuncture Regulates Apoptosis/Proliferation of Intramuscular Interstitial Cells of Cajal and Restores Colonic Motility in Diabetic Constipation Rats

    Directory of Open Access Journals (Sweden)

    Juanjuan Xu

    2013-01-01

    Full Text Available Injury of interstitial cells of Cajal (ICC is associated with gut dysmotility in diabetic rats. We have shown an acceleration of the colonic contractility by electroacupuncture stimulation (EAS. However, little is known about potential roles of EAS on colonic transit and ICC. In this study, we evaluate the effect of EAS on colonic transit and investigate whether apoptosis/proliferation of ICC was involved in regulative effect of EAS on colonic transit. Rats were randomly assigned to normal, diabetic, diabetic-plus-sham stimulation, diabetic-plus-low-frequency stimulation, and diabetic-plus-high-frequency stimulation groups. Bead expulsion test was used for measuring the distal colonic transit. The Kit (ICC marker was detected by western blot. Apoptotic ICC was detected by terminal dUTP nucleotide end labeling. Proliferating ICC was identified by Kit/Ki67 double immunofluorescent staining on whole mount preparations. Ultrastructure changes of ICC were studied using electron microscopy. Results showed that high-frequency stimulation significantly promoted colonic transit. Low- and high-frequency stimulation markedly rescued intramuscular ICC from apoptosis. Abundant proliferating intramuscular ICC was found in low- and high-frequency stimulation groups. Our results indicate that high-frequency EAS has stimulatory effect on the distal colonic transit, which may be mediated by downregulation of the apoptosis and upregulation of the proliferation of intramuscular ICC.

  2. EFFECT OF STAT3 SPECIFIC SHRNA EXPRESSION VECTOR ON PROLIFERATION AND APOPTOSIS OF HUMAN PANCREATIC CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To construct signal transduction and activators of transcription 3 (STAT3) short hairpin RNA (shRNA) expression vector and to investigate its inhibitory effects on STAT3 expression, cell proliferation and apoptosis of human pancreatic cancer. Methods Three pairs of hairpin-like oligonucleotide sequences specific for human STAT3 gene were designed and synthesized. The annealed oligonucleotide fragments were subcloned into pRNAT-U6.1/Neo plasmid. The STAT3 shRNA expressing vectors were confirmed by PCR and DNA sequencing. STAT3 mRNA and protein expression were examined by using reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. MTT assay and flow cytometry were performed to detect the state of cell proliferation and cell apoptosis, respectively. Results PCR and DNA sequencing showed that the oligonucleotide fragments were correctly inserted into pRNAT-U6.1/Neo plasmid. STAT3 expression and cell proliferation in the transfected cells was inhibited significantly by three STAT3 shRNA expressing vectors (P<0.05). ConclusionSTAT3 shRNA expression vector can effectively inhibit the expression of STAT3. Silencing of STAT3 with RNAi can significantly inhibit the proliferation and promotes the apoptosis of pancreatic cancer cells and may provide a novel therapeutic target for treating pancreatic cancer.

  3. Thioredoxin-like protein 2b facilitates colon cancer cell proliferation and inhibits apoptosis via NF-κB pathway.

    Science.gov (United States)

    Lu, Yuanyuan; Zhao, Xiaodi; Luo, Guanhong; Shen, Gaofei; Li, Kai; Ren, Gui; Pan, Yan; Wang, Xin; Fan, Daiming

    2015-07-28

    Our previous work identified thioredoxin-like protein 2 (Txl-2), a novel thioredoxin family member, as the target of the monoclonal antibody MC3 which can detect colon cancer with high sensitivity and specificity. In the present study, the function of the most abundant isoform Txl-2b in cell proliferation and apoptosis was investigated. Txl-2 overexpression correlated with increased clinical stages. Inhibition of Txl-2b suppressed cell proliferation, induced cell cycle arrest at the G1/S phase, and led to responsiveness to the vincristine-induced apoptosis in SW620 cells. Txl-2b overexpression in LoVo cells had the opposite effect, which was dependent on Trx domain function. In vivo studies validated that Txl-2b expression promoted colon cancer tumorigenesis in nude mice. Further studies revealed that nuclear factor-κB (NF-κB) signaling was activated by Txl-2b. Inhibition of NF-κB activation partly abrogated the pro-proliferation and anti-apoptotic phenotypes mediated by Txl-2b via reduced Cyclin D1, Bcl-2, Bcl-xL and Survivin expression and increased Caspase-3 activation. Overall, our results indicate that Txl-2b expression stimulates cancer cell proliferation, accelerates the cell cycle and contributes to apoptosis resistance in colon cancer and provides a potential therapeutic target for colon cancer treatment. PMID:25555669

  4. APOPTOSIS AND PROLIFERATION OF TUMOR CELLS IN LOCALLY ADVANCED CERVICAL CANCER AFTER NEOADJUVANT INTRAARTERIAL CHEMOTHERAPY

    Institute of Scientific and Technical Information of China (English)

    朱雪琼; 岳天孚; 惠京; 张颖; 王德华

    2003-01-01

    Objective: Through observing the clinical response to neoadjuvant intraarterial chemotherapy in locally advanced cervical cancer and investigating the changes of p53 protein expression, proliferation and apoptosis of tumor cells after chemotherapy, to study the relationship between biological markers and chemotherapeutic response. Methods: 20 women with locally advanced squamous cervical cancer received consecutive infusion chemotherapy of five days of cisplatin and adriamycin via the superselective uterine artery. The response to chemotherapy was evaluated by gynecologic examination and ultrasonography 3 weeks after chemotherapy. The changes of apoptotic index (AI), proliferation index (PI) and p53 expression of tumor cells were detected by immunohistochemical technique. Results: The clinical response rate of locally advanced squamous cervical cancer to uterine artery infusion chemotherapy was 70%. No change of PI was found 3 weeks after treatment, but AI significantly increased from 2.79±0.76 to 4.29±1.13 (P<0.01), and AI/PI from 5.68±1.21 to 9.00±1.95 (P<0.05). On the contrary, the expression of p53 was significantly decreased (P<0.05). Patients who responded to chemotherapy showed higher PI before chemotherapy and significantly increased AI and AI/PI after chemotherapy than non-responders (P<0.05). Conclusion: Higher PI was an indication for neoadjuvant intraarterial chemotherapy. One more cycle of chemotherapy should be given to those who have significantly increased AI or AI/PI after chemotherapy, while definite treatment such as surgery or/and radiotherapy should be immediately given to those patients without increased AI or AI/PI.

  5. Influence of mycotoxin zearalenone and its derivatives (alpha and beta zearalenol on apoptosis and proliferation of cultured granulosa cells from equine ovaries

    Directory of Open Access Journals (Sweden)

    Minoia Paolo

    2006-11-01

    Full Text Available Abstract Background The mycotoxin zearalenone (ZEA and its derivatives, alpha and beta-zearalenol (alpha and beta-ZOL, synthesized by genera Fusarium, often occur as contaminants in cereal grains and animal feeds. The importance of ZEA on reproductive disorders is well known in domestic animals species, particularly in swine and cattle. In the horse, limited data are available to date on the influence of dietary exposure to ZEA on reproductive health and on its in vitro effects on reproductive cells. The aim of this study was to evaluate the effects of ZEA and its derivatives, alpha and beta-ZOL, on granulosa cells (GCs from the ovaries of cycling mares. Methods The cell proliferation was evaluated by using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT test after 3 days exposure at different concentrations of ZEA and its derivatives (from 1 × 10-7 to 0.1 microM. The apoptosis induction was evaluated after 1 day exposure, by DNA analysis using flow cytometry. Results An increase in cell proliferation with respect to the control was observed in the presence of ZEA at 1 × 10-3 and 1 × 10-4 microM and apoptosis was induced by all mycotoxins at different concentrations. Conclusion The simultaneous presence of apoptosis and proliferation in GC cultures treated with zearalenones could indicate that these mycotoxins could be effective in inducing follicular atresia. These effects of zearalenones may result from both direct interaction with oestrogen-receptors as well as interaction with the enzymes 3alpha (beta-hydroxysteroid dehydrogenase (HSD, involved in the synthesis and metabolism of endogenous steroid hormones. These cellular disturbances, described for the first time in equine GCs cultured in vitro, could be hypothesized as referred to reproductive failures of unknown ethiology in the mare.

  6. Comprehensive suppression of all apoptosis-induced proliferation pathways as a proposed approach to colorectal cancer prevention and therapy.

    Directory of Open Access Journals (Sweden)

    Michael Bordonaro

    Full Text Available Mutations in the WNT/beta-catenin pathway are present in the majority of all sporadic colorectal cancers (CRCs, and histone deacetylase inhibitors induce apoptosis in CRC cells with such mutations. This apoptosis is counteracted by (1 the signaling heterogeneity of CRC cell populations, and (2 the survival pathways induced by mitogens secreted from apoptotic cells. The phenomena of signaling heterogeneity and apoptosis-induced survival constitute the immediate mechanisms of resistance to histone deacetylase inhibitors, and probably other chemotherapeutic agents. We explored the strategy of augmenting CRC cell death by inhibiting all survival pathways induced by the pro-apoptotic agent LBH589, a histone deacetylase inhibitor: AKT, JAK/STAT, and ERK signaling. The apoptosis-enhancing ability of a cocktail of synthetic inhibitors of proliferation was compared to the effects of the natural product propolis. We utilized colorectal adenoma, drug-sensitive and drug-resistant colorectal carcinoma cells to evaluate the apoptotic potential of the combination treatments. The results suggest that an effective approach to CRC combination therapy is to combine apoptosis-inducing drugs (e.g., histone deacetylase inhibitors, such as LBH589 with agents that suppress all compensatory survival pathways induced during apoptosis (such as the cocktail of inhibitors of apoptosis-associated proliferation. The same paradigm can be applied to a CRC prevention approach, as the apoptotic effect of butyrate, a diet-derived histone deacetylase inhibitor, is augmented by other dietary agents that modulate survival pathways (e.g., propolis and coffee extract. Thus, dietary supplements composed by fermentable fiber, propolis, and coffee extract may effectively counteract neoplastic growth in the colon.

  7. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells.

    Science.gov (United States)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming

    2014-12-01

    Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd(2+) stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion. PMID:25456234

  8. Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren's disease and adjacent palmar fascia cells

    International Nuclear Information System (INIS)

    Dupuytren's disease, (DD), is a fibroproliferative condition of the palmar fascia in the hand, typically resulting in permanent contracture of one or more fingers. This fibromatosis is similar to scarring and other fibroses in displaying excess collagen secretion and contractile myofibroblast differentiation. In this report we expand on previous data demonstrating that POSTN mRNA, which encodes the extra-cellular matrix protein periostin, is up-regulated in Dupuytren's disease cord tissue relative to phenotypically normal palmar fascia. We demonstrate that the protein product of POSTN, periostin, is abundant in Dupuytren's disease cord tissue while little or no periostin immunoreactivity is evident in patient-matched control tissues. The relevance of periostin up-regulation in DD was assessed in primary cultures of cells derived from diseased and phenotypically unaffected palmar fascia from the same patients. These cells were grown in type-1 collagen-enriched culture conditions with or without periostin addition to more closely replicate the in vivo environment. Periostin was found to differentially regulate the apoptosis, proliferation, α smooth muscle actin expression and stressed Fibroblast Populated Collagen Lattice contraction of these cell types. We hypothesize that periostin, secreted by disease cord myofibroblasts into the extra-cellular matrix, promotes the transition of resident fibroblasts in the palmar fascia toward a myofibroblast phenotype, thereby promoting disease progression.

  9. Maturation, proliferation and apoptosis of seminal tubule cells at puberty after administration of estradiol, follicle stimulating hormone or both

    Institute of Scientific and Technical Information of China (English)

    Renata Walczak-Jedrzejowska; Jolanta Slowikowska-Hilczer; Katarzyna Marchlewska; Krzysztof Kula

    2008-01-01

    Aim: To assess proliferative and apoptotic potential of the seminiferous epithelium cells in relation to Sertoli cell maturation in newborn rats under the influence of estradiol, follicle stimulating hormone (FSH) or both agents given together. Methods: From postnatal day (PND) 5 to 15 male rats were daily injected with 12.5 μg of 17β-estradiol benzoate (EB) or 7.5 IU of human purified FSH (hFSH) or EB + hFSH or solvents (control). On postnatal day 16, autopsy was performed. Sertoli cell maturation/function was assessed by morphometry. Proliferation of the semini- ferous epithelium cells was quantitatively evaluated using immunohistochemical labeling against proliferating cell nuclear antigen and apoptosis using the TUNEL method. Results: Although EB inhibited Sertoli cell maturation and hFSH was not effective, a pronounced acceleration of Sertoli cell maturation occurred after EB + hFSH. Whereas hFSH stimulated Sertoli cell proliferation, EB or EB + hFSH inhibited Sertoli cell proliferation. All treatments signifi- cantly stimulated germ cell proliferation. Apoptosis of Sertoli cells increased 9-fold and germ cells 2-fold after EB, and was not affected by hFSH but was inhibited after EB + hFSH. Conclusion: At puberty, estradiol inhibits Sertoli cell maturation, increases Sertoli and germ cell apoptosis but stimulates germ cell proliferation. Estradiol in synergism with FSH, but neither of the hormones alone, accelerates Sertoli cell maturation associated with an increase in germ cell survival. Estradiol and FSH cooperate to induce seminal tubule maturation and trigger first spermatogenesis. (Asian J Androl 2008 Jul; 10: 585-592)

  10. Regulation of the CD56 promoter and its association with proliferation, anti-apoptosis and clinical factors in multiple myeloma

    DEFF Research Database (Denmark)

    Damgaard, Tina; Knudsen, Lene M; Dahl, Inger Marie S;

    2009-01-01

    positively associated with CD56 expression, as was CYCLIN D1, which is involved in disease progression, anti-apoptosis and proliferation. RUNX1 was negatively associated with the survival of stem-cell transplanted patients. Our findings propose four potential activators of the CD56 promoter and for CD56 to......Multiple myeloma (MM) is an incurable B-cell malignancy characterised by uncontrolled growth and accumulation of malignant plasma cells in the bone marrow. Aberrant expression of CD56 in patients with MM is thought to contribute to a worsened disease course and metastasis. We therefore investigated...... be involved in proliferation and anti-apoptosis, leading to disease progression in MM....

  11. [Knockdown of angiopoietin-like protein 4 inhibits proliferation and promotes apoptosis in cervical cancer SiHa cells].

    Science.gov (United States)

    Nie, Dan; Liu, Ling; Xia, Jiyi; Wang, Chunyan; Zhan, Ping; Mao, Xiguang

    2016-04-01

    Objective To investigate the effect of lentivirus-mediated shRNA silencing of angiopoietin-like protein 4 (ANGPTL4) on the proliferation and apoptosis of cervical cancer SiHa cells. Methods The ANGPTL4 lentiviral vectors were used to transfect SiHa cells. Real-time quantitative PCR (qRT-PCR) and Western blotting were respectively used to detect ANGPTL4 expression at mRNA and protein levels. The proliferation ability of SiHa cells after transfection was assessed by MTT assay and colony formation assay. The cell cycle was examined by flow cytometry. The annexin V-phycoerythrin/7-aminoactinomycin D (annexin V-PE/7-AAD) staining combined with flow cytometry was used to examine the effect of ANGPTL4 silence on the apoptosis of SiHa cells. Results After the ANGPTL4 lentiviral vectors were transfected into SiHa cells, qRT-PCR and Western blotting showed that the expression of ANGPTL4 mRNA and protein were significantly inhibited in LV3-ANGPTL4 group. The MTT assay showed that the proliferation ability of SiHa cells in LV3-ANGPTL4 group was also inhibited. Colony formation assay revealed that the colony number in LV3-ANGPTL4 group was reduced. The cells in G0/G1 phase and the apoptosis rate increased in LV3-ANGPTL4 group. Conclusion The lentivirus-mediated ANGPTL4 shRNA can inhibit the proliferation, induce the cell cycle arrest in G0/G1 phase, and promote the apoptosis in SiHa cells. PMID:27053616

  12. Ursolic Acid Simultaneously Targets Multiple Signaling Pathways to Suppress Proliferation and Induce Apoptosis in Colon Cancer Cells

    OpenAIRE

    Jingshu Wang; Liqun Liu; Huijuan Qiu; Xiaohong Zhang; Wei Guo; Wangbing Chen; Yun Tian; Lingyi Fu; Dingbo Shi; Jianding Cheng; Wenlin Huang; Wuguo Deng

    2013-01-01

    Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viabi...

  13. Comparative analysis of male germ cell proliferation and apoptosis in wild and captive Atlantic bluefin tuna (Thunnus thynnus L.)

    OpenAIRE

    Zupa, R.; FAUVEL, Christian; Mylonas, C. C.; Santamaria, N.; Valentini, L.; Pousis, C.; Papadaki, M.; Suquet, Marc; De La Gandara, F.; Bello, G; G De Metrio; A. CORRIERO

    2013-01-01

    The most commonly observed reproductive dysfunction in male fishes reared in captivity is reduction in sperm volume and quality. The Atlantic bluefin tuna Thunnus thynnus (Osteichthyes: Scombridae) is one of the few large pelagic and migratory marine fishes maintained in captivity with the purpose of establishing breeding populations to support an aquaculture industry. The objectives of the present study were to compare male germ cell proliferation and apoptosis between wild and captive indiv...

  14. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  15. Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Dong, L.F.; Swettenham, E.; Eliasson, J.; Wang, X. F.; Gold, M.; Medunic, Y.; Stantic, M.; Low, P.; Procházka, L.; Witting, P. K.; Turánek, J.; Akporiaye, E.T.; Ralph, S.J.; Neužil, Jiří

    2007-01-01

    Roč. 67, č. 24 (2007), s. 11906-11913. ISSN 0008-5472 R&D Projects: GA AV ČR KAN200520703; GA AV ČR IAA500520602 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : mitocans * proliferating endothelial cells * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.672, year: 2007

  16. LncRNA-uc.167 influences cell proliferation, apoptosis and differentiation of P19 cells by regulating Mef2c.

    Science.gov (United States)

    Song, Guixian; Shen, Yahui; Ruan, Zhongbao; Li, Xing; Chen, Yumei; Yuan, Wei; Ding, Xiangwei; Zhu, Li; Qian, Lingmei

    2016-09-15

    In our previous study we screened thousands of lncRNAs for their relationship with ventricular septal defect. Among these lncRNAs, uc.167 attracted our attention for its high level of conservation and that it was antisense to the Mef2c gene, which encodes myocyte enhancer factor 2C. This study aims to investigate the role of uc.167 during cardiomyocyte maturation in P19 cells induction and possible mechanism. The uc.167 expression level in human heart tissue of ventricular septum defect (VSD) was evaluated by qRT-PCR. The UCSC database was searched to investigate the bioinformatics of uc.167. We constructed overexpression vector of uc.167 and Mef2c. To detect proliferation and apoptosis, we combined cell cycle analysis and CCK8, Hoechst staining, flow cytometry and caspase-3 assays, respectively. The cardiomyogenesis related RNAs (cTnT, GATA4, and Mef2c) and proteins were detected by qRT-PCR and Western blotting. In this study, we found that uc.167 expression was significantly increased in VSD heart tissues. uc.167 is on the opposite strand to the coding gene Mef2c. The expression model of Mef2c and uc.167 showed an opposite correlation in the embryonic development and process of differentiation of P19 cells into cardiomyocytes. Overexpression of uc.167 inhibited proliferation but promoted apoptosis in P19 cells compared with the vector group, and those relative mRNAs and proteins decreased during the differentiation process. Whereas, co-expression of Mef2c and uc.167 can partially reverse the negative effects of uc.167 on proliferation, apoptosis and differentiation. Taken together, our findings suggest that uc.167 contributes to the development potential of VSD and may constitute a potential therapeutic target in this disease. uc.167 influences cell proliferation, apoptosis and differentiation of P19 cell by regulating Mef2c. PMID:27268728

  17. Abrin P2 suppresses proliferation and induces apoptosis of colon cancer cells via mitochondrial membrane depolarization and caspase activation.

    Science.gov (United States)

    Yu, Ying; Yang, Runmei; Zhao, Xiuyun; Qin, Dandan; Liu, Zhaoyang; Liu, Fang; Song, Xin; Li, Liqin; Feng, Renqing; Gao, Nannan

    2016-05-01

    To explore the cytotoxic mechanism of abrin P2 on human colon cancer HCT-8 cells, abrin P2 was isolated from the seed of Abrus precatorius L. It was found that abrin P2 exhibited cytotoxicity toward 12 different human cancer cell lines. Our results demonstrated that abrin P2 suppressed the proliferation of human colon cancer cells (HCT-8 cells) and induced cell cycle arrest at the S and G2/M phases. The mechanism by which abrin P2 inhibited cell proliferation was via the down-regulation of cyclin B1, proliferating cell nuclear antigen and Ki67, as well as the up-regulation of P21. In addition, abrin P2 induced a dose- and time-dependent increase in the rate of HCT-8 cell apoptosis. Treatment with both Z-VAD-FMK, a broad-spectrum caspase inhibitor, and abrin P2 demonstrated that abrin P2 induced HCT-8 cell apoptosis via the activation of caspases. Together, our results revealed that abrin P2-induced apoptosis in HCT-8 cells was associated with the activation of caspases-3/-8/-9, the reduction in the Bcl-2/Bax ratio, the loss of mitochondrial membrane potential, and the increase in cytochrome c release. We further showed that abrin P2 administration effectively suppressed the growth of colon cancer xenografts in nude mice. This is the first report that abrin P2 effectively inhibits colon cancer cell growth in vivo and in vitro by suppressing proliferation and inducing apoptosis. PMID:27055473

  18. EFFECTS OF CURCUMIN ON PROLIFERATION AND APOPTOSIS OF HUMAN CERVICAL CARCINOMA HeLa CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    赵敬; 赵涌

    2004-01-01

    Objective: To investigate the regulatory effect of curcumin on proliferation and apoptosis in human cervical carcinoma cell line HeLa in vitro. Methods: Human cervical carcinoma cell line Hela was cultured in vitro. HeLa cells were treated with 10(50 (mol/L curcumin for 24(72 h and the growth inhibition rates of HeLa cells were measured by MTT method. Cell apoptosis was inspected by electron microscopy. In addition, the expression of bcl-2, bcl-xl and caspase-3 protein in HeLa cell were observed by SP immunohistochemistry. Results: Curcumin inhibited the proliferation of HeLa cells on a dose-depending manner. Peak of subG1 appeared on DNA histogram in FCM. A portion of the cells presented the characteristic morphological changes of apoptosis under the electron microscope. The bcl-2, bcl-xl expression was decreased while Caspase-3 expression was increased. Conclusion: Curcumin could significantly inhibit the growth of HeLa cells; inducing apoptosis through up-regulating Caspase-3 and down-regulating expression of bcl-2 and bcl-xl was probably one of its molecular mechanisms.

  19. Exposure to low level GSM 935 MHz radiofrequency fields does not induce apoptosis in proliferating or differentiated murine neuroblastoma cells

    International Nuclear Information System (INIS)

    The aim of this study was to investigate whether radiofrequency (RF) fields characteristic of mobile phones at non-thermal levels can induce apoptosis in murine neuroblastoma (N2a) cells in both proliferating and differentiated states. Cells were exposed continuously for 24 h to one of the three 935-MHz RF signals: global system for mobile communication (GSM) basic, GSM talk and a continuous wave, unmodulated signal; all at a specific energy absorption rate of 2 W kg-1. The measured increase in temperature of the cells due to the RF fields was around 0.06 deg. C. At a number of time points between 0 and 48 h post-exposure, the cells were assessed for apoptosis under a fluorescence microscope using three independent assays: Annexin V, caspase activation and in situ end-labelling. No statistically significant differences in apoptosis levels were observed between the exposed and sham-exposed cells using the three assays at any time point post-exposure. These data suggest that RF exposures, characteristic of GSM mobile phones, do not significantly affect the apoptosis levels in proliferating and differentiated murine neuroblastoma cell line N2a. (authors)

  20. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  1. HERBAL MEDICINE 960 RECIPE REGULATES THE PROLIFERATION AND APOPTOSIS OF HUMAN HEPATOMA CELL LINE SMMC-7721 CELLS

    Institute of Scientific and Technical Information of China (English)

    王昌俊; 李建军; 陈庆强; 陈伟; 钱伯文

    2001-01-01

    To investigate the mechanism of 960 recipe regulating the proliferation and apoptosis of human hepatoma SMMC7721 cells.Methods 960 recipe-containing serum was derived from rats that pre-treated with 960 recipe through gastrogavage, and was added to cultured human hepatoma SMMC-7721 cells while the normal rat serum was tested as control. Cell proliferation was measured with 3H-TdR incorporation. Cell morphology was tested by acridine orange staining. Cell apoptosis and expressions of p53, bcl-2 and p21ras gene protein were analyzed with flow cytometry.Results After treating with 960 recipe, the inhibitory rate of 3H-TdR was 42.2% for 48h. Cell morphology showed typical apoptotic cells with condensed and fragmented nuclei. There were typical apoptotic peaks in DNA histogram, the apoptotic rate being 21.25% and 27.77% for 24h, 48h respectively. Cell cycle analysis showed that cells were arrested at S-phase by treating with 960 recipe for 24h and at G0/G1 phase for 48h. The expression of p53 increased, but bcl-2 and ras were reduced by treating with 960 recipe for 24h.Conclusion 960 recipe can inhibit proliferation and induce apoptosis of human hepatoma cells, and affect the cell cycle, the expression of oncogene and tumor suppressor gene. These might be the main antihepatoma mechanisms of 960 recipe.

  2. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    Full Text Available Ursolic acid (UA, a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viability and clone formation and changes in cell morphology and spreading. UA also suppressed colon cancer cell migration by inhibiting MMP9 and upregulating CDH1 expression. Further studies showed that UA inhibited the phosphorylation of Akt and ERK proteins. Pretreatment with an Akt or ERK-specific inhibitor considerably abrogated the proliferation inhibition by UA. UA also significantly inhibited colon cancer cell COX-2 expression and PGE2 production. Pretreatment with a COX-2 inhibitor (celecoxib abrogated the UA-induced cell proliferation. Moreover, we found that UA effectively promoted NF-κB and p300 translocation from cell nuclei to cytoplasm, and attenuated the p300-mediated acetylation of NF-κB and CREB2. Pretreatment with a p300 inhibitor (roscovitine abrogated the UA-induced cell proliferation, which is reversed by p300 overexpression. Furthermore, UA treatment induced colon cancer cell apoptosis, increased the cleavage of PARP, caspase-3 and 9, and trigged the release of cytochrome c from mitochondrial inter-membrane space into cytosol. These results indicate that UA inhibits cell proliferation and induces apoptosis in colon cancer cells through simultaneous modulation of the multiple signaling pathways such as MMP9/CDH1, Akt/ERK, COX-2/PGE2, p300/NF-κB/CREB2, and cytochrome c/caspase pathways.

  3. The immunosuppressive effect of gossypol in mice is mediated by inhibition of lymphocyte proliferation and by induction of cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Wen-bin XU; Li-hui XU; Hong-song LU; Dong-yun OUYANG; Huan-jing SHI; Jing-fang DI; Xian-hui HE

    2009-01-01

    Aim: To investigate the immunosuppressive effect of gossypol in mice both in vitro and in vivo.Methods: The in vitro effect of gossypol on the proliferation of lymphocytes isolated from lymph nodes of BALB/c mice was determined by CFSE staining and by an MTS assay. Lymphocyte activation and lymphoblastic transformation were evaluated with immunostaining. Cell apoptosis was detected by Annexin-V and Hoechst 33342 staining. The in vivo immunosuppressive effect of gossypol on the DTH reaction was evaluated using a mouse DTH model induced by 2,4-dinitro-1-fluorobenzene (DNFB). The thickness of the ears was measured, and the histological changes of the mouse auricles were observed after hematoxylin-eosin staining. The proliferation capacity of lymphocytes from DTH mice was also assayed.Results: In vitro, gossypol could significantly inhibit the proliferation of mouse lymphocytes stimulated with phorbol ester plus ionomycin in a dose-dependent manner. Although the expression of the early activation antigen CD69 was not affected, the lymphoblastic transformation of both T and B lymphocyte subsets was significantly suppressed by gossypol.Moreover, gossypol could induce apoptosis of lymphocytes, and the effect was time- and dose-dependent. In vivo, the DTH reaction in mice was markedly alleviated by gossypol injected intraperitoneally. Lymphocytes from drug-treated DTH mice had a reduced proliferation capacity as compared with lymphocytes from untreated DTH mice. Gossypol treatment also markedly reduced the number of infiltrated lymphocytes in the auricles of DTH mice. Conclusion: Gossypol exhibited immunosuppressive effects in mice, probably by inhibition of lymphocyte proliferation and by induction of cell apoptosis.

  4. A Novel Natural Product, KL-21, Inhibits Proliferation and Induces Apoptosis in Chronic Lymphocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Aysun Adan Gökbulut

    2015-06-01

    Full Text Available INTRODUCTION: The aims of this study were to examine the cytotoxic and apoptotic effects of KL-21, a novel plant product (produced by Naturin Natural Products, İzmir, Turkey, on 232B4 chronic lymphocytic leukemia (CLL cells and to determine the cytotoxic effects on healthy BEAS-2B human bronchial epithelial cells. METHODS: The cytotoxic effect of KL-21 was determined by MTT cell proliferation assay. Changes in caspase-3 enzyme activity were measured using the caspase-3 colorimetric assay. Changes in mitochondrial membrane potential were determined using the JC-1 dye-based method. Annexin V-FITC/PI double staining was performed to measure the apoptotic cell population. Effects of KL-21 on cell cycle profiles of CLL cells were investigated by flow cytometry. RESULTS: We detected time- and concentration-dependent increases in the cytotoxic effect of KL-21 on 232B4 CLL cells. However, we also showed that, especially at higher concentrations, KL-21 was less cytotoxic towards BEAS-2B healthy cells than towards CLL cells. Annexin-V/PI double staining results showed that the apoptotic cell population increased in 232B4 cells. Increasing concentrations of KL-21 increased caspase-3 enzyme activity and induced loss of mitochondrial membrane potential. KL-21 administration resulted in small increases in the percentage of the cells in the G0/G1 phase while it decreased the S phase cell population up to 1 mg/mL. At the highest concentration, most of the cells accumulated in the G0/G1 phase. DISCUSSION AND CONCLUSION: KL-21 has a growth-inhibitory effect on 232B4 CLL cells. KL-21 causes apoptosis and cell cycle arrest at G0/G1.

  5. Occipital foramina development involves localised regulation of mesenchyme proliferation and is independent of apoptosis.

    Science.gov (United States)

    Akbareian, Sophia E; Pitsillides, Andrew A; Macharia, Raymond G; McGonnell, Imelda M

    2015-06-01

    Cranial foramina are holes within the skull, formed during development, allowing entry and exit of blood vessels and nerves. Once formed they must remain open, due to the vital structures they contain, i.e. optic nerves, jugular vein, carotid artery, and other cranial nerves and blood vessels. Understanding cranial foramina development is essential as cranial malformations lead to the stenosis or complete closure of these structures, resulting in blindness, deafness, facial paralysis, raised intracranial pressure and lethality. Here we focus on describing early events in the formation of the jugular, carotid and hypoglossal cranial foramina that form in the mesoderm-derived, endochondral occipital bones at the base of the embryonic chick skull. Whole-mount skeletal staining of skulls indicates the appearance of these foramina from HH32/D7.5 onwards. Haematoxylin & eosin staining of sections shows that the intimately associated mesenchyme, neighbouring the contents of these cranial foramina, is initially very dense and gradually becomes sparser as development proceeds. Histological examination also revealed that these foramina initially contain relatively large-diameter nerves, which later become refined, and are closely associated with the blood vessel, which they also innervate within the confines of the foramina. Interestingly cranial foramina in the base of the skull contain blood vessels lacking smooth muscle actin, which suggests these blood vessels belong to glomus body structures within the foramina. The blood vessel shape also appears to dictate the overall shape of the resulting foramina. We initially hypothesised that cranial foramina development could involve targeted proliferation and local apoptosis to cause 'mesenchymal clearing' and the creation of cavities in a mechanism similar to joint cavitation. We find that this is not the case, and propose that a mechanism reliant upon local nerve/blood vessel-derived restriction of ossification may contribute

  6. Effect of Photodynamic Therapy with BPD-MA on the Proliferation and Apoptosis of Human Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Chuanshan Xu; Shiming Wu; Zhigang Wang; Lehua Yu; Qing Yang

    2005-01-01

    OBJECTIVE To explore the effect of photodynamic therapy with benzoporphyrin derivative monoacid ring A (BPD-MA) on the proliferation and apoptosis of human bladder cancer cells.METHODS Rhotosensitization of BPD-MA was activated with a red light laser (632.8 nm) delivered at 10 mw/cm2 to give a total dose of 2.4 J/cm2.Cellular proliferative activity was measured using the 3-(4,5-dimethylethiazil-2-yl)-2,5-Diph3-eyl tetrazolium bromide (MTT) assay and 3H-thymidine incorporation. Cell apoptosis was determined with flow cytometry analysis and the terminal deoxyuridine nicked-labeling (TUNEL) assay.RESULTS At 24 h post photodynamic treatment, photodynamic therapy significantly decreased cellular proliferative activity. The rate of apoptosis in BIU-87 cells 8 h after photodynamic treatment significantly increased up to 26.11± 2.59% as analyzed with flow cytometry. In situ labeling of DNA cleavage products with the terminal deoxyuridine nicked-labeling (TUNEL) assay reinforced these observations, BPD-MA-mediated photosensitization increased the number of TUNEL-positive cells compared to the controls. However, laser irradiation alone, BPD-MA alone and sham radiation did not affect cellular proliferative activity or apoptosis of the human bladder cancer BIU-87 cells.CONCLUSION Photodynamic therapy with BPD-MA significantly decreases cellular proliferative activity and enhances apoptosis. Therapy using this method might be a promising approach to treat patients with bladder cancer.

  7. Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop

    International Nuclear Information System (INIS)

    Pancreatic cancer shows a highly aggressive and infiltrative growth pattern and is characterized by an abundant tumor stroma known to interact with the cancer cells, and to influence tumor growth and drug resistance. Cancer cells actively take part in the production of extracellular matrix proteins, which then become deposited into the tumor stroma. Type IV collagen, an important component of the basement membrane, is highly expressed by pancreatic cancer cells both in vivo and in vitro. In this study, the cellular effects of type IV collagen produced by the cancer cells were characterized. The expression of type IV collagen and its integrin receptors were examined in vivo in human pancreatic cancer tissue. The cellular effects of type IV collagen were studied in pancreatic cancer cell lines by reducing type IV collagen expression through RNA interference and by functional receptor blocking of integrins and their binding-sites on the type IV collagen molecule. We show that type IV collagen is expressed close to the cancer cells in vivo, forming basement membrane like structures on the cancer cell surface that colocalize with the integrin receptors. Furthermore, the interaction between type IV collagen produced by the cancer cell, and integrins on the surface of the cancer cells, are important for continuous cancer cell growth, maintenance of a migratory phenotype, and for avoiding apoptosis. We show that type IV collagen provides essential cell survival signals to the pancreatic cancer cells through an autocrine loop

  8. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells.

    Science.gov (United States)

    Yu, Yang; Yu, Xiaofeng; Ma, Jianxia; Tong, Yili; Yao, Jianfeng

    2016-07-01

    The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway plays a significant role in colorectal adenocarcinoma. NVP-BEZ235 (dactolisib) is a novel dual inhibitor of PI3K/mTOR. The effects of NVP-BEZ235 in human colorectal adenocarcinoma are still unclear. In the present study, we aimed to explore the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. HT-29 human colorectal adenocarcinoma cells were treated with NVP-BEZ235 (0, 0.001, 0.01, 0.1, 1 and 3 µM) for 24 and 48 h, respectively. Cells were also treated with NVP-BEZ235 (0.1 µM), DDP (100, 300 and 1,000 µM), and NVP-BEZ235 (0.1 µM) combined with DDP (100, 300 and 1,000 µM) respectively, and cultured for 24 h after treatment. MTT assay was utilized to evaluate the effects of NVP-BEZ235 alone or NVP-BEZ235 combined with cis-diamminedichloroplatinum (DDP) on proliferation of HT-29 cells. Cell wound-scratch assay was used detect cell migration. In addition, expression of microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B and LC3B) in HT-29 cells was detected by immunofluorescence at 48 h after NVP-BEZ235 (1 µM) treatment. Expression of proteins involved in cell cycle and proliferation (p-Akt, p-mTOR and cyclin D1), apoptosis (cleaved caspase-3), and autophagy (cleaved LC3B and Beclin-1) were detected by western blot analysis. NVP-BEZ235 inhibited the proliferation and migration of HT-29 human colorectal adenocarcinoma cells. NVP-BEZ235 decreased protein expression of p-Akt, p-mTOR and cyclin D1, and increased protein expression of cleaved caspase-3, cleaved LC3B and Beclin-1 as the concentrations and the incubation time of NVP-BEZ235 increased. In addition, NVP-BEZ235 and DDP had synergic effects in inhibiting cell proliferation and migration. The expression of protein involved in apoptosis (cleaved caspase-3) was higher in drug combination group compared to the NVP-BEZ235 single treatment group. NVP-BEZ235

  9. Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors.

    Directory of Open Access Journals (Sweden)

    Dafna Willner

    Full Text Available Chronic morphine treatment inhibits neural progenitor cell (NPC progression and negatively effects hippocampal neurogenesis. However, the effect of acute opioid treatment on cell development and its influence on NPC differentiation and proliferation in vitro is unknown. We aim to investigate the effect of a single, short term exposure of morphine on the proliferation, differentiation and apoptosis of NPCs and the mechanism involved.Cell cultures from 14-day mouse embryos were exposed to different concentrations of morphine and its antagonist naloxone for 24 hours and proliferation, differentiation and apoptosis were studied. Proliferating cells were labeled with bromodeoxyuridine (BrdU and cell fate was studied with immunocytochemistry.Cells treated with morphine demonstrated decreased BrdU expression with increased morphine concentrations. Analysis of double-labeled cells showed a decrease in cells co-stained for BrdU with nestin and an increase in cells co-stained with BrdU and neuron-specific class III β-tubuline (TUJ1 in a dose dependent manner. Furthermore, a significant increase in caspase-3 activity was observed in the nestin- positive cells. Addition of naloxone to morphine-treated NPCs reversed the anti-proliferative and pro-apoptotic effects of morphine.Short term morphine exposure induced inhibition of NPC proliferation and increased active caspase-3 expression in a dose dependent manner. Morphine induces neuronal and glial differentiation and decreases the expression of nestin- positive cells. These effects were reversed with the addition of the opioid antagonist naloxone. Our results demonstrate the effects of short term morphine administration on the proliferation and differentiation of NPCs and imply a mu-receptor mechanism in the regulation of NPC survival.

  10. Effects of recombinant adenoviral vector containing IRE1α gene on proliferation and apoptosis of ATDC5 stem cells

    Directory of Open Access Journals (Sweden)

    Xiang-zhu LI

    2013-09-01

    Full Text Available Objective To construct the recombinant adenoviral vector containing human IRE1α (type I transmembrane protein kinase/endoribonucleasegene, and investigate its effects on proliferation and apoptosis of ATDC5 stem cells. Methods  By using pAdEasyTM adenovirus vector system, the recombinant shuttle vectors of IRE1α full-length gene(pAdTrack-IRE1αand RNase+Kinasedomain(pAdTrack-R+Kwere constructed, and then transferred with pAdEasy-1 to generate recombinant adenovirus plasmid pAd-IRE1α and pAd-R+K by electroporation method. Subsequently, the plasmids were transfected into HEK-293 cells to pack and amplify the recombinant adenovirus Ad-IRE1α and Ad-R+K. The expression of recombinant adenovirus was detected by PCR. The ATDC5 cells wereinfected in vitro by recombinant adenovirus Ad-IRE1α and Ad-R+K, the infection efficiency of green fluorescent protein(GFPwas observed, and the influence of Ad-IRE1α and Ad-R+K on the proliferation and apoptosis of ATDC5 cells under endoplasmic reticulum stress(ERS or non-ERS was detected by flow cytometry(FCM. Results Restriction endonuclease digestion analysis and PCR indicated that the recombinant adenovirus vector Ad-IRE1α andAd-R+K was successfully constructed. FCM detection showed that under ERS conditions, the G1 phasedcreased and S phase increased in ATDC5 cells after transfected by Ad-IRE1α and Ad-R+K, meanwhile the apoptosis rate increased significantly(P<0.05. Conclusion Infection of recombinant adenovirus containing IRE1α gene may promote the proliferation and apoptosis of ATDC5cells.

  11. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma

    Science.gov (United States)

    Zeng, Fan-Chang; Zeng, Ming-Qiang; Huang, Liang; Li, Yong-Lin; Gao, Ben-Min; Chen, Jun-Jie; Xue, Rui-Zhi; Tang, Zheng-Yan

    2016-01-01

    Objective The aim of this study was to investigate the effects of vascular endothelial growth factor A (VEGFA) on cell proliferation, apoptosis, migration, and invasion in renal clear cell carcinoma (RCCC). Methods Between June 2012 and June 2015, RCCC tissues were obtained for the experimental group, and RCCC adjacent tumor-free kidney parenchyma tissues were obtained for the control group. VEGFA mRNA and protein expressions and phosphoinositide 3-kinase, serine/threonine-specific protein kinase (AKT), and phosphorylated-AKT protein expressions were detected. The chemically synthesized specific siRNA using RNA interference technology was used to inhibit VEGFA gene expression in human RCCC 786-O cells. The negative control (NC) group was transfected with NC sequence, and the blank group was transfected with no sequence. Flow cytometry, scratch test, and cell-penetrating experiment were used to detect cell proliferation, apoptosis, migration, and invasion of 786-O cells. Results Positive expression of VEGFA protein was 60.62% in RCCC tissue and 18.34% in adjacent tissue with statistically significant difference (P<0.001). VEGFA protein and mRNA expressions were higher in RCCC tissue than those in adjacent tissue (both P<0.01). VEGF expression in RCCC tissue was associated with Fuhrman grading and American Joint Committee on Cancer staging (both P<0.05). After RCCC 786-O cells transfecting the VEGFA siRNA, the VEGFA mRNA and protein expressions and phosphoinositide 3-kinase and phosphorylated-AKT protein expressions were significantly decreased, cell proliferation was remarkably inhibited, cell apoptotic ratio was obviously increased, and migration distance and invasive cell number were markedly decreased compared to those in the NC group and the blank group (all P<0.05). Conclusion Inhibition of VEGFA inhibited proliferation, promoted apoptosis, and suppressed migration and invasion of RCCC 786-O cells. VEGF has a potential role in diagnosis and therapy of RCCC

  12. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  13. The Relationship between Apoptosis and the Expression of Proliferating Cell Nuclear Antigen and the Clinical Stages in Gastric Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The relationship between the apoptosis and the expression of proliferating cell nuclear antigen (PCNA) and the clinical stages in gastric cancers was studied. By using terminal deoxynucleotidyl transferase-mediated nick end labelling (TUNEL) technique and PCNA immunohistochemical staining, the apoptosis and the expression of PCNA in tissue of gastric carcinoma were assayed in situ, the index of apoptosis (AI), index of PCNA (PI) and the rate of AI/PI were calculated. AI and PI in gastric cancer tissues were (6.5±3.7) % and (49.8±15.9) % respectively, and the rate of AI/PI was 0.13±0.05, which were obviously different from those of normal gastric mucosa in paragastric cancer (P<0.01). With the advanced TNM stages of gastric carcinoma, the AI was decreased, PI was increased and the rate of AI/PI decreased in gastric carcinoma. There was significant difference in them between the gastric cancer tissues and normal gastric mucosa in pericarcinoma in TNM stage Ⅱ to Ⅳ (P<0.05). It was suggested that the decreased apoptotic cells and the increased proliferating cells were obviously related to the tumor genesis and tumor progression in gastric carcinoma. The AI, PI and the rate of AI/PI would become the prognostic factors in advanced gastric carcinoma.

  14. Somatostatin and opioid receptors do not regulate proliferation or apoptosis of the human multiple myeloma U266 cells

    Directory of Open Access Journals (Sweden)

    Allouche Stéphane

    2009-06-01

    Full Text Available Abstract Background opioid and somatostatin receptors (SSTRs that can assemble as heterodimer were individually reported to modulate malignant cell proliferation and to favour apoptosis. Materials and methods: SSTRs and opioid receptors expression were examined by RT-PCR, western-blot and binding assays, cell proliferation was studied by XTT assay and propidium iodide (PI staining and apoptosis by annexin V-PI labelling. Results almost all human malignant haematological cell lines studied here expressed the five SSTRs. Further experiments were conducted on the human U266 multiple myeloma cells, which express also μ-opioid receptors (MOP-R. XTT assays and cell cycle studies provide no evidence for a significant effect upon opioid or somatostatin receptors stimulation. Furthermore, neither direct effect nor potentiation of the Fas-receptor pathway was detected on apoptosis after these treatments. Conclusion these data suggest that SSTRs or opioid receptors expression is not a guaranty for an anti-tumoral action in U266 cell line.

  15. Alteration of the Cyclin D1/p16-pRB Pathway, Cellular Proliferation and Apoptosis in Glioma

    Institute of Scientific and Technical Information of China (English)

    WANGCun-zu; FUZhen; ZHAOZhu.qing

    2004-01-01

    To study the alteration of cyclin D1, p16 and pRB in glioma, analyze proliferation and apoptosis of tmnor cells, and discuss the pathogenesis of glioma, Methods : Thirty-seven glioma specimens were classified as astrocytoma(25 cases, including 7 fibrillary cases; 6 protoplasmic cases; 12 anaplastic cases), and glioblastoma( 12 cases, including 4 GBM cases). Ten normal brain tissues were taken as controls. The expression of cyclin D1, p16 and pRB were detected by imrnunohistochemical method, Cellular proliferation was assessed by Ki-67 label index( Ki-67 LI). Cellular apoptosis was detected by TUNEL and apoptotic indices(AI) was calculated. Resu/ts: The alterations of three proteins were cyclin D1 overexpression( 28/37,75.7% ), p16 and pRB deletion( 20/37.54.1% and 12/37,32.4% ), which were closely related to tumor types, particularly in malignant glioma. Ki-67 LI and AI were higher when pRB pathway was abnormal. Apoptosis was minor in astrocytic tumors( astrocytomas, 0.010±0.002; glioblastomas, 0.057±0.016). Condusion:The abnormalities of cyclin DI/pl6-pRB pathway correlated closely with pathogenesis of glioma.

  16. HPV16 E2 could act as down-regulator in cellular genes implicated in apoptosis, proliferation and cell differentiation

    Directory of Open Access Journals (Sweden)

    Valencia-Hernández Armando

    2011-05-01

    Full Text Available Abstract Background Human Papillomavirus (HPV E2 plays several important roles in the viral cycle, including the transcriptional regulation of the oncogenes E6 and E7, the regulation of the viral genome replication by its association with E1 helicase and participates in the viral genome segregation during mitosis by its association with the cellular protein Brd4. It has been shown that E2 protein can regulate negative or positively the activity of several cellular promoters, although the precise mechanism of this regulation is uncertain. In this work we constructed a recombinant adenoviral vector to overexpress HPV16 E2 and evaluated the global pattern of biological processes regulated by E2 using microarrays expression analysis. Results The gene expression profile was strongly modified in cells expressing HPV16 E2, finding 1048 down-regulated genes, and 581 up-regulated. The main cellular pathway modified was WNT since we found 28 genes down-regulated and 15 up-regulated. Interestingly, this pathway is a convergence point for regulating the expression of genes involved in several cellular processes, including apoptosis, proliferation and cell differentiation; MYCN, JAG1 and MAPK13 genes were selected to validate by RT-qPCR the microarray data as these genes in an altered level of expression, modify very important cellular processes. Additionally, we found that a large number of genes from pathways such as PDGF, angiogenesis and cytokines and chemokines mediated inflammation, were also modified in their expression. Conclusions Our results demonstrate that HPV16 E2 has regulatory effects on cellular gene expression in HPV negative cells, independent of the other HPV proteins, and the gene profile observed indicates that these effects could be mediated by interactions with cellular proteins. The cellular processes affected suggest that E2 expression leads to the cells in to a convenient environment for a replicative cycle of the virus.

  17. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  18. Ceramide signalling: regulatory role in cell proliferation, differentiation and apoptosis in human epidermis.

    Science.gov (United States)

    Geilen, C C; Wieder, T; Orfanos, C E

    1997-09-01

    The stratum corneum of vertebrates is a major structural compartment that provides mechanical protection and prevents skin desiccation. The water barrier function of the stratum corneum was first reported in 1944, and this was shown later to be associated with multilayered lipid lamellae localized in the extracellular spaces. The major lipid components isolated from the cornified epidermal layers are ceramides, which belong to the class of sphingolipids, cholesterol and free fatty acids; their biosynthesis is in tight relationship with the cutaneous barrier function. In studies in which the barrier is artificially disturbed, lipid biosynthesis is found to be directly regulated by barrier permeability. As mentioned above, the ceramides involved in this process are located in the extracellular spaces of the upper epidermal layers, whereas sphingomyelin, the most common sphingolipid, is an integral part of the bilayer plasma membrane of the keratinocytes. During the last few years, however, increasing evidence has shown that sphingolipids may also take part in cell signalling, and the term 'sphingomyelin cycle' has been coined to describe this novel path-way of signal transduction. Intracellular messengers of the sphingomyelin cycle are ceramides as the products of an agonist-stimulated sphingomyelin hydrolysis. Increased levels of intracellular ceramides induce cell differentiation and/or apoptosis and reduce cell proliferation. In contrast to the extracellular barrier-forming ceramides which are complex partly O-acylated species containing long-chain fatty acids, intracellular signal-transducing ceramides are not O-acylated and have acyl chain lengths of 16 and 18 carbon atoms. We present here a review of our present knowledge on the sphingomyelin cycle as a possible signal transduction pathway in the human epidermis. We discuss the common origin of extracellular ceramides constituting the lipid barrier and of intracellular ceramides generated by agonist

  19. Regulation of cell proliferation and apoptosis in neuroblastoma cells by ccp1, a FGF2 downstream gene

    Directory of Open Access Journals (Sweden)

    Inman Gareth J

    2010-11-01

    Full Text Available Abstract Background Coiled-coil domain containing 115 (Ccdc115 or coiled coil protein-1 (ccp1 was previously identified as a downstream gene of Fibroblast Growth Factor 2 (FGF2 highly expressed in embryonic and adult brain. However, its function has not been characterised to date. Here we hypothesized that ccp1 may be a downstream effecter of FGF2, promoting cell proliferation and protecting from apoptosis. Methods Forced ccp1 expression in mouse embryonic fibroblast (MEF and neuroblastoma SK-N-SH cell line, as well as down-regulation of ccp1 expression by siRNA in NIH3T3, was used to characterize the role of ccp1. Results Ccp1 over-expression increased cell proliferation, whereas down-regulation of ccp1 expression reduced it. Ccp1 was able to increase cell proliferation in the absence of serum. Furthermore, ccp1 reduced apoptosis upon withdrawal of serum in SK-N-SH. The mitogen-activated protein kinase (MAPK or ERK Kinase (MEK inhibitor, U0126, only partially inhibited the ccp1-dependent BrdU incorporation, indicating that other signaling pathway may be involved in ccp1-induced cell proliferation. Induction of Sprouty (SPRY upon FGF2 treatment was accelerated in ccp1 over-expressing cells. Conclusions All together, the results showed that ccp1 regulates cell number by promoting proliferation and suppressing cell death. FGF2 was shown to enhance the effects of ccp1, however, it is likely that other mitogenic factors present in the serum can also enhance the effects. Whether these effects are mediated by FGF2 influencing the ccp1 function or by increasing the ccp1 expression level is still unclear. At least some of the proliferative regulation by ccp1 is mediated by MAPK, however other signaling pathways are likely to be involved.

  20. Regulation of cell proliferation and apoptosis in neuroblastoma cells by ccp1, a FGF2 downstream gene

    International Nuclear Information System (INIS)

    Coiled-coil domain containing 115 (Ccdc115) or coiled coil protein-1 (ccp1) was previously identified as a downstream gene of Fibroblast Growth Factor 2 (FGF2) highly expressed in embryonic and adult brain. However, its function has not been characterised to date. Here we hypothesized that ccp1 may be a downstream effecter of FGF2, promoting cell proliferation and protecting from apoptosis. Forced ccp1 expression in mouse embryonic fibroblast (MEF) and neuroblastoma SK-N-SH cell line, as well as down-regulation of ccp1 expression by siRNA in NIH3T3, was used to characterize the role of ccp1. Ccp1 over-expression increased cell proliferation, whereas down-regulation of ccp1 expression reduced it. Ccp1 was able to increase cell proliferation in the absence of serum. Furthermore, ccp1 reduced apoptosis upon withdrawal of serum in SK-N-SH. The mitogen-activated protein kinase (MAPK) or ERK Kinase (MEK) inhibitor, U0126, only partially inhibited the ccp1-dependent BrdU incorporation, indicating that other signaling pathway may be involved in ccp1-induced cell proliferation. Induction of Sprouty (SPRY) upon FGF2 treatment was accelerated in ccp1 over-expressing cells. All together, the results showed that ccp1 regulates cell number by promoting proliferation and suppressing cell death. FGF2 was shown to enhance the effects of ccp1, however, it is likely that other mitogenic factors present in the serum can also enhance the effects. Whether these effects are mediated by FGF2 influencing the ccp1 function or by increasing the ccp1 expression level is still unclear. At least some of the proliferative regulation by ccp1 is mediated by MAPK, however other signaling pathways are likely to be involved

  1. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro.

    Science.gov (United States)

    Zou, Yanfen; Yu, Xiang; Lu, Jing; Jiang, Ziyan; Zuo, Qing; Fan, Mingsong; Huang, Shiyun; Sun, Lizhou

    2015-01-01

    Preeclampsia (PE) is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT) including proliferation, apoptosis, and migration and invasion. Decorin (DCN) has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells' metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9). Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia. PMID:26357650

  2. Decorin-Mediated Inhibition of Human Trophoblast Cells Proliferation, Migration, and Invasion and Promotion of Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Yanfen Zou

    2015-01-01

    Full Text Available Preeclampsia (PE is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT including proliferation, apoptosis, and migration and invasion. Decorin (DCN has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR and immunohistochemistry (IHC. And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells’ metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9. Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia.

  3. Knockdown of COUP-TFII inhibits cell proliferation and induces apoptosis through upregulating BRCA1 in renal cell carcinoma cells.

    Science.gov (United States)

    Zheng, Jia; Qin, Weijun; Jiao, Dian; Ren, Jing; Wei, Ming; Shi, Shengjia; Xi, Wenjin; Wang, He; Yang, An-Gang; Huan, Yi; Wen, Weihong

    2016-10-01

    COUP-TFII belongs to the nuclear receptor family, which is highly expressed in many kinds of tumors. Previous studies have shown that COUP-TFII can promote tumor progression through regulating tumor angiogenesis and cell proliferation and migration of certain cancer cells. However, the function of COUP-TFII in renal cell carcinoma (RCC) is not clear. Here, we showed that clinical RCC tumor tissues showed much higher COUP-TFII expression level than adjacent normal tissues. When COUP-TFII was knocked down in RCC 769-P and 786-O cells by siRNA or shRNA-expressing lentivirus, the cell proliferation was markedly inhibited, and apoptosis increased. Moreover, the tumor growth of COUP-TFII knockdown 769-P and 786-O xenografts in nude mice was also obviously inhibited. Using qRT-PCR and Western blot, we showed that the expression of the tumor suppressor gene BRCA1 was upregulated in COUP-TFII knockdown cells. Simultaneously knockdown of BRCA1 and COUP-TFII partially rescued the inhibited cell proliferation and increased apoptosis in COUP-TFII single knockdown cells. These results indicate that COUP-TFII may play an oncogenic role in RCC, and COUP-TFII may promote tumor progression through inhibiting BRCA1. PMID:27193872

  4. Lunasin Inhibits Cell Proliferation via Apoptosis and Reduces the Production of Proinflammatory Cytokines in Cultured Rheumatoid Arthritis Synovial Fibroblasts

    Directory of Open Access Journals (Sweden)

    Shaohui Jia

    2015-01-01

    Full Text Available Lunasin, a peptide with 43 amino acid residues and initially isolated and identified in soybean cotyledon, has gained extensive attention due to its anti-inflammatory and anticancer properties. However, its treatment efficacy on rheumatoid arthritis (RA and corresponding mechanisms have not been reported. Herein, the synovial fibroblasts harvested and isolated from patients with RA were treated with lunasin at various concentrations to examine the proliferation, apoptosis status, and corresponding cell cycle of cultured RA synovial fibroblasts. Meanwhile, the underlying mechanisms of lunasin for RA treatment are explored through Western blot, real-time PCR, ELISA, and luciferase reporter assays. Lunasin significantly inhibited the proliferation and induced the apoptosis of cultured RA synovial fibroblasts. In addition, lunasin reduced the production of interleukin-6 (IL-6, IL-8, and matrix metalloproteinase-3 (MMP-3 and suppressed the activation of NF-κB in cultured RA synovial fibroblasts but did not reveal obvious modulation on the secretion and gene expression of MMP-1. Therefore, lunasin will have promising potential as a novel nutritional supplement or drug candidate for RA due to its potency of suppressing synovial cell proliferation and decreasing the production of proinflammatory cytokines and MMPs in synovial cells.

  5. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells

    Science.gov (United States)

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-03-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  6. Roe Protein Hydrolysates of Giant Grouper (Epinephelus lanceolatus) Inhibit Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress

    Science.gov (United States)

    Yang, Jing-Iong; Tang, Jen-Yang; Liu, Ya-Sin; Wang, Hui-Ru; Lee, Sheng-Yang; Yen, Ching-Yu

    2016-01-01

    Roe protein hydrolysates were reported to have antioxidant property but the anticancer effects were less addressed, especially for oral cancer. In this study, we firstly used the ultrafiltrated roe hydrolysates (URH) derived from giant grouper (Epinephelus lanceolatus) to evaluate the impact of URH on proliferation against oral cancer cells. We found that URH dose-responsively reduced cell viability of two oral cancer cells (Ca9-22 and CAL 27) in terms of ATP assay. Using flow cytometry, URH-induced apoptosis of Ca9-22 cells was validated by morphological features of apoptosis, sub-G1 accumulation, and annexin V staining in dose-responsive manners. URH also induced oxidative stress in Ca9-22 cells in terms of reactive oxygen species (ROS)/superoxide generations and mitochondrial depolarization. Taken together, these data suggest that URH is a potential natural product for antioral cancer therapy. PMID:27195297

  7. Mechanism of retinoid receptors in inhibiting proliferation and inducing apoptosis of human melanoma cell line A375

    Institute of Scientific and Technical Information of China (English)

    NIU Xin-wu; PENG Zhen-hui; FENG Jie; MA Hui-qun; LIU Chao; YUAN Jing-yi

    2005-01-01

    @@ Malignant melanoma is a common cancer of skin. Its incidence is growing rapidly in recent years,1 however, there is no effective therapy for this cancer. Retinoids are metabolites or derivatives of vitamin A. They are essential for growth, differentiation, and maintenance of epithelial tissues.2 Previous studies showed that retinoids could inhibit growth of many kinds of malignant tumor cell lines and induce its apoptosis,3,4 including malignant melanoma cell lines.5 Some retinoids have therapeutic action to malignant melanoma, such as all-trans retinoic acid (ATRA) and 13-cis-RA.6,7 Retinoids take effects mainly through two kinds of nuclear receptors, retinoic acid receptor (RAR) and retinoic acid X receptor (RXR). In this study, we have investigated the effects of diverse retinoids and receptor agonists in inhibiting proliferation and inducing apoptosis of human melanoma cell line A375.

  8. NF-κB plays a key role in microcystin-RR-induced HeLa cell proliferation and apoptosis.

    Science.gov (United States)

    Chen, Liang; Zhang, Xin; Chen, Jun; Zhang, Xuezhen; Fan, Huihui; Li, Shangchun; Xie, Ping

    2014-09-01

    Microcystins (MCs) are well-known cyanobacterial toxins produced in eutrophic waters and can act as potential carcinogens and have caused serious risk to human health. However, pleiotropic even paradoxical actions of cells exposure to MCs have been reported, and the mechanisms of MC-induced tumorigenesis and apoptosis are still unknown. In this study, we performed the first comprehensive in vitro investigation on carcinogenesis associated with nuclear factor kappa B (NF-κB) and its downstream genes in HeLa cells (Human cervix adenocarcinoma cell line from epithelial cells) exposure to MC-RR. HeLa cells were treated with 0, 20, 40, 60, and 80 µg/mL MC-RR for 4, 8, 12, and 24 h. HeLa cells presented dualistic responses to different doses of MCs. CCK8 assay showed that MC-RR exposure evidently enhanced cell viability of HeLa cells at lower MCs doses. Cell cycle and apoptosis analysis revealed that lower MCs doses promoted G1/S transition and cell proliferation while higher doses of MCs induced apoptosis, with a dose-dependent manner. Electrophoretic mobility shift assay (EMSA) revealed that MC-RR could increase/decrease NF-κB activity at lower/higher MC-RR doses, respectively. Furthermore, the expression of NF-κB downstream target genes including c-FLIP, cyclinD1, c-myc, and c-IAP2 showed the same variation trend as NF-κB activity both at mRNA and protein levels, which were induced by lower doses of MC-RR and suppressed by higher doses. Our data verified for the first time that NF-κB pathway may mediate MC-induced cell proliferation and apoptosis and provided a better understanding of the molecular mechanism for potential carcinogenicity of MC-RR. PMID:24932741

  9. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  10. Apoptosis is increased and cell proliferation is decreased in out-of-phase endometria from infertile and recurrent abortion patients

    Directory of Open Access Journals (Sweden)

    Irigoyen Marcela

    2010-10-01

    Full Text Available Abstract Background Various endometrial abnormalities have been associated with luteal phase deficiency: a significant dyssynchrony in the maturation of the glandular epithelium and the stroma and a prevalence of out-of-phase endometrial biopsy specimens. Out-of phase endometrium is a controversial disorder related to failed implantation, infertility and early pregnancy loss. Given that the regulation of the apoptotic process in endometrium of luteal phase deficiency is still unknown, the aim of this study was to evaluate cell proliferation, apoptosis and the levels of the main effector caspase, caspase-3 in the luteal in-phase and out-of-phase endometrium. Methods Thirty-seven endometrial samples from sterile or recurrent abortion patients were included in this study: 21 in-phase samples (controls and 16 samples with out-of-phase endometrium. Biopsy specimens of eutopic endometrium were obtained from all subjects during days 21-25 of the menstrual cycle. The endometrium with endometrial maturity of cycle day 25 or less at the time of menstruation was considered out-of phase. Endometrial tissues were fixed in 10% buffered formaldehyde. For apoptosis quantification, sections were processed for in situ immunohistochemical localization of nuclei exhibiting DNA fragmentation, by the terminal deoxynucleotidyl transferase (TdT-mediated dUTP digoxygenin nick-end labeling (TUNEL technique. Expressions of Proliferating Cell Nuclear Antigen (PCNA as a marker of cell proliferation, and of cleaved caspase-3 as a marker of apoptosis, were assessed by immunohistochemistry in the luteal in-phase and out-of-phase endometrium from infertile and recurrent abortion patients. Results Luteal out-of-phase endometrium had increased apoptosis levels compared to in-phase endometrium (p Conclusions this study represents the first report describing variations at the cell proliferation and cell death levels in the out-of-phase endometrium in comparison with in

  11. Effects of Peptide Nucleic Acids against Ki-67 Gene on the Proliferation and Apoptosis of Human Renal Carcinoma Cell Line

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To investigate the effects of anti-sense peptide nucleic acids (PNAs) targeting Ki-67gene on modulation of the proliferation and apoptosis of human renal carcinoma cell lines, human renal carcinoma cell line 786-0 cells were treated with anti-sense PNAs at different concentrations (1.0 μmol/L, 2.0 μmol/L, 10.0 μmol/L). The Ki-67 expression of 786-0 cells was detected by immunohistochemical technique and Western blot method respectively. The proliferation of 786-0 cells was studied by cell growth curves and 3H-thymidine incorporation. The apoptosis of 786-0 cells was detected by TUNEL assay. The control groups were treated with anti-sense oligonucleotide (ASODNs)targeting Ki-67 gene. Our results showed that the Ki-67 expression of 786-0 cells treated with anti-sense PNAs (16.9±0.7) was significantly inhibited as compared with that of the control groups (28.6±0.4) (P<0.01). The Ki-67 protein rate of 786-0 cells treated with anti-sense PNAs (42.1±2.2)was significantly reduced when compared with that of the control groups (83.6±1.4) (P<0.01). Proliferation of 786-0 cells treated with anti-sense PNAs (20.7±1.5) was significantly inhibited as compared with that of the control groups (58.6±1.4) (P<0.01). The apoptosis rate of 786-0 cells treated with anti-sense PNAs (28.7±2.3) was significantly increased higher compared with that of the control groups (13.8±1.0) (P<0.01). From these finds we are led to conclude that anti-sense PNAs targeting Ki-67 gene have stronger effects on the inhibition of the proliferation and induction of apoptosis of human renal carcinoma cells than ASODNs targeting Ki-67 gene. The strategies using anti-sense PNAs targeting Ki-67 gene may be a promising approach for the treatment of renal cell carcinoma.

  12. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yue [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China); Du, Chengli [Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Wang, Bo; Zhang, Yanling; Liu, Xiaoyan [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China); Ren, Guoping, E-mail: renguoping12345@163.com [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China)

    2014-07-18

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.

  13. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    International Nuclear Information System (INIS)

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer

  14. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2010-10-01

    Full Text Available Zhen Zhang, Xiumei Zhang, Wei Xue, Yuna YangYang, Derong Xu, Yunxue Zhao, Haiyan LouSchool of Medicine, Shandong University, Jinan, Republic of ChinaAbstract: This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P < 0.05. Compared with the same concentration of oridonin solution, oridonin nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.Keywords: oridonin, nanosuspension, carcinoma of prostate, PC-3 cells, cell cycle, apoptosis

  15. Effects of serum starvation on radiosensitivity, proliferation and apoptosis in four human tumor cell lines with different p53 status

    International Nuclear Information System (INIS)

    Purpose: The effects of serum starvation on radiation sensitivity, cell proliferation and apoptosis were investigated with particular consideration of the p53 status. Material and Methods: Four human tumor cell lines, Be11 (melanoma, p53 wild-type), MeWo (melanoma, p53 mutant), 4197 (squamous cell carcinoma, p53 wild-type) and 4451 (squamous cell carcinoma, p53 mutant), were used. After the cells had been incubated in starvation medium (0.5% FCS) for 1-6 days, changes in cell cycle distribution, induction of apoptosis and necrosis, and changes in radiation sensitivity were assessed by two-parameter flow cytometric measurements of DNA content/BrdU labeling, two-parameter flow cytometric measurements of DNA-dye-exclusion/Annexin V binding, and a conventional colony assay, respectively. Results: p53 wild-type cell lines showed a decrease in the BrdU labeling index and an increase in the apoptotic cell frequency in starvation medium. p53 mutant cell lines showed a decrease in the BrdU labeling index but no evidence of apoptosis. These cells went into necrosis instead. The radiation sensitivity was increased in 4451 and slightly decreased in Be11 and 4197 in starvation medium. Conclusion: These data suggest a functional involvement of p53 in starvation-induced G1-block and apoptosis in tumor cells. Altered radiosensitivity after culture in starvation medium seemed to be explained at least in part by the starvation-induced G1-block. The frequency of starvation-induced apoptosis or necrosis was not correlated with radiation sensitivity. (orig.)

  16. Expression of fragile histidine triad in primary hepatocellular carcinoma and its relation with cell proliferation and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ke-Jun Nan; Zhi-Ping Ruan; Zhao Jing; Hai-Xia Qin; Hong-Yan Wang; Hui Guo; Rui Xu

    2005-01-01

    AIM: To evaluate the expression of fragile histidine triad (FHIT) gene protein, product of a candidate tumor suppressor,and to investigate the relationship between FHIT, cell apoptosis and proliferation, and pathological features of primary hepatocellular carcinoma (HCC).METHODS: Forty-seven HCC and ten normal liver specimens were collected during surgical operation between 2001and 2003. FHIT and proliferating cell nuclear antigen (PCNA)expression were detected by immunohistochemistry, and apoptotic level was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay on the tissue sections.RESULTS: All normal liver tissues showed a strong expression of FHIT, whereas 28 of 47 (59.6%) carcinomas showed a significant loss or absence of FHIT expression (P = 0.001).The proportion of reduced FHIT expression in those carcinomas at stages Ⅲ-Ⅳ (70.6%) and in those with extrahepatic metastasis (86.7%) showed an increasing trend compared with those at stages Ⅰ-Ⅱ (30.8%, P= 0.013) and those without metastasis (46.9%, P = 0.010) respectively. Apoptotic incidence in advanced TNM stage carcinoma and those with positive FHIT expression was higher than that in early stage carcinoma (P = 0.030) and in those with negative FHIT expression (P = 0.044) respectively. The proliferating potential of hepatocellular carcinoma was associated with FHIT expression (P = 0.016) and the aggressive feature (P = 0.019). Kaplan-Meier analysis demonstrated that the survival time of these 47 patients correlated with TNM stage,FHIT expression and metastasis.CONCLUSION: There is marked loss or absence of FHIT expression, as well as abnormal apoptosis-proliferation balance in HCC. FHIT may play an important role in carcinogenesis and development of HCC.

  17. Troglitazone, a peroxisome proliferator-activated receptor γ ligand, induces growth inhibition and apoptosis of HepG2 human liver cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Ming Zhou; Yin-Hao Wen; Xiao-Yan Kang; Hai-Hua Qian; Jia-Mei Yang; Zheng-Feng Yin

    2008-01-01

    AIM: To examine the effect of troglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) ligand, on the proliferation and apoptosis of human liver cancer cells.METHODS: Liver cancer cell line HepG2 was cultured and treated with troglitazone. Cell proliferation was detected by 3-(4-,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; apoptosis was detected by flow cytometry and terminal deoxynucleotidyl transferasemediated nick end labeling of DNA fragmentation sites (TUNEL) assay; and apoptosis-related protein was detected by immunocytochemistry and Western blotting.RESULTS: Troglitazone inhibited growth and induced apoptosis of HepG2 cells in a dose-dependent manner,and induced activation of caspase-3 expression.Troglitazone not only drove apoptosis-inhibiting factor survivin to translocate incompletely from the nucleus to the cytoplasm, but also inhibited expression of survivin,while it did not affect expression of apoptosis-promoting factor Bax.CONCLUSION: PPARγ ligands inhibit growth and induce apoptosis of liver cancer cells, and may have applications for the prevention and treatment of liver cancer.

  18. Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice

    Science.gov (United States)

    Piotrowska, Katarzyna; Tarnowski, Maciej; Zgutka, Katarzyna; Pawlik, Andrzej

    2016-01-01

    Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD) feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E) method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR). We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment. PMID:27007393

  19. Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice

    Directory of Open Access Journals (Sweden)

    Katarzyna Piotrowska

    2016-03-01

    Full Text Available Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR. We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment.

  20. Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice.

    Science.gov (United States)

    Piotrowska, Katarzyna; Tarnowski, Maciej; Zgutka, Katarzyna; Pawlik, Andrzej

    2016-03-01

    Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD) feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E) method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR). We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment. PMID:27007393

  1. Phorbol Esters Isolated from Jatropha Meal Induced Apoptosis-Mediated Inhibition in Proliferation of Chang and Vero Cell Lines

    Directory of Open Access Journals (Sweden)

    Syahida Ahmad

    2012-10-01

    Full Text Available The direct feeding of Jatropha meal containing phorbol esters (PEs indicated mild to severe toxicity symptoms in various organs of different animals. However, limited information is available on cellular and molecular mechanism of toxicity caused by PEs present in Jatropha meal. Thus, the present study was conducted to determine the cytotoxic and mode of action of PEs isolated from Jatropha meal using human hepatocyte (Chang and African green monkey kidney (Vero cell lines. The results showed that isolated PEs inhibited cell proliferation in a dose-dependent manner in both cell lines with the CC50 of 125.9 and 110.3 μg/mL, respectively. These values were compatible to that of phorbol 12-myristate 13-acetate (PMA values as positive control i.e., 124.5 and 106.3 μg/mL respectively. Microscopic examination, flow cytometry and DNA fragmentation results confirmed cell death due to apoptosis upon treatment with PEs and PMA at CC50 concentration for 24 h in both cell lines. The Western blot analysis revealed the overexpression of PKC-δ and activation of caspase-3 proteins which could be involved in the mechanism of action of PEs and PMA. Consequently, the PEs isolated form Jatropha meal caused toxicity and induced apoptosis-mediated proliferation inhibition toward Chang and Vero cell lines involving over-expression of PKC-δ and caspase-3 as their mode of actions.

  2. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis.

    Science.gov (United States)

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2-5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer. PMID:26699876

  3. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis

    Science.gov (United States)

    Bishayee, Anupam; Mandal, Animesh; Bhattacharyya, Piyali; Bhatia, Deepak

    2016-01-01

    abstract Breast cancer is the second leading cause of cancer-related death in women in the United States and discovery and development of safe chemopreventive drugs is urgently needed. The fruit pomegranate (Punica granatum) is gaining importance because of its various health benefits. This study was initiated to investigate chemopreventive potential of a pomegranate emulsion (PE) against 7,12-dimethylbenz(a)anthracene (DMBA) rat mammary carcinogenesis. The animals were orally administered with PE (0.2–5.0 g/kg), starting 2 wk before and 16 wk following DMBA treatment. PE exhibited a striking reduction of DMBA-induced mammary tumor incidence, total tumor burden, and reversed histopathological changes. PE dose-dependently suppressed cell proliferation and induced apoptosis in mammary tumors. Immunohistochemical studies showed that PE increased intratumor Bax, decreased Bcl2 and manifested a proapoptotic shift in Bax/Bcl2 ratio. In addition, our gene expression study showed PE-mediated upregulation of Bad, caspase-3, caspase-7, caspase-9, poly (ADP ribose) polymerase and cytochrome c in mammary tumors. Thus, PE exerts chemoprevention of mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis mediated through upregulation of Bax and downregulation of Bcl2 in concert with caspase cascades. Pomegranate bioactive phytoconstituents could be developed as a chemopreventive drug to reduce the risk of breast cancer. PMID:26699876

  4. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    International Nuclear Information System (INIS)

    Highlights: ► The article revealed FoxP3 gene function in gastric cancer firstly. ► Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. ► Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. ► Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. ► FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis in GC cells by regulating apoptotic signaling, which could be a promising therapeutic approach for gastric cancer.

  5. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Gui-Fen [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: shiyao_chen@163.com [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Sun, Zhi-Rong [Department of Anesthesiology, Cancer Center, Fudan University, Shanghai (China); Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Li-Li; Lian, Jing-Jing [Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Song, Dong-Li [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  6. IARS2 silencing induces non-small cell lung cancer cells proliferation inhibition, cell cycle arrest and promotes cell apoptosis.

    Science.gov (United States)

    Yin, J; Liu, W; Li, R; Liu, J; Zhang, Y; Tang, W; Wang, K

    2016-01-01

    The purpose of this study was to investigate the potential role of Ileucyl-tRNA synthetase (IARS2) silencing in non-small cell lung cancer (NSCLC). The silencing of IARS2 in H1299 cells and A549 cells were performed by lentivirus encoding shRNAs. The efficiency of IARS2 silencing was detected by quantitative real time PCR and western blot. The effects of IARS2 silencing on cell growth, cell apoptosis, cell cycle and cell colony formation ability were assessed by cells counting, MTT assay, flow cytometer analysis and soft agar colony formation assay, respectively. Compared with negative control group, IARS2 was significantly knockdown by transfection with lentivirus encoding shRNA of IARS2. The IARS2 silencing significantly inhibited the cells proliferation and cells colony formation ability, induced cell cycle arrest at G1/S phase and promoted cell apoptosis. IARS2 silencing induced NSCLC cells growth inhibition, cell cycle arrest and promoted cell apoptosis. These results suggest that IARS2 may be a novel target for the treatment of NSCLC. PMID:26639235

  7. Effects of IL-6 on proliferation and apoptosis of tumor cells multi-irradiated for tumor-bearing mice

    International Nuclear Information System (INIS)

    A study was carried out on effects of IL-6 on the proliferation and apoptosis of tumor cells and the expression of apoptosis relevant genes (p53, bcl-2) in tumor cells for three kinds of fractional total-body-irradiated tumor-bearing mice. The apoptotic index, proliferative index, S phase fraction of S180 sarcoma, H22 hepatocarcinoma and Lewis lung cancer cells were measured by flowcytometry (FCM) after total-body-irradiation and irradiation plus IL-6. The protein expression level of p53, bcl-2 in three kinds of tumors was also determined by the immunohisto-chemical method (UltraSensitive S-P). The results showed that the S phase fraction and proliferation index in Lewis lung cancer cells were lower in the irradiated plus IL-6 group than in the control, while apoptotic index was higher (P180 sarcoma cells were opposite (P22 hepatocarcinoma. These results revealed that IL-6 promoted the apoptosis of irradiated Lewis lung cancer cells (P180 sarcoma (P22 hepatocarcinoma (P>0.05). In Lewis lung cancer the expression level of p53 was lower in the IL-6 group and higher in S180 sarcoma (P22 hepatocarcinoma as compared with the control (P>0.05). It is considered that tumor cell's proportion in the cellular cycle is changed by IL-6 and the effects of IL-6 on the expression of p53, bcl-2 in different three kinds of tumors are different. IL-6 has radio-sensitive effects on some tumors and opposite effects on other tumors, it may be related to the expression of p53 and bcl-2 in tumor cells. (authors)

  8. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zeng FC

    2016-04-01

    Full Text Available Fan-Chang Zeng,1,2 Ming-Qiang Zeng,1 Liang Huang,1 Yong-Lin Li,1 Ben-Min Gao,1 Jun-Jie Chen,1 Rui-Zhi Xue,1 Zheng-Yan Tang1 1Department of Urology, Xiangya Hospital, Central South University, Changsha, 2Department of Urology, Hainan General Hospital, Haikou, People’s Republic of China Objective: The aim of this study was to investigate the effects of vascular endothelial growth factor A (VEGFA on cell proliferation, apoptosis, migration, and invasion in renal clear cell carcinoma (RCCC. Methods: Between June 2012 and June 2015, RCCC tissues were obtained for the experimental group, and RCCC adjacent tumor-free kidney parenchyma tissues were obtained for the control group. VEGFA mRNA and protein expressions and phosphoinositide 3-kinase, serine/threonine-specific protein kinase (AKT, and phosphorylated-AKT protein expressions were detected. The chemically synthesized specific siRNA using RNA interference technology was used to inhibit VEGFA gene expression in human RCCC 786-O cells. The negative control (NC group was transfected with NC sequence, and the blank group was transfected with no sequence. Flow cytometry, scratch test, and cell-penetrating experiment were used to detect cell proliferation, apoptosis, migration, and invasion of 786-O cells. Results: Positive expression of VEGFA protein was 60.62% in RCCC tissue and 18.34% in adjacent tissue with statistically significant difference (P<0.001. VEGFA protein and mRNA expressions were higher in RCCC tissue than those in adjacent tissue (both P<0.01. VEGF expression in RCCC tissue was associated with Fuhrman grading and American Joint Committee on Cancer staging (both P<0.05. After RCCC 786-O cells transfecting the VEGFA siRNA, the VEGFA mRNA and protein expressions and phosphoinositide 3-kinase and phosphorylated-AKT protein expressions were significantly decreased, cell proliferation was remarkably inhibited, cell apoptotic ratio was obviously increased, and migration distance and

  9. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  10. Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells.

    Science.gov (United States)

    Yamazaki, Ryuta; Kusunoki, Natsuko; Matsuzaki, Takeshi; Hashimoto, Shusuke; Kawai, Shinichi

    2002-11-01

    Although the influence of selective cyclooxygenase (COX)-2 inhibitors on the proliferation of colon adenocarcinoma cells have been the subject of much investigation, relatively little research has compared the effects of different COX-2 inhibitors. Celecoxib strongly suppressed the proliferation of COX-2 expressing HT-29 cells at 10-40 microM. NS-398 and nimesulide also inhibited cell proliferation, whereas rofecoxib, meloxicam, and etodolac did not. Only celecoxib induced apoptosis of HT-29 cells, as detected on the basis of DNA fragmentation, TUNEL positivity, and caspase-3/7 activation. DNA fragmentation was also increasd in COX-2 non-expressing cell lines (SW-480 and HCT-116) by exposure to celecoxib for 6-24 h. All six COX-2 inhibitors suppressed the production of prostaglandin E(2) by HT-29 cells, suggesting that the pro-apoptotic effect of celecoxib was unrelated to inhibition of COX-2. Inactivation of Akt might explain the differential pro-apoptotic effect of these selective COX-2 inhibitors on colon adenocarcinoma cells. PMID:12417326

  11. Intratumoral application of standardized mistletoe extracts down regulates tumor weight via decreased cell proliferation, increased apoptosis and necrosis in a murine model.

    Science.gov (United States)

    Beuth, J; Ko, H L; Schneider, H; Tawadros, S; Kasper, H U; Zimst, H; Schierholz, J M

    2006-01-01

    The cytotoxic in vitro activity of standardized mistletoe extracts (ME) was examined by established assays towards the human ductal breast carcinoma cell line BT474. A dose-dependent (optimum 25 mg/mL medium) and significantly (p control mice with intratumoral phosphate-buffered saline (PBS) injections, tumors of the ME-A and ME-M treated groups showed a decreased cell proliferation rate, as well as an increased cell necrosis and apoptosis rate. Standardized mistletoe extracts, interfering with defined tumor cell functions, e.g., proliferation, necrosis and apoptosis, may have an impact on local cancer treatment. PMID:17201168

  12. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression

    International Nuclear Information System (INIS)

    Long non-coding RNAs play an important role in tumorigenesis, hence, identification of cancer-associated lncRNAs and investigation of their biological functions and molecular mechanisms are important for understanding the development and progression of cancer. Recently, the downregulation of lncRNA MEG3 has been observed in various human cancers. However, its role in non-small cell lung cancer (NSCLC) is unknown. The aim of this study was to examine the expression pattern of MEG3 in NSCLC and to evaluate its biological role and clinical significance in tumor progression. Expression of MEG3 was analyzed in 44 NSCLC tissues and 7 NSCLC cell lines by qRT-PCR. Over-expression approaches were used to investigate the biological functions of MEG3 in NSCLC cells. Bisulfite sequencing was used to investigate DNA methylation on MEG3 expression. The effect of MEG3 on proliferation was evaluated by MTT and colony formation assays, and cell apoptosis was evaluated by Hoechst staining and Flow-cytometric analysis. NSCLC cells transfected with pCDNA-MEG3 were injection into nude mice to study the effect of MEG3 on tumorigenesis in vivo . Protein levels of MEG3 targets were determined by western blot analysis. Differences between groups were tested for significance using Student’s t-test (two-tailed). MEG3 expression was decreased in non-small cell lung cancer (NSCLC) tumor tissues compared with normal tissues, and associated with advanced pathologic stage, and tumor size. Moreover, patients with lower levels of MEG3 expression had a relatively poor prognosis. Overexpression of MEG3 decreased NSCLC cells proliferation and induced apoptosis in vitro and impeded tumorigenesis in vivo. MDM2 and p53 protein levels were affected by MEG3 over-expression in vitro. Our findings indicate that MEG3 is significantly down-regulated in NSCLC tissues that could be affected by DNA methylation, and regulates NSCLC cell proliferation and apoptosis, partially via the activition of p53. Thus, MEG3

  13. Effects of cloned tumstatin-related and angiogenesis-inhibitory peptides on proliferation and apoptosis of endothelial ceils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-mei; ZHANG Ying-mei; FU Song-bin; LIU Xing-han; FU Xue; YU Yan; ZHANG Zhi-yi

    2008-01-01

    Background Tumstatin is a recently developed endogenous vascular endothelial growth inhibitor that can be applied as an anti-angiogenesis and antineoplastic agent.The study aimed to design and synthesize the small molecular angiogenesis inhibition-related peptide (peptide 21),to replicate the structural and functional features of the active zone of angiogenesis inhibition using tumstatin and to prove that synthesized peptide 21 has a similar activity:specifically inhibiting tumor angiogenesis like tumstatin.Methods Peptide 21 was designed and synthesized using biological engineering technology.To determine its biological action,the human umbilical vein endothelial cell line ECV304,the human ovarian cancer cell line SKOV-3 and the mouse embryo-derived NIH3T3 fibroblasts were used in in vitro experiments to determine the effect of peptide 21 on proliferation of the three cell lines using the MTT test and growth curves.Transmission electron microscopy (TEM) and flow cytometry (FCM) were applied to analyze the peptide 21-induced apoptosis of the three cell lines qualitatively and quantitatively.In animal experiments,tumor models in nude mice subcutaneously grafted with SKOV-3 were used to observe the effects of peptide 21 on tumor weight,size and microvessel density (MVD).To initially investigate the role of peptide 21,the effect of peptide 21 on the expression of vascular endothelial growth factors (VEGFs) by tumor tissue was semi-quantitatively analyzed.Results The in vitro MTT test and growth curves all indicated that cloned peptide 21 could specifically inhibit ECV304 proliferation in a dose-dependent manner (P <0.01);TEM and FCM showed that peptide 21 could specifically induce ECV304 apoptosis (P <0.01).Results of in vivo experiments showed that tumors in the peptide 21 group grew more slowly.The weight and size of the tumors after 21 days of treatment were smaller than those in the control group (P <0.05),with a mean tumor inhibition rate of 67.86%;MVD of

  14. Effects of Melatonin on the Proliferation and Apoptosis of Sheep Granulosa Cells under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Yao Fu

    2014-11-01

    Full Text Available The cross-talk between oocyte and somatic cells plays a crucial role in the regulation of follicular development and oocyte maturation. As a result, granulosa cell apoptosis causes follicular atresia. In this study, sheep granulosa cells were cultured under thermal stress to induce apoptosis, and melatonin (MT was examined to evaluate its potential effects on heat-induced granulosa cell injury. The results demonstrated that the Colony Forming Efficiency (CFE of granulosa cells was significantly decreased (heat 19.70% ± 1.29% vs. control 26.96% ± 1.81%, p < 0.05 and the apoptosis rate was significantly increased (heat 56.16% ± 13.95% vs. control 22.80% ± 12.16%, p < 0.05 in granulosa cells with thermal stress compared with the control group. Melatonin (10−7 M remarkably reduced the negative effects caused by thermal stress in the granulosa cells. This reduction was indicated by the improved CFE and decreased apoptotic rate of these cells. The beneficial effects of melatonin on thermal stressed granulosa cells were not inhibited by its membrane receptor antagonist luzindole. A mechanistic exploration indicated that melatonin (10−7 M down-regulated p53 and up-regulated Bcl-2 and LHR gene expression of granulosa cells under thermal stress. This study provides evidence for the molecular mechanisms of the protective effects of melatonin on granulosa cells during thermal stress.

  15. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R;

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activation...

  16. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  17. Effect of 188Re-IGF-1 analogue in proliferation inhibition and apoptosis induction in pancreatic carcinoma cells

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of 188Re-IGF-1 analogue (IGF-1A) in proliferation inhibition and apoptosis induction in human pancreatic carcinoma cell line Patu8988. Methods: IGF-1A was labeled with 188Re. Patu8988 cells were divided into an un-treated control group, IGF-1A group (1, 5, 10, 20 μg), 188ReO4-group (0.37, 1.85, 3.70, 7.40 MBq) and 188Re-IGF-1A group (0.37, 0.74, 1.85 MBq). The cell proliferation inhibition effects by the 188Re-IGF-1A and 188ReO4--were detected every day by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test from 1 d to 7 d after administration, while the IGF-1 A group was tested every day from 1 d to 6 d after treatment. Inhibition rates were calculated. At 3 d after treatment with 188ReO4-and 188Re-IGF-1A (1.85, 3.70, 7.40 MBq), cell apoptosis was detected by flow cytometry. For biodistribution studies of 188Re-IGF-1A, 36 nude mice bearing Patu8988 cell xenografts were divided into 6 groups. At different time points (15 min, 1 h, 4 h, 1 d, 3 d and 5 d), 36 mice (n=6 per time point) were sacrificed and organs of interest were removed, weighted and measured for radioactivity by a gamma counter. The absorbed doses of organs were calculated as % ID/g. One-way analysis of variance was used. Results: After 4 d, inhibition rate of Patu8988 cell proliferation in the 188Re-IGF-1A group (1.85 MBq) was (90.75 ±5.20)%,higher than that in 188ReO4-group or IGF-1A group ((49.50±2.39)%, (23.00±4.21)%; F=554.724, P<0.01). At 3 d after treatment with different doses of 188Re-IGF-1A (1.85, 3.70, 7.40 MBq), floating cell ratios were (16.56 ± 0.95)%, (33.39 ±5.93)% and (43.76 ± 1.38)%, respectively. Apoptosis ratios in the floating cells treated by 188Re-IGF-1A (1.85, 3.70, 7.40 MBq) were (12.70±2.27)%, (17.80±1.51)% and (23.23 ±1.22)%, respectively. Distribution in tumors was (39.30 ± 17.98), (10.59 ± 9.39), (5.32 ± 1.53) and (5.30 ±2.28)% ID/g at the 15 min, 1 d, 3 d, and 5 d time points after intratumoral

  18. Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas.

    Science.gov (United States)

    Lounnas, Nadia; Rosilio, Célia; Nebout, Marielle; Mary, Didier; Griessinger, Emmanuel; Neffati, Zouhour; Chiche, Johanna; Spits, Hergen; Hagenbeek, Thijs J; Asnafi, Vahid; Poulsen, Sally-Ann; Supuran, Claudiu T; Peyron, Jean-François; Imbert, Véronique

    2013-06-01

    The membrane-bound carbonic anhydrase isoforms CAIX and CAXII, underpin a pH-regulating system that enables hypoxic tumor cell survival. Here, we observed for the first time an upregulation of CAXII in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LL) cells. First we showed that CAXII is overexpressed in thymocytes from tPTEN-/- mice suffering of T lymphoma and that its pharmacological inhibition decreased cell proliferation and induced apoptosis. The same results were observed with the SupT1 human T cell lymphoma line. In addition we observed an upregulation of CAXII in human T-ALL samples supporting the case that CAXII may represent a new therapeutic target for T-ALL/LL. PMID:23348702

  19. Mice lacking thyroid hormone receptor Beta show enhanced apoptosis and delayed liver commitment for proliferation after partial hepatectomy.

    Directory of Open Access Journals (Sweden)

    Raquel López-Fontal

    Full Text Available BACKGROUND: The role of thyroid hormones and their receptors (TR during liver regeneration after partial hepatectomy (PH was studied using genetic and pharmacologic approaches. Roles in liver regeneration have been suggested for T3, but there is no clear evidence distinguishing the contribution of increased amounts of T3 from the modulation by unoccupied TRs. METHODOLOGY/PRINCIPAL FINDINGS: Mice lacking TRalpha1/TRbeta or TRbeta alone fully regenerated liver mass after PH, but showed delayed commitment to the initial round of hepatocyte proliferation and transient but intense apoptosis at 48h post-PH, affecting approximately 30% of the remaining hepatocytes. Pharmacologically induced hypothyroidism yielded similar results. Loss of TR activity was associated with enhanced nitrosative stress in the liver remnant, due to an increase in the activity of the nitric oxide synthase (NOS 2 and 3, caused by a transient decrease in the concentration of asymmetric dimethylarginine (ADMA, a potent NOS inhibitor. This decrease in the ADMA levels was due to the presence of a higher activity of dimethylarginineaminohydrolase-1 (DDAH-1 in the regenerating liver of animals lacking TRalpha1/TRbeta or TRbeta. DDAH-1 expression and activity was paralleled by the activity of FXR, a transcription factor involved in liver regeneration and up-regulated in the absence of TR. CONCLUSIONS/SIGNIFICANCE: We report that TRs are not required for liver regeneration; however, hypothyroid mice and TRbeta- or TRalpha1/TRbeta-deficient mice exhibit a delay in the restoration of liver mass, suggesting a specific role for TRbeta in liver regeneration. Altered regenerative responses are related with a delay in the expression of cyclins D1 and E, and the occurrence of liver apoptosis in the absence of activated TRbeta that can be prevented by administration of NOS inhibitors. Taken together, these results indicate that TRbeta contributes significantly to the rapid initial round of

  20. microRNA-497 inhibits cell proliferation and induces apoptosis by targeting YAP1 in human hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Lei; Yu, Zhaoxiang; Xian, Yao; Lin, Xiaobo

    2016-02-01

    microRNAs (miRNAs) function as oncogenes or tumor suppressors in human cancers by targeting mRNAs for degradation and/or translational repression. miR-497 has been proposed as a tumor suppressive miRNA and its deregulation is observed in human cancers. However, the prognostic value of miR-497 and its underlying molecular pathways involved in the initiation and development of hepatocellular carcinoma (HCC) are poorly investigated. In the present study, we found that the mean level of miR-497 in HCC tissues was lower than that in adjacent nontumor tissues. Clinical data indicated that low expression of miR-497 was prominently associated with adverse prognostic features of HCC including high serum alpha-fetoprotein (AFP) level, large tumor size, high Edmondson-Steiner grading and advanced tumor-node-metastasis (TNM) stage. Furthermore, miR-497 was an independent prognostic factor for indicating both 5-year overall survival and disease-free survival of HCC patients. Gain- and loss-of-function studies showed that miR-497 reduced cell proliferation and induced apoptosis in HCC cells. Yes-associated protein 1 (YAP1) was identified as a direct target of miR-497 in HCC. An inverse correlation between YAP1 and miR-497 expression was observed in HCC tissues. Notably, YAP1 knockdown abrogated the effects of miR-497 deletion on HCC cells with decreased cell proliferation and increased apoptosis. In conclusion, we report that miR-497 is a potent prognostic indicator and may suppress tumor growth of HCC by targeting YAP1. PMID:27239437

  1. MicroRNA-124-3p regulates cell proliferation, invasion, apoptosis, and bioenergetics by targeting PIM1 in astrocytoma.

    Science.gov (United States)

    Deng, Danni; Wang, Lei; Chen, Yao; Li, Bowen; Xue, Lian; Shao, Naiyuan; Wang, Qiang; Xia, Xiwei; Yang, Yilin; Zhi, Feng

    2016-07-01

    The PIM1 protein is an important regulator of cell proliferation, the cell cycle, apoptosis, and metabolism in various human cancers. MicroRNAs (miRNAs) are powerful post-transcriptional gene regulators that function through translational repression or transcript destabilization. Therefore, we aimed to identify whether a close relationship exists between PIM1 and miRNAs. PIM1 protein levels and mRNA levels were significantly upregulated in astrocytoma tissues, indicating the oncogenic role of PIM1 in astrocytoma. Further bioinformatics analysis indicated that miR-124-3p targeted the 3'-UTR of PIM1. We also observed an inverse correlation between the miR-124-3p levels and PIM1 protein or mRNA levels in astrocytoma samples. Next, we experimentally confirmed that miR-124-3p directly recognizes the 3'-UTR of the PIM1 transcript and regulates PIM1 expression at both the protein and mRNA levels. Furthermore, we examined the biological consequences of miR-124-3p targeting PIM1 in vitro. We showed that the repression of PIM1 in astrocytoma cancer cells by miR-124-3p suppressed proliferation, invasion, and aerobic glycolysis and promoted apoptosis. We observed that the restoration or inhibition of PIM1 activity resulted in effects that were similar to those induced by miR-124-3p inhibitors or mimics in cancer cells. Finally, overexpression of PIM1 rescued the inhibitory effects of miR-124-3p. In summary, these findings aid in understanding the tumor-suppressive role of miR-124-3p in astrocytoma pathogenesis through the inhibition of PIM1 translation. PMID:27088547

  2. Stress-induced sphingolipid signaling: role of type-2 neutral sphingomyelinase in murine cell apoptosis and proliferation.

    Directory of Open Access Journals (Sweden)

    Raphael Devillard

    Full Text Available BACKGROUND: Sphingomyelin hydrolysis in response to stress-inducing agents, and subsequent ceramide generation, are implicated in various cellular responses, including apoptosis, inflammation and proliferation, depending on the nature of the different acidic or neutral sphingomyelinases. This study was carried out to investigate whether the neutral Mg(2+-dependent neutral sphingomyelinase-2 (nSMase2 plays a role in the cellular signaling evoked by TNFalpha and oxidized LDLs, two stress-inducing agents, which are mitogenic at low concentrations and proapoptotic at higher concentrations. METHODOLOGY AND PRINCIPAL FINDINGS: For this purpose, we used nSMase2-deficient cells from homozygous fro/fro (fragilitas ossium mice and nSMase2-deficient cells reconstituted with a V5-tagged nSMase2. We report that the genetic defect of nSMase2 (in fibroblasts from fro/fro mice does not alter the TNFalpha and oxidized LDLs-mediated apoptotic response. Likewise, the hepatic toxicity of TNFalpha is similar in wild type and fro mice, thus is independent of nSMase2 activation. In contrast, the mitogenic response elicited by low concentrations of TNFalpha and oxidized LDLs (but not fetal calf serum requires nSMase2 activation. CONCLUSION AND SIGNIFICANCE: nSMase2 activation is not involved in apoptosis mediated by TNFalpha and oxidized LDLs in murine fibroblasts, and in the hepatotoxicity of TNFalpha in mice, but is required for the mitogenic response to stress-inducing agents.

  3. Modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows citral to decrease cancer cell proliferation.

    Science.gov (United States)

    Kapur, Arvinder; Felder, Mildred; Fass, Lucas; Kaur, Justanjot; Czarnecki, Austin; Rathi, Kavya; Zeng, San; Osowski, Kathryn Kalady; Howell, Colin; Xiong, May P; Whelan, Rebecca J; Patankar, Manish S

    2016-01-01

    The monoterpenoid, citral, when delivered through PEG-b-PCL nanoparticles inhibits in vivo growth of 4T1 breast tumors. Here, we show that citral inhibits proliferation of multiple human cancer cell lines. In p53 expressing ECC-1 and OVCAR-3 but not in p53-deficient SKOV-3 cells, citral induces G1/S cell cycle arrest and apoptosis as determined by Annexin V staining and increased cleaved caspase3 and Bax and decreased Bcl-2. In SKOV-3 cells, citral induces the ER stress markers CHOP, GADD45, EDEM, ATF4, Hsp90, ATG5, and phospho-eIF2α. The molecular chaperone 4-phenylbutyric acid attenuates citral activity in SKOV-3 but not in ECC-1 and OVCAR-3 cells. In p53-expressing cells, citral increases phosphorylation of serine-15 of p53. Activation of p53 increases Bax, PUMA, and NOXA expression. Inhibition of p53 by pifithrin-α, attenuates citral-mediated apoptosis. Citral increases intracellular oxygen radicals and this leads to activation of p53. Inhibition of glutathione synthesis by L-buthionine sulfoxamine increases potency of citral. Pretreatment with N-acetylcysteine decreases phosphorylation of p53 in citral-treated ECC-1 and OVCAR-3. These results define a p53-dependent, and in the absence of p53, ER stress-dependent mode of action of citral. This study indicates that citral in PEG-b-PCL nanoparticle formulation should be considered for treatment of breast and other tumors. PMID:27270209

  4. miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein

    International Nuclear Information System (INIS)

    MicroRNAs (miRNAs) are small RNAs that regulate gene expression posttranscriptionally and are critical for many cellular pathways. Recent evidence has shown that aberrant miRNA expression profiles and unique miRNA signaling pathways are present in many cancers. Here, we demonstrate that miR-29b is markedly lower expressed in CML patient samples. Bioinformatics analysis reveals a conserved target site for miR-29b in the 3′-untranslated region (UTR) of ABL1. miR-29b significantly suppresses the activity of a luciferase reporter containing ABL1-3′UTR and this activity is not observed in cells transfected with mutated ABL1-3′UTR. Enforced expression of miR-29b in K562 cells inhibits cell growth and colony formation ability thereby inducing apoptosis through cleavage of procaspase 3 and PARP. Furthermore, K562 cells transfected with a siRNA targeting ABL1 show similar growth and apoptosis phenotypes as cells overexpression of miR-29b. Collectively, our results suggest that miR-29b may function as a tumor suppressor by targeting ABL1 and BCR/ABL1. - Highlights: ► miR-29b expression was downregulated in CML patients. ► ABL1 was identified as a direct target gene of miR-29b. ► Enforced expression of miR-29b inhibits cell proliferation and induces apoptosis. ► miR-29b might be a therapeutic target to CML

  5. Effects of Dexamethasone on the proliferation and apoptosis of swine kidney fibroblast induced by TRAIL

    OpenAIRE

    Li, Xin; Yang, Gong-She; JIA Qing; Guan, Wei-Jun; Ma, Yue-Hui

    2008-01-01

    3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetraz-olium bromide (MTT) assay was applied to measure the cell growth. And flow cytometry (FCM) was adopted to detect the changes of FRSs cell cycle and apoptosis rate .In addition, the Semiquantitative RT-PCR was using to assessed the regulation of dexamethasone(DEX) for Osteoprotegerin(OPG) or Ligand of receptor activator of nuclear factor kappa B(RANKL) in FRS. The results showed that TRAIL could prompt the growth of swine kidney fibroblast at the...

  6. How one TSH receptor antibody induces thyrocyte proliferation while another induces apoptosis

    OpenAIRE

    Morshed, Syed A.; Ma, Risheng; Latif, Rauf; Davies, Terry F.

    2013-01-01

    Thyroid stimulating hormone (TSH) activates two major G-protein arms, Gsα and Gq leading to initiation of down-stream signaling cascades for survival, proliferation and production of thyroid hormones. Antibodies to the TSH receptor (TSHR-Abs), found in patients with Graves’ disease, may have stimulating, blocking, or neutral actions on the thyroid cell. We have shown previously that such TSHR-Abs are distinct signaling imprints after binding to the TSHR and that such events can have variable ...

  7. Latent membrane protein 1 of Epstein-Barr virus coordinately regulates proliferation with control of apoptosis.

    Science.gov (United States)

    Dirmeier, Ulrike; Hoffmann, Reinhard; Kilger, Ellen; Schultheiss, Ute; Briseño, Cinthia; Gires, Olivier; Kieser, Arnd; Eick, Dirk; Sugden, Bill; Hammerschmidt, Wolfgang

    2005-03-01

    Latent membrane protein 1 (LMP1), an oncoprotein encoded by Epstein-Barr virus (EBV), is an integral membrane protein, which acts like a constitutively active receptor. LMP1 is critical for some facet of EBV's induction and maintenance of proliferation of infected B cells. It, in part, mimics signaling by the CD40 receptor and has been implicated in regulating proliferation, survival, or both properties of EBV-infected cells. We established a conditional LMP1 allele in the context of the intact EBV genome to define the immediate-early cellular target genes regulated by LMP1 in order to assess its contributions to infected human B cells. The functional analysis of this conditional system indicated that LMP1 specifically induces mitogenic B-cell activation through c-myc and Jun/AP1 family members and confirms its direct role in upregulating expression of multiple genes with opposing activities involved in cell survival. LMP1's signals were found to be essential for the G1/S transition in human B cells; cells lacking LMP1's signals are cell cycle arrested and survive quiescently. LMP1's activities are therefore not required to maintain survival in nonproliferating cells. LMP1 does induce both pro- and antiapoptotic genes whose balance seems to permit survival during LMP1's induction and maintenance of proliferation. PMID:15674340

  8. Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells.

    Science.gov (United States)

    Kang, Ji In; Hong, Ji-Young; Choi, Jae Sue; Lee, Sang Kook

    2016-05-01

    Columbianadin (CBN), a natural coumarin from Angelica decursiva (Umbelliferae), is known to have various biological activities including anti-inflammatory and anti-cancer effects. In this study, the anti-proliferative mechanism of actions mediated by CBN was investigated in HCT-116 human colon cancer cells. CBN effectively suppressed the growth of colon cancer cells. Low concentration (up to 25 µM) of CBN induced apoptosis, and high concentration (50 µM) of CBN induced necroptosis. The induction of apoptosis by CBN was correlated with the modulation of caspase-9, caspase-3, Bax, Bcl-2, Bim and Bid, and the induction of necroptosis was related with RIP-3, and caspase-8. In addition, CBN induced the accumulation of ROS and imbalance in the intracellular antioxidant enzymes such as SOD-1, SOD-2, catalase and GPx-1. These findings demonstrate that CBN has the potential to be a candidate in the development of anti-cancer agent derived from natural products. PMID:27098859

  9. Effects of Fat-soluble Extracts From Vegetable Powder and β-carotene on Proliferation and Apoptosis of Lung Cancer Cell YTMLC-90

    Institute of Scientific and Technical Information of China (English)

    QUAN-JUN LU; CHENG-YU HUANG; SHU-XIANG YAO; RUI-SHU WANG; XIAO-NA WU

    2003-01-01

    The aim of this investigation was to study the effects of fat-soluble extracts from vegetable powder (FEFVP) and β-carotene on the proliferation and apoptosis of cultured YTMLC-90lung cancer cells. Methods The lung cancer cells were continuously exposed to a broad range of concentration of FEFVP and β-carotene. The proliferation was evaluated in MTT test. The induction of apoptosis was evaluated by morphological change, DNA fragmentation analysis, and DNA content analysis combined with flow cytometric analysis. Results Both FEFVP and β-carotene were found to inhibit cell proliferation and to induce morphologic changes consistent with apoptosis in YTMLC-90 cancer cells, including cellular shrinkage, chromatin condensation and cytometric analysis revealed decreased DNA content and the presence of a sub-G1 apoptotic peak.Conclusion These findings are consistent with the induction of apoptosis. Moreover, the effects of FEFVP are stronger than those of β-carotene. FEFVP inhibits the growth of YTMLC-90 probably via the induction of apoptosis cancer cells.

  10. Distinction Between Cell Proliferation and Apoptosis Signals Regulated by Brain-Derived Neurotrophic Factor in Human Periodontal Ligament Cells and Gingival Epithelial Cells.

    Science.gov (United States)

    Kashiwai, Kei; Kajiya, Mikihito; Matsuda, Shinji; Ouhara, Kazuhisa; Takeda, Katsuhiro; Takata, Takashi; Kitagawa, Masae; Fujita, Tsuyoshi; Shiba, Hideki; Kurihara, Hidemi

    2016-07-01

    Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo. In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration, was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament (HPL) cells and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro. HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells upregulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. J. Cell. Biochem. 117: 1543-1555, 2016. © 2015 Wiley Periodicals, Inc. PMID:26581032

  11. CpG methyltransferase induced down-regulation of claudin-7,-8 and its effects on proliferation and apoptosis of human colorectal cancer HT-29 cells

    Institute of Scientific and Technical Information of China (English)

    王文辉

    2013-01-01

    Objective To explore the regulatory effect of CpG methyltransferase (M.SssI) on expression of claudin-7and claudin-8,promoting apoptosis and inhibiting proliferation of human colorectal cancer HT-29 cells.Methods HT-29 cells were treated with M.SssI (50 U/ml) for

  12. Inotodiol inhabits proliferation and induces apoptosis through modulating expression of cyclinE, p27, bcl-2, and bax in human cervical cancer HeLa cells.

    Science.gov (United States)

    Zhao, Li-Wei; Zhong, Xiu-Hong; Yang, Shu-Yan; Zhang, Yi-Zhong; Yang, Ning-Jiang

    2014-01-01

    Inonotus obliquus is a medicinal mushroom that has been used as an effective agent to treat various diseases such as diabetes, tuberculosis and cancer. Inotodiol, an included triterpenoid shows significant anti-tumor effect. However, the mechanisms have not been well documented. In this study, we aimed to explore the effect of inotodiol on proliferation and apoptosis in human cervical cancer HeLa cells and investigated the underlying molecular mechanisms. HeLa cells were treated with different concentrations of inotodiol. The MTT assay was used to evaluate cell proliferating ability, flow cytometry (FCM) was employed for cell cycle analysis and cell apoptosis, while expression of cyclinE, p27, bcl-2 and bax was detected by immunocytochemistry. Proliferation of HeLa cells was inhibited by inotodiolin a dose-dependent manner at 24h (r=0.9999, pInonotus obliquus inhibited the proliferation of HeLa cells and induced apoptosis in vitro. The mechanisms may be related to promoting apoptosis through increasing the expression of bax and cutting bcl-2 and affecting the cell cycle by down-regulation the expression of cyclin E and up-regulation of p27. The results further indicate the potential value of inotodiol for treatment of human cervical cancer. PMID:24815470

  13. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Directory of Open Access Journals (Sweden)

    Elmira Barzegar

    2015-04-01

    Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer.

  14. Influence of Ginkgo biloba extract on the proliferation, apoptosis of ACC-2 cell and Survivin gene expression in adenoid cystic carcinoma of lacrimal gland

    Institute of Scientific and Technical Information of China (English)

    Li-Xiao Zhou; Yu Zhu

    2012-01-01

    Objective: To explore the influence of extract of Ginkgo biloba (EGB) on the proliferation, apoptosis of ACC-2 cell and Survivin gene expression in adenoid cystic carcinoma (ACC) of lacrimal gland. Methods:ACC-2 cell in human with ACC of lacrimal gland was in vitro cultured. MTT method was used for cell proliferation detection. Annexin V/PI double-staining flow cytometer was used to detect cell apoptosis and cell cycle. Survivin gene expression was analyzed by RT-PCR and Western blotting. Results: EGB had inhibitory effect on the proliferation of ACC-2 cell with significant dose-effect relationship, and there was statistical difference when compared with the control group (P<0.01). The inhibitory concentration 50 % (IC50) is 88 mg/L. The flow cytometer test indicated that EGB can gradually increase ACC-2 cell in G0-G1 stage and decrease it in G2-M and S stage. With the increase of dose, the apoptosis rate of ACC-2 cell was obviously increased (P<0.05 or P<0.01). EGB had certain inhibitory effect on Survivin gene expression of ACC-2 cell, and Survivin gene expression was decreased with the increasing of the EGB concentration (P<0.01). Conclusions:EGB can effectively inhibit Survivin gene expression of ACC-2 cell in human with ACC of lacrimal gland, induce the apoptosis of ACC-2 cell and inhibit tumor cell proliferation.

  15. Effects of different doses of 2-methoxy-estradiol on the proliferation, apoptosis and angiogenesis genes in malignant melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bo Tong

    2016-01-01

    Objective:To study the inhibitory effect of different doses of 2-methoxy-estradiol on the growth of malignant melanoma cells in vitro.Methods:First, melanoma B16 cells were cultured, and then 0μmol / L, 10 μmol / L, 20 μmol / L, 30umol / L and 40 umol / L of 2-ME were added. Last, cell viability was detected MTS kit, and the contents of proliferation gene, apoptosis gene and angiogenesis gene in both cells and culture medium were determined by Elisa.Results:2-ME reduced cell viability in a dose-dependent and time-dependent way. After 40 umol/L of 2-ME treatment, Mcl-1 and CYR61 contents in cells decreased significantly, while Fas and Caspase14 contents increased significantly. HIF-1α, VEGF, SDF-1 and CXCR4 decreased significantly in both cells and culture medium.Conclusions:Different doses of 2-ME can inhibit the growth of malignant melanoma cells in vitro by reducing the cell viability and inhibiting cell proliferation and angiogenesis.

  16. Knockdown of Rhotekin 2 expression suppresses proliferation and invasion and induces apoptosis in hepatocellular carcinoma cells.

    Science.gov (United States)

    Wei, Wei; Chen, Huabing; Liu, Sibin

    2016-06-01

    Hepatocellular carcinoma (HCC), which is one of the most common types of cancer worldwide, has been ranked as the third leading cause of cancer‑associated mortality worldwide. Rhotekin 2 (RTKN2), a Rho‑guanosine triphosphatase (GTPase) effector, has been reported to be anti‑apoptotic. However, the molecular mechanism underlying the biological function of RTKN2 in HCC is poorly defined. The current study reported that RTKN2 was overexpressed in 83% of HCC specimens compared with adjacent noncancerous tissues (n=30). Depletion of RTKN2 in HCC cells, HepG2 and BEL‑7404 by RNA interference led to marked inhibition of cell proliferation and cell cycle progression. Notably, RTKN2 silencing significantly reduced the levels of cell cycle‑associated proteins, proliferating cell nuclear antigen and cyclin‑dependent kinase 1. Additionally, it was identified that downregulation of RTKN2 in HCC cells notably induced cell apoptosis, while significantly repressing cell invasion. These data suggest that RTKN2 may act as an oncogene and inhibition of RTKN2 may be part of a novel therapeutic strategy for targeted HCC therapy. PMID:27081789

  17. Inhibition of Proliferation and Induction of Apoptosis in Human Renal Carcinoma Cells by Anti-telomerase Small Interfering RNAs

    Institute of Scientific and Technical Information of China (English)

    Jun-Nian ZHENG; Teng-Xiang MA; Ya-Feng SUN; Dong-Sheng PEI; Jun-Jie LIU; Jia-Cun CHEN; Wang LI; Xiao-Qing SUN; Qi-Duo SHI; Rui-Fa HAN

    2006-01-01

    Telomerase is an attractive molecular target for cancer therapy because it is present in most malignant cells but is undetectable in most normal somatic cells. Human telomerase consists of two subunits,an RNA component (hTR) and a human telomerase reverse transcriptase component (hTERT). Small interfering RNA (siRNA), one kind of RNA interferences, has been demonstrated to be an effective method to inhibit target gene expression in human cells. We investigated the effects of siRNA targeting at both hTR and hTERT mRNA on the inhibition of telomerase activity in human renal carcinoma cells (HRCCs). The proliferation and apoptosis of HRCCs were examined. The treatment of HRCCs using hTR and hTERT siRNAs resulted in significant decrease of hTR mRNA, hTERT mRNA and hTERT protein. The siRNA can also inhibit the telomerase activity and the proliferation of HRCCs. Moreover, they can induce apoptotic cell death in a dose-dependent manner. From these findings, we propose that the inhibition of telomerase activity using siRNA targeting hTR and hTERT might be a rational approach in renal cancer therapy.

  18. Effect of bisphenol A on morphology, apoptosis and proliferation in the resting mammary gland of the adult albino rat.

    Science.gov (United States)

    Ibrahim, Marwa A A; Elbakry, Reda H; Bayomy, Naglaa A

    2016-02-01

    Bisphenol A (BPA) is a synthetic oestrogen that is extensively used in a wide range of daily used plastic products. This makes it one of the environmental chemicals that may have impact on human health. Due to its oestrogenic effect, BPA might affect the mammary gland. This study aimed to investigate the influence of BPA on the histological structure of the mammary gland of the adult female albino rat and its effect on epithelial cell proliferation and apoptosis status, in addition to its possible modulating effect on estrogen receptor expression. Thirty female adult albino rats were divided into control and experimental groups. The rats in the experimental group were gavaged with 5 mg/kg BPA daily for 8 weeks. The mammary glands were dissected and processed for histological and immunohistochemical stains for Ki-67, activated caspase-3 and estrogen receptor alpha (ER-α). BPA induced an increase in the number and size of the acini and ducts in the mammary gland of treated rats with hyperplasia of their lining epithelial cells. The collagen fibre content was significantly increased in the connective tissue stroma separating the ducts. Immunohistochemical results showed a significant increase in Ki-67 and caspase-3, but a non-significant increase in ER-α expression. Bisphenol A induced structural changes and affected the proliferation rate of mammary glands, so it might be one of the predisposing factors for breast cancer. PMID:26877094

  19. Human Papillomavirus 16 E6,E7 siRNAs Inhibit Proliferation and Induce Apoptosis of SiHa Cervical Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    NIE Chun-lian; GAO Guo-lan; HAN Jie; LI Hua; CHEN He-ping; HE Ming

    2008-01-01

    Objective:To evaluate the effects of HPVl6 E6/E7 siRNAs on cervical cancer SiHa cells. Methods:The expressions of the E6,E7,p53 and Rb genes were assayed by RT-PCR and Western-bloting respectively.The proliferation and apoptosis of the cells were evaluated by MTT and flow cytometry. Results:HPV 16 E6 and E7 oncogenes were selectivly downregulated by HPV 16 E6 and E7 siRNAs,which sustained at least 96 h by single dose siRNA.Furthermore,reduction of E6 and E7 oncogenes expression upregulated the expressions of P53 and RB protein and induced apoptosis in SiHa cells. Conclusion:Introduction of HPV16 E6/E7 siRNA might be a potentially potent and specific approach to inhibit proliferation and induce apoptosis of SiHa cervical cancer cells.

  20. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  1. In vitro effects of sodium hyaluronate on the proliferation and the apoptosis in chondrocytes from patients with Kashin-Beck disease and osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    Zongqiang Gao; Xiong Guo; Chen Duan; Weijuan Ma; Peng Xu; Ruiyu Liu; Qisheng Gu; Junchang Chen

    2009-01-01

    Objective:To identify the in vitro effects of sodium hyaluronate(HA) on the proliferation and the apoptosis of chondrocytes from patients with Kashin-Beck disease(KBD) and osteoarthritis(OA). Methods:Samples of articular cartilages from KBD and OA patients, as well as healthy volunteers(6 subjects in each of the 3 groups) were dissected, digested with collagenase and the cells cultured in monolayers. Chondrocytes from each sample were assigned to an untreated group and two HA-treated groups: H0(no HA), H100(HA, 0.1 g/L) and H500(HA, 0.5 g/L). The first passage chondrocytes were used to observe proliferation using the MTT assay, and apoptosis by flow cytometry through Annexin V/PI staining. Results:HA promoted proliferation of chondrocytes in all the three groups, and in KBD and OA groups, for cells cultured for 4 and 6 days, H500 significantly promoted the cell proliferation. The apoptotic rates of both KBD and OA group chondrocytes were in the order H500 < HA100 < H0. Conclusion:Sodium hyaluronate administration has a dose-dependendent vitro effect to promote proliferation and inhibit apoptosis of chondrocytes from patients with KBD and OA.

  2. Krüppel-like Factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension

    Directory of Open Access Journals (Sweden)

    Paulin Roxane

    2011-09-01

    Full Text Available Background Pulmonary arterial hypertension (PAH is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cell (PASMC and suppressed apoptosis. This phenotype has been associated with the upregulation of the oncoprotein survivin promoting mitochondrial membrane potential hyperpolarization (decreasing apoptosis and the upregulation of growth factor and cytokines like PDGF, IL-6 and vasoactive agent like endothelin-1 (ET-1 promoting PASMC proliferation. Krüppel-like factor 5 (KLF5, is a zinc-finger-type transcription factor implicated in the regulation of cell differentiation, proliferation, migration and apoptosis. Recent studies have demonstrated the implication of KLF5 in tissue remodeling in cardiovascular diseases, such as atherosclerosis, restenosis, and cardiac hypertrophy. Nonetheless, the implication of KLF5 in pulmonary arterial hypertension (PAH remains unknown. We hypothesized that KLF5 up-regulation in PAH triggers PASMC proliferation and resistance to apoptosis. Methods and results We showed that KFL5 is upregulated in both human lung biopsies and cultured human PASMC isolated from distal pulmonary arteries from PAH patients compared to controls. Using stimulation experiments, we demonstrated that PDGF, ET-1 and IL-6 trigger KLF-5 activation in control PASMC to a level similar to the one seen in PAH-PASMC. Inhibition of the STAT3 pathway abrogates KLF5 activation in PAH-PASMC. Once activated, KLF5 promotes cyclin B1 upregulation and promotes PASMC proliferation and triggers survivin expression hyperpolarizing mitochondria membrane potential decreasing PASMC ability to undergo apoptosis. Conclusion We demonstrated for the first time that KLF5 is activated in human PAH and implicated in the pro-proliferative and anti-apoptotic phenotype that characterize PAH-PASMC. We believe that our findings will open new avenues of investigation on the role of KLF5 in PAH and might lead to the

  3. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation.

    LENUS (Irish Health Repository)

    Gill, Catherine

    2009-01-01

    BACKGROUND: Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP) Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. METHODS: cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. RESULTS: PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. CONCLUSION: Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  4. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation

    Directory of Open Access Journals (Sweden)

    Dowling Catherine

    2009-06-01

    Full Text Available Abstract Background Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. Methods cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. Results PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. Conclusion Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  5. Effect of DC-CIK cell on the proliferation, apoptosis and differentiation of leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Hui-Qing Qu; Xiao-Sheng Zhou; Xiao-Long Zhou; Jian Wang

    2014-01-01

    Objective:To observe the effect of co-culture cytokine-induced killer cells(CIK) and homologous dendritic cells(DC) on the proliferative activity and phenotype change of theDC-CIK cell and the cell killing activity of leukemiaHL-60.Methods:50 mL cord blood sample was obtained from infants delivered by full term healthy woman and the cord blood mononuclear cells were isolated by density gradient centrifugation.Non-adherent cells were collectedfor the induction culture ofCIK, adherent cells were differentiated into matureDC; cultured matureDC was mixed with andCIK in the proportion of1:5 for12 d.Killing activity ofDC-CIK co-cultured cell on leukemiaHL-60 was detected byMTT assay.Results:Compared withCIKs, the co-culturedDC-CIKs presented a markedly higher proliferation and killing activity.Conclusions:Co-culture ofDC-CIK cells led to a significant increase of the proliferation and cytotoxicity of CIK.

  6. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts

    International Nuclear Information System (INIS)

    It has been reported that anti-inflammatory drugs (AIDs) inhibited bone repair in animal studies, and suppressed proliferation and induced cell death in rat osteoblast cultures. In this study, we further investigated the molecular mechanisms of AID effects on proliferation and cell death in human osteoblasts (hOBs). We examined the effects of dexamethasone (10-7 and 10-6 M), non-selective non-steroidal anti-inflammatory drugs (NSAIDs): indomethacin, ketorolac, piroxicam and diclofenac (10-5 and 10-4 M), and COX-2 inhibitor: celecoxib (10-6 and 10-5 M) on proliferation, cytotoxicity, cell death, and mRNA and protein levels of cell cycle and apoptosis-related regulators in hOBs. All the tested AIDs significantly inhibited proliferation and arrested cell cycle at G0/G1 phase in hOBs. Celecoxib and dexamethasone, but not non-selective NSAIDs, were found to have cytotoxic effects on hOB, and further demonstrated to induce apoptosis and necrosis (at higher concentration) in hOBs. We further found that indomethacin, celecoxib and dexamethasone increased the mRNA and protein expressions of p27kip1 and decreased those of cyclin D2 and p-cdk2 in hOBs. Bak expression was increased by celecoxib and dexamethasone, while Bcl-XL level was declined only by dexamethasone. Furthermore, the replenishment of PGE1, PGE2 or PGF2α did not reverse the effects of AIDs on proliferation and expressions of p27kip1 and cyclin D2 in hOBs. We conclude that the changes in expressions of regulators of cell cycle (p27kip1 and cyclin D2) and/or apoptosis (Bak and Bcl-XL) by AIDs may contribute to AIDs caused proliferation suppression and apoptosis in hOBs. This effect might not relate to the blockage of prostaglandin synthesis by AIDs

  7. Progressive Evaluation of Apoptosis, Proliferation, and Angiogenesis in Fresh Rat Ovarian Autografts Under Remote Ischemic Preconditioning.

    Science.gov (United States)

    Damous, Luciana Lamarão; Silva, Sônia Maria da; Carbonel, Adriana Aparecida Ferraz; Simões, Manuel de Jesus; Baracat, Edmund Chada; Montero, Edna Frasson de Souza

    2016-06-01

    This study evaluated the remote ischemic preconditioning (R-IPC) early and late repercussion on fresh ovarian transplants, aiming to assess a probable protective effect in ovarian follicular pool. Sixty Wistar EPM-1 rats were used, divided in 2 study groups: ovarian transplantation (Tx) and Tx + R-IPC, submitted to ovary transplant with or without R-IPC, respectively. These groups were subdivided according to the date for euthanasia: 4th, 7th, 14th, 21st, and 30th days of the postoperatory period. Morphology, morphometry, neoangiogenesis (vascular endothelial growth factor [VEGF]), proliferative activity (Ki-67), and apoptosis (cleaved caspase-3) were evaluated. Remote ischemic preconditioning was performed in the common iliac artery. Fresh autologous ovarian tissue was implanted integrally in the retroperitoneum. All animals showed resumption of estrous phase after ovary transplantation. Remote ischemic preconditioning attenuated the lesions progressively from the 7th day, with greater number of the immature follicles (14 days, P .05). Immunohistochemical analyzes, taken as a whole, show that R-IPC benefic effect is more evident in the later periods of evaluation, when a greater proliferative activity (14, 21, and 30 days, P .05). Remote ischemic preconditioning could have a benefic effect in the progressive evaluation of freshly grafted ovarian, especially on the latest phases of the posttransplant period. The 14th day was a landmark in the recuperation of the graft. Further investigations are necessary to determine the role of R-IPC in this scenario and its effect in frozen-thawed ovarian tissue. PMID:26674322

  8. Pristimerin inhibits proliferation, migration and invasion, and induces apoptosis in HCT-116 colorectal cancer cells.

    Science.gov (United States)

    Yousef, Bashir A; Hassan, Hozeifa M; Guerram, Mounia; Hamdi, Aida M; Wang, Bin; Zhang, Lu-Yong; Jiang, Zhen-Zhou

    2016-04-01

    Colorectal cancer (CRC) is one of the world's most common cancers with a high mortality rate mainly due to metastasis. Our previous study showed that pristimerin had potent antitumor activities against human CRC cells. In the present study, we further evaluated pristimerin anti-tumor and anti-metastatic properties. MTT assay, Hoechst staining, Annexin V/PI double staining, reactive oxygen species (ROS) measurements were used to assess pristimerin cytotoxicity and apoptotic-inducing effects on HCT-116 cells. Wound healing assay and Transwell assay were used to estimate pristimerin anti-migration and anti-invasion activities on CRC cells. Meanwhile, HCT-116 xenograft model applied for investigating in vivo antitumor activities. Our results showed that pristimerin mediated in vitro HCT-116 cell death, through generation of intracellular ROS and apoptosis induction. Tumor volumes and weights measurements, pathological analysis and Tunnel assay proved that pristimerin inhibited in vivo HCT-116 xenografts growth. Pristimerin was also able to limit CRC invasion and metastasis. It caused downregulation of PI3K/AKT/mTOR pathway and its subsequent downstream p70S6K and E4-BP1 proteins. Collectively, pristimerin exerted both in vitro and in vivo cytotoxic and anti-metastatic effects on HCT-116 cells, suggesting that pristimerin has potential as a new anticancer drug for treatment of colon cancer. PMID:27044819

  9. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  10. Ethanol Extract of Abnormal Savda Munziq, a Herbal Preparation of Traditional Uighur Medicine, Inhibits Caco-2 Cells Proliferation via Cell Cycle Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Abdiryim Yusup

    2012-01-01

    Full Text Available Aims. Study the effect of Abnormal Savda Munziq (ASMq ethanol extract on the proliferation, apoptosis, and correlative gene, expression in colon cancer cells (Caco-2 to elucidate the molecular mechanisms responsible for the anticancer property of Abnormal Savda Munziq. Materials and Methods. ASMq ethanol extract was prepared by a professional pharmacist. Caco-2 cells were treated with different concentration of ASMq ethanol extract (0.5–7.5 mg/mL for different time intervals (48 and 72 h. Antiproliferative effect of ASMq ethanol extract was determined by MTT assay; DNA fragmentation was determined by gel electrophoresis assay; cell cycle analysis was detected by flow cytometer; apoptosis-related gene expression was detected by RT-PCR assay. Results. ASMq ethanol extract possesses an inhibition effect on Caco-2 cells proliferation, induction of cell apoptosis, cell cycle arrest in sub-G1 phase, and downregulation of bcl-2 and upregulation of Bax gene expression. Conclusion. The anticancer mechanism of ASMq ethanol extract may be involved in antiproliferation, induction of apoptosis, cell cycle arrest, and regulation of apoptosis-related gene expression such as bcl-2 and Bax activity pathway.

  11. Attenuation of Telomerase Activity by siRNA Targeted Telomerase RNA Leads to Apoptosis and Inhibition of Proliferation in Human Renal Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    Rumin Wen; Junjie Liu; Wang Li; Wenfa Yang; Lijun Mao; Junnian Zheng

    2006-01-01

    OBJECTIVE Telomerase is an attractive molecular target for cancer therapy because the activation of telomerase is one of the key steps in cell immortalization and carcinogenesis. RNA interference using small-interfering RNA (siRNA) has been demonstrated to be an effective method for inhibiting the expression of a given gene in human cells. The aim of the present study was to investigate whether inhibition of telomerase activity by siRNA targeted against human telomerase RNA (hTR) can inhibit proliferation and induce apoptotic cell death in human renal carcinoma cells(HRCCs).METHODS The siRNA duplexes for hTR were synthesized and 786-O HRCCs were transfected with different concentrations of hTR-siRNA. The influence on the hTR mRNA level, telomerase activity, as well as the effect on cell proliferation and apoptosis was examined.RESULTS Anti-hTR siRNA treatment of HRCCs resulted in specific reduction of hTR mRNA and inhibition of telomerase activity. Additionally,significant inhibition of proliferation and induction of apoptosis were observed.CONCLUSION siRNA against the hTR gene can inhibit proliferation and induce apoptosis by blocking telomerase activity of HRCCs. Specific hTR inhibition by siRNA represents a promising new option for renal cancer treatment.

  12. Abrogation of STAT3 signaling cascade by zerumbone inhibits proliferation and induces apoptosis in renal cell carcinoma xenograft mouse model.

    Science.gov (United States)

    Shanmugam, Muthu K; Rajendran, Peramaiyan; Li, Feng; Kim, Chulwon; Sikka, Sakshi; Siveen, Kodappully Sivaraman; Kumar, Alan Prem; Ahn, Kwang Seok; Sethi, Gautam

    2015-10-01

    Persistent activation of signal transducer and activator of transcription 3 (STAT3) is one of the characteristic features of renal cell carcinoma (RCC) and often linked to its deregulated proliferation, survival, and angiogenesis. In the present report, we investigated whether zerumbone, a sesquiterpene, exerts its anticancer effect through modulation of STAT3 activation pathway. The pharmacological effect of zerumbone on STAT3 activation, associated protein kinases and phosphatase, and apoptosis was investigated using both RCC cell lines and xenograft mouse model. We observed that zerumbone suppressed STAT3 activation in a dose- and time-dependent manner in RCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c-Src, Janus-activated kinase 1, and Janus-activated kinase 2. Pervanadate treatment reversed zerumbone-induced downregulation of STAT3, suggesting the involvement of a tyrosine phosphatase. Indeed, we found that zerumbone induced the expression of tyrosine phosphatase SHP-1 that correlated with its ability to inhibit STAT3 activation. Interestingly, deletion of SHP-1 gene by siRNA abolished the ability of zerumbone to inhibit STAT3 activation. The inhibition of STAT3 activation by zerumbone also caused the suppression of the gene products involved in proliferation, survival, and angiogenesis. Finally, when administered i.p., zerumbone inhibited STAT3 activation in tumor tissues and the growth of human RCC xenograft tumors in athymic nu/nu mice without any side effects. Overall, our results suggest for the first time that zerumbone is a novel blocker of STAT3 signaling cascade and thus has an enormous potential for the treatment of RCC and other solid tumors. PMID:24797723

  13. In the absence of Sonic hedgehog, p53 induces apoptosis and inhibits retinal cell proliferation, cell-cycle exit and differentiation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Sergey V Prykhozhij

    Full Text Available BACKGROUND: Sonic hedgehog (Shh signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the zebrafish shh(-/- mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh(-/- mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh(-/- mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh(-/- mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53(-/-shh(-/- mutant retina suggesting the effect of p53 on retinal differentiation. CONCLUSIONS: Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.

  14. Nitidine chloride inhibits proliferation, induces apoptosis via the Akt pathway and exhibits a synergistic effect with doxorubicin in ovarian cancer cells.

    Science.gov (United States)

    Ding, Feng; Liu, Tianfeng; Yu, Nina; Li, Shihong; Zhang, Xiaofei; Zheng, Guanghong; Lv, Chunming; Mou, Kai; Xu, Jia; Li, Bo; Wang, Surong; Song, Haibo

    2016-09-01

    Nitidine chloride (NC) exhibits anti-tumor properties in various types of tumor. However, to the best of our knowledge there is no previous evidence of NC involvement in the apoptosis or proliferation of ovarian cancer cells and the underlying molecular mechanisms. The present study aimed to investigate the influence of NC on the viability and apoptosis of ovarian cancer cells and the synergistic effect NC and doxorubicin (DOX) may have on ovarian cancer cells. The viability and proliferation of ovarian cancer cells were examined using a methyl thiazolyl tetrazolium assay and 3H-thymidine incorporation assay. The apoptotic rate of ovarian cancer cells was detected by flow cytometry. The expression of apoptosis‑associated proteins and Akt serine/threonine kinase 1 (Akt) were determined by western blot analysis following NC treatment. The inhibitory effect of NC on the proliferation of ovarian cancer cells was demonstrated in a time and dose‑dependent manner. The pro-apoptotic effect of NC on ovarian cancer cells was also observed. It was determined that NC significantly downregulated the protein expression levels of B‑cell CLL/lymphoma 2 (Bcl-2) and upregulated the expression of Bcl‑2‑associated X protein, p53, caspase‑3 and ‑9. NC suppressed Akt phosphorylation. Additionally, the present study demonstrated that the effect of NC on the proliferation and apoptosis of ovarian cancer cells was Akt‑dependent by using the phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt signaling pathway inhibitor, LY294002. NC exhibited a synergistic inhibitory effect on the viability of ovarian cancer cells when combined with DOX. The current study demonstrated that NC inhibited the proliferation and induced the apoptosis of ovarian cancer cells via the Akt signaling pathway and highlighted its potential clinical application for the treatment of ovarian cancer. PMID:27485415

  15. Focal adhesion kinase antisense oligodeoxynucleotides inhibit human pulmonary artery smooth muscle cells proliferation and promote human pulmonary artery smooth muscle cells apoptosis

    Institute of Scientific and Technical Information of China (English)

    LIN Chun-long; ZHANG Zhen-xiang; XU Yong-jian; NI Wang; CHEN Shi-xin

    2005-01-01

    Background Pulmonary artery smooth muscle cell (PASMC) proliferation plays an important role in pulmonary vessel structural remodelling. At present, the mechanisms related to proliferation of PASMCs are not clear. Focal adhesion kinase (FAK) is a widely expressed nonreceptor protein tyrosine kinase. Recent research indicates that FAK is implicated in signalling pathways which regulate cytoskeletal organization, adhesion, migration, survival and proliferation of cells. Furthermore, there are no reports about the role of FAK in human pulmonary artery smooth muscle cells (HPASMCs). We investigated whether FAK takes part in the intracellular signalling pathway involved in HPASMCs proliferation and apoptosis, by using antisense oligodeoxynucleotides (ODNs) to selectively suppress the expression of FAK protein.Methods Cultured HPASMCs stimulated by fibronectin (40 μg/ml) were passively transfected with ODNs, sense FAK, mismatch sense and antisense-FAK respectively. Expression of FAK, Jun NH2-terminal kinase (JNK), cyclin-dependent kinase 2 (CDK 2) and caspase-3 proteins were detected by immunoprecipitation and Western blots. Cell cycle and cell apoptosis were analysed by flow cytometry. In addition, cytoplasmic FAK expression was detected by immunocytochemical staining.Results When compared with mismatch sense group, the protein expressions of FAK, JNK and CDK 2 in HPASMCs decreased in antisense-FAK ODNs group and increased in sense-FAK ODNs group significantly. Caspase-3 expression upregulated in HPASMCs when treated with antisense ODNs and downregulated when treated with sense ODNs. When compared with mismatch sense ODNs group, the proportion of cells at G1 phase decreased significantly in sense ODNs group, while the proportion of cells at S phase increased significantly. In contrast, compared with mismatch sense ODNs group, the proportion of cells at G1 phase was increased significantly in antisense-FAK ODNs group. The level of cell apoptosis in antisense-FAK group

  16. Up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis in human papillary thyroid cancer cells.

    Science.gov (United States)

    Mo, Xiao-Mei; Li, Li; Zhu, Ping; Dai, Yu-Jie; Zhao, Ting-Ting; Liao, Ling-Yao; Chen, George G; Liu, Zhi-Min

    2016-08-15

    17β-estradiol (E2) has been suggested to play a role in the development and progression of papillary thyroid cancer. Heat shock protein 27 (Hsp27) is a member of the Hsp family that is responsible for cell survival under stressful conditions. Previous studies have shown that the 5'-promoter region of Hsp27 gene contains a specificity protein-1 (Spl) and estrogen response element half-site (ERE-half), which contributes to Hsp27 induction by E2 in breast cancer cells. However, it is unclear whether Hsp27 can be up-regulated by E2 and which estrogen receptor (ER) isoform and tethered transcription factor are involved in this regulation in papillary thyroid cancer cells. In the present study, we demonstrated that Hsp27 can be effectively up-regulated by E2 at mRNA and protein levels in human K1 and BCPAP papillary thyroid cancer cells which have more than two times higher level of ERα than that of ERβ. The up-regulation of Hsp27 by E2 is mediated by ERα/Sp1 and ERβ has repressive effect on this ERα/Sp1-mediated up-regulation of Hsp27. Moreover, we showed that the up-regulation of Hsp27 by ERα/Sp1 facilitates proliferation and confers resistance to apoptosis through interaction with procaspase-3. Targeting this pathway may be a potential strategy for therapy of papillary thyroid cancer. PMID:27179757

  17. The Soybean Peptide Vglycin Preserves the Diabetic β-cells through Improvement of Proliferation and Inhibition of Apoptosis.

    Science.gov (United States)

    Jiang, Hua; Tong, Yuxing; Yan, Dongjing; Jia, Shaohui; Ostenson, Claes-Goran; Chen, Zhengwang

    2015-01-01

    Replenishment of insulin-producing pancreatic β-cells would be beneficial in diabetes. The number of β-cells is maintained primarily by self-neogenesis to compensate for β-cell failure, loss or dedifferentiation. We present here a polypeptide vglycin, which was isolated and purified from germinating pea seeds. Vglycin exhibited positive effects in our diabetic models by promoting the proliferation and suppressing the apoptosis and dedifferentiation of β-cells. Vglycin promoted the restoration of β-cells in both young streptozotocin (STZ)-induced type 1 diabetic SD rats and in aged high-fat diet with (or without) STZ-induced type 2 diabetic C57BL/6 mice. We demonstrated that vglycin triggers this positive signaling by activating the insulin receptor and corresponding transcription factors. Impaired insulin sensitivity and glucose tolerance in aged T2DM mice were dramatically improved after long-term vglycin treatment, consistent with the altered level of inflammatory factor IL-1β/6. In addition, energy expenditure and body weights were significantly decreased in the mouse models after vglycin therapy. These results provide insight into the protective effects of vglycin on ameliorating β-cell function in standing glucolipotoxicity. Thus, vglycin may represent a new therapeutic agent for preventing and treating diabetes by replenishing endogenous insulin-positive cells. PMID:26510947

  18. CLINICAL VALUE OF THE MARKERS OF PROLIFERATION AND APOPTOSIS IN PATIENTS WITH CLEAR CELL RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    N. A. Gorban

    2014-07-01

    Full Text Available Renal cell carcinoma (RCC is a heterogeneous disease in which the patients survive for months to years. At the present time the prognostic models have no sufficient information or exact prognostic value. Cell proliferation and apoptosis play a key role in cell cycle regulation; and impairment in these processes is commonly detected in different human tumors. The investigation enrolled 76 patients (49 men, 27 women aged 32 to 73 years (mean age 56 ± 7.6 years diagnosed with RCC. The follow-up was 8 to 116 months (mean 36.5 months. All the patients underwent nephrectomy; antibodies against р53, Bcl-2, and Ki-67 were investigated by immunohistochemistry. The expression of p53 and none or reduced expression of Bcl-2 are poor prognostic factors and associated with the metastatic potential of a tumor and with low relapse-free survival. High Ki-67 levels are a risk factor for metastases. A combination of p53 expression and high proliferative activity reflects the aggressive potential of a tumor and suggests the high risk of metastases just at the disease diagnosis and early tumor dissemination. 

  19. Effects of 2-methoxyestradiol on proliferation, apoptosis and PET-tracer uptake in human prostate cancer cell aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Davoodpour, Padideh; Bergstroem, Mats; Landstroem, Marene E-mail: Marene.Landstrom@LICR.uu.se

    2004-10-01

    The purpose of this study was to investigate the potential use of PET in vivo to record cytotoxic effects of 2-methoxyestradiol (2-ME), an endogenous metabolite of 17{beta}-estradiol. The anti-proliferative and pro-apoptotic effects of 2-ME on human prostate cancer cell (PC3) aggregates in vitro, were correlated with the uptake of fluoro-deoxy-D-glucose, FMAU and choline labelled with {sup 18}F, {sup 11}C, or {sup 3}H. 2-ME clearly reduced growth of PC3 aggregates and induced apoptosis in a dose-dependent manner. However, the uptake of the putative proliferation markers {sup 11}C-FMAU or {sup 3}H-choline failed to record the growth inhibitory effects of 2-ME on PC3 cell aggregates. The uptake of {sup 18}F-FDG was used as a marker for effects on cellular metabolism and also failed to show any dose-dependent effects in PC3 aggregates. The use of these PET-tracers in vivo is therefore not recommended in order to evaluate the cytotoxic effects of 2-ME on human prostate cancer cells.

  20. Silencing of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human lung cancer cells

    Science.gov (United States)

    HU, XUANYU; GUO, WEI; CHEN, SHANSHAN; XU, YIZHUO; LI, PING; WANG, HUAQI; CHU, HEYING; LI, JUAN; DU, YUWEN; CHEN, XIAONAN; ZHANG, GUOJUN; ZHAO, GUOQIANG

    2016-01-01

    Activating enhancer-binding protein (AP)-4 is a member of the basic helix-loop-helix transcription factors, and is involved in tumor biology. However, the role of AP-4 in human lung cancer remains to be fully elucidated. In the present study, the expression of AP-4 in human lung cancer tissues and cells was investigated by reverse transcription-quantitative polymerase chain reaction, and it was observed that the level of AP-4 was increased in tumor tissues and cells compared with their normal counterparts. AP-4 expression was knocked down by transfection with a specific small interfering RNA (siRNA) in lung cancer cells, and this indicated that siRNA-mediated silencing of AP-4 inhibited cell proliferation, arrested the cell cycle at the G0/G1 phase and induced apoptosis by modulating the expression of p21 and cyclin D1. The results of the present study suggest that AP-4 may be an oncoprotein that has a significant role in lung cancer, and that siRNA-mediated silencing of AP-4 may have therapeutic potential as a strategy for the treatment of lung cancer.

  1. Downregulation of ubiquitin-specific protease 14 (USP14) inhibits breast cancer cell proliferation and metastasis, but promotes apoptosis.

    Science.gov (United States)

    Zhu, Lianxin; Yang, Shuyun; He, Song; Qiang, Fulin; Cai, Jing; Liu, Rong; Gu, Changjiang; Guo, Zengya; Wang, Chen; Zhang, Wei; Zhang, Chunhui; Wang, Yingying

    2016-02-01

    Breast cancer is the second leading cause of cancer-related death in women. Previously, evidence suggested that ubiquitin-specific protease 14 (USP14) was associated with various signal transduction pathways and tumourigenesis. In this study, we demonstrate that USP14 is a novel therapeutic target in breast cancer. A Western blot analysis of USP14 was performed using seven breast cancer tissues and paired adjacent normal tissues and showed that the expression of USP14 was increased in the breast cancer tissues. Immunohistochemistry was conducted on formalin-fixed paraffin-embedded sections of breast cancer samples from 100 cases. Using Pearson's χ(2) test, it was demonstrated that USP14 expression was associated with the histological grade, lymph node status and Ki-67 expression in the tumour. The Kaplan-Meier analysis revealed that increased USP14 expression in patients with breast cancer was associated with a poorer prognosis. In in vitro experiments, the highly migratory MDA-MB-231 cells that were treated with USP14-shRNA (shUSP14) exhibited decreased motility using Transwell migration assays. Next, we employed a starvation and re-feeding assay, and the CCK-8 assay demonstrated that USP14 regulated breast cancer cell proliferation. Furthermore, we used flow cytometry to analyse cellular apoptosis following USP14 knockdown. Taken together, our results suggested that USP14 was involved in the progression of breast cancer. PMID:26712154

  2. Effects related to gene-gene interactions of peroxisome proliferator-activated receptor on essential hypertension

    Institute of Scientific and Technical Information of China (English)

    俞浩

    2013-01-01

    Objective To explore the impact of the gene-gene interaction among the single nucleotide polymorphisms(SNPs) of peroxisome proliferator-activated receptorα/δ/γ on essential hypertension(EH).Methods

  3. White tea extract induces apoptosis in non-small cell lung cancer cells: the role of peroxisome proliferator-activated receptor-{gamma} and 15-lipoxygenases.

    Science.gov (United States)

    Mao, Jenny T; Nie, Wen-Xian; Tsu, I-Hsien; Jin, Yu-Sheng; Rao, Jian Yu; Lu, Qing-Yi; Zhang, Zuo-Feng; Go, Vay Liang W; Serio, Kenneth J

    2010-09-01

    Emerging preclinical data suggests that tea possess anticarcinogenic and antimutagenic properties. We therefore hypothesize that white tea extract (WTE) is capable of favorably modulating apoptosis, a mechanism associated with lung tumorigenesis. We examined the effects of physiologically relevant doses of WTE on the induction of apoptosis in non-small cell lung cancer cell lines A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cells. We further characterized the molecular mechanisms responsible for WTE-induced apoptosis, including the induction of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and the 15-lipoxygenase (15-LOX) signaling pathways. We found that WTE was effective in inducing apoptosis in both A549 and H520 cells, and inhibition of PPAR-gamma with GW9662 partially reversed WTE-induced apoptosis. We further show that WTE increased PPAR-gamma activation and mRNA expression, concomitantly increased 15(S)-hydroxy-eicosatetraenoic acid release, and upregulated 15-LOX-1 and 15-LOX-2 mRNA expression by A549 cells. Inhibition of 15-LOX with nordihydroguaiaretic acid (NGDA), as well as caffeic acid, abrogated WTE-induced PPAR-gamma activation and upregulation of PPAR-gamma mRNA expression in A549 cells. WTE also induced cyclin-dependent kinase inhibitor 1A mRNA expression and activated caspase-3. Inhibition of caspase-3 abrogated WTE-induced apoptosis. Our findings indicate that WTE is capable of inducing apoptosis in non-small cell lung cancer cell lines. The induction of apoptosis seems to be mediated, in part, through the upregulation of the PPAR-gamma and 15-LOX signaling pathways, with enhanced activation of caspase-3. Our findings support the future investigation of WTE as an antineoplastic and chemopreventive agent for lung cancer. PMID:20668019

  4. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells

    OpenAIRE

    Liao, Kui; Li, Juan; Wang, Zhiling

    2014-01-01

    Lung cancer is the most common cause of cancer-related death in the world. The main types of lung cancer are small cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC); non small cell lung carcinoma (NSCLC) includes squamous cell carcinoma (SCC), adenocarcinoma and large cell carcinoma, Non small cell lung carcinoma accounts for about 80% of the total lung cancer cases. Dihydroartemisinin (DHA) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The...

  5. Vitamin A family compounds, estradiol, and docetaxel in proliferation, apoptosis and immunocytochemical profile of human ovary endometrioid cancer cell line CRL-11731.

    OpenAIRE

    Dorota Lemancewicz; Tomasz Bielawski; Ewa Czeczuga-Semeniuk; Małgorzata Rusak; Sławomir Wołczyński

    2010-01-01

    Endometrioid carcinoma represents approximately 10% of cases of the malignant ovarian epithelial tumors. According to literature, the vitamin A (carotenoids and retinoids) plays an essential role in cell proliferation, differentiation and apoptosis in both normal and neoplastic ovarian tissues. Apart from that, the retinoids alter a cytotoxic effect of chemiotherapeutics, i.e. docetaxel, on ovarian cancer cell lines. Retinoids act on cancer cells throughout different mechanism than taxanes, s...

  6. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Yuanli Dong

    2015-01-01

    Full Text Available Background: Hypocretin (HCRT signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy. Our previous study showed that xingshentongqiao decoction (XSTQ is clinically effective for the treatment of narcolepsy. To determine whether XSTQ improves narcolepsy by modulating HCRT signaling, we investigated its effects on SH-SY5Y cell proliferation, apoptosis, and HCRT receptor 1/2 (orexin receptor 1 [OX1R] and orexin receptor 2 [OX2R] expression. The signaling pathways involved in these processes were also assessed. Methods: The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays. OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis. Western blotting for mitogen-activated protein kinase (MAPK pathway activation was performed to further assess the signaling mechanism of XSTQ. Results: XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells. This effect was accompanied by the upregulation of OX1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK. Conclusions: XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells. XSTQ also promotes OX1R and OX2R expression. These effects are associated with the repression of the Erk1/2, p38 MAPK, and JNK signaling pathways. These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation, which may explain its ability to treat narcolepsy.

  7. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context

    OpenAIRE

    Laura Bindila; Antoni Pastor; Margarita Pérez-Martín; Rafael De La Torre; Juan Suarez

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+), astroglia (GFAP+), and microglia (Iba1+ cells) were analyzed in the hippocampus, hypothalamus and striatum o...

  8. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

    OpenAIRE

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J.; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and ...

  9. Downregulation of microRNA-586 Inhibits Proliferation, Invasion and Metastasis and Promotes Apoptosis in Human Osteosarcoma U2-OS Cell Line.

    Science.gov (United States)

    Yang, Lei; Liu, Zong-Ming; Rao, Yan-Wei; Cui, Shao-Qian; Wang, Huan; Jia, Xiao-Jing

    2015-01-01

    In this study, we aim to examine the association of microRNA-586 (miR-586) with osteosarcoma (OS) cell proliferation, apoptosis, invasion, and metastasis. U2-OS cell lines were divided into 4 groups: an miR-586 group, anti-miR-586 group, control group (empty plasmid) and blank group (no plasmid). qRT-PCR was used to detect miR-586 expression, cell counting kit-8 and EdU assays to detect cell proliferation, flow cytometry to detect cell cycle distribution, Annexin V/PI double staining to detect cell apoptosis, and the Transwell assay to detect cell invasion and metastasis. miR-586 expression was significantly higher in the miR-586 group but significantly lower in the anti-miR-586 group compared with the control and blank groups. Cell proliferation at 2-5 days after cell transfection and the EdU-positive cell number increased obviously in the miR-586 group but decreased clearly in the anti-miR-586 group. In the miR-586 group, cells at G0/G1 stage and apoptosis cells significantly decreased, while cells at G2/M and S stages and invasive and metastatic cells significantly increased compared to the control and blank groups; however, opposite trends were found in the anti-miR-586 group. Downregulation of miR-586 expression in OS may inhibit cell proliferation, invasion and metastasis, and promote cell apoptosis. PMID:26580004

  10. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jun-jun [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Wang, Yan [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Ding, Jing-xin; Jin, Hong-yan [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Yang, Gong, E-mail: yanggong@fudan.edu.cn [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Hua, Ke-qin, E-mail: huakeqin@126.com [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China)

    2015-05-01

    HOX transcript antisense RNA (HOTAIR) is a well-known long non-coding RNA (lncRNA) whose dysregulation correlates with poor prognosis and malignant progression in many forms of cancer. Here, we investigate the expression pattern, clinical significance, and biological function of HOTAIR in serous ovarian cancer (SOC). Clinically, we found that HOTAIR levels were overexpressed in SOC tissues compared with normal controls and that HOTAIR overexpression was correlated with an advanced FIGO stage and a high histological grade. Multivariate analysis revealed that HOTAIR is an independent prognostic factor for predicting overall survival in SOC patients. We demonstrated that HOTAIR silencing inhibited A2780 and OVCA429 SOC cell proliferation in vitro and that the anti-proliferative effects of HOTAIR silencing also occurred in vivo. Further investigation into the mechanisms responsible for the growth inhibitory effects by HOTAIR silencing revealed that its knockdown resulted in the induction of cell cycle arrest and apoptosis through certain cell cycle-related and apoptosis-related proteins. Together, these results highlight a critical role of HOTAIR in SOC cell proliferation and contribute to a better understanding of the importance of dysregulated lncRNAs in SOC progression. - Highlights: • HOTAIR overexpression correlates with an aggressive tumour phenotype and a poor prognosis in SOC. • HOTAIR promotes SOC cell proliferation both in vitro and in vivo. • The proliferative role of HOTAIR is associated with regulation of the cell cycle and apoptosis.

  11. Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Deepak Bhatia

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE prevents diethylnitrosamine (DENA-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB. Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen and alteration in cell cycle progression (cyclin D1 due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways to exert chemoprevention of HCC.

  12. Study of the UTMD-Based Delivery System to Induce Cervical Cancer Cell Apoptosis and Inhibit Proliferation with shRNA targeting Survivin

    Directory of Open Access Journals (Sweden)

    Feng Yang

    2013-01-01

    Full Text Available Apoptosis induction by short hairpin RNA (shRNA expression vectors could be an efficient and promising strategy for cancer gene therapy. Ultrasound-targeted microbubble destruction (UTMD is an appealing technique. In this study, we investigated the apoptosis induction and suppression of cell proliferation in vivo transfected by the UTMD-based shRNA delivery system. Nude mice with transplanted tumors of cervical cancer were randomly arranged into three groups: control group, plasmid injection and ultrasound (P + US, P + UTMD group. Expressions of Survivin and proliferating cell nuclear antigen (PCNA, Bcl-2, Bax, Caspase-3, Ki-67, nucleostemin (NS were investigated by immunohistochemistry. Furthermore, microvessel density (MVD was detected by CD34 protein expressions and apoptotic index (AI was measured by TUNEL. As compared with those in the control and P + US groups, protein expressions of PCNA, Ki-67, Bcl-2, Survivin and NS in P + UTMD groups were down-regulated markedly, while those of Bax, Caspase-3 were up-regulated significantly (p < 0.05. MVD decreased significantly, whereas AI increased remarkably (p < 0.05. We suggested that UTMD-based shRNA delivery system could induce apoptosis and inhibit proliferation significantly, without causing any apparently adverse effect, representing a new, promising technology that would be used in the future gene therapy and research.

  13. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    HOX transcript antisense RNA (HOTAIR) is a well-known long non-coding RNA (lncRNA) whose dysregulation correlates with poor prognosis and malignant progression in many forms of cancer. Here, we investigate the expression pattern, clinical significance, and biological function of HOTAIR in serous ovarian cancer (SOC). Clinically, we found that HOTAIR levels were overexpressed in SOC tissues compared with normal controls and that HOTAIR overexpression was correlated with an advanced FIGO stage and a high histological grade. Multivariate analysis revealed that HOTAIR is an independent prognostic factor for predicting overall survival in SOC patients. We demonstrated that HOTAIR silencing inhibited A2780 and OVCA429 SOC cell proliferation in vitro and that the anti-proliferative effects of HOTAIR silencing also occurred in vivo. Further investigation into the mechanisms responsible for the growth inhibitory effects by HOTAIR silencing revealed that its knockdown resulted in the induction of cell cycle arrest and apoptosis through certain cell cycle-related and apoptosis-related proteins. Together, these results highlight a critical role of HOTAIR in SOC cell proliferation and contribute to a better understanding of the importance of dysregulated lncRNAs in SOC progression. - Highlights: • HOTAIR overexpression correlates with an aggressive tumour phenotype and a poor prognosis in SOC. • HOTAIR promotes SOC cell proliferation both in vitro and in vivo. • The proliferative role of HOTAIR is associated with regulation of the cell cycle and apoptosis

  14. Effects of 15-deoxy-Δ12,14-prostaglandin J2 on cell proliferation and apoptosis in ECV304 endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Yu-gangDONG; Dan-danCHEN; Jian-guiHE; Yong-yuanGUAN

    2004-01-01

    AIM: To investigate the effects of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) on cell proliferation and apoptosis in ECV304 endothelial cells and related molecular mechanism. METHODS: MTT, Hoechst33258, TUNEL, Flow cytometry, DNA ladder, RT-PCR, Western blot, and electrophoretic mobility shift assay (EMSA) analysis were employed. RESULTS: The 15d-PGJ2 induced apoptosis in ECV304 endothelial cells in a dose-dependent manner(the percentage of apoptosis was enhanced from 10.0 %+1.3 % to 32.8 %+1.6 %), which was accompanied by inhibition of NF-κB and AP-1 DNA binding activity, down-regulation of c-myc, upregulation of Gadd45 and p53,and activation of p38 kinase. However, the expression of p21 was found no significant change. CONCLUSION:peroxisome proliferator-activated receptor gamma ligand, 15d-PGJ2, can inhibit proliferation and induce apoptosisin ECV304 endothelial cells through different mechanisms.

  15. Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase pathway

    International Nuclear Information System (INIS)

    Highlights: ► The expression levels of Bex2 markedly increased in glioma tissues. ► Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. ► Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, while down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.

  16. Silencing mutated β-catenin inhibits cell proliferation and stimulates apoptosis in the adrenocortical cancer cell line H295R.

    Directory of Open Access Journals (Sweden)

    Sébastien Gaujoux

    Full Text Available CONTEXT: Adrenocortical carcinoma (ACC is a rare and highly aggressive endocrine neoplasm, with limited therapeutic options. Activating β-catenin somatic mutations are found in ACC and have been associated with a poor clinical outcome. In fact, activation of the Wnt/β-catenin signaling pathway seems to play a major role in ACC aggressiveness, and might, thus, represent a promising therapeutic target. OBJECTIVE: Similar to patient tumor specimen the H295 cell line derived from an ACC harbors a natural activating β-catenin mutation. We herein assess the in vitro and in vivo effect of β-catenin inactivation using a doxycyclin (dox inducible shRNA plasmid in H295R adrenocortical cancer cells line (clone named shβ. RESULTS: Following dox treatment a profound reduction in β-catenin expression was detectable in shβ clones in comparison to control clones (Ctr. Accordingly, we observed a decrease in Wnt/βcatenin-dependent luciferase reporter activity as well as a decreased expression of AXIN2 representing an endogenous β-catenin target gene. Concomitantly, β-catenin silencing resulted in a decreased cell proliferation, cell cycle alterations with cell accumulation in the G1 phase and increased apoptosis in vitro. In vivo, on established tumor xenografts in athymic nude mice, 9 days of β-catenin silencing resulted in a significant reduction of CTNNB1 and AXIN2 expression. Moreover, continous β-catenin silencing, starting 3 days after tumor cell inoculation, was associated with a complete absence of tumor growth in the shβ group while tumors were present in all animals of the control group. CONCLUSION: In summary, these experiments provide evidences that Wnt/β-catenin pathway inhibition in ACC is a promising therapeutic target.

  17. MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yanfei; Qin, Huadong [Department of Fourth Surgery, the Second Affiliated Hospital of Harbin Medical University, 148 Xuefu Road, Nangang District, Harbin 150086 (China); Cui, Yunfu, E-mail: yfma77@126.com [Department of First Surgery, the Second Affiliated Hospital of Harbin Medical University, 148 Xuefu Road, Nangang District, Harbin 150086 (China)

    2013-11-29

    Highlights: •MiR-34a is up- and GAS1 is down-regulated in papillary thyroid carcinoma. •GAS1 is a direct target for miR-34a. •MiR-34a promotes PTC cells proliferation and inhibits apoptosis through PI3K/Akt/Bad pathway. -- Abstract: MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors. However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.

  18. Proliferation inhibition and apoptosis induction of imatinib-resistant chronic myeloid leukemia cells via PPP2R5C down-regulation.

    Science.gov (United States)

    Shen, Qi; Liu, Sichu; Chen, Yu; Yang, Lijian; Chen, Shaohua; Wu, Xiuli; Li, Bo; Lu, Yuhong; Zhu, Kanger; Li, Yangqiu

    2013-01-01

    Despite the success of imatinib and other tyrosine kinase inhibitors (TKIs), chronic myeloid leukemia (CML) remains largely incurable, and a number of CML patients die due to Abl mutation-related drug resistance and blast crisis. The aim of this study was to evaluate proliferation inhibition and apoptosis induction by down-regulating PPP2R5C gene expression in the imatinib-sensitive and imatinib-resistant CML cell lines K562, K562R (imatinib resistant without an Abl gene mutation), 32D-Bcr-Abl WT (imatinib-sensitive murine CML cell line with a wild type Abl gene) and 32D-Bcr-Abl T315I (imatinib resistant with a T315I Abl gene mutation) and primary cells from CML patients by RNA interference. PPP2R5C siRNAs numbered 799 and 991 were obtained by chemosynthesis. Non-silencing siRNA scrambled control (SC)-treated, mock-transfected, and untreated cells were used as controls. The PPP2R5C mRNA and protein expression levels in treated CML cells were analyzed by quantitative real-time PCR and Western blotting, and in vitro cell proliferation was assayed with the cell counting kit-8 method. The morphology and percentage of apoptosis were revealed by Hoechst 33258 staining and flow cytometry (FCM). The results demonstrated that both siRNAs had the best silencing results after nucleofection in all four cell lines and primary cells. A reduction in PPP2R5C mRNA and protein levels was observed in the treated cells. The proliferation rate of the PPP2R5C-siRNA-treated CML cell lines was significantly decreased at 72 h, and apoptosis was significantly increased. Significantly higher proliferation inhibition and apoptosis induction were found in K562R cells treated with PPP2R5C-siRNA799 than K562 cells. In conclusion, the suppression of PPP2R5C by RNA interference could inhibit proliferation and effectively induce apoptosis in CML cells that were either imatinib sensitive or resistant. Down-regulating PPP2R5C gene expression might be considered as a new therapeutic target strategy

  19. Curcumin inhibits the proliferation of a human colorectal cancer cell line Caco-2 partially by both apoptosis and G2/M cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Yohko Fujimoto

    2014-06-01

    Full Text Available The aim of this study was to assess the possible roles of the phytochemical compounds, curcumin, quercetin and resveratrol in the proliferation of human colorectal cancer cell line Caco-2. All three phytochemical compounds inhibited Caco-2 cell proliferation, with curcumin being more effective than quercetin and resveratrol. Investigations concerning DNA fragmentation in the nucleus, Bax and Bcl-2 mRNA expression levels, and caspase-3/7 activity indicated that curcumin induced apoptosis in Caco-2 cells through an increase in the Bax/Bcl-2 ratio and activation of caspase-3/7. Furthermore, the analysis of flow-cytometry showed that curcumin caused an arrest of G2/M phase in Caco-2 cells. These results suggest that curcumin suppresses Caco-2 proliferation partially via activation of the mitochondrial apoptotic pathway and cell cycle retardation.

  20. Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin.

    Directory of Open Access Journals (Sweden)

    Tianhui Niu

    Full Text Available Curcumin is a widely known natural phytochemical from plant Curcuma longa. In recent years, curcumin has received increasing attention because of its capability to induce apoptosis and inhibit cell proliferation as well as its anti-inflammatory properties in different cancer cells. However, the therapeutic benefits of curcumin are severely hampered due to its particularly low absorption via trans-dermal or oral bioavailability. Phototherapy with visible light is gaining more and more support in dermatological therapy. Red light is part of the visible light spectrum, which is able to deeply penetrate the skin to about 6 mm, and directly affect the fibroblast of the skin dermis. Blue light is UV-free irradiation which is fit for treating chronic inflammation diseases. In this study, we show that curcumin at low concentrations (1.25-3.12 μM has a strong anti-proliferative effect on TNF-α-induced psoriasis-like inflammation when applied in combination with light-emitting-diode devices. The treatment was especially effective when LED blue light at 405 nm was combined with red light at 630 or 660 nm, which markedly amplified the anti-proliferative and apoptosis-inducing effects of curcumin. The experimental results demonstrated that this treatment reduced the viability of human skin keratinocytes, decreased cell proliferation, induced apoptosis, inhibited NF-κB activity and activated caspase-8 and caspase-9 while preserving the cell membrane integrity. Moreover, the combined treatment also down-regulated the phosphorylation level of Akt and ERK. Taken together, our results indicated that the combination of curcumin with LED blue light united red light irradiation can attain a higher efficiency of regulating proliferation and apoptosis in skin keratinocytes.

  1. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19

    Directory of Open Access Journals (Sweden)

    Xiao-Wen Pan

    2015-06-01

    Full Text Available Casein and soy protein were digested by papain to three degrees of hydrolysis (DH 7.3%–13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells. Six casein and soy protein hydrolysates at five levels (0.01–0.2 mg/mL mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%–114% and 104%–123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment, or from 19.5% to 17.7% and 12.4% (NaF treatment, respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment, or from 14.5% to 11.0% (NaF treatment, but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  2. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  3. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    International Nuclear Information System (INIS)

    Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene), a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity) and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Resveratrol (100-150 μM) exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and activation of p53, suggesting its potential role as a

  4. Effects of PARP-1 inhibitors AG-014699 and AZD2281 on proliferation and apoptosis of human hepatoma cell line HepG2

    Directory of Open Access Journals (Sweden)

    DU Senrong

    2015-06-01

    Full Text Available ObjectiveTo observe the inhibitory and pro-apoptotic effects of two poly(ADP-ribose polymerase (PARP-1 inhibitors, AG-014699 and AZD2281, on human hepatoma HepG2 cells and preliminarily explore the mechanism by which AG-014699 induces HepG2 cell apoptosis, and to provide a new therapeutic target for hepatoma. MethodsThe effects of different concentrations of AG-014699 and AZD2281 on HepG2 cell proliferation were determined by MTT assay. The cell apoptosis rate was measured by flow cytometry. The expression levels of caspase-3 and caspase-8 were measured by Western Blot. Inter-group comparison was made by t test. ResultsBoth AG-014699 and AZD2281 suppressed HepG2 cell proliferation in a time- and dose-dependent manner. However, the sensitivity of HepG2 cells to the two PARP-1 inhibitors was different. The half-maximal inhibitory concentrations of AG-014699 and AZD2281 at 48 h determined by MTT assay were about 20 μmol/L and 400 μmol/L, respectively. Flow cytometry and Western blot were not used to evaluate the apoptosis of HepG2 cells exposed to AZD2281 to which these cells were not sensitive. HepG2 cell apoptosis could be induced by 10, 30, and 50 μmol/L AG-014699, and the highest apoptosis rate at 48 h was significantly higher than that of the control group (3100%±2.13% vs 09%±0013%, P<0.01. Compared with those in the control group, the protein levels of caspase-3 and caspase-8 in HepG2 cells after 48-h exposure to 30, and 50 μmol/L AG-014699 increased. ConclusionThe two PARP-1 inhibitors AG-014699 and AZD2281 can inhibit the proliferation of HepG2 cells, which showed different sensitivities to the two inhibitors. AG-014699 can induce HepG2 cell apoptosis by up-regulating the protein expression of caspase-3 and caspase-8.

  5. 20(S)-ginsenoside Rh2 inhibits the proliferation and induces the apoptosis of KG-1a cells through the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Chen, Yi; Liu, Ze-Hong; Xia, Jing; Li, Xiao-Peng; Li, Ke-Qiong; Xiong, Wei; Li, Jing; Chen, Di-Long

    2016-07-01

    Previous research has shown that total saponins of Panax ginseng (TSPG) and other ginsenoside monomers inhibit the proliferation of leukemia cells. However, the effect has not been compared among them. Cell viability was determined by Cell Counting Kit-8 assay, and ultra-structural characteristics were observed under transmission electron microscopy. Cell cycle distribution and apoptosis were determined by flow cytometry (FCM). Real-time fluorescence quantitative‑PCR, western blotting and immunofluorescence were used to measure the expression of β-catenin, TCF4, cyclin D1 and NF-κBp65. β-catenin/TCF4 target gene transcription were observed by ChIP-PCR assay. We found that 20(S)-ginsenoside Rh2 [(S)Rh2] inhibited the proliferation of KG-1a cells more efficiently than the other monomers. Moreover, (S)Rh2 arrested KG-1a cells in the G0/G1 phase and induced apoptosis. In addition, the levels of β-catenin, TCF4, cyclin D1 mRNA and protein were decreased. The ChIP-PCR showed that (S)Rh2 downregulated the transcription of β-catenin/TCF4 target genes, such as cyclin D1 and c-myc. These results indicated that (S)Rh2 induced cell cycle arrest and apoptosis through the Wnt/β-catenin signaling pathway, demonstrating its potential as a chemotherapeutic agent for leukemia therapy. PMID:27121661

  6. Heterospecific interactions and the proliferation of sexually dimorphic traits

    Directory of Open Access Journals (Sweden)

    Karin S. PFENNIG, Allen H. HURLBERT

    2012-06-01

    Full Text Available Sexual selection is expected to promote speciation by fostering the evolution of sexual traits that minimize reproductive interactions among existing or incipient species. In species that compete for access to, or attention of, females, sexual selection fosters more elaborate traits in males compared to females. If these traits also minimize reproductive interactions with heterospecifics, then species with enhanced risk of interactions between species might display greater numbers of these sexually dimorphic characters. We tested this prediction in eight families of North American birds. In particular, we evaluated whether the number of sexually dimorphic traits was positively associated with species richness at a given site or with degree of sympatry with congeners. We found no strong evidence of enhanced sexual dimorphism with increasing confamilial species richness at a given site. We also found no overall relationship between the number of sexually dimorphic traits and overlap with congeners across these eight families. However, we found patterns consistent with our prediction within Anatidae (ducks, geese and swans and, to a lesser degree, Parulidae (New World warblers. Our results suggest that sexually selected plumage traits in these groups potentially play a role in reproductive isolation [Current Zoology 58 (3: 453-462, 2012].

  7. Heterospecific interactions and the proliferation of sexually dimorphic traits

    Institute of Scientific and Technical Information of China (English)

    Karin S.PFENNIG; Allen H.HURLBERT

    2012-01-01

    Sexual selection is expected to promote speciation by fostering the evolution of sexual traits that minimize reproductive interactions among existing or incipient species.In species that compete for access to,or attention of,females,sexual selection fosters more elaborate traits in males compared to females.If these traits also minimize reproductive interactions with heterospecifics,then species with enhanced risk of interactions between species might display greater numbers of these sexually dimorphic characters.We tested this prediction in eight families of North American birds.In particular,we evaluated whether the number of sexually dimorphic traits was positively associated with species richness at a given site or with degree of sympatry with congeners.We found no strong evidence of enhanced sexual dimorphism with increasing confamilial species richness at a given site.We also found no overatl relationship between the number of sexually dimorphic traits and overlap with congeners across these eight families.However,we found patterns consistent with our prediction within Anatidae (ducks,geese and swans) and,to a lesser degree,Parulidae (New World warblers).Our results suggest that sexually selected plumage traits in these groups potentially play a role in reproductive isolation.

  8. In vivo effects of Chinese herbal recipe, Danshaohuaxian, on apoptosis and proliferation of hepatic stellate cells in hepatic fibrotic rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xia Geng; Qin Yang; Ru-Jia Xie; Xin-Hua Luo; Bing Han; Li Ma; Cheng-Xiu Li; Ming-Liang Cheng

    2005-01-01

    .01),the COL Ⅰ and Ⅲ expression decreased (COL Ⅰ: 1.07±0.96 vs4.18±2.26, 3.22±1.44, P<0.01; COL Ⅲ: 1.09±0.58 vs 3.04±0.62, 2.23±0.58, P<0.01), the HSCs apoptotic index of HSCs (7.81±0.47 vs 1.63±0.25, 1.78±0.4, P<0.05) and the ratio of G0-G1 phase cells increased (94.30±1.33 vs 62.27±17.96, 50.53±2.25, P<0.05). The ratios of S-phase cells (3.11±1.27 vs 9.83±1.81, 11.87±1.9, P<0.05) and G2-M phase cells (2.58±0.73 vs23.26±10.95, 13.60±1.15, P<0.01)declined.CONCLUSION: DSHX capsule shows certain therapeutic effects on hepatic fibrosis in rats and inhibits abnormal deposition of COL Ⅰ and Ⅲ in rat livers by promoting the apoptosis of HSCs and preventing their proliferation.

  9. Proliferation and apoptosis property of mesenchymal stem cells derived from peripheral blood under the culture conditions of hypoxia and serum deprivation

    Institute of Scientific and Technical Information of China (English)

    FU Wei-li; JIA Zhu-qing; WANG Wei-ping; ZHANG Ji-ying; FU Xin; DUAN Xiao-ning; LEUNG Kevin Kar Ming; ZHOU Chun-yan; YU Jia-kuo

    2011-01-01

    Background The proliferation and apoptosis property of mesenchymal stem cells derived from peripheral blood (PB-MSCs) were investigated under hypoxia and serum deprivation conditions in vitro so as to evaluate the feasibility for autologous PB-MSCs applications in cartilage repair.Methods MSCs were mobilized into peripheral blood by granulocyte colony stimulating factor (G-CSF) and AMD3100.The blood samples were collected from central ear artery of rabbits.Adhered cells were obtained by erythrocyte lysis buffer and identified as MSCs by adherence to plastic,spindle shaped morphology,specific surface markers,differentiation abilities into osteoblasts,adipocytes and chondroblasts in vitro under appropriate conditions.MSCs were cultured in four groups at different oxygen tension (20% O2 and 2% O2),with or without 10% fetal bovine serum (FBS)conditions:20% O2 and 10% FBS complete medium (normal medium,N),20% O2 and serum deprivation medium (D),2% O2 and 10% FBS complete medium (hypoxia,H),2% O2 and serum deprivation (HD).Cell proliferation was determined by CCK-8 assay.Apoptosis was detected by Annexin V/Pl and terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL) staining.Results Spindle-shaped adherent cells were effectively mobilized from peripheral blood by a combined administration of G-CSF plus AMD3100.These cells showed typical fibroblast-like phenotype similar to MSCs from bone marrow (BM-MSCs),and expressed a high level of typical MSCs markers CD29 and CD44,but lacked in the expression of hematopoietic markers CD45 and major histocompatibility complex Class Ⅱ (MHC Ⅱ).They could also differentiate into osteoblasts,adipocytes and chondroblasts in vitro under appropriate conditions.No significant morphological differences were found among the four groups.It was found that hypoxia could enhance proliferation of PB-MSCs regardless of serum concentration,but serum deprivation inhibited proliferation at the later stage of culture

  10. miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer.

    Science.gov (United States)

    Fernandez, S; Risolino, M; Mandia, N; Talotta, F; Soini, Y; Incoronato, M; Condorelli, G; Banfi, S; Verde, P

    2015-06-01

    MicroRNAs (miRNAs) control cell cycle progression by targeting the transcripts encoding for cyclins, CDKs and CDK inhibitors, such as p27(KIP1) (p27). p27 expression is controlled by multiple transcriptional and posttranscriptional mechanisms, including translational inhibition by miR-221/222 and posttranslational regulation by the SCF(SKP2) complex. The oncosuppressor activity of miR-340 has been recently characterized in breast, colorectal and osteosarcoma tumor cells. However, the mechanisms underlying miR-340-induced cell growth arrest have not been elucidated. Here, we describe miR-340 as a novel tumor suppressor in non-small cell lung cancer (NSCLC). Starting from the observation that the growth-inhibitory and proapoptotic effects of miR-340 correlate with the accumulation of p27 in lung adenocarcinoma and glioblastoma cells, we have analyzed the functional relationship between miR-340 and p27 expression. miR-340 targets three key negative regulators of p27. The miR-340-mediated inhibition of both Pumilio family RNA-binding proteins (PUM1 and PUM2), required for the miR-221/222 interaction with the p27 3'-UTR, antagonizes the miRNA-dependent downregulation of p27. At the same time, miR-340 induces the stabilization of p27 by targeting SKP2, the key posttranslational regulator of p27. Therefore, miR-340 controls p27 at both translational and posttranslational levels. Accordingly, the inhibition of either PUM1 or SKP2 partially recapitulates the miR-340 effect on cell proliferation and apoptosis. In addition to the effect on tumor cell proliferation, miR-340 also inhibits intercellular adhesion and motility in lung cancer cells. These changes correlate with the miR-340-mediated inhibition of previously validated (MET and ROCK1) and potentially novel (RHOA and CDH1) miR-340 target transcripts. Finally, we show that in a small cohort of NSCLC patients (n=23), representative of all four stages of lung cancer, miR-340 expression inversely correlates with clinical

  11. 6-Bromoisatin Found in Muricid Mollusc Extracts Inhibits Colon Cancer Cell Proliferation and Induces Apoptosis, Preventing Early Stage Tumor Formation in a Colorectal Cancer Rodent Model

    Directory of Open Access Journals (Sweden)

    Babak Esmaeelian

    2013-12-01

    Full Text Available Muricid molluscs are a natural source of brominated isatin with anticancer activity. The aim of this study was to examine the safety and efficacy of synthetic 6-bromoisatin for reducing the risk of early stage colorectal tumor formation. The purity of 6-bromoisatin was confirmed by 1H NMR spectroscopy, then tested for in vitro and in vivo anticancer activity. A mouse model for colorectal cancer was utilized whereby colonic apoptosis and cell proliferation was measured 6 h after azoxymethane treatment by hematoxylin and immunohistochemical staining. Liver enzymes and other biochemistry parameters were measured in plasma and haematological assessment of the blood was conducted to assess potential toxic side-effects. 6-Bromoisatin inhibited proliferation of HT29 cells at IC50 223 μM (0.05 mg/mL and induced apoptosis without increasing caspase 3/7 activity. In vivo 6-bromoisatin (0.05 mg/g was found to significantly enhance the apoptotic index (p ≤ 0.001 and reduced cell proliferation (p ≤ 0.01 in the distal colon. There were no significant effects on mouse body weight, liver enzymes, biochemical factors or blood cells. However, 6-bromoisatin caused a decrease in the plasma level of potassium, suggesting a diuretic effect. In conclusion this study supports 6-bromoisatin in Muricidae extracts as a promising lead for prevention of colorectal cancer.

  12. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1–RAGE and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ping; Dai, Weiqi; Wang, Fan; Lu, Jie; Shen, Miao; Chen, Kan; Li, Jingjing; Zhang, Yan; Wang, Chengfen; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Guo, Chuan-Yong, E-mail: guochuanyong@hotmail.com; Xu, Ling, E-mail: xuling606@sina.com

    2014-01-24

    Highlights: • Ethyl pyruvate inhibits liver cancer. • Promotes apoptosis. • Decreased the expression of HMGB1, p-Akt. - Abstract: Ethyl pyruvate (EP) was recently identified as a stable lipophilic derivative of pyruvic acid with significant antineoplastic activities. The high mobility group box-B1 (HMGB1)–receptor for advanced glycation end-products (RAGE) and the protein kinase B (Akt) pathways play a crucial role in tumorigenesis and development of many malignant tumors. We tried to observe the effects of ethyl pyruvate on liver cancer growth and explored its effects in hepatocellular carcinoma model. In this study, three hepatocellular carcinoma cell lines were treated with ethyl pyruvate. An MTT colorimetric assay was used to assess the effects of EP on cell proliferation. Flow cytometry and TUNEL assays were used to analyze apoptosis. Real-time PCR, Western blotting and immunofluorescence demonstrated ethyl pyruvate reduced the HMGB1–RAGE and AKT pathways. The results of hepatoma orthotopic tumor model verified the antitumor effects of ethyl pyruvate in vivo. EP could induce apoptosis and slow the growth of liver cancer. Moreover, EP decreased the expression of HMGB1, RAGE, p-AKT and matrix metallopeptidase-9 (MMP9) and increased the Bax/Bcl-2 ratio. In conclusion, this study demonstrates that ethyl pyruvate induces apoptosis and cell-cycle arrest in G phase in hepatocellular carcinoma cells, plays a critical role in the treatment of cancer.

  13. A Natural Triterpene Derivative from Euphorbia kansui Inhibits Cell Proliferation and Induces Apoptosis against Rat Intestinal Epithelioid Cell Line in Vitro

    Directory of Open Access Journals (Sweden)

    Fangfang Cheng

    2015-08-01

    Full Text Available Kansenone is a triterpene from the root of the traditional Chinese medicine, Euphorbia kansui. However, kansenone exerts serious toxicity, but the exact mechanism was not clear. In this work, the effects of kansenone on cell proliferation, cell cycle, cell damage, and cell apoptosis were investigated. The suppression of cell proliferation was assessed via the colorimetric MTT assay, and cell morphology was visualized via inverted microscopy after IEC-6 cells were incubated with different concentrations of kansenone. Reactive oxygen species (ROS, superoxide dismutase (SOD and malondialdehyde (MDA content were detected for evaluating cell damage. RNase/propidium iodide (PI labeling for evaluation of cell cycle distribution was performed by flow cytometry analysis. Annexin V-fluorescein isothiocyanate (FITC/PI and Hoechst 33342/Annexin V-FITC/PI staining assay for cell apoptosis detection were performed using confocal laser scanning microscopy and high content screening. Moreover, apoptosis induction was further confirmed by transmission electron microscope (TEM and JC-1 mitochondrial membrane potential, western blot and RT-PCR analysis. The results demonstrated that kansenone exerted high cytotoxicity, induced cell arrest at G0/G1 phase, and caused mitochondria damage. In addition, kansenone could up-regulate the apoptotic proteins Bax, AIF, Apaf-1, cytochrome c, caspase-3, caspase-9, caspase-8, FasR, FasL, NF-κB, and TNFR1 mRNA expression levels, and down-regulate the anti-apoptotic Bcl-2 family proteins, revealing that kansenone induces apoptosis through both the death receptor and mitochondrial pathways.

  14. Pokemon enhances proliferation, cell cycle progression and anti-apoptosis activity of colorectal cancer independently of p14ARF-MDM2-p53 pathway.

    Science.gov (United States)

    Zhao, Yi; Yao, Yun-hong; Li, Li; An, Wei-fang; Chen, Hong-zen; Sun, Li-ping; Kang, Hai-xian; Wang, Sen; Hu, Xin-rong

    2014-12-01

    Pokemon has been showed to directly suppress p14(ARF) expression and also to overexpress in multiple cancers. However, p14(ARF)-MDM2-p53 pathway is usually aberrant in colorectal cancer (CRC). The aim is to confirm whether Pokemon plays a role in CRC and explore whether Pokemon works through p14(ARF)-MDM2-p53 pathway in CRC. Immunohistochemistry for Pokemon, p14(ARF) and Mtp53 protein was applied to 45 colorectal epitheliums (CREs), 42 colorectal adenomas (CRAs) and 66 CRCs. Pokemon was knocked down with RNAi technique in CRC cell line Lovo to detect mRNA expression of p14(ARF) with qRT-PCR, cell proliferation with CCK8 assay, and cell cycle and apoptosis with flowcytometry analysis. The protein expression rates were significantly higher in CRC (75.8%) than in CRE (22.2 %) or CRA (38.1%) for Pokemon and higher in CRC (53.0%) than in CRE (0) or CRA (4.8%) for Mtp53, but not significantly different in CRC (86.4 %) versus CRE (93.3%) or CRA (90.5 %) for p14(ARF). Higher expression rate of Pokemon was associated with lymph node metastasis and higher Duke's stage. After knockdown of Pokemon in Lovo cells, the mRNA level of p14(ARF) was not significantly changed, the cell proliferation ability was decreased by 20.6%, cell cycle was arrested by 55.7% in G0/G1 phase, and apoptosis rate was increased by 19.0%. Pokemon enhanced the oncogenesis of CRC by promoting proliferation, cell cycle progression and anti-apoptosis activity of CRC cells independently of p14(ARF)-MDM2-p53 pathway. This finding provided a novel idea for understanding and further studying the molecular mechanism of Pokemon on carcinogenesis of CRC. PMID:25367850

  15. Osthole suppresses the proliferation and accelerates the apoptosis of human glioma cells via the upregulation of microRNA-16 and downregulation of MMP-9.

    Science.gov (United States)

    Lin, Kai; Gao, Zhiyu; Shang, Bin; Sui, Shaohua; Fu, Qiang

    2015-09-01

    Osthole (7-methoxy-8-isoamyl alkenyl coumarin) has been reported to exhibit marked anticancer effects on several types of cancer. The expression levels of matrix metalloproteinase-9 (MMP-9) are closely associated with the pathogenesis of glioma. Furthermore, it is reported that the upregulation of microRNA‑16 (miR‑16) by the MMP‑9 signaling pathway can restrain the proliferation of cancer cells. To examine whether osthole increases the anticancer effect on human glioma cells in the present study, the common glioma cell line, U87, was treated with osthole at concentrations of 0, 50, 100 and 200 µΜ. The effects of osthole on cell viability were determined using a 3‑(4,5‑dimethylthiazol‑2‑thiazolyl)‑2,5‑diphenyl‑tetrazolium bromide assay. The rate of cellular apoptosis was analyzed by measuring the activity of caspase‑3 and using flow cytometry. The expression of MMP‑9 was determined using gelatin zymography assays and the expression of miR‑16 was determined using reverse transcription‑quantitative polymerase chain reaction. The results demonstrated that osthole significantly suppressed the proliferation and accelerated the apoptosis of the U87 cells. Furthermore, increased expression levels of miR‑16 and reduced protein expression levels of MMP‑9 were found in the U87 cells. In addition, miR‑16 was found to regulate the expression of MMP‑9 in the U87 cells through transfection of miR‑16 precursor and anti‑miR‑16 into the U87 cells. In conclusion, these observations indicated that osthole suppressed the proliferation and accelerated the apoptosis of human glioma cells through upregulation of the expression of miR‑16 and downregulation of the expression of MMP-9. PMID:26082082

  16. Sequence-dependent Effect of Docetaxel with Gefitinib on the Proliferation 
and Apoptosis of Lung Adenocarcinoma Cell H1975

    Directory of Open Access Journals (Sweden)

    Xinyu ZHANG

    2012-03-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs such as gefitinib and erlotinib show promising therapeutic effects in patients with advanced non-small cell lung cancer (NSCLC. However, despite an initial response to EGFR-TKIs treatment among responsive patients, most inevitably acquire resistance after a progression-free period of about 10 months. The percentage of T790M in TKI acquired-resistant patients in most studies is around 50%. The aim of this study is to assess the effects of the sequential administration of docetaxel and gefitinib on cell proliferation and apoptosis of lung adenocarcinoma cell H1975. Methods An MTT assay was used to measure cell proliferation. The potency of the sequential administration of docetaxel and gefitinib were determined by isobolograms and combination index (CI. Cell apoptosis and cycle distribution were determined by flow cytometry. The Hoechst 33258 method was used to observe the apoptotic morphology. Chemical colorimetric luminescence was used to measure the caspase activity. Results The isobolograms and CI showed that the sequential administration of docetaxel following gefitinib remarkably inhibits cell proliferation and cell apoptosis compared with other sequential administration models. The cycle distribution results indicate that sequential docetaxel administration following gefitinib blocked the cells in the G2/M phase but not in the G0/G1. The activation of the Caspase-8/Caspase-3 cascade is mainly involved in the apoptotic pathway of lung adenocarcinoma cell H1975 in all sequential administration models. Conclusion The docetaxel administration following gefitinib might be a new stratagy for lung cancer with T790M mutation after having EGFR-TKIs resistance.

  17. Knockdown of biglycan expression by RNA interference inhibits the proliferation and invasion of, and induces apoptosis in, the HCT116 colon cancer cell line.

    Science.gov (United States)

    Xing, Xiaojing; Gu, Xiaohu; Ma, Tianfei

    2015-11-01

    Biglycan is an important component of the extracellular matrix, and it is also a member of small leucine-rich proteoglycan family. Previous studies indicated that the expression of biglycan was increased in a variety of tumor tissues, including colon cancer. However, the mechanisms underlying its effects in colon cancer remain to be fully elucidated. In the present study, the effects of biglycan knockdown on colon cancer cell proliferation, migration, invasion and apoptosis were investigated. The mRNA expression levels of biglycan in the HCT116 colon cancer cell line were downregulated using RNA interference, and the stably transfected cell line was obtained through G418 screening for subsequent experiments. The results revealed that downregulation of the expression of biglycan suppressed cell proliferation and caused a cell cycle arrest at the G0/G1 phase. The results of the western blot analysis also revealed that the expression levels of cell cycle‑associated proteins, including cyclin A and cyclin D1, were markedly decreased following silencing of biglycan, whereas the expression levels of p21 and p27 were markedly increased compared with that of the short hairpin RNA control group. Furthermore, the decreased expression of biglycan inhibited colon cancer cell migration and invasion, and induced apoptosis. A complete inhibition of the p38 signaling pathway with SB203580 effectively reversed the increase in apoptotic cell numbers induced by biglycan downregulation. Taken together, the results of the present study indicated that biglycan exerts an important role in cell proliferation, migration, invasion and apoptosis in colon cancer, and that biglycan regulates the p38 MAPK signaling pathway by exerting an antiapoptotic effect. Therefore, biglycan may represent a putative target for colon cancer gene therapy. PMID:26459740

  18. Sodium orthovanadate associated with pharmacological doses of ascorbate causes an increased generation of ROS in tumor cells that inhibits proliferation and triggers apoptosis

    International Nuclear Information System (INIS)

    Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na3VO4) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na3VO4 was cytotoxic against T24 cells (EC50 = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC50 fell to 3.3 μM. Na3VO4 plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na3VO4 did not directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na3VO4 and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na3VO4 alone, or combined with ascorbate, increased catalase activity, but only Na3VO4 plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na3VO4 plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na3VO4. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na3VO4 in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment

  19. Tumor suppressor miR-149-5p is associated with cellular migration, proliferation and apoptosis in renal cell carcinoma.

    Science.gov (United States)

    Jin, Lu; Li, Yifan; Liu, Jiaju; Yang, Shangqi; Gui, Yaoting; Mao, Xiangming; Nie, Guohui; Lai, Yongqing

    2016-06-01

    Several studies have recently explored the role of microRNAs (miRNAs, miRs) in the tumorigenesis of various types of cancer. miRNAs have been reported to be involved in numerous cell processes, including cell apoptosis, proliferation and migration, thus suggesting that miRNAs may have an important role in cancer progression. Downregulation of miR-149-5p has been detected in RCC tissues by microarray profiling; however, its expression and function in RCC has yet to be elucidated. In the present study, reverse transcription‑quantitative polymerase chain reaction was performed to detect the expression levels of miR‑149‑5p in RCC tissues and paired normal tissues. In order to determine whether miR-149-5p was able to regulate cell proliferation, apoptosis or migration, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometric and wound healing assays were conducted. The results demonstrated that miR‑149‑5p was significantly downregulated in RCC tissues compared with in normal tissues (P<0.05). The restoration of miR-149-5p expression using synthetic mimics suppressed cell proliferation and migration, and promoted cell apoptosis. These results indicated that miR‑149‑5p may act as a tumor suppressor in RCC. The present study is the first, to the best of our knowledge, to identify miR‑149‑5p as a tumor suppressor in RCC. Future studies will be focused on the potential role of miR‑149‑5p as a biomarker for the early detection and prognostic prediction of RCC, and as a therapeutic target in RCC. In addition, further exploration regarding the pathways underlying the effects of miR‑149‑5p in RCC is required. PMID:27121091

  20. ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression

    Science.gov (United States)

    Gou, Wen-feng; Shen, Dao-fu; Yang, Xue-feng; Zhao, Shuang; Liu, Yun-peng; Sun, Hong-zhi; Su, Rong-jian; Luo, Jun-sheng; Zheng, Hua-chuan

    2015-01-01

    Here, we found that ING5 overexpression increased autophagy, differentiation, and decreased proliferation, apoptosis, migration, invasion and lamellipodia formation in gastric cancer cells, while ING5 knockdown had the opposite effects. In SGC-7901 transfectants, ING5 overexpression caused G1 arrest, which was positively associated with 14-3-3 overexpression, Cdk4 and c-jun hypoexpression. The induction of Bax hypoexpression, Bcl-2, survivin, 14-3-3, PI3K, p-Akt and p70S6K overexpression by ING5 decreased apoptosis in SGC-7901 cells. The hypoexpression of MMP-9, MAP1B and flotillin 2 contributed to the inhibitory effects of ING5 on migration and invasion of SGC-7901 cells. ING5 overexpression might activate both β-catenin and NF-κB pathways in SGC-7901 cells, and promote the expression of down-stream genes (c-myc, VEGF, Cyclin D1, survivin, and interleukins). Compared with the control, ING5 transfectants displayed drug resistance to triciribine, paclitaxel, cisplatin, SAHA, MG132 and parthenolide, which was positively related to their apoptotic induction and the overexpression of chemoresistance-related genes (MDR1, GRP78, GRP94, IRE, CD147, FBXW7, TOP1, TOP2, MLH1, MRP1, BRCP1 and GST-π). ING5 expression was higher in gastric cancer than matched mucosa. It was inversely associated with tumor size, dedifferentiation, lymph node metastasis and clinicopathological staging of cancer. ING5 overexpression suppressed growth, blood supply and lung metastasis of SGC-7901 cells by inhibiting proliferation, enhancing autophagy and apoptosis in xenograft models. It was suggested that ING5 expression might be employed as a good marker for gastric carcinogenesis and subsequent progression by inhibiting proliferation, growth, migration, invasion and metastasis. ING5 might induce apoptotic and chemotherapeutic resistances of gastric cancer cells by activating β-catenin, NF-κB and Akt pathways. PMID:25980581

  1. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression.

    Science.gov (United States)

    Luo, Cheng-Lin; Liu, Yu-Qiong; Wang, Peng; Song, Chun-Hua; Wang, Kai-Juan; Dai, Li-Ping; Zhang, Jian-Ying; Ye, Hua

    2016-08-01

    Cervical cancer is a cause of cancer death, making it as the one of the most common cause for death among women globally. Though many studies before have explored a lot for cervical cancer prevention and treatment, there are still a lot far from to know based on the molecular mechanisms. Janus kinase 2 (JAK2) has been reported to play an essential role in the progression of apoptosis, autophagy and proliferation for cells. We loaded gold-quercetin into poly (dl-lactide-co-glycolide) nanoparticles to cervical cancer cells due to the propertities of quercetin in ameliorating cellular processes and the easier absorbance of nanoparticles. Here, in our study, quercetin nanoparticles (NQ) were administrated to cells to investigate the underlying mechanism by which the cervical cancer was regulated. First, JAK2-inhibited carvical cancer cell lines were involved for our experiments in vitro and in vivo. Western blotting, quantitative RT-PCR (qRT-PCR), ELISA, Immunohistochemistry, and flow-cytometric analysis were used to determine the key signaling pathway regulated by JAK2 for cervical cancer progression. And the role of quercetin nanoparticles was determined during the process. Data here indicated that JAK2, indeed, expressed highly in cancer cell lines compared to the normal cervical cells. And apoptosis and autophagy were found in JAK2-inhibited cancer cells through activating Caspase-3, and suppressing Cyclin-D1 and mTOR regulated by Signal Transducer and Activator of Transcription (STAT) 3/5 and phosphatidylinositide 3-kinase/protein kinases (PI3K/AKT) signaling pathway. The cervical cancer cells proliferation was inhibited. Further, tumor size and weight were reduced by inhibition of JAK2 in vivo experiments. Notably, administration with quercetin nanoparticles displayed similar role with JAK2 suppression, which could inhibit cervical cancer cells proliferation, invasion and migration. In addition, autophogy and apoptosis were induced, promoting cervical cancer cell

  2. Anti-insulin-like growth factor-IIP3 DNAzymes inhibit cell proliferation and induce caspase-dependent apoptosis in human hepatocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Zhang M

    2013-10-01

    Full Text Available Min Zhang,1 Gregor PC Drummen,2 Su Luo11Medical Department, Beihua University, Jilin, People's Republic of China; 2Cellular Stress and Ageing Program, Bionanoscience and Bio-Imaging Program, Bio & Nano-Solutions, Düsseldorf, GermanyBackground: Insulin-like growth factor II (IGF-II is a fetal growth protein and an important proangiogenic factor controlled by four promoters (P, of which P2–P4 are inactive in the adult liver. Reactivation and dysregulation of IGF-IIP3 in particular is associated with the attenuation of apoptosis and increased proliferation in a number of liver cancer cell types. Its involvement in experimental liver carcinogenesis makes it a potential target for cancer gene therapy. We designed two IGF-IIP3 specific DNAzymes (DRz1 and DRz2 that target IGF-IIP3 messenger RNA (mRNA with the aim of reducing IGF-II expression through promoter 3.Methods: IGF-IIP3 mRNA and protein expression levels were assessed using real-time polymerase chain reaction and gel electrophoresis/western blotting after transfection with Lipofectamine® in SMMC-7721, Huh7, and HepG2 cell lines. Cell proliferation was determined via MTT assay; apoptosis was evaluated by fluorescence microscopy and with flow cytometry; procaspase-3 and -9 expression were detected via western blotting; and caspase activity was assayed colorimetrically. Standard procedures were used to calculate means and standard deviations, and P-values below 0.05 were considered to indicate significant differences.Results: DRzs were transfected into hepatocellular carcinoma cells and the results showed that DRz1, in particular, could decrease the expression of IGF-IIP3 by nearly 50%. Furthermore, DRz1 significantly inhibited cell proliferation and induced apoptosis. In addition, the downregulation of IGF-IIP3 expression was associated with increased caspase-3 and -9 activity in SMMC-7721 cells after 24 hours of transfection. In all experiments, the efficacy of DRz2 to influence IGF-IIP3

  3. Proliferation inhibition and apoptosis induction of imatinib-resistant chronic myeloid leukemia cells via PPP2R5C down-regulation

    OpenAIRE

    Shen, Qi; Liu, Sichu; Chen, Yu; Yang, Lijian; CHEN, SHAOHUA; Wu, Xiuli; Li, Bo; Lu, Yuhong; Zhu, Kanger; Li, Yangqiu

    2013-01-01

    Despite the success of imatinib and other tyrosine kinase inhibitors (TKIs), chronic myeloid leukemia (CML) remains largely incurable, and a number of CML patients die due to Abl mutation-related drug resistance and blast crisis. The aim of this study was to evaluate proliferation inhibition and apoptosis induction by down-regulating PPP2R5C gene expression in the imatinib-sensitive and imatinib-resistant CML cell lines K562, K562R (imatinib resistant without an Abl gene mutation), 32D-Bcr-Ab...

  4. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult troutOncorhynchus mykiss after optic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Evgeniya V Pushchina; Sachin Shukla; Anatoly A Varaksin; Dmitry K Obukhov

    2016-01-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve ifbers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult troutOncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantita-tive assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal con-centration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury.In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture. The present ifndings suggest that trout can be used as a novel model for studying neuronal regeneration.

  5. Role of the amino-terminal domains of MEKKs in the activation of NF kappa B and MAPK pathways and in the regulation of cell proliferation and apoptosis.

    Science.gov (United States)

    Bonvin, Christelle; Guillon, Audrey; van Bemmelen, Miguel X; Gerwins, Pär; Johnson, Gary L; Widmann, Christian

    2002-02-01

    Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) kinases (MEKKs) are serine/threonine kinases that are upstream regulators of MAPKs. Here, the role of the amino-terminal (N-terminal) domain of MEKK1-4 on the regulation of different intracellular signaling pathways, apoptosis, and cell proliferation has been assessed by comparing the responses induced by the full-length (FL) MEKKs to those induced by the kinase domains only. For each MEKK, the pattern of activation of NF kappa B, the ERK MAPK pathway, and the c-Jun N-terminal kinase (JNK) MAPK pathway markedly differed between the kinase domain and the FL form. Similarly, cell proliferation and apoptosis were differently regulated by the FL MEKK and the corresponding kinase domain. Our data show that the N-terminal domain of the MEKKs determines the specificity and the strength of activation of various intracellular signaling pathways and cellular responses. PMID:11781136

  6. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer.

    Science.gov (United States)

    Aggarwal, Sadhna; Das, Satya N

    2016-06-01

    Garcinol, a polyisoprenylated benzophenone is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Its ability to inhibit tumour growth has been demonstrated in certain cancers. In this study, we evaluated the potential anti-tumour effects of garcinol on oral squamous cell carcinoma (OSCC) cells. Three OSCC cell lines (SCC-4, SCC-9 and SCC-25) were treated with garcinol for 48 h and its effect on growth and proliferation, clonogenic survival, cell cycle and apoptosis was studied by MTT, clonogenic assay, propidium iodide (PI) staining and annexin-V binding assay, respectively. The alteration in expression of NF-κB and COX-2 was studied by western blot analysis and that of VEGF by ELISA. Garcinol treatment significantly (p < 0.001) inhibited the growth and proliferation and colony formation of OSCC cells with a concomitant induction of apoptosis and cell cycle arrest. It did not show toxic effect on normal cells. It significantly (p < 0.05) reduced the expression of NK-κB and COX-2 expression in treated cells as compared to untreated controls besides inhibiting VEGF expression. It appears that garcinol exerts anti-proliferative, pro-apoptotic, cell-cycle regulatory and anti-angiogenic effects on oral cancer cells through inhibition of NF-κB and COX-2. Thus, garcinol may be developed as a potential chemopreventive and/or chemotherapeutic agent for treatment of oral squamous cell carcinoma. PMID:26662963

  7. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    International Nuclear Information System (INIS)

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation

  8. Downregulation of ROS-FIG inhibits cell proliferation, colony-formation, cell cycle progression, migration and invasion, while inducing apoptosis in intrahepatic cholangiocarcinoma cells

    Science.gov (United States)

    DENG, GANG; HU, CHENGHUAN; ZHU, LEI; HUANG, FEIZHOU; HUANG, WEI; XU, HONGBO; NIE, WANPIN

    2014-01-01

    Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer with poor responsiveness to existing drug therapies. Therefore, novel treatment strategies against ICC are required to improve survival. The aim of this study was to demonstrate the role of fused-in-glioblastoma-c-ros-oncogene1 (FIG-ROS) fusion gene in ICC. ROS was positively expressed in ICC tissues and HUCCT1 cells. Plasmids expressing ROS- and FIG-specific shRNAs were constructed and transfected into HUCCT1 cells. The results showed that single transfection of ROS- or FIG-specific shRNA inhibited HUCCT1 cell proliferation, colony formation, cell cycle progression, migration and invasion, while inducing apoptosis. Moreover, the co-inhibition of ROS- and FIG-specific shRNA exhibited stronger effects on HUCCT1 cell proliferation, apoptosis, colony formation, cell cycle progression, migration and invasion, when compared to single inhibition of ROS and FIG. Furthermore, findings of this study suggested that the AKT signaling pathway was involved in the ROS-FIG-mediated biological processes of HUCCT1 cells. In summary, the results suggest that FIG-ROS plays an oncogenic role in ICC. Additionally, ROS1-6290 and FIG-363 segments may become effective therapeutic targets for ICC harboring ROS-FIG fusion protein. PMID:24968753

  9. Mycoplasma bovis isolates recovered from cattle and bison (Bison bison) show differential in vitro effects on PBMC proliferation, alveolar macrophage apoptosis and invasion of epithelial and immune cells.

    Science.gov (United States)

    Suleman, Muhammad; Prysliak, Tracy; Clarke, Kyle; Burrage, Pat; Windeyer, Claire; Perez-Casal, Jose

    2016-04-15

    In the last few years, several outbreaks of pneumonia, systemically disseminated infection, and high mortality associated with Mycoplasma bovis (M. bovis) in North American bison (Bison bison) have been reported in Alberta, Manitoba, Saskatchewan, Nebraska, New Mexico, Montana, North Dakota, and Kansas. M. bovis causes Chronic Pneumonia and Polyarthritis Syndrome (CPPS) in young, stressed calves in intensively-managed feedlots. M. bovis is not classified as a primary pathogen in cattle, but in bison it appears to be a primary causative agent with rapid progression of disease with fatal outcomes and an average 20% mature herd mortality. Thus, there is a possibility that M. bovis isolates from cattle and bison differ in their pathogenicity. Hence, we decided to compare selected cattle isolates to several bison isolates obtained from clinical cases. We show differences in modulation of PBMC proliferation, invasion of trachea and lung epithelial cells, along with modulation of apoptosis and survival in alveolar macrophages. We concluded that some bison isolates showed less inhibition of cattle and bison PBMC proliferation, were not able to suppress alveolar macrophage apoptosis as efficiently as cattle isolates, and were more or less invasive than the cattle isolate in various cells. These findings provide evidence about the differential properties of M. bovis isolated from the two species and has helped in the selection of bison isolates for genomic sequencing. PMID:27016754

  10. Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line

    Directory of Open Access Journals (Sweden)

    Hesham Fahmy

    2011-12-01

    Full Text Available Sarcodiol (SD is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3 and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4. SD treatment also enhances cellular level of tumor suppressor protein 53 (p53 and stimulates cleavage of the nuclear poly (ADP-ribose polymerase (cleaved-PARP. SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B16F10 tumor cells.

  11. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    Science.gov (United States)

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells. PMID:22363217

  12. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Michio [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Kiyoshi [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kuroda, Yusuke [Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511 (Japan); Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  13. Silencing of RTKN2 by siRNA suppresses proliferation, and induces G1 arrest and apoptosis in human bladder cancer cells.

    Science.gov (United States)

    Liao, Yi-Xiang; Zeng, Jin-Min; Zhou, Jia-Jie; Yang, Guang-Hua; Ding, Kun; Zhang, Xian-Jue

    2016-06-01

    Human bladder cancer is the most common urological malignancy in China. One of the causes of carcinogenesis in the cancer may be gene mutation. Therefore, the present study investigated the expression levels of Rhotekin 2 (RTKN2), a Rho effector protein, in human bladder cancer tissues and cell lines, and examined the effect of RTKN2 on the proliferation, cell cycle, apoptosis and invasion of human bladder cancer cell lines. The mRNA expression levels of RTKN2 in 30 human bladder cancer tissue samples were significantly higher, compared with those in 30 normal human bladder tissue samples. The protein expression levels of RTKN2 was markedly higher in T24 and 5637 cells, compared with those in four other human bladder cancer cell lines. The silencing of RTKN2 by small interfering (si)RNA inhibited cell proliferation and arrested cell cycle at the G1 phase, via reducing the expression levels of the MCM10, CDK2, CDC24A and CDC6 cell cycle‑associated proteins in the T24 and 5637 cells. Furthermore, RTKN2 knockdown in the cells led to cell apoptosis and the suppression of invasion. These results suggested that RTKN2 is involved in the carcinogenesis and progression of human bladder cancer, indicating that RTKN2 may be a molecular target in cancer therapy. PMID:27082503

  14. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes.

    Science.gov (United States)

    Liu, Yu-Chen; Cai, Zhi-Ming; Zhang, Xue-Jun

    2016-01-01

    The persistence infection of low-risk type (type 6 or type 11) of human papillomavirus (HPV) is the main cause of genital warts. Given the high rate of recurrence after treatment, the use of a new molecular agent is certain to be of value. The aim of this study was to achieve targeted inactivation of viral E 7 gene in keratinocytes using the reprogrammed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system. To accomplish this, a universal CRISPR-Cas9 system for targeting both HPV6/11 E 7 genes was constructed by using a dual guide RNA vector. After transfection of the vector into E 7-transfromed keratinocytes, the expression level of E 7 protein was measured using western-blot analysis and the sequence of the E 7 gene was determined using Sanger sequencing. Cell proliferation was analyzed by CCK-8 assay, and cell apoptosis was evaluated by Hoechst 33258 staining, flow cytometry analysis and ELISA assay. The results indicated that both HPV6/11 E 7 genes can be inactivated by the single CRISPR-Cas9 system. Furthermore, silencing of E 7 led to inhibition of cell proliferation and induction of apoptosis in E 7-transfromed keratinocytes but not in normal keratinocytes. Our data suggested that the reprogrammed CRISPR-Cas9 system has the potential for the development of an adjuvant therapy for genital warts. PMID:26228041

  15. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes

    Directory of Open Access Journals (Sweden)

    Yu-Chen Liu

    2016-01-01

    Full Text Available The persistence infection of low-risk type (type 6 or type 11 of human papillomavirus (HPV is the main cause of genital warts. Given the high rate of recurrence after treatment, the use of a new molecular agent is certain to be of value. The aim of this study was to achieve targeted inactivation of viral E 7 gene in keratinocytes using the reprogrammed clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system. To accomplish this, a universal CRISPR-Cas9 system for targeting both HPV6/11 E 7 genes was constructed by using a dual guide RNA vector. After transfection of the vector into E 7-transfromed keratinocytes, the expression level of E 7 protein was measured using western-blot analysis and the sequence of the E 7 gene was determined using Sanger sequencing. Cell proliferation was analyzed by CCK-8 assay, and cell apoptosis was evaluated by Hoechst 33258 staining, flow cytometry analysis and ELISA assay. The results indicated that both HPV6/11 E 7 genes can be inactivated by the single CRISPR-Cas9 system. Furthermore, silencing of E 7 led to inhibition of cell proliferation and induction of apoptosis in E 7-transfromed keratinocytes but not in normal keratinocytes. Our data suggested that the reprogrammed CRISPR-Cas9 system has the potential for the development of an adjuvant therapy for genital warts.

  16. 14-3-3σ is an independent prognostic biomarker for gastric cancer and is associated with apoptosis and proliferation in gastric cancer.

    Science.gov (United States)

    Li, Yi-Liang; Liu, Lihua; Xiao, Yang; Zeng, Tao; Zeng, Chao

    2015-01-01

    14-3-3 proteins participate in various cellular processes, including apoptosis, proliferation and malignant transformation. 14-3-3σ, a member of the 14-3-3 protein family, is important in several types of cancer; however, little is known about the clinical significance and biological roles of 14-3-3σ in gastric cancer. The present study analyzed the expression pattern of 14-3-3σ in gastric cancer and investigated its correlation with the prognosis of gastric cancer patients. Furthermore, the association of 14-3-3σ with Ki-67, Bcl-2 and Bax was evaluated. 14-3-3σ was expressed at higher level in gastric cancer tissue compared with healthy gastric tissue, and 14-3-3σ expression was significantly correlated with tumor size and tumor node metastasis stage (Pknowledge, the present study data are the first to suggest that 14-3-3σ expression has been significantly associated with poor prognosis in gastric cancer. Additionally, 14-3-3σ overexpression was positively correlated with Ki-67 and Bcl-2 expression levels. Thus, 14-3-3σ is a potential prognostic marker for gastric cancer patients, and may be involved in regulating the apoptosis and proliferation of gastric cancer cells. PMID:25435977

  17. Centrosomal Protein of 55 Regulates Glucose Metabolism, Proliferation and Apoptosis of Glioma Cells via the Akt/mTOR Signaling Pathway

    Science.gov (United States)

    Wang, Guangzhi; Liu, Mingna; Wang, Hongjun; Yu, Shan; Jiang, Zhenfeng; Sun, Jiahang; Han, Ke; Shen, Jia; Zhu, Minwei; Lin, Zhiguo; Jiang, Chuanlu; Guo, Mian

    2016-01-01

    Introduction: Glioma is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and the progression of glioma are elusive and controversial. Centrosomal protein of 55 (CEP55) was initially described as a highly coiled-coil protein that plays critical roles in cell division, but was recently identified as being overexpressed in many human cancers. The function of CEP55 has not previously been characterized in glioma. We aim to discover the effect and mechanism of CEP55 in glioma development. Method: qRT-PCR and immunohistochemistry were used to analyze CEP55 expression. Glucose uptake, western blot, MTS, CCK-8, Caspase-3 activity and TUNEL staining assays were performed to investigate the role and mechanism of CEP55 on glioma cell process. Results: We found that the levels of CEP55 expression were upregulated in glioma. In addition, CEP55 appeared to regulate glucose metabolism of glioma cells. Furthermore, knockdown of CEP55 inhibited cell proliferation and induced cell apoptosis in glioma. Finally, we provided preliminary evidence that knockdown of CEP55 inhibited glioma development via suppressing the activity of Akt/mTOR signaling. Conclusions: Our results demonstrated that CEP55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway, and its promotive effect on glioma tumorigenesis can be a potential target for glioma therapy in the future. PMID:27471559

  18. The tumor-promoting activity of 2-acetylaminofluorene is associated with disruption of the p53 signaling pathway and the balance between apoptosis and cell proliferation

    International Nuclear Information System (INIS)

    The aromatic amine 2-acetylaminofluore (2-AAF) is a powerful complete genotoxic rat liver carcinogen that induces tumors without any additional interventions. While the tumor-initiating genotoxic activity of 2-AAF is well established, its tumor-promotion activity is far less understood. It is believed that the tumor-promoting property of 2-AAF is associated with selective enhancement of cell replication and sustained suppression of apoptosis in initiated cells. In the present study, we investigated the underlying mechanisms of tumor-promoting events induced by 2-AAF-exposure. Male Sprague-Dawley rats were fed NIH-31 diet containing 0.02% of 2-AAF for 12 and 24 weeks, and the expression pattern of genes associated with the p53-signaling pathway and microRNA genes was determined in the livers of control and 2-AAF-fed rats. The results indicate that the tumor-promoting property of 2-AAF during hepatocarcinogenesis is associated predominantly with the up-regulation of anti-apoptotic growth-related genes and down-regulation of expression of pro-apoptotic genes. This disrupts the balance between cell proliferation and apoptosis, which leads to consequential unrestricted cell proliferation, especially of initiated cells. Also, the long-term-administration of 2-AAF resulted in disruption of regulatory miR-34a-p53 feed-back loop that mediates apoptosis. This was evidenced by an increased expression of miR-34a in response to genotoxic effects of 2-AAF in the absence of p53 up-regulation, and loss of regulatory control of mir-34a on SIRT1 function. Additionally, the livers of 2-AAF-exposed rats were characterized by the substantial deregulation of expression of miR-18, miR-21, miR-182, and miR-200 family, microRNAs involved in control of apoptosis/cell proliferation and cell-cell contact pathways, two major pathways disrupted during the promotion stage of hepatocarcinogenesis

  19. The Study of the Effect of Hedyotis diffusa on the Proliferation and the Apoptosis of the Cervical Tumor in Nude Mouse Model.

    Science.gov (United States)

    Zhang, Peiying; Zhang, Bei; Gu, Juan; Hao, Lin; Hu, Fangfang; Han, Conghui

    2015-07-01

    To study the inhibitory effect of Hedyotis diffusa on cervical cancer and its underlining biomolecular mechanism. Human cervical carcinoma nude mice xenograft was established and the mice were treated by intra-gastric administration of boiled and concentrated Hedyotis diffusa. When the tumor grew to 10 mm in diameter, the mice were randomly divided into Hedyotis diffusa Willd. (HDW) group and control group. The tumor inhibitory rate, survival time, and the expression rate of Ki-67 protein in Hela cells as well as tumor cell apoptosis were compared between these two groups. Hedyotis diffusa had inhibitory effect on cervical cancer cells and induced apoptosis of Hela cells. The expression of Ki-67 protein significantly decreased (P Hedyotis diffusa directly inhibited the proliferation of cervical cancer cells and induced apoptosis of the tumor cells. It has a positive effect for the treatment of cervical cancer to achieve the goal of clearing the heat, removing the toxins, eliminating the stasis, and dissolving the masses. PMID:25677988

  20. Butanol-Partitioned Extraction from Aqueous Extract of Gracilaria tenuistipitata Inhibits Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress.

    Science.gov (United States)

    Yeh, Chi-Chen; Li, Kun-Tzu; Tang, Jen-Yang; Wang, Hui-Ru; Liu, Jing-Ru; Huang, Hurng-Wern; Chang, Fang-Rong; Tsai, Cheng-En; Lo, I-Wen; Huang, Ming-Yii; Chang, Hsueh-Wei

    2016-05-01

    We have previously found that the aqueous extract of Gracilaria tenuistipitata (AEGT) and its partitioned fractions had antioxidant properties in biochemical assays. Although the butanol-partitioned fraction of AEGT (AEGT-pBuOH) had a stronger antioxidant performance than AEGT, its biological effects are still unknown. In this study, the cellular responses of oral cancer cells to AEGT-pBuOH were monitored in terms of cell viability, cell cycle progression, apoptosis, and oxidative stress responses. In an ATP content assay, the cell viability of oral cancer cells treated with AEGT-pBuOH was dose responsively inhibited (p < 0.005). For flow cytometry, AEGT-pBuOH was also found to dose responsively induce cell cycle disturbance by propidium iodide (PI) staining and to induce apoptosis by annexin V/PI and pan-caspase staining (p < 0.005). In AEGT-pBuOH-treated oral cancer cells, the reactive oxygen species (ROS) was increased and mitochondrial membrane potential was decreased in a dose-response manner (p < 0.005). These results suggest that AEGT-pBuOH inhibited the proliferation and induced apoptosis of oral cancer cells involving the ROS generation and mitochondrial depolarization. PMID:27138906

  1. CRCT1 regulated by microRNA-520 g inhibits proliferation and induces apoptosis in esophageal squamous cell cancer.

    Science.gov (United States)

    Wu, Ning; Song, Yang; Pang, Liewen; Chen, Zhiming

    2016-06-01

    Cysteine-rich C-terminal 1 (CRCT1) is encoded by the epidermal differentiation complex (EDC), a gene cluster that was recently linked to esophageal cancer. However, the role of CRCT1 in esophageal squamous cell cancer (ESCC) and the underlying mechanism remain unclear. In the present study, we show that CRCT1 is downregulated in ESCC in association with TNM stage and lymph node metastasis. Restoring CRCT1 in ESCC cells by lentivirus-mediated gene transfer inhibited cell proliferation and xenograft tumor formation. CRCT1 overexpression promoted ESCC cell apoptosis and upregulated the expression of apoptosis-related proteins. CRCT1 expression was inversely correlated with the levels of microRNA-520 g (miR-520 g) in ESCC tissues, and CRCT1 was identified as a direct target gene of miR-520 g in ESCC cells. Consistent with the effects of CRCT1 overexpression, knockdown of miR-520 g inhibited growth and induced apoptosis in ESCC cells. Our results suggest that CRCT1 functions as a tumor suppressor gene in ESCC and is regulated by miR-520 g, providing potential therapeutic targets for the treatment of ESCC. PMID:26718216

  2. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells

    Institute of Scientific and Technical Information of China (English)

    Qin FU; Chen HE; Zheng-rong MAO

    2013-01-01

    Epstein-Barr virus (EBV),a human gammaherpesvirus carried by more than 90% of the world's population,is associated with malignant tumors such as Burkitt's lymphoma (BL),Hodgkin lymphoma,post-transplant lymphoma,extra-nodal natural killer/T cell lymphoma,and nasopharyngeal and gastric carcinomas in immune-compromised patients.In the process of infection,EBV faces challenges:the host cell environment is harsh,and the survival and apoptosis of host cells are precisely regulated.Only when host cells receive sufficient survival signals may they immortalize.To establish efficiently a lytic or long-term latent infection,EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways.This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors,which decide the fate of the host cell.The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown.Still,EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host.We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.

  3. Pharmacological blockade of the fatty acid amide hydrolase (FAAH alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context

    Directory of Open Access Journals (Sweden)

    Patricia eRivera

    2015-03-01

    Full Text Available Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+, astroglia (GFAP+, and microglia (Iba1+ cells were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day at one dose/4-days resting or 5 doses (1 dose/day. Repeated URB597 treatment increased the plasma levels of the endocannabinoids oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3+ and BrdU+ subgranular cells as well as GFAP+, Iba1+ and cleaved caspase-3+ cells, which was accompanied with decreased hippocampal expressions of cannabinoid CB1 receptor and FAAH. In the hypothalami of these rats, the number of phospho-H3+, GFAP+ and 3-weeks-old BrdU+ cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in FAAH and/or CB1 receptor expressions and a negative energy context.

  4. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9.

    Science.gov (United States)

    Nie, Fang; Liu, Tianming; Zhong, Liang; Yang, Xianggui; Liu, Yunhong; Xia, Hongwei; Liu, Xiaoqiang; Wang, Xiaoyan; Liu, Zhicheng; Zhou, Li; Mao, Zhaomin; Zhou, Qin; Chen, Tingmei

    2016-01-01

    Increasing evidence revealed that miRNAs, the vital regulators of gene expression, are involved in various cellular processes, including cell growth, differentiation, apoptosis and progression. In addition, miRNAs act as oncogenes and/or tumor suppressors. The present study aimed to verify the potential roles of miR148b in human renal cancer cells. miR‑148b was found to be downregulated in human renal cancel tissues and human renal cancer cell lines. Functional studies demonstrated that plasmid‑mediated overexpression of miR‑148b promoted cell proliferation, increased the S‑phase population of the cell cycle and enhanced apoptosis in the 786‑O and OS‑RC‑2 renal cancer cell lines, while it did not appear to affect the total number of viable cells according to a Cell Counting Kit‑8 assay. Subsequently, a luciferase reporter assay verified that miR148b directly targeted mitogen‑activated protein kinase (MAPK) kinase kinase 9 (MAP3K9), an upstream activator of MAPK kinase/c‑Jun N‑terminal kinase (JNK) signaling, suppressing the protein but not the mRNA levels. Furthermore, western blot analysis indicated that overexpression of miR148b in renal cancer cells inhibited MAPK/JNK signaling by decreasing the expression of phosphorylated (p)JNK. In addition, overexpression of MAP3K9 and pJNK was detected in clinical renal cell carcinoma specimens compared with that in their normal adjacent tissues. The present study therefore suggested that miR‑148b exerts an oncogenic function by enhancing the proliferation and apoptosis of renal cancer cells by inhibiting the MAPK/JNK pathway. PMID:26573018

  5. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

    Science.gov (United States)

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3(+) and BrdU(+) subgranular cells as well as GFAP(+), Iba1(+) and cleaved caspase-3(+) cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3(+), GFAP(+) and 3-weeks-old BrdU(+) cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context. PMID:25870539

  6. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  7. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    International Nuclear Information System (INIS)

    Highlights: → In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. → We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. → We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. → miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. → In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  8. Patterns of cell proliferation and apoptosis by topographic region in normal Bos taurus vs. Bos indicus crossbreeds bovine placentae during pregnancy

    Directory of Open Access Journals (Sweden)

    Ambrósio Carlos E

    2009-03-01

    Full Text Available Abstract Background Placental and fetal growth requires high rates of cellular turnover and differentiation, which contributes to conceptus development. The trophoblast has unique properties and a wide range of metabolic, endocrine and angiogenic functions, but the proliferative profile of the bovine placenta characterized by flow cytometry analysis and its role in fetal development are currently uncharacterized. Complete understanding of placental apoptotic and proliferative rates may be relevant to development, especially if related to the pathogenesis of pregnancy losses and placental abnormalities. Methods In this study, the proliferation activity and apoptosis in different regions of normal bovine placenta (central and boundary regions of placentomes, placentomal fusion, microplacentomes, and interplacentomal regions, from distinct gestation periods (Days 70 to 290 of pregnancy, were analyzed by flow cytometry. Results Our results indicated that microplacentomes presented a lower number of apoptotic cells throughout pregnancy, with a higher proliferative activity by the end of gestation, suggesting that such structures do not contribute significantly to normal of placental functions and conceptus development during pregnancy. The placentome edges revealed a higher number of apoptotic cells from Day 170 on, which suggests that placentome detachment may well initiate in this region. Conclusion Variations involving proliferation and apoptotic rates may influence placental maturation and detachment, compromising placental functions and leading to fetal stress, abnormalities in development and abortion, as frequently seen in bovine pregnancies from in vitro fertilization and cloning procedures. Our findings describing the pattern of cell proliferation and apoptosis in normal bovine pregnancies may be useful for unraveling some of the developmental deviations seen in nature and after in vitro embryo manipulations.

  9. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Guodong [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Peng, Tao; Zhou, Xuhong [Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Yuan, Yulin, E-mail: yuanyulin19620120@126.com [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China)

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  10. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    International Nuclear Information System (INIS)

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21WAF1/CIP1) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF mediates

  11. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Wu, Wen-Jeng [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Huang, Huei-Sheng, E-mail: huanghs@mail.ncku.edu.tw [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-15

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21{sup WAF1/CIP1}) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF

  12. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    International Nuclear Information System (INIS)

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions

  13. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    International Nuclear Information System (INIS)

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension

  14. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Zou, Lihui [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Xiao, Fei [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Wang, Chen, E-mail: chenwangcjfh@163.com [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China)

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  15. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate.

    Directory of Open Access Journals (Sweden)

    Riánsares Arriazu

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS: The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1, PCNA (LIPCNA, MCM7 (LIMCM7, ubiquitin (LIUBI, apoptotic cells (LIAPO, and p53 (LIp53; volume fraction of Bcl-2 (VFBcl-2; and length of microvessels per unit of volume (LVMV/mm3. Data were analyzed using Student's t-test and Pearson correlation test. RESULTS: The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS: Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.

  16. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    International Nuclear Information System (INIS)

    Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29) and primary colon cells (CCD-112CoN, nontransformed normal phenotype) was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR-γ-tocopherol without damage to normal colon cells. The amount growth

  17. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Sherman Devin

    2006-01-01

    Full Text Available Abstract Background Mediterranean societies, with diets rich in vitamin E isoforms, have a lower risk for colon cancer than those of northern Europe and the Americas. Vitamin E rich diets may neutralize free radicals generated by fecal bacteria in the gut and prevent DNA damage, but signal transduction activities can occur independent of the antioxidant function. The term vitamin E represents eight structurally related compounds, each differing in their potency and mechanisms of chemoprevention. The RRR-γ-tocopherol isoform is found primarily in the US diet, while RRR-α-tocopherol is highest in the plasma. Methods The effectiveness of RRR-α- and RRR-γ-tocopherol at inhibiting cell growth and inducing apoptosis in colon cancer cell lines with varying molecular characteristics (SW480, HCT-15, HCT-116 and HT-29 and primary colon cells (CCD-112CoN, nontransformed normal phenotype was studied. Colon cells were treated with and without RRR-α- or RRR-γ-tocopherol using varying tocopherol concentrations and time intervals. Cell proliferation and apoptosis were measured using the trypan blue assay, annexin V staining, DNA laddering and caspase activation. Results Treatment with RRR-γ-tocopherol resulted in significant cell death for all cancer cell lines tested, while RRR-α-tocopherol did not. Further, RRR-γ-tocopherol treatment showed no cytotoxicity to normal colon cells CCD-112CoN at the highest concentration and time point tested. RRR-γ-tocopherol treatment resulted in cleavage of PARP, caspase 3, 7, and 8, but not caspase 9. Differences in the percentage cell death and apoptosis were observed in different cell lines suggesting that molecular differences in these cell lines may influence the ability of RRR-γ-tocopherol to induce cell death. Conclusion This is the first study to demonstrate that multiple colon cancer cell lines containing varying genetic alterations will under go growth reduction and apoptosis in the presence of RRR

  18. CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Johnson Erica L

    2010-06-01

    Full Text Available Abstract Background Cisplatin is more often used to treat ovarian cancer (OvCa, which provides modest survival advantage primarily due to chemo-resistance and up regulated anti-apoptotic machineries in OvCa cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in OvCa cell may improve therapeutic outcomes. We have shown that ovarian cancer cells express CC chemokine receptor-9 (CCR9. Others have also shown that CCL25, the only natural ligand for CCR9, up regulates anti-apoptotic proteins in immature T lymphocytes. Hence, it is plausible that CCR9-mediated cell signals might be involved in OvCa cell survival and inhibition of cisplatin-induced apoptosis. In this study, we investigated the potential role and molecular mechanisms of CCR9-mediated inhibition of cisplatin-induced apoptosis in OvCa cells. Methods Cell proliferation, vibrant apoptosis, and TUNEL assays were performed with or without cisplatin treatment in presence or absence of CCL25 to determine the role of the CCR9-CCL25 axis in cisplatin resistance. In situ Fast Activated cell-based ELISA (FACE assays were performed to determine anti-apoptotic signaling molecules responsible for CCL25-CCR9 mediated survival. Results Our results show interactions between CCR9 and CCL25 increased anti-apoptotic signaling cascades in OvCa cells, which rescued cells from cisplatin-induced cell death. Specifically, CCL25-CCR9 interactions mediated Akt, activation as well as GSK-3β and FKHR phosphorylation in a PI3K-dependent and FAK-independent fashion. Conclusions Our results suggest the CCR9-CCL25 axis plays an important role in reducing cisplatin-induced apoptosis of OvCa cells.

  19. Glucose regulates fatty acid binding protein interaction with lipids and peroxisome proliferator-activated receptor α

    OpenAIRE

    Hostetler, Heather A.; Balanarasimha, Madhumitha; Huang, Huan; Kelzer, Matthew S.; Kaliappan, Alagammai; Kier, Ann B.; Schroeder, Friedhelm

    2010-01-01

    Although the pathophysiology of diabetes is characterized by elevated levels of glucose and long-chain fatty acids (LCFA), nuclear mechanisms linking glucose and LCFA metabolism are poorly understood. As the liver fatty acid binding protein (L-FABP) shuttles LCFA to the nucleus, where L-FABP directly interacts with peroxisome proliferator-activated receptor-α (PPARα), the effect of glucose on these processes was examined. In vitro studies showed that L-FABP strongly bound glucose and glucose-...

  20. Sodium orthovanadate associated with pharmacological doses of ascorbate causes an increased generation of ROS in tumor cells that inhibits proliferation and triggers apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Günther, T-hat nia Mara Fischer; Kviecinski, Maicon Roberto; Baron, Carla Cristine; Felipe, Karina Bettega; Farias, Mirelle Sifroni; Ourique da Silva, Fabiana; Bücker, Nádia Cristina Falcão [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Pich, Claus Tröger [Campus de Araranguá, Universidade Federal de Santa Catarina, Araranguá (Brazil); Ferreira, Eduardo Antonio [Universidade de Brasília, Faculdade de Ceilândia, DF (Brazil); Filho, Danilo Wilhelm [Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Verrax, Julien; Calderon, Pedro Buc [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium); Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil)

    2013-01-18

    Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na{sub 3}VO{sub 4}) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na{sub 3}VO{sub 4} was cytotoxic against T24 cells (EC{sub 50} = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC{sub 50} fell to 3.3 μM. Na{sub 3}VO{sub 4} plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na{sub 3}VO{sub 4} did not directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na{sub 3}VO{sub 4} and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na{sub 3}VO{sub 4} alone, or combined with ascorbate, increased catalase activity, but only Na{sub 3}VO{sub 4} plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na{sub 3}VO{sub 4} plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na{sub 3}VO{sub 4}. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na{sub 3}VO{sub 4} in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.

  1. Inhibition of human prostate cancer cells proliferation by a selective alpha1-adrenoceptor antagonist labedipinedilol-A involves cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    In this research, we conducted an in vitro analysis to evaluate the prostate cancer cells response to labedipinedilol-A in order to determine the effect of this selective α1-adrenoceptor antagonist to suppress prostate cancer cell growth by affecting cell proliferation and apoptosis. Here, we report that treatment of androgen-sensitive (LNCaP) and androgen-insensitive (PC-3) prostate cancer cells with labedipinedilol-A inhibited cell proliferation in concentration-dependent and time-dependent manners. Moreover, norepinephrine-stimulated proliferation of both cell lines are markedly inhibited by labedipinedilol-A. The probable involvement of α1-adrenoceptors in this cellular response is suggested. Labedipinedilol-A-induced growth inhibition was associated with G0/G1 arrest, and G2/M arrest depending upon concentrations. Cell cycle blockade was associated with reduced amounts of cyclin D1/2, cyclin E, Cdk2, Cdk4, and Cdk6 and increased levels of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27). In addition, labedipinedilol-A also induced apoptosis in PC-3 cells, as determined by using Hoechst 33342 staining, DNA fragmentation, and Annexin V staining assay. Furthermore, labedipinedilol-A triggered the mitochondrial apoptotic pathway, as indicated by increasing the expression of Bax, but decreasing the level of Bcl-2, resulting in mitochondrial membrane potential loss, cytochrome c release, and activation of caspase-9 and -3. We further investigated the role of MAPK cascades in the anti-proliferative and apoptosis effects of labedipinedilol-A, and confirmed that labedipinedilol-A could activate JNK1/2 but not p38 in both cell lines. Unlike JNK1/2, however, labedipinedilol-A treatment resulted in down-regulation of phospho-ERK1/2 expression. We concluded that labedipinedilol-A possessed the growth-suppressive and apoptotic effects on LNCaP and PC-3 cells by its α1-adrenoceptor blockade, and the apoptotic effects of labedipinedilol-A primarily through caspases and

  2. Down regulation of BCL11B expression inhibits proliferation and induces apoptosis in malignant T cells by BCL11B-935-siRNA.

    Science.gov (United States)

    Huang, Xin; Chen, Si; Shen, Qi; Chen, Shaohua; Yang, Lijian; Grabarczyk, Piotr; Przybylski, Grzegorz K; Schmidt, Christian A; Li, Yangqiu

    2011-07-01

    To screen the highly efficient and specific B-cell chronic lymphocytic leukemia/lymphoma 11B (BCL11B) small interfering RNA (siRNA) which are able to downregulate the BCL11B gene expression in human T-cell acute lymphoblastic leukemia, thereby inhibiting the leukemic T-cell proliferation and inducing apoptosis, four BCL11B-siRNAs and the scrambled non-silencing siRNA control (sc) were designed and obtained by chemosynthesis. After nucleofection, BCL11B expression in the mRNA and the protein levels were measured by qRT-PCR and immunoblotting, respectively. The biological consequences based on the highly efficient and specific BCL11B-siRNA were demonstrated by CCK-8 kit, morphological changes (Hoechst 33258 staining), high-resolution imaging, and flow cytometry. Reduction in the BCL11B mRNA level was observed at 24 or 48 hours in molt-4 T cells with BCL11B-935-siRNA, BCL11B-434-siRNA, or BCL11B-748-siRNA, respectively. BCL11B protein expression levels were reduced by 34·77% and 41·73% in the BCL11B-935-siRNA- and BCL11B-434-siRNA-treated cells, compared with the control level at 72 hours. In comparison with BCL11B-434-siRNA treatment group, the Molt-4 cells transfected with the BCL11B-935-siRNA showed significantly inhibited proliferation and effectively induced apoptosis (P<0·05). When highly efficient and specific BCL11B-935-siRNA was used to analyze the inhibition of BCL11B mRNA level in primary T-cell acute lymphoblastic leukemia (T-ALL) cells, similar result was obtained. In conclusion, siRNAs targeting the different exon domains resulted in different silencing effects and biological consequences. Suppression of BCL11B by RNA interference could inhibit the proliferation and induce the apoptosis effectively in leukemic T cells, which might be considered as a new target therapeutic strategy in T-cell malignancies. PMID:21756541

  3. Britannin, a sesquiterpene lactone, inhibits proliferation and induces apoptosis through the mitochondrial signaling pathway in human breast cancer cells.

    Science.gov (United States)

    Hamzeloo-Moghadam, Maryam; Aghaei, Mahmoud; Fallahian, Faranak; Jafari, Seyyed Mehdi; Dolati, Masoumeh; Abdolmohammadi, Mohammad Hossein; Hajiahmadi, Sima; Esmaeili, Somayeh

    2015-02-01

    Induction of apoptosis in cancer cells can be a promising treatment method in cancer therapy. Naturally derived products had drawn growing attention as agent in cancer therapy. The main target of anticancer drugs may be distinct, but eventually, they lead to identical cell death pathway, which is apoptosis. Here, we indicated that britannin, a sesquiterpene lactone isolated from Asteraceae family, has antiproliferative activity on the MCF-7 and MDA-MB-468 human breast cancer cells. Annexin V/propidium iodide (PI) staining, Hoechst 33258 staining, and caspase-3/9 activity assay confirmed that britannin is able to induce apoptosis in MCF-7 and MDA-MB-468 cells. The Western blot analysis showed that the expression of Bcl-2 was noticeably decreased in response to britannin treatment, while the expression of Bax protein was increased, which were positively correlated with elevated expression of p53. Moreover, britannin also increased reactive oxygen species (ROS) generation which in turn triggered the loss of mitochondrial transmembrane potential (ΔΨm) and the subsequent release of cytochrome c from mitochondria into cytosol. Taken together, these results suggest that britannin inhibits growth of MCF-7 and MDA-MB-468 breast cancer cells through the activation of the mitochondrial apoptotic pathway and may potentially serve as an agent for breast cancer therapy. PMID:25342596

  4. Effect of apoptosis inhibiting gene c - FLIPs on proliferation and apoptosis of human lung adenocarcinoma cells%凋亡抑制基因c-FLIPs对人肺腺癌细胞增殖和凋亡的作用

    Institute of Scientific and Technical Information of China (English)

    卫萍; 李雪萍; 姜凤良; 罗秀成; 王爽; 张典; 李爱连

    2016-01-01

    Objective:To evaluate the effects of recombinant adenovirus apoptosis inhibiting gene c - FLIPs on proliferation and apoptosis of human lung adenocarcinoma cells. Methods:Recombinant adenovirus c - FLIPs was constructed and transfected to human lung adenocarcinoma cells Calu - 3. Real - time PCR detected c - FLIPs, Caspase - 8,Caspase - 10 and Bcl - 2,mononuclear cell direct cytotoxicity assay for cell proliferation,and flow cytom-etry for apoptotic after transfected. Results:Successfully constructed the over expression of recombinant adenoviral Ad5 c - FLIPs. Real - time PCR detected c - FLIPs expression in Calu - 3 cell with high expression,Caspase - 8, Caspase - 10 and Bcl - 2 expression with low expression. MTT assay found that over expression of c - FLIPs gene can induce cell proliferation. Apoptosis rate in control group(55. 17 ± 9. 68)% was higher than Calu - 3 cells(10. 97 ± 1. 66)% ,P < 0. 05. Conclusion:c - FLIPs can significantly induce the proliferation of human lung adenocarcinoma cells,and inhibit the apoptosis.%目的:探讨过表达凋亡抑制基因 c - FLIPs 重组腺病毒对人肺腺癌细胞增殖和凋亡的作用。方法:构建过表达凋亡抑制 c - FLIPs 的重组腺病毒 Ad5 c - FLIPs,感染人肺腺癌细胞 Calu -3。Real - time PCR 检测感染前后 c - FLIPs、Caspase -8,Caspase -10和 Bcl -2的表达。MTT 法检测细胞增殖。流式细胞仪检测感染Ad5 c - FLIPs 后人肺腺癌细胞的凋亡情况。结果:成功构建过表达 c - FLIPs 重组腺病毒 Ad5 c - FLIPs,real- time PCR 检测凋亡抑制基因 c - FLIPs 在 Calu -3细胞株高表达,过表达 c - FLIPs 基因,凋亡相关基因Caspase -8、Caspase -10和 Bcl -2的表达明显降低。MTT 法检测感染前后细胞增殖情况发现,过表达 c -FLIPs 基因可诱导细胞增殖,流式细胞仪分析经 PI 染色后的 Calu -3细胞株,对照组和腺病毒感染组细胞的凋亡率分别为(55.17±9.68)%和(10.97±1.66)%,

  5. Paullinia cupana Mart var. sorbilis, guaraná, reduces cell proliferation and increases apoptosis of B16/F10 melanoma lung metastases in mice

    Directory of Open Access Journals (Sweden)

    H. Fukumasu

    2008-04-01

    Full Text Available We showed that guaraná (Paullinia cupana Mart var. sorbilis had a chemopreventive effect on mouse hepatocarcinogenesis and reduced diethylnitrosamine-induced DNA damage. In the present experiment, we evaluated the effects of guaraná in an experimental metastasis model. Cultured B16/F10 melanoma cells (5 x 10(5 cells/animal were injected into the tail vein of mice on the 7th day of guaraná treatment (2.0 mg P. cupana/g body weight, per gavage and the animals were treated with guaraná daily up to 14 days until euthanasia (total treatment time: 21 days. Lung sections were obtained for morphometric analysis, apoptotic bodies were counted to calculate the apoptotic index and proliferating cell nuclear antigen-positive cells were counted to determine the proliferation index. Guaraná-treated (GUA animals presented a 68.6% reduction in tumor burden area compared to control (CO animals which were not treated with guaraná (CO: 0.84 ± 0.26, N = 6; GUA: 0.27 ± 0.24, N = 6; P = 0.0043, a 57.9% reduction in tumor proliferation index (CO: 23.75 ± 20.54, N = 6; GUA: 9.99 ± 3.93, N = 6; P = 0.026 and a 4.85-fold increase in apoptotic index (CO: 66.95 ± 22.95, N = 6; GUA: 324.37 ± 266.74 AB/mm², N = 6; P = 0.0152. In this mouse model, guaraná treatment decreased proliferation and increased apoptosis of tumor cells, consequently reducing the tumor burden area. We are currently investigating the molecular pathways of the effects of guaraná in cultured melanoma cells, regarding principally the cell cycle inhibitors and cyclins.

  6. Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer

    Science.gov (United States)

    Thorenoor, Nithyananda; Faltejskova-Vychytilova, Petra; Hombach, Sonja; Mlcochova, Jitka; Kretz, Markus; Svoboda, Marek; Slaby, Ondrej

    2016-01-01

    We determined expression of 83 long non-coding RNAs (lncRNAs) and identified ZFAS1 to be significantly up-regulated in colorectal cancer (CRC) tissue. In cohort of 119 CRC patients we observed that 111 cases displayed at least two-times higher expression of ZFAS1 in CRC compared to paired normal colorectal tissue (P HCT116+/+, HCT116−/− and DLD-1) we showed, that ZFAS1 silencing decreases proliferation through G1-arrest of cell cycle, and also tumorigenicity of CRC cells. We identified Cyclin-dependent kinase 1 (CDK1) as interacting partner of ZFAS1 by pull-down experiment and RNA immunoprecipitation. Further, we have predicted by bioinformatics approach ZFAS1 to sponge miR-590-3p, which was proved to target CDK1. Levels of CDK1 were not affected by ZFAS1 silencing, but cyclin B1 was decreased in both cell lines. We observed significant increase in p53 levels and PARP cleavage in CRC cell lines after ZFAS1 silencing indicating increase in apoptosis. Our data suggest that ZFAS1 may function as oncogene in CRC by two main actions: (i) via destabilization of p53 and through (ii) interaction with CDK1/cyclin B1 complex leading to cell cycle progression and inhibition of apoptosis. However, molecular mechanisms behind these interactions have to be further clarified. PMID:26506418

  7. Leccinum vulpinum Watling induces DNA damage, decreases cell proliferation and induces apoptosis on the human MCF-7 breast cancer cell line.

    Science.gov (United States)

    Reis, Filipa S; Sousa, Diana; Barros, Lillian; Martins, Anabela; Morales, Patricia; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2016-04-01

    The current work aimed to study the antitumour activity of a phenolic extract of the edible mushroom Leccinum vulpinum Watling, rich essentially in hydroxybenzoic acids. In a first approach, the mushroom extract was tested against cancer cell growth by using four human tumour cell lines. Given the positive results obtained in these initial screening experiments and the evidence of some studies for an inverse relationship between mushroom consumption and breast cancer risk, a detailed study of the bioactivity of the extract was carried out on MCF-7 cells. Once the selected cell line to precede the work was the breast adenocarcinoma cell line, the human breast non-malignant cell line MCF-10A was used as control. Overall, the extract decreased cellular proliferation and induced apoptosis. Furthermore, the results also suggest that the extract causes cellular DNA damage. Data obtained highlight the potential of mushrooms as a source of biologically active compounds, particularly with antitumour activity. PMID:26854920

  8. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Mei [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China); Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Sun, Wen-Sheng [Institute of Immunology, Shandong University School of Medicine, Jinan 250012 (China); Liu, Yu-Gang, E-mail: liu.yugang@sdu.edu.cn [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Jia, Ji-Hui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China)

    2011-08-05

    Highlights: {yields} miR-29c was significantly downregulated in HBV-related HCC. {yields} TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. {yields} Overexpression of miR-29c suppressed TNFAIP3. {yields} miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  9. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Highlights: → miR-29c was significantly downregulated in HBV-related HCC. → TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. → Overexpression of miR-29c suppressed TNFAIP3. → miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  10. Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways-A proteomic approach

    Directory of Open Access Journals (Sweden)

    Reddivari Lavanya

    2011-08-01

    Full Text Available Abstract Background We and others have previously reported that resveratrol (RSV suppresses colon cancer cell proliferation and elevates apoptosis in vitro and/or in vivo, however molecular mechanisms are not fully elucidated. Particularly, little information is available on RSV's effects on metabolic pathways and the cell-extra cellular matrix (ECM communication that are critical for cancer cell growth. To identify important targets of RSV, we analyzed whole protein fractions from HT-29 advanced human colon cancer cell line treated with solvent control, IGF-1 (10 nM and RSV (150 μM using LC/MS/MS-Mud PIT (Multidimensional Protein Identification Technology. Results Pentose phosphate pathway (PPP, a vital metabolic pathway for cell cycle progression, was elevated and suppressed by IGF-1 and RSV, respectively in the HT-29 cell line. Enzymatic assays confirmed RSV suppression of glucose-6 phosphate dehydrogenase (rate limiting and transketolase, key enzymes of the PPP. RSV (150 μM suppressed, whereas IGF-1 (10 nM elevated focal adhesion complex (FAC proteins, talin and pFAK, critical for the cell-ECM communication. Western blotting analyses confirmed the suppression or elevation of these proteins in HT-29 cancer cells treated with RSV or IGF-1, respectively. Conclusions Proteomic analysis enabled us to establish PPP and the talin-pFAK as targets of RSV which suppress cancer cell proliferation and induce apoptosis in the colon cancer cell line HT-29. RSV (150 μM suppressed these pathways in the presence and absence of IGF-1, suggesting its role as a chemo-preventive agent even in obese condition.

  11. Effect of phytic acid from rice and corn on morphology, cell proliferation, apoptosis and cyclooxygenase-2 expression in swine jejunal explants

    Directory of Open Access Journals (Sweden)

    Elisângela Olegário da Silva

    2014-06-01

    Full Text Available Phytic acid (IP6 is a potent antioxidant present in several natural foods. Beneficial effects on colon cancer and inflammation have been associated to IP6 in several studies, however, scarce data about the effect on small intestine are available. The aim of the present study was to evaluate the effect of different doses of IP6 from rice and corn on intestinal morphology, cellular proliferation, apoptosis and cyclooxygenase-2 (Cox-2 expression using swine jejunal explants as experimental model. This report demonstrated that explants treated with 0.5 mM, 2.5 mM and 5 mM of IP6 from rice and 2.5 mM and 5 mM from corn showed higher villi height compared to control. Explants treated with 2.5 mM and 5 mM IP6 from rice exhibited a significant reduction on intestinal histological changes (villi atrophy and fusion, edema, lymphatic vessel dilation, loss of apical enterocytes, cell vacuolation, necrotic debris, morphology of enterocytes and microvilli and number of villi. The cellular proliferation decreased in the explants treated with the dosages of 2.5 mM and 5 mM from rice and a significant decrease in cell apoptosis was observed in the treatments with 2.5 mM IP6 from rice and 5 mM IP6 from corn compared to the control. The explants treated with 2.5 mM and 5 mM IP6 from rice and corn showed a significant reduction of the Cox-2 expression. Higher dosages of IP6 from rice and corn used in this experiment increased the viability and preservation of intestinal tissue as evidenced by morphological and immunohistochemical assays.

  12. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Seok, Heon [Department of Biomedical Science, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Lee, Dong Gun [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  13. A eudesmane-type sesquiterpene isolated from Pluchea odorata (L.) Cass. combats three hallmarks of cancer cells: Unrestricted proliferation, escape from apoptosis and early metastatic outgrowth in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Michael [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); McKinnon, Ruxandra [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Nguyen, Chi Huu [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Holzner, Silvio [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Zehl, Martin [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Atanasov, Atanas Georgiev [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Schelch, Karin [Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria); Krieger, Sigurd [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Diaz, Rene; Frisch, Richard [Institute for Ethnobiology, Playa Diana, San José/Petén (Guatemala); Feistel, Björn [Finzelberg GmbH & Co. KG, Koblenzer Strasse 48-54, D-56626 Andernach (Germany); Jäger, Walter [Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Ecker, Gerhard F. [Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna (Austria); and others

    2015-07-15

    Highlights: • PO-1 perturbs cell cycle regulators and progression. • PO-1 inhibits HL-60 cell expansion. • PO-1 and PO-2 attenuate tumour cell intravasation through the endothelial barrier. - Abstract: Pluchea odorata is ethno pharmaceutically used to treat inflammation-associated disorders. The dichloromethane extract (DME) was tested in the carrageenan-induced rat paw oedema assay investigating its effect on inflammation that was inhibited by 37%. Also an in vitro anti-neoplastic potential was reported. However, rather limited information about the bio-activity of purified compounds and their cellular mechanisms are available. Therefore, two of the most abundant eudesmanes in P. odorata were isolated and their anti-neoplastic and anti-intravasative activities were studied. HL-60 cells were treated with P. odorata compounds and metabolic activity, cell number reduction, cell cycle progression and apoptosis induction were correlated with relevant protein expression. Tumour cell intravasation through lymph endothelial monolayers was measured and potential causal mechanisms were analyzed by Western blotting. Compound PO-1 decreased the metabolic activity of HL-60 cells (IC{sub 50} = 8.9 μM after 72 h) and 10 μM PO-1 induced apoptosis, while PO-2 showed just weak anti-neoplastic activities at concentrations beyond 100 μM. PO-1 arrested the cell cycle in G1 and this correlated with induction of JunB expression. Independent of this mechanism 25 μM PO-1 decreased MCF-7 spheroid intravasation through the lymph endothelial barrier. Hence, PO-1 inhibits an early step of metastasis, impairs unrestricted proliferation and induces apoptosis at low micromolar concentrations. These results warrant further testing in vivo to challenge the potential of PO-1 as novel lead compound.

  14. Effects of Antisense Oligodeoxynucleotide to Follicle-stimulating Hormone Receptor on the Cell Proliferation and Apoptosis in Cells Derived from Human Ovarian Mucinous Cystadenocarcinoma in Vitro

    Institute of Scientific and Technical Information of China (English)

    LI Shuang; MA Ding; ZHU Changhong

    2007-01-01

    The human ovarian mucinous cystadenocarcinoma (hOMC) cells were co-cultured with antisense oligodeoxynucleotide (antisense ODN), nonsense ODN, and follicle-stimulating hormone (FSH) at different concentrations for the purpose of observing the effects of antisense ODN to FSH receptor (FSHR) on the proliferation and apoptosis of cultured hOMC cells in vitro. The inhibitory rates of growth were measured by using MTT method on the 2nd, 4th, 6th, 8th and 10th days after the interference of antisense ODN, nonsense ODN, and FSH, respectively. The apoptotic rates and the cell cycles were determined by means of flow cytometry, the apoptosis indexes were detected by using TUNEL, and the expression of caspase-3 was measured by using SP immunohistochemistry. Compared with that in the control group, the proliferative activity of hOMC cells was increased obviously in FSH groups (P<0.05 or P<0.01), decreased distinctly in antisense ODN groups (P<0.05 or P<0.01), and unchanged in nonsense ODN groups, respectively. Meanwhile, antisense ODN could significantly antagonize the FSH-promoted cell proliferative activity (P<0.01). Compared with those in the control group, the apoptotic rates and the expression of caspase-3 were dramatically increased in the mid- and high-dose antisense ODN groups (P<0.05 or P<0.01), while the number of cells in G1/G0 phase was significantly decreased and that in S phase distinctly increased (P<0.01). There was no change in nonsense ODN groups (P>0.05). It was suggested that FSH may improve the development of hOMC cells. However, antisense ODN could inhibit proliferative activity and the FSH-promoted proliferative activity in hOMC cells, at the same time, antisense ODN could inhibit hOMC cell growth by inducing apoptosis.

  15. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  16. Inhibition of Oncogenic Transcription Factor REL by the Natural Product Derivative Calafianin Monomer 101 Induces Proliferation Arrest and Apoptosis in Human B-Lymphoma Cell Lines

    Science.gov (United States)

    Yeo, Alan T.; Chennamadhavuni, Spandan; Whitty, Adrian; Porco, John A.; Gilmore, Thomas D.

    2016-01-01

    Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells. PMID:25915462

  17. A eudesmane-type sesquiterpene isolated from Pluchea odorata (L.) Cass. combats three hallmarks of cancer cells: Unrestricted proliferation, escape from apoptosis and early metastatic outgrowth in vitro

    International Nuclear Information System (INIS)

    Highlights: • PO-1 perturbs cell cycle regulators and progression. • PO-1 inhibits HL-60 cell expansion. • PO-1 and PO-2 attenuate tumour cell intravasation through the endothelial barrier. - Abstract: Pluchea odorata is ethno pharmaceutically used to treat inflammation-associated disorders. The dichloromethane extract (DME) was tested in the carrageenan-induced rat paw oedema assay investigating its effect on inflammation that was inhibited by 37%. Also an in vitro anti-neoplastic potential was reported. However, rather limited information about the bio-activity of purified compounds and their cellular mechanisms are available. Therefore, two of the most abundant eudesmanes in P. odorata were isolated and their anti-neoplastic and anti-intravasative activities were studied. HL-60 cells were treated with P. odorata compounds and metabolic activity, cell number reduction, cell cycle progression and apoptosis induction were correlated with relevant protein expression. Tumour cell intravasation through lymph endothelial monolayers was measured and potential causal mechanisms were analyzed by Western blotting. Compound PO-1 decreased the metabolic activity of HL-60 cells (IC50 = 8.9 μM after 72 h) and 10 μM PO-1 induced apoptosis, while PO-2 showed just weak anti-neoplastic activities at concentrations beyond 100 μM. PO-1 arrested the cell cycle in G1 and this correlated with induction of JunB expression. Independent of this mechanism 25 μM PO-1 decreased MCF-7 spheroid intravasation through the lymph endothelial barrier. Hence, PO-1 inhibits an early step of metastasis, impairs unrestricted proliferation and induces apoptosis at low micromolar concentrations. These results warrant further testing in vivo to challenge the potential of PO-1 as novel lead compound

  18. Curcumin (Diferuloylmethane) Inhibits Cell Proliferation, Induces Apoptosis, and Decreases Hormone Levels and Secretion in Pituitary Tumor Cells

    OpenAIRE

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-01-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on...

  19. Prune extract (Prunus domestica L.) suppresses the proliferation and induces the apoptosis of human colon carcinoma Caco-2.

    Science.gov (United States)

    Fujii, Takashi; Ikami, Takao; Xu, Jin-Wen; Ikeda, Katsumi

    2006-10-01

    Prunes are the dried fruits of certain cultivars of Prunus domestica L., and are recognized as a health food. The separated ethanol fraction from concentrated prune juice by DIAION HP-20 (PE) was investigated for cytotoxic effects on two different cancer cell lines in vitro. PE dose-dependently reduced the viable cell number of Caco-2, KATO III, but does not reduce the viable cell number of human normal colon fibroblast cells (CCD-18Co) used as a normal cell model. PE treatment for 24 h led to apoptotic changes in Caco-2 such as cell shrinkage and blebbed surfaces due to the convolutions of nuclear and plasma membranes and chromatin condensation, but this was not observed in CCD-18Co. PE induced nucleosomal DNA fragmentation typical of apoptosis in Caco-2 after 24 h of treatment. These results show that PE induced apoptosis in Caco-2. Furthermore, by Caco-2 treatment with H2O2 chelator catalase and Ca2+-chelator BAPTA/AM, the PE-induced cytotoxic pathway was completely blocked, and the viable cell number of Caco-2 was not affected. PMID:17190111

  20. NK/T细胞淋巴瘤细胞凋亡和细胞增殖特征及意义%The significance and features of apoptosis and proliferation of NK/T cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    Dabin Wang; Meng Ming; Junhua Liu; Jianhua Yi; Dianding Zou

    2011-01-01

    Objective:The aim was to study the features and clinical significance of cell apoptosis and proliferation of NK/T cell lymphoma. Methods:TdT-mediated dUTP nick end labeling and immunohistochemical Streptavidin-peroxidase method were used to study cell apoptosis and the expression of proliferation cell nuclear antigen in 25 NK/T cell lymphoma and 10reactive lymphoid tissues. Results:Apoptotic index (AI) and proliferative index (PI) averaged (1.92% ± 0.86%) and (41.48%± 5.10%) respectively in the 25 NK/T cell lymphomas and (6.70% ± 1.89%) and (20.10% ± 2.77%) in the 10 reactive lymphoid tissues. Compared with reactive lymphoid tissues, AI was significantly reduced in NK/T cell lymphoma (t = 10.80, P < 0.01)while PI significantly increased (t = 12.39, P < 0.01). In addition, in NK/T cell lymphoma, AI and PI were positively related (r = 0.69, P < 0.01). Conclusion:In NK/T cell lymphoma, cell apoptosis is reduced while cell proliferation increased. The imbalance between cell apoptosis and cell proliferation is closely related to the development and progression of NK/T cell lymphoma.

  1. Screening of mammalian DNA polymerase and topoisomerase inhibitors from Garcinia mangostana L. and analysis of human cancer cell proliferation and apoptosis.

    Science.gov (United States)

    Onodera, Takefumi; Takenaka, Yukiko; Kozaki, Sachiko; Tanahashi, Takao; Mizushina, Yoshiyuki

    2016-03-01

    We purified and identified eight xanthones from mangosteen (Garcinia mangostana L.) and investigated whether these compounds inhibited the activities of mammalian DNA polymerases (Pols) and human DNA topoisomerases (Topos). β-Mangostin was the strongest inhibitor of both mammalian Pols and human Topos among the isolated xanthones, with 50% inhibitory concentration (IC50) values of 6.4-39.6 and 8.5-10 µM, respectively. Thermal transition analysis indicated that β-mangostin did not directly bind to double-stranded DNA, suggesting that this compound directly bound the enzyme protein rather than the DNA substrate. β-Mangostin showed the strongest suppression of human cervical cancer HeLa cell proliferation among the eight compounds tested, with a 50% lethal dose (LD50) of 27.2 µM. This compound halted cell cycle in S phase at 12-h treatment and induced apoptosis. These results suggest that decreased proliferation by β-mangostin may be a result of the inhibition of cellular Pols rather than Topos, and β-mangostin might be an anticancer chemotherapeutic agent. PMID:26781450

  2. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    E K Radhakrishnan

    Full Text Available We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale, in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  3. Natural killer cell cytokine response to M. bovis BCG Is associated with inhibited proliferation, increased apoptosis and ultimate depletion of NKp44(+CD56(bright cells.

    Directory of Open Access Journals (Sweden)

    Damien Portevin

    Full Text Available Mycobacterium bovis BCG, a live attenuated strain of M. bovis initially developed as a vaccine against tuberculosis, is also used as an adjuvant for immunotherapy of cancers and for treatment of parasitic infections. The underlying mechanisms are thought to rely on its immunomodulatory properties including the recruitment of natural killer (NK cells. In that context, we aimed to study the impact of M. bovis BCG on NK cell functions. We looked at cytotoxicity, cytokine production, proliferation and cell survival of purified human NK cells following exposure to single live particles of mycobacteria. We found that M. bovis BCG mediates apoptosis of NK cells only in the context of IL-2 stimulation during which CD56(bright NK cells are releasing IFN-γ in response to mycobacteria. We found that the presence of mycobacteria prevented the IL-2 induced proliferation and surface expression of NKp44 receptor by the CD56(bright population. In summary, we observed that M. bovis BCG is modulating the functions of CD56(bright NK cells to drive this subset to produce IFN-γ before subsequent programmed cell death. Therefore, IFN-γ production by CD56(bright cells constitutes the main effector mechanism of NK cells that would contribute to the benefits observed for M. bovis BCG as an immunotherapeutic agent.

  4. Chronic green tea consumption decreases body mass, induces aromatase expression, and changes proliferation and apoptosis in adult male rat adipose tissue.

    Science.gov (United States)

    Monteiro, Rosário; Assunção, Marco; Andrade, José P; Neves, Delminda; Calhau, Conceição; Azevedo, Isabel

    2008-11-01

    Green tea (GT) and its components have been shown to possess antiobesity properties and the corresponding mechanisms of action are being investigated, given the epidemic proportions of obesity incidence. In the current work, we used 12-mo-old male Wistar rats to test the effect of 6 mo of treatment with GT as the sole drinking beverage (52.8 +/- 6.4 mL/d) on adipose tissue (AT). AT aromatase expression was determined by Western blotting, plasma concentrations of 17beta-estradiol and testosterone were determined by RIA, and adipocyte size determined by measuring diameter in tissue sections. Proliferation and apoptosis were also assessed by Ki67 immunostaining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling, respectively. Evaluations were made in subcutaneous (sc) AT and visceral (v) AT. Body weight increased over time in both groups (P rats had a higher percentage of proliferating cells (204.1 +/- 19.5% of control in scAT, P adipocytes (78.3 +/- 1.7% of control in scAT, P < 0.001, and 87.9 +/- 3.2% of control in vAT, P < 0.05). GT also increased the number of apoptotic cells in vAT (320.4 +/- 21.9% of control; P < 0.001). These results suggest new mechanisms for GT on body weight and highlight its potential benefit to prevent or treat obesity and the metabolic syndrome. PMID:18936213

  5. Daucus carota Pentane-Based Fractions Suppress Proliferation and Induce Apoptosis in Human Colon Adenocarcinoma HT-29 Cells by Inhibiting the MAPK and PI3K Pathways.

    Science.gov (United States)

    Shebaby, Wassim N; Bodman-Smith, K B; Mansour, Anthony; Mroueh, Mohamad; Taleb, Robin I; El-Sibai, Mirvat; Daher, Costantine F

    2015-07-01

    Daucus carota L. ssp. carota (Apiacea, wild carrot, Queen Anne's lace) has been used in folk medicine throughout the world and recently was shown to possess anticancer and antioxidant activities. This study aims to determine the anticancer activity of the pentane fraction (F1) and the 1:1 pentane:diethyl ether fraction (F2) of the Daucus Carota oil extract (DCOE) against human colon adenocarcinoma cell lines (HT-29 and Caco-2). Treatment of cells with various concentrations of F1 or F2 fractions produced a dose-dependent inhibition of cell proliferation. Flow cytometric analysis indicated that both fractions induced sub-G1 phase accumulation and increased apoptotic cell death. Western blot revealed the activation of caspase-3, PARP cleavage, and a considerable increase in Bax and p53 levels, and a decrease in Bcl-2 level. Treatment of HT-29 cells with either fraction markedly decreased the levels of both phosphorylated Erk and Akt. Furthermore, the combined treatment of F1 or F2 with wortmannin showed no added inhibition of cell survival suggesting an effect of F1 or F2 through the phosphatidyl inositol 3-kinase (PI3K) pathway. This study proposes that DCOE fractions (F1 and F2) inhibit cell proliferation by inducing cell cycle arrest and apoptosis in HT-29 cells through the suppression of mitogen-activated protein kinase (MAPK)/Erk and PI3K/Akt pathways. PMID:25599142

  6. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    International Nuclear Information System (INIS)

    Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the P53 tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of P53 in melanoma is uncommon; however, its function often appears abnormal. In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts. The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant P53 compared to those with wild-type P53, suggesting that altered expression in melanoma was not related to P53 status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA) had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation. These results indicate that P53 target genes involved in apoptosis and cell cycle regulation are aberrantly expressed in melanoma and that this

  7. Strategies for repair of white matter: Influence of osmolarity and microglia on proliferation and apoptosis of oligodendrocyte precursor cells in different basal culture media

    Directory of Open Access Journals (Sweden)

    Karolina eKleinsimlinghaus

    2013-12-01

    Full Text Available The aim of the present study has been to obtain high yields of oligodendrocyte precursor cells (OPCs in culture. This is a first step in facilitation of myelin repair. We show that, in addition to factors, known to promote proliferation, such as basic fibroblast growth factor (FGF-2 and platelet derived growth factor (PDGF the choice of the basal medium exerts a significant influence on the yield of OPCs in cultures from newborn rats. During a culture period of up to 9 days we observed larger numbers of surviving cells in Dulbecco’s Modified Eagle Medium (DMEM and Roswell Park Memorial Institute Medium (RPMI compared with Neurobasal Medium (NB. A larger number of A2B5-positive OPCs was found after 6 days in RPMI based media compared with NB. The percentage of bromodeoxyuridine (BrdU-positive cells was largest in cultures maintained in DMEM and RPMI. The percentage of caspase-3 positive cells was largest in NB, suggesting that this medium inhibits OPC proliferation and favors apoptosis. A difference between NB and DMEM as well as RPMI is the reduced Na+-content. The addition of equiosmolar supplements of mannitol or NaCl to NB medium rescued the BrdU-incorporation rate. This suggested that the osmolarity influences the proliferation of OPCs. Plating density as well as residual microglia influence OPC survival, BrdU incorporation and caspase-3 expression. We found, that high density cultures secrete factors that inhibit BrdU incorporation whereas the presence of additional microglia induces an increase in caspase-3 positive cells, indicative of enhanced apoptosis. An enhanced number of microglia could thus also explain the stronger inhibition of OPC differentiation observed in high density cultures in response to treatment with the cytokines TNF-a and IFN-g.We conclude that a maximal yield of OPCs is obtained in a medium of an osmolarity higher than 280 mOsm plated at a relatively low density in the presence of as little microglia as technically

  8. Sphingosine in apoptosis signaling.

    Science.gov (United States)

    Cuvillier, Olivier

    2002-12-30

    The sphingolipid metabolites ceramide, sphingosine, and sphingosine 1-phosphate contribute to controlling cell proliferation and apoptosis. Ceramide and its catabolite sphingosine act as negative regulators of cell proliferation and promote apoptosis. Conversely, sphingosine 1-phosphate, formed by phosphorylation of sphingosine by a sphingosine kinase, has been involved in stimulating cell growth and inhibiting apoptosis. As the phosphorylation of sphingosine diminishes apoptosis, while dephosphorylation of sphingosine 1-phosphate potentiates it, the role of sphingosine as a messenger of apoptosis is of importance. Herein, the effects of sphingosine on diverse signaling pathways implicated in the apoptotic process are reviewed. PMID:12531549

  9. Parenteral and enteral feeding in preterm piglets differently affects extracellular matrix proteins, enterocyte proliferation and apoptosis in the small intestine.

    Science.gov (United States)

    Oste, Marijke; De Vos, Maartje; Van Haver, Els; Van Brantegem, Leen; Thymann, Thomas; Sangild, Per; Weyns, Andre; Van Ginneken, Chris

    2010-10-01

    The preterm intestine is immature and responds differently to total parenteral nutrition (TPN) and enteral nutrition, compared with the term intestine. We hypothesised that in preterms, diet composition and feeding route affect mucosal morphology, enterocyte mitosis and apoptosis, and the distribution of laminin-1, fibronectin and collagen IV (extracellular matrix proteins (ECMP)). Preterm piglets (93.5 % of gestation) were delivered via caesarean section and birth weight-matched allocated to one of the four experimental groups: the piglets were either euthanised immediately after delivery, after 3 d of TPN or after 2 d enteral feeding with colostrum or milk formula, following 3 d of TPN. We combined immunohistochemistry, image analysis and stereological measurements to describe the intestinal mucosal layer. No significant changes occurred after 3 d of TPN. Feeding colostrum or milk replacer for 2 d after TPN was associated with an increased crypt depth. Only enteral feeding with colostrum resulted in an increased villus height and mitotic index. Neither TPN nor enteral feeding changed the distribution pattern of ECMP or the occurrence of bifid crypts. The immature distribution pattern of ECMP in TPN-fed piglets, coupled with unchanged enterocyte mitosis and apoptosis indices, illustrates that feeding preterm pigs 3 d TPN does not lead to mucosal atrophy. Despite the invariable distribution of ECMP, colostrum was associated with crypt hyperplasia resulting in an increased villus height. These data illustrate that some mechanisms regulating cell turnover are immature in preterms and may in part explain the abnormal gut responses to TPN and enteral feeding in prematurely born pigs. PMID:20887647

  10. Rapamycin potentiates the effects of paclitaxel in endometrial cancer cells through inhibition of cell proliferation and induction of apoptosis1

    OpenAIRE

    Shafer, Aaron; Zhou, Chunxiao; Gehrig, Paola A.; Boggess, John F; Bae-Jump, Victoria L.

    2010-01-01

    mTOR inhibitors modulate signaling pathways involved in cell cycle progression, and recent phase II trials demonstrate activity in endometrial cancer patients. Our objective was to examine the effects of combination therapy with rapamycin and paclitaxel in endometrial cancer cell lines. Paclitaxel inhibited proliferation in a dose-dependent manner in both cell lines with IC50 values of 0.1–0.5 nM and 1–5 nM for Ishikawa and ECC-1 cells, respectively. To assess synergy of paclitaxel and rapamy...

  11. Proliferation and apoptosis of lamina propria CD4+ T cells from scid mice with inflammatory bowel disease

    DEFF Research Database (Denmark)

    Bregenholt, S; Reimann, J; Claesson, Mogens Helweg

    1998-01-01

    Scid mice transplanted with low numbers of syngeneic CD4+ T cells, develop a chronic and lethal inflammatory bowel disease (IBD) within 4-6 months. We have used in vivo 5-bromo2-deoxy-uridine (BrdU) labeling to assess the proliferation of lamina propria-derived CD4+ T cells in diseased scid mice....... The hourly rate of renewal of colonic lamina propria CD4+ T cells in diseased mice was 7% compared with 1.5% in normal BALB/c control mice. Transplantation of scid mice with in vitro activated CD4+ T cells accelerated the disease onset and development in a cell dose-dependent fashion when compared...

  12. Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Harish Chandra Pal

    Full Text Available Epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor 2 (VEGFR2 have emerged as two effective clinical targets for non-small-cell lung cancer (NSCLC. In the present study, we found that delphinidin, an anthocyanidin, present in pigmented fruits and vegetables, is a potent inhibitor of both EGFR and VEGFR2 in NSCLC cells that overexpress EGFR/VEGFR2. Using these cells, we next determined the effects of delphinidin on cell growth and apoptosis in vitro and on tumor growth and angiogenesis in vivo. Delphinidin (5-60 µM treatment of NSCLC cells inhibited the activation of PI3K, and phosphorylation of AKT and MAPKs. Additionally, treatment of NSCLC cells with delphinidin resulted in inhibition of cell growth without having significant toxic effects on normal human bronchial epithelial cells. Specifically, treatment of NCI-H441 and SK-MES-1 cells with delphindin (5-60 µM resulted in (i cleavage of PARP protein, (ii activation of caspase-3 and -9, (iii downregulation of anti-apoptotic proteins (Bcl2, Bcl-xL and Mcl-1, (iv upregulation of pro-apoptotic proteins (Bax and Bak, and (v decreased expression of PCNA and cyclin D1. Furthermore, in athymic nude mice subcutaneously implanted with human NSCLC cells, delphinidin treatment caused a (i significant inhibition of tumor growth, (ii decrease in the expression of markers for cell proliferation (Ki67 and PCNA and angiogenesis (CD31 and VEGF, and (iii induction of apoptosis, when compared with control mice. Based on these observations, we suggest that delphinidin, alone or as an adjuvant to current therapies, could be used for the management of NSCLC, especially those that overexpress EGFR and VEGFR2.

  13. Blockage of miR-92a-3p with locked nucleic acid induces apoptosis and prevents cell proliferation in human acute megakaryoblastic leukemia.

    Science.gov (United States)

    Sharifi, M; Salehi, R

    2016-01-01

    MicroRNAs (miRNAs) are non-coding RNAs involved in post-transcriptional regulation of gene expression. In many cancers, up- or downregulation of different miRNAs is reported. In acute myeloid leukemia, upregulation of miR-92a-3p was reported in human in vitro studies. We performed blockage of miR-29a-3p in human acute megakaryoblastic leukemia cell line (M-07e) by using locked nucleic acid (LNA) and cell proliferation; apoptosis and necrosis were assessed. At different time points after LNA-anti-miR92a-3p transfection, miR-92a-3p quantitation was assessed by qRT-real-time PCR, MTT assay and annexin/propidium iodide staining were performed. The data were processed using the ANOVA test. At all three time points, the expression of miR-92a-3p was lower in the LNA-anti-miR group compared with the control groups. Cell viability between LNA-Anti-miR and the control group was statistically significant. Blockage of miR-92a-3p was associated with increment of the ratio of apoptotic cells in the LNA-anti-miR group was higher than the other group. The ratio of necrotic cells in the LNA-antimiR group was higher than the other groups. These assessments indicate that miR-92a-3p blockage can decrease the viability of M-07e cells, which is mainly due to induction of apoptosis and necrosis. Our findings could open up a path to a miRNA based therapeutic approach for treatment of acute megakaryoblastic leukemia. PMID:26658357

  14. Peroxisome Proliferator-activated Receptor γ Induces Apoptosis and Inhibits Autophagy of Human Monocyte-derived Macrophages via Induction of Cathepsin L

    Science.gov (United States)

    Mahmood, Dler Faieeq Darweesh; Jguirim-Souissi, Imene; Khadija, El-Hadri; Blondeau, Nicolas; Diderot, Vimala; Amrani, Souliman; Slimane, Mohamed-Naceur; Syrovets, Tatiana; Simmet, Thomas; Rouis, Mustapha

    2011-01-01

    Macrophages play a pivotal role in the pathophysiology of atherosclerosis. These cells express cathepsin L (CatL), a cysteine protease that has been implicated in atherogenesis and the associated arterial remodeling. In addition, macrophages highly express peroxisome proliferator-activated receptor (PPAR) γ, a transcription factor that regulates numerous genes important for lipid and lipoprotein metabolism, for glucose homeostasis, and inflammation. Hence, PPARγ might affect macrophage function in the context of chronic inflammation such as atherogenesis. In the present study, we examined the effect of PPARγ activation on the expression of CatL in human monocyte-derived macrophages (HMDM). Activation of PPARγ by the specific agonist GW929 concentration-dependently increased the levels of CatL mRNA and protein in HMDM. By promoter analysis, we identified a functional PPAR response element-like sequence that positively regulates CatL expression. In addition, we found that PPARγ-induced CatL promotes the degradation of Bcl2 without affecting Bax protein levels. Consistently, degradation of Bcl2 could be prevented by a specific CatL inhibitor, confirming the causative role of CatL. PPARγ-induced CatL was found to decrease autophagy through reduction of beclin 1 and LC3 protein levels. The reduction of these proteins involved in autophagic cell death was antagonized either by the CatL inhibitor or by CatL knockdown. In conclusion, our data show that PPARγ can specifically induce CatL, a proatherogenic protease, in HMDM. In turn, CatL inhibits autophagy and induces apoptosis. Thus, the proatherogenic effect of CatL could be neutralized by apoptosis, a beneficial phenomenon, at least in the early stages of atherosclerosis. PMID:21700710

  15. Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: modulation of apoptosis, cell proliferation, and β-catenin/Tcf signaling

    International Nuclear Information System (INIS)

    The carcinogens 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and 1,2-dimethylhydrazine (DMH) induce colon tumors in the rat that contain mutations in β-catenin, but the mutation pattern can be influenced by exposure to dietary phytochemicals, such as the water-soluble derivative of chlorophyll called chlorophyllin. Whereas chlorophyllin is an effective blocking agent during the initiation phase, post-initiation responses depend upon the exposure protocol, and can be influenced by the initiating agent and the concentration of chlorophyllin. Post-initiation treatment with 0.001% chlorophyllin (w/v) in the drinking water promoted colon carcinogenesis in the rat, but much higher concentrations (1.0% chlorophyllin) led to suppression. Bromodeoxyuridine and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) indices revealed that the promotional concentration of 0.001% chlorophyllin increased the ratio of cell proliferation to apoptosis in the colonic crypts, whereas concentrations in the range 0.01-1.0% chlorophyllin modestly reduced this ratio. Molecular studies showed that the spectrum of β-catenin mutations was markedly different in chlorophyllin-promoted colon tumors--many of the mutations led to direct substitutions of critical Ser/Thr residues within the glycogen synthase kinase-3β (GSK-3β) region, whereas in all other groups, including DMH and IQ controls, the mutations typically affected amino acids adjacent to Ser33. Substitution of critical Ser/Thr residues caused β-catenin and c-Jun proteins to be markedly over-expressed compared with tumors in which the mutations substituted amino acid residues flanking these critical Ser/Thr sites. In a separate study, rats were exposed to IQ or azoxymethane (AOM), a metabolite of DMH, and they were treated post-initiation with chlorophyllin, chlorophyll, copper, or phytol in the diet. Natural chlorophyll (0.08%) suppressed AOM- and IQ-induced aberrant crypt foci (ACF), whereas chlorophyllin had no

  16. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  17. Determination of apoptosis, proliferation status and O6-methylguanine DNA methyltransferase methylation profiles in different immunophenotypic profiles of diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Nilay Şen Türk

    2011-03-01

    Full Text Available Objective: Our aim was to investigate the expression of apoptosis-associated proteins (bcl-2, bcl-xl, bax, bak, bid, apoptotic index (AI and proliferation index (PI in germinal center B-cell-like immunophenotypic profile (GCB and non-GCB of diffuse large B-cell lymphoma (DLBCL. Materials and Methods: The methylation status of the promoter region of O6-methylguanine-DNA yerine O6-methylguanine-DNA methyltransferase (MGMT gene and its relation with immunophenotypic differentiation of DLBCLs were also investigated. 101 cases were classified as GCB (29 cases or non-GCB (72 cases. Apoptosis-associated proteins and PI were determined by IHC, and TUNEL method was used to determine AI. MGMT methylation analysis was performed by real-time PCR. Results: The PI was significantly higher in GCB compared with non-GCB (p=0.011. Percentage of cells stained with bcl-6 was positively correlated with the percentage of cells expressing bcl-2 (p=0.023, AI (p=0.006 and PI (p<0.001, while a significant negative correlation was observed with the percentage of cells expressing bax (p=0.027. The percentage of cells stained with MUM1 showed a significantly positive correlation with the percentage of cells expressing bcl-xl (p=0.003, bid (p=0.002, AI (p<0.001, and PI (p=0.001. MGMT methylation analysis was performed in 95 samples, and methylated profile was found in 31 cases (32.6%. GCB was found in 6 cases (22.2% and non-GCB was determined in 25 cases (36.8% out of 31 with MGMT methylated samples. There was no significant association between MGMT methylation status and immunophenotypic profiles (p=0.173. Conclusion: These results suggest that bcl-6 protein expression may be responsible for the high PI in GCB. Additionally, we found that apoptosis-associated proteins were not significantly associated with immunophenotypic profiles.

  18. MiR-27a targets sFRP1 in hFOB cells to regulate proliferation, apoptosis and differentiation.

    Directory of Open Access Journals (Sweden)

    Donggeng Guo

    Full Text Available MicroRNAs (miRNAs play a key role in the regulation of almost all the physiological and pathological processes, including bone metabolism. Recent studies have suggested that miR-27 might play a key role in osteoblast differentiation and bone formation. Increasing evidence indicates that the canonical Wnt signaling pathway contributes to different stages of bone formation. In this study, we identify miR-27a can promote osteoblast differentiation by repressing a new target, secreted frizzled-related proteins 1 (sFRP1 expression at the transcriptional level. Here, 21 candidate targets of miR-27a involved in canonical Wnt/β-catenin signaling were predicted, and a significant decrease in sFRP1 luciferase activity was observed both in 293T and MG63 cells co-transfected with the matched luciferase reporter constructs and miR-27a mimic. Furthermore, the presence of exogenous miR-27a significantly decreased sFRP1 mRNA and protein expression in hFOB1.19 cells during both proliferation and osteogenic differentiation. The over-expression of miR-27a or knockdown sFRP1 significantly increased the percentage of apoptotic hFOBs, the percentage of cells in the G2-M phase of the cell cycle and the expression of key osteoblastic markers, including ALP, SPP1, RUNX2 and ALP activity. Over-expression of miR-27a or knockdown of endogenous sFRP1 led to an accumulation of β-catenin in hFOBs. In the present study, we demonstrate that miR-27a induced gene silencing effect is a vital mechanism contributing to bone metabolism in hFOB cells in vitro, which is partly affected by the post-transcriptional regulation of sFRP1, during osteoblast proliferation, apoptosis and differentiation.

  19. Arsenic Trioxide Induces Apoptosis and Incapacitates Proliferation and Invasive Properties of U87MG Glioblastoma Cells through a Possible NF-κB-Mediated Mechanism.

    Science.gov (United States)

    Ghaffari, Seyed H; Yousefi, Meysam; Dizaji, Majid Zaki; Momeny, Majid; Bashash, Davood; Zekri, Ali; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2016-01-01

    Identification of novel therapeutics in glioblastoma remains crucial due to the devastating and infiltrative capacity of this malignancy. The current study was aimed to appraise effect of arsenic trioxide (ATO) in U87MG cells. The results demonstrated that ATO induced apoptosis and impeded proliferation of U87MG cells in a dosedependent manner and also inhibited classical NF-κB signaling pathway. ATO further upregulated expression of Bax as an important proapoptotic target of NF-κB and also inhibited mRNA expression of survivin, c-Myc and hTERT and suppressed telomerase activity. Moreover, ATO significantly increased adhesion of U87MG cells and also diminished transcription of NF-κB down-stream targets involved in cell migration and invasion, including cathepsin B, uPA, MMP-2, MMP-9 and MMP-14 and suppressed proteolytic activity of cathepsin B, MMP-2 and MMP-9, demonstrating a possible mechanism of ATO effect on a well-known signaling in glioblastoma dissemination. Taken together, here we suggest that ATO inhibits survival and invasion of U87MG cells possibly through NF-κB-mediated inhibition of survivin and telomerase activity and NF-κB-dependent suppression of cathepsin B, MMP-2 and MMP-9. PMID:27039805

  20. Memantine, an antagonist of the NMDA glutamate receptor, affects cell proliferation, differentiation and the intracellular cycle and induces apoptosis in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Flávia Silva Damasceno

    2014-02-01

    Full Text Available Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and affects approximately 10 million people in endemic areas of Mexico and Central and South America. Currently available chemotherapies are limited to two compounds: Nifurtimox and Benznidazole. Both drugs reduce the symptoms of the disease and mortality among infected individuals when used during the acute phase, but their efficacy during the chronic phase (during which the majority of cases are diagnosed remains controversial. Moreover, these drugs have several side effects. The aim of this study was to evaluate the effect of Memantine, an antagonist of the glutamate receptor in the CNS of mammals, on the life cycle of T. cruzi. Memantine exhibited a trypanocidal effect, inhibiting the proliferation of epimastigotes (IC50 172.6 µM. Furthermore, this compound interfered with metacyclogenesis (approximately 30% reduction and affected the energy metabolism of the parasite. In addition, Memantine triggered mechanisms that led to the apoptosis-like cell death of epimastigotes, with extracellular exposure of phosphatidylserine, increased production of reactive oxygen species, decreased ATP levels, increased intracellular Ca(2+ and morphological changes. Moreover, Memantine interfered with the intracellular cycle of the parasite, specifically the amastigote stage (IC50 31 µM. Interestingly, the stages of the parasite life cycle that require more energy (epimastigote and amastigote were more affected as were the processes of differentiation and cell invasion.

  1. Analysis of the expression of genes involved in proliferation and apoptosis in cervical intraepithelial neoplasias and cancer of the cervix uteri

    Directory of Open Access Journals (Sweden)

    V. K. Bozhenko

    2014-08-01

    Full Text Available The viral nature of many female genital cancers is now beyond question. By taking into account this fact, the problem of qualitative assessment ofthenatureofcervicalintraepithelialneoplasia(CINanditsfocusonprogressiontoinvasivecarcinomabecomesquitenatu ral.Studiesof a number of biological markers of carcinogenesis have recently provided a possibility for prospective prediction. The paper con siders the as- pects of importance of the molecular biological markers of proliferation and apoptosis in the etiopathogenesis of genital cancers. It gives the results of examinations of 16 patients with histologically verified squamous cell carcinoma of the cervix uteri, 40 patients di agnosed as having CIN of different grades (CIN-1, CIN-2, CIN-3 — squamous cell carcinoma in situ, and 6 patients with the morphologically unaltered cervi- calepithelium,whosecervicalscrapeswereanalyzedfortheexpressionofthemRNAgenesССNB1,Ki-67,BA G,BCL-2,ESR1,andPRG. It is shown that the molecular genetic findings may be new prognostic markers that reflect the possible disease developmental pathways, sug- gesting the need for further investigation of biomarkers in order to prevent malignancies and to reduce their morbidity.

  2. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos

    Science.gov (United States)

    Hu, Zhilian; Holzschuh, Jochen; Driever, Wolfgang

    2015-01-01

    DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes

  3. Relative Roles of the Epithelial and Stromal Tissue Compartment(s) in Mediating the Actions of Relaxin and Estrogen on Cell Proliferation and Apoptosis in the Mouse Lower Reproductive Tract

    OpenAIRE

    Yao, LiJuan; Agoulnik, Alexander I.; Cooke, Paul S.; Meling, Daryl D.; Sherwood, O. David

    2009-01-01

    Relaxin and estrogen are secreted by the ovary during the second half of pregnancy in rats and mice. Relaxin promotes marked growth of the lower reproductive tract in both species. Relaxin promotes accumulation of epithelial and stromal cells in the cervix and vagina by both stimulating cell proliferation and inhibiting apoptosis. Estrogen acting through estrogen receptor α (ERα) plays an essential permissive role in relaxin’s actions. A fundamental step toward understanding the actions of re...

  4. Effect of Survivin gene on proliferation inhibition and apoptosis of SiHa cells after RNA interference%RNA干涉Survivin基因对SiHa细胞增殖抑制及凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    赵丽晶; 徐红梅; 刘艳波; 梁作文; 许多; 滕菲; 赵秀云; 赵淑华; 赵雪俭

    2011-01-01

    Objective: To study the effect of Survivin gene on proliferation inhibition and apoptosis of SiHa cells after RNA interference and the mechanism.Methods: Recombinant plasmid (pU6 -siRNA -Survivin ) and empty plasmid were used to transfect SiHa cells, MTT method was used to detect cell proliferation and transcription level of Survivin gene, acridine orange staining and flow cytometry were used to detect cell apoptosis, immunohistochemical staining was used to detect the expressions of Survivin and Caspase 3.Results: After RNA interference, the proliferation of SiHa cells was inhibited, and apoptosis appeared, the transcription of Survivin gene was down -regulated, while the transcription of Caspase 3 was up - regulated.Conclusion: Survivin gene may induce the proliferation inhibition and apoptosis of SiHa cells after RNA interference, the mechanism is related to up - regulation of Caspase 3.%目的:研究RNA干涉survivin基因对宫颈癌SiHa细胞的增殖抑制及凋亡的影响并探讨其作用机制.方法:重组质粒(pU6-siRNA-Survivin)及空质粒转染SiHa细胞,MTT法检测细胞增殖情况,检测survivin基因转录水平,吖啶噔染色、流式细胞术检测细胞凋亡,免疫组化染色检测survivin、caspase3基因表达.结果:RNA干涉后,抑制SiHa细胞增殖并出现细胞凋亡,survivin基因转录表达下调,caspase3基因表达上调.结论:RNA干涉survivin基因可导致SiHa细胞增殖抑制并凋亡,其机制与caspase3基因表达上调有关.

  5. Vitamin A family compounds, estradiol, and docetaxel in proliferation, apoptosis and immunocytochemical profile of human ovary endometrioid cancer cell line CRL-11731.

    Directory of Open Access Journals (Sweden)

    Dorota Lemancewicz

    2010-01-01

    Full Text Available Endometrioid carcinoma represents approximately 10% of cases of the malignant ovarian epithelial tumors. According to literature, the vitamin A (carotenoids and retinoids plays an essential role in cell proliferation, differentiation and apoptosis in both normal and neoplastic ovarian tissues. Apart from that, the retinoids alter a cytotoxic effect of chemiotherapeutics, i.e. docetaxel, on ovarian cancer cell lines. Retinoids act on cancer cells throughout different mechanism than taxanes, so they may be the potential candidates for the new treatment strategies of ovarian cancer. The aim of the study was to determine the effects of vitamin A family compounds (retinol, beta-carotene, lycopene, all-trans -, 9-cis - and 13-cis retinoic acid on the growth and proliferation of CRL-11731 endometrioid ovary cancer cell line and on docetaxel and estradiol activity in this culture. The assay was based on [3H] thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in CRL-11731 cells were also studied. Among vitamin A family compounds retinol and carotenoids, but not retinoids, inhibited the growth of cancer cells in dose dependent manner. Only the concentration of 100 muM of docetaxel inhibited incorporation [3H] thymidine into CRL-11731 cancer cells. Retinol (33.4%+/-8.5, carotenoids (beta-carotene 20 muM 4.7%+/-2.9, 50 muM 2.2%+/-0.9; lycopene 10 muM 7.6%+/-0.8, 20 muM 5.2%+/-2.5, 50 muM 2.9%+/-1.2, and 13-cis retinoic acid (19.7%+/-2.2 combined with docetaxel (100 muM significantly decreased the percentage of proliferating cells (p<0.0001. The antiproliferative action of lycopene alone and in combination with docetaxel was also confirmed in immunohistochemical examination (decreased the percentage of PCNA and Ki67 positive cells. Also retinol (10 muM and lycopene (20 and 50 muM combined with estradiol (0.01 muM statistically decreased the percentage of

  6. Human NTH1 physically interacts with p53 and proliferating cell nuclear antigen

    International Nuclear Information System (INIS)

    Thymine glycol (Tg) is one of predominant oxidative DNA lesions caused by ionizing radiation and other oxidative stresses. Human NTH1 is a bifunctional enzyme with DNA glycosylase and AP lyase activities and removes Tg as the first step of base excision repair (BER). We have searched for the factors interacting with NTH1 by using a pull-down assay and found that GST-NTH1 fusion protein precipitates proliferating cell nuclear antigen (PCNA) and p53 as well as XPG from human cell-free extracts. GST-NTH1 also bound to recombinant FLAG-tagged XPG, PCNA, and (His)6-tagged p53 proteins, indicating direct protein-protein interaction between those proteins. Furthermore, His-p53 and FLAG-XPG, but not PCNA, stimulated the Tg DNA glycosylase/AP lyase activity of GST-NTH1 or NTH1. These results provide an insight into the positive regulation of BER reaction and also suggest a possible linkage between BER of Tg and other cellular mechanisms

  7. Upregulation of Id3 inhibits cell proliferation and induces apoptosis in A549/DDP human lung cancer cells in vitro.

    Science.gov (United States)

    Chen, Fangfang; Zhao, Qinfei; Wang, Shuxia; Wang, Haiyong; Li, Xiaojun

    2016-07-01

    Inhibitor of DNA binding (Id)3 is a member of the Id multigene family of dominant‑negative helix‑loop-helix transcription factors, which function as oncogenes or tumor suppressors in human cancers. Its upregulation was recently shown to have inhibitory effects on lung cancer, which is the leading cause of cancer‑associated mortality worldwide. As drug resistance represents a major bottleneck of cancer therapy, the present study assessed the ability of Id3 to inhibit cisplatin‑resistant A549 lung adenocarcinoma cells (A549/DDP). A549/DPP cells were transiently transfected with enhanced green fluorescence protein overexpression plasmid (pEGFP) or Id3 overexpression plasmid (Id3/pEGFP), which was confirmed by confocal fluorescence microscopy, PCR and western blot analysis. The effects of Id3 on the viability and apoptosis of A549/DDP were determined using an MTT assay, fluorescence microscopy with Hoechst 33258 staining and flow cytometry following Annexin V/propidium iodide double staining. The results revealed that overexpression of Id3 significantly inhibited the proliferation and viability of A549/DDP cells in a time‑dependent manner. Furthermore, overexpression of Id3 significantly increased the apoptotic rate of A549/DDP cells from 2.73 to 16.92%, confirming the implication of Id3 in the negative control of tumour growth. The results of the present study revealed that overexpression of Id3 may serve as a novel strategy for inhibiting cisplatin‑sensitive lung cancer. Further experiments will be performed to determine whether Id3 overexpression could enhance the sensitivity of lung cancer cells to DDP. PMID:27176047

  8. Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21(cip1) in vascular remodelling during vein arterialization in the rat.

    Science.gov (United States)

    Borin, Thaiz Ferraz; Miyakawa, Ayumi Aurea; Cardoso, Leandro; de Figueiredo Borges, Luciano; Gonçalves, Giovana Aparecida; Krieger, Jose Eduardo

    2009-06-01

    Neo-intima development and atherosclerosis limit long-term vein graft use for revascularization of ischaemic tissues. Using a rat model, which is technically less challenging than smaller rodents, we provide evidence that the temporal morphological, cellular, and key molecular events during vein arterialization resemble the human vein graft adaptation. Right jugular vein was surgically connected to carotid artery and observed up to 90 days. Morphometry demonstrated gradual thickening of the medial layer and important formation of neo-intima with deposition of smooth muscle cells (SMC) in the subendothelial layer from day 7 onwards. Transmission electron microscopy showed that SMCs switch from the contractile to synthetic phenotype on day 3 and new elastic lamellae formation occurs from day 7 onwards. Apoptosis markedly increased on day 1, while alpha-actin immunostaining for SMC almost disappeared by day 3. On day 7, cell proliferation reached the highest level and cellular density gradually increased until day 90. The relative magnitude of cellular changes was higher in the intima vs. the media layer (100 vs. 2 times respectively). Cyclin-dependent kinase inhibitors (CDKIs) p27(Kip1) and p16(INKA) remained unchanged, whereas p21(Cip1) was gradually downregulated, reaching the lowest levels by day 7 until day 90. Taken together, these data indicate for the first time that p21(Cip1) is the main CDKI protein modulated during the arterialization process the rat model of vein arterialization that may be useful to identify and validate new targets and interventions to improve the long-term patency of vein grafts. PMID:19563615

  9. Hepatic Carcinoma—Associated Fibroblasts Promote an Adaptative Response in Colorectal Cancer Cells That Inhibit Proliferation and Apoptosis: Nonresistant Cells Die by Nonapoptotic Cell Death

    Directory of Open Access Journals (Sweden)

    Mireia Berdiel-Acer

    2011-10-01

    Full Text Available Carcinoma-associated fibroblasts (CAFs are important contributors of microenvironment in determining the tumor’s fate. This study aimed to compare the influence of liver microenvironment and primary tumor microenvironment on the behavior of colorectal carcinoma. Conditioned medium (CM from normal colonic fibroblasts (NCFs, CAFs from primary tumor (CAF-PT or liver metastasis (CAF-LM were obtained. We performed functional assays to test the influence of each CM on colorectal cell lines. Microarray and gene set enrichment analysis (GSEA were performed in DLD1 cells cultured in matched CM. In DLD1 cells, CAF-LM CM compared with CAF-PT CM and NCF led to a more aggressive phenotype, induced the features of an epithelial-to-mesenchymal transition more efficiently, and stimulated migration and invasion to a greater extent. Sustained stimulation with CAF-LM CM evoked a transient G2/M cell cycle arrest accompanied by a reduction of apoptosis, inhibition of proliferation, and decreased viability of SW1116, SW620, SW480, DLD1, HT-29, and Caco-2 cells and provoked nonapoptotic cell death in those cells carrying KRAS mutations. Cells resistant to CAF-LM CM completely changed their morphology in an extracellular signal-regulated protein kinase-dependent process and depicted an increased stemness capacity alongside the Wnt pathway stimulation. The transcriptomic profile of DLD1 cells treated with CAF-LM CM was associated with Wnt and mitogen-activated protein kinase pathways activation in GSEA. Therefore, the liver microenvironment induces more efficiently the aggressiveness of colorectal cancer cells than other matched microenvironments do but secondarily evokes cell death. Resistant cells displayed higher stemness capacity.

  10. An Experimental Study on the Role of Nuclear Factor-κB in the Signal Conduction of Protein Kinase C Regulating the Proliferation and Apoptosis of T Lymphocytes in Asthma

    Institute of Scientific and Technical Information of China (English)

    熊维宁; 徐永健; 张珍祥; 王孝养

    2004-01-01

    To explore the role of nuclear factor-κB(NF-κB) in the signal pathway of protein kinase C (PKC) regulating the proliferation and apoptosis of T lymphocytes in asthma. T lymphocytes were isolated from the asthmatic model of guinea pigs and the asthmatic patients. Either the T cells stimulated with PMA alone or those stimulated with PMA together with pyrrolidine dithiocarbamate (PDTC) were incubated for 1 and 24 h. The proliferation of and the presence of NF-κB in the cells incubated for 1 h were observed by MTT and immunohistochemical staining, respectivelyAnd the cells incubated for 24 h were observed for the apoptosis by TUNEL. All the assays were paralleled with controls, and all the data were analyzedstatistically with the software SAS. The percentage of cells of nuclear positive staining of NF-scB and the proliferation of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated with PMA were significantly higher than those of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated without PMA respectively ( P < 0.01 ) and those of T lymphocytes from normal control guinea pigs and normal control persons stimulated with PMA respectively ( P < 0.01 ), and were significantly reduced by PDTC (P < 0.01 ). The apoptosis index of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated with PMA were significantly lower than those of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated without PMA respectively ( P < 0.01 ) and those of T lymphocytes from normal control guine apigs and normal control persons stimulated with PMA respectively ( P < 0.01 ), and were significantly induced by PDTC ( P< 0.01 ). There were good positive correlation between the percentage of cells of nuclear staining of NF-κB ofT lymphocytes and the proliferation of T lymphocytes ( r = 0.51-0.72, P < 0.001 ), and also good negative correlation between the percentage of cells of nuclear staining of NF-scB and the

  11. Host Cell Protein C9orf9 Promotes Viral Proliferation via Interaction with HSV-1 UL25 Protein

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Yan-mei Li; Long-ding Liu; Li Jiang; Ma Ji; Rui-ju Jiang; Lei Guo; Yun Liao; Qi-han Li

    2011-01-01

    In light of the scarcity of reports on the interaction between HSV-1 nucleocapsid protein UL25 and its host cell proteins,the purpose of this study is to use yeast two-hybrid screening to search for cellular proteins that can interact with the UL25 protein.C9orf69,a protein of unknown function was identified.The interaction between the two proteins under physiological conditions was also confirmed by biological experiments including co-localization by fluorescence and immunoprecipitation.A preliminary study of the function of C9orf69 showed that it promotes viral proliferation.Further studies showed that C9orf69 did not influence viral multiplication efficiency by transcriptional regulation of viral genes,but indirectly promoted proliferation via interaction with UL25.

  12. 5-alpha-reductase type I (SRD5A1 is up-regulated in non-small cell lung cancer but does not impact proliferation, cell cycle distribution or apoptosis

    Directory of Open Access Journals (Sweden)

    Kapp Friedrich G

    2012-01-01

    Full Text Available Abstract Background Non-small cell lung cancer (NSCLC is one of the most frequent malignancies and has a high mortality rate due to late detection and lack of efficient treatments. Identifying novel drug targets for this indication may open the way for new treatment strategies. Comparison of gene expression profiles of NSCLC and normal adjacent tissue (NAT allowed to determine that 5-alpha-reductase type I (SRD5A1 was up-regulated in NSCLC compared to NAT. This raised the question whether SRD5A1 was involved in sustained proliferation and survival of NSCLC. Methods siRNA-mediated silencing of SRD5A1 was performed in A549 and NCI-H460 lung cancer cell lines in order to determine the impact on proliferation, on distribution during the different phases of the cell cycle, and on apoptosis/necrosis. In addition, lung cancer cell lines were treated with 4-azasteroids, which specifically inhibit SRD5A1 activity, and the effects on proliferation were measured. Statistical analyses using ANOVA and post-hoc Tamhane-T2-test were performed. In the case of non-parametric data, the Kruskal-Wallis test and the post-hoc Mann-Whitney-U-test were used. Results The knock-down of SRDA51 expression was very efficient with the SRD5A1 transcripts being reduced to 10% of control levels. Knock-down efficiency was furthermore confirmed at the protein level. However, no effect of SRD5A1 silencing was observed in the proliferation assay, the cell cycle analysis, and the apoptosis/necrosis assay. Treatment of lung cancer cell lines with 4-azasteroids did not significantly inhibit proliferation. Conclusions In summary, the results suggest that SRD5A1 is not a crucial enzyme for the sustained proliferation of NSCLC cell lines.

  13. Activation of Akt is increased in the dysplasia-carcinoma sequence in Barrett's oesophagus and contributes to increased proliferation and inhibition of apoptosis: a histopathological and functional study

    International Nuclear Information System (INIS)

    The incidence of oesophageal adenocarcinoma is increasing rapidly in the developed world. The serine-threonine protein kinase and proto-oncogene Akt has been reported to regulate proliferation and apoptosis in several tissues but there are no data on the involvement of Akt in oesophageal carcinogenesis. Therefore we have examined the activation of Akt in Barrett's oesophagus and oesophageal adenocarcinoma and the functional effects of Akt activation in vitro. Expression of total and active (phosphorylated) Akt were determined in endoscopic biopsies and surgical resection specimens using immunohistochemistry. The functional effects of Akt were examined using Barrett's adenocarcinoma cells in culture. In normal squamous oesophagus, erosive oesophagitis and non-dysplastic Barrett's oesophagus, phospho-Akt was limited to the basal 1/3 of the mucosa. Image analysis confirmed that Akt activation was significantly increased in non-dysplastic Barrett's oesophagus compared to squamous epithelium and further significantly increased in high-grade dysplasia and adenocarcinoma. In all cases of high grade dysplasia and adenocarcinoma Akt was activated in the luminal 1/3 of the epithelium. Transient acid exposure and the obesity hormone leptin activated Akt, stimulated proliferation and inhibited apoptosis: the combination of acid and leptin was synergistic. Inhibition of Akt phosphorylation with LY294002 increased apoptosis and blocked the effects of acid and leptin both alone and in combination. Activation of Akt was associated with downstream phosphorylation and deactivation of the pro-apoptotic protein Bad and phosphorylation of the Forkhead family transcription factor FOXO1. Akt is abnormally activated in Barrett's oesophagus, high grade dysplasia and adenocarcinoma. Akt activation promotes proliferation and inhibits apoptosis in Barrett's adenocarcinoma cells and both transient acid exposure and leptin stimulate Akt phosphorylation. Downstream

  14. Disruption of RB/E2F-1 interaction by single point mutations in E2F-1 enhances S-phase entry and apoptosis.

    Science.gov (United States)

    Shan, B; Durfee, T; Lee, W H

    1996-01-01

    The retinoblastoma protein (RB) has been proposed to function as a negative regulator of cell proliferation by complexing with cellular proteins such as the transcription factor E2F. To study the biological consequences of the RB/E2F-1 interaction, point mutants of E2F-1 which fail to bind to RB were isolated by using the yeast two-hybrid system. Sequence analysis revealed that within the minimal 18-amino acid peptide of E2F-1 required for RB binding, five residues, Tyr (position 411), Glu (419), and Asp-Leu-Phe (423-425), are critical. These amino acids are conserved among the known E2F family members. While mutation of any of these five amino acids abolished binding to RB, all mutants retained their full transactivation potential. Expression of mutated E2F-1, when compared with that of wild-type, significantly accelerated entry into S phase and subsequent apoptosis. These results provide direct genetic evidence for the biological significance of the RB/E2F interaction and strongly suggest that the interplay between RB and E2F is critical for proper cell cycle progression. Images Fig. 3 Fig. 4 PMID:8570615

  15. Apoptosis of Candida albicans during the Interaction with Murine Macrophages: Proteomics and Cell-Death Marker Monitoring.

    Science.gov (United States)

    Cabezón, Virginia; Vialás, Vital; Gil-Bona, Ana; Reales-Calderón, Jose A; Martínez-Gomariz, Montserrat; Gutiérrez-Blázquez, Dolores; Monteoliva, Lucía; Molero, Gloria; Ramsdale, Mark; Gil, Concha

    2016-05-01

    Macrophages may induce fungal apoptosis to fight against C. albicans, as previously hypothesized by our group. To confirm this hypothesis, we analyzed proteins from C. albicans cells after 3 h of interaction with macrophages using two quantitative proteomic approaches. A total of 51 and 97 proteins were identified as differentially expressed by DIGE and iTRAQ, respectively. The proteins identified and quantified were different, with only seven in common, but classified in the same functional categories. The analyses of their functions indicated that an increase in the metabolism of amino acids and purine nucleotides were taking place, while the glycolysis and translation levels dropped after 3 h of interaction. Also, the response to oxidative stress and protein translation were reduced. In addition, seven substrates of metacaspase (Mca1) were identified (Cdc48, Fba1, Gpm1, Pmm1, Rct1, Ssb1, and Tal1) as decreased in abundance, plus 12 proteins previously described as related to apoptosis. Besides, the monitoring of apoptotic markers along 24 h of interaction (caspase-like activity, TUNEL assay, and the measurement of ROS and cell examination by transmission electron microscopy) revealed that apoptotic processes took place for 30% of the fungal cells, thus supporting the proteomic results and the hypothesis of macrophages killing C. albicans by apoptosis. PMID:27048922

  16. Overexpression of hSNF2H in glioma promotes cell proliferation, invasion, and chemoresistance through its interaction with Rsf-1.

    Science.gov (United States)

    Zhao, Xiao-Chun; An, Ping; Wu, Xiu-Ying; Zhang, Li-Min; Long, Bo; Tian, Yue; Chi, Xiao-Ying; Tong, Dong-Yi

    2016-06-01

    hSNF2H partners with Rsf-1 to compose the Rsf complex to regulate gene expression. Recent studies indicated that hSNF2H was overexpressed in several human cancers. However, its expression pattern and biological mechanism in glioma remain unexplored. In this study, we found that hSNF2H was overexpressed in 32 % of glioma specimens. hSNF2H overexpression correlated with advanced tumor grade (p = 0.0338) and Rsf-1 positivity in glioma tissues (p = 0.016). Small interfering RNA (siRNA) knockdown was performed in A172 and U87 cell lines. MTT, colony formation assay, and cell cycle analysis showed that knockdown of hSNF2H inhibited cell proliferation, colony formation ability, and cell cycle transition. Matrigel invasion assay showed that hSNF2H depletion inhibited invasive ability of glioma cells. In addition, we demonstrated that hSNF2H depletion decreased temozolomide resistance of A172 and U87 cell lines and increased temozolomide induced apoptosis. Furthermore, hSNF2H depletion decreased cyclin D1, cyclin E, p-Rb, MMP2, cIAP1, Bcl-2 expression, and phosphorylation of IκBα and p65, suggesting hSNF2H regulates apoptosis through NF-κB pathway. Immunoprecipitation showed that hSNF2H could interact with Rsf-1 in both cell lines. To validate the involvement of Rsf-1, we checked the change of its downstream targets in Rsf-1 depleted cells. In Rsf-1 depleted cells, changes of cyclin E, Bcl-2, and p-IκBα were not significant using hSNF2H siRNA treatment. In conclusion, our study demonstrated that hSNF2H was overexpressed in human gliomas and contributed to glioma proliferation, invasion, and chemoresistance through regulation of cyclin E and NF-κB pathway, which is dependent on its interaction with Rsf-1. PMID:26666816

  17. Fas-associated factor 1 interacts with protein kinase CK2 in vivo upon apoptosis induction

    DEFF Research Database (Denmark)

    Guerra, B; Boldyreff, B; Issinger, O G

    2001-01-01

    We show here that in several different cell lines protein kinase CK2 and Fas-associated factor 1 (FAF1) exist together in a complex which is stable to high monovalent salt concentration. The CK2/FAF1 complex formation is significantly increased after induction of apoptosis with various DNA damaging...... view that protein kinase CK2 plays an important role in certain steps of apoptosis....

  18. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

    Directory of Open Access Journals (Sweden)

    Tony Velkov

    2013-01-01

    Full Text Available Fatty acid binding proteins (FABPs act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs. PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L- FABP displays a high binding affinity for PPAR subtype selective drugs. NMR chemical shift perturbation mapping and proteolytic protection experiments show that the binding of the PPAR subtype selective drugs produces conformational changes that stabilize the portal region of L-FABP. NMR chemical shift perturbation studies also revealed that L-FABP can form a complex with the PPAR ligand binding domain (LBD of PPARα. This protein-protein interaction may represent a mechanism for facilitating the activation of PPAR transcriptional activity via the direct channeling of ligands between the binding pocket of L-FABP and the PPARαLBD. The role of L-FABP in the delivery of ligands directly to PPARα via this channeling mechanism has important implications for regulatory pathways that mediate xenobiotic responses and host protection in tissues such as the small intestine and the liver where L-FABP is highly expressed.

  19. Interaction of Proliferating Cell Nuclear Antigen With DNA at the Single Molecule Level

    KAUST Repository

    Raducanu, Vlad-Stefan

    2016-05-01

    Proliferating cell nuclear antigen (PCNA) is a key factor involved in Eukaryotic DNA replication and repair, as well as other cellular pathways. Its importance comes mainly from two aspects: the large numbers of interacting partners and the mechanism of facilitated diffusion along the DNA. The large numbers of interacting partners makes PCNA a necessary factor to consider when studying DNA replication, either in vitro or in vivo. The mechanism of facilitated diffusion along the DNA, i.e. sliding along the duplex, reduces the six degrees of freedom of the molecule, three degrees of freedom of translation and three degrees of freedom of rotation, to only two, translation along the duplex and rotational tracking of the helix. Through this mechanism PCNA can recruit its partner proteins and localize them to the right spot on the DNA, maybe in the right spatial orientation, more effectively and in coordination with other proteins. Passive loading of the closed PCNA ring on the DNA without free ends is a topologically forbidden process. Replication factor C (RFC) uses energy of ATP hydrolysis to mechanically open the PCNA ring and load it on the dsDNA. The first half of the introduction gives overview of PCNA and RFC and the loading mechanism of PCNA on dsDNA. The second half is dedicated to a diffusion model and to an algorithm for analyzing PCNA sliding. PCNA and RFC were successfully purified, simulations and a mean squared displacement analysis algorithm were run and showed good stability and experimental PCNA sliding data was analyzed and led to parameters similar to the ones in literature.

  20. ShRNA-mediated Ku80 gene silencing inhibits cell proliferation and sensitizes to γ-radiation and mitomycin C-induced apoptosis in esophageal squamous cell carcinoma lines

    International Nuclear Information System (INIS)

    To investigate the effects of Ku80 depletion on cell growth and sensitization to γ-radiation and Mitomycin C (MMC)-induced apoptosis in esophageal squamous cell carcinoma lines. Six human carcinoma cell lines (LNcaP, K562, MDA-MB-231, MCF-7, EC9706, and K150) and normal HEK293 cell line were examined for basal levels of Ku80 protein by western blotting analysis. The suppression of Ku80 expression was performed using vector-based shRNA in EC9706 cells. Cell proliferation was determined with MTT assay and colony formation assay and tumorigenicity in a xenograft model in vitro and in vivo. Sensitivity of EC9706 cells treated with shRNA vector to γ-radiation and MMC was determined with colony formation assay and MTT assay. The cell cycle distribution was determined by Flow cytometry. Apoptosis induced by γ-radiation and MMC was analyzed using GENMED-TUNEL FACS kit. Ku80 showed higher basal levels in six carcinoma cell lines than in HEK293. The suppression of Ku80 expression decreased cellular proliferation, colony formation and inhibited tumorigenicity in a xenograft model. Furthermore, it sensitized apoptosis of the cancer cells induced by γ-radiation and MMC. Ku80 plays an important role not only in tumorigenesis but also in radiation resistance and chemotherapy resistance in esophageal cancer cells. Hence Ku80 may serve as a promising therapeutic target, particularly for recurrent esophageal tumors. (author)

  1. 17β-Estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner

    International Nuclear Information System (INIS)

    In bone, different concentration of estrogen leads to various of physiological processes in osteoblast, such as the proliferation, migration, and apoptosis in an estrogen receptor-dependent manner. But little was known about the estrogen effects on osteosarcoma (OS). In this study, OS cell MG-63 was treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) with the presence or absence of estrogen receptor α (ERα), for evaluating the E2 effects on proliferation, migration, invasion, colony formation and apoptosis. Consistent with a previous study, high dose of E2 treatment dramatically downregulated expressing level of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1). The observation of upregulation of miR-9 after a high dose of E2 treatment indicated the cause of MALAT-1 reduction. Downregulation of MALAT-1 promoted the combination of SFPQ/PTBP2 complex. It was also observed that the proliferation, migration, invasion, colony formation and apoptosis of OS cells were remarkably affected by high dose of E2 treatment, but not by low dose, in an ERα independent manner. Furthermore, the abolishment of the effects on these physiological processes caused by ectopic expression of miR-9 ASOs suggested the necessity of miR-9 in MALAT-1 regulation. Here we found that the high dose of E2 treatment upregulated miR-9 thus posttranscriptionally regulated MALAT-1 RNA level in OS cells, and then the downregulation of MALAT-1 inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) processes in the E2-dose dependent and ER-independent ways. - Highlights: • E2 affects osteosarcoma cell MG-63 in an Estrogen receptor-independent way. • High dose of E2 treatment upregulates miR-9 which target to MALAT-1 RNA. • Upregulated miR-9 degrades MALAT-1 and thus affects combination of SFPQ/PTBP2. • E2 treatment block cell proliferation, colony formation, mobility, and enhance apoptosis

  2. 17β-Estradiol regulates cell proliferation, colony formation, migration, invasion and promotes apoptosis by upregulating miR-9 and thus degrades MALAT-1 in osteosarcoma cell MG-63 in an estrogen receptor-independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Dengfeng; Yang, Hui; Lin, Jing; Teng, Yi; Jiang, Yingying; Chen, Jiao; Li, Yu, E-mail: yuli_scu@163.com

    2015-02-20

    In bone, different concentration of estrogen leads to various of physiological processes in osteoblast, such as the proliferation, migration, and apoptosis in an estrogen receptor-dependent manner. But little was known about the estrogen effects on osteosarcoma (OS). In this study, OS cell MG-63 was treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) with the presence or absence of estrogen receptor α (ERα), for evaluating the E2 effects on proliferation, migration, invasion, colony formation and apoptosis. Consistent with a previous study, high dose of E2 treatment dramatically downregulated expressing level of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1). The observation of upregulation of miR-9 after a high dose of E2 treatment indicated the cause of MALAT-1 reduction. Downregulation of MALAT-1 promoted the combination of SFPQ/PTBP2 complex. It was also observed that the proliferation, migration, invasion, colony formation and apoptosis of OS cells were remarkably affected by high dose of E2 treatment, but not by low dose, in an ERα independent manner. Furthermore, the abolishment of the effects on these physiological processes caused by ectopic expression of miR-9 ASOs suggested the necessity of miR-9 in MALAT-1 regulation. Here we found that the high dose of E2 treatment upregulated miR-9 thus posttranscriptionally regulated MALAT-1 RNA level in OS cells, and then the downregulation of MALAT-1 inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) processes in the E2-dose dependent and ER-independent ways. - Highlights: • E2 affects osteosarcoma cell MG-63 in an Estrogen receptor-independent way. • High dose of E2 treatment upregulates miR-9 which target to MALAT-1 RNA. • Upregulated miR-9 degrades MALAT-1 and thus affects combination of SFPQ/PTBP2. • E2 treatment block cell proliferation, colony formation, mobility, and enhance apoptosis.

  3. miR-106a-5p inhibits the proliferation and migration of astrocytoma cells and promotes apoptosis by targeting FASTK.

    Directory of Open Access Journals (Sweden)

    Feng Zhi

    Full Text Available Astrocytomas are common malignant intracranial tumors that comprise the majority of adult primary central nervous system tumors. MicroRNAs (miRNAs are small, non-coding RNAs (20-24 nucleotides that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In our previous studies, we found that the downregulation of miR-106a-5p in astrocytomas is associated with poor prognosis. However, its specific gene target(s and underlying functional mechanism(s in astrocytomas remain unclear. In this study, we used mRNA microarray experiments to measure global mRNA expression in the presence of increased or decreased miR-106a-5p levels. We then performed bioinformatics analysis based on multiple target prediction algorithms to obtain candidate target genes that were further validated by computational predictions, western blot analysis, quantitative real-time PCR, and the luciferase reporter assay. Fas-activated serine/threonine kinase (FASTK was identified as a direct target of miR-106a-5p. In human astrocytomas, miR-106a-5p is downregulated and negatively associated with clinical staging, whereas FASTK is upregulated and positively associated with advanced clinical stages, at both the protein and mRNA levels. Furthermore, Kaplan-Meier analysis revealed that the reduced expression of miR-106a-5p or the increased expression of FASTK is significantly associated with poor survival outcome. These results further supported the finding that FASTK is a direct target gene of miR-106a-5p. Next, we explored the function of miR-106a-5p and FASTK during astrocytoma progression. Through gain-of-function and loss-of-function studies, we demonstrated that miR-106a-5p can significantly inhibit cell proliferation and migration and can promote cell apoptosis in vitro. The knockdown of FASTK induced similar effects on astrocytoma cells as those induced by the overexpression of miR-106a-5p. These

  4. Modulator of Apoptosis 1: A Highly Regulated RASSF1A-Interacting BH3-Like Protein

    Directory of Open Access Journals (Sweden)

    Jennifer Law

    2012-01-01

    Full Text Available Modulator of apoptosis 1 (MOAP-1 is a BH3-like protein that plays key roles in both the intrinsic and extrinsic modes of cell death or apoptosis. MOAP-1 is part of the Ras association domain family 1A (RASSF1A/MOAP-1 pro-apoptotic extrinsic signaling pathway that regulates apoptosis by utilizing death receptors such as tumor necrosis factor α (TNFα or TNF-related apoptosis-inducing ligand (TRAIL to inhibit abnormal growth. RASSF1A is a bona fide tumor suppressor gene that is epigenetically silenced by promoter-specific methylation in numerous human cancers. MOAP-1 is a downstream effector of RASSF1A that promotes Bax activation and cell death and is highly regulated during apoptosis. We speculate that MOAP-1 and RASSF1A are important elements of an “apoptotic checkpoint” that directly influences the outcome of cell death. The failure to regulate this pro-apoptotic pathway may result in the appearance of cancer and possibly other disorders. Although loss of RASSF1A expression is frequently observed in human cancers, it is currently unknown if MOAP-1 expression may also be affected during carcinogenesis to result in uncontrolled malignant growth. In this article, we will summarize what is known about the biological role(s of MOAP-1 and how it functions as a downstream effector to RASSF1A.

  5. New Hydrophilic/Lipophilic Tetra-α-(4-carboxyphenoxy Phthalocyanine Zinc-Mediated Photodynamic Therapy Inhibits the Proliferation of Human Hepatocellular Carcinoma Bel-7402 Cells by Triggering Apoptosis and Arresting Cell Cycle

    Directory of Open Access Journals (Sweden)

    Tao Li

    2011-02-01

    Full Text Available Photodynamic therapy (PDT is a novel and promising antitumor treatment. Phthalocyanine-mediated PDT has shown antitumor activity in some tumor cells, but the effect of new hydrophilic/lipophilic tetra-α-(4-carboxyphenoxyphthalocyanine zinc (TαPcZn-mediated PDT (TαPcZn-PDT on human hepatocellular carcinoma Bel-7402 cells and underlying mechanisms have not been clarified. In the present study, therefore, the ultraviolet-visible (UV-vis absorption spectrum and cellular localization of TαPcZn, and effect of TαPcZn-PDT on the proliferation, apoptosis, cell cycle, Bcl-2 and Fas in Bel-7402 cells were investigated by spectrophotometry, inverted microscope, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay, electron microscopy, annexinV-FITC/propidium iodide double staining, DNA content and immunoblot assay, respectively. We found that an intense absorption in UV-vis absorption spectrum of TαPcZn was in the red visible region at 650–680 nm, where light penetration in tissue is efficient, that green TαPcZn localized to both plasma membrane and nuclear membrane of Bel-7402 cells, signifying that there was a selective uptake of TαPcZn in Bel-7402 cells and TαPcZn-PDT would be expected to directly damage DNA, and that TαPcZn-PDT significantly resulted in the proliferation inhibition, apoptosis induction, S cell cycle arrest, and down-regulation of Bcl-2 and Fas. Taken together, we conclude that TαPcZn-PDT inhibits the proliferation of Bel-7402 cells by triggering apoptosis and arresting the cell cycle.

  6. [Effects of N, N'-Di-(m-methylphenyi)-3, 6-dimethyl-1, 4-dihydro-1, 2, 4, 5-tetrazine-1, 4-dicarboamide on proliferation, apoptosis and differentiation of NB4 leukemia cells in vitro].

    Science.gov (United States)

    Zhou, Yong-Lie; Lü, Ya-Ping; Hu, Wei-Xiao; Qiu, Lian-Nü; Wang, Wen-Song; Wu, Jian-Guo; Liu, Jian-Dong

    2006-10-01

    The purpose of this study was to explore the effect of N, N'-di-(m-methylphenyi)-3, 6-dimethyl-1, 4-dihydro-1, 2, 4, 5-tetrazine-1, 4-dicarboamide (ZGDHu-1) on proliferation, differentiation and apoptosis in NB4 human leukemia cell line and its possible mechanism. Different concentrations of ZGDHu-1 and the different time of cultivation were used to treat NB4 cells. The proliferation inhibition of NB4 cells was analysed by cell counting, alive cell count, MTT assay. Cell apoptosis was determined by cell morphology, DNA agarose gel electrophoresis, DNA content, Annexin-V/PI and Hoechst 33258 labeling method. The analysis of cell morphological change, expression of CD11b, CD13 and NBT reduction were performed to evaluate the differentiation of NB4 cells. The expressions of bcl-2, bax and phosphorylated p38MAPK or STAT3 were detected by flow cytometry. While the expression of hTERT mRNA in transcriptional level was measured by fluorescence quantitative RT-PCR. The results showed that ZGDHu-1 could inhibit NB4 cell proliferation viability within a certain range of treating time and does, IC(50) values at 48 and 72 hours were 450 ng/ml and 200 ng/ml respectively. A majority of NB4 cells were arrested in G(2/M) phase and a progressive decline of cells was seen in G(0/1). The NB4 cells apoptosis was confirmed by cell typical cell morphology, DNA fragments and sub-G(1) phase peak as well as Hoechst33258 and Annexin-V/PI labeling method with a time-dose-related manner. The morphology of NB4 cells cultured in the presence of 2 - 100 ng/ml ZGDHu-1 for three days was more mature with higher NBT positivity and expressions of CD11b and CD13 than those in control. The expression of phosphor-p38MAPK and bax was increased while phosphor-STAT3 and bcl-2 were unchanged by the treatment of ZGDHu-1. ZGDHu-1 could decrease the expression of hTERT-mRNA in a dose-dependent manner. It is concluded that ZGDHu-1 can inhibit proliferation, induce differentiation and apoptosis of NB4 cells

  7. A combination of STI571 and BCR-ABL1 siRNA with overexpressed p15INK4B induced enhanced proliferation inhibition and apoptosis in chronic myeloid leukemia

    OpenAIRE

    Xia, D.Y.; Liu, L; Hao, M.W.; Liu, Q; Chen, R A; Y.M. Liang

    2014-01-01

    p15INK4B, a cyclin-dependent kinase inhibitor, has been recognized as a tumor suppressor. Loss of or methylation of the p15INK4B gene in chronic myeloid leukemia (CML) cells enhances myeloid progenitor formation from common myeloid progenitors. Therefore, we examined the effects of overexpressed p15INK4B on proliferation and apoptosis of CML cells. Overexpression of p15INK4B inhibited the growth of K562 cells by downregulation of cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Over...

  8. Tight coevolution of proliferating cell nuclear antigen (PCNA)-partner interaction networks in fungi leads to interspecies network incompatibility.

    OpenAIRE

    Zamir, L.; Zaretsky, M.; Fridman, Y; Ner-Gaon, H.; Rubin, E; Aharoni, A.

    2012-01-01

    The structure and connectivity of protein-protein interaction (PPI) networks are maintained throughout evolution by coordinated changes (coevolution) of network proteins. Despite extensive research, relatively little is known regarding the molecular basis and functional implications of the coevolution of PPI networks. Here, we used proliferating cell nuclear antigen, a hub protein that mediates DNA replication and repair in eukaryotes, as a model system to study the coevolution of PPI network...

  9. Dynamic interaction between 14-3-3zeta and bax during TNF-α-induced apoptosis in living cells

    Science.gov (United States)

    Gao, Xuejuan; Xing, Da; Chen, Tongsheng

    2006-09-01

    Bax, a proapoptotic member of the Bcl-2 family, localizes largely in the cytoplasm but redistributes to mitochondria and undergoes oligomerization to induce the release of apoptogenic factors such as cytochrome c in response to apoptotic stimuli. Cytoplasmic protein 14-3-3zeta binds to Bax and, upon apoptotic stimulation, releases Bax by a caspase-independent mechanism. However, the direct interaction of the cytoplasmic 14-3-3zeta and Bax in living cells has not been observed. In present study, to monitor the dynamic interaction between 14-3-3zeta and Bax in living cells in real time during apoptosis induced by tumor necrosis factor (TNF-α), DsRed-14-3-3zeta plasmid is constructed. By cotransfecting DsRed- 14-3-3zeta and GFP-Bax plasmids into human lung adenocarcinoma cells (ASTC-a-1), we observe the dynamic interaction between Bax and 14-3-3zeta using fluorescence resonance energy transfer (FRET) technique on laser scanning confocal microscope. The results show that 14-3-3zeta remains in the cytoplasm but GFP-Bax translocates to mitochondria completely after TNF-α stimulation. These results reveal that 14-3-3zeta binds directly to Bax in healthy cells, and that 14-3-3zeta negatively regulates Bax translocation to mitochondria during TNF-α-induced apoptosis.

  10. Nutrient-Deprived Retinal Progenitors Proliferate in Response to Hypoxia: Interaction of the HIF-1 and mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Helena Khaliullina

    2016-05-01

    Full Text Available At a cellular level, nutrients are sensed by the mechanistic Target of Rapamycin (mTOR. The response of cells to hypoxia is regulated via action of the oxygen sensor Hypoxia-Inducible Factor 1 (HIF-1. During development, injury and disease, tissues might face conditions of both low nutrient supply and low oxygen, yet it is not clear how cells adapt to both nutrient restriction and hypoxia, or how mTOR and HIF-1 interact in such conditions. Here we explore this question in vivo with respect to cell proliferation using the ciliary marginal zone (CMZ of Xenopus. We found that both nutrient-deprivation and hypoxia cause retinal progenitors to decrease their proliferation, yet when nutrient-deprived progenitors are exposed to hypoxia there is an unexpected rise in cell proliferation. This increase, mediated by HIF-1 signalling, is dependent on glutaminolysis and reactivation of the mTOR pathway. We discuss how these findings in non-transformed tissue may also shed light on the ability of cancer cells in poorly vascularised solid tumours to proliferate.

  11. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Research highlights: → STIM1 and TRPC1 are expressed in EPCs. → Knockdown of STIM1 inhibits the proliferation, migration and SOCE of EPCs. → TRPC1-SOC cooperates with STIM1 to mediate the SOCE of EPCs. -- Abstract: Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1 on neointima hyperplasia inhibition is mediated through its effect on the biological properties of EPCs. In this study, we investigated the effects of STIM1 on the proliferation and migration of EPCs and examined the effect of STIM1 knockdown using cultured rat bone marrow-derived EPCs. STIM1 was expressed in EPCs, and knockdown of STIM1 by adenoviral delivery of small interfering RNA (siRNA) significantly suppressed the proliferation and migration of EPCs. Furthermore, STIM1 knockdown decreased store-operated channel entry 48 h after transfection. Replenishment with recombinant human STIM1 reversed the effects of STIM1 knockdown. Our data suggest that the store-operated transient receptor potential canonical 1 channel is involved in regulating the biological properties of EPCs through STIM1. STIM1 is a potent regulator of cell proliferation and migration in rat EPCs and may play an important role in the biological properties of EPCs.

  12. Triphala Extract Suppresses Proliferation and Induces Apoptosis in Human Colon Cancer Stem Cells via Suppressing c-Myc/Cyclin D1 and Elevation of Bax/Bcl-2 Ratio

    Directory of Open Access Journals (Sweden)

    Ramakrishna Vadde

    2015-01-01

    Full Text Available Colon cancer is the second leading cause of cancer related deaths in the USA. Cancer stem cells (CSCs have the ability to drive continued expansion of the population of malignant cells. Therefore, strategies that target CSCs could be effective against colon cancer and in reducing the risk of relapse and metastasis. In this study, we evaluated the antiproliferative and proapoptotic effects of triphala, a widely used formulation in Indian traditional medicine, on HCT116 colon cancer cells and human colon cancer stem cells (HCCSCs. The total phenolic content, antioxidant activity, and phytochemical composition (LC-MS-MS of methanol extract of triphala (MET were also measured. We observed that MET contains a variety of phenolics including naringin, quercetin, homoorientin, and isorhamnetin. MET suppressed proliferation independent of p53 status in HCT116 and in HCCSCs. MET also induced p53-independent apoptosis in HCCSCs as indicated by elevated levels of cleaved PARP. Western blotting data suggested that MET suppressed protein levels of c-Myc and cyclin D1, key proteins involved in proliferation, and induced apoptosis through elevation of Bax/Bcl-2 ratio. Furthermore, MET inhibited HCCSCs colony formation, a measure of CSCs self-renewal ability. Anticancer effects of triphala observed in our study warrant future studies to determine its efficacy in vivo.

  13. A combination of STI571 and BCR-ABL1 siRNA with overexpressed p15INK4B induced enhanced proliferation inhibition and apoptosis in chronic myeloid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Xia, D.Y.; Liu, L.; Hao, M.W.; Liu, Q.; Chen, R.A.; Liang, Y.M. [Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi' an (China)

    2014-10-14

    p15INK4B, a cyclin-dependent kinase inhibitor, has been recognized as a tumor suppressor. Loss of or methylation of the p15INK4B gene in chronic myeloid leukemia (CML) cells enhances myeloid progenitor formation from common myeloid progenitors. Therefore, we examined the effects of overexpressed p15INK4B on proliferation and apoptosis of CML cells. Overexpression of p15INK4B inhibited the growth of K562 cells by downregulation of cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Overexpression of p15INK4B also induced apoptosis of K562 cells by upregulating Bax expression and downregulating Bcl-2 expression. Overexpression of p15INK4B together with STI571 (imatinib) or BCR-ABL1 small interfering RNA (siRNA) also enhanced growth inhibition and apoptosis induction of K562 cells. The enhanced effect was also mediated by reduction of cyclin D1 and CDK4 and regulation of Bax and Bcl-2. In conclusion, our study may provide new insights into the role of p15INK4B in CML and a potential therapeutic target for overcoming tyrosine kinase inhibitor resistance in CML.

  14. Environmental Enrichment, Age, and PPARα Interact to Regulate Proliferation in Neurogenic Niches.

    Science.gov (United States)

    Pérez-Martín, Margarita; Rivera, Patricia; Blanco, Eduardo; Lorefice, Clara; Decara, Juan; Pavón, Francisco J; Serrano, Antonia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) ligands have been shown to modulate recovery after brain insults such as ischemia and irradiation by enhancing neurogenesis. In the present study, we investigated the effect of the genetic deletion of PPARα receptors on the proliferative rate of neural precursor cells (NPC) in the adult brain. The study was performed in aged Pparα(-/-) mice exposed to nutritional (treats) and environmental (games) enrichments for 20 days. We performed immunohistochemical analyses of cells containing the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) and the immature neuronal marker doublecortin (Dcx+) in the main neurogenic zones of the adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ), and/or hypothalamus. Results indicated a reduction in the number of BrdU+ cells in the neurogenic zones analyzed as well as Dcx+ cells in the SGZ during aging (2, 6, and 18 months). Pparα deficiency alleviated the age-related reduction of NPC proliferation (BrdU+ cells) in the SVZ of the 18-months-old mice. While no genotype effect on NPC proliferation was detected in the SGZ during aging, an accentuated reduction in the number of Dcx+ cells was observed in the SGZ of the 6-months-old Pparα(-/-) mice. Exposing the 18-months-old mice to nutritional and environmental enrichments reversed the Pparα(-/-)-induced impairment of NPC proliferation in the neurogenic zones analyzed. The enriched environment did not modify the number of SGZ Dcx+ cells in the 18 months old Pparα(-/-) mice. These results identify PPARα receptors as a potential target to counteract the naturally observed decline in adult NPC proliferation associated with aging and impoverished environments. PMID:27013951

  15. Environmental Enrichment, Age, and PPARα Interact to Regulate Proliferation in Neurogenic Niches

    Science.gov (United States)

    Pérez-Martín, Margarita; Rivera, Patricia; Blanco, Eduardo; Lorefice, Clara; Decara, Juan; Pavón, Francisco J.; Serrano, Antonia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) ligands have been shown to modulate recovery after brain insults such as ischemia and irradiation by enhancing neurogenesis. In the present study, we investigated the effect of the genetic deletion of PPARα receptors on the proliferative rate of neural precursor cells (NPC) in the adult brain. The study was performed in aged Pparα−/− mice exposed to nutritional (treats) and environmental (games) enrichments for 20 days. We performed immunohistochemical analyses of cells containing the replicating cell DNA marker 5-bromo-2′-deoxyuridine (BrdU+) and the immature neuronal marker doublecortin (Dcx+) in the main neurogenic zones of the adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ), and/or hypothalamus. Results indicated a reduction in the number of BrdU+ cells in the neurogenic zones analyzed as well as Dcx+ cells in the SGZ during aging (2, 6, and 18 months). Pparα deficiency alleviated the age-related reduction of NPC proliferation (BrdU+ cells) in the SVZ of the 18-months-old mice. While no genotype effect on NPC proliferation was detected in the SGZ during aging, an accentuated reduction in the number of Dcx+ cells was observed in the SGZ of the 6-months-old Pparα−/− mice. Exposing the 18-months-old mice to nutritional and environmental enrichments reversed the Pparα−/−-induced impairment of NPC proliferation in the neurogenic zones analyzed. The enriched environment did not modify the number of SGZ Dcx+ cells in the 18 months old Pparα−/− mice. These results identify PPARα receptors as a potential target to counteract the naturally observed decline in adult NPC proliferation associated with aging and impoverished environments. PMID:27013951

  16. The inhibition of cell proliferation and induction of apoptosis in pancreatic ductal adenocarcinoma cells by verrucarin A, a macrocyclic trichothecene, is associated with the inhibition of Akt/NF-кB/mTOR prosurvival signaling.

    Science.gov (United States)

    Deeb, Dorrah; Gao, Xiaohua; Liu, Yongbo; Zhang, Yiguan; Shaw, Jiajiu; Valeriote, Frederick A; Gautam, Subhash C

    2016-09-01

    Pancreatic ductal adenocarcinoma (PDA) remains one of the most difficult to treat of all malignancies. Multimodality regimens provide only short-term symptomatic improvement with minor impact on survival, underscoring the urgent need for novel therapeutics and treatment strategies for PDA. Trichothecenes are powerful mycotoxins that inhibit protein synthesis and induce ribotoxic stress response in mammalian cells. Verrucarin A (VC-A) is a Type D macrocyclic mycotoxin which inhibited cell proliferation and induced apoptosis in breast cancer cells. However, the antitumor activity of VC-A for PDA cells has not been investigated. Here we show potent antitumor activity and the mechanism of action of VC-A in PDA cell lines. VC-A strongly inhibited the proliferation and arrested cells in the S phase of the cell cycle. The blocking of cell cycle progression by VC-A was associated with the inhibition of cell cycle regulatory proteins cyclin D1, cyclin E, cyclin-dependent kinases (cdks) cdk2, cdk4 and cdk inhibitor WAF1/21. VC-A induced apoptosis in PDA cells as indicated by the increased Annexin V FITC-binding, cleavage of poly(ADP-ribose) polymerase‑1 (PARP-1) and procaspases-3, -8 and -9. VC-A also induced mitochondrial depolarization and release of cytochrome c and it inhibited Bcl-2 family proteins that regulate apoptosis (Bcl-2, Bcl-xL, Bax and Bad). In addition, VC-A reduced the levels of inhibitors of apoptosis survivin and c-IAP-2. Finally, VC-A downregulated the expression of prosurvival phospho-Akt (p-Akt), nuclear factor κB (NF-κB) (p65) and mammalian target of rapamycin (p-mTOR) signaling proteins and their downstream mediators. Together, these results demonstrated strong antiproliferative and apoptosis-inducing activity of verrucarin A for PDA cells through cell cycle arrest and inhibition of the prosurvival (antiapoptotic) AKT/NF-κB/mTOR signaling. PMID:27573873

  17. Cooperative Interaction of trp Melastatin Channel TRPM2 with its Splice Variant TRPM2-S is Essential for Endothelial Cell Apoptosis

    Science.gov (United States)

    Hecquet, Claudie M.; Zhang, Min; Mittal, Manish; Vogel, Stephen M.; Di, Anke; Gao, Xiaopei; Bonini, Marcelo G.; Malik, Asrar B.

    2014-01-01

    Rationale: Oxidants generated by activated endothelial cells are known to induce apoptosis, a pathogenic feature of vascular injury and inflammation from multiple etiologies. The melastatin-family transient receptor potential 2 (TRPM2) channel is an oxidant-sensitive Ca2+ permeable channel implicated in mediating apoptosis; however, the mechanisms of gating of the supra-normal Ca2+ influx required for initiating of apoptosis are not understood. Objective: Here we addressed the role TRPM2 and its interaction with the short splice variant TRPM2-S in mediating the Ca2+ entry burst required for induction of endothelial cell apoptosis. Methods and Results: We observed that TRPM2-S was basally associated with TRPM2 in the endothelial plasmalemma and this interaction functioned to constitutively suppress TRPM2-dependent Ca2+ gating. ROS production in endothelial cells or directly applying ROS induced PKCα activation and phosphorylation of TRPM2 at Ser 39. This in turn stimulated a large entry of Ca2+ and activated the apoptosis pathway. A similar TRPM2-dependent endothelial apoptosis mechanism was seen in intact vessels. The PKCα-activated phospho-switch opened the TRPM2 channel to allow large Ca2+ influx by releasing TRPM2-S inhibition of TRPM2, which in turn activated caspase-3 and cleaved the caspase substrate poly(ADP-ribose) polymerase. Conclusions: Here we describs a fundamental mechanism by which activation of the trp super-family TRPM2 channel induces apoptosis of endothelial cells. The signaling mechanism involves ROS-induced PKCα activation resulting in phosphorylation of TRPM2-S that allows enhanced TRPM2-mediated gating of Ca2+ and activation of the apoptosis program. Strategies aimed at preventing the uncoupling of TRPM2-S from TRPM2 and subsequent Ca2+ gating during oxidative stress may mitigate endothelial apoptosis and its consequences in mediating vascular injury and inflammation. PMID:24337049

  18. Proapoptotic RYBP interacts with FANK1 and induces tumor cell apoptosis through the AP-1 signaling pathway.

    Science.gov (United States)

    Ma, Wen; Zhang, Xuan; Li, Meng; Ma, Xiaoli; Huang, Bingren; Chen, Hong; Chen, Deng

    2016-08-01

    Ring1 and YY1 Binding Protein (RYBP) induces tumor-specific cell apoptosis, but the underlying molecular mechanism has not been fully understood. Here we conducted a yeast two hybrid screen and identified FANK1 (Fibronectin type III and ankyrin repeat domains 1) as a novel RYBP-interacting protein. This interaction was confirmed by coimmunoprecipitation, GST pulldown and immunofluorescence assays. We mapped that the FNIII domain at the N-terminal of FANK1 binds to the Serine/Threonine-rich region at the C-terminal of RYBP. Further studies showed that overexpression of RYBP stabilized, whereas knockdown of RYBP by its specific shRNAs reduced, the expression of FANK1. Mechanistic studies revealed that RYBP inhibited the proteasome degradation of polyubiquitinated FANK1, thus prolonging the half-life of FANK1 protein. Functional studies indicated that RYBP activates FANK1-mediated activator protein 1 (AP-1) signaling pathway which contributes to tumor cell apoptosis. Taken together, our current study uncovered a new mechanism which RYBP utilizes to exert its pro-apoptotic activity in human tumor cells. PMID:27060496

  19. Genomic distance entrained clustering and regression modelling highlights interacting genomic regions contributing to proliferation in breast cancer

    Directory of Open Access Journals (Sweden)

    Dexter Tim J

    2010-09-01

    Full Text Available Abstract Background Genomic copy number changes and regional alterations in epigenetic states have been linked to grade in breast cancer. However, the relative contribution of specific alterations to the pathology of different breast cancer subtypes remains unclear. The heterogeneity and interplay of genomic and epigenetic variations means that large datasets and statistical data mining methods are required to uncover recurrent patterns that are likely to be important in cancer progression. Results We employed ridge regression to model the relationship between regional changes in gene expression and proliferation. Regional features were extracted from tumour gene expression data using a novel clustering method, called genomic distance entrained agglomerative (GDEC clustering. Using gene expression data in this way provides a simple means of integrating the phenotypic effects of both copy number aberrations and alterations in chromatin state. We show that regional metagenes derived from GDEC clustering are representative of recurrent regions of epigenetic regulation or copy number aberrations in breast cancer. Furthermore, detected patterns of genomic alterations are conserved across independent oestrogen receptor positive breast cancer datasets. Sequential competitive metagene selection was used to reveal the relative importance of genomic regions in predicting proliferation rate. The predictive model suggested additive interactions between the most informative regions such as 8p22-12 and 8q13-22. Conclusions Data-mining of large-scale microarray gene expression datasets can reveal regional clusters of co-ordinate gene expression, independent of cause. By correlating these clusters with tumour proliferation we have identified a number of genomic regions that act together to promote proliferation in ER+ breast cancer. Identification of such regions should enable prioritisation of genomic regions for combinatorial functional studies to pinpoint

  20. c-MYB in the mouse incisor and hair follicle stem cell niches and surrounding tissues - correlation with proliferation and apoptosis

    Czech Academy of Sciences Publication Activity Database

    Veselá, Barbora; Švandová, Eva; Šmarda, J.; Hampl, A.; Matalová, Eva

    Lipsko : German Society for Stem Cell Research, 2012. 113-114. [Annual Congress of theGerman Society for Stem Cell Research /7./. 29.11.2012-30.11.2012, Lipsko] R&D Projects: GA ČR GAP304/11/1418 Institutional support: RVO:67985904 Keywords : apoptosis Subject RIV: EA - Cell Biology

  1. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells

    DEFF Research Database (Denmark)

    Nielsen, C H; Albertsen, L; Bendtzen, K;

    2007-01-01

    ) cells play a significant role in most AID. We therefore examined directly, by flow cytometry, the uptake of MTX by the T helper (Th) cells stimulated for 6 days with Candida albicans (CA) or tetanus toxoid (TT), and its consequences with respect to induction of apoptosis. While none of the resting Th...

  2. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

    OpenAIRE

    Tony Velkov

    2013-01-01

    Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FA...

  3. Androgen receptor silences thioredoxin-interacting protein and competitively inhibits glucocorticoid receptor-mediated apoptosis in pancreatic β-Cells.

    Science.gov (United States)

    Harada, Naoki; Katsuki, Takahiro; Takahashi, Yuji; Masuda, Tatsuya; Yoshinaga, Mariko; Adachi, Tetsuya; Izawa, Takeshi; Kuwamura, Mitsuru; Nakano, Yoshihisa; Yamaji, Ryoichi; Inui, Hiroshi

    2015-06-01

    Androgen receptor (AR) is known to bind to the same cis-element that glucocorticoid receptor (GR) binds to. However, the effects of androgen signaling on glucocorticoid signaling have not yet been elucidated. Here, we investigated the effects of testosterone on dexamethasone (DEX, a synthetic glucocorticoid)-induced apoptosis of pancreatic β-cells, which might be involved in the pathogenesis of type 2 diabetes mellitus in males. We used INS-1 #6 cells, which were isolated from the INS-1 pancreatic β-cell line and which express high levels of AR. Testosterone and dihydrotestosterone inhibited apoptosis induced by DEX in INS-1 #6 cells. AR knockdown and the AR antagonist hydroxyflutamide each diminished the anti-apoptotic effects of testosterone. AR was localized in the nucleus of both INS-1 #6 cells and pancreatic β-cells of male rats. Induction of thioredoxin-interacting protein (TXNIP) is known to cause pro-apoptotic effects in β-cells. Testosterone suppressed the DEX-induced increase of TXNIP at the transcriptional level. A Chromatin immunoprecipitation assays showed that both AR and GR competitively bound to the TXNIP promoter in ligand-dependent manners. Recombinant DNA-binding domain of AR bound to the same cis-element of the TXNIP promoter that GR binds to. Our results show that AR and GR competitively bind to the same cis-element of TXNIP promoter as a silencer and enhancer, respectively. These results indicate that androgen signaling functionally competes with glucocorticoid signaling in pancreatic β-cell apoptosis. PMID:25639671

  4. Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction

    DEFF Research Database (Denmark)

    Kolesar, Peter; Altmannova, Veronika; Silva, Sonia;

    2016-01-01

    -interacting motif (SIM) of Srs2 is important for the interaction with several recombination factors. Lack of SIM, but not proliferating cell nuclear antigen (PCNA)-interacting motif (PIM), leads to increased cell death under circumstances requiring homologous recombination for DNA repair. Simultaneous mutation of...

  5. Small interfering RNA targeting of S phase kinase-interacting protein 2 inhibits cell proliferation of pterygium fibroblasts

    OpenAIRE

    Su, Ying; Wang, Feng; Qi, Hu; Zhao, Shi Guang; Li, Xue; Cui, Hao

    2011-01-01

    Purpose Fibroblast cell proliferation is major reason for recurrence of pterygia. In the present study, we investigated if small interfering RNA (siRNA)-mediated gene silencing of S phase-kinase-interacting protein 2 (Skp2) can be employed to inhibit protein 27 kinase inhibition protein 1 (p27kip1 ) down-regulation in pterygium fibroblast cells (PFC) in vitro and in vivo. Methods A plasmid containing transgenes encoding Skp2 siRNA was used to decreasing the high constitutive levels of Skp2 pr...

  6. Comment on "Effect of transferred NK4 gene on proliferation,migration, invasion, and apoptosis of human prostate cancer DU145 cells" by Dan Yue et al. in Asian Journal of Andrology

    Institute of Scientific and Technical Information of China (English)

    Shahriar Koochekpour

    2010-01-01

    @@ Hepatocyte growth factor/scatter factor (HGF/SF) interacting with its cell surface receptor tyrosine kinase (RTK) c-met proto-oncogene drives downstream signaling pathways which lead to cell proliferation, migration,invasion, apoptotic cell-death protection, angiogenesis during embryogenesis, repair and regeneration, and neoplastic growth and metastatic progression [1-6].

  7. Interaction of exposure concentration and duration in determining the apoptosis of testis in rats after cigarette smoke inhalation

    Directory of Open Access Journals (Sweden)

    Lijuan He

    2016-07-01

    Full Text Available The effects of differences in smoke concentration and exposure duration in Sprague Dawley rats to determine variation in type and severity of the testis apoptosis were evaluated. The daily dosages were 10, 20 and 30 non-filter cigarettes for a period of 2, 4, 6, 8 and 12 weeks. Mainstream smoke exposure suppressed body weight gain in all regimens. A dose-related increase in plasma nicotine concentration was observed in smoke-exposed groups for 4, 6, 8 and 12 week regimens. Histopathological examination of the exposed groups showed disturbances in the stages of spermatogenesis, tubules atrophying and these appeared to be dose-related. Cytoplasmic caspase-3 immunostaining was detected both in Sertoli cells and germ cells in smoke-exposure groups. An increase in TUNEL-positive cells of testicular cells was observed after 6 weeks of cigarette exposure. The results indicate that cigarette exposure concentration and duration have interaction effect to induce apoptosis in the rat testes.

  8. Interaction between Cl- channels and CRAC-related Ca2+ signaling during T lymphocyte activation and proliferation

    Institute of Scientific and Technical Information of China (English)

    Guan-lei WANG; Yan QIAN; Qin-ying QIU; Xiu-jian LAN; Hua HE; Yong-yuan GUAN

    2006-01-01

    Aim:To test the hypothesis that Cl- channel blockers affect T cell proliferation through Ca2+-release-activated Ca2+ (CRAC) signaling and examine the effects of the combination of a CRAC channel blocker and a Cl- channel blocker on concanavalin A (ConA;5 mg/mL) -induced Ca2+ signaling,gene expression and cellular proliferation in human peripheral T lymphocytes.Methods:[3H]Thymidine incorporation,Fura-2 fluorescent probe,RNase protection assay,and reverse transcription.polymerase chain reaction were used.Results:The Cl- channel blocker 4,4'-diisothiocvanostilbene-2,2'-disulfonic acid (DIDS) inhibited ConA-induced Ca2+influx.interleukin-2 mRNA expression and T lymphocyte proliferation in a concentration.dependent manner,and also enhanced the inhibitory effects of 1-{beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl}-1H-imidazole (SK&F96365) on the above key events during T cell activation.A combination ofDIDS (1μmol/L) and SK&F96365 (1μmol/L) significantly diminished ConA-induced ClC-3 mRNA expression by 64%,whereas DIDS (1μmol/L) or SK&F96365 (1μmol/L) alone decreased ConA-induced ClC-3 mRNA expression by only 16% and 9%.respectively.Conclusion:These results suggest that there is an interaction between CRAC-mediated Ca2+ signaling and DIDS-sensitive C1-channels during ConA-induced T cell activation and proliferation.Moreover,the DIDS-sensitive Cl-channels may be related to the ClC-3 Cl- channels.

  9. 3-溴丙酮酸对人卵巢癌细胞增殖和凋亡的影响%Effect of 3-bromopyruvate on human ovarian cancer cell proliferation and apoptosis

    Institute of Scientific and Technical Information of China (English)

    沈阳

    2013-01-01

    Objective To investigate the effect of 3-bromopyruvate on proliferation and apoptosis of human ovarian cancer cell line SK-OV-3,and to determine the anti-tumor effects in vitro.Methods MTT and colony formation assay were employed to determine the effect of 3-bromopyruvate on the growth inhibition of SK-OV-3 cells.Morphologic change as observed under electron microscopy.The 3-bromopyruvate-induced apoptosis was analyzed using flow cytometry,which entailed the assessment of the altered cell cycles.Results The 3-bromopyruvate markedly inhibited the proliferation of SK-OV-3 cells in a time-and dosedependent manner (both P<0.05).The cells were diminished primarily because of a stagnation at stage Go/G1.Condusion The 3-bromopyruvate inhibits SK-OV-3 cell proliferation and induces apoptosis in a timeand dose-dependent manner.%目的 观察3-溴丙酮酸对人卵巢癌SK-OV-3细胞株增殖和凋亡的影响,探讨3-溴丙酮酸对人卵巢癌细胞的体外抗肿瘤效应.方法 MTT比色法和集落形成试验检测3-溴丙酮酸对SK-OV-3细胞的增殖抑制作用;采用投射电镜观察3-溴丙酮酸作用后的SK-OV-3细胞形态学改变;流式细胞术检测3-溴丙酮酸作用后SK-OV-3细胞的凋亡,并对细胞周期的变化进行分析.结果 3-溴丙酮酸对SK-OV-3细胞的增殖有明显的抑制作用,具有时间(一段时间内)和剂量依赖性(P<0.05).3-溴丙酮酸主要将细胞阻滞于G0/G1,S期细胞明显减少.结论 3-溴丙酮酸对SK-OV-3细胞增殖的抑制效应具有时间依赖性(一段时间内)和剂量依赖性,并可诱导其凋亡.

  10. Herbal Formulation C168 Attenuates Proliferation and Induces Apoptosis in HCT 116 Human Colorectal Carcinoma Cells: Role of Oxidative Stress and DNA Damage

    Directory of Open Access Journals (Sweden)

    Lek Mun Leong

    2016-01-01

    Full Text Available The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action.

  11. Inhibitor of CDK interacting with cyclin A1 (INCA1) regulates proliferation and is repressed by oncogenic signaling

    DEFF Research Database (Denmark)

    Baumer, Nicole; Tickenbrock, Lara; Tschanter, Petra;

    2011-01-01

    The cell cycle is driven by the kinase activity of cyclin/CDK complexes which is negatively regulated by CDK inhibitor proteins. Recently, we identified INCA1 as interaction partner and substrate of cyclin A1 in complex with CDK2. On a functional level, we identified a novel cyclin binding site in...... the INCA1 protein. INCA1 inhibited CDK2 activity and cell proliferation. The inihibitory effects depended on the cyclin-interacting domain. Mitogenic and oncogenic signals suppressed INCA1 expression, while it was induced by cell cycle arrest. We established a deletional mouse model that showed...... increased CDK2 activity in spleen with altered spleen architecture in Inca1-/- mice. Inca1-/- embryonic fibroblasts showed an increase in the fraction of S-phase cells. Furthermore, blasts from ALL and AML patients expressed significantly reduced INCA1 levels highlighting its relevance for growth control in...

  12. 白藜芦醇联合姜黄素对SMMC-7721肝癌细胞作用%Combination of Resveratrol and Curcumin Inhibits Proliferation and Induces Apoptosis in Human Hepatocarcinoma SMMC-7721 Cells

    Institute of Scientific and Technical Information of China (English)

    杜琴; 胡兵; 沈克平; 邓珊

    2012-01-01

    目的:观察白藜芦醇联合姜黄素对体外人肝癌细胞SMMC-7721增殖和凋亡的影响及相关信号通路.方法:不同浓度白藜芦醇、姜黄素及两药联合干预SMMC-7721细胞,MTT法检测细胞增殖,流式细胞术检测细胞凋亡、Hoechst 33258染色检测细胞凋亡形态变化,比色法检测半胱氨酸天冬氨酸蛋白酶(caspase)-3,caspase-8,caspase-9酶活性,Western blot法检测半胱氨酸天冬氨酸蛋白酶切割底物(PARP).结果:与对照组相比,白藜芦醇、姜黄素单独或联合作用SMMC-7721细胞均可抑制SMMC-7721细胞增殖,两药联合后抑制作用更显著.白藜芦醇、姜黄素联合较单独用药可增强SMMC-7721细胞凋亡,呈现凋亡形态改变,白藜芦醇、姜黄素及联合组细胞凋亡率分别为( 17.39±1.41)%,(14.96±2.23)%,(25.36±2.68)%;同时提高SMMC-7721细胞caspase-3,caspase-8及caspase-9活性,促使PARP蛋白剪辑.结论:白藜芦醇、姜黄素联合使用可增强对人肝癌细胞SMMC-7721的抗癌作用,并可能与caspase-8,caspase-9/caspase-3/PA RP信号通路介导细胞凋亡相关.%Objective: To observe the combinational effects of resveratrol and curcumin on cell proliferation, apoptosis and the possible mechanisms in human hepatocarcinoma SMMC-7721 cells in vitro. Method; SMMC-7721 cells were treated with resveratrol or curcumin or both. Cell proliferation was detected by MTT assay. Cell apoptosis was detected by flow cytometry, apoptotic morphology was visualized by hoechst 33258 staining. Caspase-3, ca6pase-8 and caspase-9 activities were detected by colorimetric assay, and cleaved poly ( ADP-ribose) polymerase (PARP) was detected by Western blot. Result; Compared with the control, resveratrol and curcumin significantly inhibited the proliferation of SMMC-7721 cells. The combination of resveratrol and curcumin was found to be more effective in inhibiting growth (P <0. 01) , and inducing apoptosis in SMMC-7721 as indicated by apoptotic morphological

  13. Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model

    International Nuclear Information System (INIS)

    Glucose-6-phosphate dehydrogenase (G6PD), elevated in tumor cells, catalyzes the first reaction in the pentose-phosphate pathway. The regulation mechanism of G6PD and pathological change in human melanoma growth remains unknown. HEM (human epidermal melanocyte) cells and human melanoma cells with the wild-type G6PD gene (A375-WT), G6PD deficiency (A375-G6PD∆), G6PD cDNA overexpression (A375-G6PD∆-G6PD-WT), and mutant G6PD cDNA (A375-G6PD∆-G6PD-G487A) were subcutaneously injected into 5 groups of nude mice. Expressions of G6PD, STAT3, STAT5, cell cycle-related proteins, and apoptotic proteins as well as mechanistic exploration of STAT3/STAT5 were determined by quantitative real-time PCR (qRT-PCR), immunohistochemistry and western blot. Delayed formation and slowed growth were apparent in A375-G6PD∆ cells, compared to A375-WT cells. Significantly decreased G6PD expression and activity were observed in tumor tissues induced by A375-G6PD∆, along with down-regulated cell cycle proteins cyclin D1, cyclin E, p53, and S100A4. Apoptosis-inhibited factors Bcl-2 and Bcl-xl were up-regulated; however, apoptosis factor Fas was down-regulated, compared to A375-WT cells. Moderate protein expressions were observed in A375-G6PD∆-G6PD-WT and A375-G6PD∆-G6PD-G487A cells. G6PD may regulate apoptosis and expression of cell cycle-related proteins through phosphorylation of transcription factors STAT3 and STAT5, thus mediating formation and growth of human melanoma cells. Further study will, however, be required to determine potential clinical applications

  14. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in pancreatic cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity

    Energy Technology Data Exchange (ETDEWEB)

    Deeb, Dorrah; Gao, Xiaohua; Liu, Yongbo [Department of Surgery, Henry Ford Health System, Detroit, MI (United States); Kim, Sahn-Ho [Department of Urology, Henry Ford Health System, Detroit, MI (United States); Pindolia, Kirit R. [Department of Medical Genetics, Henry Ford Health System, Detroit, MI (United States); Arbab, Ali S. [Department of Radiology, Henry Ford Health System, Detroit, MI (United States); Gautam, Subhash C., E-mail: sgautam1@hfhs.org [Department of Surgery, Henry Ford Health System, Detroit, MI (United States)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT gene expression. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT protein expression. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT telomerase activity. Black-Right-Pointing-Pointer CDDO-Me inhibits hTERT regulatory proteins. -- Abstract: Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a multifunctional oleanane synthetic triterpenoid with potent anti-inflammatory and antitumorigenic properties. The mechanisms of the antisurvival and apoptosis-inducing activities of CDDO-Me and related derivatives of oleanolic acid have been defined; however, to date, no study has been carried out on the effect of CDDOs on human telomerase reverse transcriptase (hTERT) gene or telomerase activity. Here we report for the first time that inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cell lines is associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT expression and activity. Furthermore, abrogation or overexpression of hTERT protein altered the susceptibility of tumor cells to CDDO-Me. These findings suggest that telomerase (hTERT) is a relevant target of CDDO-Me in pancreatic cancer cells.

  15. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in pancreatic cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity

    International Nuclear Information System (INIS)

    Highlights: ► CDDO-Me inhibits hTERT gene expression. ► CDDO-Me inhibits hTERT protein expression. ► CDDO-Me inhibits hTERT telomerase activity. ► CDDO-Me inhibits hTERT regulatory proteins. -- Abstract: Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a multifunctional oleanane synthetic triterpenoid with potent anti-inflammatory and antitumorigenic properties. The mechanisms of the antisurvival and apoptosis-inducing activities of CDDO-Me and related derivatives of oleanolic acid have been defined; however, to date, no study has been carried out on the effect of CDDOs on human telomerase reverse transcriptase (hTERT) gene or telomerase activity. Here we report for the first time that inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cell lines is associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT expression and activity. Furthermore, abrogation or overexpression of hTERT protein altered the susceptibility of tumor cells to CDDO-Me. These findings suggest that telomerase (hTERT) is a relevant target of CDDO-Me in pancreatic cancer cells.

  16. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9

    OpenAIRE

    Nie, Fang; Liu, Tianming; Zhong, Liang; YANG, XIANGGUI; Liu, Yunhong; XIA, HONGWEI; Liu, Xiaoqiang; Wang, Xiaoyan; Liu, Zhicheng; Zhou, Li; Mao, Zhaomin; Zhou, Qin; CHEN, TINGMEI

    2015-01-01

    Increasing evidence revealed that miRNAs, the vital regulators of gene expression, are involved in various cellular processes, including cell growth, differentiation, apoptosis and progression. In addition, miRNAs act as oncogenes and/or tumor suppressors. The present study aimed to verify the potential roles of miR148b in human renal cancer cells. miR-148b was found to be downregulated in human renal cancel tissues and human renal cancer cell lines. Functional studies demonstrated that plasm...

  17. Peroxisome Proliferator-activated Receptor γ Induces Apoptosis and Inhibits Autophagy of Human Monocyte-derived Macrophages via Induction of Cathepsin L: POTENTIAL ROLE IN ATHEROSCLEROSIS*

    OpenAIRE

    Mahmood, Dler Faieeq Darweesh; Jguirim-Souissi, Imene; Khadija, El-Hadri; Blondeau, Nicolas; Diderot, Vimala; Amrani, Souliman; Slimane, Mohamed-Naceur; Syrovets, Tatiana; Simmet, Thomas; Rouis, Mustapha

    2011-01-01

    Macrophages play a pivotal role in the pathophysiology of atherosclerosis. These cells express cathepsin L (CatL), a cysteine protease that has been implicated in atherogenesis and the associated arterial remodeling. In addition, macrophages highly express peroxisome proliferator-activated receptor (PPAR) γ, a transcription factor that regulates numerous genes important for lipid and lipoprotein metabolism, for glucose homeostasis, and inflammation. Hence, PPARγ might affect macrophage functi...

  18. Cucurbitane Triterpenoid from Momordica charantia Induces Apoptosis and Autophagy in Breast Cancer Cells, in Part, through Peroxisome Proliferator-Activated Receptor γ Activation

    OpenAIRE

    Jing-Ru Weng; Li-Yuan Bai; Chang-Fang Chiu; Jing-Lan Hu; Shih-Jiuan Chiu; Chia-Yung Wu

    2013-01-01

    Although the antitumor activity of the crude extract of wild bitter gourd (Momordica charantia L.) has been reported, its bioactive constituents and the underlying mechanism remain undefined. Here, we report that 3 β ,7 β -dihydroxy-25-methoxycucurbita-5,23-diene-19-al (DMC), a cucurbitane-type triterpene isolated from wild bitter gourd, induced apoptotic death in breast cancer cells through peroxisome proliferator-activated receptor (PPAR) γ activation. Luciferase reporter assays indicated t...

  19. Protective Effect of Caffeic Acid on Paclitaxel Induced Anti-Proliferation and Apoptosis of Lung Cancer Cells Involves NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Yao Fong

    2012-05-01

    Full Text Available Caffeic acid (CA, a natural phenolic compound, is abundant in medicinal plants. CA possesses multiple biological effects such as anti-bacterial and anti-cancer growth. CA was also reported to induce fore stomach and kidney tumors in a mouse model. Here we used two human lung cancer cell lines, A549 and H1299, to clarify the role of CA in cancer cell proliferation. The growth assay showed that CA moderately promoted the proliferation of the lung cancer cells. Furthermore, pre-treatment of CA rescues the proliferation inhibition induced by a sub-IC50 dose of paclitaxel (PTX, an anticancer drug. Western blot showed that CA up-regulated the pro-survival proteins survivin and Bcl-2, the down-stream targets of NF-κB. This is consistent with the observation that CA induced nuclear translocation of NF-κB p65. Our study suggested that the pro-survival effect of CA on PTX-treated lung cancer cells is mediated through a NF-κB signaling pathway. This may provide mechanistic insights into the chemoresistance of cancer calls.

  20. Human insulin inhibits apoptosis and promotes proliferation of rat liver cell line BRL-3 A%人胰岛素抑制大鼠肝细胞系BRL-3 A凋亡且促增殖

    Institute of Scientific and Technical Information of China (English)

    王改平; 陈莎莎; 李晓芳; 杨婧; 赵卫明; 常翠芳; 徐存拴

    2015-01-01

    Objective_To study the effect of human insulin on cell cycle progression and apoptosis of rat liver cell line BRL-3A in vitro.Methods_MTT method was used to observe the effect of insulin on cell activity, and flow cytometry was used to detect cell apoptosis and cell cycle.qRT-PCR was used to evaluate the expression of related genes.Results_Human insulin induced the proliferation of BRL-3A cells in a dose-dependent manner ( P<0.05 or P<0.01);After 3 days treated by human insulin (500 nmol/L), the proportion of cells in G0/G1 phases re-markably decreased (P<0.05).Moreover, pro-apoptotic BAX was down-regulated (P<0.05), while cell prolif-eration-related gene CCNA2 was up-regulated (P<0.05).Conclusions_Human insulin may inhibit the apoptosis of BRL-3 A cell line and induce proliferation due to the down-regulated expression of BAX and up-regulated expres-sion of CCNA2 .%目的:探讨人胰岛素对体外培养的大鼠肝细胞BRL-3 A增殖和凋亡的影响。方法人胰岛素作用于BRL-3A后,用MTT法检测细胞活力,流式细胞仪检测细胞凋亡和细胞周期,qRT-PCR检测相关基因的表达。结果人胰岛素呈剂量依赖性地促进BRL-3A增殖(P<0.05或P<0.01);500 nmol/L人胰岛素处理3 d后,处于G0/G1期的细胞比例显著下降(P<0.05);促凋亡基因BAX表达下调(P<0.05),而促细胞增殖基因CCNA2表达上调(P<0.05)。结论人胰岛素可通过下调BAX表达和上调CCNA2表达,从而抑制大鼠肝细胞BRL-3A凋亡,促进细胞增殖。

  1. Short Stat5-interacting peptide derived from phospholipase C-β3 inhibits hematopoietic cell proliferation and myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Hiroki Yasudo

    Full Text Available Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN. Our recent study found that phospholipase C (PLC-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998 suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies.

  2. A synthetic interaction screen identifies factors selectively required for proliferation and TERT transcription in p53-deficient human cancer cells.

    Directory of Open Access Journals (Sweden)

    Li Xie

    Full Text Available Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi-based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53- human cancer cells. We find that compared to p53-competent (p53+ human cancer cell lines, diverse p53- human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53- cells, RNAi-mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53- but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53- cancer cells.

  3. 肾癌ACHN细胞exosome对自身细胞增殖和凋亡的影响%Effects of renal carcinoma cell line ACHN-derived exosomes on ACHN cell proliferation and apoptosis

    Institute of Scientific and Technical Information of China (English)

    杨林; 吴小候; 罗春丽; 何云锋; 张尧; 陈雄; 张龙; 陈力学

    2012-01-01

    Objective To investigate the effects of exosomes derived from renal cancer cell line ACHN on the proliferation and apoptosis of ACHN cells and explore the mechanism. Methods Exosomes derived from ACHN cells were separated and purified by ultrafiltration and sucrose gradient centrifugation. The effects of the exosomes on the proliferation and apoptosis of ACHN cells were analyzed with CCK-8 assay and flow cytometry, respectively. The changes of mRNA and protein expressions of cyclin D1, caspase-3 were examined using RT-PCR and Western blotting, and the changes in the protein expression of p-Akt and p-ERKl/2 were detected with Western blotting. Results Exosomes were successfully purified by ultrafiltration and sucrose gradient centrifugation. Compared with the control cells, ACHN cells treated with the exosomes showed enhanced proliferative activity with suppressed cell apoptosis. Exosomes treatment upregulated cyclinDl mRNA and protein expression, down-regulated caspase-3 protein expression without affecting caspase-3 mRNA expression, and upregulated the expression of p-Akt and p-ERKl/2. Conclusion Exosomes can promote the growth and proliferation and inhibit the apoptosis of renal cancer cell line ACHN. Removal of the exosomes from the microenvironment of renal cancer or inhibition of its function can be new strategies for treatment of renal cancer.%目的 探讨肾癌ACHN细胞来源的exosome对肾癌ACHN细胞自身增殖和凋亡的影响及机制.方法 用超滤和蔗糖重水密度梯度超速离心法分离纯化肾癌ACHN细胞分泌的exosome;采用CCK-8法评价exosome对肾癌ACHN细胞增殖的影响;Annexin V-FITC/PI双染色流式细胞术检测细胞凋亡的变化;RT-PCR和Western blotting检测CyclinD1、caspase-3 mRNA和蛋白的表达;Western blotting检测p-Akt、p-ERK1/2的变化.结果 成功使用超滤和蔗糖重水密度梯度超速离心法分离纯化肾癌ACHN细胞分泌的exosome.exosome可促进肾癌ACHN细胞增殖,抑制

  4. Effect of human umbilical cord mesenchymal stem cell-secretion on proliferation and apoptosis in hepatocytes%人脐带间充质干细胞分泌物对肝细胞增殖和凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    黎娇; 朱争艳; 杜智; 骆莹; 王鹏; 高英堂

    2010-01-01

    目的 探讨人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,HUC MSC)旁分泌物质在体外对肝细胞再生和凋亡的影响.方法 利用Ⅳ型胶原酶和胰酶消化法从脐带中分离间充质干细胞,制备含有HUCMSC旁分泌物质的条件培养基(mesenchymal stem cells-conditioned medium,MSC-CM),采用低浓度胶原酶原位循环灌流法分离肝细胞.试验分为对照组、2%MSC-CM组和8%MSC-CM组三组.采用MTT比色法观察不同浓度MSC-CM对正常肝细胞增殖的影响.测定上清中尿素、白蛋白的含量,观察不同浓度MSC-CM对肝细胞功能的影响.利用放线菌素D和肿瘤坏死因子α诱导肝细胞凋亡,采用细胞活性分析试剂盒检测不同浓度MSC-CM对肝细胞凋亡的影响.结果 与对照组比较,2%MSC-CM组吸光度(A)540nm值(P<0.01)以及上清尿素和白蛋白含量显著升高(P<0.01),肝细胞存活率增加(P<0.05);8%MSC-CM组与对照组无显著差异.结论 低浓度的MSC-CM在体外可以刺激正常肝细胞再生,抑制受损肝细胞凋亡,改善肝细胞功能.%Objective To investigate the effect of human umbilical cord mesenchymal stem cell paracrine substance on proliferation and apoptosis of liver cells in vitro. Methods Mesenchymal stem cells (MSC)were separated from human umbilical cord with type Ⅳ collagenase and trypsogen digestion method and cultured in vitro. The human umbilical cord mesenchymal stem cells-conditioned medium(MSC-CM) which contain paracrine substance of human umbilical cord mesenchymal stem cells (HUCMSC) was prepared. Hepatocytes were isolated from SD rats by low concentration collagenase perfusion procedure. There were three groups in the experiment, control group, 2% MSC-CM group and 8% MSC-CM group. The proliferation of normal hepatocytes were assayed with MTT method. We detected the urea and albumin level in culture supernatant to assay the hepatocyte function under different concentration MSC-CM. Hepatocytes were

  5. Demethylation of miR-9-3 and miR-193a Genes Suppresses Proliferation and Promotes Apoptosis in Non-Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Jinliang Wang

    2013-12-01

    Full Text Available Background: MicroRNAs miR-9-3 and miR-193a have recently been found to be hypermethylated in a variety of non-small cell lung cancer (NSCLC cells and primary human tumors. The objectives of this study were to investigate the role of demethylation of miR-9-3 and miR-193a genes in regulating proliferation and apoptosis in NSCLCs, and to decipher the potential mechanisms underlying the properties. Methods: MTT and population doubling time by flow cytometry were used to assess cell proliferation. Enzyme-Linked Immunosorbent Assay and caspase-3 activity assay were employed to evaluate apoptosis. Real-time RT-PCR and Western blot were used to quantify gene expression at mRNA and protein levels, respectively. Methylation-specific PCR was utilized to assess methylation status. Results: We found that demethylation agent 5-Aza-2'-deoxycytidine (5-AzaC reduced cell numbers and prolonged population doubling time (PDT, and promoted doxorubicin-induced apoptosis in seven NSCLC cell lines with different methylation statuses on miR-9-3 and miR-193a promoter regions: NCI-H1993/NCI-H1915 (miR-9-3+/miR-193a+, NCI-H1975/NCI-H200 (miR-9-3+/miR-193a-, A427/NCI-H2073 (miR-9-3-/miR-193a+, and NCI-H1703 (miR-9-3-/miR-193a-. Treatment with 5-AzaC concomitantly upregulated expression of miR-9-3 and miR-193a, and downregulated their respective target genes NF-κB and Mcl-1. The effects of 5-AzaC were abolished by concomitant knockdown of miR-9-3 and miR-193a using the complex antisense technique, whereas forced ectopic expression of miR-9-3 and miR-193a mimicked the effects of 5-AzaC. We further observed that the strength of proliferation inhibition and apoptosis promotion elicited by 5-AzaC was in the order of NCI-H1993/NCI-H1915 > A427/NCI-H2073 > NCI-H1975/NCI-H200 > NCI-H1703. Conclusions: Methylation-silencing of miR-9-3 and miR-193a may be an important epigenetic mechanisms favoring NSCLC cell growth and survival for carcinogenesis and cancer progression, and

  6. Wortmannin对人髓母细胞瘤细胞系Daoy增殖和凋亡的影响%Effects of Wortmannin on proliferation and apoptosis of medulloblastoma cell line Daoy

    Institute of Scientific and Technical Information of China (English)

    杨晓非

    2012-01-01

    Objective:To investigate the effects of proliferation and apoptosis induced by Wortmannin in human medulloblastoma cell line Daoy. Methods: Human medulloblastoma cell line Daoy were treated by Wortmannin at dif-ferent concentration(0. 1 ,0. 25 ,0. 5μmol/L) for 24,48,72h,the inhibition rates were determined by CCK -8 assay. Then, the apoptosis rates were evaluated by flow cytometry via Annexin - V/PI labeling. The protein expressions of Akt,p - Akt, Cleaved - caspase3 were detected by western blot analysis. The activity of caspase3 was measured by caspase3 activity assay kit. Results: Wortmannin could inhibit the proliferation of Daoy cells at different concentration (0. 1,0. 25 ,0. 5μmol/L) ,and which was in time and dose - dependent manner. After treatment for 48h , flow cy-tometry found that the apoptosis rates of Daoy cells treated by 0.1,0.25,0.5μmol/L Wortmannin were (21. 16 ± 2.49)% ,(31.02 ± 0.71)% , (44.61 ± 1.41)% Respectively. It was significantly different,compared with control group. The results of western blot showed that the protein expression of p - Akt was down - regulated, but up - regula-tion of Cleaved -caspase3 was obvious,which was confirmed by caspase3 activity detection. Conclusion:Wortmannin could inhibit proliferation and induce apoptosis of human medulloblastoma cells via down - regulation of the activity of PI3K/Akt signaling pathway,then up - regulation of caspase3 in vitro.%目的:探讨PI3K抑制剂Wortmannin在体外对人髓母细胞瘤细胞系Daoy增殖和凋亡的影响.方法:Wortmannin作用髓母细胞瘤细胞系Daoy后,CCK-8检测细胞增殖情况,流式细胞仪分析细胞凋亡,Western blot检测细胞Akt、p-Akt、Cleaved-caspase3的表达,Caspase3活性检测试剂盒观察其活性.结果:不同浓度(0.1、0.25、0.5 μmol/L) Wortmannin在体外均能抑制Daoy细胞的增殖,并呈浓度时间依赖性.各浓度Wortmannin处理细胞48h后,流式细胞仪检测到细胞凋亡率分别为(21.16±2.49)%、(31

  7. Rac1表达调控对髓母细胞瘤Daoy细胞增殖与凋亡的影响%Regulation of Rac1 expression affecting cell proliferation and apoptosis of Daoy cells in medulloblastoma

    Institute of Scientific and Technical Information of China (English)

    陈保东; 高永中; 蒋太鹏; 丁建军; 姜晓丹; 徐如祥

    2010-01-01

    Objective To investigate the effects of Rac1 gene silencing on cell cycle and apoptosis of Daoy cell line in medulloblastoma. Methods Daoy cells were divided into Rac1-shRNA group and empty plasmid control group; Daoy cells in the former group were transfected by using Rac1-shRNA plasmid (Rac1-shRNA). RT-PCR, Western blotting and flow cytometry were used to observe the changes of cycle and apoptosis of Daoy cells after Rac1 gene silencing. Results Rac1 mRNA and protein in medulloblastoma Daoy cell lines were highly expressed; cell cycle of Daoy cells with Rac1 gene silencing were blocked at G0-G1 phases and cell percentage of G0-G1 phases significantly increased to 80.9%±4.9%; however, the proportion of cells in the S phase reduced to 11.8%± 2.3%. The apoptosis rate of Rac1-shRNA plasmid group (36.7%±3.9%) was significantly different as compared with that of empty plasmid control group (8.5% ±0.9%) (P<0.05). Conclusion RNA-interfered Rac1 gene silencing can inhibit the proliferation of Daoy cells and promote their apoptosis, indicating that Rac1 may become a new target being able to inhibit the cell proliferation and promote the apoptosis of Daoy cells in medulloblastoma.%目的 探讨Rac1基因沉默对髓母细胞瘤Daoy细胞株细胞周期、凋亡的影响.方法 将Daoy细胞分为2组:Rac1-shRNA组和对照组,Rac1-shRNA组将Rac1-shRNA质粒转染Daoy细胞,对照组则转染空白质粒.分别用RT-PCR、Western blot及流式细胞仪检测2组Daoy细胞Rac1 mRNA、Rac1蛋白、细胞周期、细胞凋亡率的变化,并进行统计学比较.结果 Rac1 mRNA和Racl蛋白在髓母细胞瘤Daoy细胞株中均有高表达;Rac1基因沉默后Daoy细胞细胞周期受阻于G0~G1期,G0~G1期细胞所占比例明显增加(80.9%±4.9%),而S期所占细胞比例减少(11.8%±2.3%);Rac1-shRNA组Daoy细胞凋亡率为36.7%±3.9%,而对照组为8.5%±0.9%.2组比较差异均有统计学意义(P<0.05).结论 RNA干扰沉默Rac1基因可以抑制Daoy细

  8. Proliferating cell nuclear antigen (PCNA interactions in solution studied by NMR.

    Directory of Open Access Journals (Sweden)

    Alfredo De Biasio

    Full Text Available PCNA is an essential factor for DNA replication and repair. It forms a ring shaped structure of 86 kDa by the symmetric association of three identical protomers. The ring encircles the DNA and acts as a docking platform for other proteins, most of them containing the PCNA Interaction Protein sequence (PIP-box. We have used NMR to characterize the interactions of PCNA with several other proteins and fragments in solution. The binding of the PIP-box peptide of the cell cycle inhibitor p21 to PCNA is consistent with the crystal structure of the complex. A shorter p21 peptide binds with reduced affinity but retains most of the molecular recognition determinants. However the binding of the corresponding peptide of the tumor suppressor ING1 is extremely weak, indicating that slight deviations from the consensus PIP-box sequence dramatically reduce the affinity for PCNA, in contrast with a proposed less stringent PIP-box sequence requirement. We could not detect any binding between PCNA and the MCL-1 or the CDK2 protein, reported to interact with PCNA in biochemical assays. This suggests that they do not bind directly to PCNA, or they do but very weakly, with additional unidentified factors stabilizing the interactions in the cell. Backbone dynamics measurements show three PCNA regions with high relative flexibility, including the interdomain connector loop (IDCL and the C-terminus, both of them involved in the interaction with the PIP-box. Our work provides the basis for high resolution studies of direct ligand binding to PCNA in solution.

  9. 甲氨喋呤对肠黏膜上皮细胞增殖和凋亡影响的研究%Effect of methotrexate on proliferation and apoptosis of intestinal epithelial cell

    Institute of Scientific and Technical Information of China (English)

    苏华芳; 俞康; 章圣辉; 江松福

    2011-01-01

    目的:探讨甲氨喋呤对肠黏膜上皮IEC-6细胞增殖和凋亡的影响.方法:采用CCK-8法检测细胞增殖效应,TUNEL的流式细胞术分析凋亡细胞,分光光度法检测细胞内Caspase-3活性程度.结果:1)实验组细胞生长抑制率明显高于对照组,且随MTX药物浓度的增加和作用时间的延长而增加.2)0.05、0.5争5μg/mL MTX作用24 h,细胞凋亡率增加.与对照组相比,差异有统计学意义,P<0.01.3)0.05、0.5和5 μg/mL MTX作用24 h,Caspase-3活性增加,3组Caspase-3的活性分别是对照组的1.97,3.07和5.01倍.与对照组相比,各浓度药物组Caspase-3活性明显增强(P<0.05),且呈浓度依赖性.结论:甲氨喋呤对IEC-6细胞增殖有抑制作用,并通过诱导Caspase-3活化导致细胞凋亡.%OBJECTIVE: To investigate the effects of methotrexate on proliferation and apoptosis of rat intestinal epithelial IEC-6 cells.METHODS:IEC-6 cells were treated with methotrexate at different concentrations and incubation time. Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay. Flow eytometry (TUNEL method) was used to detect apoptotic cells. Caspases-3 activity was measured by Colorimetric assaying. RESULTS: 1) The proliferation of IEC-6 cell line was decreased while increasing of concentration or prolonging the incubation time. 2)The rates of cell apoptosis in groups treated with methotrexate in concentrations of 0.05, 0. 5 and 5 μg/mL for 24 h were higher than those of control group. There was a significant difference between methotrexate groups and control group (P <0.01). 3) The caspase-3 activity from cell lysates of IEC-6 cells treated with methotrexate in concentrations of 0.05, 0. 5 and 5μg/mL for 24 h were higher than that of control group (P <0. 05). The activity of caspase-3 in those three groups was increased to 1.97, 3.07 and 5.01 times as compared with the control group, respectively. CONCLUSIONS: Methotrexate can effectively inhibit the proliferation of IEC-6

  10. Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Mansour

    2008-01-01

    Full Text Available Exposure to the estrogen receptor alpha (ER ligand diethylstilbesterol (DES between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ER and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR. Transcripts for PPARs , , and and 1a splice variant were detected in Sprague-Dawley normal rat penis with PPAR predominating. In addition, PPAR1b and PPAR2 were newly induced by DES. The PPAR transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPAR protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ER and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPAR expression. These results suggest a biological overlap between PPAR and ER and highlight a mechanism for endocrine disruption.

  11. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: detachedy@yahoo.com.cn [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Sun, Ting [Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University, Suzhou (China); Cao, Jianping; Liu, Fenju [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China); Tian, Ye [Department of Radiotherapy and Oncology, The Second Affiliated Hospital, Soochow University, Suzhou (China); Zhu, Wei [Department of Radiobiology, School of Radiological Medicine and Protection, Soochow University, Suzhou (China)

    2012-05-01

    Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase in all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.

  12. Effects of psammaplysene A induced forkhead transcription factors O1A expression in cell proliferation and apoptosis of human breast carcinoma cell lines%Psammaplysene A诱导的叉头转录因子O1A蛋白表达对乳腺癌细胞增殖凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    胡建莉; 吴边; 屈新才

    2013-01-01

    目的 探讨Psammaplysene A(PsA)诱导叉头转录因子O1A蛋白(FOXO1A)表达对人乳腺癌细胞株MCF-7及SKBR3增殖和凋亡的影响.方法 用PsA干预2株细胞后,激光共聚焦显微镜(CSM)观察FOXO1A蛋白在细胞中表达;噻唑蓝(MTT)法检测细胞增殖;流式细胞仪(FCM)分析细胞凋亡和周期变化;Western blot检测B细胞淋巴瘤/白血病-2蛋白家族促凋亡调节蛋白(Bim)表达.结果 FOXO 1A蛋白定位于胞核中,PsA诱导后其表达明显增加,细胞发生凋亡,生长减慢.分别用0.1 μmol/L和1.0 μmol/L的PsA干预2株细胞后,凋亡率分别为(16.3±1.4)%和(32.5±2.3)%;(13.7±1.9)%和(30.3±1.6)%;Bim蛋白增加,和阴性对照组比较差异有统计学意义(P<0.01).结论 PsA通过诱导FOXO1A蛋白表达抑制了乳腺癌细胞增殖,促进凋亡,其机制可能与Bim蛋白激活有关.FOXO1A基因有望成为乳腺癌基因治疗的有效靶点.%Objective To investigate the effects of psammaplysene A (PsA) induced forkhead transcription factors O1 A (FOXO1 A) expression in cell proliferation and apoptosis of human breast carcinoma cell lines.Methods Breast carcinoma cells were treated by PsA.Localization of FOXO1 A protein was analyzed by laser scanning confocal microscopy (CSM).Cell proliferation was evaluated by methyl thiazol tetrazolium (MTT) assay.Cell apoptosis was detected by flow cytometry (FCM).Expression of B-cell lymphoma/Leukemia-2 interacting mediator of cell death (Bim) and FOXO1A were detected by Western blot.Results FOXO1A protein located in cell nucleus,and FOXO1A expression level increased after PsA treatment.Cell viability significantly decreased in MCF-7 and SKBR3 cells.Apoptosis rate of MCF-7 and SKBR3 cellwas (16.3±1.4)% and (32.5±2.3),(13.7±1.9)% and (30.3±1.6)% when exposed to 0.1,1 μmol/L PsA respectively.Meanwhile,protein levels of Bim and FOXO1A significantly increased comnpared to phosphate buffer (PBS) negative control of MCF-7 and SKBR3 cells

  13. PD-L1 interacts specifically with B7-1 to inhibit T cell proliferation

    OpenAIRE

    Butte, Manish J.; Keir, Mary E.; Phamduy, Theresa B.; Freeman, Gordon J; Sharpe, Arlene H.

    2007-01-01

    Pathways in the B7:CD28 family regulate T cell activation and tolerance. B7 dependent responses in CD28/CTLA-4-/- T cells together with reports of stimulatory and inhibitory functions for PD-L1 and PD-L2 have suggested additional receptors for these B7 family members. We show that B7-1 and PD-L1 interact with an affinity intermediate to that of B7-1:CD28 and B7-1:CTLA-4. The PD-L1:B7-1 interface overlaps with the B7-1:CTLA-4 and PD-L1:PD-1 interfaces. We show that the interaction of B7-1 with...

  14. THE BARRIERS FOR PROLIFERATION OF INTERACTIVE TELEVISION (ITV IN AUSTRALIA IN THE PERIOD 1999-2007

    Directory of Open Access Journals (Sweden)

    Maria J. Bora

    2012-04-01

    Full Text Available Interactive television (iTV could well be described as a rising research area. The digitalization of networks, as well as broadband penetration, makes it once again a contemporary issue. However, it can hardly be called an overworked area of Australian television studies. This article assesses multiple reasons behind the Australian failure to adopt this technology in the period 1999-2007. iTV did not open feasible revenue streams for broadcasters. Its role was complementary to the digital TV services offered by current incumbent providers. The interactive potential of the Internet supported by users’ engagement started to fulfil the promises of iTV and offered more collaborative service propositions. Still, at this point, neither TV nor the Internet provides fully viable business models for iTV. Instead there has been a flux of online and offline revenue models and continuing uncertainty about the future of media.

  15. Interaction among apoptosis-associated sequence variants and joint effects on aggressive prostate cancer

    Directory of Open Access Journals (Sweden)

    Lavender Nicole A

    2012-04-01

    Full Text Available Abstract Background Molecular and epidemiological evidence demonstrate that altered gene expression and single nucleotide polymorphisms in the apoptotic pathway are linked to many cancers. Yet, few studies emphasize the interaction of variant apoptotic genes and their joint modifying effects on prostate cancer (PCA outcomes. An exhaustive assessment of all the possible two-, three- and four-way gene-gene interactions is computationally burdensome. This statistical conundrum stems from the prohibitive amount of data needed to account for multiple hypothesis testing. Methods To address this issue, we systematically prioritized and evaluated individual effects and complex interactions among 172 apoptotic SNPs in relation to PCA risk and aggressive disease (i.e., Gleason score ≥ 7 and tumor stages III/IV. Single and joint modifying effects on PCA outcomes among European-American men were analyzed using statistical epistasis networks coupled with multi-factor dimensionality reduction (SEN-guided MDR. The case-control study design included 1,175 incident PCA cases and 1,111 controls from the prostate, lung, colo-rectal, and ovarian (PLCO cancer screening trial. Moreover, a subset analysis of PCA cases consisted of 688 aggressive and 488 non-aggressive PCA cases. SNP profiles were obtained using the NCI Cancer Genetic Markers of Susceptibility (CGEMS data portal. Main effects were assessed using logistic regression (LR models. Prior to modeling interactions, SEN was used to pre-process our genetic data. SEN used network science to reduce our analysis from > 36 million to Results Following LR modeling, eleven and thirteen sequence variants were associated with PCA risk and aggressive disease, respectively. However, none of these markers remained significant after we adjusted for multiple comparisons. Nevertheless, we detected a modest synergistic interaction between AKT3 rs2125230-PRKCQ rs571715 and disease aggressiveness using SEN-guided MDR (p = 0

  16. Silencing of the HER2/neu Gene by siRNA Inhibits Proliferation and Induces Apoptosis in HER2/neu-Overexpressing Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Timo Faltus

    2004-11-01

    Full Text Available In eukaryotes, double-stranded (ds RNA induces sequence-specific inhibition of gene expression referred to as RNA interference (RNAi. We exploited RNAi to define the role of HER2/neu in the neoplastic proliferation of human breast cancer cells. We transfected SK-BR-3, BT-474, MCF-7, and MDA-MB-468 breast cancer cells with short interfering RNA (siRNA targeted against human HER2/neu and analyzed the specific inhibition of HER2/neu expression by Northern and Western blots. Transfection with HER2/neu-specific siRNA resulted in a sequence-specific decrease in HER2/neu mRNA and protein levels. Moreover, transfection with HER2/neu siRNA caused cell cycle arrest at G0/G1 in the breast cancer cell lines SKBR-3 and BT-474, consistent with a powerful RNA silencing effect. siRNA treatment resulted in an antiproliferative and apoptotic response in cells overexpressing HER2/neu, but had no influence in cells with almost no expression of HER2/neu proteins like MDA-MB-468 cells. These data indicate that HER2/neu function is essential for the proliferation of HER2/neuoverexpressing breast cancer cells. Our observations suggest that siRNA targeted against human HER2/neu may be valuable tools as anti proliferative agents that display activity against neoplastic cells at very low doses.

  17. Sesquiterpene lactones isolated from Elephantopus scaber L. inhibits human lymphocyte proliferation and the growth of tumour cell lines and induces apoptosis in vitro.

    Science.gov (United States)

    Geetha, B S; Nair, Mangalam S; Latha, P G; Remani, P

    2012-01-01

    This study was designed to isolate the compounds responsible for the cytotoxic properties of South Indian Elephantopus scaber L. and further investigate their effects on quiescent and proliferating cells. Bioassay-guided isolation of the whole plant of chloroform extract of South Indian Elephantopus scaber afforded the known sesquiterpene lactone, deoxyelephantopin, and isodeoxyelephantopin whose structures were determined by spectroscopic methods. These compounds caused a dose dependent reduction in the viability of L-929 tumour cells in 72 h culture (IC(50) value of 2.7 μg/mL and 3.3 μg/mL) by the cell viability assay. Both the compounds act selectively on quiescent and PHA-stimulated proliferating human lymphocytes and inhibited tritiated thymidine incorporation into cellular DNA of DLA tumour cells. The compound deoxyelephantopin at a concentration of 3 μg/mL caused maximum apoptotic cells. It also exhibited significant in vivo antitumour efficacy against DLA tumour cells. The results, therefore, indicate that the antiproliferative property of deoxyelephantopin and isodeoxyelephantopin could be used in regimens for treating tumors with extensive proliferative potencies. PMID:22500104

  18. Sesquiterpene Lactones Isolated from Elephantopus scaber L. Inhibits Human Lymphocyte Proliferation and the Growth of Tumour Cell Lines and Induces Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    B. S. Geetha

    2012-01-01

    Full Text Available This study was designed to isolate the compounds responsible for the cytotoxic properties of South Indian Elephantopus scaber L. and further investigate their effects on quiescent and proliferating cells. Bioassay-guided isolation of the whole plant of chloroform extract of South Indian Elephantopus scaber afforded the known sesquiterpene lactone, deoxyelephantopin, and isodeoxyelephantopin whose structures were determined by spectroscopic methods. These compounds caused a dose dependent reduction in the viability of L-929 tumour cells in 72 h culture (IC50 value of 2.7 μg/mL and 3.3 μg/mL by the cell viability assay. Both the compounds act selectively on quiescent and PHA-stimulated proliferating human lymphocytes and inhibited tritiated thymidine incorporation into cellular DNA of DLA tumour cells. The compound deoxyelephantopin at a concentration of 3 μg/mL caused maximum apoptotic cells. It also exhibited significant in vivo antitumour efficacy against DLA tumour cells. The results, therefore, indicate that the antiproliferative property of deoxyelephantopin and isodeoxyelephantopin could be used in regimens for treating tumors with extensive proliferative potencies.

  19. Harmol induces apoptosis by caspase-8 activation independently of Fas/Fas ligand interaction in human lung carcinoma H596 cells.

    Science.gov (United States)

    Abe, Akihisa; Yamada, Hiroyuki

    2009-06-01

    The beta-carboline alkaloids are naturally existing plant substances. It is known that these alkaloids have a wide spectrum of neuropharmacological, psychopharmacological, and antitumor effects. Therefore, they have been traditionally used in oriental medicine for the treatment of various diseases including cancers and malaria. In this study, harmol and harmalol, which are beta-carboline alkaloids, were examined for