WorldWideScience

Sample records for apoptosis proliferation interaction

  1. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  2. PED/PEA-15 interacts with the 67 kD laminin receptor and regulates cell adhesion, migration, proliferation and apoptosis.

    Science.gov (United States)

    Formisano, Pietro; Ragno, Pia; Pesapane, Ada; Alfano, Daniela; Alberobello, Anna Teresa; Rea, Vincenza Elena Anna; Giusto, Raffaella; Rossi, Francesca W; Beguinot, Francesco; Rossi, Guido; Montuori, Nunzia

    2012-07-01

    Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization.

  3. PED/PEA-15 interacts with the 67 kD laminin receptor and regulates cell adhesion, migration, proliferation and apoptosis

    Science.gov (United States)

    Formisano, Pietro; Ragno, Pia; Pesapane, Ada; Alfano, Daniela; Alberobello, Anna Teresa; Rea, Vincenza Elena Anna; Giusto, Raffaella; Rossi, Francesca W; Beguinot, Francesco; Rossi, Guido; Montuori, Nunzia

    2012-01-01

    Abstract Phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes-15 kD (PED/PEA-15) is an anti-apoptotic protein whose expression is increased in several human cancers. In addition to apoptosis, PED/PEA-15 is involved in the regulation of other major cellular functions, including cell adhesion, migration, proliferation and glucose metabolism. To further understand the functions of this protein, we performed a yeast two-hybrid screening using PED/PEA-15 as a bait and identified the 67 kD high-affinity laminin receptor (67LR) as an interacting partner. 67 kD laminin receptor is a non-integrin cell-surface receptor for the extracellular matrix (ECM), derived from the dimerization of a 37 kD cytosolic precursor (37LRP). The 67LR is highly expressed in human cancers and widely recognized as a molecular marker of metastatic aggressiveness. The molecular interaction of PED/PEA-15 with 67LR was confirmed by pull-down experiments with recombinant His-tagged 37LRP on lysates of PED/PEA-15 transfected HEK-293 cells. Further, overexpressed or endogenous PED/PEA-15 was co-immunoprecipitated with 67LR in PED/PEA-15-transfected HEK-293 cells and in U-373 glioblastoma cells, respectively. PED/PEA-15 overexpression significantly increased 67LR-mediated HEK-293 cell adhesion and migration to laminin that, in turn, determined PED/PEA-15 phosphorylation both in Ser-104 and Ser-116, thus enabling cell proliferation and resistance to apoptosis. PED/PEA-15 ability to induce cell responses to ECM-derived signals through interaction with 67LR may be of crucial importance for tumour cell survival in a poor microenvironment, thus favouring the metastatic spread and colonization. PMID:21895963

  4. Drosophila p53 controls Notch expression and balances apoptosis and proliferation.

    Science.gov (United States)

    Simón, Rocío; Aparicio, Ricardo; Housden, Ben E; Bray, Sarah; Busturia, Ana

    2014-10-01

    A balance between cell proliferation and apoptosis is important for normal development and tissue homeostasis. Under stress conditions, the conserved tumor suppressor and transcription factor Dp53 induces apoptosis to contribute to the maintenance of homeostasis. However, in some cases Dp53-induced apoptosis results in the proliferation of surrounding non-apoptotic cells. To gain insight into the Dp53 function in the control of apoptosis and proliferation, we studied the interaction between the Drosophila Dp53 and Notch genes. We present evidence that simultaneous reduction of Dp53 and Notch function synergistically increases the wing phenotype of Notch heterozygous mutant flies. Further, we found that a Notch cis-regulatory element is responsive to loss and gain of Dp53 function and that over-expression of Dp53 up-regulates Notch mRNA and protein expression. These findings suggest not only that Dp53 and Notch act together to control wing development but also indicate that Dp53 transcriptionally regulates Notch expression. Moreover, using Notch  gain and loss of function mutations we examined the relevance of Dp53 and Notch interactions in the process of Dp53-apoptosis induced proliferation. Results show that proliferation induced by Dp53 over-expression is dependent on Notch, thus identifying Notch as a new player in Dp53-induced proliferation. Interestingly, we found that Dp53-induced Notch activation and proliferation occurs even under conditions where apoptosis was inhibited. Our findings highlight the conservation between flies and vertebrates of the Dp53 and Notch cross-talk and suggest that Dp53 has a dual role regulating cell death and proliferation gene networks to control the homeostatic balance between apoptosis and proliferation.

  5. Relationship between Cell Proliferation and Apoptosis in Cervical Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To study the relationship between cell proliferation and apoptosis in cervical carcinoma and its clinical significance.Methods The cell proliferation and apoptosis of cervical epithelial cells in archival formalin-fixed,paraffin-embedded tissue sections of normal cervix ,cervical intraepithelial neoplasms(CN) and cervical squamous carcinoma were tested by using immunohistochemistry assay and DNA nick end-labeling technigue.The proliferation index(PI) and apoptosis index(AI) were calculated and their correlation with clinical and pathological data was analyzed. Results PI was gradually increased,but the AI and AI/PI ratio decreased from normal cervical epithelium,CIN to cervical carcinoma. There was no significant relationship among cell proliferation,apoptosis,clinical stages and pathological grades.High AI was always asso-ciated with a poor prognosis of the patients. Conclusion Cell proliferation and apoptosis allow to distinguish among normal epithelium,CIN and cervical carcinoma and are useful for the assessment of the malignant potential of tumor tissues.

  6. Peptides Regulate Cortical Thymocytes Differentiation, Proliferation, and Apoptosis

    Directory of Open Access Journals (Sweden)

    V. Kh. Khavinson

    2011-01-01

    Full Text Available The processes of differentiation, proliferation, and apoptosis were studied in a cell culture of human cortical thymocytes under the influence of short peptides T-32 (Glu-Asp-Ala and T-38 (Lys-Glu-Asp. Peptides T-32 and T-38 amplified cortical thymocytes differentiation towards regulatory T cells, increased their proliferative activity, and decreased the level of apoptosis. Moreover, peptides under study stimulated proliferative and antiapoptotic activity of the mature regulatory T cells.

  7. Factors influencing ER subtype-mediated cell proliferation and apoptosis

    NARCIS (Netherlands)

    Evers, N.M.

    2014-01-01

      The aim of the current thesis is to elucidate the role of estrogen receptor (ER)αand ERβin cell proliferation and apoptosis induced by estrogenic compounds. Special attention is paid to the importance of the receptor preference of the estrogenic compounds, the cellular ERα/E

  8. Metabolic regulator betaKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation.

    Science.gov (United States)

    Luo, Yongde; Yang, Chaofeng; Lu, Weiqin; Xie, Rui; Jin, Chengliu; Huang, Peng; Wang, Fen; McKeehan, Wallace L

    2010-09-24

    In organs involved in metabolic homeostasis, transmembrane α and βklothos direct FGFR signaling to control of metabolic pathways. Coordinate expression of βklotho and FGFR4 is a property of mature hepatocytes. Genetic deletion of FGFR4 or βklotho in mice disrupts hepatic cholesterol/bile acid and lipid metabolism. The deletion of FGFR4 has no effect on the proliferative response of hepatocytes after liver injury. However, its absence results in accelerated progression of dimethynitrosamine-initiated hepatocellular carcinomas, indicating that FGFR4 suppresses hepatoma proliferation. The mechanism underlying the FGFR4-mediated hepatoma suppression has not been addressed. Here we show that βklotho expression is more consistently down-regulated in human and mouse hepatomas than FGFR4. Co-expression and activation by either endocrine FGF19 or cellular FGF1 of the FGFR4 kinase in a complex with βklotho restricts cell population growth through induction of apoptotic cell death in both hepatic and nonhepatic cells. The βklotho-FGFR4 partnership caused a depression of activated AKT and mammalian target of rapamycin while activating ERK1/2 that may underlie the pro-apoptotic effect. Our results show that βklotho not only interacts with heparan sulfate-FGFR4 to form a complex with high affinity for endocrine FGF19 but also impacts the quality of downstream signaling and biological end points activated by either FGF19 or canonical FGF1. Thus the same βklotho-heparan sulfate-FGFR4 partnership that mediates endocrine control of hepatic metabolism plays a role in cellular homeostasis and hepatoma suppression through negative control of cell population growth mediated by pro-apoptotic signaling.

  9. Plumbagin reverses proliferation and resistance to apoptosis in experimental PAH.

    Science.gov (United States)

    Courboulin, Audrey; Barrier, Marjorie; Perreault, Tanya; Bonnet, Pierre; Tremblay, Veronique L; Paulin, Roxane; Tremblay, Eve; Lambert, Caroline; Jacob, Maria H; Bonnet, Sandra N; Provencher, Steeve; Bonnet, Sébastien

    2012-09-01

    Like cancer, pulmonary arterial hypertension (PAH) is characterised by a pro-proliferative and anti-apoptotic phenotype. In PAH, pulmonary artery smooth muscle cell (PASMC) proliferation is enhanced and apoptosis suppressed. The sustainability of this phenotype requires the activation of pro-survival transcription factors, such as signal transducer and activator of transcription (STAT)3 and nuclear factor of activated T-cells (NFAT). There are no drugs currently available that are able to efficiently and safely inhibit this axis. We hypothesised that plumbagin (PLB), a natural organic compound known to block STAT3 in cancer cells, would reverse experimental pulmonary hypertension. Using human PAH-PASMC, we demonstrated in vitro that PLB inhibits the activation of the STAT3/NFAT axis, increasing the voltage-gated K(+) current bone morphogenetic protein receptor type II (BMPR2), and decreasing intracellular Ca(2+) concentration ([Ca(2+)](i)), rho-associated coiled-coil containing protein kinase (ROCK)1 and interleukin (IL)-6, contributing to the inhibition of PAH-PASMC proliferation and resistance to apoptosis (proliferating cell nuclear antigen (PCNA), TUNEL, Ki67 and anexine V). In vivo, PLB oral administration decreases distal pulmonary artery remodelling, mean pulmonary artery pressure and right ventricular hypertrophy without affecting systemic circulation in both monocrotaline- and suden/chronic hypoxia-induced PAH in rats. This study demonstrates that the STAT3/NFAT axis can be therapeutically targeted by PLB in human PAH-PASMC and experimental PAH rat models. Thus, PLB could be considered a specific and attractive future therapeutic strategy for PAH.

  10. Functional roles of PC-PLC and Cdc20 in the cell cycle, proliferation, and apoptosis.

    Science.gov (United States)

    Chen, Zhiwei; Yu, Yongfeng; Fu, Da; Li, Ziming; Niu, Xiaoming; Liao, Meilin; Lu, Shun

    2010-06-01

    Phosphatidylcholine-specific phospholipase C (PC-PLC) is the major enzyme in the Phosphatidylcholine (PC) cycle and is involved in many long-term cellular responses such as activation, proliferation, and differentiation events. Cell division cycle 20 homolog (Cdc20) is an essential cell-cycle regulator required for the completion of mitosis. Our previous studies identified the interaction between PC-PLC and Cdc20. Through the interaction, Cdc20 could mediate the degradation of PC-PLC by Cdc20-mediated ubiquitin proteasome pathway (UPP). In this study, we found that PC-PLC might not be involved in cancer metastasis. Inhibition of PC-PLC by D609 could cause cell proliferation inhibition and apoptosis inhibition in CBRH-7919 cells. Inhibition of PC-PLC could also influence the cell cycle by arresting the cells in G1 phase, and Cdc20 might be involved in these processes. Taken together, in this report, we provided new evidence for the functional roles of PC-PLC and Cdc20 in the cell cycle, proliferation, and apoptosis in CBRH-7919 cells.

  11. Host-pathogen interactions during apoptosis

    Indian Academy of Sciences (India)

    Seyed E Hasnain; Rasheeda Begum; K V A Ramaiah; Sudhir Sahdev; E M Shajil; Tarvinder K Taneja; Manjari Mohan; M Athar; Nand K Sah; M Krishnaveni

    2003-04-01

    Host pathogen interaction results in a variety of responses, which include phagocytosis of the pathogen, release of cytokines, secretion of toxins, as well as production of reactive oxygen species (ROS). Recent studies have shown that many pathogens exert control on the processes that regulate apoptosis in the host. The induction of apoptosis upon infection results from a complex interaction of parasite proteins with cellular host proteins. Abrogation of host cell apoptosis is often beneficial for the pathogen and results in a successful host invasion. However, in some cases, it has been shown that induction of apoptosis in the infected cells significantly imparts protection to the host from the pathogen. There is a strong correlation between apoptosis and the host protein translation machinery: the pathogen makes all possible efforts to modify this process so as to inhibit cell suicide and ensure that it can survive and, in some cases, establish latent infection. This review discusses the significance of various pathways/steps during virus-mediated modulation of host cell apoptosis.

  12. Nitric oxide modulates hypoxic pulmonary smooth muscle cell proliferation and apoptosis by regulating carbon monoxide pathway

    Institute of Scientific and Technical Information of China (English)

    Yan-fei WANG; Hong TIAN; Chao-shu TANG; Hong-fang JIN; Jun-bao DU

    2007-01-01

    Aim: To explore the role of carbon monoxide (CO) in the regulation of hypoxic pulmonary artery smooth muscle cell (PASMC) proliferation and apoptosis by nitric oxide (NO). Methods: PASMC of Wistar rats was cultured in vitro in the presence of a NO donor, sodium nitroprusside, or an inhibitor of heme oxygenase (HO), zinc protoporphyrin-IX, or under both normoxic and hypoxic conditions.Nitrite and carboxyhemoglobin in PASMC medium were detected with spectrophotometry. The proliferating and apoptotic percentage of PASMC was measured by flow cytometry. The expression of HO-1 mRNA in PASMC was analyzed by fluorescent real-time quantitative PCR, and the proliferating cell nuclear antigen and caspase-3 were examined by immunocytochemical analysis. Results: The results showed that hypoxia suppressed NO generation from PASMC, which promoted hypoxic PASMC proliferation and induced apoptosis. Meanwhile, hy-poxia induced HO-1 expression in PASMC and promoted CO production from PASMC, which inhibited PASMC proliferation and regulated PASMC apoptosis. NO upregulated the expression of HO-1 mRNA in hypoxic PASMC; NO also inhib-ited proliferation and promoted apoptosis of hypoxic PASMC, possibly by regu-lating the production of CO. Conclusion: The results indicated that CO could inhibit proliferation and regulate apoptosis of PASMC, and NO inhibited prolifera-tion and promoted apoptosis of hypoxic PASMC, possibly by regulating the pro-duction of CO.

  13. HCA520, A NOVEL TUMOR ASSOCIATED ANTIGEN, INVOLVED IN CELL PROLIFERATION AND APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    杨美香; 曲迅; 刘福利; 郑广娟

    2003-01-01

    Objective: Tumor associated antigen encoding gene HCA520 (AF146019) was identified by screening a human hepatocellular carcinoma expressing cDNA library using SEREX technique. In this experiment we studied the effect of HCA520 on cell proliferation and apoptosis. Methods: Gene HCA520 was gained by PCR and transfected into 293 cells. The stable expression cells were obtained by G418 selection. The cell proliferation was measured by [3H]-TdR uptake and apoptosis assay was measured by FACS. Results: Eukaryotic expression plasmid pcDNA3-HCA520 was constructed and its stable transfectants were obtained. Overexpression of HCA520 inhibited the cell proliferation and enhanced cell apoptosis after serum deprivation. Conclusion: HCA520 is a novel tumor associated antigen that can affect cell proliferation and apoptosis.

  14. Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats

    Energy Technology Data Exchange (ETDEWEB)

    Kutanzi, Kristy R.; Koturbash, Igor [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada); Bronson, Roderick T. [Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 (United States); Pogribny, Igor P., E-mail: igor.pogribny@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada)

    2010-12-10

    Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.

  15. Study on Taxol in Inhibiting Human Leukemia Cell Proliferation and Inducing Apoptosis

    Institute of Scientific and Technical Information of China (English)

    赵小英; 张晓红; 徐磊; 张行

    2004-01-01

    Objective: To explore the effects of Taxol in inhibiting human leukemia k562 cell proliferation and inducing apoptosis in vitro. Methods: Human leukemia K562 cells were treated with Taxol of different concentrations for 12-72 hrs. Cell proliferation was evaluated by MTT assay and morphological changes of apoptosis were examined by microscopy. Cell apoptosis was determined by flow cytometry (FCM) and DNA gel electrophoresis. Results: Growth of K562 cells was inhibited by Taxol with an IC50 value of 0.84 μg/mi.Typical nuclear condensation and apoptosis bodies were observed as early as 24 hrs after a 0.5 μg/ml Taxol treatment; Apoptotic rate of the Taxol-treated K562 cells increased from 3.7% to 24.0% in 24 hrs. No DNA ladder was observed by DNA gel electrophoresis. Conclusion: Taxol could inhibit K562 cell growth and induce apoptosis in vitro.

  16. Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells

    Directory of Open Access Journals (Sweden)

    Yuping Gu

    2016-08-01

    Full Text Available Nephron progenitor cells surround around the ureteric bud tips (UB and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM. Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2.

  17. A novel schiff base zinc coordination compound inhibits proliferation and induces apoptosis of human osteosarcoma cells.

    Science.gov (United States)

    Yan, Ming; Pang, Li; Ma, Tan-tan; Zhao, Cheng-liang; Zhang, Nan; Yu, Bing-xin; Xia, Yan

    2015-10-01

    Various kinds of schiff base metal complexes have been proven to induce apoptosis of tumor cells. However, it remains largely unknown whether schiff base zinc complexes induce apoptosis in human cancer cells. Here, we synthesized a novel schiff base zinc coordination compound (SBZCC) and investigated its effects on the growth, proliferation and apoptosis of human osteosarcoma MG-63 cells. A novel SBZCC was synthesized by chemical processes and used to treat MG-63 cells. The cell viability was determined by CCK-8 assay. The cell cycle progression, mitochondrial membrane potential and apoptotic cells were analyzed by flow cytometry. The apoptosis-related proteins levels were determined by immunoblotting. Treatment of MG-63 cells with SBZCC resulted in inhibition of cell proliferation and cell cycle arrest at G1 phase. Moreover, SBZCC significantly reduced the mitochondrial membrane potential and induced apoptosis, accompanied with increased Bax/Bcl-2 and FlasL/Fas expression as well as caspase-3/8/9 cleavage. Our results demonstrated that the synthesized novel SBZCC could inhibit the proliferation and induce apoptosis of MG-63 cells via activating both the mitochondrial and cell death receptor apoptosis pathways, suggesting that SBZCC is a promising agent for the development as anticancer drugs.

  18. Potential action of androstenedione on the proliferation and apoptosis of stromal endometrial cells

    Directory of Open Access Journals (Sweden)

    Anido Mabel

    2004-12-01

    Full Text Available Abstract Background Hyperandrogenic conditions have been associated with a high prevalence of endometrial pathologies related to cell survival. However, the action of androgens on proliferation and apoptosis in endometrial cells is poorly understood. Therefore, the aim of the present study was to evaluate the effect of androstenedione on cell proliferation, cell death and expression of estrogen receptor (ER isoforms and proteins related to apoptosis in endometrial cells using two in vitro experimental approaches. Methods The endometrial tissue was obtained from 20 eumenorrheic women [28.7 (25 – 35 years] during the early secretory phase. We analyzed cell proliferation (immunohistochemistry of Ki-67 and spectrophotometric assay; apoptosis (DNA fragmentation (TUNEL and Annexin V-FITC binding; ER-alpha, ER-beta bcl-2 and bax mRNA abundance (RT-PCR in explants and isolated endometrial epithelial (EEC and stromal cells (ESC incubated with androstenedione 1 micro mol/l (A4 or A4 plus hydroxyflutamide 10 micro mol/l (F for 24 h. Results In explants, A4 induced an increase of cell proliferation and a decrease on apoptosis in the stromal compartment (p Conclusions These results indicate that androstenedione may modulate cell survival, expression of ER-beta and proteins related to apoptosis, suggesting a potential mechanism that associates the effect of hyperandrogenemia on the endometrial tissue.

  19. Cinnamic Acid (CINN Induces Apoptosis and Proliferation in Human Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Guangying Qi

    2016-11-01

    Full Text Available Background/Aims: CINN is the main ingredient of the traditional Chinese medicine cinnamon. The purpose of the present study was to investigate the effects of CINN on the proliferation and apoptosis of NPC cells and to elucidate the underlying molecular mechanisms. Materials and Methods: CNE2 human NPC cells were treated with various CINN concentrations. The effects of CINN on the proliferation and apoptosis of CNE2 NPC cells were examined using the MTT assay and flow cytometric analysis. Additionally, western blotting was performed to analyze the expression of a number of cell cycle- and apoptosis-related proteins. Results: The proliferation of CNE2 cells was significantly inhibited after treatment with different CINN concentrations for various lengths of time. The inhibitory effect of CINN was concentration-and time-dependent. Flow cytometric analysis showed that 2 mmol/L CINN displayed a significant apoptosis-inducing effect. The western blot analysis results showed that KLF6, Fas-L, Bax, P53 and caspase-3 protein expression was drastically increased in the CNE2 cells after treatment with 2 mmol/L CINN, whereas Bcl-2 and cyclin D1 protein expression was markedly reduced. Conclusion: CINN inhibits the proliferation and induces the apoptosis of CNE2 cells. Therefore, CINN possesses a potential anti-tumor effect.

  20. Induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA. Methods: Antisense survivin RNA expression vector was constructed and then was transfected to human laryngeal carcinoma cell line Hep-2 by lipofectamine. HpEGFP/survivin cells (transfected with the combinant of antisense survivin RNA) were obstained by using G418. The levels of survivin protein before and after transfection were determined by Western-blot. Proliferation activity was measured by MTT assay. The experiment of colony formation in soft agar was carried out for assessing ability of proliferation of Hep-2 cell. Apoptosis was assessed by flow cytometry and acrdine orange(AO).Results:After antisense survivin RNA plasmids were transfected, the level of survivin protein was inhibited in Hep-2. ComPared with control, proliferation of HpEGFP/survivin cells were suppressed significantly. The experiment of colony formation in soft agar showed the ability of colony formation decreased in HpEGFP/survivin cells compared to control (P<0.05). Apoptosis rate increased about 1.81 folds compared with control. Conclusion: The antisense survivin RNA can partly inhibit the level of survivin protein expression in Hep-2 and can induce apoptosis and inhibit the proliferation of Hep-2 by down-regulating the expression of endogenous survivin in vitro.

  1. Effect of lumiracoxib on proliferation and apoptosis of human nonsmall cell lung cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    HAO Ji-qing; LI Qi; XU Shu-ping; SHEN Yu-xian; SUN Gen-yun

    2008-01-01

    Background Lumiracoxib is a highly selective cyclooxygenase-2(COX-2)inhibitor with antiinflammatory,analgesic and antipyretic activities comparable with class specific drugs,but with much improved gastrointestinal safety.No studies have examined lumiracoxib for antitumorigenic activity on human nonsmall cell lung cancer cell lines in vitro or its possible molecular mechanisms.Methods The antiproliferative effect of lumiracoxib alone or combined with docetaxol on A549 and NCI-H460 lines was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay.Drug-drug interactions were analyzed using the coefficient of drug interaction(CDI)to characterize the interactions as synergism,additivity or antagonism.Morphological changes were observed by acridine orange fluorescent staining.Extent of apoptosis was determined by flow cytometry.Results Lumiracoxib(15-240 μmol/L)has an inhibitory effect on the proliferation of A549 and NCI-H460 celllines in concentration- and time-dependent manners with the IC50 values of 2597 μmol/L and 833 pmol/L,respectively.The synergistic effect was prominent when lumiracoxib(15-240 μmol/L)was combined with docetaxol(0.2-2 μmol/L)(CDI <1).Fluorescent staining showed that lumiracoxib could induce apoptosis in A549 and NCI-H460 cells.Lumiracoxib treatment also caused an increase of the sub-G1 fraction in each cell line and resulted in an increase of G0/G1-phase cells and a decrease of S-phase cells.Conclusions Lumiracoxib had antiproliferative effect on the human nonsmall cell lung cancer cell lines A549 and NCI-H460 and had a significant synergy with docetaxol,which may be related to apoptotic induction and cell cycle arrest.

  2. Effect of 103Pd on proliferation and apoptosis of vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    LUO Quan-Yong; ZHU Jun; LU Han-Kui; ZHU Rui-Sen

    2003-01-01

    This study aimed at the effect of γ -emitting radionuclide 103Pd on the proliferation and apoptosis ofvascular SMCs (smooth muscle cells) in vitro. The cavy aortic SMCs were cultured with culture medium M-199. Theexperiments were carried out in two groups, one for proliferation test and the other for apoptosis test. In each group,103Pd solutions with various radioactivities were respectively added to the culture solution to irradiate SMCs for 72 h,while non-radioactive palladium solution was added to the control. 3H-thymidine incorporation test and liquid scin-tillator were used to detect the effect of 103Pd on the proliferation of SMCs. Flow cytometer was used to detect theapoptotic SMCs. The inhibition rate of SMCs proliferation by 1.85 MBq 103Pd solution was 2.3%, which was not sig-nificant, while the inhibition rate increased from 41.6% to 91.3% as the 103Pd activity increased from 7.40 MBq to 37MBq. The apoptosis rate of SMCs was extremely low (less than 4.0%) by 103Pd with activity from 1.85 MBq to 37MBq. The results suggest that the proliferation of SMCs can be repressed effectively in a dose-dependent fashion by103Pd in vitro. The mechanism of its inhibiting over neointima proliferation is likely to inhibite SMCs proliferationrather than to induce its apoptosis by 103Pd. 103Pd can be used as a γ -emitting intravascular brachytherapy radionu-clide to inhibit SMCs proliferation.

  3. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.

    Science.gov (United States)

    Zhang, Hui; Sweezey, Neil B; Kaplan, Feige

    2015-02-15

    Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development.

  4. Effects of fasting and refeeding on intestinal cell proliferation and apoptosis in hammerhead shark (Sphyrna lewini)

    Institute of Scientific and Technical Information of China (English)

    Hideya Takahashi; Susumu Hyodo; Tsukasa Abe; Chiyo Takagi; Gordon E Grau; Tatsuya Sakamoto

    2014-01-01

    Objective: To examine the effects of fasting and refeeding on intestinal cell proliferation and apoptosis in an opportunistic predator, hammerhead shark (Sphyrna lewini) of elasmobranch fishes which are among the earliest known extant groups of vertebrates to have the valvular intestine typical for the primitive species.Methods:5-day refeeding. Intestinal apoptosis and cell proliferation were assessed by using oligonucleotide detection assay, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry of proliferating cells nuclear antigen.Results:Animals were euthanized after 5-10 d of fasting or feeding, or after 10-day fasting and generally decreased during fasting. Numerous apoptotic cells were observed around the tips of the villi, primarily in the epithelium in the fed sharks, whereas fewer labeled nuclei were detected in the epithelium of fasted sharks. Refeeding returned intestinal apoptosis to the level in the fed sharks. Proliferating cells were observed in the epithelium around the troughs of the villi and greater in number in fed sharks, whereas fewer labeled nuclei were detected in fasted sharks. Plasma levels of cholesterol and glucose were reduced by fasting. Intestinal apoptosis Conclusions: The cell turnover is modified in both intestinal epithelia of the shark and the murines by fasting/feeding, but in opposite directions. The difference may reflect the feeding ecology of the elasmobranchs, primitive intermittent feeders.

  5. TFF1 inhibits proliferation and induces apoptosis of gastric cancer cells in vitro.

    Science.gov (United States)

    Ge, Yanli; Zhang, Junjie; Cao, Jianchun; Wu, Qiong; Sun, Longe; Guo, Likun; Wang, Zhirong

    2012-05-01

    Trefoil Factor Family (TFF) plays an essential role in the intestinal epithelial restitution, but the relationship between TFF1 and gastric cancer (GC) is still unclear. The present study aimed to determine the role of TFF1 in repairing gastric mucosa and in the pathogenesis of GC. The TFF1 expression in different gastric mucosas was measured with immunohistochemistry. Then, siRNA targeting TFF1 or plasmids expressing TFF1 gene were transfected into BGC823 cells, SGC7901 cells and GES-1 cells. The cell proliferation was detected with MTT assay and apoptosis and cell cycle measured by flow cytometry. From normal gastric mucosa to mucosa with dysplasia and to gastric cancer, the TFF1 expression had a decreasing trend. Down-regulation of TFF1 expression significantly reduced the apoptosis of three cell lines and markedly facilitated their proliferation but had no significant effect on cell cycle. Over-expression of TFF1 could promote apoptosis of three cell lines and inhibit proliferation but had no pronounced effect on cell cycle. TFF1 can inhibit proliferation and induce apoptosis of GC cells in vitro.

  6. [Effect of aurora inhibitor VX-680 on proliferation and apoptosis of CML cells].

    Science.gov (United States)

    Yin, Yue; Sun, Hui-Yan; Li, Xiao-Lin; Xiao, Feng-Jun; Wang, Li-Sheng

    2014-12-01

    This study was aimed to explore the effect of VX-680, an aurora inhibitor, on proliferation and apoptosis of K562, KCL22 cell lines and CD34⁺ cells from chronic myeloid leukemia (CML) patients in vitro. The proliferation of K562 and KCL22 cell was detected by CCK-8 method. Apoptosis of cells was detected by Annexin V-PI labeling and flow cytometry. The colony forming ability of bone marrow CD34⁺ cells derived from CML patients and donors was determined by the colony forming test. The results showed that the treatment of K562, KCL22 and CML CD34⁺ cells with VX-680 of 20-100 nmol/L for 3 days could obviously inhibit the cell proliferation in a concentration-dependent manner (P VX-680 treatment significantly induced apoptosis of K562 and KCL22 cells. Compared to bone marrow CD34⁺ cells derived from the healthy donors, the colony forming ability of CML CD34⁺ cells derived from bone marrow of CML patients was remarkably reduced (P VX-680, an aurora inhibitor, can inhibit the proliferation and induce apoptosis of CML cells in vitro.

  7. An imbalance between apoptosis and proliferation contributes to follicular persistence in polycystic ovaries in rats

    Directory of Open Access Journals (Sweden)

    Neme Leandro G

    2009-07-01

    Full Text Available Abstract Background Cystic ovarian disease is an important cause of infertility that affects bovine, ovine, caprine and porcine species and even human beings. Alterations in the ovarian micro-environment of females with follicular cysts could alter the normal processes of proliferation and programmed cell death in ovarian cells. Thus, our objective was to evaluate apoptosis and proliferation in ovarian cystic follicles in rats in order to investigate the cause of cystic follicle formation and persistence. Methods We compared the number of in situ apoptotic cells by TUNEL assay, expression of active caspase-3 and members of Bcl-2 family by immunohistochemistry; and cell proliferation by the expression of the proliferation markers: PCNA and Ki-67. Results The proliferation index was low in granulosa of tertiary and cystic follicles of light exposed rats when compared with tertiary follicles of control animals, while in theca interna only cystic follicles presented low proliferation index when compared with tertiary follicles (p Conclusion These results show that the combination of weak proliferation indices and low apoptosis observed in follicular cysts, could explain the cause of the slow growth of cystic follicles and the maintenance of a static condition without degeneration, which leads to their persistence. These alterations may be due to structural and functional modifications that take place in these cells and could be related to hormonal changes in animals with this condition.

  8. Gliotoxin Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Junxiong Chen

    2015-10-01

    Full Text Available The discovery of new bioactive compounds from marine natural sources is very important in pharmacological research. Here we developed a Wnt responsive luciferase reporter assay to screen small molecule inhibitors of cancer associated constitutive Wnt signaling pathway. We identified that gliotoxin (GTX and some of its analogues, the secondary metabolites from marine fungus Neosartorya pseufofischeri, acted as inhibitors of the Wnt signaling pathway. In addition, we found that GTX downregulated the β-catenin levels in colorectal cancer cells with inactivating mutations of adenomatous polyposis coli (APC or activating mutations of β-catenin. Furthermore, we demonstrated that GTX induced growth inhibition and apoptosis in multiple colorectal cancer cell lines with mutations of the Wnt signaling pathway. Together, we illustrated a practical approach to identify small-molecule inhibitors of the Wnt signaling pathway and our study indicated that GTX has therapeutic potential for the prevention or treatment of Wnt dependent cancers and other Wnt related diseases.

  9. miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis

    Science.gov (United States)

    Biton, Moshe; Stepensky, Polina

    2017-01-01

    Glucocorticoid (GC) hormones are an important ingredient of leukemia therapy since they are potent inducers of lymphoid cell apoptosis. However, the development of GC resistance remains an obstacle in GC-based treatment. In the present investigation we found that miR-103 is upregulated in GC-sensitive leukemia cells treated by the hormone. Transfection of GC resistant cells with miR-103 sensitized them to GC induced apoptosis (GCIA), while miR-103 sponging of GC sensitive cells rendered them partially resistant. miR-103 reduced the expression of cyclin dependent kinase (CDK2) and its cyclin E1 target, thereby leading to inhibition of cellular proliferation. miR-103 is encoded within the fifth intron of PANK3 gene. We demonstrate that the GC receptor (GR) upregulates miR-103 by direct interaction with GC response element (GRE) in the PANK3 enhancer. Consequently, miR-103 targets the c-Myc activators c-Myb and DVL1, thereby reducing c-Myc expression. Since c-Myc is a transcription factor of the miR-17~92a poly-cistron, all six miRNAs of the latter are also downregulated. Of these, miR-18a and miR-20a are involved in GCIA, as they target GR and BIM, respectively. Consequently, GR and BIM expression are elevated, thus advancing GCIA. Altogether, this study highlights miR-103 as a useful prognostic biomarker and drug for leukemia management in the future. PMID:27888798

  10. Serotonin receptor agonist quipazine promotes proliferation and apoptosis of human hepatocyte strain of L-02 strain

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Zhi-Yong Zhang

    2009-01-01

    BACKGROUND:Liver disease is commonly seen in the clinic and its pathological characteristic is combined hepatocellular death and apoptosis. Promoting hepatocyte regeneration is one of the main methods of treating liver disease. Serotonin (5-HT) is an important compound which participates in various life process, and 95% of it is carried by platelets in the blood. A recent ifnding showed that platelet-derived serotonin is the key factor in liver regeneration, which fails without serotonin. This study aimed to investigate the effects of quipazine, a selective 5-HT receptor agonist, on proliferation and apoptosis in the human hepatocyte strain L-02. METHODS:L-02 cells were cultured in medium with 5-HT and quipazine, and samples were collected at 24, 48, and 72 hours. The methyl thiazolyl tetrazolium (MTT) method was used to test viability, lfow cytometry to assess the cell cycle, the Annexin-V/PI method to evaluate apoptosis, and immunohistochemistry to detect proliferating cell nuclear antigen (PCNA). RESULTS:Compared with the control group, the viability of L-02 cells was improved in the 10, 50, and 250 μg/ml quipazine groups (P0.05); and no difference in the percentage of apoptotic cells was found between the 50μg/ml quipazine and control groups (P>0.05).CONCLUSION:Quipazine improves proliferation of a human hepatocyte strainin vitro, and this is not based on the inhibition of apoptosis.

  11. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of hepatic stellate cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Wen-Xing Zhao; Jing Zhao; Chong-Li Liang; Bing Zhao; Rong-Qing Pang; Xing-Hua Pan

    2003-01-01

    AIM: To investigate the role of nuclear factor-κB (NF-κB)inhibitor caffeic acid phenethy1 ester (CAPE) in the proliferation, collagen synthesis and apoptosis of hepatic stellate cells (HSCs) of rats. METHODS: The HSCs from rats were isolated and cultured in Dulbecco's Modified Eagle's Medium (DMEM) and treated with CAPE. The proliferation and collagen synthesis of HSCs were determined by 3H-TdR and 3H-proline incorporation respectively, and the expression of type Ⅰ, Ⅲ procollagen genes was further explored byin situ hybridization. Apoptosis cell indices (AIs) were examined using terminal deoxynucleotidyl transferase- mediated DIG-dUTP nick end labeling (TUNEL). RESULTS: Tn activated HSC in culture, CAPE significantly inhibited 3H-TdR and 3H-proline incorporation by HSCs at concentrations of 5 μmol/L and 10 μmol/L respectively. CAPE also reduced the type I procollagen gene expression (P<0.05)at higher concentration. Apoptosis of HSC was induced by CAPE and the AIs were time-and dose-dependently increased from 2.82+0.73 % to 7.66±1.25 % at 12 h (P<0.01) and from 3.15±0.88 % to 10.6L±2.88 % at 24 h (P<0.01). CONCLUSION: CAPE inhibits proliferation and collagen synthesis of HSC at lower concentration and induces HSC apoptosis at higher concentration.

  12. [Effect of honokiol on proliferation and apoptosis in HL-60 cells and its potential mechanism].

    Science.gov (United States)

    Fan, Jia-Xin; Zeng, Ying-Jian; Weng, Guang-Yang; Wu, Jian-Wei; Li, Zhang-Qiu; Li, Yuan-Ming; Zheng, Rong; Guo, Kun-Yuan

    2014-12-01

    This study was aimed to investigate the effect of Honokiol (HNK) on proliferation and apoptosis of acute myeloid leukemia HL-60 cells and its potential mechanism. Inhibitory effect of HNK on the HL-60 cell proliferation was detected by MTT assay. Flow cytometry was used to detect the change of cell cycle and AnnexinV/PI staining was used to detect apoptosis. Western blot was applied to analyze the cell cycle protein (cyclins), cyclin-dependent kinase (CDK), P53, P21, P27, BCL-2, BCL-XL, Bax, caspase-3/9 and proteins for MAPK signal pathway. The results showed that HNK could inhibit the proliferation of HL-60 cells in time- and dose dependent ways. HNK arrested HL-60 cells in G0/G1 phase, and S phase cells decreased significantly (P HL-60 cell apoptosis increased significantly with the upregulation of activated caspase-3, -9, BAX expression and the downregulation of BCL-2, BCL-XL expression. The MAPK subfamily, P38 and JNK were not significantly changed, but the expression of MEK1/2-ERK1/2 was significantly downregulated (P HL-60 cell apoptosis through the intervention of MEK1/2-ERK1/2 signaling pathway.

  13. [Effect of COX-2 inhibitor celecoxib on proliferation, apoptosis of HL-60 cells and its mechanism].

    Science.gov (United States)

    Xie, Xia; Li, Jie; Wang, Rui-Cang; Geng, Rui-Li; Wang, Su-Yun; Wang, Chao; Zhao, Xiao-Yun; Hao, Hong-Ling

    2014-06-01

    This study was aimed to investigate the effect of COX-2 inhibitor celecoxib on proliferation, apoptosis of human acute myeloid leukemia cell line HL-60 and its mechanism. HL-60 cells were cultured with different concentrations of celecoxib for 24 h. Cell proliferation was analyzed by CCK-8 assay, cell apoptosis and cell cycle distribution were detected by flow cytometry. Cyclin D1, cyclin E1 and COX-2 mRNA expressions were determined by RT-PCR. The results showed that after the HL-60 cells were treated with different concentrations of celecoxib for 24 h, the cell growth was significantly inhibited in a dose-dependent manner(r = 0.955), IC50 was 63.037 µmol/L of celecoxib. Celecoxib could effectively induce apoptosis in HL-60 cells also in dose-dependent manner(r = 0.988), blocked the HL-60 cells in the G0/G1 phase. The expression of cyclin D1, cyclin E1 and COX-2 mRNA were downregulated. It is concluded that celecoxib can inhibit the proliferation of HL-60 cells in dose-dependent manner, celecoxib causes cell G0/G1 arrest and induces cell apoptosis possibly through down-regulation of the cyclin D1 and cyclin E1 expression, and down-regulation of COX-2 expression respectively.

  14. Inhibition of Reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs)

    OpenAIRE

    1997-01-01

    IAPs comprise a family of inhibitors of apoptosis found in viruses and animals. In vivo binding studies demonstrated that both baculovirus and Drosophila IAPs physically interact with an apoptosis-inducing protein of Drosophila, Reaper (RPR), through their baculovirus IAP repeat (BIR) region. Expression of IAPs blocked RPR-induced apoptosis and resulted in the accumulation of RPR in punctate perinuclear locations which coincided with IAP localization. When expressed alone, RPR rapidly disappe...

  15. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma.

    Directory of Open Access Journals (Sweden)

    Songtao Qi

    Full Text Available BACKGROUND: The aim of the present study was to analyze the expression of Zinc finger E-box Binding homeobox 2 (ZEB2 in glioma and to explore the molecular mechanisms of ZEB2 that regulate cell proliferation, migration, invasion, and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Expression of ZEB2 in 90 clinicopathologically characterized glioma patients was analyzed by immunohistochemistry. Furthermore, siRNA targeting ZEB2 was transfected into U251 and U87 glioma cell lines in vitro and proliferation, migration, invasion, and apoptosis were examined separately by MTT assay, Transwell chamber assay, flow cytometry, and western blot. RESULTS: The expression level of ZEB2 protein was significantly increased in glioma tissues compared to normal brain tissues (P<0.001. In addition, high levels of ZEB2 protein were positively correlated with pathology grade classification (P = 0.024 of glioma patients. Knockdown of ZEB2 by siRNA suppressed cell proliferation, migration and invasion, as well as induced cell apoptosis in glioma cells. Furthermore, ZEB2 downregulation was accompanied by decreased expression of CDK4/6, Cyclin D1, Cyclin E, E2F1, and c-myc, while p15 and p21 were upregulated. Lowered expression of ZEB2 enhanced E-cadherin levels but also inhibited β-Catenin, Vimentin, N-cadherin, and Snail expression. Several apoptosis-related regulators such as Caspase-3, Caspase-6, Caspase-9, and Cleaved-PARP were activated while PARP was inhibited after ZEB2 siRNA treatment. CONCLUSION: Overexpression of ZEB2 is an unfavorable factor that may facilitate glioma progression. Knockdown ZEB2 expression by siRNA suppressed cell proliferation, migration, invasion and promoted cell apoptosis in glioma cells.

  16. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  17. Hypercapnia slows down proliferation and apoptosis of human bone marrow promyeloblasts.

    Science.gov (United States)

    Hamad, Mouna; Irhimeh, Mohammad R; Abbas, Ali

    2016-09-01

    Stem cells are being applied in increasingly diverse fields of research and therapy; as such, growing and culturing them in scalable quantities would be a huge advantage for all concerned. Gas mixtures containing 5 % CO2 are a typical concentration for the in vitro culturing of cells. The effect of varying the CO2 concentration on promyeloblast KG-1a cells was investigated in this paper. KG-1a cells are characterized by high expression of CD34 surface antigen, which is an important clinical surface marker for human hematopoietic stem cells (HSCs) transplantation. KG-1a cells were cultured in three CO2 concentrations (1, 5 and 15 %). Cells were batch-cultured and analyzed daily for viability, size, morphology, proliferation, and apoptosis using flow cytometry. No considerable differences were noted in KG-1a cell morphological properties at all three CO2 levels as they retained their myeloblast appearance. Calculated population doubling time increased with an increase in CO2 concentration. Enhanced cell proliferation was seen in cells cultured in hypercapnic conditions, in contrast to significantly decreased proliferation in hypocapnic populations. Flow cytometry analysis revealed that apoptosis was significantly (p = 0.0032) delayed in hypercapnic cultures, in parallel to accelerated apoptosis in hypocapnic ones. These results, which to the best of our knowledge are novel, suggest that elevated levels of CO2 are favored for the enhanced proliferation of bone marrow (BM) progenitor cells such as HSCs.

  18. Effects of matrine on the proliferation and apoptosis of human medulloblastoma cell line D341.

    Science.gov (United States)

    Zhou, Kaiyu; Ji, Hailong; Mao, Tianming; Bai, Zhiqiang

    2014-01-01

    Matrine, one of the Chinese herbal medicine, has anti-tumor activity in a variety of tumor cells. However, its anti-tumor activity in human medulloblastoma remains unclear. The aim of this study was to investigate the presence and mechanism of matrine-induced proliferation and apoptosis in human medulloblastoma D341 cells. D341 cells were divided into experimental groups in which matrine were added at different concentrations and a control group under the same conditions without matrine applied. D341 cell proliferation was analyzed using a cell counting kit-8 assay, apoptosis was detected by annexin-V FITC/PI double-staining, and the expression of Bax, Bcl-2, caspase-3 and caspase-9 was detected by Western blotting. Results showed that matrine significantly inhibited the proliferation of D341 cells. The cells displayed more and larger cytoplasmic vacuoles, and formed apoptotic bodies after matrine treatment. Western blotting analysis showed that expressions of Bax, caspase-3 and caspase-9 increased, while that of Bcl-2 decreased as the drug concentration gradually increased. The study suggests that matrine could induce human medulloblastoma D341 cells apoptosis and inhibit the cells proliferation in vitro by activating Bax, caspase-3 and caspase-9 and reducing Bcl-2 expression.

  19. Expression of Survivin, p53 and its relationship with apoptosis, proliferation in hepatocellular carcinoma(HCC)

    Institute of Scientific and Technical Information of China (English)

    Wentao Hui; Ying Zan; Xijng Wang; Huafeng kang; Haitao Guan; Xiaobin Ma

    2008-01-01

    Objective:To investigate the expression of Survivinp53 and its relationship with apoptosis, proliferation in hepatocellular carcinoma (HCC).Methods:The expression of Survivin, p53 and the proliferation of tumor cells marked by proliferation cell nuclear antigen (PCNA) in 42 cases of HCC were assessed by immunohistochemical method.TUNEL was used to detect apoptosis.Results:Survivin protein was expressed in 30 of 42 cases of HCC(71.4%) and in 4 of 34 cases of adjacent cirrhosis tissues(11.8%).Expression of Survivin protein was negative in 10 cases of normal tissues.Survivin protein positive expression rate in HCC was significantly higher than adjacent cirrhosis tissues and normal tissues(P 0.05).Conclusion:There is a marked increased expression of Survivin in HCC, which may play an important role in breaking the balance of proliferation and apoptosis of HCC cells.The correlation between Survivin and p53 expression in HCC indicates that cooperation between Survivin and p53 plays a certain role in occurrence and/or development of HCC.

  20. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    Directory of Open Access Journals (Sweden)

    Xuefei Song

    2015-01-01

    Full Text Available Purpose. The purpose of this study was to determine the impact of cross-linking (CXL on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham’s F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2 during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA. Results. Following CXL, cell viability and proliferation decreased (P0.06. Five hours after CXL, FGFb secretion increased significantly (P=0.037; however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P>0.12. Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours, normalizing after 24 hours.

  1. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    Science.gov (United States)

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  2. Effects of Nitric Oxide on Proliferation and Apoptosis of Cultured Bovine Trabecul ar Meshwork Cells

    Institute of Scientific and Technical Information of China (English)

    薛蔚; 杜蜀华; 李勇; 杨业金; 孙京华

    2002-01-01

    The effects of different doses of nitric oxide (NO) on the proliferation and apoptosis of the cultured bovine trabecular meshwork (TM) cells were studied. L-arginine and NG-nitro-L-arginine methyl (L-NAME) were incubated with TM cells for 48 h. In the control group, no medicine was given. In the experimental groups, concentrations of L-arginine and L-NAME were 1 × 10- 7 mol/L,1 × 10-6 mol/L, 1 × 10-5 mol/L, 1 × 10-4 mol/L, 1 × 10-3 mol/L and 1 × 10-2 mol/L, respectively.NO2- in supernate, the proliferation and apoptosis of TM cells and mRNA expression of bcl-2 and bax were measured by Griess reagent, terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL), MTT assay and in situ hybridization,respectively. The results showed that Larginine with concentration ≥1 × 10-4 mol/L could induce apoptosis of the TM cells and inhibit the proliferation of TM cells through increasing the NO levels, down-regulating bcl-2 mRNA expression and up-regulating bax mRNA expression; L-NAME with concentration ≥1 × 10-5 mol/L could induce the proliferation of the TM cells through suppressing the production of NO. It was concluded that NO in high level could induce apoptosis of the TM cells and suppress the proliferation of the TM cells.

  3. Six2 Is a Coordinator of LiCl-Induced Cell Proliferation and Apoptosis

    Directory of Open Access Journals (Sweden)

    Jianing Liu

    2016-09-01

    Full Text Available The metanephric mesenchyme (MM cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET, the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling pathway. However, the role of LiCl in cellular regulation of MM cells remains unclear, and the relationship between LiCl and Six2 in this process is also little known. Here, we performed EdU assay and flow cytometry assay to, respectively, detect the proliferation and apoptosis of MM cells treated with LiCl of increasing dosages. In addition, reverse transcription-PCR (RT-PCR and Western-blot were conducted to measure the expression of Six2 and some maker genes of Wnt and bone-morphogenetic-protein (BMP signaling pathway. Furthermore, luciferase assay was also carried out to detect the transcriptional regulation of Six2. Then we found LiCl promoted MM cell proliferation at low-concentration (10, 20, 30, and 40 mM. The expression of Six2 was dose-dependently increased in low-concentration (10, 20, 30, and 40 mM at both mRNA and protein level. In addition, both of cell proliferation and Six2 expression in MM cells declined when dosage reached high-concentration (50 mM. However, Six2 knock-down converted the proliferation reduction at 50 mM. Furthermore, Six2 deficiency increased the apoptosis of MM cells, compared with negative control cells at relative LiCl concentration. However, the abnormal rise of apoptosis at 30 mM of LiCl concentration implies that it might be the reduction of GSK3β that increased cell apoptosis. Together, these demonstrate that LiCl can induce the proliferation and apoptosis of MM cells coordinating with Six2.

  4. Cell proliferation, apoptosis and the related regulators p27, p53 expression in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Zhao Jing; Ke-Jun Nan; Mei-Long Hu

    2005-01-01

    AIM: To investigate the expression of cell apoptosis,proliferation and the related regulators p27, p53 in hepatocellular carcinoma (HCC).METHODS: The expression of p27, p53, proliferating cell nuclear antigen (PCNA) and apoptosis in 47 HCC specimens and 42 surrounding non-cancerous tissues were detected by the immunohistochemistry and terminal deoxy-nudeotidyl transferase-mediated nick end labeling (TUNEL) technique.Meanwhile, the clinical significance of them was analyzed combining with the clinicopathological factors and followup data.RESULTS: (1) The average proliferating index and apoptotic index in HCC were significantly higher than that in adjacent liver tissues. The proliferating index was associated with extrahepatic metastasis. The apoptotic index was significantly lower in TNM stage Ⅰ-Ⅱ than in stage Ⅲ-Ⅳ. The proliferating index of groups with p53-/p27+ was significantly lower than that in group with p53+/p27- (P = 0.030); (2) The level of p27 in the cytoplasmic fraction was higher in non-tumoral liver tissues and was associated with clinical stage; (3) Survival analysis showed advanced stage (P = 0.031) and with extrahepatic metastasis (P = 0.045) was significantly associated with shorter survival. In addition, the prognosis of patients with p53-/p27+ was longer than that of patients with p53+/p27- (P = 0.0356).CONCLUSION: The p53 mutation and decreased p27 expression might be involved in the imbalance of proliferation and apoptosis in HCC. Cytoplasmic displacement might lead to the inactivation of p27 protein in HCC cells and acts early during carcinogenesis of HCC. The combined examination of p27, and p53 expression allows reliable estimation of prognosis for patients with primary hepatic carcinoma.

  5. Developmental changes in cell proliferation and apoptosis in the normal duck thymus.

    Science.gov (United States)

    Fang, J; Cui, H; Peng, X; Chen, Z; He, M; Tang, L

    2011-12-01

    Cell proliferation and apoptosis in the normal duck thymus during embryonic and post-embryonic development were studied. The flow cytometry assay shows that the level of G(0)/G(1) thymic cell population and the proportion of apoptotic cells increased with age, while the levels of S phase, G(2) + M phase and the proliferating index decreased with age. Proliferation cell nuclear antigen (PCNA) was mainly detected in the nuclei of lymphocytes. The number of PCNA-positive cells in the cortex and medulla significantly decreased with age. Transferase-mediated dUTP nick-end labelling (TUNEL) reaction stained apoptotic bodies in the cytoplasm of macrophages and free apoptotic bodies or nuclei with condensed chromatin in lymphocytes. The number of TUNEL-positive cells in the cortex and medulla markedly increased with age. The amount of proliferation and apoptotic cells in the thymic cortex was higher than that in the medulla. The balance between proliferation and apoptosis in the duck thymus may account for the process of thymic development and involution.

  6. Effects of dexamethasone on proliferation, differentiation and apoptosis of adult human osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    杨林; 陶天遵; 王新婷; 杜宁; 陈伟珍; 陶树清; 王志成; 吴丽萍

    2003-01-01

    Objective To observe the effects of dexamethasone on proliferation, differentiation and apoptosis of adult human osteoblasts in vitro. Methods Iliac trabecular bone specimens were obtained from adult patients undergoing necessary surgery. After the bone pieces were digested with collagenase-trypsin, osteoblasts were released and incubated at 37℃ in a relative humidity of 95% and 5% CO2. Then, the cells were purified, and their passages were given DMEM-F12 and fetal bovine serum medium. Subsequently, 10-8 mol/L dexamethasone was added into the culture medium to incubate the osteoblasts for three days, and the cells from control groups were incubated without any drugs. All cells were observed continually with phase contrast microscope and transmission electron microscope. Finally, apoptosis was detected by the use of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and biochemical indices, alkaline phosphatase (ALP) and osteocalcin (OCN) were used to determine the effects of dexamethasone on proliferation, differentiation and apoptosis of adult osteoblasts in vitro. Results In the adult osteoblasts obtained by collagenase-trypsin digestion, it achieved high survial, stable biochemical indices and excellent purification. Under the condition of dexamethasone 10-8 mol/L and osteoblasts 10 000/ml, there was significant promotion of ALP and OCN secretion without cell apoptosis.Conclusions Dexamethasone has a significant effect on the proliferation and differentiation of adult osteoblasts in vitro without apoptosis, and dexamethasone at the suggested concentration can be used as positive control in drug studies for osteoporosis treatment.

  7. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis

    DEFF Research Database (Denmark)

    Stutzin, A; Hoffmann, E K

    2006-01-01

    Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under phys...... as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis....

  8. Dopamine inhibits proliferation, induces differentiation and apoptosis of K562 leukaemia cells

    Institute of Scientific and Technical Information of China (English)

    HE Qun; YUAN Lin-bo

    2007-01-01

    Background Dopamine exerts its effects mainly in nervous system through D1, D2 or D3 receptors. There are few reports dealing with the effects of dopamine on leukaemia cells. However, some dopamine agonists or antagonists do show biological effects on some types of leukaemia cells. Here, we report the effects of dopamine on the proliferation,differentiation and apoptosis of K562 leukaemia cells.Methods Proliferation was determined by MTT assay and cell counting both in liquid and semisolid cultures.Differentiation was verified by morphology, benzidine staining and flow cytometry. Apoptosis was checked by Hoechst 33258 staining and flow cytometry. The two groups were untreated group and treated group (dopamine 10-9 mol/L-10-4mol/L).Results In liquid culture, MTT assay and colony assay, dopamine inhibited proliferation of K562 cells. Inhibition rate was 29.28% at 10-6 mol/L and 36.10% at 10-5 mol/L after culture for 5 days in MTT assay. In benzidine staining and CD71 expression, dopamine induced K562 cells toward erythroid differentiation by increased 155% at 10-6 mol/L and by 171% at 10-5 mol/L after culture for 5 days in benzidine staining. In Hoechst 33258 staining and flow cytometry,dopamine induced K562 cells toward apoptosis. The sub G1 peak stained by PI was 14.23% at 10-4 mol/L dopamine after culture for 3 days compared with the control (0.81%) in flow cytometry.Conclusion Dopamine inhibites proliferation and induces both differentiation and apoptosis of K562 leukaemia cells.

  9. Effects of α-adrenoreceptor antagonists on apoptosis and proliferation of pancreatic cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Su-Gang Shen; Dong Zhang; Heng-Tong Hu; Jun-Hui Li; Zheng Wang; Qing-Yong Ma

    2008-01-01

    AIM: To discuss the expression of α-adrenoreceptors in pancreatic cancer cell lines PC-2 and PC-3 and the effects of α1- and α2-adrenoreceptor antagonists, yohimbine and urapidil hydrochloride, on the cell lines in vitro.METHODS: We cultured the human ductal pancreatic adenocarcinoma cell lines PC-2 and PC-3 and analyzed the mRNA expression of α1- and α2-adrenergic receptors by reverse transcription polymerase chain reaction (RT-PCR).The effects of yohimbine and urapidil hydrochloride on cell proliferation were assessed by 3-(4,5-dimethylthiasol-2-yl)2,4,-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using the terminal deoxyribonucleoticlyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling (TUNEL) assay and flow cytometry (FCM).RESULTS: PC-2 expressed rnRNA in α1- and α2-adrenoreceptors. MTT assays showed that urapidil hydrochloride had no effect on PC-3 cell lines. However,exposure to urapidil hydrochloride increased DNA synthesis in PC-2 cell lines as compared to the control group. PC-2 cell lines were sensitive to both drugs. The proliferation of the 2 cell lines was inhibited by yohimbine.Cell proliferation was inhibited by yohimbine via apoptosis induction.CONCLUSION: The expression of α1-and α2-adrenoreceptors is different in PC-2 and PC-3 cell lines,which might be indicative of their different functions. Theα2-adrenoceptor antagonist, yohimbine, can inhibit the proliferation of both cell lines and induce their apoptosis,suggesting that yohimbine can be used as an anticancer drug for apoptosis of PC-2 and PC-3 cells.

  10. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  11. Blocking lhh Signaling Pathway Inhibits the Proliferation and Pro-motes the Apoptosis of PSCs

    Institute of Scientific and Technical Information of China (English)

    Kai XU; Fengjing GUO; Shuwei ZHANG; Cheng LIU; Feixiong WANG; Zhiguo ZHOU; Anmin CHEN

    2009-01-01

    The roles of Indian hedgehog (Ihh) signaling pathway in the proliferation and apoptosis of precartilaginous stem cells (PSCs) were investigated.PSCs,labeled with fibroblast growth factor receptor 3 (FGFR-3),were isolated from neonatal rats by immanomagnetic separation.After identifi-cation with FGFR-3 and Col Ⅱ,the cells were incubated with different concentrations of cyclopamine (cyclo),the specific inhibitor of lhh signaling pathway.The morphologic changes of the cells were observed under the inverted phase contrast microscope.The mRNA expression levels of Ibh,para-thyroid hormonerelated peptide (PTHrP),protein Patched (Ptch),Bcl-2 and p21 were detected by RT-PCR.The protein expression levels of Ihh and Ptch were measured by Western blot.MTT assay was used to examine the effects of cyclo on proliferation of PSCs.Apoptosis rate of PSCs was exam-ined by Annexin V/PI assay of flow cytometric analyses.After PSCs were incubated with cyclo,ob-vious morphologic changes were observed as compared with the control group.The mRNA expres-sion levels of PTHrP,Ptch and Bcl-2 were decreased to varying degrees in a cyclo dose-dependent manner.However,the expression levels of lhh and p21 mRNA were increased.The protein expres-sion of Ptch and Ihh had the same change as the mRNA expression.Meanwhile,cyclo could obvi-ously inhibit the proliferation and promote the apoptosis of PSCs.The results indicated that Ihh sig-naling pathway plays an important role in regulating the proliferation and apoptosis of PSCs,which is probably mediated by Bcl-2 and p21.

  12. Influence of Hyperlipidemia on the Proliferation and Apoptosis of Myocardial Cells in Rabbits

    Directory of Open Access Journals (Sweden)

    Huse Kinscherf

    2015-03-01

    Full Text Available Objective: To establish hyperlipemia models in rabbits fed with high fat diet, observe the changes of serum lipid level, and to explore the effect of hyperlipidemia on the proliferation and apoptosis of myocardial cells in rabbits. Methods: New Zealand white male special rabbits were randomly divided into 2 groups: normal diet group and high-fat-fed group, 10 cases in each group. The rabbits in normal group were fed with ordinary feed while the rabbits in the latter group were fed with high fat diet. The levels of serum TC, TG, HDL-C and LDL-C were detected at 0, 4th, 7th, 10th, 13thweeks for 2 groups. At the end of the 13th week, the pathological changes of myocardial tissues were detected by HE staining, and the proliferation and apoptosis of cardiomyocyte were tested by FCM. Results:After given high fat diet, the level of serum TC, TG, HDL-C and LDL-C in high-fat-fed diet group were significantly increased than in the normal diet group from the 4th week to the 13th week (P<0.01. The construction of cardiomyocyte in the atherogenic diet group had obviously morphological changes. The distribution of G0/G1 phase in high-fat-fed increased significantly than that in the normal diet group (P<0.01, but S phase and proliferation index (PI in decreased significantly than that in the normal diet group (P<0.01. The apoptosis rate in both groups had no statistical difference (P>0.05. Conclusion: Hyperlipidemia can induce the pathological changes of cardiomyocyte in rabbits, inhibit the proliferation of cardiomyocyte, but has no effect on the apoptosis of cardiomycyte in rabbits.

  13. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Kopp, Katharina; Krejsgaard, Thorbjørn;

    2010-01-01

    The programmed cell death-10 (PDCD10; also known as cerebral cavernous malformation-3 or CCM3) gene encodes an evolutionarily conserved protein associated with cell apoptosis. Mutations in PDCD10 result in cerebral cavernous malformations, an important cause of cerebral hemorrhage. PDCD10...... of cutaneous T-cell lymphoma (Sezary syndrome) patients. PDCD10 is associated with protein phosphatase-2A, a regulator of mitogenesis and apoptosis in malignant T cells. Inhibition of oncogenic signal pathways [Jak3, Notch1, and nuclear factor-¿B (NF-¿B)] partly inhibits the constitutive PDCD10 expression......, whereas an activator of Jak3 and NF-¿B, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10...

  14. WWOX induces apoptosis and inhibits proliferation of human hepatoma cell line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    Ben-Shun Hu; Jing-Wang Tan; Guo-Hua Zhu; Dan-Feng Wang; Xian Zhou; Zhi-Qiang Sun

    2012-01-01

    AIM:To investigate the effects of the WWOX gene on the human hepatic carcinoma cell line SMMC-7721.METHODS:Full-length WWOX cDNA was amplified from normal human liver tissues.Full-length cDNA was subcloned into pEGFP-N1,a eukaryotic expression vector.After introduction of the WWOX gene into cancer cells using liposomes,the WWOX protein level in the cells was detected through Western blotting.Cell growth rates were assessed by methyl thiazolyl tetrazolium (MTT) and colony formation assays.Cell cycle progression and cell apoptosis were measured by flow cytometry.The phosphorylated protein kinase B (AKT)and activated fragments of caspase-9 and caspase-3 were examined by Western blotting analysis.RESULTS:WWOX significantly inhibited cell proliferation,as evaluated by the MTT and colony formation assays.Cells transfected with WWOX showed significantly higher apoptosis ratios when compared with cells transfected with a mock plasmid,and overexpression of WWOX delayed cell cycle progression from G1 to S phase,as measured by flow cytometry.An increase in apoptosis was also indicated by a remarkable activation of caspase-9 and caspase-3 and a dephosphorylation of AKT (Thr308 and Ser473) measured with Western blotting analysis.CONCLUSION:Overexpression of WWOX induces apoptosis and inhibits proliferation of the human hepatic carcinoma cell line SMMC-7721.

  15. The Effect of Curcumin on Proliferation and Apoptosis in LNCaP Prostate Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Lei Yang; Lianying Zhang; Lijun Chen; Bin Meng; Jiangrui Suo; Hongmin Wang; Hong Xie; Qiuyue Jin; Li Yao; Ruimin Wang

    2006-01-01

    OBJECTIVE To observe the effect of curcumin on proliferation and apoptosis in the prostate cancer LNCaP cell line.METHODS The AXSYMTM system luciferase method was used to examine the effect of various concentratious of curcumin on the content of prostate specific antigen (PSA) in prostate cancer LNCaP cells. A pGL3-PSA luciferase expression vector, containing 640 bp DNA of the PSA gene 5'-promoter region was constructed and transfected into the LNCaP cells with lipofectin. By measuring luciferase activity, the effect of 10 μmol/L, 20 μmol/L, 30 and 40 μmol/L curcumin on the promoter was studied. Effects on cell growth and apoptosis were analyzed by microscopy, the MTT colorimetric assay and flow cytometry Western-blotting was used to measure expression of the androgen receptor (AR) in the LNCaP cells treated with different concentrations of curcumin.RESULTS The results showed that the expression of PSA was inhibited as curcumin reduced the activity of luciferase. Curcumin also caused a sigificant concentration-dependent decrease in AR expession measured by Western-blotting. Cell growth was inhibited and apoptosis was induced.CONCLUSION By inhibiting AR expression, curcumin reduced the function of the PSA promoter and inhibited PSA protein expression. Curcumin decreased the cellular proliferation and induced apoptosis in LNCaP cells in a concention-dependent manner.

  16. Chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish.

    Science.gov (United States)

    Yu, Kaimin; Li, Guochao; Feng, Weimin; Liu, Lili; Zhang, Jiayu; Wu, Wei; Xu, Lei; Yan, Yanchun

    2015-09-05

    The potential interference of endocrine disrupting chemicals (EDCs) on aquatic animals and humans has drawn wide attention in recent years. Reports have shown that some organophosphorus pesticides were a kind of EDCs, but their effects on fish species are still under research. In present study, flow cytometry data of HEC-1B cell line showed that chlorpyrifos (CPF) could increase cell proliferation index like 17β-estradiol (E2), but the effect of CPF was weaker than of E2 in the same concentration. Moreover, CPF altered the expression pattern of estrogen-responsive gene VTG and ERα in zebrafish embryos. When exposed to CPF at various concentrations (0, 0.10, 0.25, 0.50, 0.75 and 1.00mg/L) for 48h during the embryo stage, compared with controls, the hatching rate of treated groups significantly increased at the same time and the hatching rate of embryos was proportional to CPF concentration. The mRNA expression levels of c-myc, cyclin D1, Bax and Bcl-2, which are closely related to cell proliferation and cell apoptosis, were disturbed by CPF in zebrafish embryos after exposure treated for 48h. In addition, acridine orange (AO) staining of zebrafish embryos showed that cell apoptosis was appeared in the 0.75, 1.00mg/L CPF treated groups. Taken together, the results obtained in the present study indicated that chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish.

  17. Inlfuence of Hyperlipidemia on the Proliferation and Apoptosis of Myocardial Cells in Rabbits

    Institute of Scientific and Technical Information of China (English)

    Huse Kinscherf; Cynthia C Haudenschild; Christian C Chobanian

    2015-01-01

    Objective:To establish hyperlipemia models in rabbits fed with high fat diet, observe the changes of serum lipid level, and to explore the effect of hyperlipidemia on the proliferation and apoptosis of myocardial cells in rabbits. Methods:New Zealand white male special rabbits were randomly divided into 2 groups:normal diet group and high-fat-fed group, 10 cases in each group. The rabbits in normal group were fed with ordinary feed while the rabbits in the latter group were fed with high fat diet. The levels of serum TC, TG, HDL-C and LDL-C were detected at 0, 4th, 7th, 10th, 13th weeks for 2 groups. At the end of the 13th week, the pathological changes of myocardial tissues were detected by HE staining, and the proliferation and apoptosis of cardiomyocyte were tested by FCM. Results:After given high fat diet, the level of serum TC, TG, HDL-C and LDL-C in high-fat-fed diet group were signiifcantly increased than in the normal diet group from the 4th week to the 13th week (P0.05). Conclusion:Hyperlipidemia can induce the pathological changes of cardiomyocyte in rabbits, inhibit the proliferation of cardiomyocyte, but has no effect on the apoptosis of cardiomycyte in rabbits.

  18. Effects of Resveratrol on the Proliferation and Apoptosis in Synoviocytes of Rheumatoid Arthritis

    Institute of Scientific and Technical Information of China (English)

    唐玲丽; 余平; 胡敏; 谢希; 陈新瑞

    2004-01-01

    This study was undertaken to investigate the regulatory effect of Resveratrol (Res) on the proliferation and apoptosis of synoviocytes of patients with rheumatoid arthritis (RA), as the proliferation of synoviocytes of patients was determined by MTT chromatometry and the apoptosis of these cells was assayed with TUNEL flow cytometry. It was found in this experiment that the degree of cell proliferation of the Res-treated group with dosages of 50-400 μM was significantly reduced in comparison with that of the control group, but percentage of the apoptotic cells demonstrated with TUNEL labeling was elevated under treatment with Res at the same dosages in a concentration-dependent manner. The difference between the Restreated group and the control group was quite significant ( P<0.01 ). It is concluded that Res shows a potent anti-proliferative effect on synoviocytes of patients with RA with induction of cell apoptosis, and it is likely a valuable candidate for the chemotherapy and management of patients with RA.

  19. Effects of different cytokines on proliferation and apoptosis of pleural mesothelial cells in human Mycobacterium tuberculosis infection

    Institute of Scientific and Technical Information of China (English)

    熊亮

    2013-01-01

    Objective To investigate the effects of different cytokines (IL-22,IL-17,IFN-γ) on proliferation and apoptosis of human pleural mesothelial cells (PMC) during Mycobacterium tuberculosis infection.Methods The

  20. Placental Villous Trophoblast: the Altered Balance Between Proliferation and Apoptosis Triggers Pre-eclampsia

    Directory of Open Access Journals (Sweden)

    Huppertz B

    2006-01-01

    Full Text Available During the morula stage of human embryo development segregation of the first two cell lineages takes place: the trophoblast and the embryoblast. For the development of a healthy baby, the embryonic tissues and cells need to show high rates of proliferation and differentiation, as well as high rates of apoptosis. Only the concerted action of all three processes leads to a proper development of all tissues and organs and is crucial for morphogenesis in general. This is also true for the extraembryonic tissues such as the trophoblast, which gives rise to the placenta and provides the epithelial cover of the placental villous trees. This villous trophoblast comes into direct contact with maternal blood and similar to stratified epithelia displays a continuous turnover of its layers. The villous trophoblast displays proliferation and differentiation of its precursor cells, termed villous cytotrophoblast. Their final differentiation event is syncytial fusion with the overlying multinucleated layer, the syncytiotrophoblast. Here a second differentiation stage takes place, with a final apoptotic shedding event, releasing apoptotic syncytial knots into the maternal circulation. As a normal constituent of trophoblast turnover apoptosis and the release of apoptotic material does not induce an inflammatory response of the mother. The pregnancy pathology pre-eclampsia is characterised by an altered balance between proliferation and apoptosis of villous trophoblast resulting in a dysregulated release of material from the syncytiotrophoblast into maternal blood. Beside the normal apoptotic release there seems to be an increasing release by necrosis, and due to ongoing apoptosis within the syncytiotrophoblast, the necrotic release of apoptotic material leads to aponecrotic shedding. Cell-free components of the syncytiotrophoblast may now be able to damage the maternal endothelium and hence trigger pre-eclampsia.

  1. Morphological changes of cell proliferation and apoptosis in rat jejunal mucosa at different ages

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Jian Li; Qing Li; Jian Zhang; Xiang-Lin Duan

    2003-01-01

    AIM: To study the changes of cell proliferation and apoptosis in rat jejunal epithelium at different ages.METHODS: Cell proliferation and apoptosis of the jejunal mucosal and glandulous epithelia from birth to postnatal 12th month were observed using immunocytochemistry (ICC), and TUNEL method. The height of villus, the thickness of muscle layer and the number of goblet cells in jejunal mucosal and glandulous epithelia were measured by BeiHang analytic software and analyzed by STAT.RESULTS: (1) Proliferating cell nuclear antigen (PCNA) positive cells of jejunal glandulous recess were found and increased in number from birth to the postnatal 3rd month. The number of PCNA positive cells peaked in the postnatal 3rd month, and decreased from then on. (2) The number of apoptotic cells also peaked in the postnatal 3rd month, showing a similar trend to that of the PCNA positive cells. (3) The height of jejunal villus increased after birth, peaked in the postnatal 3rd month and decreased from then on. The jejunal muscle layer became thicker in the postnatal 3rd week and the postnatal 12th month.The number of goblet cells of the jejunal mucosal and glandulous epithelia had a linear correlation with age.CONCLUSION: (1) PCNA positive cells are distributed in the jejunal glandulous recess. (2) Apoptotic cell number peaks in the postnatal 3rd month, indicating that cell proliferation and apoptosis are developed with the formation of digestive metabolism as rat grows to maturity. (3) The thickness of jejunal muscle layer increases to a maximum in the postnatal 3rd week, which may be related to the change in diet from milk to solid food. (4) The number of goblet cells increases rapidly in the postnatal 3rd week, probably due to ingestion of solid food.

  2. Effect of diglycine mutant FAT10 on the proliferation and apoptosis of cervical cancer cells

    Directory of Open Access Journals (Sweden)

    Cui LI

    2015-01-01

    Full Text Available Objective To investigate the effects of FAT10ΔGG, a carboxyl-terminal diglycine deficient mutant, on the proliferation and apoptosis of cervical cancer cell line HeLa. Methods Specimens of cervical carcinoma in situ and normal cervix tissue, 5 each, were collected. The expressive levels of FAT10 protein in these specimens were detected by Western blotting. Sitedirected mutagenesis was applied to construct the mutant pcDNA3.0-flag-FAT10ΔGG plasmid. The HeLa cells were then transiently transfected with wild-type FAT10, FAT10ΔGG and empty vector (used as negative control, and the wild-type HeLa cells served as blank control. The transfection efficiency of FAT10 or FAT10ΔGG was detected by Western blotting, and cell proliferation was determined by CCK-8 assay. Cisplatin was used to induce cell apoptosis after cells were transfected for 24h, and the cell apoptotic rates of all groups were determined by flow cytometry. Results Western blotting showed a significantly increased expression of FAT10 protein in cervical carcinoma tissues compared with that in normal cervical tissue. Over-expression of wild FAT10 in HeLa cells obviously promoted cell proliferation, but this promotion was significantly inhibited in cells transfected with its diglycine mutant. Compared with blank control group (22.7%±4.2% and negative control group (24.1%±3.8%, the apoptotic rate was significantly reduced in wild FAT10 group (10.9%±2.0%, P0.05. Conclusion FAT10 can promote cell proliferation and inhibit cell apoptosis through its carboxyl-terminal diglycine motif, and it may play an essential role in carcinogenesis and development of cancer. DOI: 10.11855/j.issn.0577-7402.2014.12.01

  3. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com [Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Dezfoulian, Omid [Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorram Abad (Iran, Islamic Republic of); Alirezaei, Masoud [Division of Biochemistry, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Rasoulian, Bahram [Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorram Abad (Iran, Islamic Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  4. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  5. Effects of Raloxifene on the Proliferation and Apoptosis of Human Aortic Valve Interstitial Cells

    Directory of Open Access Journals (Sweden)

    Zhimin Fu

    2016-01-01

    Full Text Available We aimed to explore the effects of raloxifene (RAL on the proliferation and apoptosis of human aortic valve interstitial cells (AVICs. Different concentrations of RAL were used to act on AVICs. MTS kit is used to test the effects of different concentrations of RAL on the proliferation of AVICs. Cell cycle and apoptosis test used flow cytometry after seven-day treatment. The relative expression levels of caspase-3 and caspase-8 are tested with RT-qPCR and Western blot. The results of MTS testing revealed that the absorbance value (OD value of the cells in the concentration groups of 10 and 100 nmol/L RAL at a wavelength of 490 nm at five, seven, and nine days significantly decreased compared with that in the control group. Meanwhile, the results of flow cytometry of the cells collected after seven days showed that the ratio of the S stage and the cell apoptosis rate of AVICs can be significantly reduced by RAL in the concentration groups of 10 and 100 nmol/L. The mRNA and protein expressions of caspase-3 and caspase-8 were significantly decreased compared with those in the control group. This study laid the foundation for further treatment of aortic valve disease by using RAL.

  6. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Lintao Wang; Yanyan Peng; Kaikai Shi; Haixiao Wang; Jianlei Lu; Yanli Li; Changyan Ma

    2015-01-01

    Recent studies have revealed that osthole,an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson,a traditional Chinese medicine,possesses anticancer activity.However,its effect on breast cancer cells so far has not been elucidated clearly.In the present study,we evaluated the effects of osthole on the proliferation,cell cycle and apoptosis of human breast cancer cells MDA-MB 435.We demonstrated that osthole is effective in inhibiting the proliferation of MDA-MB 435 cells,The mitochondrion-mediated apoptotic pathway was involved in apoptosis induced by osthole,as indicated by activation of caspase-9 and caspase-3 followed by PARP degradation.The mechanism underlying its effect on the induction of G1 phase arrest was due to the up-regulation of p53 and p21 and down-regulation of Cdk2 and cyclin D1 expression.Were observed taken together,these findings suggest that the anticancer efficacy of osthole is mediated via induction of cell cycle arrest and apoptosis in human breast cancer cells and osthole may be a potential chemotherapeutic agent against human breast cancer.

  7. Oxymatrine Inhibits Proliferation and Migration While Inducing Apoptosis in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Feili Liu

    2016-01-01

    Full Text Available Oxymatrine (OMT, an alkaloid derived from the traditional Chinese medicine herb Sophora flavescens Aiton, has been shown to exhibit anticancer properties on various types of cancer cells. In this study, we investigate the anticancer properties of OMT on human glioblastoma (GBM cells and evaluate their underlying mechanisms. MTT assays were performed and demonstrated that OMT significantly inhibits the proliferation of GBM cells. Flow cytometry suggested that OMT at a concentration of 10−5 M may induce apoptosis in U251 and A172 cells. Western blot analyses demonstrated a significant increase in the expression of Bax and caspase-3 and a significant decrease in expression of Bcl-2 in both U251 and A172 cells. Additionally, OMT was found by transwell and high-content screening assays to decrease the migratory ability of the evaluated GBM cells. These findings suggest that the antitumor effects of OMT may be the result of inhibition of cell proliferation and migration and the induction of apoptosis by regulating the expression of apoptosis-associated proteins. OMT may represent a novel anticancer therapy for the treatment of GBM.

  8. Effect of Docosahexaenoic Acid on Apoptosis and Proliferation in the Placenta: Preliminary Report

    Directory of Open Access Journals (Sweden)

    Ewa Wietrak

    2015-01-01

    Full Text Available Introduction. Observational studies confirm a higher incidence of preeclampsia in patients with low erythrocyte concentrations of omega-3 fatty acids. Observations point to an association of disorders of pregnancy, such as intrauterine growth restriction (IUGR and preeclampsia, with excessive apoptosis. One potential mechanism of action of docosahexaenoic acid (DHA promoting a reduction in the risk of pathological pregnancy may be by influencing these processes in the placenta. Materials and Methods. We investigated 28 pregnant women supplemented with a fish oil product containing 300 mg DHA starting from pregnancy week 20 until delivery (DHA group. The control group consisted of 50 women who did not receive such supplementation (control group. We determined the expression of Ki-67 and p21 as markers of proliferation and caspase 3 activity as a marker of apoptosis and DHA levels in umbilical cord blood. Results. Caspase 3 activity was significantly lower in the DHA group in comparison to the control group. Umbilical cord blood DHA concentration was higher in the DHA group. The expression of the proteins p21 and Ki-67 did not differ significantly between the groups. Conclusions. We observed an association between DHA supplementation and inhibition of placental apoptosis. We did not find an association between DHA and proliferation process in the placenta.

  9. Effects of p53 overexpression on neoplastic cell pro-liferation and apoptosis in thymic carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate p53 overexpression and its correlation with neoplastic cell proliferation and apoptosis in 20 thymic carcinomas. Methods: 20 surgical samples of thymic carcinoma were collected randomly during the past 15 years in the Guangzhou area. Immunohistochemical staining was performed using LSAB method with anti-p53 monoclonal antibody (DO-7) and proliferating cell nuclear antigen (clone PC 10) as primary antibodies. The p53 index was indicated by the number of p53 positive cells among 100 carcinoma cells. More than 25 percentage of p53 positive cells found in tissue sections was recognized as p53 overexpression. Carcinoma cell proliferation activity was assayed by PCNA index (PI), and apoptosis degree was evaluated by TUNEL (TdT-mediated dUTP-X nick end labeling) index (TI) using Boehringer Mannheim In Situ Death Detection Kit. Results: P53 positive cells could be found in vast majority of thymic carcinomas (19/20) and the overexpression rate reached 35% (7/20). The median PI (40%) of 7 cases with p53 overexpression was higher than that (31%) of 13 cases without p53 overexpression, but there was no statistical significance that existed between these two data (P>0.05). The median TI (0.5/HPF) of 7 p53 overexpression cases was much lower than that (4.5/HPF) of 13 non-overexpression cases, and there was a significant difference statistically (P<0.05). Conclusion: p53 expression was a frequent finding in thymic carcinoma cells, and the p53 overexpression which might represent p53 inactivation or gene mutation was often involved in thymic carcino-genesis. The median PCNA index of p53 overexpression group was higher than that of non-overexpression group though there existed no statistical difference. This indicates that the inhibiting function of p53 on cell proliferation seemed lost in p53 overexpressed thymic carcinomas. It is worthy to be specially mentioned that the inducing function of p53 on cell apoptosis was markedly lost in p53 overexpressed thymic

  10. Role of LM23 in cell proliferation and apoptosis and its expression during the testis development

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; Ya-Juan Song; Li-Jun Meng; Fen Hu; Li-Xia Gou; Chang-Hong Jia; Hong-Mei Tang

    2013-01-01

    LM23,a gene expressed specifically in the testis in a stage-specific manner,has a diverse range of functions that are important in both the life and death of spermatogenic cells.The aim of this study was to further investigate the expression of LM23 in the developing rat testis and the biological function of LM23 in proliferation and antiapoptosis in vitro.Semiquantitative reverse transcription (RT)-PCR and real-time PCR were used to examine the expression of LM23 in testis at different developmental stages.The results suggested that LM23 mRNA levels in the testis increased progressively after birth.The role of LM23 in proliferation was analyzed with cell counting kit-8 (CCK8),colony-forming efficiency (CFE) and flow cytometry assays.The results indicated that ectopic expression of LM23 in 293T cells significantly promoted cell proliferation by increasing cell numbers in S phase.Several methods were used,including CCK8,annexin V and propidium iodide staining and western blotting,to determine the role of LM23 in apoptosis.The results showed that LM23 played a protective role in H202-induced apoptosis of 293T cells,mediated at least in part through the Akt/Pl3K signal pathway.Taken together,these results provide new insights into the role of LM23 in the development of the testes and spermatogenesis.

  11. Proprotein convertase furin regulates apoptosis and proliferation of granulosa cells in the rat ovary.

    Directory of Open Access Journals (Sweden)

    Xiaokui Yang

    Full Text Available Folliculogenesis is tightly controlled by a series of hormones, growth factors and cytokines, many of which are secreted as proproteins and require processing by proteases before becoming functional. Furin is a member of the subtilisin-like proteases that activate large numbers of proprotein substrates and is ubiquitously expressed and implicated in many physiological and pathological processes. However, the precise role of furin during folliculogenesis has not been thoroughly investigated. The goal of the present work is to identify the role of furin in the development of granulosa cells during folliculogenesis, using immunohistochemistry, RT-PCR, Western blot and functional studies in primary cultured rat granulosa cells. Our results demonstrate that furin is highly expressed in granulosa cells and oocytes of the ovary with very limited expression in other ovarian cells such as the epithelial, stromal or theca cells. Furin siRNA significantly increases apoptosis of the granulosa cells from large antral/preovulatory follicles, in part via downregulation of the anti-apoptotic proteins, XIAP and p-AKT. On the contrary, furin siRNA markedly decreases proliferation of granulosa cells based on the downregulation of proliferation cell nuclear antigen (PCNA. Taken together, these data suggest that furin may play an important role in regulating apoptosis and proliferation of granulosa cells.

  12. Biphasic effect of falcarinol on caco-2 cell proliferation, DNA damage, and apoptosis.

    Science.gov (United States)

    Young, Jette F; Duthie, Susan J; Milne, Lesley; Christensen, Lars P; Duthie, Garry G; Bestwick, Charles S

    2007-02-07

    The polyacetylene falcarinol, isolated from carrots, has been shown to be protective against chemically induced colon cancer development in rats, but the mechanisms are not fully understood. In this study CaCo-2 cells were exposed to falcarinol (0.5-100 microM) and the effects on proliferation, DNA damage, and apoptosis investigated. Low-dose falcarinol exposure (0.5-10 microM) decreased expression of the apoptosis indicator caspase-3 concomitantly with decreased basal DNA strand breakage. Cell proliferation was increased (1-10 microM), whereas cellular attachment was unaffected by falcarinol. At concentrations above 20 microM falcarinol, proliferation of CaCo-2 cells decreased and the number of cells expressing active caspase-3 increased simultaneously with increased cell detachment. Furthermore, DNA single-strand breakage was significantly increased at concentrations above 10 microM falcarinol. Thus, the effects of falcarinol on CaCo-2 cells appear to be biphasic, inducing pro-proliferative and apoptotic characteristics at low and high concentrations of falcarinol, respectively.

  13. Apoptosis and autophagy control cell proliferation in the dentate gyrus following hippocampal lesion

    Institute of Scientific and Technical Information of China (English)

    Ju Zhou; Wei Peng; Qi Zhu; Shan Gong; Lidong Shan; Tadashi Hisamitsu; Shiyu Guo; Xinghong Jiang

    2010-01-01

    Brain injuries often result in the promotion of cell proliferation in the hippocampal dentate gyrus(DG),but the number of newborn cells declines with time.However,the cause of this decline remains poorly understood.Elucidation of the fate of these newborn cells will further the understanding of the pathological process and treatment of brain injury.In the present study,the number of newborn cells was quantitatively analyzed using an unbiased stereological method following hippocampal lesion by kainic acid,in combination with detection of apoptosis and autophagy.Results revealed that hippocampal lesion resulted in a significantly increased number of 5-bromo-2-deoxyuridine(BrdU)-positive cells in the DG,which subsequently decreased with time.BrdU/cleaved caspase-3 double-labeled cells were detected in the granular cell layer and hilus of DG.However,expressions of LC3-11,Beclin 1,and p53 were upregulated,and pro-caspase-3 and Bcl-2 were downregulated.Results indicated that hippocampal lesion in adult rats resulted in significant cell proliferation in the DG,which subsequently reduced with time.In addition,results suggested that apoptosis and autophagic processes could regulate cell proliferation in the DG following hippocampal lesion.

  14. Effect of Quercetin on Proliferation and Apoptosis of Human Nasopharyngeal Carcinoma HEN1 Cells

    Institute of Scientific and Technical Information of China (English)

    Feng ZHANG; Yonghua CUI; Pingping CAO

    2008-01-01

    The effect of quercetin (Que) on proliferation and apoptosis of human nasopharyngeal carcinoma HEN1 cells was investigated. Inhibition rate of quercetin on HEN1 was assayed by MTT method, apoptosis by flow cytometry (FCM), and the caspase-3 expression of each group by colorimetry set respectively. Quercetin inhibited HEN1 cells in in a dose-(r=0.709,P<0.01) and time-dependent manner (r=0.703,P<0.01). The ratio of apoptotic and necrosis cells was increased in the cells treated with quercetin. Cell cycle was specificly arrested in G2/M phase. Apoptosis cusp was revealed by FCM. The activity of caspase-3 was significantly up-regulated in 5 groups treated with quecetin as compared with control group (P<0.05). It was concluded that the growth inhibition of quercetin was highly related to cell cycle arrest at the G2/M phase and induction of caspase-dependent apoptosis in human nasopharyngeal carcinoma HEN1 cells.

  15. ZM-66, a New Podophyllotoxin Derivative Inhibits Proliferation and Induces Apoptosis in K562/ADM Cells

    Institute of Scientific and Technical Information of China (English)

    Ling Li; Hong-jie Li; Jian-sheng zhi; Hong Chen; Wen-li Xie

    2014-01-01

    Objective To investigate the anti-tumor effect of ZM-66 on multidrug-resistant leukemic cell line K562/ADM. Methods The K562/ADM cells were treated with varying concentrations (0, 1, 2, 4×10-3 mmol/L) of ZM-66 or etoposide for 24 hours. The proliferation was detected by Sulforhodamine B Sodium Salt (SRB) assay and apoptosis was detected by flow cytometry analysis and fluorescent staining. In addition, the expression levels of p53 and bax genes in K562/ADM cells were detected by RT-PCR analysis. The level of P-glycoprotein (P-gp), P53 and Bax protein in K562/ADM cells were detected by Western blot assay. Results SRB assay demonstrated that etoposide had little inhibitory effect on K562/ADM cells, whereas ZM-66 (1, 2, 4×10-3 mmol/L) had significantly inhibitory effect on K562/ADM cells (all P Conclusion ZM-66 is able to induce cell death by apoptosis in vitro, as a result of the reverse of the apoptosis resistance in drug-resistant K562/ADM cells by modulating expression of key factors associated with apoptosis induction.

  16. Celecoxib Inhibits Proliferation and Induces Apoptosis via Cyclooxygen-ase-2 Pathway in Human Pancreatic Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    WU Gaosong; YI Jilin; DI Fang; ZOU Shengquan; LI Xingrui

    2005-01-01

    In order to evaluate the effects and mechanisms of celecoxib in inhibiting proliferation and inducing apoptosis on human pancreatic carcinoma cells, the anti-proliferative effect was measured by using methabenzthiazuron (MTT) assay. Cell cycle and apoptosis were analyzed by using flow cytometry (FCM), and the PGE2 levels in the supernatant of cultured pancreatic carcinoma cells were quantitated by enzyme-linked immunoabsordent assay (ELISA). Our results showed that celecoxib suppressed the production of PGE2 and inhibited the growth of JF-305 cells, and the anti-proliferative effect of celecoxib could be abolished by addition of PGE2. FCM revealed that celecoxib could inhibit proliferation and induce apoptosis by G1-S cell cycle arrest. It was concluded that cyclooxygenase-2 specific inhibitor celecoxib could inhibit proliferation and induced apoptosis of human pancreatic carcinoma cells via suppression of PGE2 production in vitro.

  17. Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain

    Directory of Open Access Journals (Sweden)

    Katharine Askew

    2017-01-01

    Full Text Available Microglia play key roles in brain development, homeostasis, and function, and it is widely assumed that the adult population is long lived and maintained by self-renewal. However, the precise temporal and spatial dynamics of the microglial population are unknown. We show in mice and humans that the turnover of microglia is remarkably fast, allowing the whole population to be renewed several times during a lifetime. The number of microglial cells remains steady from late postnatal stages until aging and is maintained by the spatial and temporal coupling of proliferation and apoptosis, as shown by pulse-chase studies, chronic in vivo imaging of microglia, and the use of mouse models of dysregulated apoptosis. Our results reveal that the microglial population is constantly and rapidly remodeled, expanding our understanding of its role in the maintenance of brain homeostasis.

  18. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng Sang; Xiao-Lei Shi; Bin Han; Tao Huang; Xu Huang; Hao-Zhen Ren; Yi-Tao Ding

    2016-01-01

    BACKGROUND: Transplantation of mesenchymal stem cells (MSCs) has been regarded as a potential treatment for acute liver failure (ALF), but the optimal route was unknown. The present study aimed to explore the most effective MSCs trans-plantation route in a swine ALF model. METHODS: The swine ALF model induced by intravenous injection of D-Gal was treated by the transplantation of swine MSCs through four routes including intraportal injection (InP group), hepatic intra-arterial injection (AH group), pe-ripheral intravenous injection (PV group) and intrahepatic injection (IH group). The living conditions and survival time were recorded. Blood samples before and after MSCs trans-plantation were collected for the analysis of hepatic function. The histology of liver injury was interpreted and scored in terminal samples. Hepatic apoptosis was detected by TUNEL assay. Apoptosis and proliferation related protein expressions including cleaved caspase-3, survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) were analyzed by Western blotting. RESULTS: The average survival time of each group was 10.7 ± 1.6 days (InP), 6.0±0.9 days (AH), 4.7±1.4 days (PV), 4.3± 0.8 days (IH), respectively, when compared with the average survival time of 3.8±0.8 days in the D-Gal group. The sur-vival rates between the InP group and D-Gal group revealed a statistically signiifcant difference (P CONCLUSIONS: Intraportal injection was superior to other pathways for MSC transplantation. Intraportal MSC trans-plantation could improve liver function, inhibit apoptosis and prolong the survival time of swine with ALF. The transplanted MSCs may participate in liver regeneration via promoting cell proliferation and suppressing apoptosis during the initial stage of ALF.

  19. Effect of caffeic acid phenethyl ester on proliferation and apoptosis of colorectal cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; De-Bing Xiang; Yu-Jun He; Zeng-Peng Li; Xiao-Hua Wu; Jiang-Hong Mou; Hua-Liang Xiao; Qing-Hong Zhang

    2005-01-01

    AIM: To study the effect of caffeic acid phenethyl ester (CAPE)on proliferation, cell cycle, apoptosis and expression of β-catenin in cultured human colorectal cancer (CRC) cell line HCT116.METHODS: HCT116 cells were treated with CAPE at serial concentrations of 80, 40, 20, 10, 5, 2.5 mg/L. The proliferative status of HCT116 cells was measured by using methabenzthiazuron (MTT) assay. Cell cycle was analyzed by using flow cytometry (FCM) with propidium iodide (PI) labeling method. The rate of apoptosis was detected by using FCM with annexin V-FITC and PI double labeling method.β-catenin levels were determined by Western blotting.β-catenin localization in HCT116 was determined by indirect i mmunofluorescence.RESULTS: After HCT116 cells were exposed to CAPE (80,40, 20, 10, 5, and 2.5 mg/L) for 24, 48, 72, 96 h, CAPE displayed a strong growth inhibitory effect in a dose- and time-dependent manner against HCT116 cells. FCM analysis showed that the ratio of G0/G1 phase cells increased, S phase ratio decreased and apoptosis rate increased after HCT116 cells were exposed to CAPE (10, 5, and 2.5 mg/L)for 24 h. CAPE treatment was associated with decreased cytoplasmic β-catenin, nuclear β-catenin and a concurrent increase in β-catenin protein expression at cell-cell junctions.CONCLUSION: CAPE could inhibit HCT116 cell proliferation and induce cell cycle arrest and apoptosis. Decreased β-catenin protein expression may mediate the anti-proliferative effects of CAPE.

  20. Lobaplatin suppresses proliferation and induces apoptosis in the human colorectal carcinoma cell Line LOVO in vitro.

    Science.gov (United States)

    Dai, Hong-yu; Liu, Lin; Qin, Shu-kui; He, Xiang-ming; Li, Su-yi

    2011-06-01

    Lobaplatin, as the third-generation platinum antineoplastic agent, showed promising antineoplastic effects in variety of preclinical test tumor models. We investigated the inhibition effect of lobaplatin on the colorectal carcinoma cell line LOVO in vitro, and explored its mechanism of action. The MTT assay was used to determine the inhibitory effect and inhibition ratio of lobaplatin on LOVO at various lobaplatin concentrations (500 μM, 1000 μM, 2000 μM). Apoptosis was detected by terminal deoxynucleotide transferase-mediated dUTP nickend labelling (TUNEL). The cell cycle and apoptotic rate were analyzed by flow cytometry (FCM) and the expression of caspase-3,8,9 in cells was detected by chromometry. The results of MTT assay showed that proliferation of LOVO cells was inhibited by lobaplatin in a concentration-dependent manner. Apoptosis was detected in LOVO cells by TUNEL. The FCM assay indicated that lobaplatin altered the cell cycle and induced apoptosis of the LOVO cells when treated for 24h, the percentages of cells in the S phase transition were increased, whereas the percentages of cells in the G(2) transition were decreased. The expressions of caspase-389 is higher than the control group after LOVO cells were treated by lobaplatin. Lobaplatin can inhibit the proliferation of colorectal carcinoma cell line LOVO by inducing apoptosis in vitro. The mechanism may be related to the "S" cycle arrest in cell cycle distribution and the up-regulated expression of caspase-8 and caspase-9 which up-regulated the expression of caspase-3.

  1. [Effect of AZD8330 on proliferation and apoptosis of multiple myeloma cells].

    Science.gov (United States)

    Yao, Yao; Bian, Yue-Ping; Xia, Dan-Dan; Pan, Bin; Niu, Ming-Shan; Zhao, Kai; Zeng, Ling-Yu; Xu, Kai-Lin

    2014-10-01

    This study was aimed to investigate the effect of MEK inhibitor AZD8330 on proliferation and apoptosis of multiple myeloma IM9 and NCI-H929 cell lines and its possible mechanism. These two cell line cells were exposed to different concentrations of AZD8330 for 48 h. The CCK-8 assay was used to detect cell viability and the IC50 value at 48 h. These above-mentioned IM9 and NCI-H929 cells were treated with 5,10 and 100 nmol/L of AZD8330, then the change of cell cycle was analysed by flow cytometry with PI staining. The Wester blot was used to detect the expression levels of cyclin D and cyclin E, and multiple myeloma cells were treated with 10, 100, 1000 and 2000 nmol/L of AZD8330, the AnnexinV/7-AAD double staining was used to analyse cell apoptosis and the Western blot was used to detect the expression level of caspase-3. The results showed that AZD8330 could significantly inhibit the cell viability of IM9 and NCI-H929 cell lines in a time-and dose-dependent manner, the IC50 value (48 h) of IM9 and NCI-H929 were 19.88 ± 2.7 nmol/L and 29.3 ± 2.03 nmol/L respectively, these two cell lines were arrested on G1 phase of cell cycle, the apoptosis cells increased along with enhancement of AZD8330 concentration, and the expression level of cleaved caspase-3 protein was up-regulated. It is concluded that AZD8330 can efficiently inhibit the proliferation of NCI-H929 and IM9 cell lines, and induce apoptosis, suggesting that the AZD8330 may be a potential chemotherapeutic candidate for multiple myeloma therapy.

  2. Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells

    Institute of Scientific and Technical Information of China (English)

    Qi-huang JIN; Heng-yi HE; Yu-fang SHI; He LU; Xue-jun ZHANG

    2004-01-01

    AIM: To study the potential function of acetylcholinesterase (AChE) in apoptosis through overexpression of AChE in Normal Rat Kidney (NRK) cells. METHODS: AChE activity was detected by the method of Karnovsky and Roots. Activated caspase-3 was analyzed by Western blotting and immunofiurescence with antibody special to activated caspase-3 fragment. The expression plasmids were constructed in pcDNA3.1 containing AChE gene or a fragment of AChE antisense that were got from RT-PCR. Stable expression cell lines were selected by G418 in cells transfected by lipofection. AChE expression was analyzed by RT-PCR and Western blotting. The proliferation rates of transfected cells were examined by the growth curve and cloning efficiency. MTT assay was used to analyze the cell viability. RESULTS: The proliferation rate of the cells transfected with AChE was retarded and the cloning efficiency was lower (28.2 %±3.1% and 48.7 %±2.1%) than cells transfected with vector (56.1%±0.3 %) or AChE-antisense (77.7 %±2.2 %). After 2 d the various clone types were deprived of serum, the residue cell viability were 10.4 %±4.6 % and 12.6 %±6.7 % in the cells transfected with AChE, and 27.4 %±3.5 % in cells with vector, and 50.3 %±7.8 % in cells with AChE-antisense. CONCLUSION: During apoptosis, increase of AChE protein is to inhibit cell proliferation, and then to promote apoptosis in NRK cells.

  3. Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line.

    Science.gov (United States)

    Tang, Yunhua; Zhang, Xiangyang; Qi, Fan; Chen, Mingfeng; Li, Yuan; Liu, Longfei; He, Wei; Li, Zhuo; Zu, Xiongbing

    2015-05-01

    Afatinib is a highly selective, irreversible inhibitor of the epidermal growth factor receptor (EGFR) and human EGFR 2 (HER-2). Although preclinical and clinical studies have indicated that afatinib has antitumor activity and clinical efficacy in non-small cell lung carcinoma, head and neck squamous cell carcinoma and breast cancer, there are few studies investigating its inhibitory effect on human bladder carcinoma cells. In this study, the antitumor effect of afatinib was investigated on the T24 bladder cancer cell line. The T24 bladder cancer cell line was treated with afatinib at various concentrations (0, 1, 5, 10 and 20 µmol/l). MTT assay was used to estimate the proliferation of the T24 cells; flow cytometric analysis was used to estimate the effect of afatinib on T24 cell apoptosis; cell invasion ability was assessed by a Transwell invasion assay; and western blot analysis was used to detect the expression of Bcl-2, Bax, Akt, extracellular-signal-regulated kinase (ERK)1/2, matrix metalloproteinase (MMP)-2 and MMP-9. The MTT assay demonstrated that afatinib inhibited the proliferation of T24 cells in a dose- and time-dependent manner. Flow cytometric analysis revealed that the cell apoptosis rate increased as the concentration of afatinib increased. The cell invasion assay indicated that afatinib treatment significantly inhibited the invasive behavior of T24 cells in a dose-dependent manner. Western blot analysis showed that with increasing afatinib concentrations, Bcl-2, phosphorylated (p)-ERK1/2, p-Akt, MMP-2 and MMP-9 expression levels were significantly decreased, whereas total (t)-ERK1/2 and t-Akt expression levels remained basically unchanged, and Bax expression levels were greatly increased. The results indicate that afatinib inhibits the proliferation and invasion of T24 cells in vitro and induces the apoptosis of these cells by inhibiting the EGFR signaling network.

  4. Helicobacter pylori Infection in Association with Cell Proliferation,Apoptosis and Prostaglandin E2 Levels

    Institute of Scientific and Technical Information of China (English)

    PAN Kai-feng; ZHANG Yang; ZHANG Lian; MA Jun-ling; FENG Guo-shuang; ZHOU Tong; YOU Wei-cheng

    2007-01-01

    Objective: To evaluate the relationship between H. pylori infection with cell proliferation, apoptosis and PGE2 levels. Methods: A population-based study was conducted in Linqu, a high-risk area of gastric cancer in China. A total of 1523 subjects, aged 35-64, participating in a gastric cancer screening survey were investigated. H. pylori status were determined by 13C-urea breath test, expressions of Ki-67 were assessed by immunohistochemistry, apoptotic cells were detected by terminal deoxynucleotide transferase mediated dUTP nick end-labeling (TUNEL) method, and PGE2 levels were measured by enzyme immunoassay. Results: H. pylori infection was positively associated with cell proliferation activity. The mean and median percentage of Ki-67 labeling index (LI) in subjects with H. pylori positive were 14.1±10.3 and 12.0, significantly higher than those with H. pylori negative (-x±s: 8.4±7.0;median: 5.8;P<0.0001). Moreover, the prevalence rates of H. pylori infection showed a tendency to increase according to severity score of cell apoptosis (Ptrend <0.0001), from score 0 to 3, the percentage of H. pylori positivity increased from 67.5% to 96.7%. Furthermore, The mean and median of PGE2 concentration were 628.84±726.40 pg/mL and 411.33 pg/mL among subjects with H. pylori positive compared with 658.19±575.91pg/mL and 455.97 pg/mL among those with H. pylori negative (P=0.209). Conclusion: H. pylori infection was positively associated with increased cell proliferation and apoptosis activity, suggesting that H. pylori infection plays an important role in the gastric epithelial cell malignant transformation.

  5. TRAIL and Taurolidine induce apoptosis and decrease proliferation in human fibrosarcoma

    Directory of Open Access Journals (Sweden)

    Klein-Hitpass Ludger

    2008-12-01

    Full Text Available Abstract Background Disseminated soft tissue sarcoma still represents a therapeutic dilemma because effective cytostatics are missing. Therefore we tested TRAIL and Tarolidine (TRD, two substances with apoptogenic properties on human fibrosarcoma (HT1080. Methods Viability, apoptosis and necrosis were visualized by TUNEL-Assay and quantitated by FACS analysis (Propidiumiodide/AnnexinV staining. Gene expression was analysed by RNA-Microarray and the results validated for selected genes by rtPCR. Protein level changes were documented by Western Blot analysis. NFKB activity was analysed by ELISA and proliferation assays (BrdU were performed. Results and discussion The single substances TRAIL and TRD induced apoptotic cell death and decreased proliferation in HT1080 cells significantly. Gene expression of several genes related to apoptotic pathways (TRAIL: ARHGDIA, NFKBIA, TNFAIP3; TRD: HSPA1A/B, NFKBIA, GADD45A, SGK, JUN, MAP3K14 was changed. The combination of TRD and TRAIL significantly increased apoptotic cell death compared to the single substances and lead to expression changes in a variety of genes (HSPA1A/B, NFKBIA, PPP1R15A, GADD45A, AXL, SGK, DUSP1, JUN, IRF1, MYC, BAG5, BIRC3. NFKB activity assay revealed an antipodal regulation of the several subunits of NFKB by TRD and TRD+TRAIL compared to TRAIL alone. Conclusion TRD and TRAIL are effective to induce apoptosis and decrease proliferation in human fibrosarcoma. A variety of genes seems to be involved, pointing to the NFKB pathway as key regulator in TRD/TRAIL-mediated apoptosis.

  6. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  7. Ependymal cell proliferation and apoptosis following acute spinal cord injury in the adult rat

    Institute of Scientific and Technical Information of China (English)

    Xu Wang; Jun Qian; Yanchao Ma; Guoxin Nan; Shuanke Wang; Yayi Xia; Youcheng Zhang

    2008-01-01

    BACKGROUND: Studies have reported that spinal cord injury can induce the reactive proliferation of ependymal cells and secondarily cause the apoptosis of nerve cells. However, there is no generally accepted theory on the apoptotic characteristics of ependymal cells in the injured spinal cord.OBJECTIVE: To observe the reactive proliferation and apoptosis of ependymal cells in adult rats following acute spinal cord injury.DESIGN, TIME AND SETTING: A randomized control study based on neuropathology was performed in the Third Military Medical University of Chinese PLA between 2005 and 2007.MATERIALS: Forty healthy, adult, Wistar rats were included in the present study.METHODS: Moderate spinal cord injury was established in twenty rats using Feeney's method, while the remaining 20 rats served as controls and were only treated with laminectomy. All rats were injected intraperitoneally with 1.25 mL of BrdU solution (10 mg BrdU/mL saline) 3 times at 4 hours intervals during the 12 hours prior to sacrifice.MAIN OUTCOME MEASURES: Ependymal cell proliferation and apoptosis in the rat spinal cord were determined by BrdU and nestin immunofluorescence double-labeling, as well as the TUNEL method, at 1, 3, 7, and 14 days after operation.RESULTS: In the moderate spinal cord injury rats, nestin expression was observed in the cytoplasm of ependymal cells. One day immediately following surgery, ependymal cells were BrdU-labeled. The number of BrdU-positive cells increased at 3 days, reached a peak at 7 days, and gradually reduced thereafter. The ependyma developed ti'om a constitutive monolayer cells to a multi-layer cell complex. Some BrdU/Nestin double-positive ependymal cells migrated out from the ependyma. TUNEL-positive cells were also detected in the ependyma in the central region, as well as ischemic regions of the injured spinal cord. In addition, TUNEL-positive cells were visible in the ependyma. No TUNEL-positive ependymal cells were observed in the normal spinal cord

  8. Influence of Hyperlipidemia on the Proliferation and Apoptosis of Myocardial Cells in Rabbits

    OpenAIRE

    Huse Kinscherf; Cynthia C. Haudenschild; Christian C. Chobanian

    2015-01-01

    Objective: To establish hyperlipemia models in rabbits fed with high fat diet, observe the changes of serum lipid level, and to explore the effect of hyperlipidemia on the proliferation and apoptosis of myocardial cells in rabbits. Methods: New Zealand white male special rabbits were randomly divided into 2 groups: normal diet group and high-fat-fed group, 10 cases in each group. The rabbits in normal group were fed with ordinary feed while the rabbits in the latter group were fed with high f...

  9. EFFECTS OF CURCUMIN ON PROLIFERATION AND APOPTOSIS IN ACUTE MYELOID LEUKEMIA CELLS HL-60

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the curcumin killing leukemia cells in vitro,. Methods: The myeloid leukemic cell line HL-60 was studied by using cell culture, flow cytometrydetermining DNA content and TUNEL method measuring apoptotic cell percentage. Results: The data showed that curcumin selectively inhibited proliferation of acute myeloid leukemia (AML) HL-60 cell lines in a dose- and time-dependent manner. The growth inhibition rate was gradually increased and reached the peak at concentration of 25 m mol/L curcumin at 24h. The sub-G1 peak appeared after 12h treatment and was increased to 34.4% at 24h. The TUNEL method further certified that apoptotic cells reached 41% at the same phase. Conclusion: curcumin possesses obvious potent of anti-leukemia cell proliferation, which is contributed to the induction of HL-60 cells apoptosis. The concentration and action time of curcumin in vitro provide some reference for clinical use.

  10. Relationship of p53 Mutations to Epidermal Cell Proliferation and Apoptosis in Human UV-Induced Skin Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Janine G. Einspahr

    1999-11-01

    Full Text Available Human skin is continually subjected to UV-irradiation with the p53 gene playing a pivotal role in repair of UV-induced DNA damage and apoptosis. Consequently, p53 alterations are early events in human UV-induced skin carcinogenesis. We studied 13 squamous cell carcinomas (SCC, 16 actinic keratoses (AK, 13 samples adjacent to an AK (chronically sun-damaged, and 14 normal-appearing skin samples for p53 mutation, p53 immunostaining (IHC, apoptosis (in situ TUNEL and morphology, and proliferation (PCNA. The frequency of p53 mutation increased from 14% in normal skin, to 38.5% in sun-damaged skin, 63% in AK, and 54% in SCC. p53 IHC increased similarly. Apoptosis (TUNEL increased from 0.06 ± 0.02%, to 0.1 ± 0.2, 0.3 ± 0.3, and 0.4 ± 0.3 in normal skin, sun-damaged skin, AK, and SCC, respectively. Apoptosis was strongly correlated with proliferation (i.e., TUNEL and PCNA, r = 0.7, P < 0.0001, and proliferation was significantly increased in the progression from normal skin to SCC. Bax was significantly increased in SCC compared to AK. These data imply that apoptosis in samples with a high frequency of p53 mutation may not necessarily be p53-dependent. We suggest that there is a mechanism for apoptosis in response to increased cellular proliferation that is p53-independent.

  11. Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Yan-Qin Zhang; Xiao-Qing Tang; Li Sun; Lin Dong; Yong Qin; Hua-Qing Liu; Hong Xia; Jian-Guo Cao

    2007-01-01

    AIM: To examine whether and how rosiglitazone enhances apoptosis induced by fluorouracil in human colon cancer (HT-29) cells.METHODS: Human colon cancer HT-29 cells were cultured in vitro and treated with fluorouracil and/or rosiglitazone. Proliferation and growth of HT-29 cells were evaluated by MTT assay and trypan blue exclusion methods, respectively. The apoptosis of HT-29 cells was determined by acridine orange/ethidium bromide staining and flow cytometry using PI fluorescence staining. The expressions of peroxisome proliferator-activated receptor y (PPARy), Bcl-2 and Bax in HT-29 cells were analyzed by Western blot.RESULTS: Although rosiglitazone at the concentration below 30 umol/L for 72 h exerted almost no inhibitory effect on proliferation and growth of HT-29 cells, it could significantly enhance fluorouracil-induced HT-29 cell proliferation and growth inhibition. Furthermore, 10 umol/L rosilitazone did not induce apoptosis of HT-29 cells but dramatically enhanced fluorouracil-induced apoptosis of HT-29 cells. However, rosiglitazone did not improve apoptosis induced by fluorouracil in HT-29 cells pretreated with GW9662, a PPARy antagonist. Meanwhile, the expression of Bax and PPARy was up-regulated, while the expression of Bcl-2 was down regulated in HT-29 cells treated with rosiglitazone in a time-dependent manner. However, the effect of rosiglitazone on Bcl-2 and Bax was blocked or diminished in the presence of GW9662.CONCLUSION: Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating PPARγ.

  12. Stat3 Expression and Its Correlation with Proliferation and Apoptosis/Autophagy in Gliomas

    Directory of Open Access Journals (Sweden)

    Valentina Caldera

    2008-01-01

    Full Text Available Signal transducer and activator of transcription-3 (Stat3 was studied along with several steps of the PI3/Akt pathway in a series of 64 gliomas that included both malignant and low-grade tumors, using quantitative immunohistochemistry, Western blotting, and molecular biology techniques. The goal of the study was to investigate whether activated Stat3 (phospho-Stat3 levels correlated with cell proliferation, apoptosis, and autophagy. Stat3 and activated Akt (phospho-Akt expression increased with malignancy grade, but did not correlate with proliferation and survival within the category of glioblastomas. A correlation of Stat3 with Akt was found, indicating a regulation of the former by the PI3/Akt pathway, which, in turn, was in relation with EGFR amplification. Stat3 and Akt did not show any correlation with apoptosis, whereas they showed an inverse correlation with Beclin 1, a stimulator of autophagy, which was rarely positive in glioblastomas. Autophagy seems then to be inactivated in malignant gliomas.

  13. Influence of Toxoplasma gondii on in vitro proliferation and apoptosis of hepatoma carcinoma H7402 cell

    Institute of Scientific and Technical Information of China (English)

    Gang Wang; Ming Gao

    2016-01-01

    Objective: To discuss the influence of tachyzoite of Toxoplasma gondii (T. gondii) RH strain on proliferation and apoptosis of hepatoma carcinoma (HCC) H7402 cell. Methods: The HCC H7402 cell in logarithmic phase and tachyzoite of T. gondii RH strain in different concentrations (1×107/mL, 2×107/mL, 4×107/mL, 8×107/mL and 16×107/mL) were co-cultured. CCK-8 was utilized to determine the inhibition rate of T. gondii tachyzoite on H7402 cell growth. Flow cytometry was used to detect the change of cell cycle. RT-PCR method was used to detect the expression of cyclinB1 and cdc2--two genes related to cell cycle. Western blot method was used to detect the expression of apoptosis-related proteins Caspase-3 and Bcl-2. Results: The tachyzoite of T. gondii RH strain can inhibit the proliferation of HCC H7402 cells. The inhibition rate of tumor cell growth increased with the increase of concentration of T. gondii tachyzoite. With the increase of concentration of T. gondii tachyzoite, the proportion of G0/G1 phase of H7402 cell increased, the proportion of S phase decreased, and PI value decreased accordingly. The expression of cyclinB1 and cdc2 genes decreased with the increase of the concentration of T. gondii tachyzoite. With the increase of the concentration of tachyzoite of T. gondii RH strain, the expression quantity of Caspase-3 in H7402 cell increased, but the expression quantity of Bcl-2 protein decreased. Conclusions: T. gondii can inhibit the in vitro proliferation of HCC H7402 cell, and induce its apoptosis. This effect shows a trend of concentration-dependent increase. Moreover, it is related to the down-regulation of cyclinB1 and cdc2 (cell cycle-related genes), the increase of apoptosis-related protein Caspase-3, and the decrease of Bcl-2 expression.

  14. Salinomycin inhibits proliferation and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available The anti-tumor antibiotic salinomycin (Sal was recently identified as a selective inhibitor of breast cancer stem cells; however, the effect of Sal on hepatocellular carcinoma (HCC is not clear. This study aimed to determine the anti-tumor efficacy and mechanism of Sal on HCC. HCC cell lines (HepG2, SMMC-7721, and BEL-7402 were treated with Sal. Cell doubling time was determinated by drawing growth curve, cell viability was evaluated using the Cell Counting Kit 8. The fraction of CD133(+ cell subpopulations was assessed by flow cytometry. We found that Sal inhibits proliferation and decreases PCNA levels as well as the proportion of HCC CD133(+cell subpopulations in HCC cells. Cell cycle was analyzed using flow cytometry and showed that Sal caused cell cycle arrest of the various HCC cell lines in different phases. Cell apoptosis was evaluated using flow cytometry and Hoechst 33342 staining. Sal induced apoptosis as characterized by an increase in the Bax/Bcl-2 ratio. Several signaling pathways were selected for further mechanistic analyses using real time-PCR and Western blot assays. Compared to control, β-catenin expression is significantly down-regulated upon Sal addition. The Ca(2+ concentration in HCC cells was examined by flow cytometry and higher Ca(2+ concentrations were observed in Sal treatment groups. The anti-tumor effect of Sal was further verified in vivo using the hepatoma orthotopic tumor model and the data obtained showed that the size of liver tumors in Sal-treated groups decreased compared to controls. Immunohistochemistry and TUNEL staining also demonstrated that Sal inhibits proliferation and induces apoptosis in vivo. Finally, the role of Sal on in vivo Wnt/β-catenin signaling was evaluated by Western blot and immunohistochemistry. This study demonstrates Sal inhibits proliferation and induces apoptosis of HCC cells in vitro and in vivo and one potential mechanism is inhibition of Wnt/β-catenin signaling via increased

  15. The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in Eca-109 cells.

    Science.gov (United States)

    Ma, Gang; Yang, Chunlei; Qu, Yi; Wei, Huaying; Zhang, Tongtong; Zhang, Najuan

    2007-04-25

    Isorhamnetin is one member of flavonoid components which has been used in the treatment of heart disease. Recently the in vitro anti-cancer effect of isorhamnetin on human esophageal squamous carcinoma cell line Eca-109 was investigated in our lab. When Eca-109 cells were in vitro exposed to the graded doses of isorhamnetin (0-80 microg/ml) for 48 h, respectively, isorhamnetin exhibited cytostatic effect on the treated cells, with an IC(50) of 40+/-0.08 microg/ml as estimated by MTT assay. Inhibition on proliferation by isorhamnetin was detected by trypan blue exclusion assay, clone formation test, immunocytochemical assay of PCNA and (3)H-thymidine uptake analysis. Cell cycle distribution was measured by FCM. It was found that the viability of Eca-109 cells was significantly hampered by isorhamnetin. Compared with the negative control group, the treated group which was exposed to isorhamnetin had increased population in G(0)/G(1) phase from 74.6 to 84 while had a significant reduction in G(2)/M phase from 11.9 to 5.8. In addition to its cytostatic effect, isorhamnetin also showed stimulatory effect on apoptosis. Typical apoptotic morphology such as condensation and fragmentation of nuclei and blebbing membrane of the apoptotic cells could be observed through transmission electron microscope. Moreover, the sharp increase in apoptosis rate between the control and treated group were detected by FCM from 6.3 to 16.3. To explore the possible molecular mechanisms that underlie the growth inhibition and apoptosis stimulatory effects of isorhamnetin, the expressions of six proliferation- and death-related genes were detected by FCM. Expressions of bcl-2, c-myc and H-ras were downregulated whereas Bax, c-fos and p53 were upregulated. However, the in vivo experiments were required to further confirm the anti-cancer effects of isorhamnetin. In conclusion, isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit

  16. Effects of phycoerythrin from Gracilaria lemaneiformis in proliferation and apoptosis of SW480 cells.

    Science.gov (United States)

    Li, Peizhen; Ying, Jun; Chang, Qingli; Zhu, Wen; Yang, Guangjian; Xu, Teng; Yi, Huiguang; Pan, Ruowang; Zhang, Enyong; Zeng, Xiaofeng; Yan, Chunxia; Bao, Qiyu; Li, Shengbin

    2016-12-01

    We studied phycoerythrin (PE) in human SW480 tumor cells and the underlying molecular mechanisms of action. PE inhibited cell proliferation as evidenced by CCK-8 assay. The IC50 values of phycoerythrin were 48.2 and 27.4 µg/ml for 24 and 48 h of exposure, respectively. PE induced apoptosis and cell cycle arrest in SW480 cells as observed under electron microscopy and with flow cytometry. Apoptosis increased from 5.1 (controls) to 39.0% in 80.0 µg/ml PE-treated cells. Differences in protein expression were identified using proteomic techniques. Protein spots (1018±60 and 1010±60) were resolved in PE-treated and untreated group. Forty differential protein spots were analyzed with MALDI-TOF-MS, including GRP78 and NPM1. The expression as measured by qPCR and western blotting agreed with data from two-dimensional electrophoresis. GRP78, NPM1, MTHSP75, Ezrin and Annexin A2 were decreased and HSP60 was increased after PE treatment, indicating that PE may target multiple proteins to induce apoptosis.

  17. Schisandrin B inhibits cell proliferation and induces apoptosis in human cholangiocarcinoma cells

    Science.gov (United States)

    Yang, Xiaohui; Wang, Shuai; Mu, Yunchuan; Zheng, Yixiong

    2016-01-01

    Cholangiocarcinoma (CCA) is the second most common hepatic cancer with high resistance to current chemotherapies and extremely poor prognosis. The present study aimed to examine the effects of schisandrin B (Sch B) on CCA cells both in vitro and in vivo and to examine its underlying mechanism. We found that Sch B inhibited the viability and proliferation of CCA cells in a dose- and time-dependent manner as assessed by MTT and colony formation assays. The flow cytometric assay revealed G0/G1 phase arrest in the Sch B-treated HCCC-9810 and RBE cells. In addition, Sch B induced intrahepatic cholangiocarcinoma apoptosis as shown by the results of Annexin V/PI double staining. Rhodamine 123 staining revealed that Sch B decreased the mitochondrial membrane potential (ΔΨm) in a dose-dependent manner. Mechanistically, western blot analysis indicated that Sch B induced apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9 and cleaved PARP, and by downregulating cyclin D1, Bcl-2 and CDK-4. Moreover, Sch B significantly inhibited HCCC-9810 xenograft growth in athymic nude mice. In summary, these findings suggest that Sch B exhibited potent antitumor activities via the induction of CCA apoptosis and that Sch B may be a promising drug for the treatment of CCA. PMID:27499090

  18. TRICHOSTATIN A INHIBITS PROLIFERATION, INDUCES APOPTOSIS AND CELL CYCLE ARREST IN HELA CELLS

    Institute of Scientific and Technical Information of China (English)

    XU Zhou-min; WANG Yi-qun; MEI Qi; CHEN Jian; DU Jia; WEI Yan; XU Ying-chun

    2006-01-01

    Objective: The histone deacetylase inhibitors (HDACIS) have been shown to inhibit cancer cell proliferation, stimulate apoptosis, an induce cell cycle arrest. Our purpose was to investigate the antiproliferative effects of a HDACI, trichostatin A (TSA), against human cervical cancer cells (HeLa). Methods: HeLa cells were treated in vitro with various concentrations of TSA. The inhibitory effect of TSA on the growth of HeLa cells was measured by MTT assay. To detect the characteristic of apoptosis chromatin condensation, HeLa cells were stained with Hoechst 33258 in the presence of TSA. Induction of cell cycle arrest was studied by flow cytometry. Changes in gene expression of p53, p21Waf1 and p27Kip1 were studied by semiquantitative RT-PCR. Results: TSA inhibited cell growth in a time- and dose-dependent manner. Hoechst 33258 staining assay showed that TSA induced apoptosis. Cell cycle analysis indicated that treatment with TSA decreased the proportion of cells in S phase and increased the proportion of cells in G0/G1 and/or G2/M phases of the cell cycle. This was concomitant with overexpression of genes related to malignant phenotype, including an increase in p53, p21Waf1 and p27Kip1. Conclusion: These results suggest that TSA is effective in inhibiting growth of HeLa cells in vitro. The findings raise the possibility that TSA may prove particularly effective in treatment of cervical cancers.

  19. Mir-192 suppresses apoptosis and promotes proliferation in esophageal aquamous cell caicinoma by targeting Bim.

    Science.gov (United States)

    Li, Shujun; Li, Feng; Niu, Ren; Zhang, Helin; Cui, Airong; An, Wenting; Wang, Xiaolu

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs of endogenous origin. Accumulating studies have shown aberrant miRNA expression plays an important role in many tumor types. However, the mechanisms by which miRNAs regulate esophageal squamous cell carcinoma (ESCC) development remain poorly understood. In the present study, we assayed expression level of miR-192 in ESCC tissues and cell lines by real-time PCR, and defined the target gene and biological function by luciferase reporter assay, Western blot and apoptosis assay. We first verified that the expression level of miR-192 was significantly increased in ESCC tissues and cancer cells. Moreover, miR-192 over-expression inhibited cells apoptosis and promoted ESCC cells proliferation. We further demonstrated that miR-192 directly targeted 3'-UTR of Bim gene, and inhibited its protein expression. Importantly, Bim could reduce ESCC cells apoptosis ability induced by miR-192. These data suggest an important role of miR-192 in the molecular etiology of ESCC and implicate the potential application of miR-192 in ESCC therapy.

  20. Matrine inhibits the growth of retinoblastoma cells (SO-Rb50) by decreasing proliferation and inducing apoptosis in a mitochondrial pathway.

    Science.gov (United States)

    Shao, Qingliang; Zhao, Xiaxia; Yao, Li

    2014-05-01

    Matrine, one of the main active components of extracts from the dry roots of Sophora flavescens, has potent anti-tumor activity in vitro and in vivo. Here, we investigated the apoptosis in matrine-treated retinoblastoma cells. The results showed that matrine could inhibit cell proliferation and induce apoptosis in a dose- and time-dependent manner. Further investigation revealed that a disruption of mitochondrial transmembrane potential and an up-regulation of reactive oxygen species in matrine-treated cells. By western blot analysis, we found that the up-regulation of cleaved Apaf-1, cleaved caspase-3, cleaved caspase-9, cleaved caspase-7, Bax/Bcl-2, varying with different concentration of matrine. These protein interactions may play a pivotal role in the regulation of apoptosis. Taken together, these results overall indicate that matrine could be used as an effective anti-tumor agent in therapy of retinoblastoma targets the caspase-dependent signaling pathway.

  1. PML(NLS(-)) inhibits cell apoptosis and promotes proliferation in HL-60 cells.

    Science.gov (United States)

    Gao, Yuan-Mei; Zhong, Liang; Zhang, Xi; Hu, Xiu-Xiu; Liu, Bei-Zhong

    2013-01-01

    Promyelocytic leukemia (PML) is a cell-growth suppressor, and PML-retinoic acid receptor α (PML-RARα) is known as a fusion gene of acute promyelocytic leukemia (APL). Studies have reported that neutrophil elastase(NE) cleaved bcr-1-derived PML-RARα in early myeloid cells leading to the removal of nuclear localization signal (NLS) from PML. The resultant PML without NLS named PML(NLS(-)). PML(NLS(-)) mainly locates and functions in the cytoplasm. PML(NLS(-)) may act in different ways from PML, but its biological characteristics have not been reported. In this study, the PML (NLS(-)) was silenced with shRNA [HL-60/pPML(NLS(-))-shRNA] and over-expressed by preparation of recombinant adenovirus [HL-60/pAd-PML(NLS(-))]. The mRNA and protein expression of PML(NLS(-)) were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect apoptotic cells. The transcription of BCL-2, BAX and C-MYC was detected in HL-60/pAd-PML(NLS(-)) cells. Our results showed that compared to the control group, the expression of PML(NLS(-)) was significantly reduced in the HL-60/pPML(NLS(-))-shRNA cells, and increased significantly in the HL-60/pAd-PML(NLS(-)) cells. The proliferation was significantly inhibited in the HL-60/pPML(NLS(-))-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-PML(NLS(-)) cells treated with 60 μmol/L emodin. FCM revealed the apoptosis increased in HL-60/pPML(NLS(-))-shRNA cells, and decreased in the HL-60/pAd-PML(NLS(-)) cells. The expression of BAX decreased significantly, while that of BCL-2 and C-MYC increased significantly in HL-60/ pAd-PML(NLS(-)) cells. Down-regulation of PML(NLS(-)) expression inhibits the proliferation and induces the apoptosis of HL-60 cells. On the contrary, over-expression of PML(NLS(-)) promotes the proliferation and reduce the emodin-induced apoptosis of HL-60 cells.

  2. Effects of granulosa cells on steroidogenesis, proliferation and apoptosis of stromal cells and theca cells derived from the goat ovary.

    Science.gov (United States)

    Qiu, Mingning; Quan, Fusheng; Han, Chengquan; Wu, Bin; Liu, Jun; Yang, Zhongcai; Su, Feng; Zhang, Yong

    2013-11-01

    The aim of this study was to investigate the effect of granulosa cells from small antral follicles on steroidogenesis, proliferation and apoptosis of goat ovarian stromal and theca cells in vitro. Using Transwell co-culture system, we evaluated androgen production, LH responsiveness, cell proliferation and apoptosis and some molecular expression regarding steroidogenic enzyme and apoptosis-related genes in stromal and theca cells. The results indicated that the co-culture with granulosa cells increased steroidogenesis, LH responsiveness and bcl-2 gene expression as well as decreased apoptotic bax and bad expressions in stromal and theca cells. Thus, granulosa cells had a capacity of promoting steroidogenesis in stromal cell and LH responsiveness in cortical stromal cells, maintaining steroidogenesis in theca cells, inhibiting apoptosis of cortical stromal cells and improving anti-apoptotic abilities of stromal and theca cells.

  3. Expression of Hypoxia Inducible Factor-1α and Its Relationship to Apoptosis and Proliferation in Human Laryngeal Squamous Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    俞琳琳; 刘洋; 崔永华

    2004-01-01

    To investigate the expression of hypoxia inducible factor-1 alpha (HIF-1α) and its relationship to apoptosis and proliferation in laryngeal squamous cell carcinoma (LSCC), immunohistochemical method was used to detect the expression of HIF-1α and PCNA. Tunnel technique was used to detect in situ cell apoptosis in LSCC. Our results showed that the expression of HIF-1α was related to the clinical stages of cancer and lymph node metastasis (P<0. 05). The relationship between HIF-1α and PCNA was statistically significant (P<0.05) and no relationship was found between HIF-1α and apoptosis (P>0.05) It is concluded that HIF-1α plays a role in the carcinogenesis of laryngeal carcinoma and is correlated with proliferation, but bears no relationship with the apoptosis of tumor cells in LSCC.

  4. Intense picosecond pulsed electric fields inhibit proliferation and induce apoptosis of HeLa cells.

    Science.gov (United States)

    Zhang, Min; Xiong, Zheng-Ai; Chen, Wen-Juan; Yao, Cheng-Guo; Zhao, Zhong-Yong; Hua, Yuan-Yuan

    2013-06-01

    A picosecond pulsed electric field (psPEF) is a localized physical therapy for tumors that has been developed in recent years, and that may in the future be utilized as a targeted non‑invasive treatment. However, there are limited studies regarding the biological effects of psPEF on cells. Electric field amplitude and pulse number are the main parameters of psPEF that influence its biological effects. In this study, we exposed HeLa cells to a psPEF with a variety of electric field amplitudes, from 100 to 600 kV/cm, and various pulse numbers, from 1,000 to 3,000. An MTT assay was used to detect the growth inhibition, while flow cytometry was used to determine the occurrence of apoptosis and the cell cycle of the HeLa cells following treatment. The morphological changes during cell apoptosis were observed using transmission electron microscopy (TEM). The results demonstrated that the cell growth inhibition rate gradually increased, in correlation with the increasing electric field amplitude and pulse number, and achieved a plateau of maximum cell inhibition 12 h following the pulses. In addition, typical characteristics of HeLa cell apoptosis in the experimental groups were observed by TEM. The results demonstrated that the rate of apoptosis in the experimental groups was significantly elevated in comparison with the untreated group. In the treatment groups, the rate of apoptosis was greater in the higher amplitude groups than in the lower amplitude groups. The same results were obtained when the variable was the pulse number. Flow cytometric analysis indicated that the cell cycle of the HeLa cells was arrested at the G2/M phase following psPEF treatment. Overall, our results indicated that psPEF inhibited cell proliferation and induced cell apoptosis, and that these effects occurred in a dose-dependent manner. In addition, the results demonstrated that the growth of the HeLa cells was arrested at the G2/M phase following treatment. This study may provide a

  5. CytoregR inhibits growth and proliferation of human adenocarcinoma cells via induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Hassanhi M

    2006-01-01

    Full Text Available Abstract Background Cancer is one of the devastating neovascular diseases that incapacitate so many people the world over. Recent reports from the National Cancer Institute indicate some significant gain therapy and cancer management as seen in the increase in the 5-year survival rate over the past two decades. Although near-perfect cure rate have been reported in the early-stage disease, these data reveal high recurrence rate and serious side effects including second malignancies and fatalities. Most of the currently used anticancer agents are only effective against proliferating cancer cells. Thus attention has been focused on potential anti-cancer agents capable of killing cancer cells independent of the cell cycle state, to ensure effective elimination of most cancer cells. The objective of this study was to test the chemosensitivity and potential mechanism of action of a novel cancer drug, CytoregR, in a panel of human cancer cells. Methods the study was performed using a series of bioassays including Trypan blue exclusion, MTS Growth inhibition, LDH-cytotoxicity, TUNEL-Terminal DNA fragmentation Apoptosis Assay, and the Caspase protease CPP32 activity assays. Results CytoregR induced significant dose- and time-dependent inhibition of growth in all the cells; with significant differences in chemosensitivity (P < 0.05 between the target cells becoming more apparent at 48 hr exposure. CytoregR showed no significant effect on normal cells relative to the tumor cells. Growth inhibition in all the cells was due to induction of apoptosis at lower concentrations of cytoregR (> 1:300. CytoregR-induced caspase protease-3 (CPP32 activation significantly and positively correlated with apoptosis induction and growth inhibition; thus implicating CPP32 as the principal death pathway in cytoregR-induced apoptosis. Conclusion CytoregR exerted a dose-and time-dependent growth inhibitory effect in all the target cells through induction of apoptosis via the

  6. MicroRNA-340 Inhibits Tumor Cell Proliferation and Induces Apoptosis in Endometrial Carcinoma Cell Line RL 95-2.

    Science.gov (United States)

    Xie, Wei; Qin, Wen; Kang, Yalin; Zhou, Ziyan; Qin, Aiping

    2016-05-06

    BACKGROUND The purpose of our study was to investigate the functional role of microRNA-340 (miR-340) in endometrial carcinoma (EC). MATERIAL AND METHODS Human EC cell line RL 95-2 was transfected with miR-340 mimics, inhibitors, or controls. After 48 h of transfection, the cell viability was determined by 3-(4, 5-dimethyl-2- thiazolyl)-2, 5-diphenyl -2-H-tetrazolium bromide (MTT) assay. The BrdU assay and apoptosis assay were performed to determine the effects of miR-340 mimics or inhibitors on cell proliferation and apoptosis, respectively. The underlying mechanisms involved in cell proliferation and apoptosis were explored by measuring the protein levels of cell cycle regulators (p27 kinase inhibition protein (KIP) 1 and p21) and apoptosis-related factors (B-cell lymphoma-2 (Bcl-2), Bax, pro-Caspase 3, and active-Caspase-3). RESULTS Overexpression of miR-340 significantly inhibited the cell viability (PRL 95-2 cells compared with the control group, but increased the apoptosis (PRL 95-2 by inhibition of tumor cell proliferation and induction of apoptosis.

  7. Functional screening identifies miRNAs influencing apoptosis and proliferation in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Lise Lotte Christensen

    Full Text Available MicroRNAs (miRNAs play a critical role in many biological processes and are aberrantly expressed in human cancers. Particular miRNAs function either as tumor suppressors or oncogenes and appear to have diagnostic and prognostic significance. Although numerous miRNAs are dys-regulated in colorectal cancer (CRC only a small fraction has been characterized functionally. Using high-throughput functional screening and miRNA profiling of clinical samples the present study aims at identifying miRNAs important for the control of cellular growth and/or apoptosis in CRC. The high-throughput functional screening was carried out in six CRC cell lines transfected with a pre-miR library including 319 synthetic human pre-miRs. Phenotypic alterations were evaluated by immunostaining of cleaved cPARP (apoptosis or MKI67 (proliferation. Additionally, TaqMan Human MicroRNA Array Set v2.0 was used to profile the expression of 667 miRNAs in 14 normal colon mucosa and 46 microsatellite stable stage II CRC patients. Among the miRNAs that induced growth arrest and apoptosis in the CRC cell lines, and at same time were dys-regulated in the clinical samples, miR-375 was selected for further analysis. Independent in vitro analysis of transient and stable transfected CRC cell lines confirmed that miR-375 reduces cell viability through the induction of apoptotic death. We identified YAP1 as a direct miR-375 target in CRC and show that HELLS and NOLC1 are down-stream targets. Knock-down of YAP1 mimicked the phenotype induced by miR-375 over-expression indicating that miR-375 most likely exerts its pro-apoptotic role through YAP1 and its anti-apoptotic down-stream targets BIRC5 and BCL2L1. Finally, in vivo analysis of mouse xenograft tumors showed that miR-375 expression significantly reduced tumor growth. We conclude that the high-throughput screening successfully identified miRNAs that induce apoptosis and/or inhibit proliferation in CRC cells. Finally, combining the

  8. Proliferation, migration and apoptosis activities of endothelial progenitor cells in acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-jie; LIU Wen-xian; CHEN Yun-dai; SONG Xian-tao; JIN Ze-ning; L(U) Shu-zheng

    2010-01-01

    Background There are numerous articles on the endothelial progenitor cells (EPCs) in different disease conditions.However, the functional properties of EPCs in acute coronary syndrome (ACS) are still uncertain. Here we aimed to study the number and functions of EPCs in ACS patients.Methods Patients were enrolled with admitted ACS (n=25) and another 25 gender-, age-, atherosclerotic risk factors-matched stable coronary artery disease (CAD) controls. EPCs were defined as CD34+/CD133+/VEGFR-2+ and quantified by flow cytometry. Moreover, functional properties of EPCs including colony-forming unit (CFU), proliferation,migration as well as apoptosis were evaluated and compared between the two groups. Plasma matrix metalloproteinase-9 (MMP-9) was detected in all patients as well.Results The two groups had similar medication and clinical characteristics on admission. The EPCs in ACS patients were more than 2.6 times that in stable CAD subjects (15.6±2.7 vs. 6.0±0.8/100 000 events, P <0.01). CFU was not statistically different between the two groups (10.8±2.9 vs. 8.2±1.8, number/well, P >0.05). Furthermore, EPCs isolated from ACS patients were significantly impaired in their proliferation (0.498±0.035 vs. 0.895±0.067, OD value, P <0.01) and migration capacity (20.5±3.4 vs. 30.7±4.3, number/well, P <0.01) compared with controls. Moreover, the apoptosis cell in cultured EPCs was drastically increased in ACS group ((18.3 ±2.1 )% vs. (7.8±0.4)%, P <0.01 ).Conclusions Patients with ACS exhibited apparently increased circulating EPCs as well as cultured apoptosis percentage together with a remarkable impairment of proliferation and migration activities compared with stable CAD subjects.

  9. Expression of annexin A3 in gastric cancer and its correlation with proliferation and apoptosis.

    Science.gov (United States)

    Zhai, Jing-Ming; Sun, Shi-Jun; Wang, Wei; Zeng, Chao

    2014-01-01

    Annexin A3 has been identified as a novel biomarker in different types of cancers. However, little is known about its clinical significances and and biological roles in gastric cancer. In this study, we assessed annexin A3 expression in 80 patients with gastric cancer and explore its correlation with prognosis Moreover, correlations with Ki-67, Bcl-2 and Bax were also investigated. Expression of annexin A3 was increased in gastric cancer compared with that in normal gastric tissues. Annexin A3 expression was significantly associated with tumor volume and TNM stage (pA3 was positive correlated with Ki-67 and Bcl-2 expression. Our study showed annexin A3 might be a potential prognostic marker for gastric cancer and involved in tumorigenesis by regulating apoptosis and proliferation.

  10. Leflunomide reduces proliferation and induces apoptosis in neuroblastoma cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Shunqin Zhu

    Full Text Available Leflunomide as an immunosuppressive drug is generally used in the treatment of rheumatoid arthritis. It inhibits DHODH (dihydroorotate dehydrogenase , which is one of the essential enzymes in the de novo pyrimidine biosynthetic pathway. Here we showed that leflunomide significantly reduced cell proliferation and self-renewal activity. Annexin V-FITC/PI staining assay revealed that leflunomide induced S-phase cell cycle arrest, and promoted cell apoptosis. In vivo xenograft study in SCID mice showed that leflunomide inhibited tumor growth and development. We also observed that DHODH was commonly expressed in neuroblastoma. When treated with leflunomide, the neuroblastoma cell lines BE(2-C, SK-N-DZ, and SK-N-F1 showed dramatic inhibition of DHODH at mRNA and protein levels. Considering the favorable toxicity profile and the successful clinical experience with leflunomide in rheumatoid arthritis, this drug represents a potential new candidate for targeted therapy in neuroblastoma.

  11. Inhibition of proliferation and induction of apoptosis in RB116 retinoblastoma cells by afatinib treatment.

    Science.gov (United States)

    Zhan, Wei-Jiao; Zhu, Jian-Feng; Wang, Long-Mei

    2016-07-01

    The present study investigates the effect of afatinib on the growth, induction of apoptosis in RB116 cells, and reduction of carcinoma growth in the mice transplanted with RB116 cells. The results from MTT assay revealed that afatinib inhibited the growth of RB116 cells in a dose-dependent manner. Proliferation of RB116 cells was reduced to 64 % on treatment with 200 μM concentration of afatinib after 48 h. Afatinib treatment of RB116 cells at 200 μM concentration induced apoptosis and necrosis in 49.7 and 9.4 %, respectively, after 48 h. In the RB116-transplanted mice, treatment with afatinib at 10-mg/kg doses for 45 days caused a significant (p afatinib treatment group after 45 days. However, the expression of caspase-3 was increased and of Bcl-2 remained unaltered on treatment with afatinib. Measurement of the body weight of afatinib-treated animals showed no reduction during the study. Thus, afatinib can be of therapeutic value for the treatment of retinoblastoma.

  12. Effect of cholecystokinin on learning and memory, neuronal proliferation and apoptosis in the rat hippocampus

    Science.gov (United States)

    Reisi, Parham; Ghaedamini, Ali Reza; Golbidi, Mohammad; Shabrang, Moloud; Arabpoor, Zohreh; Rashidi, Bahman

    2015-01-01

    Background: Cholecystokinin (CCK) has roles in learning and memory, but the cellular mechanism is poorly understood. This study investigated the effect of CCK on spatial learning and memory, neuronal proliferation and apoptosis in the hippocampus in rats. Materials and Methods: Experimental groups were control and CCK. The rats received CKK octapeptide sulfated (CCK-8S, 1.6 μg/kg, i.p.) for 14 days. Spatial learning and memory were tested by Morris water maze and finally immunohistochemical study was performed; neurogenesis by Ki-67 method and apoptosis by Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling (TUNEL) assay in hippocampal dentate gyrus (DG). Results: Cholecystokinin increased Ki-67 positive cells and reduced TUNEL positive cells in the granular layer of hippocampal DG. CCK failed to have a significant effect on spatial learning and memory. Conclusion: Results indicate neuroprotective and proliferative effects of CCK in the hippocampus; however, other factors are probably involved until the newly born neurons achieve necessary integrity for behavioral changes. PMID:26623402

  13. Effect of hydrolysable tannins on intestinal morphology, proliferation and apoptosis in entire male pigs.

    Science.gov (United States)

    Bilić-Šobot, Diana; Kubale, Valentina; Škrlep, Martin; Čandek-Potokar, Marjeta; Prevolnik Povše, Maja; Fazarinc, Gregor; Škorjanc, Dejan

    2016-10-01

    This study aimed to evaluate the effect of hydrolysable tannin supplementation on morphology, cell proliferation and apoptosis in the intestine and liver of fattening boars. A total of 24 boars (Landrace × Large white) were assigned to four treatment groups: Control (fed commercial feed mixture) and three experimental groups fed the same diet supplemented with 1%, 2% and 3% of hydrolysable tannin-rich extract. Animals were housed individually with ad libitum access to feed and then slaughtered at 193 d of age and 122 ± 10 kg body weight. Diets supplemented with hydrolysable tannin affected the morphometric traits of the duodenum mucosa as reflected in increased villus height, villus perimeter and mucosal thickness. No effect was observed on other parts of the small intestine. In the large intestine, tannin supplementation reduced mitosis (in the caecum and descending colon) and apoptosis (in the caecum, ascending and descending colon). No detrimental effect of tannin supplementation on liver tissue was observed. The present findings suggest that supplementing boars with hydrolysable tannins at concentrations tested in this experiment has no unfavourable effects on intestinal morphology. On the contrary, it may alter cell debris production in the large intestine and thus reduce intestinal skatole production.

  14. Artesunate Reduces Proliferation, Interferes DNA Replication and Cell Cycle and Enhances Apoptosis in Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This study examined the effect of artesunate (Art) on the proliferation, DNA replication, cell cycles and apoptosis of vascular smooth muscle cells (VSMCs). Primary cultures of VSMCs were established from aortas of mice and artesunate of different concentrations was added into the medium. The number of VSMCs was counted and the curve of cell growth was recorded.The activity of VSMCs was assessed by using MTT method and inhibitory rate was calculated.DNA replication was evaluated by [3 H]-TdR method and apoptosis by DNA laddering and HE staining. Flowmetry was used for simultaneous analysis of cell apoptosis and cell cycles. Compared with the control group, VSMCs proliferation in Art interfering groups were inhibited and [3H]-TdR incorprating rate were decreased as well as cell apoptosis was induced. The progress of cell cycle was blocked in G0/G1 by Art in a dose-dependent manner. It is concluded that Art inhibits VSMCs proliferation by disturbing DNA replication, inducing cell apoptosis and blocking cell cycle in G0/G1 phase.

  15. Copper toxicity in gills of the teleost fish, Oreochromis niloticus: Effects in apoptosis induction and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Sandra Mariza, E-mail: smonteir@utad.pt [Department of Biology and Environment-CITAB, University of Tras-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Santos, Nuno M.S. dos [Institute for Molecular and Cell Biology, University of Porto (Portugal); Calejo, Margarida [Lab Cell Biology - ICBAS, University of Porto (Portugal); Fontainhas-Fernandes, Antonio [Department of Biology and Environment-CITAB, University of Tras-os-Montes and Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); Sousa, Mario [Lab Cell Biology - ICBAS, University of Porto (Portugal); Centre for Reproductive Genetics Alberto Barros, Porto (Portugal)

    2009-09-14

    Recent in vitro studies have demonstrated that copper may induce apoptosis triggering the activation of caspase-3, a central effector of apoptotic cell death. However, the precise mechanism of copper-induced apoptosis is still unclear, even less so in Oreochromis niloticus where no caspase genes have been reported so far. This study aimed to assess the in vivo role of copper in apoptosis induction on O. niloticus gill, simultaneously contributing to elucidate the mechanism of copper-induced apoptosis. Caspase-3 gene was partially sequenced and, after in vivo exposures to 40 and 400 {mu}g L{sup -1} of copper, its mRNA expression was evaluated by real-time PCR. Apoptosis was also evaluated by TUNEL assay and cell proliferation identified using an antibody against proliferating cell nuclear antigen (PCNA). The copper concentrations used did not induce the upregulation of caspase-3 gene in O. niloticus gill. In addition, in the gills of fish exposed to copper there was no increase in the estimated relative volume of apoptotic cells, indicating that neither the caspase-3-dependent or caspase-independent apoptotic pathways were induced. On the other hand, the increase in the volumetric density of epithelial proliferating cells suggests a concentration-dependent repair response.

  16. Inhibition of aberrant proliferation and induction of apoptosis in pre-neoplastic human mammary epithelial cells by natural phytochemicals.

    Science.gov (United States)

    Katdare, M; Osborne, M P; Telang, N T

    1998-01-01

    Aberrant proliferation and modulated apoptosis leading to impaired cellular homeostasis represent crucial early events in the multi-step carcinogenic process. Regulation of these perturbed biomarkers may predict efficacious prevention of cancer development. Present experiments on non-cancerous human mammary epithelial 184-B5 cells were designed to examine whether i) exposure to suspect environmental human carcinogen Benzo (a) pyrene (BP) alters the status of cell proliferation and apoptosis and ii) BP-induced alterations are modulated in response to select natural phytochemicals that inhibit rodent mammary tumorigenesis. Flow cytometric analysis, cellular immunoreactivity to proliferation specific and apoptosis specific gene products and anchorage-dependent colony formation represented quantitative endpoints. Cruciferous glucosinolate indole-3-carbinol (I3C), tea polyphenol (-) epigallo catechin gallate (EGCC) and soy isoflavone genistein (GEN) represented the chemopreventive test compounds. A single 24 h exposure to 39 lM BP resulted in a 50% decrease (P=0.02) in the ratio of quiescent (Q=G0) to proliferative (P=S + M) population in part due to increase in aberrantly proliferative cells. The BP-initiated cells also exhibited an 87.8% inhibition (P=0. 0001) in confluency-associated apoptosis and a concomitant decrease in cellular immunoreactivity to wild-type p53. Simultaneous treatment of cultures with BP + I3C, BP + EGCG and BP + GEN resulted in a 1.8- to 3.4-fold increase (Pp53 immunoreactivity (Pp53 dependent apoptosis.

  17. Apoptosis, proliferation and p53 gene expression of H. pylori associated gastric epithelial lesions

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhang1; Yuan Yuan; Hua Gao; Ming Dong; Lan Wang; Yue-Hua Gong

    2001-01-01

    AIM: To study the relationship between Helicobacter pylori (H. Pylori) and gastric carcinoma and its possible pathogenesis by H. Pylori. METHODS: DNEL technique and immunohistochemical technique were used to study the state of apoptosis,proliferation and p53 gene expression. A total of 100 gastric mucosal biopsy specimens, including 20 normal mucosa, 30H. Pylori-negative and 30 H. Pylorf-positive gastric precancerous lesions along with 20 gastric carcinomas were studied. RESULTS: There were several apoptotic cells in the superficial epithelium and a few proliferative cells within the neck of gastric glands, and no p53 protein expression in normal mucosa. In gastric carcinoma, there were few apoptotic cells, while there were a large number of proliferative cells, and expression of p53 protein significantly was increased. In the phase of metaplasia, the apoptotic index (Al, 4.36% ± 1.95%), proliferative index (PI, 19.11% ± 6.79%) and positivity of p53 expression (46.7%) in H. Pylori-positive group were higher than those in normal mucosa (P< 0.01). Al in H. Pylori-positive group was higher than that in H. Pylori-negative group (3.81% ±1.76%), PI in H. Pylori-positive group was higher than that in H. Pylori-negative group (12.25% ±5.63%, P<0.01 ). In the phase of dysplasia, Al (2.31% ± 1.10%) in H. Pylori-positive group was lower (3.05% ± 1.29%) than that in H. Pylori-negative group, but PI (33.89% ± 11.65%)wassignificantly higher(22.09± 8018%, P< 0.01). In phases of metaplasia, dysplasia and gastric cancer in the H. Pylori-positive group, Als had an evidently graduall decreasing trend (P < 0.01 ), while Pis had an evidently gradual increasing trend (P< 0.05 or P< 0.01), and there was also a trend of gradual increase in the expression of p53 gene. CONCLUSION: In the course of the formation of gastric carcinoma, proliferation of gastric mucosa can be greatly increased by H. Pylori, and H. Pylori can induce apoptosis in the phase of metaplasia but in the phase of

  18. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2014-12-15

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd{sup 2+} stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.

  19. Assessment of 16 chemicals on proliferation and apoptosis in human neuroprogenitor cells using high-content image analysis (HCA).

    Science.gov (United States)

    The need for efficient methods of screening chemicals for the potential to cause developmental neurotoxicity is paramount. We previously described optimization of an HCA assay for proliferation and apoptosis in ReNcell CX cells (ReN), identifying appropriate controls. Utility of ...

  20. Abrin P2 suppresses proliferation and induces apoptosis of colon cancer cells via mitochondrial membrane depolarization and caspase activation.

    Science.gov (United States)

    Yu, Ying; Yang, Runmei; Zhao, Xiuyun; Qin, Dandan; Liu, Zhaoyang; Liu, Fang; Song, Xin; Li, Liqin; Feng, Renqing; Gao, Nannan

    2016-05-01

    To explore the cytotoxic mechanism of abrin P2 on human colon cancer HCT-8 cells, abrin P2 was isolated from the seed of Abrus precatorius L. It was found that abrin P2 exhibited cytotoxicity toward 12 different human cancer cell lines. Our results demonstrated that abrin P2 suppressed the proliferation of human colon cancer cells (HCT-8 cells) and induced cell cycle arrest at the S and G2/M phases. The mechanism by which abrin P2 inhibited cell proliferation was via the down-regulation of cyclin B1, proliferating cell nuclear antigen and Ki67, as well as the up-regulation of P21. In addition, abrin P2 induced a dose- and time-dependent increase in the rate of HCT-8 cell apoptosis. Treatment with both Z-VAD-FMK, a broad-spectrum caspase inhibitor, and abrin P2 demonstrated that abrin P2 induced HCT-8 cell apoptosis via the activation of caspases. Together, our results revealed that abrin P2-induced apoptosis in HCT-8 cells was associated with the activation of caspases-3/-8/-9, the reduction in the Bcl-2/Bax ratio, the loss of mitochondrial membrane potential, and the increase in cytochrome c release. We further showed that abrin P2 administration effectively suppressed the growth of colon cancer xenografts in nude mice. This is the first report that abrin P2 effectively inhibits colon cancer cell growth in vivo and in vitro by suppressing proliferation and inducing apoptosis.

  1. Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway

    Indian Academy of Sciences (India)

    Di Wang; Jian Chen; Hui Chen; Zhi Duan; Qimei Xu; Meiyan Wei; Lianghua Wang; Meizuo Zhong

    2012-03-01

    Epidemiological studies have indicated that obesity is associated with colorectal cancer. The obesity hormone leptin is considered as a key mediator for cancer development and progression. The present study aims to investigate regulatory effects of leptin on colorectal carcinoma. The expression of leptin and its receptor Ob-R was examined by immunohistochemistry in 108 Chinese patients with colorectal carcinoma. The results showed that leptin/Ob-R expression was significantly associated with T stage, TNM stage, lymph node metastasis, distant metastasis, differentiation and expression of p-mTOR, p-70S6 kinase, and p-Akt. Furthermore, the effects of leptin on proliferation and apoptosis of HCT-116 colon carcinoma cells were determined. The results showed that leptin could stimulate the proliferation and inhibit the apoptosis of HCT-116 colon cells through the PI3K/Akt/mTOR pathway. Ly294002 (a PI3K inhibitor) and rapamycin (an mTOR inhibitor) could prevent the regulatory effects of leptin on the proliferation and apoptosis of HCT-116 cells via abrogating leptin-mediated PI3K/Akt/mTOR pathway. All these results indicated that leptin could regulate proliferation and apoptosis of colorectal carcinoma through the PI3K/Akt/mTOR signalling pathway.

  2. Thymosin Beta-4 Recombinant Adeno-associated Virus Enhances Human Nucleus Pulposus Cell Proliferation and Reduces Cell Apoptosis and Senescence

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yi Wang; Qing-San Zhu; Yi-Wei Wang; Ruo-Feng Yin

    2015-01-01

    Background:Thymosin beta-4 (TB-4) is considered key roles in tissue development,maintenance and pathological processes.The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation.Methods:TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells.Cell of same group were cultured without gene modification as controlled group.Proliferation capacity and cell apoptosis were observed during 6 passages of the cells.Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage.Results:NP cells with TB-4 transfection has normal TB-4 expression and exocytosis.NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation.TB-4 recombinant AAV-transfected human NP cells also show slower cell aging,lower cell apoptosis and higher cell proliferation than control group.Conclusions:TB-4 can prevent NP cell apoptosis,slow NP cell aging and promote NP cell proliferation.AAV transfection technique was able to highly and stably express TB-4 in human NP cells,which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases.

  3. [CCR7 silence by siRNA inhibits proliferation, invasion and promotes apoptosis of human MG63 osteosarcoma cells].

    Science.gov (United States)

    Zhang, Richun; Zhang, Hongtao; E, Zhen; Ma, Qiong; Yan, Shiju; Zhang, Enwei; Ma, Bao'an

    2016-12-01

    Objective To investigate the effect of siRNA-mediated chemokine receptor 7 (CCR7) silence on the proliferation, migration, invasion and apoptosis of human MG-63 osteosarcoma cells. Methods The study designed and synthesized siRNA targeting CCR7 (CCR7-siRNA). After MG63 cells were transfected with CCR7-siRNA, the expression of CCR7 was identified by Western blotting; cell apoptosis was detected by annexinV-FITC/PI double staining combined with flow cemetery; cell proliferation was tested by MTT assay; and cell migration and invasion abilities were examined by Transwell(TM) migration/invasion assays. Results CCR7 expression in MG63 cells was significantly inhibited after transfected with CCR7-siRNA. At the same time, cell proliferation, migration and invasion abilities were distinctly suppressed, and cell apoptosis rate increased. Conclusion Down-regulating CCR7 expression in MG63 cells could apparently inhibit cell proliferation, migration and invasion abilities of MG63 cells, and also induce cell apoptosis.

  4. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells.

    Science.gov (United States)

    Imesch, Patrick; Fink, Daniel; Fedier, André

    2010-12-01

    Romidepsin inhibited HDAC activity, produced acetylation of the histone proteins, up-regulated p21, and down-regulated cyclins B1 and D1, resulting in proliferation inhibition and apoptosis activation in 11z immortalized epithelial endometriotic cells. Our findings provide evidence that endometriotic cells are sensitive to the epigenetic effects of romidepsin and suggest that endometriosis may be therapeutically targeted by romidepsin.

  5. Doxycycline Induces Apoptosis and Inhibits Proliferation and Invasion of Human Cervical Carcinoma Stem Cells.

    Directory of Open Access Journals (Sweden)

    Binlie Yang

    Full Text Available Cancer stem cells (CSCs are proposed to be responsible for high recurrence rate in cervical carcinoma. Reagents that can suppress the proliferation and differentiation of CSCs would provide new opportunities to fight against tumor recurrence. Doxycycline has been reported as a potential anti-cancer compound. However, few studies investigated its inhibitory effect against cervical cancer stem cells.HeLa cells were cultured in cancer stem cell conditional media in a poly-hema-treated dish. In this non-adhesive culture system, HeLa cells were treated with cisplatin until some cells survived and formed spheroids, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every three days for five times. The tumor xenografts with CSC enrichment were cultured in cancer stem cell specific medium again to form tumorsphere, which we called HeLa-CSCs. Expression of cancer stem cell markers in HeLa-CSCs was measured by flow cytometry and qPCR. HeLa-CSCs were then treated with doxycycline. Proliferation and differentiation rates were determined by the size of spheres formed in vitro and tumor formed in vivo.We developed a new strategy to selectively enrich CSCs from human cervical carcinoma cell line HeLa, and these HeLa-CSCs are CD133+/CD49f+ cell populations with significantly enhanced expression of stem cell markers. When these HeLa-CSCs were treated with doxycycline, the colony formation, proliferation, migration and invasion, and differentiation were all suppressed. Meanwhile, stem cell markers SOX-2, OCT-4, NANOG, NOTCH and BMI-1 decreased in doxycycline treated cells, so as the surface markers CD133 and CD49f. Furthermore, proliferation markers Ki67 and PCNA were also decreased by doxycycline treatment in the in vivo xenograft mouse model.Cancer stem cells are enriched from sphere-forming and chemoresistant HeLa-derived tumor xenografts in immunodeficient mice. Doxycycline inhibits proliferation, invasion, and

  6. Proliferation-linked apoptosis of adoptively transferred T cells after IL-15 administration in macaques.

    Directory of Open Access Journals (Sweden)

    Carolina Berger

    Full Text Available The adoptive transfer of antigen-specific effector T cells is being used to treat human infections and malignancy. T cell persistence is a prerequisite for therapeutic efficacy, but reliably establishing a high-level and durable T cell response by transferring cultured CD8(+ T cells remains challenging. Thus, strategies that promote a transferred high-level T cell response may improve the efficacy of T cell therapy. Lymphodepletion enhances persistence of transferred T cells in mice in part by reducing competition for IL-15, a common γ-chain cytokine that promotes T cell memory, but lymphodepleting regimens have toxicity. IL-15 can be safely administered and has minimal effects on CD4(+ regulatory T cells at low doses, making it an attractive adjunct in adoptive T cell therapy. Here, we show in lymphoreplete macaca nemestrina, that proliferation of adoptively transferred central memory-derived CD8(+ effector T (T(CM/E cells is enhanced in vivo by administering IL-15. T(CM/E cells migrated to memory niches, persisted, and acquired both central memory and effector memory phenotypes regardless of the cytokine treatment. Unexpectedly, despite maintaining T cell proliferation, IL-15 did not augment the magnitude of the transferred T cell response in blood, bone marrow, or lymph nodes. T cells induced to proliferate by IL-15 displayed increased apoptosis demonstrating that enhanced cycling was balanced by cell death. These results suggest that homeostatic mechanisms that regulate T cell numbers may interfere with strategies to augment a high-level T cell response by adoptive transfer of CD8(+ T(CM/E cells in lymphoreplete hosts.

  7. Polydatin regulates proliferation, apoptosis and autophagy in multiple myeloma cells through mTOR/p70s6k pathway

    Science.gov (United States)

    Yang, Baojun; Zhao, Shunxin

    2017-01-01

    Background Polydatin (PD) plays an important role in suppressing platelet aggregation, reducing blood lipid, restoring microcirculation and protecting from myocardial ischemia/reperfusion injury and shock. In addition, PD possesses anticancer activity. However, the effect and the mechanism of PD in regulating multiple myeloma (MM) cell survival and death are still unknown. Methods Cell proliferation and apoptosis of RPMI 8226 cells, respectively, were analyzed by cell counting kit8 (CCK-8) assay and flow cytometry. The levels of caspase-3, cleaved caspase-3, caspase-9, cleaved caspase-9, Bcl-2 and Bax were analyzed by Western blot. Autophagy induced by PD was investigated by detecting the levels of Beclin 1, Atg5, LC3I, LC3II, HSP70 and HSP27. The autophagy inhibitor 3-methyladenine (3-MA), mTOR/p70s6k inhibitor rapamycin, and mTOR activator MHY1485 were used to analyze the mechanism of cell proliferation, apoptosis and autophagy influenced by PD. The phosphorylations of mTOR and p70s6k were detected by Western blot. Results A gradual decrease in cell proliferation of RPMI 8226 cells was observed with an increase in PD concentrations (Pcell apoptosis and autophagy in a concentration-dependent manner. Both 3-MA and MHY1485 reversed the inhibitory effect of PD on cell proliferation and attenuated the positive effect of PD on cell apoptosis and autophagy. The phosphorylation of mTOR and p70s6k was significantly suppressed by PD (Pcell viability (Pcell proliferation and induced apoptosis and autophagy of MM cells via the mTOR/p70s6k signaling pathway in a concentration-dependent manner in vitro, indicating that PD could be a potential anticancer drug for MM therapy.

  8. Impact of Salinomycin on human cholangiocarcinoma: induction of apoptosis and impairment of tumor cell proliferation in vitro

    Directory of Open Access Journals (Sweden)

    Lieke Thorsten

    2012-10-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a primary liver cancer with increasing incidence worldwide. Despite all efforts made in past years, prognosis remains to be poor. At least in part, this might be explained by a pronounced resistance of CC cells to undergo apoptosis. Thus, new therapeutic strategies are imperatively required. In this study we investigated the effect of Salinomycin, a polyether ionophore antibiotic, on CC cells as an appropriate agent to treat CC. Salinomycin was quite recently identified to induce apoptosis in cancer stem cells and to overcome apoptosis-resistance in several leukemia-cells and other cancer cell lines of different origin. Methods To delineate the effects of Salinomycin on CC, we established an in vitro cell culture model using three different human CC cell lines. After treatment apoptosis as well as migration and proliferation behavior was assessed and additional cell cycle analyses were performed by flowcytometry. Results By demonstrating Annexin V and TUNEL positivity of human CC cells, we provide evidence that Salinomycin reveals the capacity to break apoptosis-resistance in CC cells. Furthermore, we are able to demonstrate that the non-apoptotic cell fraction is characterized by sustainable impaired migration and proliferation. Cell cycle analyses revealed G2-phase accumulation of human CC cells after treatment with Salinomycin. Even though apoptosis is induced in two of three cell lines of CC cells, one cell line remained unaffected in regard of apoptosis but revealed as the other CC cells decreased proliferation and migration. Conclusion In this study, we are able to demonstrate that Salinomycin is an effective agent against previously resistant CC cells and might be a potential candidate for the treatment of CC in the future.

  9. Experimental Study of 103Pd Stent Affecting Dynamic Equilibrium Between Proliferation and Apoptosis of Vascular Smooth Muscle Cells

    Institute of Scientific and Technical Information of China (English)

    Liu Yingmei; Fu Yuewu; Wei Yulin; Wu Wei

    2006-01-01

    Objectives By observing γ radioactive 103Pd stent affecting the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) to explore the mechanism of radioactive stent preventing in-stent restenosis. Methods Fifty male New Zealand rabbits were randomized into stent group and 103Pd stent group. Control group was set up. The materials were harvested on 3, 7, 14, 28, 56 days after operation and the following investigations were carried out, including pathomorphology, immunohistochemistry, apoptosis (TUNEL) and in situs hybridization studies. Results ①The severity of the stenosis in 103Pd stent group was less than that of stent group.It was the most obvious on 56th day (P < 0.01).②The expression of PCNA of 103Pd stent group was lower than that of stent group on 3 to 28 days. It was the most obvious on 7th day, 16.35%±0.79% vs 24.36%±0.55% (P< 0.01 ). ③TUNEL method showed that the 103Pd stent group had much more apoptosis of VSMCs than that of stent group. The highest rate of apoptosis appeared on day 7, 14.72%±0.53% vs 12.42%±1.13% (P<0.01). ④ By calculating the ratio of PCNA/apoptosis (P:A), a much lower ratio was seen in 103Pd-stent group than that of stent group at 3 to 28 days. There was significant statistic difference between two groups (P<0.05). ⑤For bcl-2/bax ratio, the result in 103Pd-stent group was lower than that of stent group at 3 to 28 days. It had significant statistic difference (P < 0.05). Conclusions γ radioactive stent can inhibit the proliferation and accelerate apoptosis of injured media VSMCs. Also it can decrease the ratio of proliferation to apoptosis and relieve the severity of restenosis.

  10. Protective Role of Selenium Compounds on the Proliferation, Apoptosis, and Angiogenesis of a Canine Breast Cancer Cell Line.

    Science.gov (United States)

    Liu, Yuzhi; Li, Wenyu; Guo, Mengyao; Li, Chengye; Qiu, Changwei

    2016-01-01

    We herein examined the effects of different doses, forms, and compatibilities of selenium on a canine mammary gland tumor cell line, CTM1211, and explored the related mechanisms. Three selenium compounds, sodium selenite (SSE), methylseleninic acid (MSA), and methylselenocysteine (MSC), were selected for these experiments, and cyclophosphamide (CTX) served as a positive control. In the cell viability assay, the cell viability of each group at 48/72 h decreased significantly compared with the control group (p selenium on cell proliferation was time-dependent but not concentration-dependent. In the cell apoptosis assay, the apoptosis values of each group increased significantly compared with the control group, and the apoptosis values of the CTX + MSA group increased the most significantly (p selenium compounds, especially MSA, could significantly inhibit the viability and growth of the CTM1211 cell line, which is partly due to the induction of apoptosis and regulation of tumor angiogenesis.

  11. The Relationship of Expression of bcl-2, p53, and Proliferating Cell Nuclear Antigen (PCNA) to Cell Proliferation and Apoptosis in Renal Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    朱朝辉; 邢诗安; 程平; 李国胜; 杨郁; 曾甫清; 鲁功成

    2004-01-01

    To investigate the relationship of bcl-2, p53, proliferating cell nuclear antigen (PCNA) to cell proliferation, apoptosis and pathological parameters, the patterns of cell growth and turnover in renal cell carcinoma (RCC), formalin-fixed and paraffin-embedded tissue blocks from 34 patients with RCC were examined. Cell proliferation activity was detected by PCNA immunostaining and the proliferation index (PI) was expressed as a percentage of the PCNA-positive cells in the tumor cells. Apoptosis was detected by terminal deoxy- nucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and the apoptotic index (AI) was expressed as a percentage of the TUNEL-positive cells in the tumor cells. Expressions of bcl-2 and p53 were assessed immunohistochemically. Our results showed that the PI ranged from 6.0 % to 24.0 % (median 12.3 %) and theAI from 2.0 % to 8.0 % (median 5.4 %) in RCC. The expression of the bcl-2 protein was demonstrated in 15 cases (44.1 %); the expression of the p53 protein, however, was seen in only 3 case. bcl-2 positivity was not associated with PI or AI or any pathological parameters. There were close associations between PI and tumor grade and stage, and a significant relationship between AI and the tumor grade of RCC. Our study suggests that bcl-2 positivity was not associated with PI or AI or any pathological parameters. There are close associations between PI and AI and tumor grade and stage of RCC. Active cell proliferation may be accompanied by frequent apoptosis in RCC.

  12. MiR-181a Targets PHLPP2 to Augment AKT Signaling and Regulate Proliferation and Apoptosis in Human Keloid Fibroblasts

    Directory of Open Access Journals (Sweden)

    Zhen Rang

    2016-12-01

    Full Text Available Background/Aims: Keloids are fibrous overgrowths induced by cutaneous injury. MicroRNAs (miRNAs have recently emerged as post-transcriptional gene repressors and participants in a diverse array of pathophysiological processes leading to skin disease. The purpose of the current study was to explore the precise functions of miR-181a in human keloid development and the underlying mechanisms. Methods: A miRNA microarray analysis was performed to compare expression profiles between keloid and normal skin tissues. Quantitative real-time PCR was conducted to estimate miR-181a expression. Cell proliferation was determined using the cell counting kit-8 (CCK-8 and 5-ethynyl-2-deoxyuridine (EdU assays, and cell cycle and apoptosis were detected with flow cytometry. Direct targets of miR-181a were identified using the luciferase reporter assay. Results: miR-181a was significantly upregulated in human keloid tissues and fibroblasts, compared with their control counterparts. Overexpression of miR-181a enhanced keloid fibroblast DNA synthesis and proliferation and inhibited apoptosis, whereas miR-181a suppression triggered the opposite effects. Moreover, miR-181a suppressed the expression of PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2 through direct interactions with its 3′UTR region and subsequently enhanced AKT activation. Overexpression of PHLPP2 without its 3′UTR attenuated the effects of miR-181a on cell proliferation and apoptosis in keloid fibroblast cells. Furthermore, miR-181a mimics increased normal skin fibroblast proliferation. Conclusions: Our results highlight a novel pathway mediated by miR-181a, which may be effectively used as a therapeutic target for treatment of keloids.

  13. Red oil A5 inhibits proliferation and induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Mi-Lian Dong; Xian-Zhong Ding; Thomas E. Adrian

    2004-01-01

    AIM: To study the effect of red oil A5 on pancreatic cancer cells and its possible mechanisms.METHODS: Effect of different concentrations of red oil A5on proliferation of three pancreatic cancer cell lines, AsPC-1,MiaPaCa-2 and S2013, was measured by 3H-methyl thymidine incorporation. Time-dependent effects of 1:32 000 red oil A5 on proliferation of three pancreatic cancer cell lines, were also measured by 3H-methyl thymidine incorporation, and Time-course effects of 1:32 000 red oil A5 on cell number.The cells were counted by Z1-Coulter Counter. Fiowcytometric analysis of cellular DNA content in the control and red oil A5 treated AsPC-1, MiaPaCa-2 and S2013 cells,were stained with propidium iodide. TUNEL assay of red oil A5-induced pancreatic cancer cell apoptosis was performed.Western blotting of the cytochrome c protein in AsPC-1,MiaPaCa-2 and S2013 cells treated 24 hours with 1:32 000red oil A5 was performed. Proteins in cytosolic fraction and in mitochondria fraction were extracted. Proteins extracted from each sample were electrophoresed on SDS-PAGE gels and then were transferred to nitrocellulose membranes.Cytochrome c was identified using a monoclonal cytochrome c antibody. Western blotting of the caspase-3 protein in AsPC-1, MliaPaCa-2 and S2013 cells treated with 1:32 000 red oil A5 for 24 hours was carried out. Proteins in whole cellular lysates were electrophoresed on SDS-PAGE gels and then transferred to nitrocellulose membranes. Caspase-3 was identified using a specific antibody. Western blotting of polyADP ribose polymerase (PARP) protein in AsPC-1, MiaPaCa2 and S2013 cells treated with 1:32 000 red oil A5 for 24 hours was performed. Proteins in whole cellular lysates were separated by electrophoresis on SDS-PAGE gels and then transferred to nitrocellulose membranes. PARP was identified by using a monoclonal antibody.RESULTS: Red oil A5 caused dose- and time-dependent inhibition of pancreatic cancer cell proliferation. Propidium iodide DNA staining

  14. Tocotrienol-Rich Fraction, [6]-Gingerol and Epigallocatechin Gallate Inhibit Proliferation and Induce Apoptosis of Glioma Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amirah Abdul Rahman

    2014-09-01

    Full Text Available Plant bioactives [6]-gingerol (GING, epigallocatechin gallate (EGCG and asiaticoside (AS and vitamin E, such as tocotrienol-rich fraction (TRF, have been reported to possess anticancer activity. In this study, we investigated the apoptotic properties of these bioactive compounds alone or in combination on glioma cancer cells. TRF, GING, EGCG and AS were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II, SW1783 (Grade III and LN18 (Grade IV in culture by the (3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxy-phenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt (MTS assay. With the exception of AS, combinations of two compounds were tested, and the interactions of each combination were evaluated by the combination index (CI using an isobologram. Different grades of glioma cancer cells showed different cytotoxic responses to the compounds, where in 1321N1 and LN18 cells, the combination of EGCG + GING exhibited a synergistic effect with CI = 0.77 and CI = 0.55, respectively. In contrast, all combinations tested (TRF + GING, TRF + EGCG and EGCG + GING were found to be antagonistic on SW1783 with CI values of 1.29, 1.39 and 1.39, respectively. Combined EGCG + GING induced apoptosis in both 1321N1 and LN18 cells, as evidenced by Annexin-V FITC/PI staining and increased active caspase-3. Our current data suggests that the combination of EGCG + GING synergistically induced apoptosis and inhibits the proliferation 1321N1 and LN18 cells, but not SW1783 cells, which may be due to their different genetic profiles.

  15. Loss of Drosophila pseudouridine synthase triggers apoptosis-induced proliferation and promotes cell-nonautonomous EMT

    Science.gov (United States)

    Vicidomini, R; Di Giovanni, A; Petrizzo, A; Iannucci, L F; Benvenuto, G; Nagel, A C; Preiss, A; Furia, M

    2015-01-01

    Many developing tissues display regenerative capability that allows them to compensate cell loss and preserve tissue homeostasis. Because of their remarkable regenerative capability, Drosophila wing discs are extensively used for the study of regenerative phenomena. We thus used the developing wing to investigate the role played in tissue homeostasis by the evolutionarily conserved eukaryotic H/ACA small nucleolar ribonucleoprotein pseudouridine synthase. Here we show that localized depletion of this enzyme can act as an endogenous stimulus capable of triggering apoptosis-induced proliferation, and that context-dependent effects are elicited in different sub-populations of the silenced cells. In fact, some cells undergo apoptosis, whereas those surrounding the apoptotic foci, although identically depleted, overproliferate. This overproliferation correlates with ectopic induction of the Wg and JAK-STAT (Janus kinase-signal transducer and activator of transcription) mitogenic pathways. Expression of a p35 transgene, which blocks the complete execution of the death program and generates the so-called ‘undead cells', amplifies the proliferative response. Pseudouridine synthase depletion also causes loss of apicobasal polarity, disruption of adherens cell junctions and ectopic induction of JNK (c-Jun N-terminal kinase) and Mmp1 (matrix metalloproteinase-1) activity, leading to a significant epithelial reorganization. Unexpectedly, cell-nonautonomous effects, such as epithelial mesenchymal transition in the contiguous unsilenced squamous epithelium, are also promoted. Collectively, these data point out that cell–cell communication and long-range signaling can take a relevant role in the response to pseudouridine synthase decline. Considering that all the affected pathways are highly conserved throughout evolution, it is plausible that the response to pseudouridine synthase depletion has been widely preserved. On this account, our results can add new light on the

  16. Induction of apoptosis and inhibition of proliferation of C6 glioma cells in vitro by tamoxifen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the anti-tumor effect and mechanism of tamoxifen on rat C6 glioma cells. Methods C6 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 3% fetal calf serum (FCS), and treated with tamoxifen of different concentrations, i.e. group A (1.25μmol/L), group B (2.50 μmol/L), group C (5.00 μmol/L), group D (10.00 μmol/L), group E (20.00 μmol/L) and control group (0.00 μmol/L). Morphological changes, MTT assay and 5-bromo-2'-deoxyuriding labeling ratio were assessed. Apoptosis was observed by flow cytometry. Results C6 cells treated with different doses of tamoxifen for 24, 48, and 72 hours became irregular in shape, while cells treated with vehicle grew normally. MTT assay showed that tamoxifen did not suppress C6 cell growth until 72 hours after treatment. Seventy-two hours after treatment, there were significant differences in cell viable rate between group A versus groups C, D and E; so did group B versus group D as well as group E (P<0.05). BrdU incorporation assay indicated significant difference of BrdU labbled index (BrdU LI) among groups A, C, E and control group 48 hours after treatment (P<0.05). And the BrdU LI decreased with the increased concentration of tamoxifen. Flow cytometry (FCM) showed significant difference between treated group and control group at 24, 48, and 72 hours after treatment (P<0.05). Conclusion Tamoxifen significantly suppresses the growth of C6 glioma cells in a time- and dose-dependent manner. The mechanism of tamoxifen suppressing C6 glioma cells may be inhibiting proliferation and inducing apoptosis. Therefore, tamoxifen can be a candidate as a chemotherapy agent for glioma.

  17. Embryonic development of Python sebae - II: Craniofacial microscopic anatomy, cell proliferation and apoptosis.

    Science.gov (United States)

    Buchtová, Marcela; Boughner, Julia C; Fu, Katherine; Diewert, Virginia M; Richman, Joy M

    2007-01-01

    This study explores the microscopic craniofacial morphogenesis of the oviparous African rock python (Python sebae) spanning the first two-thirds of the post-oviposition period. At the time of laying, the python embryo consists of largely undifferentiated mesenchyme and epithelium with the exception of the cranial base and trabeculae cranii, which are undergoing chondrogenesis. The facial prominences are well defined and are at a late stage, close to the time when lip fusion begins. Later (11-12d), specializations in the epithelia begin to differentiate (vomeronasal and olfactory epithelia, teeth). Dental development in snakes is different from that of mammals in several aspects including an extended dental lamina with the capacity to form 4 sets of generational teeth. In addition, the ophidian olfactory system is very different from the mammalian. There is a large vomeronasal organ, a nasal cavity proper and an extraconchal space. All of these areas are lined with a greatly expanded olfactory epithelium. Intramembranous bone differentiation is taking place at stage 3 with some bones already ossifying whereas most are only represented as mesenchymal condensations. In addition to routine histological staining, PCNA immunohistochemistry reveals relatively higher levels of proliferation in the extending dental laminae, in osseous mesenchymal condensations and in the olfactory epithelia. Areas undergoing apoptosis were noted in the enamel organs of the teeth and osseous mesenchymal condensations. We propose that localized apoptosis helps to divide a single condensation into multiple ossification centres and this is a mechanism whereby novel morphology can be selected in response to evolutionary pressures. Several additional differences in head morphology between snakes and other amniotes were noted including a palatal groove separating the inner and outer row of teeth in the upper jaw, a tracheal opening within the tongue and a pharyngeal adhesion that closes off the

  18. miR-421 induces cell proliferation and apoptosis resistance in human nasopharyngeal carcinoma via downregulation of FOXO4

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Tang, Yanping [Neurosurgery Institute, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Zhujiang Hospital of Southern Medical University, Guangzhou 510282 (China); Wang, Jian [Department of Otolaryngology, Guangzhou General Hospital of PLA Guangzhou Command, Guangzhou 510010 (China); Yan, Zhongjie [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China); Xu, Ruxiang, E-mail: RuxiangXu@yahoo.com [Affiliated Bayi Brain Hospital, The Military General Hospital of Beijing PLA,The Bayi Clinical Medical Institute of Southern Medical University, Beijing 100700 (China)

    2013-06-14

    Highlights: •miR-421 is upregulated in nasopharyngeal carcinoma. •miR-421 induces cell proliferation and apoptosis resistance. •FOXO4 is a direct and functional target of miR-421. -- Abstract: microRNAs have been demonstrated to play important roles in cancer development and progression. Hence, identifying functional microRNAs and better understanding of the underlying molecular mechanisms would provide new clues for the development of targeted cancer therapies. Herein, we reported that a microRNA, miR-421 played an oncogenic role in nasopharyngeal carcinoma. Upregulation of miR-421 induced, whereas inhibition of miR-421 repressed cell proliferation and apoptosis resistance. Furthermore, we found that upregulation of miR-421 inhibited forkhead box protein O4 (FOXO4) signaling pathway following downregulation of p21, p27, Bim and FASL expression by directly targeting FOXO4 3′UTR. Additionally, we demonstrated that FOXO4 expression is critical for miR-421-induced cell growth and apoptosis resistance. Taken together, our findings not only suggest that miR-421 promotes nasopharyngeal carcinoma cell proliferation and anti-apoptosis, but also uncover a novel regulatory mechanism for inactivation of FOXO4 in nasopharyngeal carcinoma.

  19. Effect of Protein Kinase C on Proliferation and Apoptosis of T Lymphocytes in Idiopathic Thrombocytopenic Purpura Children

    Institute of Scientific and Technical Information of China (English)

    Changlin Wu; Fang Liu; Xuemin Zhou; Zhengwei Cheng; Xiaomeng Yang; Hong Xiao; Qun Chen; Kangrong Cai

    2005-01-01

    It is well-documented that T lymphocyte proliferation and apoptosis are abnormal in idiopathic thrombocytopenic purpura (ITP) children. However, the underlying regulation mechanisms especially in terms of signal transduction remain unknown. In this paper, we reported the changes of protein kinase C (PKC) activity in peripheral blood T lymphocytes and the effect of PKC on T lymphocyte proliferation and apoptosis. We demonstrated that in ITP children, the activator (PMA) and inhibitor (H-7) of PKC affected on T lymphocyte proliferation and apoptosis dramatically, but they altered little in healthy children. PKC activity was significantly enhanced in ITP children together with an increased expression of FasL on CD3+ T, CD4+ T and CD8+T cells, resulting in a positive correlation between PKC activity and the expression of FasL on T cells. While the PKC activity and the platelet count were negatively correlated. Taken together, our findings suggest that the PKC activation may enhance T lymphocytes activity, suppress T cell apoptosis and be involve in thrombocytes damage as a mechanism related to immune pathogenesis of ITP.

  20. Effects of AFP gene silencing on apoptosis and proliferation of a hepatocellular carcinoma cell line.

    Science.gov (United States)

    Zhang, Ling; He, Tao; Cui, Hong; Wang, Yunjian; Huang, Changshan; Han, Feng

    2012-08-01

    Alpha fetoprotein (AFP) is an oncoembryonal protein that is highly expressed in the majority of hepatocellular carcinomas. Previous studies have shown that AFP may be involved in multiple cell growth regulating, differentiating, and immunosuppressive activities. We investigated the effects of AFP gene silencing by siRNA on apoptosis and proliferation of hepatocellular carcinoma cell line EGHC-9901, which highly expresses AFP and may serve as an ideal model for investigation of AFP functions. siRNA expressing plasmid targeting the AFP gene was first established and subsequently transfected into hepatocellular carcinoma cell line EGHC-9901; cells were then divided into three groups: siRNA-afp, transfected with AFP-siRNA; siRNA-beta-actin, transfected with siRNA-beta-actin as the positive group; and vector control, transfected with empty vector as the blank control group. After G418 positive clone selection for a couple of weeks, Western blot and RT (reverse transcription)-PCR assay demonstrated that AFP expression was almost completely inhibited by siRNA-afp, which indicates that siRNA expressing plasmid targeting the AFP gene has been successfully established. Furthermore, MTT (methyl thiazolyl tetrazelium) assay showed that cells transfected with siRNA-afp proliferated at a significantly lower speed than the other two groups and flat plate clone formation assay also witnessed less clones with diameters of more than 75 μm in siRNA-afp immunofluorescence indicating that the apoptosis rate of cells transfected with siRNA-afp was significantly higher than the other two groups. Furthermore, flow cytometry manifested approximately 20% more cells of siRNA-afp within G1 phase than those of the negative group, indicating that inhibition of AFP expression may cause G1 phase arrest. Finally, Western blot and RT-PCR assay demonstrated that siRNA-afp induced a higher expression of caspase-3 than the other two groups whereas there was no difference in expression of caspase-8

  1. Changes of Proliferation and Apoptosis of K562 Cells after Co-culture with Leukemia Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Katja Karjalainen; Carlos E Bueso-Ramos; Hagop M Kantarjian

    2014-01-01

    Objective:To compare the changes of proliferation and apoptosis of K562 cells after co-culture with human leukemia bone marrow mesenchymal stem cells (LMSC). Methods: The prepared cells were randomly divided into SCG group, SCG+0%FBS group, SCG+0%FBS group and CCG+0%FBS group. Cell counting kit-8 (CCK-8) analytic approach was adopted to detect the optical density (OD) of K562 cells in SCG and CCG groups, and the conditions of K562 cell proliferation under different cultured circumstances were compared. Flow cytometer (FCM) was used to detect the changes of K562 cell cycle after co-culture with LMSC, Annexin V/polyimide (PI) lfuorescence labeling method to detect the changes of K562 cell apoptosis after co-culture with LMSC and serum starvation. Results:After co-culture with LMSC, the proliferation of K562 cells was markedly inhibited, and OD in CCG group was conspicuously lower than that in SCG group. Flow cytometer (FCM) detection on cell cycles demonstrated that after co-culture with LMSC, the proportion of cells in gap phases 0~1 (G0~G1) went up notably, whereas that in phase S went down obviously. Besides, the proportion of cells in phases G2~M was on the rise. K562 cell apoptosis in CCG+0%FBS group was more than in SCG+10%FBS group, and less than in SCG+0%FBS group, indicating LMSC had the function of resisting leukemia cell apoptosis. Conclusion: LMSC exerts the effect of inhibiting the proliferation by blocking K562 cell cycles in phases G0~G1, and inhibiting K562 cell apoptosis induced by serum starvation.

  2. Changes of Proliferation and Apoptosis of K562 Cells after Co-culture with Leukemia Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Katja Karjalainen

    2014-06-01

    Full Text Available Objective: To compare the changes of proliferation and apoptosis of K562 cells after co-culture with human leukemia bone marrow mesenchymal stem cells (LMSC. Methods: The prepared cells were randomly divided into SCG group, SCG + 0%FBS group, SCG + 0%FBS group and CCG + 0%FBS group. Cell counting kit-8 (CCK-8 analytic approach was adopted to detect the optical density (OD of K562 cells in SCG and CCG groups, and the conditions of K562 cell proliferation under different cultured circumstances were compared. Flow cytometer (FCM was used to detect the changes of K562 cell cycle after co-culture with LMSC, Annexin V/polyimide (PI fluorescence labeling method to detect the changes of K562 cell apoptosis after co-culture with LMSC and serum starvation. Results: After co-culture with LMSC, the proliferation of K562 cells was markedly inhibited, and OD in CCG group was conspicuously lower than that in SCG group. Flow cytometer (FCM detection on cell cycles demonstrated that after co-culture with LMSC, the proportion of cells in gap phases 0 - 1 (G0 - G1 went up notably, whereas that in phase S went down obviously. Besides, the proportion of cells in phases G2 - M was on the rise. K562 cell apoptosis in CCG + 0%FBS group was more than in SCG + 10%FBS group, and less than in SCG + 0%FBS group, indicating LMSC had the function of resisting leukemia cell apoptosis. Conclusion: LMSC exerts the effect of inhibiting the proliferation by blocking K562 cell cycles in phases G0 - G1, and inhibiting K562 cell apoptosis induced by serum starvation.

  3. Peroxisome proliferator-activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Feng-guang YANG; Zhi-wen ZHANG; Dian-qi XIN; Chang-jin SHI; Jie-ping WU; Ying-lu GUO; You-fei GUAN

    2005-01-01

    Aim: To study the effect of peroxisome proliferator-actived receptor γ (PPARγ)ligands on cell proliferation and apoptosis in human renal carcinoma cell lines.Methods: The expression of PPARγ was investigated by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry.The effect of thiazolidinedione (TZD) PPARγ ligands on growth of renal cell carcinoma (RCC) cells was measured by MTT assay and flow cytometric analysis. Cell death ELISA, Hoechst 33342 fluorescent staining and DNA ladder assay were used to observe the effects of PPARγ ligands on apoptosis. Regulatory proteins of cell cycle and apoptosis were detected by Western blot analysis. Results:PPARγ was expressed at much higher levels in renal tumors than in the normal kidney (2.16±0.85 vs 0.90±0.73; P<0.01 ). TZD PPARγ ligands inhibited RCC cell growth in a dose-dependent manner with IC50 values of 7.08 μmol/L and 11.32 μmol/L for pioglitazone, and 5.71 μmol/L and 8.38 μmol/L for troglitazone in 786-O and A498 cells, respectively. Cell cycle analysis showed a G0/G1 arrest in human RCC cells following 24-h exposure to TZD. Analysis of cell cycle regulatory proteins revealed that TZD decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, and Cdk4 but increased the levels of p21 and p27 in a timedependent manner. Furthermore, high doses of TZD induced massive apoptosis in renal cancer cells, with increased Bax expression and decreased Bcl-2 expression.Conclusion: TZD PPARγ ligands showed potent inhibitory effect on proliferation,and could induce apoptosis in RCC cells. These results suggest that ligands for PPARγ have potential antitumor effects on renal carcinoma cells.

  4. APOPTOSIS AND PROLIFERATION OF TUMOR CELLS IN LOCALLY ADVANCED CERVICAL CANCER AFTER NEOADJUVANT INTRAARTERIAL CHEMOTHERAPY

    Institute of Scientific and Technical Information of China (English)

    朱雪琼; 岳天孚; 惠京; 张颖; 王德华

    2003-01-01

    Objective: Through observing the clinical response to neoadjuvant intraarterial chemotherapy in locally advanced cervical cancer and investigating the changes of p53 protein expression, proliferation and apoptosis of tumor cells after chemotherapy, to study the relationship between biological markers and chemotherapeutic response. Methods: 20 women with locally advanced squamous cervical cancer received consecutive infusion chemotherapy of five days of cisplatin and adriamycin via the superselective uterine artery. The response to chemotherapy was evaluated by gynecologic examination and ultrasonography 3 weeks after chemotherapy. The changes of apoptotic index (AI), proliferation index (PI) and p53 expression of tumor cells were detected by immunohistochemical technique. Results: The clinical response rate of locally advanced squamous cervical cancer to uterine artery infusion chemotherapy was 70%. No change of PI was found 3 weeks after treatment, but AI significantly increased from 2.79±0.76 to 4.29±1.13 (P<0.01), and AI/PI from 5.68±1.21 to 9.00±1.95 (P<0.05). On the contrary, the expression of p53 was significantly decreased (P<0.05). Patients who responded to chemotherapy showed higher PI before chemotherapy and significantly increased AI and AI/PI after chemotherapy than non-responders (P<0.05). Conclusion: Higher PI was an indication for neoadjuvant intraarterial chemotherapy. One more cycle of chemotherapy should be given to those who have significantly increased AI or AI/PI after chemotherapy, while definite treatment such as surgery or/and radiotherapy should be immediately given to those patients without increased AI or AI/PI.

  5. Influence of mycotoxin zearalenone and its derivatives (alpha and beta zearalenol on apoptosis and proliferation of cultured granulosa cells from equine ovaries

    Directory of Open Access Journals (Sweden)

    Minoia Paolo

    2006-11-01

    Full Text Available Abstract Background The mycotoxin zearalenone (ZEA and its derivatives, alpha and beta-zearalenol (alpha and beta-ZOL, synthesized by genera Fusarium, often occur as contaminants in cereal grains and animal feeds. The importance of ZEA on reproductive disorders is well known in domestic animals species, particularly in swine and cattle. In the horse, limited data are available to date on the influence of dietary exposure to ZEA on reproductive health and on its in vitro effects on reproductive cells. The aim of this study was to evaluate the effects of ZEA and its derivatives, alpha and beta-ZOL, on granulosa cells (GCs from the ovaries of cycling mares. Methods The cell proliferation was evaluated by using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT test after 3 days exposure at different concentrations of ZEA and its derivatives (from 1 × 10-7 to 0.1 microM. The apoptosis induction was evaluated after 1 day exposure, by DNA analysis using flow cytometry. Results An increase in cell proliferation with respect to the control was observed in the presence of ZEA at 1 × 10-3 and 1 × 10-4 microM and apoptosis was induced by all mycotoxins at different concentrations. Conclusion The simultaneous presence of apoptosis and proliferation in GC cultures treated with zearalenones could indicate that these mycotoxins could be effective in inducing follicular atresia. These effects of zearalenones may result from both direct interaction with oestrogen-receptors as well as interaction with the enzymes 3alpha (beta-hydroxysteroid dehydrogenase (HSD, involved in the synthesis and metabolism of endogenous steroid hormones. These cellular disturbances, described for the first time in equine GCs cultured in vitro, could be hypothesized as referred to reproductive failures of unknown ethiology in the mare.

  6. Matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway.

    Science.gov (United States)

    Zhang, Shujun; Cheng, Binglin; Li, Hali; Xu, Wei; Zhai, Bo; Pan, Shangha; Wang, Lei; Liu, Ming; Sun, Xueying

    2014-01-01

    The present study has investigated the anti-tumor activity and the underlying mechanisms of matrine on human colon cancer LoVo cells. Matrine inhibited the proliferation of the cells in dose- and time-dependent manners. The concentration required for 50 % inhibition (IC50) was 1.15, 0.738, and 0.414 mg/ml, when cell were incubated with matrine for 24, 48, and 72 h, respectively. Matrine induced cell cycle arrest at G1 phase by downregulating cyclin D1 and upregulating p27 and p21. Matrine induced cell apoptosis by reducing the ratio of Bcl-2/Bax and increasing the activation of caspase-9 in a dose-dependent manner. Matrine displayed its anti-tumor activity by inactivating Akt, the upstream factor of the above proteins. Matrine significantly reduced the protein levels of pAkt, and increased the protein levels of other downstream factors, pBad and pGSK-3β. Specific inhibition of pAkt induced cell apoptosis, and synergized with matrine to inhibit the proliferation of LoVo cells; whereas activation of Akt neutralized the inhibitory effect of matrine on cell proliferation. The present study has demonstrated that matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway, indicating matrine may be a potential anti-cancer agent for colon cancer.

  7. Effects of Pinus massoniana bark extract on cell proliferation and apoptosis of human hepatoma BEL-7402 cells

    Institute of Scientific and Technical Information of China (English)

    Ying-Yu Cui; Heng Xie; Kang-Biao Qi; Yan-Ming He; Jin-Fa Wang

    2005-01-01

    AIM: To study the effects of Pinus massoniana bark extract (PMBE) on cell proliferation and apoptosis of human hepatoma BEL-7402 cells and to elucidate its molecular mechanism.METHODS: BEL-7402 cells were incubated with various concentrations (20-200 μg/mL) of PMBE for different periods of time. After 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptosis was evaluated by morphological observation, agarose gel electrophoresis,and flow cytometry analysis. Possible molecular mechanisms were primarily explored through immunohistochemical staining.RESULTS: PMBE (20-200 μg/mL) significantly suppressed BEL-7402 cell proliferation in a time- and dose-dependent manner. After treatment of BEL-7402 cells with 160 μg/mL PMBE for 24, 48, or 72 h, a typical apoptotic "DNA ladder"was observed using agarose gel electrophoresis. Nuclear condensation and boundary aggregation or split, apoptotic bodies were seen by fluorescence and electron microscopy.Sub-G1 curves were displayed by flow cytometry analysis.PMBE decreased the expression levels of Bcl-2 protein in a time-dependent manner after treatment of cells with 160 μg/mL PMBE.CONCLUSION: PMBE suppresses proliferation of BEL-7402 cells in a time- and dose-dependent manner and induces cell apoptosis by possibly downregulating the expression of the bcl-2 gene.

  8. Depletion of the histone chaperone tNASP inhibits proliferation and induces apoptosis in prostate cancer PC-3 cells

    Directory of Open Access Journals (Sweden)

    Tsuruta James K

    2011-04-01

    Full Text Available Abstract Background NASP (Nuclear Autoantigenic Sperm Protein is a histone chaperone that is present in all dividing cells. NASP has two splice variants: tNASP and sNASP. Only cancer, germ, transformed, and embryonic cells have a high level of expression of the tNASP splice variant. We examined the consequences of tNASP depletion for prostate cancer PC-3 cells. Methods tNASP was depleted from prostate cancer PC-3 cells, cervical cancer HeLa cells, and prostate epithelial PWR-1E cells using lentivirus expression of tNASP shRNA. Cell cycle changes were studied by proliferation assay with CFSE labeling and double thymidine synchronization. Gene expression profiles were detected using RT2Profiler PCR Array, Western and Northern blotting. Results PC-3 and HeLa cells showed inhibited proliferation, increased levels of cyclin-dependant kinase inhibitor p21 protein and apoptosis, whereas non-tumorigenic PWR-1E cells did not. All three cell types showed decreased levels of HSPA2. Supporting in vitro experiments demonstrated that tNASP, but not sNASP is required for activation of HSPA2. Conclusions Our results demonstrate that PC-3 and HeLa cancer cells require tNASP to maintain high levels of HSPA2 activity and therefore viability, while PWR-1E cells are unaffected by tNASP depletion. These different cellular responses most likely arise from changes in the interaction between tNASP and HSPA2 and disturbed tNASP chaperoning of linker histones. This study has demonstrated that tNASP is critical for the survival of prostate cancer cells and suggests that targeting tNASP expression can lead to a new approach for prostate cancer treatment.

  9. Stratifying melanoma and breast cancer TCGA datasets on the basis of the CNV of transcription factor binding sites common to proliferation- and apoptosis-effector genes.

    Science.gov (United States)

    Mauro, James A; Yavorski, John M; Blanck, George

    2017-02-28

    Transcription factors that activate both proliferation- and apoptosis-effector genes, along with a number of related observations, have led to a proposal for a feed forward mechanism of activating the two gene classes, whereby a certain concentration of a transcription factor activates the proliferation-effector genes and a higher concentration of the transcription factor activates the apoptosis-effector genes. We reasoned that this paradigm of regulation could lead to, in the cancer setting, a selection for relatively reduced copy numbers of apoptosis-effector gene, transcription factor binding sites (TFBS). Thus, the aim of this investigation was to examine the DNA sequencing read depths of TFBS for a set of proliferation- and apoptosis-effector genes, normalized to the read depths found in matching blood samples, as provided by the cancer genome atlas (TCGA); and thereby document copy number differences among these TFBS. We determined that the melanoma and breast cancer, TCGA datasets could be divided into three categories: (i) no detectable copy number variation for the proliferation- and apoptosis-effector, shared TFBS; (ii) a relative increase in the copy number of proliferation-effector gene TFBS, compared with the copy number of the apoptosis-effector gene TFBS; and (iii) a relative decrease in the number of proliferation-effector gene TFBS. Thus, we conclude that changes in the relative copies of the shared TFBS, for proliferation- and apoptosis-effector genes, have the potential of impacting tumor cell proliferative and apoptotic capacities.

  10. 7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction.

    Science.gov (United States)

    Keramati, Farid; Seyedjafari, Ehsan; Fallah, Parviz; Soleimani, Masoud; Ghanbarian, Hossein

    2015-04-01

    7SK small nuclear RNA (snRNA) is a 331-333-bp non-coding RNA, which recruits HEXIM 1/2 protein to inhibit positive elongation factor b (P-TEFb) activity. P-TEFb is an essential factor in alleviating promoter-proximal paused RNA polymerase II (Pol II) and initiating the productive elongation phase of gene transcription. Without this protein, Pol II will remain in its hypophosphorylated state, and no transcription occurs. In this study, we inhibited P-TEFb activity by over-expressing 7SK snRNA in human embryonic kidney (HEK) 293T cancer cell line. This inhibition led to a significant decrease in cell viability, which can be due to the transcription inhibition. Moreover, 7SK snRNA over-expression promoted apoptosis in cancerous cells. Our results suggest 7SK snRNA as a potential endogenous anti-cancer agent, and to the best of our knowledge, this is the first study that uses a long non-coding RNA's over-expression against cancer cell growth and proliferation.

  11. Maturation, proliferation and apoptosis of seminal tubule cells at puberty after administration of estradiol, follicle stimulating hormone or both

    Institute of Scientific and Technical Information of China (English)

    Renata Walczak-Jedrzejowska; Jolanta Slowikowska-Hilczer; Katarzyna Marchlewska; Krzysztof Kula

    2008-01-01

    Aim: To assess proliferative and apoptotic potential of the seminiferous epithelium cells in relation to Sertoli cell maturation in newborn rats under the influence of estradiol, follicle stimulating hormone (FSH) or both agents given together. Methods: From postnatal day (PND) 5 to 15 male rats were daily injected with 12.5 μg of 17β-estradiol benzoate (EB) or 7.5 IU of human purified FSH (hFSH) or EB + hFSH or solvents (control). On postnatal day 16, autopsy was performed. Sertoli cell maturation/function was assessed by morphometry. Proliferation of the semini- ferous epithelium cells was quantitatively evaluated using immunohistochemical labeling against proliferating cell nuclear antigen and apoptosis using the TUNEL method. Results: Although EB inhibited Sertoli cell maturation and hFSH was not effective, a pronounced acceleration of Sertoli cell maturation occurred after EB + hFSH. Whereas hFSH stimulated Sertoli cell proliferation, EB or EB + hFSH inhibited Sertoli cell proliferation. All treatments signifi- cantly stimulated germ cell proliferation. Apoptosis of Sertoli cells increased 9-fold and germ cells 2-fold after EB, and was not affected by hFSH but was inhibited after EB + hFSH. Conclusion: At puberty, estradiol inhibits Sertoli cell maturation, increases Sertoli and germ cell apoptosis but stimulates germ cell proliferation. Estradiol in synergism with FSH, but neither of the hormones alone, accelerates Sertoli cell maturation associated with an increase in germ cell survival. Estradiol and FSH cooperate to induce seminal tubule maturation and trigger first spermatogenesis. (Asian J Androl 2008 Jul; 10: 585-592)

  12. CIDE-3 interacts with lipopolysaccharide-induced tumor necrosis factor, and overexpression increases apoptosis in hepatocellular carcinoma.

    Science.gov (United States)

    Min, Jie; Zhang, Wei; Gu, Yu; Hong, Liu; Yao, Li; Li, Fanfan; Zhao, Daqing; Feng, Yingming; Zhang, Helong; Li, Qing

    2011-12-01

    Cell death-inducing DFF45-like effector-3 (CIDE-3) is a novel member of an apoptosis-inducing protein family, but its function is unknown. CIDE-3 shows a different distribution pattern in hepatocellular carcinoma (HCC) tissues and normal adjacent tissues. Therefore, this work tested the hypothesis that CIDE-3 induces apoptosis in HCC cells, inhibiting oncogenesis and tumor development. We used immunohistochemistry to evaluate the expression of CIDE-3 in 82 HCC samples and 51 adjacent liver tissues. Overexpression of CIDE-3 induced apoptosis, as detected by flow cytometry, in the HCC cell line SMMC-7721, which had undetectable levels of CIDE-3 in the absence of CIDE-3 overexpression. A yeast two-hybrid system was employed to screen for proteins that interact with CIDE-3. The expression of CIDE-3 was decreased in HCC tissue, compared to adjacent normal tissues, and CIDE-3 expression and HCC differentiation were positively correlated. CIDE-3 expression levels were lower in poorly differentiated HCC tissue than in well-differentiated HCC tissue. Overexpressed CIDE-3 inhibited proliferation and induced apoptosis in HCC cells. We found that lipopolysaccharide-induced tumor necrosis factor (LITAF) interacted with CIDE-3 in hepatic cells. This is the first demonstrated interaction between CIDE-3 and LITAF, and the first report that CIDE-3 induces apoptosis in hepatocellular carcinoma.

  13. Down-regulation of AP-4 inhibits proliferation, induces cell cycle arrest and promotes apoptosis in human gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Xinghua Liu

    Full Text Available BACKGROUND: AP-4 belongs to the basic helix-loop-helix leucine-zipper subgroup; it controls target gene expression, regulates growth, development and cell apoptosis and has been implicated in tumorigenesis. Our previous studies indicated that AP-4 was frequently overexpressed in gastric cancers and may be associated with the poor prognosis. The purpose of this study is to examine whether silencing of AP-4 can alter biological characteristics of gastric cancer cells. METHODS: Two specific siRNAs targeting AP-4 were designed, synthesized, and transfected into gastric cancer cell lines and human normal mucosa cells. AP-4 expression was measured with real-time quantitative PCR and Western blot. Cell proliferation and chemo-sensitivity were detected by CCK-8 assay. Cell cycle assay and apoptosis assay were performed by flow cytometer, and relative expression of cell cycle regulators were detected by real-time quantitative PCR and Western blot, expression of the factors involved in the apoptosis pathway were examined in mRNA and protein level. RESULTS: The expression of AP-4 was silenced by the siRNAs transfection and the effects of AP-4 knockdown lasted 24 to 96 hrs. The siRNA-mediated silencing of AP-4 suppressed the cellular proliferation, induced apoptosis and sensitized cancer cells to anticancer drugs. In addition, the expression level of p21, p53 and Caspase-9 were increased when AP-4 was knockdown, but the expression of cyclin D1, Bcl-2 and Bcl-x(L was inhibited. It didn't induce cell cycle arrest when AP-4 was knockdown in p53 defect gastric cancer cell line Kato-III. CONCLUSIONS: These results illustrated that gene silencing of AP-4 can efficiently inhibited cell proliferation, triggered apoptosis and sensitized cancer cells to anticancer drugs in vitro, suggesting that AP-4 siRNAs mediated silencing has a potential value in the treatment of human gastric cancer.

  14. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  15. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  16. EFFECTS OF CURCUMIN ON PROLIFERATION AND APOPTOSIS OF HUMAN CERVICAL CARCINOMA HeLa CELLS IN VITRO

    Institute of Scientific and Technical Information of China (English)

    赵敬; 赵涌

    2004-01-01

    Objective: To investigate the regulatory effect of curcumin on proliferation and apoptosis in human cervical carcinoma cell line HeLa in vitro. Methods: Human cervical carcinoma cell line Hela was cultured in vitro. HeLa cells were treated with 10(50 (mol/L curcumin for 24(72 h and the growth inhibition rates of HeLa cells were measured by MTT method. Cell apoptosis was inspected by electron microscopy. In addition, the expression of bcl-2, bcl-xl and caspase-3 protein in HeLa cell were observed by SP immunohistochemistry. Results: Curcumin inhibited the proliferation of HeLa cells on a dose-depending manner. Peak of subG1 appeared on DNA histogram in FCM. A portion of the cells presented the characteristic morphological changes of apoptosis under the electron microscope. The bcl-2, bcl-xl expression was decreased while Caspase-3 expression was increased. Conclusion: Curcumin could significantly inhibit the growth of HeLa cells; inducing apoptosis through up-regulating Caspase-3 and down-regulating expression of bcl-2 and bcl-xl was probably one of its molecular mechanisms.

  17. [Effect of overexpression of CAV1 mediated by lentivirus on proliferation and apoptosis of HL-60 cells].

    Science.gov (United States)

    Ma, Wei; Wang, Di-Di; Wang, Zhao; Zhu, Gui-Ming; Zhang, Peng-Xia

    2013-08-01

    This study was purposed to explore the effect of lentivirus-mediated CAV1 overexpression on proliferation and apoptosis in HL-60 cells. Recombinant lentiviral expression vector pcDNA-EF1-CAV1 was constructed, and cotransfected the 293TN cells with a mixture of pPACK packaging plasmids. Then collecting virus suspension infects the HL-60 cells, which make CAV1 gene stable transfection and high expression in the cells. The CAV1 protein expression status in HL-60 cells transfected was evaluated through Western blot method. Proliferative activity and apoptosis of HL-60 cells before and after transfection were detected by CCK-8 method and flow cytometry, respectively. The results showed that the PCR-positive clone screening and results of nucleotide sequencing confirmed that the CAV1 gene inserted into the expression vector pcDNA-EF1-GFP correctly, recombinant lentiviral particles Lv-CAV1 transfected HL-60 cells successfully and with transfection rate up to 90%. The result of Western blot showed that CAV1 protein expression in HL-60 cells significantly increased at 48 hours after transfection. CCK-8 result indicated that cell proliferation activity increased at 48 h after transfection (P HL-60 cells obviously decreased after transfection (P HL-60 cells can inhibit cell proliferation activity and promote cell apoptosis.

  18. MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells

    Institute of Scientific and Technical Information of China (English)

    Bo Wang; Liming Fang; Hui Zhao; Tong Xiang; Dechun Wang

    2012-01-01

    Restoring p53 activity by inhibiting the interaction between p53 and the mouse double minutes clone 2 (MDM2) offers an attractive approach to cancer therapy.Nutlin-3a is a small-molecule inhibitor that inhibits MDM2 binding to p53 and subsequent p53-dependent DNA damage signaling.In this study,we determined the efficacy of Nutlin-3a in inducing p53-mediated cell death in osteosarcoma (OS) cell lines both in vivo and in vitro.Targeted disruption of the p53-MDM2 interaction by Nutlin-3a stabilizes p53 and selectively activates the p53 pathway only in OS cells with wild-type p53,resulting ina pronounced anti-proliferative and cytotoxic effect due to G1 cell cycle arrest and apoptosis both in vitro and in vivo.p53 dependence of these alternative outcomes of Nutlin-3a treatment was shown by the abrogation of these effects when p53 was knocked-down by small interfering RNA.These data suggest that the disruption of p53-MDM2 interaction by Nutlin-3a might be beneficial for OS patients with MDM2 amplification and wt p53 status.

  19. The immunosuppressive effect of gossypol in mice is mediated by inhibition of lymphocyte proliferation and by induction of cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Wen-bin XU; Li-hui XU; Hong-song LU; Dong-yun OUYANG; Huan-jing SHI; Jing-fang DI; Xian-hui HE

    2009-01-01

    Aim: To investigate the immunosuppressive effect of gossypol in mice both in vitro and in vivo.Methods: The in vitro effect of gossypol on the proliferation of lymphocytes isolated from lymph nodes of BALB/c mice was determined by CFSE staining and by an MTS assay. Lymphocyte activation and lymphoblastic transformation were evaluated with immunostaining. Cell apoptosis was detected by Annexin-V and Hoechst 33342 staining. The in vivo immunosuppressive effect of gossypol on the DTH reaction was evaluated using a mouse DTH model induced by 2,4-dinitro-1-fluorobenzene (DNFB). The thickness of the ears was measured, and the histological changes of the mouse auricles were observed after hematoxylin-eosin staining. The proliferation capacity of lymphocytes from DTH mice was also assayed.Results: In vitro, gossypol could significantly inhibit the proliferation of mouse lymphocytes stimulated with phorbol ester plus ionomycin in a dose-dependent manner. Although the expression of the early activation antigen CD69 was not affected, the lymphoblastic transformation of both T and B lymphocyte subsets was significantly suppressed by gossypol.Moreover, gossypol could induce apoptosis of lymphocytes, and the effect was time- and dose-dependent. In vivo, the DTH reaction in mice was markedly alleviated by gossypol injected intraperitoneally. Lymphocytes from drug-treated DTH mice had a reduced proliferation capacity as compared with lymphocytes from untreated DTH mice. Gossypol treatment also markedly reduced the number of infiltrated lymphocytes in the auricles of DTH mice. Conclusion: Gossypol exhibited immunosuppressive effects in mice, probably by inhibition of lymphocyte proliferation and by induction of cell apoptosis.

  20. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    Full Text Available Ursolic acid (UA, a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viability and clone formation and changes in cell morphology and spreading. UA also suppressed colon cancer cell migration by inhibiting MMP9 and upregulating CDH1 expression. Further studies showed that UA inhibited the phosphorylation of Akt and ERK proteins. Pretreatment with an Akt or ERK-specific inhibitor considerably abrogated the proliferation inhibition by UA. UA also significantly inhibited colon cancer cell COX-2 expression and PGE2 production. Pretreatment with a COX-2 inhibitor (celecoxib abrogated the UA-induced cell proliferation. Moreover, we found that UA effectively promoted NF-κB and p300 translocation from cell nuclei to cytoplasm, and attenuated the p300-mediated acetylation of NF-κB and CREB2. Pretreatment with a p300 inhibitor (roscovitine abrogated the UA-induced cell proliferation, which is reversed by p300 overexpression. Furthermore, UA treatment induced colon cancer cell apoptosis, increased the cleavage of PARP, caspase-3 and 9, and trigged the release of cytochrome c from mitochondrial inter-membrane space into cytosol. These results indicate that UA inhibits cell proliferation and induces apoptosis in colon cancer cells through simultaneous modulation of the multiple signaling pathways such as MMP9/CDH1, Akt/ERK, COX-2/PGE2, p300/NF-κB/CREB2, and cytochrome c/caspase pathways.

  1. A Novel Natural Product, KL-21, Inhibits Proliferation and Induces Apoptosis in Chronic Lymphocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Aysun Adan Gökbulut

    2015-06-01

    Full Text Available INTRODUCTION: The aims of this study were to examine the cytotoxic and apoptotic effects of KL-21, a novel plant product (produced by Naturin Natural Products, İzmir, Turkey, on 232B4 chronic lymphocytic leukemia (CLL cells and to determine the cytotoxic effects on healthy BEAS-2B human bronchial epithelial cells. METHODS: The cytotoxic effect of KL-21 was determined by MTT cell proliferation assay. Changes in caspase-3 enzyme activity were measured using the caspase-3 colorimetric assay. Changes in mitochondrial membrane potential were determined using the JC-1 dye-based method. Annexin V-FITC/PI double staining was performed to measure the apoptotic cell population. Effects of KL-21 on cell cycle profiles of CLL cells were investigated by flow cytometry. RESULTS: We detected time- and concentration-dependent increases in the cytotoxic effect of KL-21 on 232B4 CLL cells. However, we also showed that, especially at higher concentrations, KL-21 was less cytotoxic towards BEAS-2B healthy cells than towards CLL cells. Annexin-V/PI double staining results showed that the apoptotic cell population increased in 232B4 cells. Increasing concentrations of KL-21 increased caspase-3 enzyme activity and induced loss of mitochondrial membrane potential. KL-21 administration resulted in small increases in the percentage of the cells in the G0/G1 phase while it decreased the S phase cell population up to 1 mg/mL. At the highest concentration, most of the cells accumulated in the G0/G1 phase. DISCUSSION AND CONCLUSION: KL-21 has a growth-inhibitory effect on 232B4 CLL cells. KL-21 causes apoptosis and cell cycle arrest at G0/G1.

  2. Patterns of Apoptosis and Proliferation throughout the Biennial Reproductive Cycle of Viviparous Female Typhlonectes compressicauda (Amphibia, Gymnophiona

    Directory of Open Access Journals (Sweden)

    Michel Raquet

    2016-12-01

    Full Text Available Typhlonectes compressicauda is an aquatic gymnophionan amphibian living in South America. Its breeding cycle is linked to seasons, characterized by a regular alternation of rainy and dry seasons. During a complex biennial cycle, the female genital tract undergoes a series of alternations of increasing and decreasing, governed by equilibrium of proliferation and apoptotic phenomena. Immunohistochemical methods were used to visualize cell proliferation with the detection of Ki67 antibody, a protein present in proliferative cells; terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL and Apostain were performed to detect apoptotic cells on sections of ovaries and oviducts. In ovaries, both phenomena affect the germinal nests and follicles according to the cycle period. In the oviduct, the balance was in favor of proliferation during preparation for reproduction, and in favor of apoptosis when genital ducts regress. Apoptosis and proliferation are narrowly implicated in the remodeling of the genital tract and they are accompanied by the differentiation of tissues according to the phase of the breeding cycle. These variations permit the capture of oocytes at ovulation, always at the same period, and the parturition after 6–7 months of gestation, at a period in which the newborns live with their mother, protected in burrows in the mud. During the intervening year of sexual inactivity, the female reconstitutes body reserves.

  3. Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.

    Science.gov (United States)

    Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan

    2015-12-01

    To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P Hela cells in a dose-dependent manner after 72 h of treatment (P Hela cells in vitro.

  4. Effect of Photodynamic Therapy with BPD-MA on the Proliferation and Apoptosis of Human Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Chuanshan Xu; Shiming Wu; Zhigang Wang; Lehua Yu; Qing Yang

    2005-01-01

    OBJECTIVE To explore the effect of photodynamic therapy with benzoporphyrin derivative monoacid ring A (BPD-MA) on the proliferation and apoptosis of human bladder cancer cells.METHODS Rhotosensitization of BPD-MA was activated with a red light laser (632.8 nm) delivered at 10 mw/cm2 to give a total dose of 2.4 J/cm2.Cellular proliferative activity was measured using the 3-(4,5-dimethylethiazil-2-yl)-2,5-Diph3-eyl tetrazolium bromide (MTT) assay and 3H-thymidine incorporation. Cell apoptosis was determined with flow cytometry analysis and the terminal deoxyuridine nicked-labeling (TUNEL) assay.RESULTS At 24 h post photodynamic treatment, photodynamic therapy significantly decreased cellular proliferative activity. The rate of apoptosis in BIU-87 cells 8 h after photodynamic treatment significantly increased up to 26.11± 2.59% as analyzed with flow cytometry. In situ labeling of DNA cleavage products with the terminal deoxyuridine nicked-labeling (TUNEL) assay reinforced these observations, BPD-MA-mediated photosensitization increased the number of TUNEL-positive cells compared to the controls. However, laser irradiation alone, BPD-MA alone and sham radiation did not affect cellular proliferative activity or apoptosis of the human bladder cancer BIU-87 cells.CONCLUSION Photodynamic therapy with BPD-MA significantly decreases cellular proliferative activity and enhances apoptosis. Therapy using this method might be a promising approach to treat patients with bladder cancer.

  5. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts.

    Science.gov (United States)

    Cenci, Caterina; Gould, Alex P

    2005-09-01

    The Drosophila central nervous system is generated by stem-cell-like progenitors called neuroblasts. Early in development, neuroblasts switch through a temporal series of transcription factors modulating neuronal fate according to the time of birth. At later stages, it is known that neuroblasts switch on expression of Grainyhead (Grh) and maintain it through many subsequent divisions. We report that the function of this conserved transcription factor is to specify the regionalised patterns of neurogenesis that are characteristic of postembryonic stages. In the thorax, Grh prolongs neural proliferation by maintaining a mitotically active neuroblast. In the abdomen, Grh terminates neural proliferation by regulating the competence of neuroblasts to undergo apoptosis in response to Abdominal-A expression. This study shows how a factor specific to late-stage neural progenitors can regulate the time at which neural proliferation stops, and identifies mechanisms linking it to the Hox axial patterning system.

  6. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells.

    Science.gov (United States)

    Yu, Yang; Yu, Xiaofeng; Ma, Jianxia; Tong, Yili; Yao, Jianfeng

    2016-07-01

    The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway plays a significant role in colorectal adenocarcinoma. NVP-BEZ235 (dactolisib) is a novel dual inhibitor of PI3K/mTOR. The effects of NVP-BEZ235 in human colorectal adenocarcinoma are still unclear. In the present study, we aimed to explore the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. HT-29 human colorectal adenocarcinoma cells were treated with NVP-BEZ235 (0, 0.001, 0.01, 0.1, 1 and 3 µM) for 24 and 48 h, respectively. Cells were also treated with NVP-BEZ235 (0.1 µM), DDP (100, 300 and 1,000 µM), and NVP-BEZ235 (0.1 µM) combined with DDP (100, 300 and 1,000 µM) respectively, and cultured for 24 h after treatment. MTT assay was utilized to evaluate the effects of NVP-BEZ235 alone or NVP-BEZ235 combined with cis-diamminedichloroplatinum (DDP) on proliferation of HT-29 cells. Cell wound-scratch assay was used detect cell migration. In addition, expression of microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B and LC3B) in HT-29 cells was detected by immunofluorescence at 48 h after NVP-BEZ235 (1 µM) treatment. Expression of proteins involved in cell cycle and proliferation (p-Akt, p-mTOR and cyclin D1), apoptosis (cleaved caspase-3), and autophagy (cleaved LC3B and Beclin-1) were detected by western blot analysis. NVP-BEZ235 inhibited the proliferation and migration of HT-29 human colorectal adenocarcinoma cells. NVP-BEZ235 decreased protein expression of p-Akt, p-mTOR and cyclin D1, and increased protein expression of cleaved caspase-3, cleaved LC3B and Beclin-1 as the concentrations and the incubation time of NVP-BEZ235 increased. In addition, NVP-BEZ235 and DDP had synergic effects in inhibiting cell proliferation and migration. The expression of protein involved in apoptosis (cleaved caspase-3) was higher in drug combination group compared to the NVP-BEZ235 single treatment group. NVP-BEZ235

  7. Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors.

    Directory of Open Access Journals (Sweden)

    Dafna Willner

    Full Text Available Chronic morphine treatment inhibits neural progenitor cell (NPC progression and negatively effects hippocampal neurogenesis. However, the effect of acute opioid treatment on cell development and its influence on NPC differentiation and proliferation in vitro is unknown. We aim to investigate the effect of a single, short term exposure of morphine on the proliferation, differentiation and apoptosis of NPCs and the mechanism involved.Cell cultures from 14-day mouse embryos were exposed to different concentrations of morphine and its antagonist naloxone for 24 hours and proliferation, differentiation and apoptosis were studied. Proliferating cells were labeled with bromodeoxyuridine (BrdU and cell fate was studied with immunocytochemistry.Cells treated with morphine demonstrated decreased BrdU expression with increased morphine concentrations. Analysis of double-labeled cells showed a decrease in cells co-stained for BrdU with nestin and an increase in cells co-stained with BrdU and neuron-specific class III β-tubuline (TUJ1 in a dose dependent manner. Furthermore, a significant increase in caspase-3 activity was observed in the nestin- positive cells. Addition of naloxone to morphine-treated NPCs reversed the anti-proliferative and pro-apoptotic effects of morphine.Short term morphine exposure induced inhibition of NPC proliferation and increased active caspase-3 expression in a dose dependent manner. Morphine induces neuronal and glial differentiation and decreases the expression of nestin- positive cells. These effects were reversed with the addition of the opioid antagonist naloxone. Our results demonstrate the effects of short term morphine administration on the proliferation and differentiation of NPCs and imply a mu-receptor mechanism in the regulation of NPC survival.

  8. Lupeol inhibits proliferation and induces apoptosis of human pancreatic cancer PCNA-1 cells through AKT/ERK pathways.

    Science.gov (United States)

    Liu, Yan; Bi, Tingting; Wang, Gang; Dai, Wei; Wu, Guoliang; Qian, Liqiang; Gao, Quangen; Shen, Genhai

    2015-03-01

    Lupeol, a dietary triterpene, present in many fruits and medicinal plants, has been reported to possess many pharmacological properties including anti-cancer activities both in vitro and in vivo. However, the precise mechanism involved remains largely unknown. The present study is conducted to investigate the anti-cancer activity and the underlying mechanisms of lupeol on human pancreatic cancer proliferating cell nuclear antigen 1 (PCNA-1) cells in vitro and in vivo. Lupeol significantly inhibited the proliferation of the cells in dose- and time-dependent manners and induced apoptosis as well as cell cycle arrest in G0/G1 phase by upregulating P21 and P27 and downregulating cyclin D1. The expression of apoptosis-related proteins in cells was evaluated by western blot analysis, and we found that lupeol induced cell apoptosis by decreasing the levels of p-AKT and p-ERK. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of lupeol in PCNA-1 cells, demonstrating the important role of AKT in this process. More importantly, our in vivo studies showed that administration of lupeol decreased tumor growth in a dose-dependent manner. Immunohistochemistry analysis demonstrated the downregulation of p-AKT and p-ERK in tumor tissues following lupeol treatment, consistent with the in vitro results. Therefore, these findings indicate that lupeol can inhibit cell proliferation and induce apoptosis as well as cell cycle arrest of PCNA-1 cells and might offer a therapeutic potential advantage for human pancreatic cancer chemoprevention or chemotherapy.

  9. Effects of anaesthesia on proliferation, invasion and apoptosis of LoVo colon cancer cells in vitro.

    Science.gov (United States)

    Xu, Y J; Li, S Y; Cheng, Q; Chen, W K; Wang, S L; Ren, Y; Miao, C H

    2016-02-01

    Tumour cell proliferation, invasion and apoptosis are crucial steps in tumour metastasis. We evaluated the effect of serum from patients undergoing colon cancer surgery receiving thoracic epidural and propofol anaesthesia on colon cancer cell biology. Patients were randomly assigned to receive propofol anaesthesia with a concomitant thoracic epidural (PEA, n = 20) or sevoflurane anaesthesia with opioid analgesia (SGA, n = 20). Venous blood was obtained before induction of anaesthesia and 24 hours postoperatively. The LoVo colon cancer cells were cultured with patient serum from both groups and the effects on proliferation, invasion and apoptosis were measured. Twenty-four hours after surgery, the absorbance value of LoVo cells at 10% serum concentration from PEA was decreased when compared with SGA (0.302 (0.026) vs 0.391 (0.066), p = 0.005). The inhibitory rate of LoVo cells at 10% serum concentration from PEA was higher than that from SGA (p = 0.004) 24 h after surgery. The number of invasive LoVo cells at 10% serum concentration from PEA was reduced when compared with SGA (44 (4) vs 62 (4), p < 0.001). Exposure of LoVo cells to postoperative serum from patients receiving PEA led to a higher luminescence ratio (apoptosis) than those receiving SGA (0.36 (0.04) vs 0.27 (0.05), p < 0.001). Serum from patients receiving PEA for colon cancer surgery inhibited proliferation and invasion of LoVo cells and induced apoptosis in vitro more than that from patients receiving SGA. Anaesthetic technique might influence the serum milieu in a way that affects cancer cell biology and, thereby, tumour metastastasis.

  10. Effects of recombinant adenoviral vector containing IRE1α gene on proliferation and apoptosis of ATDC5 stem cells

    Directory of Open Access Journals (Sweden)

    Xiang-zhu LI

    2013-09-01

    Full Text Available Objective To construct the recombinant adenoviral vector containing human IRE1α (type I transmembrane protein kinase/endoribonucleasegene, and investigate its effects on proliferation and apoptosis of ATDC5 stem cells. Methods  By using pAdEasyTM adenovirus vector system, the recombinant shuttle vectors of IRE1α full-length gene(pAdTrack-IRE1αand RNase+Kinasedomain(pAdTrack-R+Kwere constructed, and then transferred with pAdEasy-1 to generate recombinant adenovirus plasmid pAd-IRE1α and pAd-R+K by electroporation method. Subsequently, the plasmids were transfected into HEK-293 cells to pack and amplify the recombinant adenovirus Ad-IRE1α and Ad-R+K. The expression of recombinant adenovirus was detected by PCR. The ATDC5 cells wereinfected in vitro by recombinant adenovirus Ad-IRE1α and Ad-R+K, the infection efficiency of green fluorescent protein(GFPwas observed, and the influence of Ad-IRE1α and Ad-R+K on the proliferation and apoptosis of ATDC5 cells under endoplasmic reticulum stress(ERS or non-ERS was detected by flow cytometry(FCM. Results Restriction endonuclease digestion analysis and PCR indicated that the recombinant adenovirus vector Ad-IRE1α andAd-R+K was successfully constructed. FCM detection showed that under ERS conditions, the G1 phasedcreased and S phase increased in ATDC5 cells after transfected by Ad-IRE1α and Ad-R+K, meanwhile the apoptosis rate increased significantly(P<0.05. Conclusion Infection of recombinant adenovirus containing IRE1α gene may promote the proliferation and apoptosis of ATDC5cells.

  11. Research Note Mesenchymal stem cells from skin lesions of psoriasis patients promote proliferation and inhibit apoptosis of HaCaT cells.

    Science.gov (United States)

    Liu, R F; Wang, F; Wang, Q; Zhao, X C; Zhang, K M

    2015-12-22

    Psoriasis is an inflammatory skin disease characterized by excessive proliferation and abnormal differentiation and apoptosis of keratinocytes (KCs). Mesenchymal stem cells (MSCs) from skin lesions of psoriasis patients demonstrate abnormal cytokine secretion, which may affect KC proliferation and apoptosis. Here, we explored how MSCs from skin lesions of psoriasis patients affect HaCaT cell proliferation and apoptosis. First, flow cytometry and multipotent differentiation methods were used to identify skin MSCs, which were then co-cultured with HaCaT cells. HaCaT cell proliferation was analyzed in real-time, and cell cycle progression and apoptosis were assessed by flow cytometry. Cell morphologies and multipotencies of skin MSCs were similar between the psoriasis group and healthy control group, with high levels of CD29, CD44, CD73, CD90, and CD105 and limited expression of CD34, CD45, and HLA-DR. MSCs from skin lesions of psoriasis patients promote KC proliferation more potently and are less capable of inducing KC apoptosis. This may underlie KC proliferation and abnormal apoptosis in psoriasis skin lesions, which results in abnormal thickening of the epidermis.

  12. Down regulation of miR-203 in radiation-induced thymic lymphoma promoted cells proliferation and inhibited apoptosis%Down regulation of miR-203in radiation-induced thymic lymphoma promoted cells proliferation and inhibited apoptosis

    Institute of Scientific and Technical Information of China (English)

    Zhang Chaoxiong; Zhang Mingjian; Gao Fu; Zhou Chuanfeng; Zhang Pei; Cai Jianming; Liu Cong

    2015-01-01

    Objective To investigate the role of miR-203 in radiation-induced thymic lymphoma (RITL).Methods A 60Co irradiator was used for total-body irradiation.MicroRNAs(miRNAs) level was assayed by qRT-PCR.Cell proliferation was assayed by MTT assay.Cell apoptosis was examined by fluorescence activated cell sorter (FACS).Dual luciferase reporter assay system was used to detect the 3'UTR reporter.Results MiR-203 was down-regulated in RITL tissues.Overexpression of miR-203 strongly inhibited the proliferation of both NIH3T3 cells and EL4 cells and vice versa.MiR-203 inhibited cells proliferation and induced apoptosis via TANK-binding kinase (TBK1),SLUG (SNAI2) and Cyclin D1 (CCND1).Conclusions Radiation down-regulated the level of miR-203 in thymic,which promoted radiation-induced thymic lymphoma by targeting TBK1,SNAI2 and CCND1.

  13. The PI3K inhibitor GS-1101 synergistically potentiates HDAC inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and ERK pathways

    Science.gov (United States)

    Bodo, Juraj; Zhao, Xiaoxian; Sharma, Arishya; Hill, Brian T.; Portell, Craig A.; Lannutti, Brian J.; Almasan, Alexandru; Hsi, Eric D.

    2013-01-01

    Previously, we showed that inhibition of the protein kinase C β (PKCβ)/AKT pathway augments engagement of the histone deacetylase inhibitor (HDI)-induced apoptosis in lymphoma cells. In the present study, we investigated the cytotoxicity and mechanisms of cell death induced by the delta isoform-specific phosphatidylinositide 3-kinase (PI3K) inhibitor, GS-1101, in combination with the HDI, panobinostat (LBH589) and suberoylanilide hydroxamic acid (SAHA). Lymphoma cell lines and primary Non-Hodgkin Lymphoma (NHL) and chronic lymphocytic leukaemia (CLL) cells were simultaneously treated with the HDI, LBH589 and GS-1101. An interaction of the LBH589/GS-1101 combination was formally examined by using various concentrations of LBH589 and GS-1101. Combined treatment resulted in a synergistic inhibition of proliferation and showed synergistic effect on apoptotic induction in all tested cell lines and primary NHL and CLL cells. This study indicates that interference with PI3K signalling dramatically increases HDI-mediated apoptosis in malignant haematopoietic cells, possibly through both AKT-dependent or AKT- independent mechanisms. Moreover, the increase in HDI-related apoptosis observed in PI3K inhibitor-treated cells appears to be related to the disruption of the extracellular signal-regulated kinase (ERK) signalling pathway. This study provides a strong rational for testing the combination of PI3K inhibitors and HDI in the clinic. PMID:23889282

  14. The Relationship between Apoptosis and the Expression of Proliferating Cell Nuclear Antigen and the Clinical Stages in Gastric Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The relationship between the apoptosis and the expression of proliferating cell nuclear antigen (PCNA) and the clinical stages in gastric cancers was studied. By using terminal deoxynucleotidyl transferase-mediated nick end labelling (TUNEL) technique and PCNA immunohistochemical staining, the apoptosis and the expression of PCNA in tissue of gastric carcinoma were assayed in situ, the index of apoptosis (AI), index of PCNA (PI) and the rate of AI/PI were calculated. AI and PI in gastric cancer tissues were (6.5±3.7) % and (49.8±15.9) % respectively, and the rate of AI/PI was 0.13±0.05, which were obviously different from those of normal gastric mucosa in paragastric cancer (P<0.01). With the advanced TNM stages of gastric carcinoma, the AI was decreased, PI was increased and the rate of AI/PI decreased in gastric carcinoma. There was significant difference in them between the gastric cancer tissues and normal gastric mucosa in pericarcinoma in TNM stage Ⅱ to Ⅳ (P<0.05). It was suggested that the decreased apoptotic cells and the increased proliferating cells were obviously related to the tumor genesis and tumor progression in gastric carcinoma. The AI, PI and the rate of AI/PI would become the prognostic factors in advanced gastric carcinoma.

  15. Alteration of the Cyclin D1/p16-pRB Pathway, Cellular Proliferation and Apoptosis in Glioma

    Institute of Scientific and Technical Information of China (English)

    WANGCun-zu; FUZhen; ZHAOZhu.qing

    2004-01-01

    To study the alteration of cyclin D1, p16 and pRB in glioma, analyze proliferation and apoptosis of tmnor cells, and discuss the pathogenesis of glioma, Methods : Thirty-seven glioma specimens were classified as astrocytoma(25 cases, including 7 fibrillary cases; 6 protoplasmic cases; 12 anaplastic cases), and glioblastoma( 12 cases, including 4 GBM cases). Ten normal brain tissues were taken as controls. The expression of cyclin D1, p16 and pRB were detected by imrnunohistochemical method, Cellular proliferation was assessed by Ki-67 label index( Ki-67 LI). Cellular apoptosis was detected by TUNEL and apoptotic indices(AI) was calculated. Resu/ts: The alterations of three proteins were cyclin D1 overexpression( 28/37,75.7% ), p16 and pRB deletion( 20/37.54.1% and 12/37,32.4% ), which were closely related to tumor types, particularly in malignant glioma. Ki-67 LI and AI were higher when pRB pathway was abnormal. Apoptosis was minor in astrocytic tumors( astrocytomas, 0.010±0.002; glioblastomas, 0.057±0.016). Condusion:The abnormalities of cyclin DI/pl6-pRB pathway correlated closely with pathogenesis of glioma.

  16. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  17. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway.

    Science.gov (United States)

    Ge, Yuqing; Yang, Bo; Chen, Zhe; Cheng, Rubin

    2015-11-01

    Pancreatic cancer remains a challenging disease worldwide. Cryptotanshinone (CPT) is one of the active constituents of Salvia miltiorrhiza Bunge and exhibits significant antitumor activities in several human cancer cells. However, the efficacy and molecular mechanism of CPT in pancreatic cancer remains to be elucidated. In the present study, the effect of CPT on the proliferation, apoptosis and cell cycle of human pancreatic cancer cell BxPC‑3 cells was evaluated. The results demonstrated that CPT inhibited proliferation of the BxPC‑3 cells in a concentration‑dependent manner, and significantly induced cell apoptosis and cell cycle arrest. The protein levels of cleaved caspase‑3, caspase‑9 and poly ADP ribose polymerase were upregulated, while the levels of c‑myc, survivin and cyclin D1 were downregulated following treatment with CPT. In addition, CPT decreased the activities of signal transducer and activator of transcription 3 (STAT3) and several upstream regulatory signaling pathways after 24 h. However, CPT only inhibited the phosphorylation of STAT3 Tyr705 within 30 min, without marked effects on the phosphorylation of the other proteins. These results suggested that the inhibition of STAT3 activity by CPT was directly and independent of the upstream regulators in human pancreatic cancer. The present study demonstrated that CPT exerts anticancer effects by inducing apoptosis and cell cycle arrest via inhibition of the STAT3 signaling pathway in human BxPC-3 cells.

  18. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  19. Somatostatin and opioid receptors do not regulate proliferation or apoptosis of the human multiple myeloma U266 cells

    Directory of Open Access Journals (Sweden)

    Allouche Stéphane

    2009-06-01

    Full Text Available Abstract Background opioid and somatostatin receptors (SSTRs that can assemble as heterodimer were individually reported to modulate malignant cell proliferation and to favour apoptosis. Materials and methods: SSTRs and opioid receptors expression were examined by RT-PCR, western-blot and binding assays, cell proliferation was studied by XTT assay and propidium iodide (PI staining and apoptosis by annexin V-PI labelling. Results almost all human malignant haematological cell lines studied here expressed the five SSTRs. Further experiments were conducted on the human U266 multiple myeloma cells, which express also μ-opioid receptors (MOP-R. XTT assays and cell cycle studies provide no evidence for a significant effect upon opioid or somatostatin receptors stimulation. Furthermore, neither direct effect nor potentiation of the Fas-receptor pathway was detected on apoptosis after these treatments. Conclusion these data suggest that SSTRs or opioid receptors expression is not a guaranty for an anti-tumoral action in U266 cell line.

  20. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR.

    Science.gov (United States)

    Wang, Zheng; Wu, Xue; Liang, Yan-Ni; Wang, Li; Song, Zhong-Xing; Liu, Jian-Li; Tang, Zhi-Shu

    2016-09-27

    Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G₀/G₁ phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  1. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2016-09-01

    Full Text Available Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G0/G1 phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  2. Roles of NHE-1 in the proliferation and apoptosis of pulmonary artery smooth muscle cells in rats

    Institute of Scientific and Technical Information of China (English)

    姚伟; 钱桂生; 杨晓静

    2002-01-01

    Objective To evaluate the roles of Na+/H+ exchanger-1 (NHE-1)in the proliferation and apoptosis of pulmonary artery smooth muscle cells in rats. Methods Twenty Wistar rats were randomized into control group and 3-week hypoxic group. Intracellular pH (pHi) of the smooth muscle was determined with fluorescence measurement of the pH-sensitive dye BCECF-AM, and the expression of NHE-1 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). Primary culture of pulmonary artery smooth muscle cells in vitro was performed. In situ cell death detection kit (TUNEL) was used for studying the effect of specific NHE-1 inhibitor-dimethyl amiloride (DMA) on the apoptosis of muscle cells which had intracellular acidification. Results pHi value and NHE-1 mRNA expression of pulmonary artery smooth muscle cells were significantly higher in the hypoxic group than in the control group (P<0.01, P<0.001). DMA elevated the apoptotic ratio remarkably. The effect was enhanced when DMA concentration increased and the time prolonged. Conclusions With the function of adjusting pHi, NHE-1 may play an important role in the proliferation and apoptosis of pulmonary artery smooth muscle cells.

  3. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  4. Regulation of cell proliferation and apoptosis in neuroblastoma cells by ccp1, a FGF2 downstream gene

    Directory of Open Access Journals (Sweden)

    Inman Gareth J

    2010-11-01

    Full Text Available Abstract Background Coiled-coil domain containing 115 (Ccdc115 or coiled coil protein-1 (ccp1 was previously identified as a downstream gene of Fibroblast Growth Factor 2 (FGF2 highly expressed in embryonic and adult brain. However, its function has not been characterised to date. Here we hypothesized that ccp1 may be a downstream effecter of FGF2, promoting cell proliferation and protecting from apoptosis. Methods Forced ccp1 expression in mouse embryonic fibroblast (MEF and neuroblastoma SK-N-SH cell line, as well as down-regulation of ccp1 expression by siRNA in NIH3T3, was used to characterize the role of ccp1. Results Ccp1 over-expression increased cell proliferation, whereas down-regulation of ccp1 expression reduced it. Ccp1 was able to increase cell proliferation in the absence of serum. Furthermore, ccp1 reduced apoptosis upon withdrawal of serum in SK-N-SH. The mitogen-activated protein kinase (MAPK or ERK Kinase (MEK inhibitor, U0126, only partially inhibited the ccp1-dependent BrdU incorporation, indicating that other signaling pathway may be involved in ccp1-induced cell proliferation. Induction of Sprouty (SPRY upon FGF2 treatment was accelerated in ccp1 over-expressing cells. Conclusions All together, the results showed that ccp1 regulates cell number by promoting proliferation and suppressing cell death. FGF2 was shown to enhance the effects of ccp1, however, it is likely that other mitogenic factors present in the serum can also enhance the effects. Whether these effects are mediated by FGF2 influencing the ccp1 function or by increasing the ccp1 expression level is still unclear. At least some of the proliferative regulation by ccp1 is mediated by MAPK, however other signaling pathways are likely to be involved.

  5. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells

    Science.gov (United States)

    Urbańska, Kaja; Pająk, Beata; Orzechowski, Arkadiusz; Sokołowska, Justyna; Grodzik, Marta; Sawosz, Ewa; Szmidt, Maciej; Sysa, Paweł

    2015-03-01

    Recently, it has been shown that silver nanoparticles (AgNPs) provide a unique approach to the treatment of tumors, especially those of neuroepithelial origin. Thus, the aim of this study was to evaluate the impact of AgNPs on proliferation and activation of the intrinsic apoptotic pathway of glioblastoma multiforme (GBM) cells cultured in an in ovo model. Human GBM cells, line U-87, were placed on chicken embryo chorioallantoic membrane. After 8 days, the tumors were divided into three groups: control (non-treated), treated with colloidal AgNPs (40 μg/ml), and placebo (tumors supplemented with vehicle only). At the end of the experiment, all tumors were isolated. Assessment of cell proliferation and cell apoptosis was estimated by histological, immunohistochemical, and Western blot analyses. The results show that AgNPs can influence GBM growth. AgNPs inhibit proliferation of GBM cells and seem to have proapoptotic properties. Although there were statistically significant differences between control and AgNP groups in the AI and the levels of active caspase 9 and active caspase 3, the level of these proteins in GBM cells treated with AgNPs seems to be on the border between the spontaneous apoptosis and the induced. Our results indicate that the antiproliferative properties of silver nanoparticles overwhelm proapoptotic ones. Further research focused on the cytotoxic effect of AgNPs on tumor and normal cells should be conducted.

  6. Melatonin protects rat thymus against oxidative stress caused by exposure to microwaves and modulates proliferation/apoptosis of thymocytes.

    Science.gov (United States)

    Sokolovic, Dusan; Djordjevic, Branka; Kocic, Gordana; Veljkovic, Andrej; Marinkovic, Milena; Basic, Jelena; Jevtovic-Stoimenov, Tatjana; Stanojkovic, Zoran; Sokolovic, Danka M; Pavlovic, Voja; Djindjic, Boris; Krstic, Dejan

    2013-03-01

    The aim of the study was to evaluate the effect of melatonin on oxidative stress, DNA fragmentation, apoptsis and proliferation in thymus tissue of rats exposed to microwaves. Wistar rats were divided in four groups: I - treated with saline; II - treated with melatonin; III - microwaves exposed; IV - microwaves exposed and melatonin treated. Melatonin (2 mg/kg i.p.) was administered daily. Animals were sacrificed after 20, 40 and 60 days. A significant increase in malondialdehyde and carbonyl group content, as well as decrease in catalase and increase in xanthine oxidase activity were registered under microwave exposure. Melatonin prevented the increase in malondialdehyde and carbonyl group content, and reversed the effect on catalase and xanthine oxidase activity. Both, alkaline and acid DNase activity were increased due to microwave exposure. Furthermore, microwaves caused increase in apoptosis rate (detected using Annexin V-FITC/PI kit) and reduced proliferative capacity of thymocytes (induced by ConA). However, melatonin caused decrease in alkaline and acid DNase activity, decrease in apoptotic rate and increase in proliferation rate of thymocytes. Melatonin exerts protective effects on rat thymocytes by modulating processes of apoptosis and proliferation, and causes decrease in DNA fragmentation and oxidative stress intensity under exposure to microwaves.

  7. Lunasin Inhibits Cell Proliferation via Apoptosis and Reduces the Production of Proinflammatory Cytokines in Cultured Rheumatoid Arthritis Synovial Fibroblasts

    Directory of Open Access Journals (Sweden)

    Shaohui Jia

    2015-01-01

    Full Text Available Lunasin, a peptide with 43 amino acid residues and initially isolated and identified in soybean cotyledon, has gained extensive attention due to its anti-inflammatory and anticancer properties. However, its treatment efficacy on rheumatoid arthritis (RA and corresponding mechanisms have not been reported. Herein, the synovial fibroblasts harvested and isolated from patients with RA were treated with lunasin at various concentrations to examine the proliferation, apoptosis status, and corresponding cell cycle of cultured RA synovial fibroblasts. Meanwhile, the underlying mechanisms of lunasin for RA treatment are explored through Western blot, real-time PCR, ELISA, and luciferase reporter assays. Lunasin significantly inhibited the proliferation and induced the apoptosis of cultured RA synovial fibroblasts. In addition, lunasin reduced the production of interleukin-6 (IL-6, IL-8, and matrix metalloproteinase-3 (MMP-3 and suppressed the activation of NF-κB in cultured RA synovial fibroblasts but did not reveal obvious modulation on the secretion and gene expression of MMP-1. Therefore, lunasin will have promising potential as a novel nutritional supplement or drug candidate for RA due to its potency of suppressing synovial cell proliferation and decreasing the production of proinflammatory cytokines and MMPs in synovial cells.

  8. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Xiumei; Xue, Wei; Yangyang, Yuna; Xu, Derong; Zhao, Yunxue; Lou, Haiyan

    2010-10-05

    This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.

  9. Mechanism of retinoid receptors in inhibiting proliferation and inducing apoptosis of human melanoma cell line A375

    Institute of Scientific and Technical Information of China (English)

    NIU Xin-wu; PENG Zhen-hui; FENG Jie; MA Hui-qun; LIU Chao; YUAN Jing-yi

    2005-01-01

    @@ Malignant melanoma is a common cancer of skin. Its incidence is growing rapidly in recent years,1 however, there is no effective therapy for this cancer. Retinoids are metabolites or derivatives of vitamin A. They are essential for growth, differentiation, and maintenance of epithelial tissues.2 Previous studies showed that retinoids could inhibit growth of many kinds of malignant tumor cell lines and induce its apoptosis,3,4 including malignant melanoma cell lines.5 Some retinoids have therapeutic action to malignant melanoma, such as all-trans retinoic acid (ATRA) and 13-cis-RA.6,7 Retinoids take effects mainly through two kinds of nuclear receptors, retinoic acid receptor (RAR) and retinoic acid X receptor (RXR). In this study, we have investigated the effects of diverse retinoids and receptor agonists in inhibiting proliferation and inducing apoptosis of human melanoma cell line A375.

  10. Effect of ghrelin on proliferation, apoptosis and secretion of progesterone and hCG in the placental JEG-3 cell line.

    Science.gov (United States)

    Rak-Mardyła, Agnieszka; Gregoraszczuk, Ewa

    2010-07-01

    To determine the effect of ghrelin on placental cell proliferation, apoptosis and hormone secretion we cultured human JEG-3 cells with 100, 250, 500 or 1000 pg/ml of ghrelin for 48 hours. Ghrelin stimulated cell proliferation and decreased caspase-3 activity. All of the investigated ghrelin concentrations decreased progesterone (P(3)) but had no effect on human chorionic gonadotrophin (hCG) secretion. Stimulatory effects on cell proliferation paralleled inhibitory effects on cell apoptosis suggesting a possible role for ghrelin in placental formation or remodeling.

  11. Effects of angiotensin Ⅱ receptor antagonist, Losartan on the apoptosis, proliferation and migration of the human pancreatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Wen-Bin Liu; Xing-Peng Wang; Kai Wu; Ru-Ling Zhang

    2005-01-01

    AIM: To investigate the effects of AT1 (Type 1 angiotensin Ⅱ receptor) antagonist (Losartan) on the apoptosis,proliferation and migration of the human pancreaticstellate cells (hPSCs).METHODS: hPSCs were isolated from pancreatic sample of patients with pancreatic carcinoma using radioimmunoassay (RIA) technique to detect the concentration of AngⅡ in culture media and cell homogenate. Immunocytochemistry (ICC) and in situ hybridization (ISH) methods were utilized to test AT1 expression in hPSCs. Effects of Losartan on hPSCs proliferation, apoptosis and migration were investigated using BrdU incorporation, TUNEL, flow cytometry (FCM),and phase-contrast microscope separately when cells treated with Losartan. Immunofluorescence and Western blot were applied to quantify the expression of type Ⅰ collagen in hPSCs.RESULTS: There exists AT1 expression in hPSCs, while no AngⅡ was detected in culture media and cell homogenate. Losartan induces cell apoptosis in a doseand time-dependent manner (apparently at 10-5 mol/L),no pro-proliferative effect was observed in the same condition.Corresponding dosage of Losartan can also alleviate the motion capability and type Ⅰ collagen content of hPSCs compared with AngⅡ treatment and non-treatment control groups.CONCLUSION: These findings suggest that paracrine not autocrine functions of AngⅡ may have effects on hPSCs,which was mediated by AT1 expressed on cells, while Losartan may exert anti-fibrotic effects by inhibiting hPSCs motion and partly by inducing apoptosis.

  12. Targeting miR-155 suppresses proliferation and induces apoptosis of HL-60 cells by targeting Slug/PUMA signal.

    Science.gov (United States)

    Liang, Hui; Dong, Ziyan; Liu, Jiang-Feng; Chuang, Wei; Gao, Li-Zhen; Ren, Yu-Guo

    2016-10-27

    Recent studies have shown that high miR-155 expression was associated with poor prognosis in patients with acute myelogeneous leukemia (AML). Furthermore, targeting miR-155 results in monocytic differentiation and apoptosis. However, the exact role and mechanisms of miR-155 in human AML remains speculative. HL-60 cells were treated with anti-miR-155 for 72 h. Cell growth and apoptosis in vitro were detected by MTT, BrdU proliferation, colony formation and flow cytometry assay. The effect of anti-miR-155 on growth of HL-60 cells was also evaluated in a leukemia mouse model. Slug cDNA and PUMA siRNA trannsfection was used to assess the signal pathway. Different protein expression was detected by western blot assay and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. The results shown that targeting miR-155 resulted in a 24-fold decrease of miR-155 expression compared to negative control in the HL-60 cells. Targeting miR-155 significantly downregulated Slug and upregulated PUMA expression, and decreased HL-60 cell growth by 70% , impaired colony formation by approximately 60%, and increased HL-60 cell apoptosis by 45%. Targeting PUMA reversed miR-155 sliencing-induced proliferation and apoptosis of HL-60 cells. Restoration of Slug decreased PUMA expression. In murine engraftment models of HL-60 cells, we showed that targeting miR-155 was able to reduce tumor growth. This was accompanied with decreased Slug expression and increased PUMA expression in these tumors. Collectively, our findings strongly suggest targeting miR-155 exhibited in vivo and in vitro antileukemic activities in AML through a novel mechanism resulting in inhibition of Slug expression and increase of PUMA expression.

  13. Effects of TRAIL and taurolidine on apoptosis and proliferation in human rhabdomyosarcoma, leiomyosarcoma and epithelioid cell sarcoma.

    Science.gov (United States)

    Karlisch, C; Harati, K; Chromik, A M; Bulut, D; Klein-Hitpass, L; Goertz, O; Hirsch, T; Lehnhardt, M; Uhl, W; Daigeler, A

    2013-03-01

    Soft tissue sarcomas (STS) are a heterogeneous group of malignant tumours representing 1% of all malignancies in adults. Therapy for STS should be individualised and multimodal, but complete surgical resection with clear margins remains the mainstay of therapy. Disseminated soft tissue sarcoma still represents a therapeutic dilemma. Commonly used chemotherapeutic agents such as doxorubicin and ifosfamide have proven to be effective in fewer than 30% in these cases. Therefore, we tested the apoptotic and anti-proliferative in vitro effects of TNF-related apoptosis-inducing ligand (TRAIL) and taurolidine (TRD) on rhabdomyosarcoma (A-204), leiomyosarcoma (SK-LMS-1) and epithelioid cell sarcoma (VA-ES-BJ) cell lines. Viability, apoptosis and necrosis were quantified by FACS analysis (propidium iodide/Annexin V staining). Gene expression was analysed by DNA microarrays and the results validated for selected genes by rtPCR. Protein level changes were documented by western blot analysis. Cell proliferation was analysed by BrdU ELISA assay. The single substances TRAIL and TRD significantly induced apoptotic cell death and decreased proliferation in rhabdomyosarcoma and epithelioid cell sarcoma cells. The combined use of TRAIL and TRD resulted in a synergistic apoptotic effect in all three cell lines, especially in rhabdomyosarcoma cells leaving 18% viable cells after 48 h of incubation (p<0.05). Analysis of the differentially regulated genes revealed that TRD and TRAIL influence apoptotic pathways, including the TNF-receptor associated and the mitochondrial pathway. Microarray analysis revealed remarkable expression changes in a variety of genes, which are involved in different apoptotic pathways and cross talk to other pathways at multiple levels. This in vitro study demonstrates that TRAIL and TRD synergise in inducing apoptosis and inhibiting proliferation in different human STS cell lines. Effects on gene expression differ relevantly in the sarcoma entities. These

  14. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  15. MiR-451 suppresses proliferation, migration and promotes apoptosis of the human osteosarcoma by targeting macrophage migration inhibitory factor.

    Science.gov (United States)

    Liu, Wei; Liu, Sheng-Yao; He, Yong-Bin; Huang, Rui-Liang; Deng, Song-Yun; Ni, Guo-Xin; Yu, Bin

    2017-03-01

    Previous studies have shown that MiR-451 plays an important role in human osteosarcoma carcinogenesis, but the underlying mechanism by which MiR-451 affects the osteosarcoma has not been fully understood. This study intends to uncover the mechanism by which MiR-451 functions as a tumor suppressor. The expression of MiR-451 in osteosarcoma tissues and osteosarcoma cell lines was monitored by real-time PCR. The proliferation ability was examined by MTT and cell cycle assay. The migration and apoptosis of cells were monitored by migration assay and flow cytometry, respectively. Moreover, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was examined by tube formation assay. The effect of MiR-451 on MIF was determined by luciferase assays and Western blot assay. The results showed that MiR-451 expression level was significantly reduced in the osteosarcoma compared with normal bone tissues. Overexpression of MiR-451 significantly attenuated the proliferation and migration, and induced the apoptosis of osteosarcoma cells. Furthermore, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was assayed and the decreased angiogenic ability was detected compared to the controls. Finally, we demonstrated that MiR-451 overexpression inhibited the malignant behavior of osteosarcoma by downregulating MIF. These findings suggest that MiR-451 may act as a tumor suppressor in osteosarcoma. MiR-451 inhibited cell proliferation, migration and angiogenesis and promoted apoptosis of human osteosarcoma cells, at least partially, by inhibiting the expression of MIF. MiR-451/MIF may be a novel therapeutic target in treatment of osteosarcoma.

  16. Apoptosis is increased and cell proliferation is decreased in out-of-phase endometria from infertile and recurrent abortion patients

    Directory of Open Access Journals (Sweden)

    Irigoyen Marcela

    2010-10-01

    Full Text Available Abstract Background Various endometrial abnormalities have been associated with luteal phase deficiency: a significant dyssynchrony in the maturation of the glandular epithelium and the stroma and a prevalence of out-of-phase endometrial biopsy specimens. Out-of phase endometrium is a controversial disorder related to failed implantation, infertility and early pregnancy loss. Given that the regulation of the apoptotic process in endometrium of luteal phase deficiency is still unknown, the aim of this study was to evaluate cell proliferation, apoptosis and the levels of the main effector caspase, caspase-3 in the luteal in-phase and out-of-phase endometrium. Methods Thirty-seven endometrial samples from sterile or recurrent abortion patients were included in this study: 21 in-phase samples (controls and 16 samples with out-of-phase endometrium. Biopsy specimens of eutopic endometrium were obtained from all subjects during days 21-25 of the menstrual cycle. The endometrium with endometrial maturity of cycle day 25 or less at the time of menstruation was considered out-of phase. Endometrial tissues were fixed in 10% buffered formaldehyde. For apoptosis quantification, sections were processed for in situ immunohistochemical localization of nuclei exhibiting DNA fragmentation, by the terminal deoxynucleotidyl transferase (TdT-mediated dUTP digoxygenin nick-end labeling (TUNEL technique. Expressions of Proliferating Cell Nuclear Antigen (PCNA as a marker of cell proliferation, and of cleaved caspase-3 as a marker of apoptosis, were assessed by immunohistochemistry in the luteal in-phase and out-of-phase endometrium from infertile and recurrent abortion patients. Results Luteal out-of-phase endometrium had increased apoptosis levels compared to in-phase endometrium (p Conclusions this study represents the first report describing variations at the cell proliferation and cell death levels in the out-of-phase endometrium in comparison with in

  17. Mangiferin blocks proliferation and induces apoptosis of breast cancer cells via suppression of the mevalonate pathway and by proteasome inhibition.

    Science.gov (United States)

    Cuccioloni, M; Bonfili, L; Mozzicafreddo, M; Cecarini, V; Scuri, S; Cocchioni, M; Nabissi, M; Santoni, G; Eleuteri, A M; Angeletti, M

    2016-10-12

    Mangiferin is a natural xanthone glycoside with therapeutic potential. Herein, its cytotoxic properties were explored in a human cell model of breast adenocarcinoma. The results supported the multi-target nature of mangiferin action, as the inhibition of three enzymatic systems, namely HMG-CoA reductase, the proteasome and plasmin, respectively in charge of regulating cholesterol homeostasis, protein turnover and cell adhesion, was documented for the first time. Globally, mangiferin was able to selectively block breast cancer cell growth by inducing apoptosis and by arresting cell proliferation through a combined action on cholesterol and proteasome pathways, as well as to inhibit plasmin-mediated mechanisms of cell migration.

  18. Stromal interaction molecule 1 regulates growth, cell cycle, and apoptosis of human tongue squamous carcinoma cells.

    Science.gov (United States)

    Cui, Xiaobo; Song, Laixiao; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Wang, Wei

    2017-04-30

    Oral tongue squamous cell carcinoma (OTSCC) is the most common type of oral carcinomas. However, the molecular mechanism by which OTSCC developed is not fully identified. Stromal interaction molecule 1 (STIM1) is a transmembrane protein, mainly located in the endoplasmic reticulum (ER). STIM1 is involved in several types of cancers. Here, we report that STIM1 contributes to the development of human OTSCC. We knocked down STIM1 in OTSCC cell line Tca-8113 with lentivirus-mediated shRNA and found that STIM1 knockdown repressed the proliferation of Tca-8113 cells. In addition, we also showed that STIM1 deficiency reduced colony number of Tca-8113 cells. Knockdown of STIM1 repressed cells to enter M phase of cell cycle and induced cellular apoptosis. Furthermore, we performed microarray and bioinformatics analysis and found that STIM1 was associated with p53 and MAPK pathways, which may contribute to the effects of STIM1 on cell growth, cell cycle, and apoptosis. Finally, we confirmed that STIM1 controlled the expression of MDM2, cyclin-dependent kinase 4 (CDK4), and growth arrest and DNA damage inducible α (GADD45A) in OTSCC cells. In conclusion, we provide evidence that STIM1 contributes to the development of OTSCC partially through regulating p53 and MAPK pathways to promote cell cycle and survival.

  19. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yue [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China); Du, Chengli [Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou (China); Wang, Bo; Zhang, Yanling; Liu, Xiaoyan [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China); Ren, Guoping, E-mail: renguoping12345@163.com [Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou (China)

    2014-07-18

    Highlights: • The expression of eEF1A2 is up-regulated in prostate cancer tissues. • Suppression of eEF1A2 inhibits the proliferation and promotes apoptosis. • Inhibition of eEF1A2 enhances the expression of apoptotic relevant proteins. • The expressions of eEF1A2 and cleavage-caspase3 are inversely correlated. - Abstract: Background: eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development. Methods: We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis. Results: Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues. Conclusion: Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.

  20. Epoxypukalide induces proliferation and protects against cytokine-mediated apoptosis in primary cultures of pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    José Francisco López-Acosta

    Full Text Available There is an urgency to find new treatments for the devastating epidemic of diabetes. Pancreatic β-cells viability and function are impaired in the two most common forms of diabetes, type 1 and type 2. Regeneration of pancreatic β-cells has been proposed as a potential therapy for diabetes. In a preliminary study, we screened a collection of marine products for β-cell proliferation. One unique compound (epoxypukalide showed capability to induce β-cell replication in the cell line INS1 832/13 and in primary rat cell cultures. Epoxypukalide was used to study β-cell proliferation by [(3H]thymidine incorporation and BrdU incorporation followed by BrdU/insulin staining in primary cultures of rat islets. AKT and ERK1/2 signalling pathways were analyzed. Cell cycle activators, cyclin D2 and cyclin E, were detected by western-blot. Apoptosis was studied by TUNEL and cleaved caspase 3. β-cell function was measured by glucose-stimulated insulin secretion. Epoxypukalide induced 2.5-fold increase in β-cell proliferation; this effect was mediated by activation of ERK1/2 signalling pathway and upregulation of the cell cycle activators, cyclin D2 and cyclin E. Interestingly, epoxypukalide showed protection from basal (40% lower versus control and cytokine-induced apoptosis (80% lower versus control. Finally, epoxypukalide did not impair β-cell function when measured by glucose-stimulated insulin secretion. In conclusion, epoxypukalide induces β-cell proliferation and protects against basal and cytokine-mediated β-cell death in primary cultures of rat islets. These findings may be translated into new treatments for diabetes.

  1. Epoxypukalide Induces Proliferation and Protects against Cytokine-Mediated Apoptosis in Primary Cultures of Pancreatic β-Cells

    Science.gov (United States)

    López-Acosta, José Francisco; Moreno-Amador, José Luis; Jiménez-Palomares, Margarita; Díaz-Marrero, Ana R.; Cueto, Mercedes; Perdomo, Germán; Cózar-Castellano, Irene

    2013-01-01

    There is an urgency to find new treatments for the devastating epidemic of diabetes. Pancreatic β-cells viability and function are impaired in the two most common forms of diabetes, type 1 and type 2. Regeneration of pancreatic β-cells has been proposed as a potential therapy for diabetes. In a preliminary study, we screened a collection of marine products for β-cell proliferation. One unique compound (epoxypukalide) showed capability to induce β-cell replication in the cell line INS1 832/13 and in primary rat cell cultures. Epoxypukalide was used to study β-cell proliferation by [3H]thymidine incorporation and BrdU incorporation followed by BrdU/insulin staining in primary cultures of rat islets. AKT and ERK1/2 signalling pathways were analyzed. Cell cycle activators, cyclin D2 and cyclin E, were detected by western-blot. Apoptosis was studied by TUNEL and cleaved caspase 3. β-cell function was measured by glucose-stimulated insulin secretion. Epoxypukalide induced 2.5-fold increase in β-cell proliferation; this effect was mediated by activation of ERK1/2 signalling pathway and upregulation of the cell cycle activators, cyclin D2 and cyclin E. Interestingly, epoxypukalide showed protection from basal (40% lower versus control) and cytokine-induced apoptosis (80% lower versus control). Finally, epoxypukalide did not impair β-cell function when measured by glucose-stimulated insulin secretion. In conclusion, epoxypukalide induces β-cell proliferation and protects against basal and cytokine-mediated β-cell death in primary cultures of rat islets. These findings may be translated into new treatments for diabetes. PMID:23300997

  2. Expression of fragile histidine triad in primary hepatocellular carcinoma and its relation with cell proliferation and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ke-Jun Nan; Zhi-Ping Ruan; Zhao Jing; Hai-Xia Qin; Hong-Yan Wang; Hui Guo; Rui Xu

    2005-01-01

    AIM: To evaluate the expression of fragile histidine triad (FHIT) gene protein, product of a candidate tumor suppressor,and to investigate the relationship between FHIT, cell apoptosis and proliferation, and pathological features of primary hepatocellular carcinoma (HCC).METHODS: Forty-seven HCC and ten normal liver specimens were collected during surgical operation between 2001and 2003. FHIT and proliferating cell nuclear antigen (PCNA)expression were detected by immunohistochemistry, and apoptotic level was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay on the tissue sections.RESULTS: All normal liver tissues showed a strong expression of FHIT, whereas 28 of 47 (59.6%) carcinomas showed a significant loss or absence of FHIT expression (P = 0.001).The proportion of reduced FHIT expression in those carcinomas at stages Ⅲ-Ⅳ (70.6%) and in those with extrahepatic metastasis (86.7%) showed an increasing trend compared with those at stages Ⅰ-Ⅱ (30.8%, P= 0.013) and those without metastasis (46.9%, P = 0.010) respectively. Apoptotic incidence in advanced TNM stage carcinoma and those with positive FHIT expression was higher than that in early stage carcinoma (P = 0.030) and in those with negative FHIT expression (P = 0.044) respectively. The proliferating potential of hepatocellular carcinoma was associated with FHIT expression (P = 0.016) and the aggressive feature (P = 0.019). Kaplan-Meier analysis demonstrated that the survival time of these 47 patients correlated with TNM stage,FHIT expression and metastasis.CONCLUSION: There is marked loss or absence of FHIT expression, as well as abnormal apoptosis-proliferation balance in HCC. FHIT may play an important role in carcinogenesis and development of HCC.

  3. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2010-10-01

    Full Text Available Zhen Zhang, Xiumei Zhang, Wei Xue, Yuna YangYang, Derong Xu, Yunxue Zhao, Haiyan LouSchool of Medicine, Shandong University, Jinan, Republic of ChinaAbstract: This study aims to investigate the inhibitory effects of oridonin nanosuspension on human prostatic carcinoma PC-3 cell line in vitro. The PC-3 cells were incubated with increasing concentrations of oridonin solution and nanosuspensions for 12 hours, 24 hours, and 36 hours. MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay was performed to measure cellular viability and investigate the effect of oridonin on cell growth of PC-3. Annexin V-FITC/PI staining method was used to determine the effect of oridonin by fluorescence microscope and flow cytometry, respectively. Nanosuspension on early apoptosis of PC-3 cells was also evaluated. Oridonin significantly inhibited the growth of PC-3 cells after 12 hours, 24 hours, and 36 hours of treatment in a dose-dependent manner (P < 0.05. Compared with the same concentration of oridonin solution, oridonin nanosuspension enhanced the inhibition ratio of proliferation. The observation of propidium iodide fluorescence staining confirmed the MTT assay results. The cell proportion of PC-3 at the G2/M phase in the nanosuspension treatment group was upregulated compared with that of the control and oridonin solution groups. Both oridonin solution and nanosuspension promoted the early apoptosis of PC-3 cells. Furthermore, while improving the ratio of early apoptosis, oridonin nanosuspensions also enhanced growth suppression, and induced apoptosis of PC-3 cells. This shows great potential in the treatment of androgen-independent carcinoma of prostate by oridonin nanosuspensions.Keywords: oridonin, nanosuspension, carcinoma of prostate, PC-3 cells, cell cycle, apoptosis

  4. Matrine inhibits proliferation and induces apoptosis via BID-mediated mitochondrial pathway in esophageal cancer cells.

    Science.gov (United States)

    Wang, Qiao; Du, Haoxin; Geng, Guojun; Zhou, Huan; Xu, Minying; Cao, Hanwei; Zhang, Bing; Song, Gang; Hu, Tianhui

    2014-05-01

    Matrine, as a member of Sophora family, is an alkaloid found in plants, and produces plethora pharmacological effects, including anti-cancer effects. However, the mechanism involved remains largely unknown. This study is conducted to investigate the anti-cancer mechanisms of matrine in human esophageal cancer in vitro and in vivo. In human esophageal cancer cell Eca-109, matrine significantly decreased the cell viability in a dose-dependent manner, and induced apoptosis as well as cell cycle arrest in G0/G1 phase by up-regulation of P53 and P21. The expression of several apoptosis-related proteins in cells and tumor tissues were evaluated by Western blot analysis. We found that matrine induced cell apoptosis by down-regulation of the ratio of BCL-2/BID and increasing activation of caspase-9. Further studies indicated that matrine induced apoptosis of Eca-109 was through the mitochondria-mediated internal pathway, but not by death receptor-mediated extrinsic apoptotic pathway, which was confirmed by the fact that Bid translocated from the nucleus to mitochondria during the process of the apoptosis induced by matrine. In vivo study found that matrine effectively inhibited the tumor formation of Eca-109 cells in nude mice. Our study suggests that matrine could serve as a potential novel agent from natural products to treat esophageal cancer.

  5. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo.

    Science.gov (United States)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  6. Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis.

    Science.gov (United States)

    Lv, Xue-Jiao; Zhao, Li-Jing; Hao, Yu-Qiu; Su, Zhen-Zhong; Li, Jun-Yao; Du, Yan-Wei; Zhang, Jie

    2015-01-01

    Lung cancer is the leading cause of cancer death in the world. Schizandrin B (Sch B) is one of the main dibenzocyclooctadiene lignans present in the fruit of Schisandra chinensis (Schisandraceae). Sch B has multiple functions against cancer. The aim of this study was to determine the effect of Sch B on the proliferation, cell cycling, apoptosis and invasion of lung adenocarcinoma A549 cells by MTT, flow cytometry, wound healing and transwell invasion assays. Treatment with Sch B inhibited the proliferation of A549 cells in a dose-dependent manner. Sch B induced cell cycle arrest at G0/G1 phase by down-regulating the expression of cyclin D1, cyclin-dependent kinase (CDK)4, and CDK6, but up-regulating p53 and p21 expression in A549 cells. Furthermore, Sch B triggered A549 cell apoptosis by increasing Bax, cleaved caspase-3, 9, Cyto C, but decreasing Bcl-2 and PCNA expression. In addition, Sch B inhibited the invasion and migration of A549 cells by down-regulating the expressions of HIF-1, VEGF, MMP-9 and MMP-2. Therefore, Sch B has potent anti-tumor activity and may be a promising traditional Chinese medicine for human lung carcinoma.

  7. Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice

    Science.gov (United States)

    Piotrowska, Katarzyna; Tarnowski, Maciej; Zgutka, Katarzyna; Pawlik, Andrzej

    2016-01-01

    Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD) feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E) method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR). We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment. PMID:27007393

  8. Phorbol Esters Isolated from Jatropha Meal Induced Apoptosis-Mediated Inhibition in Proliferation of Chang and Vero Cell Lines

    Directory of Open Access Journals (Sweden)

    Syahida Ahmad

    2012-10-01

    Full Text Available The direct feeding of Jatropha meal containing phorbol esters (PEs indicated mild to severe toxicity symptoms in various organs of different animals. However, limited information is available on cellular and molecular mechanism of toxicity caused by PEs present in Jatropha meal. Thus, the present study was conducted to determine the cytotoxic and mode of action of PEs isolated from Jatropha meal using human hepatocyte (Chang and African green monkey kidney (Vero cell lines. The results showed that isolated PEs inhibited cell proliferation in a dose-dependent manner in both cell lines with the CC50 of 125.9 and 110.3 μg/mL, respectively. These values were compatible to that of phorbol 12-myristate 13-acetate (PMA values as positive control i.e., 124.5 and 106.3 μg/mL respectively. Microscopic examination, flow cytometry and DNA fragmentation results confirmed cell death due to apoptosis upon treatment with PEs and PMA at CC50 concentration for 24 h in both cell lines. The Western blot analysis revealed the overexpression of PKC-δ and activation of caspase-3 proteins which could be involved in the mechanism of action of PEs and PMA. Consequently, the PEs isolated form Jatropha meal caused toxicity and induced apoptosis-mediated proliferation inhibition toward Chang and Vero cell lines involving over-expression of PKC-δ and caspase-3 as their mode of actions.

  9. Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice

    Directory of Open Access Journals (Sweden)

    Katarzyna Piotrowska

    2016-03-01

    Full Text Available Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR. We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment.

  10. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Gui-Fen [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: shiyao_chen@163.com [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Sun, Zhi-Rong [Department of Anesthesiology, Cancer Center, Fudan University, Shanghai (China); Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Li-Li; Lian, Jing-Jing [Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Song, Dong-Li [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  11. Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells.

    Science.gov (United States)

    Visalli, Giuseppa; Ferlazzo, Nadia; Cirmi, Santa; Campiglia, Pietro; Gangemi, Sebastiano; Di Pietro, Angela; Calapai, Gioacchino; Navarra, Michele

    2014-01-01

    Colorectal cancer (CRC) is a leading cause of cancer mortality in the industrialized world, second to lung cancer. A lot of evidences highlight that a diet rich in fruits and vegetables may reduce the risk of some types of cancer including CRC. In this study we demonstrate that Citrus bergamia juice extracts (BJe) reduces CRC cell growth by multiple mechanisms. Low BJe concentrations inhibit MAPKs pathway and alter apoptosis-related proteins, that in turn induce cell cycle arrest and apoptosis in HT-29 cells. Instead, high concentrations of BJe induce oxidative stress causing DNA damage. Our study highlights the role of BJe as modulator of cell apoptosis in CRC cells and strengthens our previous hypothesis that the flavonoid fraction of bergamot juice may play a role as anti-cancer drug.

  12. Effect of TSLC1 Gene on Proliferation, Invasion and Apoptosis of Human Hepatocellular Carcinoma Cell Line HepG2

    Institute of Scientific and Technical Information of China (English)

    QIN Li; ZHU Wentao; XU Tao; HAO Youhua; ZHANG Zhengmao; TIAN Yongjun; YANG Dongliang

    2007-01-01

    The recombinant plasmid pCI-TSLC1 carrying TSLC1 gene was stably transfected into human hepatocellular carcinoma cell line HepG2. Cell proliferation was analyzed by MTT assay. The ability of migration was determined by transwell and FACSort flow cytometry was used to detect the cell cycle distribution and apoptosis. Western blotting revealed that H4 expressed higher amounts of TSLC1 protein than H15 and H0 did. The growth of TSLC1-transfected cells was significantly sup- pressed in vitro, and the ability of migration was reduced as well. The re-expression of TSLC1 could induce cell apoptosis. It was concluded that TSLC1 strongly inhibited the growth and ability of mi- gration of HepG2 cell line in vitro and also induced apoptosis, suggesting that TSLC1 could reduce the tumorigenicity of human hepatocellular carcinoma cell line HepG2 in vitro, which provided a ba-sis for further exploring the roles of TSLC1 in hepatocellular cellular carcinoma.

  13. Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis.

    Science.gov (United States)

    Fong, Louise Y Y; Feith, David J; Pegg, Anthony E

    2003-07-15

    Antizyme (AZ) is known to be a regulator of polyamine metabolism that inhibits ornithine decarboxylase activity and polyamine transport, thus restricting polyamine levels. Transgenic mice with AZ expression targeted to the basal cell layer of the forestomach epithelium by the keratin 5 promoter were used to investigate whether AZ overexpression inhibited uncontrolled cell proliferation in zinc-deficient (ZD) mice and reduced their susceptibility to forestomach carcinogenesis by N-nitrosomethylbenzylamine (NMBA). Four-week-old keratin 5/AZ and wild-type (Wt) littermates were placed on ZD or zinc-sufficient (ZS) diets to form four groups: ZD:AZ, ZD:Wt, ZS:AZ, and ZS:Wt. After 5 weeks, 27-45 mice in each group were treated twice with NMBA and sacrificed 14 weeks later. Independent of zinc intake, AZ mice had significantly lower forestomach tumor incidence and tumor multiplicity than respective Wt littermates (P Zinc deficiency increased the forestomach cell proliferation in Wt mice, but this effect was blocked by AZ. Conversely, apoptosis was substantially higher in control and NMBA-treated ZD:AZ than respective ZD:Wt forestomachs. The restored ZD:AZ forestomach epithelium displayed strong expression of Bax, a proapoptotic protein, and weak staining of cyclin D1 and its catalytic partner Cdk4, key regulatory proteins controlling G(1) to S progression. In contrast, proliferative ZD:Wt forestomach showed strong expression of Bcl-2, an antiapoptotic protein, and overexpression of cyclin D1/Cdk4. Treatment of ZD:Wt mice with alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, had similar results to AZ in reducing tumor incidence, spermidine content, decreasing cell proliferation, and increasing apoptosis. These results demonstrate that AZ may act as a tumor suppressor gene stimulating apoptosis and restraining cell proliferation, thereby inhibiting forestomach tumor development. Although effects of AZ on functions other than polyamine metabolism are

  14. Relationship between Epstein-Barr virus-encoded proteins with cell proliferation, apoptosis, and apoptosis-related proteins in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yun Wang; Bing Luo; Li-Ping Yan; Bao-Hua Huang; Peng Zhao

    2005-01-01

    AIM: To investigate the interrelationship between EpsteinBarr virus (EBV)-encoded proteins and cell proliferation, apoptosis and apoptosis-related proteins in gastric carcinoma, and to explore their role in gastric carcinogenesis.METHODS: Tissues from 13 cases of EBV-associated gastric carcinoma (EBVaGC) and 45 cases of matched EBV-negative gastric carcinoma (EBVnGC) were collected, and then subjected to analysis for apoptotic index (AI) using the terminal deoxynucleotidyl transferase (TdT)mediated dUTP-biotin nick end-labeling (TUNEL) assay. Nuclear cell proliferation-associated antigen ki-67 index (KI), bcl-2, and p53 expression were examined by immunohistochemistry. p53 mutation in exons 5-8 of 13 EBVaGC cases was determined by single-strand conformation polymorphism (SSCP) and DNA sequencing. RT-PCR and Southern hybridization were used to detect the expression of nuclear antigens (EBNAs) 1 and 2, latent membrane protein (LMP) 1, immediately early gene BZLF1 and early genes BARF1 and BHRF1 in 13 EBVaGC cases. RESULTS: The percentage of AI, KI and p53 overexpression was significantly lower in the EBVaGC group than in the EBVnGC group. However, bcl-2 expression did not show significant difference between the two groups. p53 gene mutations were not found in 13 EBVaGCs. Transcripts of EBNA1 were detected in all 13 EBVaGCs, while both EBNA2 and LMP1 mRNA were not detected. Six of the thirteen cases exhibited BZLF1 transcripts and two exhibited BHRF1 transcripts. BARF1 mRNA was detected in six cases. CONCLUSION: Lower AI and KI may reflect a low biological activity in EBVaGC. EBV infection is associated with p53 abnormal expression but not bcl-2 protein in EBVaGC. BZLF1, BARF1, and BHRF1 may play important roles in inhibiting cell apoptosis and tumorigenesis of EBVaGC through different pathways.

  15. Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development.

    Science.gov (United States)

    Giammanco, Antonina; Blanc, Valerie; Montenegro, Grace; Klos, Coen; Xie, Yan; Kennedy, Susan; Luo, Jianyang; Chang, Sung-Hee; Hla, Timothy; Nalbantoglu, Ilke; Dharmarajan, Sekhar; Davidson, Nicholas O

    2014-09-15

    HuR is a ubiquitous nucleocytoplasmic RNA-binding protein that exerts pleiotropic effects on cell growth and tumorigenesis. In this study, we explored the impact of conditional, tissue-specific genetic deletion of HuR on intestinal growth and tumorigenesis in mice. Mice lacking intestinal expression of HuR (Hur (IKO) mice) displayed reduced levels of cell proliferation in the small intestine and increased sensitivity to doxorubicin-induced acute intestinal injury, as evidenced by decreased villus height and a compensatory shift in proliferating cells. In the context of Apc(min/+) mice, a transgenic model of intestinal tumorigenesis, intestinal deletion of the HuR gene caused a three-fold decrease in tumor burden characterized by reduced proliferation, increased apoptosis, and decreased expression of transcripts encoding antiapoptotic HuR target RNAs. Similarly, Hur(IKO) mice subjected to an inflammatory colon carcinogenesis protocol [azoxymethane and dextran sodium sulfate (AOM-DSS) administration] exhibited a two-fold decrease in tumor burden. Hur(IKO) mice showed no change in ileal Asbt expression, fecal bile acid excretion, or enterohepatic pool size that might explain the phenotype. Moreover, none of the HuR targets identified in Apc(min/+)Hur(IKO) were altered in AOM-DSS-treated Hur(IKO) mice, the latter of which exhibited increased apoptosis of colonic epithelial cells, where elevation of a unique set of HuR-targeted proapoptotic factors was documented. Taken together, our results promote the concept of epithelial HuR as a contextual modifier of proapoptotic gene expression in intestinal cancers, acting independently of bile acid metabolism to promote cancer. In the small intestine, epithelial HuR promotes expression of prosurvival transcripts that support Wnt-dependent tumorigenesis, whereas in the large intestine epithelial HuR indirectly downregulates certain proapoptotic RNAs to attenuate colitis-associated cancer. Cancer Res; 74(18); 5322-35. ©2014 AACR.

  16. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  17. Effect of pseudolaric acid B on gastric cancer cells: Inhibition of proliferation and induction of apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ke-Shen Li; Xue-Feng Gu; Ping Li; Yong Zhang; Ya-Shuang Zhao; Zhen-Jiang Yao; Nai-Qiang Qu; Bin-You Wang

    2005-01-01

    AIM: To examine the effect of pseudolaric acid B on the growth of human gastric cancer cell line, AGS, and its possible mechanism of action.METHODS: Growth inhibition by pseudolaric acid B was analyzed using MTT assay. Apoptotic cells were detected using Hoechst 33258 staining, and confirmed by DNA fragmentation analysis. Western blot was used to detect the expression of apoptosis-regulated gene Bcl-2, caspase 3, and cleavage of poly (ADP-ribose)polymerase-1 (PARP-1).RESULTS: Pseudolaric acid B inhibited the growth of AGS cells in a time- and dose-dependent manner by arresting the cells at G2/M phase, which was accompanied with a decrease in the levels of cdc2.AGS cells treated with pseudolaric acid B showed typical characteristics of apoptosis including chromatin condensation and DNA fragmentation. Moreover,treatment of AGS cells with pseudolaric acid B was also associated with decreased levels of the anti-apoptotic protein Bcl-2, activation of caspase-3, and proteolytic cleavage of PARP-1.CONCLUSION: Pseudolaric acid B can dramatically suppress the AGS cell growth by inducing apoptosis after G2/M phase arrest. These findings are consistent with the possibility that G2/M phase arrest is mediated by the down-regulation of cdc2 levels. The data also suggest that pseudolaric acid B can trigger apoptosis by decreasing Bcl-2 levels and activating caspase-3 protease.

  18. Increased apoptosis of lactotrophs in streptozotocin-induced diabetic rats is followed by increased proliferation.

    Science.gov (United States)

    Arroba, Ana I; Lechuga-Sancho, Alfonso M; Frago, Laura M; Argente, Jesús; Chowen, Julie A

    2006-10-01

    Poorly controlled diabetes mellitus can result in decreased prolactin production and thus problems with lactation, reproduction, and other physiological processes. This may be due to a loss of lactotrophs, as we have previously shown that long-term (8 weeks) poorly controlled streptozotocin-induced diabetes results in increased death of lactotrophs and that this most likely occurs through the activation of caspase-8 and the extrinsic cell death cascade. However, cell proliferation is also increased in the anterior pituitary at this time, although the cell type undergoing this proliferation and whether it is a response to the increased cell death remains unknown. In order to determine the time-course of increased cell death and proliferation in the anterior pituitary and if this is related to changes in tumor necrosis factor (TNF)-alpha, a cytokine involved in the activation of the extrinsic cell death pathway, rats were killed at 1, 4, 6, and 8 weeks after the induction of diabetes. Cell death was significantly increased after 4 weeks, as was caspase-8 activation, although circulating levels of TNF-alpha were increased as early as 1 week. Pituitary levels of TNF-alpha did not change significantly until 8 weeks after diabetes onset. Similarly, Western-blot analysis of proliferating cell nuclear antigen showed that anterior pituitary cell proliferation increased significantly 8 weeks after diabetes onset, with the majority of proliferating cells, as detected by BrdU incorporation, corresponding to lactotrophs. These results suggest that the increased death of lactotrophs in poorly controlled diabetic rats is followed by increased proliferation of this cell type, even when no treatment is given.

  19. Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer.

    Science.gov (United States)

    Shukla, Sanjeev; Fu, Pingfu; Gupta, Sanjay

    2014-05-01

    Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70-Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy.

  20. Effects of n-3 fatty acid, fructose-1,6-diphosphate and glutamine on mucosal cell proliferation and apoptosis of small bowel graft after transplantation in rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ting Wu; Jie-Shou Li; Xiao-Fei Zhao; Ning Li; Yu-Kui Ma; Wen Zhuang; Yong Zhou; Gang Yang

    2003-01-01

    AIM: To evaluate the effects of n-3 fatty acids (n-3FA),fructose-1,6-diphosphate (FDP) and glutamine (GLN) on mucosal cell proliferation and apoptosis of small bowel graft. METHODS: One hundred and ninety-six inbred strain Wistar rats were grouped as donors and recipients, and underwent heterotopic small bowel transplantation (SBT). n-3FA, FDP and GLN were administered via gastric tube as well as venous infusion for 10 days before and after surgery, respectively.The proliferation and apoptosis of mucosal cells were analyzed with flow cytometry and in situ cell death detection kits. RESULTS: Apparent apoptosis and minor proliferation of mucosal cells of small bowel graft after transplantation were observed. A higher mucosal cell proliferative index and lower apoptotic index were found in all small bowel grafts after supplying with n-3FA, FDP and GLN. CONCLUSION: Nutritional support with n-3FA, FDP and GLN promotes mucosal cell proliferation significantly, and prevents mucosal cell from undergoing apoptosis with different degrees. These regulatory effects on the apoptosis alter the structure and absorption function of transplanted small bowel favorably.

  1. miR-181b promotes cell proliferation and reduces apoptosis by repressing the expression of adenylyl cyclase 9 (AC9) in cervical cancer cells.

    Science.gov (United States)

    Yang, Lei; Wang, Yan-Li; Liu, Shang; Zhang, Pei-Pei; Chen, Zheng; Liu, Min; Tang, Hua

    2014-01-03

    MicroRNAs are a class of small, endogenous, non-coding RNAs that function as post-transcriptional regulators. In this study, we found that miR-181b promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells. And we validated a new miR-181b target gene, adenylyl cyclase 9 (AC9). miR-181b restricted cAMP production by post-transcriptionally downregulating AC9 expression. Phenotypic experiments indicated that miR-181b and AC9 exerted opposite effects on cell proliferation and apoptosis.

  2. Dose dependent activation of retinoic acid-inducible gene-I promotes both proliferation and apoptosis signals in human head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jingzhou Hu

    Full Text Available The retinoic-acid-inducible gene (RIG-like receptor (RLR family proteins are major pathogen reorganization receptors (PRR responsible for detection of viral RNA, which initiates antiviral response. Here, we evaluated the functional role of one RLR family member, RIG-I, in human head and neck squamous cell carcinoma (HNSCC. RIG-I is abundantly expressed both in poorly-differentiated primary cancer and lymph node metastasis, but not in normal adjacent tissues. Activation of RIG-I by transfection with low dose of 5'-triphosphate RNA (3p-RNA induces low levels of interferon and proinflammatory cytokines and promotes NF-κB- and Akt-dependent cell proliferation, migration and invasion. In contrast, activation of RIG-I by a high dose of 3p-RNA induces robust mitochondria-derived apoptosis accompanied by decreased activation of Akt, which is independent of the interferon and TNFα receptor, but can be rescued by over-expression of constitutively active Akt. Furthermore, co-immunoprecipitation experiments indicate that the CARD domain of RIG-I is essential for inducing apoptosis by interacting with caspase-9. Together, our results reveal a dual role of RIG-I in HNSCC through regulating activation of Akt, in which RIG-I activation by low-dose viral dsRNA increases host cell survival, whereas higher level of RIG-I activation leads to apoptosis. These findings highlight the therapeutic potential of dsRNA mediated RIG-I activation in the treatment of HNSCC.

  3. EXPERIMENT STUDY OF CARDIOMYOCYTE APOPTOSIS AND CARDIOMYOCYTE PROLIFERATION DURING THE DEVELOPMENT OF CARDIAC HYPERTROPHY IN SPONTANEOUSLY HYPERTENSIVE RATS

    Institute of Scientific and Technical Information of China (English)

    江立生; 方宁远; 高天; 孟超

    2005-01-01

    Objective To investigate the effect and significance of cardiomyocyte apoptosis and cardiomyocyte proliferation on cardiac hypertrophy by observing the dynamic changes of them during the development of cardiac hypertrophy in spontaneously hypertensive rats (SHR). Methods Hearts were excised from SHR and Wistar-Kyoto rats(WKY) at different ages. Cardiac hypertrophic index (CHI) was calculated as the radio of heart weight to body weight; Cardiomyocyte apoptosis was identified by in situ TDT-mediated dUTP nick end labeling (TUNEL); Localization and expression of proliferating cell nuclear antigen (PCNA) were examined by immunohistochemistry. Results Compared with age-matched WKY, CHI in SHR was significantly increased at 12 weeks old and 24 weeks old (3. 604 ± 0. 089 vs 2. 997 ± 0. 166, P<0.01; 4. 156 ± 0. 385 vs 3. 119 ± 0. 208, P < 0. 01 ) ,and CHI in SHR was increased little by little with the age increasing and attained plaiform since 20 weeks old. In contrast with age-matched WKY, cardiomyocyte apoptotic index (APOI) in SHR at 12 weeks was not increased significantly (4. 248 ± 1. 592 vs 3. 678 ± 0. 856, P > 0. 05 ), but decreased markedly when their age were 24 weeks (3. 207 ± 1. 794 vs 5. 494 ± 1. 372, P <0. 05); APOI in SHR at 12 weeks old, 16 weeks old, 20 weeks old and 24weeks old were 4. 248 ± 1. 592, 5. 707 ± 1. 322, 7. 436 ± 1. 128, 3. 207 ± 1. 794, respectively. On the other hand,APOI in SHR from 12 weeks old to 20 weeks old increased gradually, and attained peak at 20 weeks old, but decreased markedly after 20 weeks old ( P <0. 01 ). Compared with age-matched WKY, the rate of cardiomyocyte PCNA positive labeling (PCNAR) in SHR at 12 weeks old and 24 weeks old didn' t have obvious difference. Conclusion Imbalance of cardiomyocyte apoptosis and cardiomyocyte proliferation existed during the development of cardiac hypertrophy in spontaneously hypertensive rats.

  4. Effects of cloned tumstatin-related and angiogenesis-inhibitory peptides on proliferation and apoptosis of endothelial ceils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-mei; ZHANG Ying-mei; FU Song-bin; LIU Xing-han; FU Xue; YU Yan; ZHANG Zhi-yi

    2008-01-01

    Background Tumstatin is a recently developed endogenous vascular endothelial growth inhibitor that can be applied as an anti-angiogenesis and antineoplastic agent.The study aimed to design and synthesize the small molecular angiogenesis inhibition-related peptide (peptide 21),to replicate the structural and functional features of the active zone of angiogenesis inhibition using tumstatin and to prove that synthesized peptide 21 has a similar activity:specifically inhibiting tumor angiogenesis like tumstatin.Methods Peptide 21 was designed and synthesized using biological engineering technology.To determine its biological action,the human umbilical vein endothelial cell line ECV304,the human ovarian cancer cell line SKOV-3 and the mouse embryo-derived NIH3T3 fibroblasts were used in in vitro experiments to determine the effect of peptide 21 on proliferation of the three cell lines using the MTT test and growth curves.Transmission electron microscopy (TEM) and flow cytometry (FCM) were applied to analyze the peptide 21-induced apoptosis of the three cell lines qualitatively and quantitatively.In animal experiments,tumor models in nude mice subcutaneously grafted with SKOV-3 were used to observe the effects of peptide 21 on tumor weight,size and microvessel density (MVD).To initially investigate the role of peptide 21,the effect of peptide 21 on the expression of vascular endothelial growth factors (VEGFs) by tumor tissue was semi-quantitatively analyzed.Results The in vitro MTT test and growth curves all indicated that cloned peptide 21 could specifically inhibit ECV304 proliferation in a dose-dependent manner (P <0.01);TEM and FCM showed that peptide 21 could specifically induce ECV304 apoptosis (P <0.01).Results of in vivo experiments showed that tumors in the peptide 21 group grew more slowly.The weight and size of the tumors after 21 days of treatment were smaller than those in the control group (P <0.05),with a mean tumor inhibition rate of 67.86%;MVD of

  5. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression.

    Science.gov (United States)

    Zhang, Xiaolin; Yu, Hao

    2016-01-01

    The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tumor cells. Western blot analysis of p53, Bax, cleaved caspase-3 and myosin light chain kinase (MLCK) revealed that matrine induced tumor cell apoptosis by controlling anoikis. It activated p53, Bax-dependent caspase-3 and blocked the ECM-integrin mediated cell survival pathway through down-regulating MLCK over-expression in the liver of rats with diethyl nitrosamine (DENA)-induced HCC. Our results suggest that matrine can inhibit the proliferation of HCC cells through inducing tumor cell apoptosis via activation of the p53 pathway and inhibition of MLCK overexpression. Matrine may thus be used as a potentially promising reagent to inhibit HCC cell proliferation and MLCK may be a novel target for the treatment of HCC.

  6. Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

    Science.gov (United States)

    Zhang, Xiaolin; Yu, Hao

    2016-01-01

    The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tumor cells. Western blot analysis of p53, Bax, cleaved caspase-3 and myosin light chain kinase (MLCK) revealed that matrine induced tumor cell apoptosis by controlling anoikis. It activated p53, Bax-dependent caspase-3 and blocked the ECM-integrin mediated cell survival pathway through down-regulating MLCK over-expression in the liver of rats with diethyl nitrosamine (DENA)-induced HCC. Our results suggest that matrine can inhibit the proliferation of HCC cells through inducing tumor cell apoptosis via activation of the p53 pathway and inhibition of MLCK overexpression. Matrine may thus be used as a potentially promising reagent to inhibit HCC cell proliferation and MLCK may be a novel target for the treatment of HCC. PMID:27642320

  7. The effects of Hedgehog on the RNA-binding protein Msi1 in the proliferation and apoptosis of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    In-Sun Hong

    Full Text Available Human umbilical cord blood (UCB-derived mesenchymal stem cells (MSCs are essential tools for regenerative medicine due to their capacity for self-renewal and multi-lineage differentiation. As MSCs are found in very small numbers in various tissues, in vitro cell expansion is an essential step that is needed before these cells can be used in clinical applications. Therefore, it is important to identify and characterize factors that are involved in MSC proliferation and apoptosis. In the present study, we focused on Hedgehog (Hh signaling because several studies have proposed that Hh signaling plays a critical role in controlling the proliferation of stem and progenitor cells. However, the molecular mechanisms underlying the effects on the proliferation and apoptosis of MSCs remain unclear. In this study, we evaluated the direct effects of Hh signaling on the proliferation and apoptosis of hUCB-MSCs as well as investigated potential downstream regulatory mechanisms that may be responsible for Hh signaling. We observed that the Hedgehog agonist purmorphamine enhanced cell proliferation and suppressed apoptosis through the RNA-binding protein Msi1 by regulating the expression of an oncoprotein (i.e., c-Myc, a cell cycle regulatory molecule (i.e., p21(CIP1,WAF1 and two microRNAs (i.e., miRNA-148a and miRNA-148b. This study provides novel insights into the molecular mechanisms regulating the self-renewal capability of MSCs with relevance to clinical applications.

  8. Effects of downregulation of SIRT3 expression on proliferation and apoptosis in esophageal squamous cell carcinoma EC9706 cells and its molecular mechanisms.

    Science.gov (United States)

    Yang, Mei; Yang, Chunsong; Pei, Yuhua

    2014-01-01

    To investigate the effect of downregulation of SIRT3 expression on cell proliferation and invasion in esophageal squamous cell carcinoma (ESCC) EC9706 cells, and to explore its possible molecular mechanisms, we transfected siRNA targeting SIRT3 into EC9706 cells, and then divided cells into three groups: untreated, control siRNA and SIRT3 siRNA groups. The expression levels of SIRT3 protein were detected in different groups by western blotting. The effect of SIRT3 siRNA on cell proliferation was investigated using the CCK-8 kit. The changes of cell apoptosis were examined by flow cytometry. Finally, the expression levels of cell proliferation and apoptosis related proteins such as p21, Bcl-2 and Bax were determined by western blotting. SIRT3 siRNA effectively down-regulated the expression of SIRT3 protein in EC9706 cells, and the reduced expression of SIRT3 significantly inhibited cell proliferation and induced cell apoptosis. Most notably, the SIRT3 depletion markedly increased the expressions of p21 and Bax proteins but reduced Bcl-2 protein expression. The proliferation inhibition and apoptosis of EC9706 cells mediated by SIRT3 downregulation may be closely associated with the expression levels of p21, Bcl-2 and Bax proteins.

  9. Apoptosis-mediated inhibition of human breast cancer cell proliferation by lemon citrus extract.

    Science.gov (United States)

    Alshatwi, Ali A; Shafi, Gowhar; Hasan, Tarique N; Al-Hazzani, Amal A; Alsaif, Mohammed A; Alfawaz, Mohammed A; Lei, K Y; Munshi, Anjana

    2011-01-01

    Dietary phytochemicals have a variety of antitumor properties. In the present study, the antitumor activity of methanolic extract of lemon fruit (lemon extract; LE) (LE) on the MCF-7 breast cancer cell line was investigated in vitro. Apoptotic cell death was analyzed using the TUNEL assay. In addition, the apoptosis mediated by LE extract in the MCF-7 cells was associated with the increased expression of the tumor suppressor p53 and caspase-3. Additionally, the expression of a pro-apoptotic gene, bax, was increased, and the expression of an anti-apoptotic gene, bcl-2, was decreased by LE extract treatment, resulting in a shift in the Bax:Bcl-2 ratio to one that favored apoptosis. The expression of a major apoptotic gene, caspase-3, was increased by LE extract treatment. In light of the above results, we concluded that LE extract can induce the apoptosis of MCF-7 breast cancer cells via Bax-related caspase-3 activation. This study provides experimental data that are relevant to the possible future clinical use of LE to treat breast cancer.

  10. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells

    DEFF Research Database (Denmark)

    Nielsen, C H; Albertsen, L; Bendtzen, K;

    2007-01-01

    . Exposure of CA-stimulated PBMC to MTX significantly increased their level of cleaved poly(ADP-ribose) polymerase (PARP), and a similar tendency was observed in TT-stimulated cells. Unlike CA and TT, the mitogen phytohaemagglutinin (PHA) induced proliferation of both CD4- and CD4+ T cells, and induced...... apoptosis in both undivided and divided Th cells. PHA-induced apoptosis involved activation of caspase-3 and the anti-apoptotic protein Bcl-2 in addition to PARP cleavage, suggesting that PHA induces apoptosis via different pathways than CA and TT. We suggest that the latter are more representative...

  11. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R;

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activatio...

  12. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  13. Helicobacter pylori and cagA gene detected by polymerase chain reaction in gastric biopsies: correlation with histological findings, proliferation and apoptosis

    OpenAIRE

    Katia Ramos Moreira Leite; Elaine Darini; Flavio Canelas Canavez; Claudia Muraro de Carvalho; Cristina Aparecida Troquez da Silveira Mitteldorf; Luiz Heraldo Camara-Lopes

    2005-01-01

    CONTEXT AND OBJECTIVE: The virulence of Helicobacter pylori (HP) in gastroduodenal disease is related to pathogenicity islands (cagPAI) present in some strains. Infection with cagPAI induces IL-8 secretion, increases epithelial cell proliferation and may be important in carcinogenesis. Our objective was to detect HP and the cagA gene (cagPAI marker) by polymerase chain reaction (PCR) and to correlate these results to histological findings, epithelial cell proliferation and apoptosis. DESIGN A...

  14. Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ERalpha and c-Jun.

    Science.gov (United States)

    Siewit, Christina L; Gengler, Bridget; Vegas, Esera; Puckett, Rachel; Louie, Maggie C

    2010-05-01

    Cadmium is an environmental contaminant that enters the body through diet or cigarette smoke. It affects multiple cellular processes, including cell proliferation, differentiation, and apoptosis. Recently, cadmium has been shown to function as an endocrine disruptor, to stimulate estrogen receptor alpha (ERalpha) activity and promote uterine and mammary gland growth in mice. Although cadmium exposure has been associated with the development of breast cancer, the mechanism of action of cadmium remains unclear. To address this deficit, we examined the effects of cadmium treatment on breast cancer cells. We found that ERalpha is required for both cadmium-induced cell growth and modulation of gene expression. We also determined that ERalpha translocates to the nucleus in response to cadmium exposure. Additionally, we provide evidence that cadmium potentiates the interaction between ERalpha and c-Jun and enhances recruitment of this transcription factor complex to the proximal promoters of cyclin D1 and c-myc, thus increasing their expression. This study provides a mechanistic link between cadmium exposure and ERalpha and demonstrates that cadmium plays an important role in the promotion of breast cancer.

  15. Regulation of signaling pathways involved in lupeol induced inhibition of proliferation and induction of apoptosis in human prostate cancer cells.

    Science.gov (United States)

    Prasad, Sahdeo; Nigam, Nidhi; Kalra, Neetu; Shukla, Yogeshwer

    2008-12-01

    Prostate cancer (PCa) is the most frequently diagnosed noncutaneous cancer and the leading cause of cancer related deaths in men in the United States and many other Asian countries. Dietary factors are considered as a strategic agent to control the risk of PCa. Lupeol, a triterpene, present in fruits and medicinal plants, has been shown to possess many pharmacological properties including anticancer effects. Here, effect of lupeol on cell proliferation and cell death was evaluated using human PCa cells, PC-3. In MTT assay, lupeol inhibited the cell proliferation (12-71%) in dose (50-800 microM) and time dependent manner. Flow-cytometric analysis of cell-cycle revealed that an antiproliferative effect of lupeol (400-600 microM) is associated with an increase in G(2)/M-phase arrest (34-58%). RT-PCR analysis showed that lupeol-induced G2/M-phase arrest was mediated through the inhibition of cyclin regulated signaling pathway. Lupeol inhibited the expression of cyclin B, cdc25C, and plk1 but induced the expression of 14-3-3sigma genes. However no changes were observed in the expression of gadd45, p21(waf1/cip1) and cdc2 genes. Results of western blot showed that lupeol regulates the phosphorylation of cdc2 (Tyr15) and cdc25C (Ser198). Further, on increase of lupeol exposure to PC-3 cells an induction of apoptosis was recorded, which was associated with upregulation of bax, caspase-3, -9, and apaf1 genes and down regulation of antiapoptotic bcl-2 gene. The role of caspase-induced apoptosis was confirmed by increase in reactive oxygen species, loss of mitochondrial membrane potential followed by DNA fragmentation. Thus, our study suggests that lupeol possess novel antiproliferative and apoptotic potential against PCa.

  16. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. PMID:27073325

  17. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells.

    Science.gov (United States)

    Jing, Yue; Wang, Gang; Ge, Ying; Xu, Minjie; Tang, Shuainan; Gong, Zhunan

    2016-01-01

    Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid) is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1). AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27) cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy.

  18. Mice lacking thyroid hormone receptor Beta show enhanced apoptosis and delayed liver commitment for proliferation after partial hepatectomy.

    Directory of Open Access Journals (Sweden)

    Raquel López-Fontal

    Full Text Available BACKGROUND: The role of thyroid hormones and their receptors (TR during liver regeneration after partial hepatectomy (PH was studied using genetic and pharmacologic approaches. Roles in liver regeneration have been suggested for T3, but there is no clear evidence distinguishing the contribution of increased amounts of T3 from the modulation by unoccupied TRs. METHODOLOGY/PRINCIPAL FINDINGS: Mice lacking TRalpha1/TRbeta or TRbeta alone fully regenerated liver mass after PH, but showed delayed commitment to the initial round of hepatocyte proliferation and transient but intense apoptosis at 48h post-PH, affecting approximately 30% of the remaining hepatocytes. Pharmacologically induced hypothyroidism yielded similar results. Loss of TR activity was associated with enhanced nitrosative stress in the liver remnant, due to an increase in the activity of the nitric oxide synthase (NOS 2 and 3, caused by a transient decrease in the concentration of asymmetric dimethylarginine (ADMA, a potent NOS inhibitor. This decrease in the ADMA levels was due to the presence of a higher activity of dimethylarginineaminohydrolase-1 (DDAH-1 in the regenerating liver of animals lacking TRalpha1/TRbeta or TRbeta. DDAH-1 expression and activity was paralleled by the activity of FXR, a transcription factor involved in liver regeneration and up-regulated in the absence of TR. CONCLUSIONS/SIGNIFICANCE: We report that TRs are not required for liver regeneration; however, hypothyroid mice and TRbeta- or TRalpha1/TRbeta-deficient mice exhibit a delay in the restoration of liver mass, suggesting a specific role for TRbeta in liver regeneration. Altered regenerative responses are related with a delay in the expression of cyclins D1 and E, and the occurrence of liver apoptosis in the absence of activated TRbeta that can be prevented by administration of NOS inhibitors. Taken together, these results indicate that TRbeta contributes significantly to the rapid initial round of

  19. Heat stress decreases testicular germ cell proliferation and increases apoptosis in short term: an immunohistochemical and ultrastructural study.

    Science.gov (United States)

    Kanter, Mehmet; Aktas, Cevat; Erboga, Mustafa

    2013-03-01

    Scrotal hyperthermia has been known as a cause of male infertility but the exact mechanism leading to impaired spermatogenesis is unknown. This work was aimed to investigate the role of scrotal hyperthermia on cell proliferation and apoptosis in testes. The rats were randomly allotted into one of the four experimental groups: A (control), B (1 day after scrotal hyperthermia), C (14 days after scrotal hyperthermia), and D (35 days after scrotal hyperthermia); each group comprised 7 animals. Scrotal hyperthermia was carried out in a thermostatically controlled water bath at 43°C for 30 min once daily for 6 consecutive days. Control rats were treated in the same way, except the testes were immersed in a water bath maintained at 22°C. Hyperthermia-exposed rats were killed under 50 mg/kg ketamine anaesthesia and tissue samples were obtained for biochemical and histopathological investigations. Hyperthermia treatment significantly decreased the testicular antioxidant system, including decreases in the glutathione level, superoxide dismutase, and glutathione peroxidase activities. Moreover, exposure to hyperthermia resulted in lipid peroxidation increase in testes. Our data indicate a significant reduction in the expression of proliferating cell nuclear antigen and an enhancement in the activity of terminal deoxynucleotidyl transferase dUTP nick end labelling after scrotal hyperthermia. In scrotal hyperthermia, the mitochondrial degeneration, dilatation of smooth endoplasmic reticulum, and enlarged intercellular spaces were observed in both Sertoli and spermatid cells. Scrotal hyperthermia is one of the major factors that impair spermatogenesis in testis. This heat stress is shown to be closely associated with oxidative stress, followed by apoptosis of germ cells.

  20. Doxycycline inhibits proliferation and induces apoptosis of both human papillomavirus positive and negative cervical cancer cell lines.

    Science.gov (United States)

    Zhao, Yan; Wang, Xinyu; Li, Lei; Li, Changzhong

    2016-05-01

    The clinical management of cervical cancer remains a challenge and the development of new treatment strategies merits attention. However, the discovery and development of novel compounds can be a long and labourious process. Drug repositioning may circumvent this process and facilitate the rapid translation of hypothesis-driven science into the clinics. In this work, we show that a FDA-approved antibiotic, doxycycline, effectively targets human papillomavirus (HPV) positive and negative cervical cancer cells in vitro and in vivo. Doxycycline significantly inhibits proliferation of a panel of cervical cancer cell lines. It also induces apoptosis of cervical cancer cells in a time- and dose-dependent manner. In addition, the apoptosis induced by doxycycline is through caspase-dependent pathway. Mechanism studies demonstrate that doxycycline affects oxygen consumption rate, glycolysis, and reduces ATP levels in cervical cancer cells. In HeLa xenograft mouse model, doxycycline significantly inhibits growth of tumour. Our in vitro and in vivo data clearly demonstrate the inhibitory effects of doxycycline on the growth and survival of cervical cancer cells. Our work provides the evidence that doxycycline can be repurposed for the treatment of cervical cancer and targeting energy metabolism may represent a potential therapeutic strategy for cervical cancer.

  1. [Astaxanthin inhibits proliferation and promotes apoptosis of A549 lung cancer cells via blocking JAK1/STAT3 pathway].

    Science.gov (United States)

    Wu, Chuntao; Zhang, Jinji; Liu, Tienan; Jiao, Guimei; Li, Changzai; Hu, Baoshan

    2016-06-01

    Objective To investigate the anti-tumor effects of astaxanthin on A549 lung cancer cells and the related mechanisms. Methods A549 cells were cultured with various concentrations of astaxanthin (20, 40, 60, 80, 100 μmol/L), and DMSO at the same concentrations served as vehicle controls. The viability of A549 cells was detected by CCK-8 assay; cell cycle and apoptosis were observed by flow cytometry; and the expressions of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), signal transducers and activators of transcription 3 (STAT3), and Janus kinase 1 (JAK1) were evaluated by Western blotting. Results CCK-8 assay showed that astaxanthin decreased the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that astaxanthin increased the number of cells in the G0/G1 phase and induced apoptosis in A549 cells. Western blotting showed that astaxanthin up-regulated the expression of Bax and down-regulated the expressions of Bcl-2, STAT3 and JAK1. Conclusion Astaxanthin functions as a potent inhibitor of A549 lung cancer cell growth by targeting JAK1/STAT3 signaling pathway.

  2. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis.

    Science.gov (United States)

    Liu, Haidan; Li, Wei; Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-08-30

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.

  3. miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yajuan; Wang, Haixia; Tao, Kun [Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated of Ministry of Education, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016 (China); Xiao, Qing [Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016 (China); Huang, Zhenglan; Zhong, Liang; Cao, Weixi [Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated of Ministry of Education, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016 (China); Wen, Jianping [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5 (Canada); Feng, Wenli, E-mail: fengwlcqmu@sina.com [Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated of Ministry of Education, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016 (China)

    2013-05-01

    MicroRNAs (miRNAs) are small RNAs that regulate gene expression posttranscriptionally and are critical for many cellular pathways. Recent evidence has shown that aberrant miRNA expression profiles and unique miRNA signaling pathways are present in many cancers. Here, we demonstrate that miR-29b is markedly lower expressed in CML patient samples. Bioinformatics analysis reveals a conserved target site for miR-29b in the 3′-untranslated region (UTR) of ABL1. miR-29b significantly suppresses the activity of a luciferase reporter containing ABL1-3′UTR and this activity is not observed in cells transfected with mutated ABL1-3′UTR. Enforced expression of miR-29b in K562 cells inhibits cell growth and colony formation ability thereby inducing apoptosis through cleavage of procaspase 3 and PARP. Furthermore, K562 cells transfected with a siRNA targeting ABL1 show similar growth and apoptosis phenotypes as cells overexpression of miR-29b. Collectively, our results suggest that miR-29b may function as a tumor suppressor by targeting ABL1 and BCR/ABL1. - Highlights: ► miR-29b expression was downregulated in CML patients. ► ABL1 was identified as a direct target gene of miR-29b. ► Enforced expression of miR-29b inhibits cell proliferation and induces apoptosis. ► miR-29b might be a therapeutic target to CML.

  4. Combination of the FGFR4 inhibitor PD173074 and 5-fluorouracil reduces proliferation and promotes apoptosis in gastric cancer.

    Science.gov (United States)

    Ye, Yan-Wei; Hu, Shuang; Shi, Ying-Qiang; Zhang, Xie-Fu; Zhou, Ye; Zhao, Chun-Lin; Wang, Guo-Jun; Wen, Jian-Guo; Zong, Hong

    2013-12-01

    Our previous findings revealed that FGFR4 may be a novel therapeutic target for gastric cancer. The aim of the present study was to explore the effects of a combination of PD173074 (PD) and 5-fluorouracil (5-Fu) on the biological behavior of gastric cancer cell lines and the relevant mechanisms involved. MKN45, a gastric cancer cell line, was treated with each single agent alone or a combination of FGF19, PD and 5-Fu. Then, a series of functional assays were performed using CCK-8 assay and flow cytometry. Western blot analysis was used to determine the expression of signaling pathway and downstream-related molecules in the MKN45 cells following the different treatments. As the concentration of PD and 5-Fu increased, the cell viability gradually decreased; the viability of the combination group was less than the viability following single administration. Western blot analysis showed that FGFR4 expression was weak in the 5-Fu-treated groups when compared with the control. PD markedly increased the apoptosis rate of MKN45 cells when compared to the control; the apoptosis rate in the cells treated with the combination of PD and 5-Fu was higher than that in the cells following single treatment. Furthermore, PD reduced the expression of p-ERK and Bcl-xl and increased caspase-3 expression. Inhibition of the activity of FGFR4 may be the main mechanisms of PD effect while 5-Fu reduced FGFR4 expression. Furthermore, the effects of the combination of 5-Fu and PD in inhibiting proliferation, increasing apoptosis and arresting cell cycle were superior to these effects following the single agent treatments, suggesting that the two drugs applied in combination may contribute to the effective treatment of gastric cancer.

  5. p150 overexpression in gastric carcinoma: the association with p53, apoptosis and cell proliferation.

    Science.gov (United States)

    Chen, Gaoping; Burger, Max M

    2004-11-10

    To clarify the significance of p150 expression, 102 gastric carcinomas were immunohistochemically investigated and 14 fresh samples of the cancer were analyzed with the immunoblot method. Tumor cell apoptosis was assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). Both Ki-67 antigen and p53 expression were analyzed immunohistochemically. Eighty-six out of 102 (85%) gastric cancers stained positively for p150. All 14 tumors analyzed by Western blotting overexpressed p150. Statistical analysis revealed a close association between p150 overexpression and the clinicopathologic parameters of gastric cancer. All well-differentiated cancers showed high p150 expression (p cervix and esophagus carcinoma, when tumors progress to high malignancy and metastasis, p150 begins to regress and then breaks down. A good correlation of p150 expression, but not p53 expression, with tumor cell apoptosis could be demonstrated (p Ki-67 labeling index, i.e., the index for a proliferative marker, showed no correlation with either p150 or p53 expression. The results suggest that p150 may be a new early tumor marker for gastric carcinoma similar to that for esophagus and cervix carcinoma.

  6. Effects of Fat-soluble Extracts From Vegetable Powder and β-carotene on Proliferation and Apoptosis of Lung Cancer Cell YTMLC-90

    Institute of Scientific and Technical Information of China (English)

    QUAN-JUN LU; CHENG-YU HUANG; SHU-XIANG YAO; RUI-SHU WANG; XIAO-NA WU

    2003-01-01

    The aim of this investigation was to study the effects of fat-soluble extracts from vegetable powder (FEFVP) and β-carotene on the proliferation and apoptosis of cultured YTMLC-90lung cancer cells. Methods The lung cancer cells were continuously exposed to a broad range of concentration of FEFVP and β-carotene. The proliferation was evaluated in MTT test. The induction of apoptosis was evaluated by morphological change, DNA fragmentation analysis, and DNA content analysis combined with flow cytometric analysis. Results Both FEFVP and β-carotene were found to inhibit cell proliferation and to induce morphologic changes consistent with apoptosis in YTMLC-90 cancer cells, including cellular shrinkage, chromatin condensation and cytometric analysis revealed decreased DNA content and the presence of a sub-G1 apoptotic peak.Conclusion These findings are consistent with the induction of apoptosis. Moreover, the effects of FEFVP are stronger than those of β-carotene. FEFVP inhibits the growth of YTMLC-90 probably via the induction of apoptosis cancer cells.

  7. Inotodiol inhabits proliferation and induces apoptosis through modulating expression of cyclinE, p27, bcl-2, and bax in human cervical cancer HeLa cells.

    Science.gov (United States)

    Zhao, Li-Wei; Zhong, Xiu-Hong; Yang, Shu-Yan; Zhang, Yi-Zhong; Yang, Ning-Jiang

    2014-01-01

    Inonotus obliquus is a medicinal mushroom that has been used as an effective agent to treat various diseases such as diabetes, tuberculosis and cancer. Inotodiol, an included triterpenoid shows significant anti-tumor effect. However, the mechanisms have not been well documented. In this study, we aimed to explore the effect of inotodiol on proliferation and apoptosis in human cervical cancer HeLa cells and investigated the underlying molecular mechanisms. HeLa cells were treated with different concentrations of inotodiol. The MTT assay was used to evaluate cell proliferating ability, flow cytometry (FCM) was employed for cell cycle analysis and cell apoptosis, while expression of cyclinE, p27, bcl-2 and bax was detected by immunocytochemistry. Proliferation of HeLa cells was inhibited by inotodiolin a dose-dependent manner at 24h (r=0.9999, pHeLa cells was detected after treatment and the apoptosis rate with the concentration and longer incubation time (r=1.0, pHeLa cells and induced apoptosis in vitro. The mechanisms may be related to promoting apoptosis through increasing the expression of bax and cutting bcl-2 and affecting the cell cycle by down-regulation the expression of cyclin E and up-regulation of p27. The results further indicate the potential value of inotodiol for treatment of human cervical cancer.

  8. Ligustrazine-Oleanolic Acid Glycine Derivative, G-TOA, Selectively Inhibited the Proliferation and Induced Apoptosis of Activated HSC-T6 Cells.

    Science.gov (United States)

    Bi, Siling; Chu, Fuhao; Wang, Mina; Li, Bi; Mao, Pei; Zhang, Huazheng; Wang, Penglong; Guo, Wenbo; Xu, Liang; Ren, Liwei; Lei, Haimin; Zhang, Yuzhong

    2016-11-23

    Hepatic fibrosis is a naturally occurring wound-healing reaction, with an imbalance of extracellular matrix (ECM) during tissue repair response, which can further deteriorate to hepatocellular carcinoma without timely treatment. Inhibiting activated hepatic stellate cell (HSC) proliferation and inducing apoptosis are the main methods for the treatment of liver fibrosis. In our previous study, we found that the TOA-glycine derivative (G-TOA) had exhibited more significant inhibitory activity against HepG2 cells and better hydrophilicity than TOA, ligustrazine (TMP), and oleanolic acid (OA). However, inhibiting activated HSC proliferation and inducing apoptosis by G-TOA had not been reported. In this paper, the selective cytotoxicity of G-TOA was evaluated on HSC-T6 cells and L02 cells, and apoptosis mechanisms were explored. It was found that G-TOA could selectively inhibit the proliferation of activated HSC-T6 cells, induce morphological changes, early apoptosis, and mitochondrial membrane potential depolarization, increase intracellular free calcium levels, downregulate the expression of NF-κB/p65 and COX-2 protein, and decrease the ratio of Bcl-2/Bax, thereby inducing HSC-T6 cell apoptosis. Thence, G-TOA might be a potential antifibrosis agent for the therapy of hepatic fibrosis, provided that it exerts anti-fibrosis effects on activated HSC-T6 cells.

  9. AA-PMe, a novel asiatic acid derivative, induces apoptosis and suppresses proliferation, migration, and invasion of gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Jing Y

    2016-03-01

    Full Text Available Yue Jing,1 Gang Wang,1 Ying Ge,1 Minjie Xu,1 Shuainan Tang,1 Zhunan Gong1,2 1Center for New Drug Research and Development, 2Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People’s Republic of China Abstract: Asiatic acid (AA; 2α,3β,23-trihydroxyurs-12-ene-28-oic acid is widely used for medicinal purposes in many Asian countries due to its various bioactivities. A series of AA derivatives has been synthesized in attempts to improve its therapeutic potencies. Herein we investigated the anti-tumor activities of N-(2α,3β,23-acetoxyurs-12-en-28-oyl-l-proline methyl ester (AA-PMe, a novel AA derivative. AA-PMe exhibited a stronger anti-cancer activity than its parent compound AA. AA-PMe inhibited the proliferation of SGC7901 and HGC27 human gastric cancer cells in a dose-dependent manner but had no significant toxicity in human gastric mucosa epithelial cells (GES-1. AA-PMe induced cell cycle arrest in G0/G1 phase and blocked G1-S transition, which correlated well with marked decreases in levels of cyclin D1, cyclin-dependent kinase CKD4, and phosphorylated retinoblastoma protein, and increase in cyclin-dependent kinase inhibitor P15. Further, AA-PMe induced apoptosis of human gastric cancer cells by affecting Bcl-2, Bax, c-Myc, and caspase-3. Moreover, AA-PMe suppressed the migration and invasion of human gastric cancer cells (SGC7901 and HGC27 cells by downregulating the expression of MMP-2 and MMP-9. Overall, this study investigated the potential anti-cancer activities of AA-PMe including inducing apoptosis and suppressing proliferation, migration and invasion of gastric cancer cells, as well as the underlying mechanisms, suggesting that AA-PMe is a promising anti-cancer drug candidate in gastric cancer therapy. Keywords: Asiatic acid derivatives, gastric cancer cells, anti-tumor effect, cytotoxicity, apoptosis, cell cycle arrest, migration, invasion, mobility 

  10. Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis.

    Science.gov (United States)

    Zhou, Cunshan; Qian, Lichun; Ma, Haile; Yu, Xiaojie; Zhang, Youzuo; Qu, Wenjuan; Zhang, Xiaoxu; Xia, Wei

    2012-09-01

    The growth inhibition and induction of apoptosis brought by amygdalin and activated with β-D-glucosidase were tested for cytoactivity in HepG2 cells. The MTT viability assay showed that all samples had effects on HepG2 proliferation in dose and time response manners. IC50 of stand-alone amygdalin and activation with β-D-glucosidase on the proliferation of HepG2 cells for 48 h were 458.10 mg/mL and 3.2 mg/mL, respectively. Moreover, apoptotic cells were determined by AO/EB (acridine orange/ethidium bromide) fluorescent staining method and Annexin V-FITC/PI staining flow cytometry cell cycle analysis. With increasing of amygdalin concentration and the incubation time, the apoptotic rate was heightened. Compared with the control, there was significant difference (pamygdalin had no strong anti-HepG2 activity; however the ingredients of amygdalin activated with β-D-glucosidase had a higher and efficient anti-HepG2 activity. It was therefore suggested that this combination strategy may be applicable for treating tumors with a higher activity.

  11. Astaxanthin ameliorates lung fibrosis in vivo and in vitro by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

    Science.gov (United States)

    Wang, Meirong; Zhang, Jinjin; Song, Xiaodong; Liu, Wenbo; Zhang, Lixia; Wang, Xiuwen; Lv, Changjun

    2013-06-01

    Astaxanthin, a member of the carotenoid family, is the only known ketocarotenoid transported into the brain by transcytosis through the blood-brain barrier. However, whether astaxanthin has antifibrotic functions is unknown. In this study, we investigated the effects of astaxanthin on transforming growth factor β1-mediated and bleomycin-induced pulmonary fibrosis in vitro and in vivo. The results showed that astaxanthin significantly improved the structure of the alveoli and alleviated collagen deposition in vivo. Compared with the control group, the astaxanthin-treated groups exhibited downregulated protein expressions of α-smooth muscle actin, vimentin, hydroxyproline, and B cell lymphoma/leukemia-2 as well as upregulated protein expressions of E-cadherin and p53 in vitro and in vivo. Astaxanthin also inhibited the proliferation of activated A549 and MRC-5 cells at median inhibitory concentrations of 40 and 30 μM, respectively. In conclusion, astaxanthin could relieve the symptoms and halt the progression of pulmonary fibrosis, partly by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

  12. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway.

    Science.gov (United States)

    Bai, Yongheng; Chen, Bicheng; Hong, Weilong; Liang, Yong; Zhou, Mengtao; Zhou, Lan

    2016-05-01

    Sedum sarmentosum Bunge, a traditional Chinese herbal medicine, has a wide range of clinical applications including antibiosis, anti-inflammation and anti-oxidation. In the present study, we identified that its extract (SSBE) exerts pancreatic anticancer activity in vitro and in vivo. In the cultured pancreatic cancer PANC-1 cell line, SSBE inhibited cell growth in a concentration-dependent manner, and it was accompanied by the downregulated expression of proliferating cell nuclear antigen (PCNA). In addition, SSBE treatment also increased cellular apoptosis in a mitochondrial-dependent manner. Moreover, SSBE induced p53 expression, reduced c-Myc expression, and inhibited epithelial-mesenchymal transition (EMT). The antiproliferative activity of SSBE in the pancreatic cancer cells was found to be closely related to cell cycle arrest at the G2/M phase by upregulating p21(Waf1/CIP1) expression. Further study showed that this inhibitory effect of SSBE was through downregulation of the activity of the proliferation-related Hedgehog signaling pathway. Exogenous recombinant protein Shh was used to activate Hedgehog signaling, thereby resulting in the abolishment of the SSBE-mediated inhibition of pancreatic cancer cell growth. In animal xenograft models of pancreatic cancer, activated Hedgehog signaling was also observed compared with the vehicle controls, but was reduced by SSBE administration. As a result, SSBE suppressed the growth of pancreatic tumors. Thus, these findings demonstrate that SSBE has therapeutic potential for pancreatic cancer, and this anticancer effect in pancreatic cancer cells is associated with inhibition of the Hedgehog signaling pathway.

  13. Effects of different doses of 2-methoxy-estradiol on the proliferation, apoptosis and angiogenesis genes in malignant melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bo Tong

    2016-01-01

    Objective:To study the inhibitory effect of different doses of 2-methoxy-estradiol on the growth of malignant melanoma cells in vitro.Methods:First, melanoma B16 cells were cultured, and then 0μmol / L, 10 μmol / L, 20 μmol / L, 30umol / L and 40 umol / L of 2-ME were added. Last, cell viability was detected MTS kit, and the contents of proliferation gene, apoptosis gene and angiogenesis gene in both cells and culture medium were determined by Elisa.Results:2-ME reduced cell viability in a dose-dependent and time-dependent way. After 40 umol/L of 2-ME treatment, Mcl-1 and CYR61 contents in cells decreased significantly, while Fas and Caspase14 contents increased significantly. HIF-1α, VEGF, SDF-1 and CXCR4 decreased significantly in both cells and culture medium.Conclusions:Different doses of 2-ME can inhibit the growth of malignant melanoma cells in vitro by reducing the cell viability and inhibiting cell proliferation and angiogenesis.

  14. Effect of bisphenol A on morphology, apoptosis and proliferation in the resting mammary gland of the adult albino rat.

    Science.gov (United States)

    Ibrahim, Marwa A A; Elbakry, Reda H; Bayomy, Naglaa A

    2016-02-01

    Bisphenol A (BPA) is a synthetic oestrogen that is extensively used in a wide range of daily used plastic products. This makes it one of the environmental chemicals that may have impact on human health. Due to its oestrogenic effect, BPA might affect the mammary gland. This study aimed to investigate the influence of BPA on the histological structure of the mammary gland of the adult female albino rat and its effect on epithelial cell proliferation and apoptosis status, in addition to its possible modulating effect on estrogen receptor expression. Thirty female adult albino rats were divided into control and experimental groups. The rats in the experimental group were gavaged with 5 mg/kg BPA daily for 8 weeks. The mammary glands were dissected and processed for histological and immunohistochemical stains for Ki-67, activated caspase-3 and estrogen receptor alpha (ER-α). BPA induced an increase in the number and size of the acini and ducts in the mammary gland of treated rats with hyperplasia of their lining epithelial cells. The collagen fibre content was significantly increased in the connective tissue stroma separating the ducts. Immunohistochemical results showed a significant increase in Ki-67 and caspase-3, but a non-significant increase in ER-α expression. Bisphenol A induced structural changes and affected the proliferation rate of mammary glands, so it might be one of the predisposing factors for breast cancer.

  15. The cyclomodulin Cif of Photorhabdus luminescens inhibits insect cell proliferation and triggers host cell death by apoptosis.

    Science.gov (United States)

    Chavez, Carolina Varela; Jubelin, Grégory; Courties, Gabriel; Gomard, Aurélie; Ginibre, Nadège; Pages, Sylvie; Taïeb, Frédéric; Girard, Pierre-Alain; Oswald, Eric; Givaudan, Alain; Zumbihl, Robert; Escoubas, Jean-Michel

    2010-12-01

    Cycle inhibiting factors (Cif) constitute a broad family of cyclomodulins present in bacterial pathogens of invertebrates and mammals. Cif proteins are thought to be type III effectors capable of arresting the cell cycle at G(2)/M phase transition in human cell lines. We report here the first direct functional analysis of Cif(Pl), from the entomopathogenic bacterium Photorhabdus luminescens, in its insect host. The cif(Pl) gene was expressed in P. luminescens cultures in vitro. The resulting protein was released into the culture medium, unlike the well characterized type III effector LopT. During locust infection, cif(Pl) was expressed in both the hemolymph and the hematopoietic organ, but was not essential for P. luminescens virulence. Cif(Pl) inhibited proliferation of the insect cell line Sf9, by blocking the cell cycle at the G(2)/M phase transition. It also triggered host cell death by apoptosis. The integrity of the Cif(Pl) catalytic triad is essential for the cell cycle arrest and pro-apoptotic activities of this protein. These results highlight, for the first time, the dual role of Cif in the control of host cell proliferation and apoptotic death in a non-mammalian cell line.

  16. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Directory of Open Access Journals (Sweden)

    Elmira Barzegar

    2015-04-01

    Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer.

  17. Influence of Ginkgo biloba extract on the proliferation, apoptosis of ACC-2 cell and Survivin gene expression in adenoid cystic carcinoma of lacrimal gland

    Institute of Scientific and Technical Information of China (English)

    Li-Xiao Zhou; Yu Zhu

    2012-01-01

    Objective: To explore the influence of extract of Ginkgo biloba (EGB) on the proliferation, apoptosis of ACC-2 cell and Survivin gene expression in adenoid cystic carcinoma (ACC) of lacrimal gland. Methods:ACC-2 cell in human with ACC of lacrimal gland was in vitro cultured. MTT method was used for cell proliferation detection. Annexin V/PI double-staining flow cytometer was used to detect cell apoptosis and cell cycle. Survivin gene expression was analyzed by RT-PCR and Western blotting. Results: EGB had inhibitory effect on the proliferation of ACC-2 cell with significant dose-effect relationship, and there was statistical difference when compared with the control group (P<0.01). The inhibitory concentration 50 % (IC50) is 88 mg/L. The flow cytometer test indicated that EGB can gradually increase ACC-2 cell in G0-G1 stage and decrease it in G2-M and S stage. With the increase of dose, the apoptosis rate of ACC-2 cell was obviously increased (P<0.05 or P<0.01). EGB had certain inhibitory effect on Survivin gene expression of ACC-2 cell, and Survivin gene expression was decreased with the increasing of the EGB concentration (P<0.01). Conclusions:EGB can effectively inhibit Survivin gene expression of ACC-2 cell in human with ACC of lacrimal gland, induce the apoptosis of ACC-2 cell and inhibit tumor cell proliferation.

  18. Disturbed apoptosis and cell proliferation in developing neuroepithelium of lumbo-sacral neural tubes in retinoic acid-induced spina bifida aperta in rat.

    Science.gov (United States)

    Wei, Xiaowei; Li, Hui; Miao, Jianing; Zhou, Fenghua; Liu, Bo; Wu, Di; Li, Shujing; Wang, Lili; Fan, Yang; Wang, Weilin; Yuan, Zhengwei

    2012-08-01

    Spina bifida is a complex congenital malformation resulting from failure of fusion in the spinal neural tube during embryogenesis. However, the cellular mechanism underlying spina bifida is not fully understood. Here, we investigated cell apoptosis in whole embryos and proliferation of neural progenitor cells in the spinal neural tube during neurulation in all-trans retinoic acid (atRA)-induced spina bifida in fetal rats. Cell apoptosis was assessed by TUNEL assay on whole-mount and serially sectioned samples of rat embryos with spina bifida. Cell proliferation of lumbo-sacral neural progenitor cells was assessed by staining for the mitotic marker Ki67 and pH3. We found an excess of apoptosis in the neuroepithelium of embryos with spina bifida, which became more marked as embryos progress from E11 to E13. Conversely, there was a reduction in cell proliferation in spina bifida embryos, with a progressively greater difference from controls with stage from E11 to 13. Thus, atRA-induced spina bifida in rat shows perturbed apoptosis and proliferation of neural progenitors in the lumbo-sacral spinal cord during embryonic development, which might contribute to the pathogenesis of spina bifida.

  19. INDUCTION OF CELL PROLIFERATION AND APOPTOSIS IN HL60 AND HACAT CELLS BY ARSENIC, ARSENATE, AND ARSENIC-CONTAMINATED DRINKING WATER

    Science.gov (United States)

    Induction of cell proliferation and apoptosis in HL-60 and HaCaT cells by arsenite, arsenate and arsenic-contaminated drinking water. T-C. Zhang, M. Schmitt, J. L. Mumford National Research Council, Washington DC and U.S. Environmental Protection Agency, NHEERL, Research Triangle...

  20. Cadmium Promotes Breast Cancer Cell Proliferation by Potentiating the Interaction between ERα and c-Jun

    OpenAIRE

    2010-01-01

    Cadmium is an environmental contaminant that enters the body through diet or cigarette smoke. It affects multiple cellular processes, including cell proliferation, differentiation, and apoptosis. Recently, cadmium has been shown to function as an endocrine disruptor, to stimulate estrogen receptor α (ERα) activity and promote uterine and mammary gland growth in mice. Although cadmium exposure has been associated with the development of breast cancer, the mechanism of action of cadmium remains...

  1. Human Papillomavirus 16 E6,E7 siRNAs Inhibit Proliferation and Induce Apoptosis of SiHa Cervical Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    NIE Chun-lian; GAO Guo-lan; HAN Jie; LI Hua; CHEN He-ping; HE Ming

    2008-01-01

    Objective:To evaluate the effects of HPVl6 E6/E7 siRNAs on cervical cancer SiHa cells. Methods:The expressions of the E6,E7,p53 and Rb genes were assayed by RT-PCR and Western-bloting respectively.The proliferation and apoptosis of the cells were evaluated by MTT and flow cytometry. Results:HPV 16 E6 and E7 oncogenes were selectivly downregulated by HPV 16 E6 and E7 siRNAs,which sustained at least 96 h by single dose siRNA.Furthermore,reduction of E6 and E7 oncogenes expression upregulated the expressions of P53 and RB protein and induced apoptosis in SiHa cells. Conclusion:Introduction of HPV16 E6/E7 siRNA might be a potentially potent and specific approach to inhibit proliferation and induce apoptosis of SiHa cervical cancer cells.

  2. Crude Garlic Extract Inhibits Cell Proliferation and Induces Cell Cycle Arrest and Apoptosis of Cancer Cells In Vitro.

    Science.gov (United States)

    Bagul, Mukta; Kakumanu, Srikanth; Wilson, Thomas A

    2015-07-01

    Garlic and its lipid-based extracts have played an important medicinal role in humans for centuries that includes antimicrobial, hypoglycemic, and lipid-lowering properties. The present study was to investigate the effects of crude garlic extract (CGE) on the proliferation of human breast, prostate, hepatic, and colon cancer cell lines and mouse macrophageal cells, not previously studied. The human cancer cell lines, such as hepatic (Hep-G2), colon (Caco-2), prostate (PC-3), and breast (MCF-7), were propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated RPMI-1640 Medium and 10% fetal bovine serum (FBS), while the mouse macrophage cell line (TIB-71) was propagated at 37°C; air/CO2 (95:5 v/v) using the ATCC-formulated DMEM and 10% FBS. All cells were plated at a density of ∼5000 cells/well. After overnight incubation, the cells were treated with 0.125, 0.25, 0.5, or 1 μg/mL of CGE an additional 72 h. Inhibition of cell proliferation of 80-90% was observed for Hep-G2, MCF-7, TIB-71, and PC-3 cells, but only 40-55% for the Caco-2 cells when treated with 0.25, 0.5, or 1 μg/mL. In a coculture study of Caco-2 and TIB-71 cells, inhibition of cell proliferation of 90% was observed for Caco-2 cells compared to the 40-55% when cultured separately. CGE also induced cell cycle arrest and had a fourfold increase in caspase activity (apoptosis) in PC-3 cells when treated at a dose of 0.5 or 1 μg/mL. This investigation of CGE clearly highlights the fact that the lipid bioactive compounds in CGE have the potential as promising anticancer agents.

  3. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non-Small Cell Lung Cancer Cells.

    Science.gov (United States)

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-07-13

    Non-small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non-small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non-small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle-associated proteins by Western blot analysis and found immature colon carcinoma transcript 1-mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non-small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non-small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non-small cell lung cancer.

  4. Functional screening identifies miRNAs influencing apoptosis and proliferation in colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Holm, Anja; Rantala, Juha

    2014-01-01

    MicroRNAs (miRNAs) play a critical role in many biological processes and are aberrantly expressed in human cancers. Particular miRNAs function either as tumor suppressors or oncogenes and appear to have diagnostic and prognostic significance. Although numerous miRNAs are dys-regulated in colorectal...... cancer (CRC) only a small fraction has been characterized functionally. Using high-throughput functional screening and miRNA profiling of clinical samples the present study aims at identifying miRNAs important for the control of cellular growth and/or apoptosis in CRC. The high-throughput functional...... analysis of transient and stable transfected CRC cell lines confirmed that miR-375 reduces cell viability through the induction of apoptotic death. We identified YAP1 as a direct miR-375 target in CRC and show that HELLS and NOLC1 are down-stream targets. Knock-down of YAP1 mimicked the phenotype induced...

  5. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  6. Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells.

    Science.gov (United States)

    Sabarwal, Akash; Agarwal, Rajesh; Singh, Rana P

    2017-02-01

    The anticancer effects of fisetin, a dietary agent, are largely unknown against human gastric cancer. Herein, we investigated the mechanisms of fisetin-induced inhibition of growth and survival of human gastric carcinoma AGS and SNU-1 cells. Fisetin (25-100 μM) caused significant decrease in the levels of G1 phase cyclins and CDKs, and increased the levels of p53 and its S15 phosphorylation in gastric cancer cells. We also observed that growth suppression and death of non-neoplastic human intestinal FHs74int cells were minimally affected by fisetin. Fisetin strongly increased apoptotic cells and showed mitochondrial membrane depolarization in gastric cancer cells. DNA damage was observed as early as 3 h after fisetin treatment which was accompanied with gamma-H2A.X(S139) phosphorylation and cleavage of PARP. Fisetin-induced apoptosis was observed to be independent of p53. DCFDA and MitoSOX analyses showed an increase in mitochondrial ROS generation in time- and dose-dependent fashion. It also increased cellular nitrite and superoxide generation. Pre-treatment with N-acetyl cysteine (NAC) inhibited ROS generation and also caused protection from fisetin-induced DNA damage. The formation of comets were observed in only fisetin treated cells which was blocked by NAC pre-treatment. Further investigation of the source of ROS, using mitochondrial respiratory chain (MRC) complex inhibitors, suggested that fisetin caused ROS generation specifically through complex I. Collectively, these results for the first time demonstrated that fisetin possesses anticancer potential through ROS production most likely via MRC complex I leading to apoptosis in human gastric carcinoma cells. © 2016 Wiley Periodicals, Inc.

  7. Up-regulation of hypoxia inducible factor-1α by cobalt chloride correlates with proliferation and apoptosis in PC-2 cells

    Directory of Open Access Journals (Sweden)

    Dai Zhi-Jun

    2012-03-01

    Full Text Available Abstract Background The exact mechanism of the effects of hypoxia on the proliferation and apoptosis in carcinoma cells is still conflicting. This study investigated the variation of hypoxia-inducible factor-1α(HIF-1α expression and the apoptosis effect of hypoxia stimulated by cobalt chloride (CoCl2 in pancreatic cancer PC-2 cells. Methods PC-2 cells were cultured with different concentration (50-200 μmol/L of CoCl2 after 24-120 hours to simulate hypoxia in vitro. The proliferation of PC-2 cells was examined by MTT assay. The cellular morphology of PC-2 cells were observed by light inverted microscope and transmission electron microscope(EM. The expression of HIF-1α on mRNA and protein level was measured by semi-quantitive RT-PCR and Western blot analysis. Apoptosis of PC-2 cells were demonstrated by flow cytometry with Annexin V-FITC/PI double staining. Results MTT assay showed that the proliferation of PC-2 cells were stimulated in the first 72 h, while after treated over 72 h, a dose- dependent inhibition of cell growth could be observed. By using transmission electron microscope, swollen chondrosomes, accumulated chromatin under the nuclear membrane and apoptosis bodies were observed. Flow cytometer(FCM analysis showed the apoptosis rate was correlated with the dosage of CoCl2. RT-PCR and Western blot analysis indicated that hypoxia could up-regulate the expression of HIF-1α on both mRNA and protein levels. Conclusion Hypoxic microenvironment stimulated by CoCl2 could effectively induce apoptosis and influence cell proliferation in PC-2 cells, the mechanism could be related to up-expression of HIF-1α.

  8. In vitro effects of sodium hyaluronate on the proliferation and the apoptosis in chondrocytes from patients with Kashin-Beck disease and osteoarthritis

    Institute of Scientific and Technical Information of China (English)

    Zongqiang Gao; Xiong Guo; Chen Duan; Weijuan Ma; Peng Xu; Ruiyu Liu; Qisheng Gu; Junchang Chen

    2009-01-01

    Objective:To identify the in vitro effects of sodium hyaluronate(HA) on the proliferation and the apoptosis of chondrocytes from patients with Kashin-Beck disease(KBD) and osteoarthritis(OA). Methods:Samples of articular cartilages from KBD and OA patients, as well as healthy volunteers(6 subjects in each of the 3 groups) were dissected, digested with collagenase and the cells cultured in monolayers. Chondrocytes from each sample were assigned to an untreated group and two HA-treated groups: H0(no HA), H100(HA, 0.1 g/L) and H500(HA, 0.5 g/L). The first passage chondrocytes were used to observe proliferation using the MTT assay, and apoptosis by flow cytometry through Annexin V/PI staining. Results:HA promoted proliferation of chondrocytes in all the three groups, and in KBD and OA groups, for cells cultured for 4 and 6 days, H500 significantly promoted the cell proliferation. The apoptotic rates of both KBD and OA group chondrocytes were in the order H500 < HA100 < H0. Conclusion:Sodium hyaluronate administration has a dose-dependendent vitro effect to promote proliferation and inhibit apoptosis of chondrocytes from patients with KBD and OA.

  9. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    Science.gov (United States)

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis.

  10. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation

    Directory of Open Access Journals (Sweden)

    Dowling Catherine

    2009-06-01

    Full Text Available Abstract Background Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. Methods cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. Results PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. Conclusion Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  11. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation.

    LENUS (Irish Health Repository)

    Gill, Catherine

    2009-01-01

    BACKGROUND: Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP) Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. METHODS: cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. RESULTS: PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. CONCLUSION: Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  12. Effects related to gene-gene interactions of peroxisome proliferator-activated receptor on essential hypertension

    Institute of Scientific and Technical Information of China (English)

    俞浩

    2013-01-01

    Objective To explore the impact of the gene-gene interaction among the single nucleotide polymorphisms(SNPs) of peroxisome proliferator-activated receptorα/δ/γ on essential hypertension(EH).Methods

  13. Glyceraldehyde-3-phosphate dehydrogenase interacts with proapoptotic kinase mst1 to promote cardiomyocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Bei You

    Full Text Available Mammalian sterile 20-like kinase 1 (Mst1 is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease.

  14. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    Science.gov (United States)

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  15. Involvement of apoptosis in host-parasite interactions in the zebra mussel.

    Directory of Open Access Journals (Sweden)

    Laëtitia Minguez

    Full Text Available The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism.

  16. Progressive Evaluation of Apoptosis, Proliferation, and Angiogenesis in Fresh Rat Ovarian Autografts Under Remote Ischemic Preconditioning.

    Science.gov (United States)

    Damous, Luciana Lamarão; Silva, Sônia Maria da; Carbonel, Adriana Aparecida Ferraz; Simões, Manuel de Jesus; Baracat, Edmund Chada; Montero, Edna Frasson de Souza

    2016-06-01

    This study evaluated the remote ischemic preconditioning (R-IPC) early and late repercussion on fresh ovarian transplants, aiming to assess a probable protective effect in ovarian follicular pool. Sixty Wistar EPM-1 rats were used, divided in 2 study groups: ovarian transplantation (Tx) and Tx + R-IPC, submitted to ovary transplant with or without R-IPC, respectively. These groups were subdivided according to the date for euthanasia: 4th, 7th, 14th, 21st, and 30th days of the postoperatory period. Morphology, morphometry, neoangiogenesis (vascular endothelial growth factor [VEGF]), proliferative activity (Ki-67), and apoptosis (cleaved caspase-3) were evaluated. Remote ischemic preconditioning was performed in the common iliac artery. Fresh autologous ovarian tissue was implanted integrally in the retroperitoneum. All animals showed resumption of estrous phase after ovary transplantation. Remote ischemic preconditioning attenuated the lesions progressively from the 7th day, with greater number of the immature follicles (14 days, P .05). Immunohistochemical analyzes, taken as a whole, show that R-IPC benefic effect is more evident in the later periods of evaluation, when a greater proliferative activity (14, 21, and 30 days, P .05). Remote ischemic preconditioning could have a benefic effect in the progressive evaluation of freshly grafted ovarian, especially on the latest phases of the posttransplant period. The 14th day was a landmark in the recuperation of the graft. Further investigations are necessary to determine the role of R-IPC in this scenario and its effect in frozen-thawed ovarian tissue.

  17. Inhibition of periostin gene expression via RNA interference suppressed the proliferation, apoptosis and invasion in U2OS cells

    Institute of Scientific and Technical Information of China (English)

    LIU Chang; HUANG Si-jian; QIN Ze-lian

    2010-01-01

    Background Periostin originally designated osteoblast-specific factor 2 (OSF-2) is frequently found to be highly expressed in various types of human cancer cell lines in vitro and human cancer tissues in vivo. We proposed that periostin was a key factor during the process of proliferation and invasion in cancer cells. We investigated the effect of periostin on the function of human osteosarcoma cell line (U2OS), such as proliferation, apoptosis, invasion and the associated signal pathway.Methods A human PGCsi/U6 promoter-driven DNA template was adopted to induce short hairpin RNA (shRNA)-triggered RNA interference (RNAi) to block periostin gene expression in the cell line U2OS. U2OS cells were divided into three groups: cells transfected with phosphate buffered saline as control group (the U2OS group), cells transfected with pGCsi as negative control group (the NC group) and cells transfected with periostin/pGCsi as experimental group (the pGCsi-periostin group). Then, transfection efficiency of cell was observed under fluorescent microscope. The expressions of periostin and the related genes in cells were detected by reverse transcription polymerase chain reaction and Western Blotting. Cell viability was determined using the methyl-thiazolyl tetrazolium bromide (MTT) quantitative colorimetric assay. The invasion and migration capability of cells were tested by transwell plates with or without extracellular matrix gel. Furthermore, the changes of cell cycle and apoptosis were analyzed by flow cytometry.Results The transfection efficiency of periostin/pGCsi to U2OS cells was about 70%-80%. When compared with the NC group, the levels of mRNA and protein of periostin in the pGCsi-periostin group decreased by 82% (F=564.71, P<0.001) and 58% (F=341.51, P <0.001 ), respectively. Meantime, the earlier apoptosis value increased by 417 (F=28.69,P <0.001). The percentage of S phase pGCsi-periostin cells decreased by 21% (F=47.00, P <0.001), however, that of G0-G1

  18. AG36 Inhibits Human Breast Cancer Cells Proliferation by Promotion of Apoptosis In vitro and In vivo.

    Science.gov (United States)

    Mu, Li-Hua; Wang, Yu-Ning; Wang, Dong-Xiao; Zhang, Jing; Liu, Li; Dong, Xian-Zhe; Hu, Yuan; Liu, Ping

    2017-01-01

    AG36 is the biotransformation product of triterpenoid saponin from Ardisia gigantifolia stapf. In this study, the antitumor activity and underlying molecular mechanisms of AG36 against human breast MCF-7, MDA-MB-231, and SK-BR-3 cancer cells were investigated. AG36 inhibited the viability of MCF-7, MDA-MB-231, and SK-BR-3 cells in a dose and time-dependent manner, with an IC50 of approximately 0.73, 18.1, and 23.4 μM at 48 h, respectively. AG36 obviously induced apoptosis and G2/M arrest of all the three breast cancer cells. Moreover, AG36 decreased the protein expression of cycle regulatory proteins cyclin B1 or cyclin D1. In MCF-7 and MDA-MB-231 cells, AG36 strongly increased the cleaved caspase-3 and -8 protein expressions, while in SK-BR-3 cells, AG36 only increased the protein expression of cleaved caspase-3. In all the three breast cancer cells, the ratio of Bax/Bcl-2 and cytosolic cytochrome c content increased significantly compared with control group. The death receptor-related proteins Fas/FasL, TNFR1, and DR5 were detected by Western blot, it showed that different breast cancer cells activated the death receptor-mediated extrinsic caspase-8 pathway through different receptors. In addition, the caspase-8 inhibitor z-IETD-fmk could significantly block AG36-triggered MCF-7 cells apoptosis. The in vivo studies showed that AG36 significantly inhibited the growth of MCF-7 xenograft tumors in BALB/c nude mice comparing with control. In conclusion, AG36 inhibited MCF-7, MDA-MB-231, and SK-BR-3 cells proliferation by the intrinsic mitochondrial and the extrinsic death receptor pathways and AG36 might be a potential breast cancer therapeutic agent.

  19. AG36 Inhibits Human Breast Cancer Cells Proliferation by Promotion of Apoptosis In vitro and In vivo

    Science.gov (United States)

    Mu, Li-Hua; Wang, Yu-Ning; Wang, Dong-Xiao; Zhang, Jing; Liu, Li; Dong, Xian-Zhe; Hu, Yuan; Liu, Ping

    2017-01-01

    AG36 is the biotransformation product of triterpenoid saponin from Ardisia gigantifolia stapf. In this study, the antitumor activity and underlying molecular mechanisms of AG36 against human breast MCF-7, MDA-MB-231, and SK-BR-3 cancer cells were investigated. AG36 inhibited the viability of MCF-7, MDA-MB-231, and SK-BR-3 cells in a dose and time-dependent manner, with an IC50 of approximately 0.73, 18.1, and 23.4 μM at 48 h, respectively. AG36 obviously induced apoptosis and G2/M arrest of all the three breast cancer cells. Moreover, AG36 decreased the protein expression of cycle regulatory proteins cyclin B1 or cyclin D1. In MCF-7 and MDA-MB-231 cells, AG36 strongly increased the cleaved caspase-3 and -8 protein expressions, while in SK-BR-3 cells, AG36 only increased the protein expression of cleaved caspase-3. In all the three breast cancer cells, the ratio of Bax/Bcl-2 and cytosolic cytochrome c content increased significantly compared with control group. The death receptor-related proteins Fas/FasL, TNFR1, and DR5 were detected by Western blot, it showed that different breast cancer cells activated the death receptor-mediated extrinsic caspase-8 pathway through different receptors. In addition, the caspase-8 inhibitor z-IETD-fmk could significantly block AG36-triggered MCF-7 cells apoptosis. The in vivo studies showed that AG36 significantly inhibited the growth of MCF-7 xenograft tumors in BALB/c nude mice comparing with control. In conclusion, AG36 inhibited MCF-7, MDA-MB-231, and SK-BR-3 cells proliferation by the intrinsic mitochondrial and the extrinsic death receptor pathways and AG36 might be a potential breast cancer therapeutic agent. PMID:28184196

  20. A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells

    Science.gov (United States)

    Mondal, Arijit; Guria, Tanmoy; Maity, Tapan Kumar; Bishayee, Anupam

    2016-01-01

    Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus—(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate—against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G2/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma. PMID:27669220

  1. Expression of apoptosis and proliferating cell nuclear antigen (PCNA) in the cardiac conduction system of crib death (SIDS).

    Science.gov (United States)

    Matturri, L; Ottaviani, G; Lavezzi, A M; Turconi, P; Cazzullo, A; Rossi, L

    2001-07-01

    Aim of this study is to determine the expression of apoptosis and Proliferating Cell Nuclear Antigen (PCNA) in the cardiac conduction system in crib death and explained death (ED) cases. Postnatal morphogenesis of the conducting tissue is an important part of its normal development. In the atrio-ventricular node (AVN) and His bundle (HB) it consists of degeneration, cell death and replacing in an orderly programmed way. However, its nature and its relation to crib death is not yet fully explained. Apoptosis and PCNA were investigated in 8 heart conduction systems of infants dying of crib death and in 3 conduction systems of infants dying of ED as controls. The cardiac conduction system was removed in two blocks: the first included the sino-atrial node (SAN) and the crista terminalis, the second contained the atrio-ventricular node (AVN), His bundle (HB), bifurcation, and bundle branches. In the conduction systems as well as in the common myocardium the PCNA Labeling Index (PCNA-LI) was found to be negative in all cases. The apoptotic indices (AI) in SIDS and in ED were found to have no statistically significant differences (p>0.05). The SAN, in both groups, showed an AI similar to the one detected in common myocardium. In almost all cases, TUNEL labeling was detected in peripheral region of the AVN, close to the atrial myocardium. The AI was higher in the AVN, HB and the initial tract of bundle branches than in the common myocardium (p<0.05; Student's t test).

  2. A Novel Tetraenoic Fatty Acid Isolated from Amaranthus spinosus Inhibits Proliferation and Induces Apoptosis of Human Liver Cancer Cells.

    Science.gov (United States)

    Mondal, Arijit; Guria, Tanmoy; Maity, Tapan Kumar; Bishayee, Anupam

    2016-09-22

    Amaranthus spinosus Linn. (Family: Amaranthaceae) has been shown to be useful in preventing and mitigating adverse pathophysiological conditions and complex diseases. However, only limited information is available on the anticancer potential of this plant. In this study, we examined the antiproliferative and pro-apoptotic effects of a novel fatty acid isolated from A. spinosus-(14E,18E,22E,26E)-methyl nonacosa-14,18,22,26 tetraenoate-against HepG2 human liver cancer cells. We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability, flow cytometry assay for cell cycle analysis, and Western blot analysis to measure protein expression of Cdc2), cyclin B1, Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2). The MTT assay showed that the fatty acid markedly inhibited the proliferation of HepG2 cells in a dosage-dependent fashion, with a half maximal inhibitory concentration (IC50) value of 25.52 µmol/L. This antiproliferative result was superior to that of another known fatty acid, linoleic acid (IC50 38.65 µmol/L), but comparable to that of standard anticancer drug doxorubicin (IC50 24.68 µmol/L). The novel fatty acid also induced apoptosis mediated by downregulation of cyclin B1, upregulation of Bax, and downregulation of Bcl-2, resulting in the G₂/M transition arrest. Our results provide the first experimental evidence that a novel fatty acid isolated from A. spinosus exhibits significant antiproliferative activity mediated through the induction of apoptosis in HepG2 cells. These encouraging results may facilitate the development of A. spinosus fatty acid for the prevention and intervention of hepatocellular carcinoma.

  3. Effects of RNA interference-mediated NRP-1 silencing on the proliferation and apoptosis of breast cancer cells.

    Science.gov (United States)

    Han, Zhengxiang; Jiang, Guan; Zhang, Yingying; Xu, Jie; Chen, Chong; Zhang, Lansheng; Xu, Zhenyuan; Du, Xiuping

    2015-07-01

    Lentiviral expression vectors carrying human NRP-1 short hairpin RNA (shRNA) were constructed and selected to present highly efficient NRP-1/shRNA interference sequences, in order to investigate the effects of RNA interference (RNAi)-mediated NRP-1 silencing on the biological activities of breast cancer cells. Three pairs of human NRP-1 targeted specific interference sequences and one pair of non-specific control sequences were designed, synthesized and subcloned into pLB lentiviral vectors, which were further identified by polymerase chain reaction (PCR) and sequencing. Recombinant and lentiviral packaging plasmids were co-transfected into 293FT cell lines in order to produce lentiviral particles and to infect breast cancer cells with high NRP-1 expression. Flow cytometry was used to sort green fluorescent protein-positive cells. Fluorescence quantitative-reverse transcription-PCR and western blot analysis were employed to identify the interference silencing sequence with the most efficient silencing profile. A cell counting kit-8 assay and an Annexin V-propidium iodide method in combination with flow cytometry were used to examine the effects of RNA interference-mediated NRP-1 gene silencing on cell proliferation, apoptosis and sensitivity to chemotherapy. The recombinant lentiviral plasmid pLB-NRP-1/shRNA was constructed successfully, as confirmed by PCR and sequencing. After the infection of recombinant lentiviral plasmids, the expression profiles of NRP-1 mRNA, and proteins of MCF-7 and SK-BR-3 cell-specific interference group (pLB-NRP-1/shRNA3) were significantly lower than that of the control group (PSK-BR-3 cell-specific interference group (pLB-NRP-1/shRNA3) showed lower optical density values and higher apoptotic rates at 48, 72 and 96 h; these differences were statistically significant (PSK-BR-3 cell-specific interference groups compared with the control group (P<0.05). Lentiviral vectors encoding the human NRP-1 gene were constructed successfully and

  4. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  5. Mangiferin regulates proliferation and apoptosis in glioma cells by induction of microRNA-15b and inhibition of MMP-9 expression.

    Science.gov (United States)

    Xiao, Jinsong; Liu, Li; Zhong, Zian; Xiao, Cheng; Zhang, Junjian

    2015-06-01

    Mangiferin, a flavonoid extracted from the leaves of the Anacardiaceae plant, the mango tree, has physiological activity and pharmacological effects in many aspects. The present study aimed to clarify the effect of mangiferin on proliferation and apoptosis of glioma cells and the mechanism of these curative effects of mangiferin. In this experiment, we detected the proliferation using 3-(4,5-dimethylthylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Then, cell apoptosis of U87 glioma cells was measured with the Annexin V-FITC/propidium iodide (PI) apoptosis detection kit, DAPI staining assay and the caspase-3 and caspase-9 activity assay kit. Next, quantitative real-time PCR and gelatin zymography were used to analyze the expression of microRNA-15b (miR-15b) and matrix metalloproteinase-9 (MMP-9), respectively. MMP-9 agonist, miR-15b mimics and anti-miR-15b mimics were added to the U87 glioma cells for elucidating the mechanisms involved in the curative effects of mangiferin. In the present study, mangiferin notably restrained the proliferation and increased the apoptosis of the U87 glioma cells. Meanwhile, mangiferin specifically promoted the expression of miR-15b and suppressed the level of MMP-9 in the U87 glioma cells. miR-15b regulated the expression of MMP-9 in the U87 glioma cells. MMP-9 agonist and anti-miR‑15b reduced the curative effects of mangiferin in the U87 glioma cells. In summary, mangiferin regulates proliferation and apoptosis in glioma cells by induction of miR-15b and inhibition of MMP-9 expression.

  6. Ethanol Extract of Abnormal Savda Munziq, a Herbal Preparation of Traditional Uighur Medicine, Inhibits Caco-2 Cells Proliferation via Cell Cycle Arrest and Apoptosis

    Directory of Open Access Journals (Sweden)

    Abdiryim Yusup

    2012-01-01

    Full Text Available Aims. Study the effect of Abnormal Savda Munziq (ASMq ethanol extract on the proliferation, apoptosis, and correlative gene, expression in colon cancer cells (Caco-2 to elucidate the molecular mechanisms responsible for the anticancer property of Abnormal Savda Munziq. Materials and Methods. ASMq ethanol extract was prepared by a professional pharmacist. Caco-2 cells were treated with different concentration of ASMq ethanol extract (0.5–7.5 mg/mL for different time intervals (48 and 72 h. Antiproliferative effect of ASMq ethanol extract was determined by MTT assay; DNA fragmentation was determined by gel electrophoresis assay; cell cycle analysis was detected by flow cytometer; apoptosis-related gene expression was detected by RT-PCR assay. Results. ASMq ethanol extract possesses an inhibition effect on Caco-2 cells proliferation, induction of cell apoptosis, cell cycle arrest in sub-G1 phase, and downregulation of bcl-2 and upregulation of Bax gene expression. Conclusion. The anticancer mechanism of ASMq ethanol extract may be involved in antiproliferation, induction of apoptosis, cell cycle arrest, and regulation of apoptosis-related gene expression such as bcl-2 and Bax activity pathway.

  7. Attenuation of Telomerase Activity by siRNA Targeted Telomerase RNA Leads to Apoptosis and Inhibition of Proliferation in Human Renal Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    Rumin Wen; Junjie Liu; Wang Li; Wenfa Yang; Lijun Mao; Junnian Zheng

    2006-01-01

    OBJECTIVE Telomerase is an attractive molecular target for cancer therapy because the activation of telomerase is one of the key steps in cell immortalization and carcinogenesis. RNA interference using small-interfering RNA (siRNA) has been demonstrated to be an effective method for inhibiting the expression of a given gene in human cells. The aim of the present study was to investigate whether inhibition of telomerase activity by siRNA targeted against human telomerase RNA (hTR) can inhibit proliferation and induce apoptotic cell death in human renal carcinoma cells(HRCCs).METHODS The siRNA duplexes for hTR were synthesized and 786-O HRCCs were transfected with different concentrations of hTR-siRNA. The influence on the hTR mRNA level, telomerase activity, as well as the effect on cell proliferation and apoptosis was examined.RESULTS Anti-hTR siRNA treatment of HRCCs resulted in specific reduction of hTR mRNA and inhibition of telomerase activity. Additionally,significant inhibition of proliferation and induction of apoptosis were observed.CONCLUSION siRNA against the hTR gene can inhibit proliferation and induce apoptosis by blocking telomerase activity of HRCCs. Specific hTR inhibition by siRNA represents a promising new option for renal cancer treatment.

  8. Effects and mechanism of downregulation of COX‑2 expression by RNA interference on proliferation and apoptosis of human breast cancer MCF‑7 cells.

    Science.gov (United States)

    Han, Hui; Yang, Sheng; Lin, Shun-Guo; Xu, Chun-Sen; Han, Zhong-Hua

    2014-12-01

    The aim of the present study was to investigate the effects of RNA interference with prostaglandin-endoperoxide synthase 2 (COX‑2) gene on the proliferation and apoptosis of breast cancer MCF‑7 cells, as well as the underlying mechanism. The present study constructed the eukaryotic expression vector of the targeted COX‑2 gene, transfected the MCF‑7 cells and screened the stably expressed clone. Changes in the COX‑2 gene expression in breast cancer MCF‑7 cells prior to and following transfection were examined; the proliferation and apoptosis of MCF‑7 cells were analyzed. Furthermore, changes in the protein levels of survivin, B-cell lymphoma 2 (Bcl‑2) and Bcl-2-associated X (Bax) genes were detected. RNA interference mediated by a lentiviral expression vector significantly decreased the protein expression levels of the COX‑2 gene, and therefore, the proliferation and growth of breast cancer MCF‑7 cells was significantly suppressed and the apoptotic rate increased. Of note, the mRNA and protein expression levels of survivin and Bcl‑2 decreased, while those of Bax increased following COX-2 silencing. RNA interference markedly deactivated the COX‑2 gene, suppressed the proliferation of breast cancer MCF‑7 cells, and, to a certain extent, enhanced the induced spontaneous apoptosis, which is regulated by the Bax gene. These results provided evidence for the potential applications of RNA interference of the targeted COX‑2 gene in gene therapy for the treatment of breast cancer.

  9. p21 is associated with the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells from non-obese diabetic mice.

    Science.gov (United States)

    Gu, Z; Jiang, J; Xia, Y; Yue, X; Yan, M; Tao, T; Cao, X; Da, Z; Liu, H; Liu, H; Miao, Y; Li, L; Wang, Z

    2013-11-01

    Recent studies have shown that autologous and allogeneic transplantation of the BM-MSCs had therapeutic effects on T1DM, whereas the BM-MSCs from the NOD mice itself did not have this therapeutic effect. We previously demonstrated that Bone Marrow (BM) -MSCs from the non-obese diabetic (NOD) mice had the abnormal migration and adhesion. So we hypothesized that the proliferation and apoptosis of the BM-MSCs from the NOD mice were dysregulated. Our team compared the proliferation and apoptosis between NOD mice and imprinting control region (ICR) mice. Then we assessed whether the NF-κB-p53/p21 pathway was involved in the process. The cell proliferation ability of the BM-MSCs from the NOD mice were significantly decreased, while the percent of apoptotic cells was increased compared to those from the ICR mice. The p21 expression was significantly increased in the NOD-MSCs. The p65 level was enhanced in the BM-MSCs from the NOD mice when compared to the ICR mice, coincided with the expression of p21. Expressions of p65 and p21 were significantly decreased in the -BM-MSCs treated with p65 inhibitor. The knockdown p21 expression reversed the abnormal proliferation, colony formation and apoptosis of the BM-MSCs from the NOD mice. These data provide important preclinical references supporting the basis for further development of autologous MSC-based therapies for type1 diabetes mellitus (T1DM).

  10. In the absence of Sonic hedgehog, p53 induces apoptosis and inhibits retinal cell proliferation, cell-cycle exit and differentiation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Sergey V Prykhozhij

    Full Text Available BACKGROUND: Sonic hedgehog (Shh signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of the zebrafish shh(-/- mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh(-/- mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh(-/- mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh(-/- mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53(-/-shh(-/- mutant retina suggesting the effect of p53 on retinal differentiation. CONCLUSIONS: Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.

  11. Focal adhesion kinase antisense oligodeoxynucleotides inhibit human pulmonary artery smooth muscle cells proliferation and promote human pulmonary artery smooth muscle cells apoptosis

    Institute of Scientific and Technical Information of China (English)

    LIN Chun-long; ZHANG Zhen-xiang; XU Yong-jian; NI Wang; CHEN Shi-xin

    2005-01-01

    Background Pulmonary artery smooth muscle cell (PASMC) proliferation plays an important role in pulmonary vessel structural remodelling. At present, the mechanisms related to proliferation of PASMCs are not clear. Focal adhesion kinase (FAK) is a widely expressed nonreceptor protein tyrosine kinase. Recent research indicates that FAK is implicated in signalling pathways which regulate cytoskeletal organization, adhesion, migration, survival and proliferation of cells. Furthermore, there are no reports about the role of FAK in human pulmonary artery smooth muscle cells (HPASMCs). We investigated whether FAK takes part in the intracellular signalling pathway involved in HPASMCs proliferation and apoptosis, by using antisense oligodeoxynucleotides (ODNs) to selectively suppress the expression of FAK protein.Methods Cultured HPASMCs stimulated by fibronectin (40 μg/ml) were passively transfected with ODNs, sense FAK, mismatch sense and antisense-FAK respectively. Expression of FAK, Jun NH2-terminal kinase (JNK), cyclin-dependent kinase 2 (CDK 2) and caspase-3 proteins were detected by immunoprecipitation and Western blots. Cell cycle and cell apoptosis were analysed by flow cytometry. In addition, cytoplasmic FAK expression was detected by immunocytochemical staining.Results When compared with mismatch sense group, the protein expressions of FAK, JNK and CDK 2 in HPASMCs decreased in antisense-FAK ODNs group and increased in sense-FAK ODNs group significantly. Caspase-3 expression upregulated in HPASMCs when treated with antisense ODNs and downregulated when treated with sense ODNs. When compared with mismatch sense ODNs group, the proportion of cells at G1 phase decreased significantly in sense ODNs group, while the proportion of cells at S phase increased significantly. In contrast, compared with mismatch sense ODNs group, the proportion of cells at G1 phase was increased significantly in antisense-FAK ODNs group. The level of cell apoptosis in antisense-FAK group

  12. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells.

    Science.gov (United States)

    Qi, Zihao; Liu, Mingming; Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.

  13. Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren's disease and adjacent palmar fascia cells

    Energy Technology Data Exchange (ETDEWEB)

    Vi, Linda; Feng, Lucy; Zhu, Rebecca D.; Wu, Yan [Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, London, Ontario (Canada); Lawson Health Research Institute, London, Ontario (Canada); Satish, Latha [Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA (United States); Gan, Bing Siang [Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, London, Ontario (Canada); Lawson Health Research Institute, London, Ontario (Canada); Department of Surgery, University of Western Ontario, London, Ontario (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario (Canada); O' Gorman, David B., E-mail: dogorman@uwo.ca [Cell and Molecular Biology Laboratory, Hand and Upper Limb Centre, London, Ontario (Canada); Lawson Health Research Institute, London, Ontario (Canada); Department of Surgery, University of Western Ontario, London, Ontario (Canada); Department of Biochemistry, University of Western Ontario, London, Ontario (Canada)

    2009-12-10

    Dupuytren's disease, (DD), is a fibroproliferative condition of the palmar fascia in the hand, typically resulting in permanent contracture of one or more fingers. This fibromatosis is similar to scarring and other fibroses in displaying excess collagen secretion and contractile myofibroblast differentiation. In this report we expand on previous data demonstrating that POSTN mRNA, which encodes the extra-cellular matrix protein periostin, is up-regulated in Dupuytren's disease cord tissue relative to phenotypically normal palmar fascia. We demonstrate that the protein product of POSTN, periostin, is abundant in Dupuytren's disease cord tissue while little or no periostin immunoreactivity is evident in patient-matched control tissues. The relevance of periostin up-regulation in DD was assessed in primary cultures of cells derived from diseased and phenotypically unaffected palmar fascia from the same patients. These cells were grown in type-1 collagen-enriched culture conditions with or without periostin addition to more closely replicate the in vivo environment. Periostin was found to differentially regulate the apoptosis, proliferation, {alpha} smooth muscle actin expression and stressed Fibroblast Populated Collagen Lattice contraction of these cell types. We hypothesize that periostin, secreted by disease cord myofibroblasts into the extra-cellular matrix, promotes the transition of resident fibroblasts in the palmar fascia toward a myofibroblast phenotype, thereby promoting disease progression.

  14. CLINICAL VALUE OF THE MARKERS OF PROLIFERATION AND APOPTOSIS IN PATIENTS WITH CLEAR CELL RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    N. A. Gorban

    2014-07-01

    Full Text Available Renal cell carcinoma (RCC is a heterogeneous disease in which the patients survive for months to years. At the present time the prognostic models have no sufficient information or exact prognostic value. Cell proliferation and apoptosis play a key role in cell cycle regulation; and impairment in these processes is commonly detected in different human tumors. The investigation enrolled 76 patients (49 men, 27 women aged 32 to 73 years (mean age 56 ± 7.6 years diagnosed with RCC. The follow-up was 8 to 116 months (mean 36.5 months. All the patients underwent nephrectomy; antibodies against р53, Bcl-2, and Ki-67 were investigated by immunohistochemistry. The expression of p53 and none or reduced expression of Bcl-2 are poor prognostic factors and associated with the metastatic potential of a tumor and with low relapse-free survival. High Ki-67 levels are a risk factor for metastases. A combination of p53 expression and high proliferative activity reflects the aggressive potential of a tumor and suggests the high risk of metastases just at the disease diagnosis and early tumor dissemination. 

  15. Epstein-Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD.

    Science.gov (United States)

    Kim, Hyoji; Choi, Hoyun; Lee, Suk Kyeong

    2015-01-28

    Although Epstein-Barr virus (EBV) BamHI A rightward transcript (BART) microRNAs (miRNAs) are ubiquitously expressed in EBV-associated tumors, the role of most BART miRNAs is unclear. In this study, we showed that Bcl-2-associated death promoter (BAD) expression was significantly lower in EBV-infected AGS-EBV cells than in EBV-negative AGS cells and investigated whether BART miRNAs target BAD. Using bioinformatics analysis, five BART miRNAs showing seed match with the 3' untranslated region (3'-UTR) of BAD were selected. Of these, only miR-BART20-5p reduced BAD expression when individually transfected into AGS cells. A luciferase assay revealed that miR-BART20-5p directly targets BAD. The expression of BAD mRNA and protein was decreased by miR-BART20-5p and increased by an inhibitor of miR-BART20-5p. PE-Annexin V staining and cell proliferation assays showed that miR-BART20-5p reduced apoptosis and enhanced cell growth. Furthermore, miR-BART20-5p increased chemoresistance to 5-fluorouracil and docetaxel. Our data suggest that miR-BART20-5p contributes to tumorigenesis of EBV-associated gastric carcinoma by directly targeting the 3'-UTR of BAD.

  16. Copy number gain of VCX, X-linked multi-copy gene, leads to cell proliferation and apoptosis during spermatogenesis

    Science.gov (United States)

    Ji, Juan; Qin, Yufeng; Wang, Rong; Huang, Zhenyao; Zhang, Yan; Zhou, Ran; Song, Ling; Ling, Xiufeng; Hu, Zhibin; Miao, Dengshun; Shen, Hongbing; Xia, Yankai; Wang, Xinru; Lu, Chuncheng

    2016-01-01

    Male factor infertility affects one-sixth of couples worldwide, and non-obstructive azoospermia (NOA) is one of the most severe forms. In recent years there has been increasing evidence to implicate the participation of X chromosome in the process of spermatogenesis. To uncover the roles of X-linked multi-copy genes in spermatogenesis, we performed systematic analysis of X-linked gene copy number variations (CNVs) and Y chromosome haplogrouping in 447 idiopathic NOA patients and 485 healthy controls. Interestingly, the frequency of individuals with abnormal level copy of Variable charge, X-linked (VCX) was significantly different between cases and controls after multiple test correction (p = 5.10 × 10−5). To discriminate the effect of gain/loss copies in these genes, we analyzed the frequency of X-linked multi-copy genes in subjects among subdivided groups. Our results demonstrated that individuals with increased copy numbers of Nuclear RNA export factor 2 (NXF2) (p = 9.21 × 10−8) and VCX (p = 1.97 × 10−4) conferred the risk of NOA. In vitro analysis demonstrated that increasing copy number of VCX could upregulate the gene expression and regulate cell proliferation and apoptosis. Our study establishes a robust association between the VCX CNVs and NOA risk. PMID:27705943

  17. Capsaicin inhibits the adipogenic differentiation of bone marrow mesenchymal stem cells by regulating cell proliferation, apoptosis, oxidative and nitrosative stress.

    Science.gov (United States)

    Ibrahim, Muhammed; Jang, Mi; Park, Mina; Gobianand, Kuppannan; You, Seungkwon; Yeon, Sung-Heom; Park, Sungkwon; Kim, Min Ji; Lee, Hyun-Jeong

    2015-07-01

    Obesity is a global health problem that requires the utmost attention. Apart from other factors the trans-differentiation of mesenchymal stem cells (MSCs) into adipocytes is an added detrimental factor causing the intensification of obesity. The main objective of this present study is to analyse whether capsaicin is capable of inhibiting the differentiation of BMSCs to adipocytes. Bone marrow mesenchymal stem cells (BMSCs) were obtained and exposed to different concentrations of capsaicin for a period of 6 days following 2 days of adipogenic induction. The capsaicin exposed cells were collected at three different time points (2, 4 and 6 days) and subjected to various analyses. BMSCs after exposure to capsaicin showed dose and time dependent reduction in cell viability and proliferation. Interestingly, capsaicin induced cell cycle arrest at G0-G1 and increased apoptosis by increasing reactive oxygen species (ROS) and reactive nitrogen species (RNS) production. Capsaicin significantly inhibited the early adipogenic differentiation, lipogenesis and maturation of adipocytes with concomitant repression of PPARγ, C/EBPα, FABP4 and SCD-1. Taken together, the results of the present study have clearly emphasized that capsaicin potentially inhibits the adipogenic differentiation of mesenchymal stem cells via many different pathways (anti-proliferative, apoptotic and cell cycle arrest) through the stimulation of ROS and RNS production. Thus, capsaicin not only suppresses the maturation of pre-adipocytes into adipocytes but also inhibits the differentiation of mesenchymal stem cells into adipocytes.

  18. Mitofusin 2 Downregulation Triggers Pulmonary Artery Smooth Muscle Cell Proliferation and Apoptosis Imbalance in Rats With Hypoxic Pulmonary Hypertension Via the PI3K/Akt and Mitochondrial Apoptosis Pathways.

    Science.gov (United States)

    Fang, Xia; Chen, Xi; Zhong, Guangwei; Chen, Qiong; Hu, Chengping

    2016-02-01

    During hypoxia-induced pulmonary hypertension (HPH), pulmonary artery smooth muscle cells (PASMCs) proliferate as part of the characteristic pulmonary vascular remodeling. We investigated the expression of mitofusin 2(Mfn2) and its role in maintaining the balance between PASMC proliferation and apoptosis during hypoxia. In an experimental model of HPH, we exposed rats to hypoxia (10% ± 0.5% O2) or room air for 4 weeks. We found that Mfn2 messenger RNA and protein levels were reduced and that proliferating cell nuclear antigen protein expression was upregulated in HPH rat lung tissues. We also exposed primary cultured PASMCs from rat pulmonary arterioles to normoxia (21% O2/5% CO2) or hypoxia (2.5% O2/5% CO2) for 24 hours. We found that PASMC proliferation increased under hypoxic conditions and that more hypoxic cells than normoxic cells entered the S + G2/M phase. Additionally, phosphorylated Akt and proliferating cell nuclear antigen expression increased, whereas Mfn2 expression, cleaved caspase 9 expression, and the ratio of mitochondrial to cytosolic cytochrome C expression each decreased. These hypoxia-induced effects were reversed in PASMCs by Mfn2 overexpression and by phosphatidylinositide 3-kinases (PI3K) inhibition. Our results indicate that downregulation of Mfn2 in HPH may activate the PI3K/Akt pathway, thereby causing more cells to enter the S + G2/M phase of the cell cycle and inhibiting the mitochondrial apoptosis pathway.

  19. RanBPM is an acetylcholinesterase-interacting protein that translocates into the nucleus during apoptosis

    Institute of Scientific and Technical Information of China (English)

    Xiaowen Gong; Weiyuan Ye; Haibo Zhou; Xiaohui Ren; Zhigang Li; Weiyin Zhou; Jun Wu; Yicheng Gong; Qi Ouyang; Xiaolin Zhao; Xuejun Zhang

    2009-01-01

    Acetylcholinesterase (ACHE) expression may be induced during apoptosis in various cell types. Here, we used the C-terminal of AChE to screen the human fetal brain library and found that it interacted with Ran-binding protein in the microtubule-organizing center (RanBPM). This interaction was further con-firmed by coimmunoprecipitation analysis. In HEK293T cells, RanBPM and AChE were hetero-geneously expressed in the cisplatin-untreated cyto-plasmic extracts and in the cisplatin-treated cytoplasmic or nuclear extracts. Our previous studies performed using morphologic methods have shown that AChE translocates from the cytoplasm to the nucleus during apoptosis. Taken together, these results suggest that RanBPM is an AChE-interacting protein that is translocated from the cytoplasm into the nucleus during apoptosis, similar to the trans-location observed in case of ACHE.

  20. Parameters of proliferation and apoptosis of epithelial cells in the gastric mucosa in indigenous and non-indigenous residents of Khakassia with Helicobacter pylori positive duodenal ulcer disease.

    Science.gov (United States)

    Tsukanov, V V; Shtygasheva, O V; Vasyutin, A V; Amel'chugova, O S; Butorin, N N; Ageeva, E S

    2015-02-01

    We evaluated parameters of apoptosis in the mucosa of the gastric antrum and body of indigenous and non-indigenous residents of Khakassia with duodenal ulcer disease associated with Helicobacter pylori infection. In the gastric antrum, apoptotic index was significantly increased in patients with ulcer disease in comparison with healthy individuals in both populations. The ratio of proliferation index to apoptotic index was lower in patients with ulcer disease in comparison with healthy individuals in both populations. Similar, but less pronounced processes were recorded in the body of the stomach. Significant changes in the parameters of proliferation and apoptosis were noted in the gastric antrum and body of the stomach in both populations, but they were more pronounced in Caucasians in comparison with Khakasses.

  1. Pharmacological Administration of the Isoflavone Daidzein Enhances Cell Proliferation and Reduces High Fat Diet-Induced Apoptosis and Gliosis in the Rat Hippocampus

    OpenAIRE

    Patricia Rivera; Margarita Pérez-Martín; Pavón, Francisco J; Antonia Serrano; Ana Crespillo; Manuel Cifuentes; María-Dolores López-Ávalos; Grondona, Jesús M.; Margarita Vida; Pedro Fernández-Llebrez; Fernando Rodríguez de Fonseca; Juan Suárez

    2013-01-01

    Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet...

  2. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Institute of Scientific and Technical Information of China (English)

    Yuanli Dong; Mei Li; Shaojie Wang; Yuwei Dong; Hongxia Zhao; Zhong Dai

    2015-01-01

    Background:Hypocretin (HCRT) signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy.Our previous study showed that xingshentongqiao decoction (XSTQ) is clinically effective for the treatment of narcolepsy.To determine whether XSTQ improves narcolepsy by modulating HCRT signaling,we investigated its effects on SH-SY5Y cell proliferation,apoptosis,and HCRT receptor 1/2 (orexin receptor 1 [OXl R] and orexin receptor 2 [OX2R]) expression.The signaling pathways involved in these processes were also assessed.Methods:The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays.OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis.Western blotting for mitogen-activated protein kinase (MAPK) pathway activation was performed to further assess the signaling mechanism of XSTQ.Results:XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells.This effect was accompanied by the upregulation of OX 1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk) 1/2,p38 MAPK and c-Jun N-terminal kinase (JNK).Conclusions:XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells.XSTQ also promotes OX1R and OX2R expression.These effects are associated with the repression of the Erkl/2,p38 MAPK,and JNK signaling pathways.These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation,which may explain its ability to treat narcolepsy.

  3. ERK 1/2 and PI-3 kinase pathways as a potential mechanism of ghrelin action on cell proliferation and apoptosis in the porcine ovarian follicular cells.

    Science.gov (United States)

    Rak-Mardyla, A; Gregoraszczuk, E L

    2010-08-01

    Recently, we reported the stimulatory effect of ghrelin on ovarian cell proliferation in parallel with the inhibitory action of ghrelin on cell apoptosis. The aim of the presented data propose local activation of extracellular signal-regulated protein kinase 1 and 2 (ERK 1/2) and phosphoinositide-3 (PI-3) kinase pathways as a mechanism of ghrelin effect in the porcine ovary. To test this hypothesis, action of ghrelin on levels of ERK 1/2 with PI-3 kinase activity and protein expression using ELISA and western blot analysis, respectively, was examined. Additionally, to determine which pathways (ERK 1/2 or PI-3 kinase) are the potential signals of ghrelin-mediated cell proliferation and apoptosis in ovarian cells, we used PD098059 (50 microM) and wortmannin (200 microM), well-known inhibitors of these kinases. Treatment of ovarian coculture cells with ghrelin (100, 250, 500 and 1000 pg/ml) showed stimulation of phospho-ERK 1/2 levels and PI-3 kinase activity, with the maximum effect observed after 15 min of cell incubation. Additionally, western blot analysis indicated that ghrelin increased expression of both kinases. Moreover, ghrelin used in combination with PD098059 or wortmannin significantly decreased cell proliferation, which was measured by the Alamar Blue assay and increased apoptosis, which was measured by caspase - 3 activity and DNA fragmentation. In conclusion, these results suggest that the ERK 1/2 and PI-3 kinase pathways may be potential signals of ghrelin mediate the cell proliferation and apoptosis of ovary cells.

  4. Effects of broth culture filtrate protein of VacA+ Helicobacter pylori on the proliferation and apoptosis of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu-qing; GUO Tao; QIAN Jia-ming

    2013-01-01

    Background Infection with Helicobacterpylori (H.pylori) may lead to chronic inflammation of the stomach epithelium,mucosal atrophy,imbalance of proliferation and apoptosis of epithelial cells; resulting in chronic gastritis,peptic ulcer,gastric cancer,and many other clinical outcomes.Why and how H.pylorus leads to gastric cancer is not clear yet.Through in vitro experiments,this study evaluated the effects of broth culture filtrate protein (BCF-P) from the supernatant of liquid culture media of H.pylori on proliferation and apoptosis of immortalized human gastric epithelial cell lines (GES-1) and gastric cancer cell lines (AGS).Methods For the study,GES-1 and AGS cell lines mix with BCF-P and epidermal growth factor (EGF).MTT assay and flow cytometry (FCM) determined the levels of proliferation and apoptosis.Detected expression levels of cyclooxygenase-2 (COX-2) and Fas mRNA by reverse transcription (RT)-PCR.Also did analysis of the effects of BCF-P on epidermal growth factor receptor (EGFR) tyrosine kinase activity of GES-1 and AGS cells by non-radioactive enzyme-linked assay.The Student's t test and one-way analysis of variance (ANOVA) were used for statistical analysis.Results BCF-P inhibited proliferation of GES-1 and AGS cells in a concentration-dependent manner.The inhibition rates are respectively 68.7% in AGS and 61.4% in GES-1.With the same dose and time for inhibiting the proliferation,BCF-P failed to induce apoptosis of GES-1 and AGS cells.Effects of BCF-P reduced the expression of Fas mRNA of GES-1 and AGS cells (P <0.05).This is consistent with the effects of EGF.BCF-P reduced the expression of COX-2mRNA of AGS cells (P <0.05).This is opposite to the effects of EGF (P <0.05).Effects of BCF-P improved more than three times the EGFR tyrosine kinase activity of GES-1 and AGS cells.Conclusions BCF-P inhibited the proliferation of AGS and GES-1 cells in vitro,unrelated to apoptosis.Effects of BCF-P on gastric epithelial cells in vitro are not

  5. Improved coiled-coil design enhances interaction with Bcr-Abl and induces apoptosis.

    Science.gov (United States)

    Dixon, Andrew S; Miller, Geoffrey D; Bruno, Benjamin J; Constance, Jonathan E; Woessner, David W; Fidler, Trevor P; Robertson, James C; Cheatham, Thomas E; Lim, Carol S

    2012-01-01

    The oncoprotein Bcr-Abl drives aberrant downstream activity through trans-autophosphorylation of homo-oligomers in chronic myelogenous leukemia (CML).(1, 2) The formation of Bcr-Abl oligomers is achieved through the coiled-coil domain at the N-terminus of Bcr.(3, 4) We have previously reported a modified version of this coiled-coil domain, CCmut2, which exhibits disruption of Bcr-Abl oligomeric complexes and results in decreased proliferation of CML cells and induction of apoptosis.(5) A major contributing factor to these enhanced capabilities is the destabilization of the CCmut2 homodimers, increasing the availability to interact with and inhibit Bcr-Abl. Here, we included an additional mutation (K39E) that could in turn further destabilize the mutant homodimer. Incorporation of this modification into CCmut2 (C38A, S41R, L45D, E48R, Q60E) generated what we termed CCmut3, and resulted in further improvements in the binding properties with the wild-type coiled-coil domain representative of Bcr-Abl [corrected]. A separate construct containing one revert mutation, CCmut4, did not demonstrate improved oligomeric properties and indicated the importance of the L45D mutation. CCmut3 demonstrated improved oligomerization via a two-hybrid assay as well as through colocalization studies, in addition to showing similar biologic activity as CCmut2. The improved binding between CCmut3 and the Bcr-Abl coiled-coil may be used to redirect Bcr-Abl to alternative subcellular locations with interesting therapeutic implications.

  6. Connexin43 siRNA promotes HUVEC proliferation and inhibits apoptosis induced by ox-LDL: an involvement of ERK signaling pathway.

    Science.gov (United States)

    Yin, Guotian; Yang, Xiuli; Li, Bo; Yang, Meng; Ren, Mingfen

    2014-09-01

    Oxidized low-density lipoprotein (ox-LDL), one of the most important risk factors of atherosclerosis, is a highly antigenic, potent chemoattractant that facilitates the development of atherosclerosis. Gap junctions also play an important in the development of atherosclerosis. In this study, we investigated the effects of ox-LDL on connexin43 and the mechanisms of connexin43 siRNA-inhibited apoptosis induced by ox-LDL in human umbilical vein endothelial cell (HUVEC), to clarify the role of connexin43 in atherosclerosis. Our results showed that ox-LDL significantly inhibited the growth and promoted apoptosis of HUVEC in a dose-dependent manner. Also, ox-LDL upregulated the expression of connexin43. Furthermore, knockdown connexin43 by siRNA promoted proliferation and inhibited apoptosis in ox-LDL-stimulated HUVEC. Moreover, the level of phosphor-ERK1/2 and connexin43 was remarkably attenuated by a ERK pathway inhibitor (PD98059). These results suggest that connexin43 siRNA promotes HUVEC proliferation and inhibits apoptosis induced by ox-LDL, and ERK signaling pathway appears to be involved in these processes.

  7. Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds Inhibit Proliferation of Melanoma Cells and Induce Apoptosis by Activation of Caspase-3 in Vitro

    Directory of Open Access Journals (Sweden)

    Anne S. Meyer

    2011-12-01

    Full Text Available Fucose-containing sulfated polysaccharides (FCSPs extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassum henslowianum C. Agardh (FSAR and Fucus vesiculosus (FVES, respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S. henslowianum and sulfated fucans (notably in F. vesiculosus. This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.

  8. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro.

    Science.gov (United States)

    Ale, Marcel Tutor; Maruyama, Hiroko; Tamauchi, Hidekazu; Mikkelsen, Jørn D; Meyer, Anne S

    2011-12-01

    Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassumhenslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S.henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.

  9. Effects of 15-deoxy-Δ12,14-prostaglandin J2 on cell proliferation and apoptosis in ECV304 endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Yu-gangDONG; Dan-danCHEN; Jian-guiHE; Yong-yuanGUAN

    2004-01-01

    AIM: To investigate the effects of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) on cell proliferation and apoptosis in ECV304 endothelial cells and related molecular mechanism. METHODS: MTT, Hoechst33258, TUNEL, Flow cytometry, DNA ladder, RT-PCR, Western blot, and electrophoretic mobility shift assay (EMSA) analysis were employed. RESULTS: The 15d-PGJ2 induced apoptosis in ECV304 endothelial cells in a dose-dependent manner(the percentage of apoptosis was enhanced from 10.0 %+1.3 % to 32.8 %+1.6 %), which was accompanied by inhibition of NF-κB and AP-1 DNA binding activity, down-regulation of c-myc, upregulation of Gadd45 and p53,and activation of p38 kinase. However, the expression of p21 was found no significant change. CONCLUSION:peroxisome proliferator-activated receptor gamma ligand, 15d-PGJ2, can inhibit proliferation and induce apoptosisin ECV304 endothelial cells through different mechanisms.

  10. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jun-jun [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Wang, Yan [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Ding, Jing-xin; Jin, Hong-yan [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Yang, Gong, E-mail: yanggong@fudan.edu.cn [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Hua, Ke-qin, E-mail: huakeqin@126.com [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China)

    2015-05-01

    HOX transcript antisense RNA (HOTAIR) is a well-known long non-coding RNA (lncRNA) whose dysregulation correlates with poor prognosis and malignant progression in many forms of cancer. Here, we investigate the expression pattern, clinical significance, and biological function of HOTAIR in serous ovarian cancer (SOC). Clinically, we found that HOTAIR levels were overexpressed in SOC tissues compared with normal controls and that HOTAIR overexpression was correlated with an advanced FIGO stage and a high histological grade. Multivariate analysis revealed that HOTAIR is an independent prognostic factor for predicting overall survival in SOC patients. We demonstrated that HOTAIR silencing inhibited A2780 and OVCA429 SOC cell proliferation in vitro and that the anti-proliferative effects of HOTAIR silencing also occurred in vivo. Further investigation into the mechanisms responsible for the growth inhibitory effects by HOTAIR silencing revealed that its knockdown resulted in the induction of cell cycle arrest and apoptosis through certain cell cycle-related and apoptosis-related proteins. Together, these results highlight a critical role of HOTAIR in SOC cell proliferation and contribute to a better understanding of the importance of dysregulated lncRNAs in SOC progression. - Highlights: • HOTAIR overexpression correlates with an aggressive tumour phenotype and a poor prognosis in SOC. • HOTAIR promotes SOC cell proliferation both in vitro and in vivo. • The proliferative role of HOTAIR is associated with regulation of the cell cycle and apoptosis.

  11. Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Deepak Bhatia

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE prevents diethylnitrosamine (DENA-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB. Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen and alteration in cell cycle progression (cyclin D1 due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways to exert chemoprevention of HCC.

  12. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer

    Science.gov (United States)

    Yu, Xiao-Juan; Sun, Kun; Tang, Xiao-He; Zhou, Cun-Jin; Sun, Hui; Yan, Zhe; Fang, Ling; Wu, Hong-Wen; Xie, Yi-Kui; Gu, Bin

    2016-01-01

    Cyclooxygenase-2 (COX-2) serves an important role in the carcinogenesis and progression of gastric cancer. Harmine (HM) and paclitaxel (PTX) are reported as promising drug candidates for cancer therapy, but whether a synergistic anti-tumor effect of HM combined with PTX exists in human gastric cancer remains unknown. The present study evaluated the effects of HM and/or PTX on cell proliferation and apoptosis in a gastric cancer cell line, SGC-7901. HM and PTX inhibited cell proliferation in a dose-dependent manner. Both HM and PTX alone induced apoptosis in gastric cancer cells. The combination of HM and PTX exerted synergistic effects on proliferation inhibition and apoptosis induction in SGC-7901 cells, with down-regulation of COX-2, PCNA and Bcl-2 and up-regulation of Bax expression. The results indicated that combination chemotherapy using HM with PTX exerts an anti-tumor effect for treating gastric cancer. The combination of the two drugs inhibits gastric cancer development more effectively than each drug alone through down-regulation of COX-2 expression. PMID:27446381

  13. Kazrin F is involved in apoptosis and interacts with BAX and ARC

    Institute of Scientific and Technical Information of China (English)

    Qiong Wang; Min Liu; Xin Li; Lu Chen; Hua Tang

    2009-01-01

    Kazrin has recently been identified as a functional protein that is involved in cell-cell junctions and in signal transduction. Here, we identified a new isoform, Kazrin F, which is 518 aa in length and has 97 aa unique at the N-terminus. Knockdown of Kazrin F using siRNA caused cell apoptosis and a marked decrease in cell viability measured by MTT and TUNEL assays. Co-immunoprecipitation analysis revealed that Kazrin F interacts with ARC (apoptosis repressor with caspase recruitment domain) and Bas (Bcl-2-associated X protein). Co-localization of Kazriin F with ARC and Bax in the cytoplasm was determined by immunofluorescence analysis. These results suggested that Kazrin F might play an important role in regulating cellular apoptosis by interacting with ARC and Bax.

  14. Heterospecific interactions and the proliferation of sexually dimorphic traits

    Institute of Scientific and Technical Information of China (English)

    Karin S.PFENNIG; Allen H.HURLBERT

    2012-01-01

    Sexual selection is expected to promote speciation by fostering the evolution of sexual traits that minimize reproductive interactions among existing or incipient species.In species that compete for access to,or attention of,females,sexual selection fosters more elaborate traits in males compared to females.If these traits also minimize reproductive interactions with heterospecifics,then species with enhanced risk of interactions between species might display greater numbers of these sexually dimorphic characters.We tested this prediction in eight families of North American birds.In particular,we evaluated whether the number of sexually dimorphic traits was positively associated with species richness at a given site or with degree of sympatry with congeners.We found no strong evidence of enhanced sexual dimorphism with increasing confamilial species richness at a given site.We also found no overatl relationship between the number of sexually dimorphic traits and overlap with congeners across these eight families.However,we found patterns consistent with our prediction within Anatidae (ducks,geese and swans) and,to a lesser degree,Parulidae (New World warblers).Our results suggest that sexually selected plumage traits in these groups potentially play a role in reproductive isolation.

  15. Effect of phytic acid and inositol on the proliferation and apoptosis of cells derived from colorectal carcinoma.

    Science.gov (United States)

    Schröterová, L; Hasková, P; Rudolf, E; Cervinka, M

    2010-03-01

    We characterized the effect of phytic acid (inositol hexaphosphate, IP6) as a potential adjuvant in treatment of colorectal carcinoma and evaluated the optimal concentration and treatment time to produe the maximal therapeutic effect. There is some evidence that myoinositol (Ins) can potentiate anti-cancer effects of IP6. Therefore, we tested both IP6 and Ins individually and in combination on human cell lines HT-29, SW-480 and SW-620 derived from colorectal carcinoma in different stages of malignancy. The effect of tested chemicals on the cells was measured using metabolic activity assay (WST-1), DNA synthesis assay (BrdU), protein synthesis assay (Brilliant Blue) and apoptosis (caspase-3 activity). We tested IP6 and Ins at three concentrations: 0.2, 1 and 5 mM for 24, 48 and 72 h. The concentrations and incubation periods were chosen according to low toxicity of the tested substance that was observed in a long-term clinical study. We found that all employed concentrations of IP6 or IP6/Ins decreased proliferation of the cell lines, with the maximum decrease being observed in HT-29 cells. Metabolic activity of treated cells differed in response to IP6 and IP6/Ins treatment; in HT-29 and SW-620 significant decrease was observed only at the highest concentration, whereas in SW-480 cells metabolic activity was lower at each concentration except 0.2 and 1 mM IP6 or IP6/Ins in 24-h incubation. The results from protein content assay corresponded to the results obtained from WST assay. In addition, we found maximum increase in caspase-3 activity at concentration 5 mM IP6 or IP6/Ins in HT-29 cells and with IP6 at concentration of 0.2 mM or IP6/Ins in SW-480 cells with clear indication of Ins enhancing the proapoptotic effect of IP6 in all the cell lines studied.

  16. Solution Structure of Human Growth Arrest and DNA Damage 45α (Gadd45α) and Its Interactions with Proliferating Cell Nuclear Antigen (PCNA) and Aurora A Kinase*

    OpenAIRE

    2010-01-01

    Gadd45α is a nuclear protein encoded by a DNA damage-inducible gene. Through its interactions with other proteins, Gadd45α participates in the regulation of DNA repair, cell cycle, cell proliferation, and apoptosis. The NMR structure of human Gadd45α has been determined and shows an α/β fold with two long disordered and flexible regions at the N terminus and one of the loops. Human Gadd45α is predominantly monomeric in solution but exists in equilibrium with dimers and other oligomers whose p...

  17. Sclerotium rolfsii Lectin Induces Stronger Inhibition of Proliferation in Human Breast Cancer Cells than Normal Human Mammary Epithelial Cells by Induction of Cell Apoptosis

    Science.gov (United States)

    Savanur, Mohammed Azharuddin; Eligar, Sachin M.; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind.; Kalraiya, Rajiv D.; Swamy, Bale M.; Rhodes, Jonathan M.; Yu, Lu-Gang; Inamdar, Shashikala R.

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent. PMID:25364905

  18. Sclerotium rolfsii lectin induces stronger inhibition of proliferation in human breast cancer cells than normal human mammary epithelial cells by induction of cell apoptosis.

    Science.gov (United States)

    Savanur, Mohammed Azharuddin; Eligar, Sachin M; Pujari, Radha; Chen, Chen; Mahajan, Pravin; Borges, Anita; Shastry, Padma; Ingle, Arvind; Kalraiya, Rajiv D; Swamy, Bale M; Rhodes, Jonathan M; Yu, Lu-Gang; Inamdar, Shashikala R

    2014-01-01

    Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent.

  19. MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yanfei; Qin, Huadong [Department of Fourth Surgery, the Second Affiliated Hospital of Harbin Medical University, 148 Xuefu Road, Nangang District, Harbin 150086 (China); Cui, Yunfu, E-mail: yfma77@126.com [Department of First Surgery, the Second Affiliated Hospital of Harbin Medical University, 148 Xuefu Road, Nangang District, Harbin 150086 (China)

    2013-11-29

    Highlights: •MiR-34a is up- and GAS1 is down-regulated in papillary thyroid carcinoma. •GAS1 is a direct target for miR-34a. •MiR-34a promotes PTC cells proliferation and inhibits apoptosis through PI3K/Akt/Bad pathway. -- Abstract: MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors. However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.

  20. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha increased apoptosis of human endometrial cancer HEC-1A cells

    Directory of Open Access Journals (Sweden)

    Yang H

    2016-08-01

    Full Text Available Hui Yang, Rui Yang, Hao Liu, Zhongqian Ren, Cuicui Wang, Da Li, Xiaoxin Ma Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China Background: Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α coactivates multiple transcription factors and regulates several metabolic processes. In this study, we focused on the roles of PGC-1α in the apoptosis of endometrial cancer HEC-1A cells. Materials and methods: PGC-1α expression in the HEC-1A cells was detected with real-time polymerase chain reaction and Western blot. Small interfering RNA directed against PGC-1α was designed and synthesized, and RNA interference technology was used to knock down PGC-1α mRNA and protein expression. Cell apoptosis, cell cycle, and mitochondrial membrane potential were then analyzed using flow cytometry. The expression of apoptotic proteins, Bcl-2 and Bax, was detected with Western blot. Results: The specific downregulation of PGC-1α expression in the HEC-1A cells increased their apoptosis through the mitochondrial apoptotic pathway by reducing the expression of Bcl-2 and increasing the expression of Bax. Conclusion: These results suggest that PGC-1α influences the apoptosis of HEC-1A cells and also provides a molecular basis for further investigation of the apoptotic mechanism in human endometrial cancer. Keywords: endometrial cancer, PGC-1α, apoptosis, Bcl-2, Bax

  1. Curcumin inhibits the proliferation of a human colorectal cancer cell line Caco-2 partially by both apoptosis and G2/M cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Yohko Fujimoto

    2014-06-01

    Full Text Available The aim of this study was to assess the possible roles of the phytochemical compounds, curcumin, quercetin and resveratrol in the proliferation of human colorectal cancer cell line Caco-2. All three phytochemical compounds inhibited Caco-2 cell proliferation, with curcumin being more effective than quercetin and resveratrol. Investigations concerning DNA fragmentation in the nucleus, Bax and Bcl-2 mRNA expression levels, and caspase-3/7 activity indicated that curcumin induced apoptosis in Caco-2 cells through an increase in the Bax/Bcl-2 ratio and activation of caspase-3/7. Furthermore, the analysis of flow-cytometry showed that curcumin caused an arrest of G2/M phase in Caco-2 cells. These results suggest that curcumin suppresses Caco-2 proliferation partially via activation of the mitochondrial apoptotic pathway and cell cycle retardation.

  2. Effects of high glucose on mesenchymal stem cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Li, Yu-Ming; Schilling, Tatjana; Benisch, Peggy;

    2007-01-01

    -immortalized MSC (hMSC-TERT) and primary MSC (hMSC). HG (25mM) enhanced hMSC-TERT proliferation in long-term studies in contrast to hMSC where proliferation was unchanged. Thioredoxin-interacting protein, which is involved in apoptosis regulation, was stimulated by glucose in hMSC-TERT. However, apoptosis...

  3. Effects of LncRNA-HOST2 on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma cell line SMMC-7721.

    Science.gov (United States)

    Liu, Run-Tian; Cao, Jing-Lin; Yan, Chang-Qing; Wang, Yang; An, Cong-Jing; Lv, Hai-Tao

    2017-01-31

    This study explored the effect of LncRNA-HOST2 on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721. HCC tissues and adjacent normal tissues from 162 HCC patients were collected. The HCC cell lines were assigned into the control group (regular culture), negative control group (NC, transfected with siRNA) and experimental group (transfected with Lnc-HOST2 siRNA). qRT-PCR was used to detect the expression of LncRNA-HOST2. Cell proliferation was detected by CCK-8 and colony-forming assays, cell apoptosis by flow cytometry and cell migration by scratch test. Transwell assay was used to evaluate cell migration and invasion abilities. LncRNA-HOST2 expression in the HCC tissues increased 2 to 10 times than that in the adjacent normal tissues. Compared with the HL-7702 cell line, LncRNA-HOST2 expression in HepG2, SMMC7721 and Huh7 cell lines was all up-regulated, but the SMMC-7721 cell had the highest Lnc-HOST2 expression. The LncRNA-HOST2 expression in the experimental group was down-regulated as compared to the control and NC groups. In comparison with the control and NC groups, cloned cells reduced, cell apoptosis increased, clone-forming ability weakened and inhibitory rate of colony formation increased in the experimental group. The cells migrating and penetrating into transwell chamber were fewer in the experimental group than those in the control and NC groups. The experimental group exhibited slow wound-healing and decreased cell migration area after 48 h. These findings indicate that LncRNA-HOST2 can promote cell proliferation, migration and invasion and inhibit cell apoptosis in human HCC cell line SMMC-7721.

  4. Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin.

    Directory of Open Access Journals (Sweden)

    Tianhui Niu

    Full Text Available Curcumin is a widely known natural phytochemical from plant Curcuma longa. In recent years, curcumin has received increasing attention because of its capability to induce apoptosis and inhibit cell proliferation as well as its anti-inflammatory properties in different cancer cells. However, the therapeutic benefits of curcumin are severely hampered due to its particularly low absorption via trans-dermal or oral bioavailability. Phototherapy with visible light is gaining more and more support in dermatological therapy. Red light is part of the visible light spectrum, which is able to deeply penetrate the skin to about 6 mm, and directly affect the fibroblast of the skin dermis. Blue light is UV-free irradiation which is fit for treating chronic inflammation diseases. In this study, we show that curcumin at low concentrations (1.25-3.12 μM has a strong anti-proliferative effect on TNF-α-induced psoriasis-like inflammation when applied in combination with light-emitting-diode devices. The treatment was especially effective when LED blue light at 405 nm was combined with red light at 630 or 660 nm, which markedly amplified the anti-proliferative and apoptosis-inducing effects of curcumin. The experimental results demonstrated that this treatment reduced the viability of human skin keratinocytes, decreased cell proliferation, induced apoptosis, inhibited NF-κB activity and activated caspase-8 and caspase-9 while preserving the cell membrane integrity. Moreover, the combined treatment also down-regulated the phosphorylation level of Akt and ERK. Taken together, our results indicated that the combination of curcumin with LED blue light united red light irradiation can attain a higher efficiency of regulating proliferation and apoptosis in skin keratinocytes.

  5. Antisense RNA of Survivin Gene Inhibits the Proliferation of Leukemia Cells and Sensitizes Leukemia Cell Line to Taxol-induced Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Wenhan LI; Xiaojuan WANG; Ping LEI; Qing YE; Huifen ZHU; Yue ZHANG; Jinfang SHAO; Jing YANG; Guanxin SHEN

    2008-01-01

    The effectS of survivin antisense RNA on proliferation of leukemia cell line HL-60 and taxol.induced chemotherapy was explorcd.A cDNA fragment of survivin obtained by RT-PCR was inserted into a plamid vector named pcDNA3 in the reverse direction.The vector encoding antisense RNA of survivin was confirmed by restriction enzyme digestion and DNA sequencing.The recombi-nant plasmid was delivered into HL-60 cells by electroporation.Growth curves were plotted based on cell counting.Trypan blue dye exclusion assay and MTT assay were carried out after the cells were incubated with taxol.DNA gel electrophoresis and nuclear staining were performed for cell apoptosis assay.The correct construction of the recombinant plasmid has been identificd bv restriction enzy.me digestion and DNA sequencing.A stable down.regulation has been achieved in HL-60 SVVas cells after G418 selection.Compared tO HL-60 cells.the proliferation of HL-60 SVVaS cells was signifi.cantly inhibited(P<0.05).Cytotoxicity assays indicated that IC50 of HL-60 SVVas for taxol was rela-tively lower than controls(P<0.01).Apoptosis assays revealed that taxol-induced apoptosis was de-tected in HL-60 sVVas cells incubated with 50 ng/ml taxol for 12 h,while in HL-60 cells incubated with 100 ng/ml taxol for 72 h.It was suggested that Survivin antisense RNA could inhibit the prolif-eration of HL-60 cells and enhance taxol-induced apoptosis in HL-60 cells.which may lay an ex-perimental foundation for further research on gene therapy in leukemia.

  6. Activation of Akt is increased in the dysplasia-carcinoma sequence in Barrett's oesophagus and contributes to increased proliferation and inhibition of apoptosis: a histopathological and functional study

    Directory of Open Access Journals (Sweden)

    El-Amin Khalid

    2007-06-01

    Full Text Available Abstract Background The incidence of oesophageal adenocarcinoma is increasing rapidly in the developed world. The serine-threonine protein kinase and proto-oncogene Akt has been reported to regulate proliferation and apoptosis in several tissues but there are no data on the involvement of Akt in oesophageal carcinogenesis. Therefore we have examined the activation of Akt in Barrett's oesophagus and oesophageal adenocarcinoma and the functional effects of Akt activation in vitro. Methods Expression of total and active (phosphorylated Akt were determined in endoscopic biopsies and surgical resection specimens using immunohistochemistry. The functional effects of Akt were examined using Barrett's adenocarcinoma cells in culture. Results In normal squamous oesophagus, erosive oesophagitis and non-dysplastic Barrett's oesophagus, phospho-Akt was limited to the basal 1/3 of the mucosa. Image analysis confirmed that Akt activation was significantly increased in non-dysplastic Barrett's oesophagus compared to squamous epithelium and further significantly increased in high-grade dysplasia and adenocarcinoma. In all cases of high grade dysplasia and adenocarcinoma Akt was activated in the luminal 1/3 of the epithelium. Transient acid exposure and the obesity hormone leptin activated Akt, stimulated proliferation and inhibited apoptosis: the combination of acid and leptin was synergistic. Inhibition of Akt phosphorylation with LY294002 increased apoptosis and blocked the effects of acid and leptin both alone and in combination. Activation of Akt was associated with downstream phosphorylation and deactivation of the pro-apoptotic protein Bad and phosphorylation of the Forkhead family transcription factor FOXO1. Conclusion Akt is abnormally activated in Barrett's oesophagus, high grade dysplasia and adenocarcinoma. Akt activation promotes proliferation and inhibits apoptosis in Barrett's adenocarcinoma cells and both transient acid exposure and leptin

  7. RNA-binding motif protein 5 inhibits the proliferation of cigarette smoke-transformed BEAS-2B cells through cell cycle arrest and apoptosis.

    Science.gov (United States)

    Lv, Xue-Jiao; Du, Yan-Wei; Hao, Yu-Qiu; Su, Zhen-Zhong; Zhang, Lin; Zhao, Li-Jing; Zhang, Jie

    2016-04-01

    Cigarette smoking has been shown to be the most significant risk factor for lung cancer. Recent studies have also indicated that RNA-binding motif protein 5 (RBM5) can modulate apoptosis and suppress tumor growth. The present study focused on the role of RBM5 in the regulation of cigarette smoke extract (CSE)-induced transformation of bronchial epithelial cells into the cancerous phenotype and its mechanism of action. Herein, we exposed normal BEAS-2B cells for 8 days to varying concentrations of CSE or dimethylsulfoxide (DMSO), followed by a recovery period of 2 weeks. Next, the RBM5 protein was overexpressed in these transformed BEAS-2B cells though lentiviral infection. Later, the morphological changes, cell proliferation, cell cycle, apoptosis, invasion and migration were assessed. In addition, we analyzed the role of RBM5 in xenograft growth. The expression of RBM5 along with the genes related to cell cycle regulation, apoptosis and invasion were also examined. Finally, our results revealed that BEAS-2B cells exposed to 100 µg/ml CSE acquired phenotypic changes and formed tumors in nude mice, indicative of their cancerous transformation and had reduced RBM5 expression. Subsequent overexpression of RBM5 in these cells significantly inhibited their proliferation, induced G1/S arrest, triggered apoptosis and inhibited their invasion and migration, including xenograft growth. Thus, we established an in vitro model of CSE-induced cancerous transformation and concluded that RBM5 overexpression inhibited the growth of these transformed cells through cell cycle arrest and induction of apoptosis. Therefore, our study suggests the importance of RBM5 in the pathogenesis of smoking-related cancer.

  8. 6-C-methyl flavonoids isolated from Pinus densata inhibit the proliferation and promote the apoptosis of the HL-60 human promyelocytic leukaemia cell line.

    Science.gov (United States)

    Yue, Rongcai; Li, Bo; Shen, Yunheng; Zeng, Huawu; Li, Bo; Yuan, Hu; He, Yiren; Shan, Lei; Zhang, Weidong

    2013-08-01

    Three structurally related 6-C-methyl flavonoids isolated from Pinus densata, including 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone (PD1), 5,7,4'-trihydroxy-3,8-dimethoxy-6-C-methylflavone (PD2), and 5,7,4'-trihydroxy-3-methoxy-6-C-methylflavone (PD3), were tested for their ability to inhibit the proliferation and promote the apoptosis of the HL-60 human leukaemia cell line. Cytotoxicity assays in the HL-60 human cancer cell line demonstrated that 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone exhibited the most potent cytotoxicity of the three structurally related 6-C-methyl flavonoids. 5,4'-Dihydroxy-3,7,8-trimethoxy-6-C-methylflavone inhibited the proliferation of HL-60 cells in a dose-dependent manner with an IC₅₀ of 7.91 µM (48 h treatment). Furthermore, 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone-induced apoptosis was associated with mitochondrial membrane disruption and cytochome c release. Flow cytometry analyses revealed an increase in the hypodiploid population in 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone-treated HL-60 cells. Treatment with a concentration of 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone that induced apoptosis activated caspase-3 but did not activate caspase-1. A caspase-3 inhibitor (Ac-DEVD-CHO), but not a caspase-1 inhibitor (Ac-YVAD-CHO), reversed the cytotoxic effects of 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone in HL-60 cells. These data demonstrated that 5,4'-dihydroxy-3,7,8-trimethoxy-6-C-methylflavone effectively induced the apoptosis of HL-60 cells and exhibited significant anticancer activity via the mitochondrial caspase-3-dependent apoptosis pathway.

  9. Ox-LDL Influences Peripheral Th17/Treg Balance by Modulating Treg Apoptosis and Th17 Proliferation in Atherosclerotic Cerebral Infarction

    Directory of Open Access Journals (Sweden)

    Qing Li

    2014-06-01

    Full Text Available Background: CD4+CD25+ regulatory T (Treg cells and T-helper 17 (Th17 cells play important roles in acute cerebral infarction (ACI. Our previous findings have suggested that oxidized low-density lipoprotein (Ox-LDL could influence Treg/Th17 ratio in ACI patients. However, the mechanisms are still not clear. Methods and Results: We evaluated the effects of ox-LDL on Th17/Treg cell apoptosis and proliferation in vitro. Our results demonstrated that with increased ox-LDL concentrations, the frequency and suppressive function of Treg cells was decreased while the frequency of Th17 cells was elevated in control subjects. In addition, AnnexinV+ apoptotic rate, Fas/Fas ligand (FasL expression, and Caspase-3 activity were escalated in Treg cells while were no significant changes in Th17 cells. Simultaneously, 5-Bromo-29-Deoxyuridine (BrdU and 3-(4,5-Dimethylthiazol-2-yl-2,5-Diphenyl Tetrazolium Bromide (MTT incorporation of Th17 cells was elevated accompanied by upregulated nuclear factor-κB (NF-κB activity. However, Th17 proliferation was decreased when pre-incubated with Pyrrolidine dithiocarbamate (PDTC, inhibitor of NF-κB activation. Furthermore, there were significant changes induced by ox-LDL in Treg apoptosis, Fas/FasL/Caspase-3 expression of Treg cells, and Th17 proliferation, NF-κB activation of Th17 in ACI patients than in patients with transient ischemic attack (TIA and control subjects (PPConclusion: These data support that ox-LDL may influence the Th17/Treg balance by modulating Fasmediated Treg apoptosis and NF-κB-associated Th17 proliferation. Ox-LDL also induced a more significant alteration of Treg and Th17 in ACI patients than in TIA and control groups, suggesting a novel role in the pathogenesis of ACI.

  10. In Vitro Proliferation and Anti-Apoptosis of the Papain-Generated Casein and Soy Protein Hydrolysates towards Osteoblastic Cells (hFOB1.19

    Directory of Open Access Journals (Sweden)

    Xiao-Wen Pan

    2015-06-01

    Full Text Available Casein and soy protein were digested by papain to three degrees of hydrolysis (DH 7.3%–13.3%, to obtain respective six casein and soy protein hydrolysates, aiming to clarify their in vitro proliferation and anti-apoptosis towards a human osteoblastic cell line (hFOB1.19 cells. Six casein and soy protein hydrolysates at five levels (0.01–0.2 mg/mL mostly showed proliferation as positive 17β-estradiol did, because they conferred the osteoblasts with cell viability of 100%–114% and 104%–123%, respectively. The hydrolysates of higher DH values had stronger proliferation. Casein and soy protein hydrolysates of the highest DH values altered cell cycle progression, and enhanced cell proportion of S-phase from 50.5% to 56.5% and 60.5%. The two also antagonized etoposide- and NaF-induced osteoblast apoptosis. In apoptotic prevention, apoptotic cells were decreased from 31.6% to 22.6% and 15.6% (etoposide treatment, or from 19.5% to 17.7% and 12.4% (NaF treatment, respectively. In apoptotic reversal, soy protein hydrolysate decreased apoptotic cells from 13.3% to 11.7% (etoposide treatment, or from 14.5% to 11.0% (NaF treatment, but casein hydrolysate showed no reversal effect. It is concluded that the hydrolysates of two kinds had estradiol-like action on the osteoblasts, and soy protein hydrolysates had stronger proliferation and anti-apoptosis on the osteoblasts than casein hydrolysates.

  11. Effects of SOST Gene Silencing on Proliferation, Apoptosis, Invasion, and Migration of Human Osteosarcoma Cells Through the Wnt/β-Catenin Signaling Pathway.

    Science.gov (United States)

    Zou, Jian; Zhang, Wei; Li, Xiao-Lin

    2017-02-28

    Our study explored the effects of SOST gene silencing on the proliferation, apoptosis, invasion, and migration of human osteosarcoma cells through Wnt/β-catenin signaling pathway. Fresh tissues were obtained from 108 patients with osteosarcoma and 46 patients with osteochondroma. Human osteosarcoma cells (MG-63, U2-OS, HOS, and Saos-2) and normal osteoblast (hFoB1.19) were selected and cultured. Osteosarcoma cells were grouped randomly into the blank group, the scrambled control group, and the SOST-siRNA group. Cell proliferation was determined by MTT assay. Cell cycle and apoptosis were tested by flow cytometry. Transwell and scratch test were performed to determine cell invasion and migration. The qRT-PCR and Western blotting were used to detect mRNA and protein expression level of sclerostin, Wnt1, β-catenin, C-Myc, Cyclin D1, and MMP-7. The activity of caspase-3 was assessed by immunocytochemistry. Alkaline phosphatase (ALP) activity was measured using P-nitrophenylphosphate as a substrate. Low SOST mRNA and sclerostin protein expression levels were observed in osteosarcoma tissues and cells. Compared with the blank and scrambled control groups, sclerostin expression, apoptotic cells, ALP activity, and caspase-3 activity were down-regulated, while the proliferation, invasion, and migration abilities of osteosarcoma cells were evidently enhanced in the SOST-siRNA group. After SOST gene silencing, the mRNA and protein expression levels of Wnt1, β-catenin, C-Myc, Cyclin D1, and MMP-7 in osteosarcoma cells and β-catenin protein expression levels in the nucleus and cytoplasm were significantly elevated. SOST gene silencing promotes the proliferation, invasion, and migration, and inhibits apoptosis of osteosarcoma cells by activating Wnt/β-catenin signaling pathway.

  12. 细胞增殖和凋亡与结直肠癌的发生发展%Cell Apoptosis and Proliferation in Colorectal Carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    唐道爱

    2011-01-01

    The proportion of proliferation and apoptosis increased progressively with different degrees of dysplasia in tubular adenomas of the colorectum, which parallelled the tendency of both of them.The villous adenomas with significantly lower Al( apoptosis index ),when compared with tubular adenomas, increases in volumn showing an expansive growth.Abnormal proliferation is more frequent in severe atypia colorectal adenomas than in carcinoma in situ, as severe dysplasia and carcinoma in situ are two dissimilar morphological entities with dissimilar proliferative characters.The proliferation lowers along with the lowering of adenocarcinomas differentiation degree and the apoptosis is inhibited.Besides, the slow proliferation is a biological feature correlated with invasion and metastasis in colorectal cancer.The two-way modulation of APC, survivin, COX gene and Wntsignalling pathway may have great biological significance.%结直肠癌前病变从管状腺瘤轻度、中度、重度不典型增生,细胞增殖和凋亡能力不断增加,凋亡与增殖比例渐增高;绒毛状腺瘤与管状腺瘤相比凋亡能力下降,体积增大呈现膨胀性生长;而重度不典型结直肠腺瘤增殖能力显著高于原位癌,显示它们是两种不同的病变.随着结直肠癌分化程度降低,增殖能力下降,凋亡受抑,易浸润转移.APC、survivin、COX基因及相关Wnt信号通路等影响细胞凋亡与增殖,其双向调节作用可能具有特别重要的生物学意义.

  13. BCG strain S4-Jena: An early BCG strain is capable to reduce the proliferation of bladder cancer cells by induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Hermann Inge-Marie

    2010-06-01

    Full Text Available Abstract Background Intravesical immunotherapy with Mycobacterium bovis bacillus Calmette-Guérin has been established as the most effective adjuvant treatment for high risk non-muscle-invasive bladder cancer (NMIBC. We investigated the differences between the S4-Jena BCG strain and commercially available BCG strains. We tested the genotypic varieties between S4-Jena and other BCG strains and analysed the effect of the BCG strains TICE and S4-Jena on two bladder cancer cell lines. Results In contrast to commercially available BCG strains the S4-Jena strain shows genotypic differences. Spoligotyping verifies the S4-Jena strain as a BCG strain. Infection with viable S4-Jena or TICE decreased proliferation in the T24 cell line. Additionally, hallmarks of apoptosis were detectable. In contrast, Cal29 cells showed only a slightly decreased proliferation with TICE. Cal29 cells infected with S4-Jena, though, showed a significantly decreased proliferation in contrast to TICE. Concordantly with these results, infection with TICE had no effect on the morphology and hallmarks of apoptosis of Cal29 cells. However, S4-Jena strain led to clearly visible morphological changes and caspases 3/7 activation and PS flip. Conclusions S4-Jena strain has a direct influence on bladder cancer cell lines as shown by inhibition of cell proliferation and induction of apoptosis. The data implicate that the T24 cells are responder for S4-Jena and TICE BCG. However, the Cal29 cells are only responder for S4-Jena and they are non-responder for TICE BCG. S4-Jena strain may represent an effective therapeutic agent for NMIBC.

  14. Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer.

    Science.gov (United States)

    Ramachandran, Lalitha; Manu, Kanjoormana Aryan; Shanmugam, Muthu K; Li, Feng; Siveen, Kodappully Sivaraman; Vali, Shireen; Kapoor, Shweta; Abbasi, Taher; Surana, Rohit; Smoot, Duane T; Ashktorab, Hassan; Tan, Patrick; Ahn, Kwang Seok; Yap, Chun Wei; Kumar, Alan Prem; Sethi, Gautam

    2012-11-02

    Gastric cancer (GC) is a lethal malignancy and the second most common cause of cancer-related deaths. Although treatment options such as chemotherapy, radiotherapy, and surgery have led to a decline in the mortality rate due to GC, chemoresistance remains as one of the major causes for poor prognosis and high recurrence rate. In this study, we investigated the potential effects of isorhamnetin (IH), a 3'-O-methylated metabolite of quercetin on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, GC cell lines, and xenograft mice model. We observed that IH exerted a strong antiproliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of GC cells, which could be reversed in the presence of PPAR-γ inhibitor. We found that IH increased PPAR-γ activity and modulated the expression of PPAR-γ regulated genes in GC cells. Also, the increase in PPAR-γ activity was reversed in the presence of PPAR-γ-specific inhibitor and a mutated PPAR-γ dominant negative plasmid, supporting our hypothesis that IH can act as a ligand of PPAR-γ. Using molecular docking analysis, we demonstrate that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, our findings clearly indicate that antitumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC.

  15. The phosphatidylinositol 3-kinases (PI3K) inhibitor GS-1101 synergistically potentiates histone deacetylase inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and extracellular signal-regulated kinase pathways.

    Science.gov (United States)

    Bodo, Juraj; Zhao, Xiaoxian; Sharma, Arishya; Hill, Brian T; Portell, Craig A; Lannutti, Brian J; Almasan, Alexandru; Hsi, Eric D

    2013-10-01

    Previously, we showed that inhibition of the protein kinase C β (PKCβ)/AKT pathway augments engagement of the histone deacetylase inhibitor (HDI)-induced apoptosis in lymphoma cells. In the present study, we investigated the cytotoxicity and mechanisms of cell death induced by the delta isoform-specific phosphatidylinositide 3-kinase (PI3K) inhibitor, GS-1101, in combination with the HDI, panobinostat (LBH589) and suberoylanilide hydroxamic acid (SAHA). Lymphoma cell lines, primary non-Hodgkin Lymphoma (NHL) and chronic lymphocytic leukaemia (CLL) cells were simultaneously treated with the HDI, LBH589 and GS-1101. An interaction of the LBH589/GS-1101 combination was formally examined by using various concentrations of LBH589 and GS-1101. Combined treatment resulted in a synergistic inhibition of proliferation and showed synergistic effect on apoptotic induction in all tested cell lines and primary NHL and CLL cells. This study indicates that interference with PI3K signalling dramatically increases HDI-mediated apoptosis in malignant haematopoietic cells, possibly through both AKT-dependent or AKT- independent mechanisms. Moreover, the increase in HDI-related apoptosis observed in PI3K inhibitor-treated cells appears to be related to the disruption of the extracellular signal-regulated kinase (ERK) signalling pathway. This study provides a strong rational for testing the combination of PI3K inhibitors and HDI in the clinic.

  16. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  17. Ethyl Acetate Extracts of Semen Impatientis Inhibit Proliferation and Induce Apoptosis of Human Prostate Cancer Cell Lines through AKT/ERK Pathways.

    Science.gov (United States)

    Wang, Tao; Cai, Yang; Song, Wen; Chen, Ruibao; Hu, Dunmei; Ye, Jianhan; Liu, Lu; Peng, Wei; Zhang, Junfeng; Wang, Shaogang; Yang, Weiming; Liu, Jihong; Ding, Yufeng

    2017-01-01

    Objective. To investigate the inhibitory effect of ethyl acetate extracts of Impatiens balsamina L. on prostate cancer cells. Methods. Impatiens balsamina L. was extracted to get water, ethanol, oil ether, ethyl acetate, and butanol extracts. CCK-8 assay was used to detect the inhibitory effect. Apoptosis rates and cell cycle distribution were detected by flow cytometry. Transwell assay was performed to test the ability of migration. The expressions of Bcl-2, Bax, cleaved-caspase-3, p-ERK, ERK, p-AKT, AKT, cyclin D1, cyclin E, and MMP2 were detected by Western blot. Results. Ethyl acetate extracts had the strongest inhibitory effect. After being treated with different concentrations of ethyl acetate extracts, the percentage of G0/G1 phase increased significantly, cyclin D1 and cyclin E expression decreased, apoptosis rate was significantly higher, and the ability of migration of PC-3 and RV1 was inhibited significantly. Western blot showed that the expressions of Bcl-2, p-ERK, and p-AKT were significantly decreased, but the expressions of Bax and caspase-3 cleavage were increased. Conclusions. Impatiens balsamina L. inhibited the proliferation of human prostate cancer cells; ethyl acetate extracts have the strongest effect. It could inhibit cell proliferation and migration, cause G1 phase arrest, and induce apoptosis probably through inhibition of the AKT and ERK pathways.

  18. In vivo effects of Chinese herbal recipe, Danshaohuaxian, on apoptosis and proliferation of hepatic stellate cells in hepatic fibrotic rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-Xia Geng; Qin Yang; Ru-Jia Xie; Xin-Hua Luo; Bing Han; Li Ma; Cheng-Xiu Li; Ming-Liang Cheng

    2005-01-01

    .01),the COL Ⅰ and Ⅲ expression decreased (COL Ⅰ: 1.07±0.96 vs4.18±2.26, 3.22±1.44, P<0.01; COL Ⅲ: 1.09±0.58 vs 3.04±0.62, 2.23±0.58, P<0.01), the HSCs apoptotic index of HSCs (7.81±0.47 vs 1.63±0.25, 1.78±0.4, P<0.05) and the ratio of G0-G1 phase cells increased (94.30±1.33 vs 62.27±17.96, 50.53±2.25, P<0.05). The ratios of S-phase cells (3.11±1.27 vs 9.83±1.81, 11.87±1.9, P<0.05) and G2-M phase cells (2.58±0.73 vs23.26±10.95, 13.60±1.15, P<0.01)declined.CONCLUSION: DSHX capsule shows certain therapeutic effects on hepatic fibrosis in rats and inhibits abnormal deposition of COL Ⅰ and Ⅲ in rat livers by promoting the apoptosis of HSCs and preventing their proliferation.

  19. Proliferation and apoptosis property of mesenchymal stem cells derived from peripheral blood under the culture conditions of hypoxia and serum deprivation

    Institute of Scientific and Technical Information of China (English)

    FU Wei-li; JIA Zhu-qing; WANG Wei-ping; ZHANG Ji-ying; FU Xin; DUAN Xiao-ning; LEUNG Kevin Kar Ming; ZHOU Chun-yan; YU Jia-kuo

    2011-01-01

    Background The proliferation and apoptosis property of mesenchymal stem cells derived from peripheral blood (PB-MSCs) were investigated under hypoxia and serum deprivation conditions in vitro so as to evaluate the feasibility for autologous PB-MSCs applications in cartilage repair.Methods MSCs were mobilized into peripheral blood by granulocyte colony stimulating factor (G-CSF) and AMD3100.The blood samples were collected from central ear artery of rabbits.Adhered cells were obtained by erythrocyte lysis buffer and identified as MSCs by adherence to plastic,spindle shaped morphology,specific surface markers,differentiation abilities into osteoblasts,adipocytes and chondroblasts in vitro under appropriate conditions.MSCs were cultured in four groups at different oxygen tension (20% O2 and 2% O2),with or without 10% fetal bovine serum (FBS)conditions:20% O2 and 10% FBS complete medium (normal medium,N),20% O2 and serum deprivation medium (D),2% O2 and 10% FBS complete medium (hypoxia,H),2% O2 and serum deprivation (HD).Cell proliferation was determined by CCK-8 assay.Apoptosis was detected by Annexin V/Pl and terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL) staining.Results Spindle-shaped adherent cells were effectively mobilized from peripheral blood by a combined administration of G-CSF plus AMD3100.These cells showed typical fibroblast-like phenotype similar to MSCs from bone marrow (BM-MSCs),and expressed a high level of typical MSCs markers CD29 and CD44,but lacked in the expression of hematopoietic markers CD45 and major histocompatibility complex Class Ⅱ (MHC Ⅱ).They could also differentiate into osteoblasts,adipocytes and chondroblasts in vitro under appropriate conditions.No significant morphological differences were found among the four groups.It was found that hypoxia could enhance proliferation of PB-MSCs regardless of serum concentration,but serum deprivation inhibited proliferation at the later stage of culture

  20. Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis

    Directory of Open Access Journals (Sweden)

    El-Naa MM

    2016-11-01

    analysis revealed that sildenafil was capable of improving the category of tumor activity from moderate to low proliferative. Sildenafil induced necrosis in the tumor. Moreover, the drug of interest showed cytotoxic activity against MCF-7 in vitro as well as potentiated cisplatin antitumor activity in vivo and in vitro. These findings shed light on the antitumor activity of sildenafil and its possible impact on potentiating the antitumor effect of conventional chemotherapeutic agents such as cisplatin. These effects might be related to antiangiogenic, antiproliferative, and apoptotic activities of sildenafil.Keywords: sildenafil, phosphodiesterase-5, breast cancer, angiogenesis, proliferation, apoptosis

  1. A commercial formulation of glyphosate inhibits proliferation and differentiation to adipocytes and induces apoptosis in 3T3-L1 fibroblasts.

    Science.gov (United States)

    Martini, Claudia N; Gabrielli, Matías; Vila, María del C

    2012-09-01

    Glyphosate-based herbicides are extensively used for weed control all over the world. Therefore, it is important to investigate the putative toxic effects of these formulations which include not only glyphosate itself but also surfactants that may also be toxic. 3T3-L1 fibroblasts are a useful tool to study adipocyte differentiation, this cell line can be induced to differentiate by addition of a differentiation mixture containing insulin, dexamethasone and 3-isobutyl-1-methylxanthine. We used this cell line to investigate the effect of a commercial formulation of glyphosate (GF) on proliferation, survival and differentiation. It was found that treatment of exponentially growing cells with GF for 48h inhibited proliferation in a dose-dependent manner. In addition, treatment with GF dilution 1:2000 during 24 or 48h inhibited proliferation and increased cell death, as evaluated by trypan blue-exclusion, in a time-dependent manner. We showed that treatment of 3T3-L1 fibroblasts with GF increased caspase-3 like activity and annexin-V positive cells as evaluated by flow cytometric analysis, which are both indicative of induction of apoptosis. It was also found that after the removal of GF, remaining cells were able to restore proliferation. On the other hand, GF treatment severely inhibited the differentiation of 3T3-L1 fibroblasts to adipocytes. According to our results, a glyphosate-based herbicide inhibits proliferation and differentiation in this mammalian cell line and induces apoptosis suggesting GF-mediated cellular damage. Thus, GF is a potential risk factor for human health and the environment.

  2. 6-Bromoisatin Found in Muricid Mollusc Extracts Inhibits Colon Cancer Cell Proliferation and Induces Apoptosis, Preventing Early Stage Tumor Formation in a Colorectal Cancer Rodent Model

    Directory of Open Access Journals (Sweden)

    Babak Esmaeelian

    2013-12-01

    Full Text Available Muricid molluscs are a natural source of brominated isatin with anticancer activity. The aim of this study was to examine the safety and efficacy of synthetic 6-bromoisatin for reducing the risk of early stage colorectal tumor formation. The purity of 6-bromoisatin was confirmed by 1H NMR spectroscopy, then tested for in vitro and in vivo anticancer activity. A mouse model for colorectal cancer was utilized whereby colonic apoptosis and cell proliferation was measured 6 h after azoxymethane treatment by hematoxylin and immunohistochemical staining. Liver enzymes and other biochemistry parameters were measured in plasma and haematological assessment of the blood was conducted to assess potential toxic side-effects. 6-Bromoisatin inhibited proliferation of HT29 cells at IC50 223 μM (0.05 mg/mL and induced apoptosis without increasing caspase 3/7 activity. In vivo 6-bromoisatin (0.05 mg/g was found to significantly enhance the apoptotic index (p ≤ 0.001 and reduced cell proliferation (p ≤ 0.01 in the distal colon. There were no significant effects on mouse body weight, liver enzymes, biochemical factors or blood cells. However, 6-bromoisatin caused a decrease in the plasma level of potassium, suggesting a diuretic effect. In conclusion this study supports 6-bromoisatin in Muricidae extracts as a promising lead for prevention of colorectal cancer.

  3. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1–RAGE and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ping; Dai, Weiqi; Wang, Fan; Lu, Jie; Shen, Miao; Chen, Kan; Li, Jingjing; Zhang, Yan; Wang, Chengfen; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Guo, Chuan-Yong, E-mail: guochuanyong@hotmail.com; Xu, Ling, E-mail: xuling606@sina.com

    2014-01-24

    Highlights: • Ethyl pyruvate inhibits liver cancer. • Promotes apoptosis. • Decreased the expression of HMGB1, p-Akt. - Abstract: Ethyl pyruvate (EP) was recently identified as a stable lipophilic derivative of pyruvic acid with significant antineoplastic activities. The high mobility group box-B1 (HMGB1)–receptor for advanced glycation end-products (RAGE) and the protein kinase B (Akt) pathways play a crucial role in tumorigenesis and development of many malignant tumors. We tried to observe the effects of ethyl pyruvate on liver cancer growth and explored its effects in hepatocellular carcinoma model. In this study, three hepatocellular carcinoma cell lines were treated with ethyl pyruvate. An MTT colorimetric assay was used to assess the effects of EP on cell proliferation. Flow cytometry and TUNEL assays were used to analyze apoptosis. Real-time PCR, Western blotting and immunofluorescence demonstrated ethyl pyruvate reduced the HMGB1–RAGE and AKT pathways. The results of hepatoma orthotopic tumor model verified the antitumor effects of ethyl pyruvate in vivo. EP could induce apoptosis and slow the growth of liver cancer. Moreover, EP decreased the expression of HMGB1, RAGE, p-AKT and matrix metallopeptidase-9 (MMP9) and increased the Bax/Bcl-2 ratio. In conclusion, this study demonstrates that ethyl pyruvate induces apoptosis and cell-cycle arrest in G phase in hepatocellular carcinoma cells, plays a critical role in the treatment of cancer.

  4. Low BIK outside-inside-out interactive inflammation immune-induced transcription-dependent apoptosis through FUT3-PMM2-SQSTM1-SFN-ZNF384.

    Science.gov (United States)

    Huang, Juxiang; Wang, Lin; Jiang, Minghu; Chen, Qingchun; Zhang, Xiaoyu; Wang, Yangming; Jiang, Zhenfu; Zhang, Zhongjie

    2016-04-01

    Eighteen different Pearson mutual-positive-correlation BIK-activatory molecular feedback upstream and downstream networks were constructed from 79 overlapping of 376 GRNInfer and 98 Pearson under BIK CC ≥ 0.25 in low normal adjacent tissues of Taiwan compared with high lung adenocarcinoma. Our identified BIK interactive total feedback molecular network showed FUT3 [fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase Lewis blood group)], PMM2 (phosphomannomutase 2), SQSTM1 (sequestosome 1), SFN_2 [REX2 RNA exonuclease 2 homolog (S. cerevisiae)] and ZNF384 (zinc finger protein 384) in low normal adjacent tissues of lung adenocarcinoma. BIK interactive total feedback terms included mitochondrial envelope, endomembrane system, integral to membrane, Golgi apparatus, cytoplasm, nucleus, cytosol, intracellular signaling cascade, mitochondrion, extracellular space, inflammation, immune response, apoptosis, cell differentiation, cell cycle, regulation of cell cycle, cell proliferation, estrogen-responsive protein Efp controls cell cycle and breast tumors growth, induction or regulation of apoptosis based on integrative GO, KEGG, GenMAPP, BioCarta and disease databases in low normal adjacent tissues of lung adenocarcinoma. Therefore, we propose low BIK outside-inside-out interactive inflammation immune-induced transcription-dependent apoptosis through FUT3-PMM2-SQSTM1-SFN-ZNF384 in normal adjacent tissues of lung adenocarcinoma.

  5. IL-35 promotes pancreas cancer growth through enhancement of proliferation and inhibition of apoptosis: evidence for a role as an autocrine growth factor.

    Science.gov (United States)

    Nicholl, Michael B; Ledgewood, Chelsea L; Chen, Xuhui; Bai, Qian; Qin, Chenglu; Cook, Kathryn M; Herrick, Elizabeth J; Diaz-Arias, Alberto; Moore, Bradley J; Fang, Yujiang

    2014-12-01

    Interleukin-35 (IL-35), an IL-12 cytokine family member, mediates the immune inhibitory function of regulatory T cells (Treg). We assayed the presence of IL-35 in paraffin-embedded human pancreas cancer (PCAN) and unexpectedly found IL-35 was expressed mainly by epithelial derived PCAN cells, but not by Treg. We further examined the expression and effect of exogenous IL-35 in human PCAN cell lines and found IL-35 promoted growth and inhibited apoptosis in PCAN cell lines. IL-35 induced proliferation correlated with an increase in cyclin B, cyclin D, cdk2, and cdk4 and a decrease in p27 expression, while inhibition of apoptosis was associated with an increase in Bcl-2 and a decrease in TRAILR1. We conclude IL-35 is produced by PCAN in vivo and promotes PCAN cell line growth in vitro. These results might indicate an important new role for IL-35 as an autocrine growth factor in PCAN growth.

  6. siRNA AGAINST SURVIVIN SUPPRESSES THE PROLIFERATION OF PANCREATIC CANCER CELL PC-2 AND INDUCES ITS APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Survivinis a member of the inhibitor of apop-tosis family,whichinhibits cell apoptosis and regu-lates cell division.Survivin is expressed in embry-onic tissues as well as in the majority of humancancers,but is not expressed in most nor mal adulttissues.The highly cancer-specific expression ofSurvivin,coupled withits i mportance in inhibitingcell apoptosis and in regulating cell division,makesit a useful diagnostic marker and ideal target forcancer treat ment[1].RNAi is a process of post transcriptional gene...

  7. Tart cherry juice induces differential dose-dependent effects on apoptosis, but not cellular proliferation, in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Martin, Keith R; Wooden, Alissa

    2012-11-01

    Consumption of polyphenol-rich fruits, for example, tart cherries, is associated with a lower risk of cardiovascular disease and cancer. This is due, in large part, to the diverse myriad bioactive agents, that is, polyphenol anthocyanins, present in fruits. Anthocyanin-rich tart cherries purportedly modulate numerous cellular processes associated with oncogenesis such as apoptosis, cellular proliferation (CP), and cell cycle progression, although the effective concentrations eliciting these effects are unclear. We hypothesized that several dose-dependent effects over a large concentration range of 100% tart cherry juice (TCJ) would exist and affect these processes differentially with the potential for cellular protection and cellular death either by apoptosis or by necrosis. In this in vitro study, we tested the dose response of TCJ on CP and cell death in MCF-7 human breast cancer cells. TCJ was added at 0.03-30% (v/v) to cells and incubated overnight with the medium alone or with increasing TCJ. Bromodeoxyuridine incorporation was significantly reduced by 20% at ≥10% (v/v) TCJ and associated with necrosis, but was not different between the control and treatment groups at <10% TCJ. MTT reduction was also significantly reduced by 27% and 80% at 10% and 30% TCJ, respectively, and associated with necrosis. Apoptosis, but not necrosis, was increased ∼63% at 3% TCJ (∼307 nM monomeric anthocyanins), yet significantly decreased (P<.05) by 20% at 1% TCJ (920 nM) both of which were physiologically relevant concentrations of anthocyanins. The data support a biphasic effect on apoptosis and no effect on proliferation.

  8. Sequence-dependent Effect of Docetaxel with Gefitinib on the Proliferation 
and Apoptosis of Lung Adenocarcinoma Cell H1975

    Directory of Open Access Journals (Sweden)

    Xinyu ZHANG

    2012-03-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs such as gefitinib and erlotinib show promising therapeutic effects in patients with advanced non-small cell lung cancer (NSCLC. However, despite an initial response to EGFR-TKIs treatment among responsive patients, most inevitably acquire resistance after a progression-free period of about 10 months. The percentage of T790M in TKI acquired-resistant patients in most studies is around 50%. The aim of this study is to assess the effects of the sequential administration of docetaxel and gefitinib on cell proliferation and apoptosis of lung adenocarcinoma cell H1975. Methods An MTT assay was used to measure cell proliferation. The potency of the sequential administration of docetaxel and gefitinib were determined by isobolograms and combination index (CI. Cell apoptosis and cycle distribution were determined by flow cytometry. The Hoechst 33258 method was used to observe the apoptotic morphology. Chemical colorimetric luminescence was used to measure the caspase activity. Results The isobolograms and CI showed that the sequential administration of docetaxel following gefitinib remarkably inhibits cell proliferation and cell apoptosis compared with other sequential administration models. The cycle distribution results indicate that sequential docetaxel administration following gefitinib blocked the cells in the G2/M phase but not in the G0/G1. The activation of the Caspase-8/Caspase-3 cascade is mainly involved in the apoptotic pathway of lung adenocarcinoma cell H1975 in all sequential administration models. Conclusion The docetaxel administration following gefitinib might be a new stratagy for lung cancer with T790M mutation after having EGFR-TKIs resistance.

  9. Silencing livin gene by siRNA leads to apoptosis induction, cell cycle arrest, and proliferation inhibition in malignant melanoma LiBr cells

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Sheng-shun TAN; Xin-yang WANG; Dong-hua LIU; Chun-shui YU; Zhuan-li BAI; Da-lin HE; Jun ZHAO

    2007-01-01

    Aim: The aim of the present study was to investigate the effects of silencing the livin gene by small interfering RNA (siRNA) on the expression of livin and the effects on apoptosis, cell cycle, and proliferation in human malignant melanoma LiBr cells. Methods: Three chemically-synthetic siRNA duplexes targeting livin were transiently transfected into the LiBr cells, and the effects on livin expression were detected both at the mRNA level by real-time RT-PCR and at the protein level by Western blotting. Apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling assay, flow cytometric analysis, and the expression of procaspase-3 and activated caspase-3 analysis by Western blotting. Cell cycle was analyzed by flow cytometry. Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Results: One of the 3 designed siRNA could effectively knock down the livin expression both at the mRNA and protein levels in dose- and time-dependent manners; 100 nmol/L with maximum downregulation on mRNA at 48 h, and on the protein at 72 h after transfection. Silencing livin could significantly induce apoptosis, arrest cell cycle at the GJG1 phase, and inhibit proliferation in LiBr cells. Meanwhile, caspase-3 was activated. Conclusion: The livin gene could serve as a potential molecular target for gene therapy by siRNA for malignant melanoma.

  10. Dual silencing of insulin-like growth factor-I receptor and epidermal growth factor receptor in colorectal cancer cells is associated with decreased proliferation and enhanced apoptosis.

    Science.gov (United States)

    Kaulfuss, Silke; Burfeind, Peter; Gaedcke, Jochen; Scharf, Jens-Gerd

    2009-04-01

    Overexpression and activation of tyrosine kinase receptors are common features of colorectal cancer. Using the human colorectal cancer cell lines DLD-1 and Caco-2, we evaluated the role of the insulin-like growth factor-I (IGF-I) receptor (IGF-IR) and epidermal growth factor receptor (EGFR) in cellular functions of these cells. We used the small interfering RNA (siRNA) technology to specifically down-regulate IGF-IR and EGFR expression. Knockdown of IGF-IR and EGFR resulted in inhibition of cell proliferation of DLD-1 and Caco-2 cells. An increased rate of apoptosis was associated with siRNA-mediated silencing of IGF-IR and EGFR as assessed by activation of caspase-3/caspase-7. The combined knockdown of both EGFR and IGF-IR decreased cell proliferation and induced cell apoptosis more effectively than did silencing of either receptor alone. Comparable effects on cell proliferation and apoptosis were observed after single and combinational treatment of cells by the IGF-IR tyrosine kinase inhibitor NVP-AEW541 and/or the EGFR tyrosine kinase inhibitor erlotinib. Combined IGF-IR and EGFR silencing by either siRNAs or tyrosine kinase inhibitors diminished the phosphorylation of downstream signaling pathways AKT and extracellular signal-regulated kinase (ERK)-1/2 more effectively than did the single receptor knockdown. Single IGF-IR knockdown inhibited IGF-I-dependent phosphorylation of AKT but had no effect on IGF-I- or EGF-dependent phosphorylation of ERK1/2, indicating a role of EGFR in ligand-dependent ERK1/2 phosphorylation. The present data show that inhibition of the IGF-IR transduction cascade augments the antipoliferative and proapoptotic effects of EGFR inhibition in colorectal cancer cells. A clinical application of combination therapy targeting both EGFR and IGF-IR could be a promising therapeutic strategy.

  11. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression.

    Science.gov (United States)

    Luo, Cheng-Lin; Liu, Yu-Qiong; Wang, Peng; Song, Chun-Hua; Wang, Kai-Juan; Dai, Li-Ping; Zhang, Jian-Ying; Ye, Hua

    2016-08-01

    Cervical cancer is a cause of cancer death, making it as the one of the most common cause for death among women globally. Though many studies before have explored a lot for cervical cancer prevention and treatment, there are still a lot far from to know based on the molecular mechanisms. Janus kinase 2 (JAK2) has been reported to play an essential role in the progression of apoptosis, autophagy and proliferation for cells. We loaded gold-quercetin into poly (dl-lactide-co-glycolide) nanoparticles to cervical cancer cells due to the propertities of quercetin in ameliorating cellular processes and the easier absorbance of nanoparticles. Here, in our study, quercetin nanoparticles (NQ) were administrated to cells to investigate the underlying mechanism by which the cervical cancer was regulated. First, JAK2-inhibited carvical cancer cell lines were involved for our experiments in vitro and in vivo. Western blotting, quantitative RT-PCR (qRT-PCR), ELISA, Immunohistochemistry, and flow-cytometric analysis were used to determine the key signaling pathway regulated by JAK2 for cervical cancer progression. And the role of quercetin nanoparticles was determined during the process. Data here indicated that JAK2, indeed, expressed highly in cancer cell lines compared to the normal cervical cells. And apoptosis and autophagy were found in JAK2-inhibited cancer cells through activating Caspase-3, and suppressing Cyclin-D1 and mTOR regulated by Signal Transducer and Activator of Transcription (STAT) 3/5 and phosphatidylinositide 3-kinase/protein kinases (PI3K/AKT) signaling pathway. The cervical cancer cells proliferation was inhibited. Further, tumor size and weight were reduced by inhibition of JAK2 in vivo experiments. Notably, administration with quercetin nanoparticles displayed similar role with JAK2 suppression, which could inhibit cervical cancer cells proliferation, invasion and migration. In addition, autophogy and apoptosis were induced, promoting cervical cancer cell

  12. Interleukin-35 (IL-35) inhibits proliferation and promotes apoptosis of fibroblast-like synoviocytes isolated from mice with collagen-induced arthritis.

    Science.gov (United States)

    Li, Yunxia; Wu, Suqin; Li, Yuxuan; Jiang, Shenyi; Lin, Tiantian; Xia, Liping; Shen, Hui; Lu, Jing

    2016-09-01

    Rheumatoid arthritis (RA) is an inflammatory disorder of the joints that affects 0.5-1 % of adults. Excessive growth of the fibroblast-like synoviocytes (FLS) promotes hyperplasia of synovial tissues and causes its invasion into the bone and cartilage, which eventually causes deformity and dysfunction of affected joints. Interleukin 35 (IL-35) was shown to suppress the inflammatory responses to collagen-induced arthritis (CIA) via upregulation of T regulatory cells and suppression of T helper type 17 cells in a mouse model. To study the effects of IL-35 on the proliferation and apoptosis frequency of cultured FLS isolated from mice with CIA as well as to examine the effects of IL-35 on CIA in vivo. Thirty DBA/1 J mice, which are used as an animal model for RA, were divided randomly (ten mice per group) to a CIA group (collagen treatment), a CIA + IL-35 group (collagen and IL-35 treatments), and a control group (no treatment). Starting on the 24th day after collagen administration, IL-35 was injected intraperitoneally into mice of the CIA + IL-35 group once per day for 10 days. An arthritis index was calculated, and pathological analysis of synovial tissue was performed. FLS isolated from CIA mice were treated with various concentrations of IL-35 (12.5-100 ng/ml). The MTT assay was used to examine FLS proliferation, and apoptosis frequency of FLS was detected by flow cytometry. On day 24, the CIA mice began to exhibit arthritis symptoms, and the symptoms rapidly progressed with time. Treatment with IL-35 significantly alleviated arthritis symptoms and reduced the synovial tissue inflammation. In addition, IL-35 treatment inhibited proliferation and promoted apoptosis in cultured FLS from CIA mice in a dose-dependent manner. IL-35 could ameliorate the symptoms of arthritis in the CIA mouse model in vivo and inhibited FLS proliferation while promoting FLS apoptosis in vitro, thereby exhibited the potential in inhibiting the progression of RA.

  13. High-concentration of BMP2 reduces cell proliferation and increases apoptosis via DKK1 and SOST in human primary periosteal cells.

    Science.gov (United States)

    Kim, Harry K W; Oxendine, Ila; Kamiya, Nobuhiro

    2013-05-01

    BMP2, a well-known osteoinductive agent approved by FDA, is currently being used for various off-label orthopedic applications. Recently, concerns about its efficacy for off-label use, concentration, and complications have emerged. Interestingly, there is an extremely large discrepancy in BMP2 concentration between clinical use (i.e. 1.5mg/ml) and in vitro studies (50-300 ng/ml). The purpose of this study was to determine the effects of a relatively high-concentration of BMP2 on cell proliferation and apoptosis using human primary periosteal cells as BMP2 is generally applied around the periosteum in orthopedic surgeries. We isolated periosteal cells from three independent patients. The cell proliferation assessed by MTT activity was significantly reduced by a high-concentration of BMP2 (~2000 ng/ml), while such a reduction was not observed by using a low-concentration of BMP2 (~200 ng/ml). The cell apoptosis assessed by caspase activity was significantly increased by high-concentration BMP2, while such an increase was not observed by low-concentration BMP2. We found that Wnt signaling activity was significantly reduced by high-concentration BMP2 along with a dramatic increase in DKK1 and SOST, key inhibitors of Wnt signaling in bone. The addition of DKK1 or SOST protein to the primary periosteal cells reduced MTT activity and significantly increased caspase activity. Silencing the DKK1 or SOST expression using the siRNA technique normalized cell proliferation and apoptosis in the periosteum-derived cells when exposed to a high-concentration BMP2. Taken together, these results suggest that a high-concentration BMP2 decreases human periosteal cell proliferation and induces apoptosis via the activation of Wnt inhibitors DKK1 and SOST. This study provides new insights to the effects of high BMP2 concentration on human periosteal cells and brings out the possibility of multiple effects of current BMP2 therapy on various skeletal tissues.

  14. Involvement of hepatitis B X-interacting protein (HBXIP) in proliferation regulation of cells

    Institute of Scientific and Technical Information of China (English)

    Feng-ze WANG; Li SHA; Wei-ying ZHANG; Lian-ying WU; Ling QIAO; Nan LI; Xiao-dong ZHANG; Li-hong YE

    2007-01-01

    Aim: To investigat the effect of Hepatitis B X-interacting protein (HBXIP) on cell proliferation. Methods: A rabbit antibody against HBXIP was generated. The RNA interference (RNAi) fragment of the HBXIP gene was constructed in the pSilencer-3.0-H1 vector termed pSilencer-hbxip. Plasmids of the pcDNA3-hbxip encoding HBXIP gene and pSilencer-hbxip were transfected into human breast carcinoma MCF-7 cells, hepatoma H7402 cells, and the normal human hepatic cell line L-O2, respectively. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bro- mide (MTT) assay and 5-bromo-2-deoxyuridine incorporation assay were applied to detect cell proliferation. MCF-7 cells and L-O2 cells in the cell cycle were examined by flow cytometry. The proteins involved in cell proliferation and cell cycle were investigated by Western blot. Results: Overexpression of HBXIP resulted in the promotion of proliferation of MCF-7, H7402, and L-O2 cells. Flow cytometry showed that the overexpression of HBXIP promoted the cell prolifera-tion of MCF-7 and L-O2 cells, and led to an increased cell proliferative index in MCF-7 cells (from 46.25% to 58.28%) and L-O2 cells (from 29.62% to 35.54%). Western blot showed that expression levels of c-Myc, Bcl-2, and proliferating cell nuclear antigen were upregulated in MCF-7, H7402, or L-O2 cells, whereas that of p27 was downregulated. However, the RNAi of HBXIP brought opposite results.Conclusion: One of the functions of HBXIP is its involvement in cell proliferation.

  15. Cell proliferation and apoptosis in optic nerve and brain integration centers of adult troutOncorhynchus mykiss after optic nerve injury

    Institute of Scientific and Technical Information of China (English)

    Evgeniya V Pushchina; Sachin Shukla; Anatoly A Varaksin; Dmitry K Obukhov

    2016-01-01

    Fishes have remarkable ability to effectively rebuild the structure of nerve cells and nerve ifbers after central nervous system injury. However, the underlying mechanism is poorly understood. In order to address this issue, we investigated the proliferation and apoptosis of cells in contralateral and ipsilateral optic nerves, after stab wound injury to the eye of an adult troutOncorhynchus mykiss. Heterogenous population of proliferating cells was investigated at 1 week after injury. TUNEL labeling gave a qualitative and quantita-tive assessment of apoptosis in the cells of optic nerve of trout 2 days after injury. After optic nerve injury, apoptotic response was investigated, and mass patterns of cell migration were found. The maximal con-centration of apoptotic bodies was detected in the areas of mass clumps of cells. It is probably indicative of massive cell death in the area of high phagocytic activity of macrophages/microglia. At 1 week after optic nerve injury, we observed nerve cell proliferation in the trout brain integration centers: the cerebellum and the optic tectum. In the optic tectum, proliferating cell nuclear antigen (PCNA)-immunopositive radial glia-like cells were identified. Proliferative activity of nerve cells was detected in the dorsal proliferative (matrix) area of the cerebellum and in parenchymal cells of the molecular and granular layers whereas local clusters of undifferentiated cells which formed neurogenic niches were observed in both the optic tectum and cerebellum after optic nerve injury.In vitro analysis of brain cells of trout showed that suspension cells compared with monolayer cells retain higher proliferative activity, as evidenced by PCNA immunolabeling. Phase contrast observation showed mitosis in individual cells and the formation of neurospheres which gradually increased during 1–4 days of culture. The present ifndings suggest that trout can be used as a novel model for studying neuronal regeneration.

  16. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-07-01

    Full Text Available Peroxisome proliferator-activated receptor α (PPARα is a key regulator to ameliorate liver injury in cases of acute liver failure (ALF. However, its regulatory mechanisms remain largely undetermined. Endoplasmic reticulum stress (ER stress plays an important role in a number of liver diseases. This study aimed to investigate whether PPARα activation inhibits ER stress-induced hepatocyte apoptosis, thereby protecting against ALF. In a murine model of D-galactosamine (D-GalN- and lipopolysaccharide (LPS-induced ALF, Wy-14643 was administered to activate PPARα, and 4-phenylbutyric acid (4-PBA was administered to attenuate ER stress. PPARα activation ameliorated liver injury, because pre-administration of its specific inducer, Wy-14643, reduced the serum aminotransferase levels and preserved liver architecture compared with that of controls. The protective effect of PPARα activation resulted from the suppression of ER stress-induced hepatocyte apoptosis. Indeed, (1 PPARα activation decreased the expression of glucose-regulated protein 78 (Grp78, Grp94 and C/EBP-homologous protein (CHOP in vivo; (2 the liver protection by 4-PBA resulted from the induction of PPARα expression, as 4-PBA pre-treatment promoted upregulation of PPARα, and inhibition of PPARα by small interfering RNA (siRNA treatment reversed liver protection and increased hepatocyte apoptosis; (3 in vitro PPARα activation by Wy-14643 decreased hepatocyte apoptosis induced by severe ER stress, and PPARα inhibition by siRNA treatment decreased the hepatocyte survival induced by mild ER stress. Here, we demonstrate that PPARα activation contributes to liver protection and decreases hepatocyte apoptosis in ALF, particularly through regulating ER stress. Therefore, targeting PPARα could be a potential therapeutic strategy to ameliorate ALF.

  17. Induction of apoptosis and inhibition of proliferation in human tumor cells treated with extracts of Uncaria tomentosa.

    Science.gov (United States)

    Sheng, Y; Pero, R W; Amiri, A; Bryngelsson, C

    1998-01-01

    Growth inhibitory activities of novel water extracts of Uncaria tomentosa (C-Med-100) were examined in vitro using two human leukemic cell lines (K562 and HL60) and one human EBV-transformed B lymphoma cell line (Raji). The proliferative capacities of HL60 and Raji cells were strongly suppressed in the presence of the C-Med-100 while K562 was more resistant to the inhibition. Furthermore, the antiproliferative effect was confirmed using the clonogenic assay, which showed a very close correlation between C-Med-100 concentration and the surviving fraction. The suppressive effect of Uncaria tomentosa extracts on tumor cell growth appears to be mediated through induction of apoptosis which was demonstrated by characteristic morphological changes, internucleosomal DNA fragmentation after agarose gel electrophoresis and DNA fragmentation quantification. C-Med-100 induced a delayed type of apoptosis becoming most dose-dependently prominent after 48 hours of exposure. Both DNA single and double strand breaks were increased 24 hours after C-Med-100 treatment, which suggested a well-established linkage between the DNA damage and apoptosis. The induction of DNA strand breaks coupled to apoptosis may explain the growth inhibition of the tumor cells by Uncaria tomentosa extracts. These results provide the first direct evidence for the antitumor properties of Uncaria tomentosa extracts to be via a mechanism of selective induction of apoptosis.

  18. Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress.

    Science.gov (United States)

    Han, Yue; Wang, Lu; Yao, Qing-Ping; Zhang, Ping; Liu, Bo; Wang, Guo-Liang; Shen, Bao-Rong; Cheng, Binbin; Wang, Yingxiao; Jiang, Zong-Lai; Qi, Ying-Xin

    2015-05-01

    The dysfunction of vascular endothelial cells (ECs) influenced by flow shear stress is crucial for vascular remodeling. However, the roles of nuclear envelope (NE) proteins in shear stress-induced EC dysfunction are still unknown. Our results indicated that, compared with normal shear stress (NSS), low shear stress (LowSS) suppressed the expression of two types of NE proteins, Nesprin2 and LaminA, and increased the proliferation and apoptosis of ECs. Targeted small interfering RNA (siRNA) and gene overexpression plasmid transfection revealed that Nesprin2 and LaminA participate in the regulation of EC proliferation and apoptosis. A protein/DNA array was further used to detect the activation of transcription factors in ECs following transfection with target siRNAs and overexpression plasmids. The regulation of AP-2 and TFIID mediated by Nesprin2 and the activation of Stat-1, Stat-3, Stat-5 and Stat-6 by LaminA were verified under shear stress. Furthermore, using Ingenuity Pathway Analysis software and real-time RT-PCR, the effects of Nesprin2 or LaminA on the downstream target genes of AP-2, TFIID, and Stat-1, Stat-3, Stat-5 and Stat-6, respectively, were investigated under LowSS. Our study has revealed that NE proteins are novel mechano-sensitive molecules in ECs. LowSS suppresses the expression of Nesprin2 and LaminA, which may subsequently modulate the activation of important transcription factors and eventually lead to EC dysfunction.

  19. Effect of leptin on cell proliferation and apoptosis of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29

    Institute of Scientific and Technical Information of China (English)

    Chang-Wen Yu; Bi-Sheng Zhu

    2016-01-01

    Objective:To explore effect of leptin on cell proliferation and apoptosis of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29.Methods: MTT and flow cytometry were adopted for detecting the effect of exogenous leptin on cell cycle of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29.Results: Leptin with mass concentration (0 ng/mL, 5 ng/mL, 50 ng/mL, 100 ng/mL, 200 ng/mL) could stimulate the growth of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29; exogenous leptin with mass concentration (5 ng/mL, 50 ng/mL, 100 ng/mL, 200 ng/mL) could inhibit cell growth of gastric adenocarcinoma cell line-SGC7901 and colon cancer cell line-HT-29 after 72 h; among which, inhibiting effects of cell line-SGC7901 and cell line-HT-29 were the most significant under the effect of exogenous leptin with mass concentration-200 ng/mL.Conclusion:Within a certain concentration and action time, exogenous leptin can stimulate the growth of gastric adenocarcinoma cell line and colon cancer cell line, and then promot the tumor cell proliferation and/or inhibit the tumor cell apoptosis.

  20. Dietary flavanols exert different effects on antioxidant defenses and apoptosis/proliferation in Caco-2 and SW480 colon cancer cells.

    Science.gov (United States)

    Ramos, Sonia; Rodríguez-Ramiro, Ildefonso; Martín, María Angeles; Goya, Luis; Bravo, Laura

    2011-12-01

    Flavanols intake has been associated with reduced risk of cancer. In this study, the anticarcinogenic effects of the flavanols epicatechin (EC), epicatechin-gallate (ECG) and procyanidin B2 (PB2) on Caco-2 and SW480 colon cancer cells were investigated. Catechins showed different cytotoxicity depending on the cell line. ECG displayed strong growth inhibitory effects against SW480 cells, but was ineffective on Caco-2 cells. In contrast, PB2 did not affect Caco-2 cells, whereas promoted cell growth in SW480 cells and EC had no obvious effects on any cell line. Exposure of SW480 cells to ECG led to apoptosis as determined by caspase-3 activity, imbalance among Bcl-2 anti- and pro-apoptotic protein levels, ERK activation and AKT inhibition, whereas PB2 treatment enhanced phospho-AKT and phospho-ERK levels. Incubation of Caco-2 cells with ECG increased glutathione levels without affecting the expression of pro- and anti-apoptotic Bcl-2 proteins, AKT or ERK. The results suggest that the different cytotoxicity of flavanols is caused by their different activity and the degree of differentiation of the colon cancer cell line. Thus, ECG induced apoptosis in SW480 cells and contributed to the cytotoxic effect, whereas ECG enhanced the antioxidant potential in Caco-2 cells. PB2 activated cell proliferation and survival/proliferation pathways in SW480 cells.

  1. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes

    Directory of Open Access Journals (Sweden)

    Yu-Chen Liu

    2016-01-01

    Full Text Available The persistence infection of low-risk type (type 6 or type 11 of human papillomavirus (HPV is the main cause of genital warts. Given the high rate of recurrence after treatment, the use of a new molecular agent is certain to be of value. The aim of this study was to achieve targeted inactivation of viral E 7 gene in keratinocytes using the reprogrammed clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system. To accomplish this, a universal CRISPR-Cas9 system for targeting both HPV6/11 E 7 genes was constructed by using a dual guide RNA vector. After transfection of the vector into E 7-transfromed keratinocytes, the expression level of E 7 protein was measured using western-blot analysis and the sequence of the E 7 gene was determined using Sanger sequencing. Cell proliferation was analyzed by CCK-8 assay, and cell apoptosis was evaluated by Hoechst 33258 staining, flow cytometry analysis and ELISA assay. The results indicated that both HPV6/11 E 7 genes can be inactivated by the single CRISPR-Cas9 system. Furthermore, silencing of E 7 led to inhibition of cell proliferation and induction of apoptosis in E 7-transfromed keratinocytes but not in normal keratinocytes. Our data suggested that the reprogrammed CRISPR-Cas9 system has the potential for the development of an adjuvant therapy for genital warts.

  2. THE EFFECT OF ANTISENSE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) RNA ON THE PROLIFERATION OF HUMAN GLIOMA CELLS AND INDUCTION OF CELL APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    PU Pei-yu; LIU Xu-wen; LIU Ai-xue; WANG Chun-yan; WANG Guang-xiu

    1999-01-01

    Objective: To study the effect of antisense EGFR RNA on the growth of human glioma cells in vitro and evaluate the feasibility of targeting EGFR gene for gene therapy of gliomas. Methods: Southern and Northern blot analysis,in situ hybridization and immunohistochemical staining were used to detect the integration and expression of antisense EGFR constructs. MTT assay and the average number of AgNOR for evaluation of cell proliferation, and the TUNEL method and ultrastructural change for observation of cell apoptosis. Results: Exogenous antisense EGFR cDNA was integrated into the genome of glioma cells and highly expressed, which resulted in a dramatic decrease of endogenous EGFR mRNA and GEPR protein levels.Clones with high expression of the antisense construct showed a lower proliferation activity and the induction of apoptosis in vitro. Conclusion: This study suggests that EGFR plays an important role in the genesis of gliomas; it may be used as a target for antisense gene therapy of gliomas.

  3. MEG3, HCN3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways

    Science.gov (United States)

    Tang, Weitao; Dong, Kuiran; Li, Kai; Dong, Rui; Zheng, Shan

    2016-01-01

    The purpose of this study was to investigate the differential expression and functional roles of long non-coding RNAs (lncRNAs) in neuroblastoma tissue. LncRNA microarrays were used to identify differentially expressed lncRNAs between tumor and para-tumor tissues. In total, in tumor tissues, 3,098 and 1,704 lncRNAs were upregulated and downregulated, respectively. HCN3 and linc01105 exhibited the higher expression (P Noxa and Bid expression was positively correlated with cell apoptosis. Moreover, linc01105 knockdown promoted cell proliferation, whereas MEG3 overexpression inhibited proliferation. Finally, linc01105 knockdown, MEG3 overexpression and HCN3 knockdown all increased apoptosis. The correlation coefficients between those three lncRNAs and the International Neuroblastoma Staging System (INSS) stage were −0.48, −0.58 and −0.55, respectively. In conclusion, we have identified lncRNAs that are differentially expressed in neuroblastoma tissues. The lncRNAs HCN3, linc01105, and MEG3 may be important in biological behaviors of neuroblastoma through mechanisms involving p53 pathway members such as HIF-1α, Noxa, and Bid. The expressions of MEG3, HCN3 and linc01105 are all negatively correlated with the INSS stage. PMID:27824082

  4. Circadian clock gene Per2 plays an important role in cell proliferation, apoptosis and cell cycle progression in human oral squamous cell carcinoma.

    Science.gov (United States)

    Wang, Qingqing; Ao, Yiran; Yang, Kai; Tang, Hong; Chen, Dan

    2016-06-01

    Previous studies have shown that the aberrant expression of period circadian clock 2 (Per2) is closely related to the occurrence and development of cancers, but the specific mechanism remains unclear. In the present study, we used shRNA to downregulate Per2 in oral squamous cell carcinoma (OSCC) Tca8113 cells, and then detected the alterations in cell cycle, cell proliferation and apoptosis by flow cytometric analysis and mRNA expression alterations in all the important genes in the cyclin/cyclin-dependent protein kinase (CDK)/cyclin-dependent kinase inhibitor (CKI) cell cycle network by RT-qPCR. We found that in the Tca8113 cells, after Per2 downregulation, the mRNA expression levels of cyclin A2, B1 and D1, CDK4, CDK6 and E2F1 were significantly increased (Pcycle progression and the balance of cell proliferation and apoptosis by regulation of the cyclin/CDK/CKI cell cycle network. Further research on Per2 may provide a new effective molecular target for cancer treatments.

  5. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway.

    Science.gov (United States)

    Xavier, Cristina P R; Lima, Cristovao F; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2009-01-01

    Epidemiological studies have shown that nutrition is a key factor in modulating sporadic colorectal carcinoma (CRC) risk. Aromatic plants of the genus Salvia (sage) have been attributed many medicinal properties, which include anticancer activity. In the present study, the antiproliferative and proapoptotic effects of water extracts of Salvia fruticosa (SF) and Salvia officinalis (SO) and of their main phenolic compound rosmarinic acid (RA) were evaluated in two human colon carcinoma-derived cell lines, HCT15 and CO115, which have different mutations in the MAPK/ERK and PI3K/Akt signalling pathways. These pathways are commonly altered in CRC, leading to increased proliferation and inhibition of apoptosis. Our results show that SF, SO, and RA induce apoptosis in both cell lines, whereas cell proliferation was inhibited by the two sage extracts only in HCT15. SO, SF, and RA inhibited ERK phosphorylation in HCT15 and had no effects on Akt phosphorylation in CO115 cells. The activity of sage extracts seems to be due, at least in part, to the inhibition of MAPK/ERK pathway.

  6. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Michio [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Kiyoshi [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kuroda, Yusuke [Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511 (Japan); Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  7. Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line

    Directory of Open Access Journals (Sweden)

    Hesham Fahmy

    2011-12-01

    Full Text Available Sarcodiol (SD is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3 and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4. SD treatment also enhances cellular level of tumor suppressor protein 53 (p53 and stimulates cleavage of the nuclear poly (ADP-ribose polymerase (cleaved-PARP. SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B16F10 tumor cells.

  8. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    Science.gov (United States)

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells.

  9. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes.

    Science.gov (United States)

    Liu, Yu-Chen; Cai, Zhi-Ming; Zhang, Xue-Jun

    2016-01-01

    The persistence infection of low-risk type (type 6 or type 11) of human papillomavirus (HPV) is the main cause of genital warts. Given the high rate of recurrence after treatment, the use of a new molecular agent is certain to be of value. The aim of this study was to achieve targeted inactivation of viral E 7 gene in keratinocytes using the reprogrammed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system. To accomplish this, a universal CRISPR-Cas9 system for targeting both HPV6/11 E 7 genes was constructed by using a dual guide RNA vector. After transfection of the vector into E 7-transformed keratinocytes, the expression level of E 7 protein was measured using western-blot analysis and the sequence of the E 7 gene was determined using Sanger sequencing. Cell proliferation was analyzed by CCK-8 assay, and cell apoptosis was evaluated by Hoechst 33258 staining, flow cytometry analysis and ELISA assay. The results indicated that both HPV6/11 E 7 genes can be inactivated by the single CRISPR-Cas9 system. Furthermore, silencing of E 7 led to inhibition of cell proliferation and induction of apoptosis in E 7-transformed keratinocytes but not in normal keratinocytes. Our data suggested that the reprogrammed CRISPR-Cas9 system has the potential for the development of an adjuvant therapy for genital warts.

  10. Importin β1 mediates nuclear factor-κB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis.

    Science.gov (United States)

    Yan, Wenqing; Li, Rong; He, Jie; Du, Juan; Hou, Jian

    2015-04-01

    Multiple myeloma (MM) is a plasma cell neoplasm that is currently incurable. The activation of nuclear factor-κB (NF-κB) signalling plays a crucial role in the immortalisation of MM cells. As the most important transcription factor of the canonical NF-κB pathway, the p50/p65 heterodimer requires transportation into the nucleus for its successful signal transduction. Importin β1 is the key transport receptor that mediates p50/p65 nuclear import. Currently, it remains unclear whether the regulation of importin β1 function affects the biological behaviour of MM cells. In the present study, we investigated the changes in p65 translocation and the proliferation and apoptosis of MM cells after treatment with small interfering RNA (siRNA) or an importin β1 inhibitor. The underlying mechanisms were also investigated. We found importin β1 over-expression and the excessive nuclear transport of p65 in myeloma cells. Confocal laser scanning microscopy and Western blot analysis results indicated that p65 nuclear transport was blocked after inhibiting importin β1 expression with siRNA and the importin β1-specific inhibitor importazole (IPZ). Importantly, electronic mobility shift assay results also verified that p65 nuclear transport was dramatically reduced. Moreover, the expression of the NF-κB signalling target genes involved in MM cell apoptosis, such as BCL-2, c-IAP1 and XIAP, were markedly reduced, as demonstrated by the RT-PCR results. Furthermore, the proliferation of MM cells was inhibited, as demonstrated by MTT assay results, and the MM cell apoptosis rate was higher, as demonstrated by the annexin V/propidium iodide (PI) double-staining assay results. Additionally, the percentage of S phase cells in the myeloma cell lines treated with IPZ was dramatically reduced. In conclusion, our results clearly show that importin β1 mediates the translocation of NF-κB into the nuclei of myeloma cells, thereby regulating proliferation and blocking apoptosis, which

  11. Effects of anti-CXCR4 monoclonal antibody 12G5 on proliferation and apoptosis of human acute myelocytic leukemia cell line HL-60

    Institute of Scientific and Technical Information of China (English)

    WEI Li; KONG Pei-yan; SHI Zhan-zhong; ZENG Dong-feng; CHEN Xing-hua; CHANG Cheng; PENG Xian-gui; ZHANG Yi; LIU Hong

    2007-01-01

    Objective: To investigate the expression of CXCR4 on HL-60 cell line and the proliferation,apoptosis of HL-60 cell line cocultured with bone marrow stromal cells, so as to assess the possibility of 12G5, an anti-CXCR4 monoclonal antibody, in eradicating the minimal residual disease. Methods: The activity of SDF-1 was inhibited by 10 μg/ml 12G5. After treatment with 12G5, the status of adhesion was observed, and the adhesion rates, apoptosis and cell cycles were detected after 24 h of treatment. Cell growth rates were measured by trypan blue exclusion. Cell growth curve was plotted, and the expression of PCNA and apoptosis related protein including PCNA, Bcl-2 and Fas were detected with immunohistochemical technique. Results: (1) There was middling degree expression of CXCR4 on HL-60 membrane. From 0 h to 6 h, as the time of 12G5 incubation along, the expression of CXCR4 decreased gradually. (2)After treatment for 24 h, the adhesion rates in the experiment group and the control were (39.4±7.9)%and (51.4±5.9)%, respectively. (3)After treatment for 24 h, the percentage of HL-60 cells in G0/G1 phase were (55.21±4.9)%, and that in S phase and G2/M phase were (30.40±4.1)% and (14.39±5.2)%, respectively, with the corresponding proportions being (44.67±2.2)%, (45.30±3.7)%, and (10.03±2.6)% in the control. (4) The percentage of apoptotic HL-60 cells was (8.95±1.7)% in the experiment group, compared to (3.97±2.4)% in the control. (5)The survival rates of HL-60 cells decreased markedly at 48 h to 96 h, and the proliferation slowed down at this time duration. (6)The expression of PCNA and Bcl-2 down-regulated significantly, but the Fas protein expression was up-regulated. Conclusion: 12G5 could inhibit the capability of adhesion and proliferation of HL-60 cells and it can induce more cells to enter G0/G1 phase and promote apoptosis. It may be helpful by inhibiting the bioactivity of SDF-1 with 12G5 in the therapy of marrow residual disease.

  12. Transcription factor p53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulosa cell cultured with and without ghrelin and FSH.

    Science.gov (United States)

    Sirotkin, A V; Benco, A; Tandlmajerova, A; Vasícek, D; Kotwica, J; Darlak, K; Valenzuela, F

    2008-11-01

    The aim of our in vitro experiments was to examine the role of transcription factor p53 in controlling the basic functions of ovarian cells and their response to hormonal treatments. Porcine ovarian granulosa cells, transfected and non-transfected with a gene construct encoding p53, were cultured with ghrelin and FSH (all at concentrations of 0, 1, 10, or 100 ng/ml). Accumulation of p53, of apoptosis-related (MAP3K5) and proliferation-related (cyclin B1) substances was evaluated by immunocytochemistry. The secretion of progesterone (P(4)), oxytocin (OT), prostaglandin F (PGF), and E (PGE) was measured by RIA. Transfection with the p53 gene construct promoted accumulation of this transcription factor within cells. It also stimulated the expression of a marker of apoptosis (MAP3K5). Over-expression of p53 resulted in reduced accumulation of a marker of proliferation (cyclin B1), P(4), and PGF secretion and increased OT and PGE secretion. Ghrelin, when added alone, did not affect p53 or P(4), but reduced MAP3K5 and increased PGF and PGE secretion. Over-expression of p53 reversed the effect of ghrelin on OT, caused it to be inhibitory to P(4) secretion, but did not modify its action on MAP3K5, PGF, or PGE. FSH promoted the accumulation of p53, MAP3K5, and cyclin B1; these effects were unaffected by p53 transfection. These multiple effects of the p53 gene construct on luteinizing granulosa cells, cultured with and without hormones 1) demonstrate the effects of ghrelin and FSH on porcine ovarian cell apoptosis and secretory activity, 2) confirm the involvement of p53 in promoting apoptosis and inhibiting P(4) secretion in these cells, 3) provide the first evidence that p53 suppress proliferation of ovarian cells, 4) provide the first evidence that p53 is involved in the control of ovarian peptide hormone (OT) and prostaglandin (PGF and PGE) secretion, and 5) suggest that p53 can modulate, but probably not mediate, the effects of ghrelin and FSH on the ovary.

  13. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells

    Institute of Scientific and Technical Information of China (English)

    Qin FU; Chen HE; Zheng-rong MAO

    2013-01-01

    Epstein-Barr virus (EBV),a human gammaherpesvirus carried by more than 90% of the world's population,is associated with malignant tumors such as Burkitt's lymphoma (BL),Hodgkin lymphoma,post-transplant lymphoma,extra-nodal natural killer/T cell lymphoma,and nasopharyngeal and gastric carcinomas in immune-compromised patients.In the process of infection,EBV faces challenges:the host cell environment is harsh,and the survival and apoptosis of host cells are precisely regulated.Only when host cells receive sufficient survival signals may they immortalize.To establish efficiently a lytic or long-term latent infection,EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways.This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors,which decide the fate of the host cell.The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown.Still,EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host.We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.

  14. Ginsenoside Rh2 inhibits proliferation and induces apoptosis in human leukemia cells via TNF-α signaling pathway.

    Science.gov (United States)

    Huang, Jingjia; Peng, Kunjian; Wang, Linghao; Wen, Bin; Zhou, Lin; Luo, Tiao; Su, Min; Li, Jijia; Luo, Zhiyong

    2016-08-01

    Ginsenoside Rh2, a triterpene saponin extracted from Panax ginseng, exhibits pharmacological activity against multiple cancers. However, the anticancer mechanism of ginsenoside Rh2 is unclear. In this study, we found that ginsenoside Rh2 effectively inhibits growth and induces apoptosis of HL-60 cells. Using microarray technology, we found that tumor necrosis factor-α (TNF-α) is clearly up-regulated. Furthermore, anti-TNF-α antibody relieved the Rh2-induced HL-60 cell apoptosis via suppression of caspase-8, caspase-9, and caspase-3 activation. In addition, TNF-α up-regulation was also observed in other Rh2-treated cancer cell lines. These results demonstrate that TNF-α plays a key role in ginsenoside Rh2-induced cell apoptosis.

  15. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano.

    Science.gov (United States)

    Tu, Lv-Ying; Bai, Hai-Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-11-01

    Kaempferol has been identified as a potential cancer therapeutic agent by an increasing amount of evidences. However, the changes in the topography of cell membrane induced by kaempferol at subcellular- or nanometer-level were still unclear. In this work, the topographical changes of cytomembrane in human cervical cancer cell (SiHa) induced by kaempferol, as well as the role of kaempferol in apoptosis induction and its possible mechanisms, were investigated. At the macro level, MTT assays showed that kaempferol inhibited the proliferation of SiHa cells in a time- and dose-dependent manner. Flow cytometry analysis demonstrated that kaempferol could induce SiHa cell apoptosis, mitochondrial membrane potential disruption, and intracellular free calcium elevation. At the micro level, fluorescence imaging by laser scanning confocal microscopy (LSCM) indicated that kaempferol could also destroy the networks of microtubules. Using high resolution atomic force microscopy (AFM), we determined the precise changes of cellular membrane induced by kaempferol at subcellular or nanometer level. The spindle-shaped SiHa cells shrank after kaempferol treatment, with significantly increased cell surface roughness. These data showed structural characterizations of cellular topography in kaempferol-induced SiHa cell apoptosis and might provide novel integrated information from macro to nano level to assess the impact of kaempferol on cancer cells, which might be important for the understanding of the anti-cancer mechanisms of drugs. SCANNING 38:644-653, 2016. © 2016 Wiley Periodicals, Inc.

  16. Butanol-Partitioned Extraction from Aqueous Extract of Gracilaria tenuistipitata Inhibits Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress.

    Science.gov (United States)

    Yeh, Chi-Chen; Li, Kun-Tzu; Tang, Jen-Yang; Wang, Hui-Ru; Liu, Jing-Ru; Huang, Hurng-Wern; Chang, Fang-Rong; Tsai, Cheng-En; Lo, I-Wen; Huang, Ming-Yii; Chang, Hsueh-Wei

    2016-05-01

    We have previously found that the aqueous extract of Gracilaria tenuistipitata (AEGT) and its partitioned fractions had antioxidant properties in biochemical assays. Although the butanol-partitioned fraction of AEGT (AEGT-pBuOH) had a stronger antioxidant performance than AEGT, its biological effects are still unknown. In this study, the cellular responses of oral cancer cells to AEGT-pBuOH were monitored in terms of cell viability, cell cycle progression, apoptosis, and oxidative stress responses. In an ATP content assay, the cell viability of oral cancer cells treated with AEGT-pBuOH was dose responsively inhibited (p < 0.005). For flow cytometry, AEGT-pBuOH was also found to dose responsively induce cell cycle disturbance by propidium iodide (PI) staining and to induce apoptosis by annexin V/PI and pan-caspase staining (p < 0.005). In AEGT-pBuOH-treated oral cancer cells, the reactive oxygen species (ROS) was increased and mitochondrial membrane potential was decreased in a dose-response manner (p < 0.005). These results suggest that AEGT-pBuOH inhibited the proliferation and induced apoptosis of oral cancer cells involving the ROS generation and mitochondrial depolarization.

  17. Oxindole alkaloids from Uncaria tomentosa induce apoptosis in proliferating, G0/G1-arrested and bcl-2-expressing acute lymphoblastic leukaemia cells.

    Science.gov (United States)

    Bacher, Nicole; Tiefenthaler, Martin; Sturm, Sonja; Stuppner, Hermann; Ausserlechner, Michael J; Kofler, Reinhard; Konwalinka, Günther

    2006-03-01

    Natural products are still an untapped source of promising lead compounds for the generation of antineoplastic drugs. Here, we investigated for the first time the antiproliferative and apoptotic effects of highly purified oxindole alkaloids, namely isopteropodine (A1), pteropodine (A2), isomitraphylline (A3), uncarine F (A4) and mitraphylline (A5) obtained from Uncaria tomentosa, a South American Rubiaceae, on human lymphoblastic leukaemia T cells (CCRF-CEM-C7H2). Four of the five tested alkaloids inhibited proliferation of acute lymphoblastic leukaemia cells. Furthermore, the antiproliferative effect of the most potent alkaloids pteropodine (A2) and uncarine F (A4) correlated with induction of apoptosis. After 48 h, 100 micromol/l A2 or A4 increased apoptotic cells by 57%. CEM-C7H2 sublines with tetracycline-regulated expression of bcl-2, p16ink4A or constitutively expressing the cowpox virus protein crm-A were used for further studies of the apoptosis-inducing properties of these alkaloids. Neither overexpression of bcl-2 or crm-A nor cell-cycle arrest in G0/G1 phase by tetracycline-regulated expression of p16INK4A could prevent alkaloid-induced apoptosis. Our results show the strong apoptotic effects of pteropodine and uncarine F on acute leukaemic lymphoblasts and recommend the alkaloids for further studies in xenograft models.

  18. Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jesus Adrian [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico); Alvarez-Salas, Luis Marat, E-mail: lalvarez@cinvestav.mx [Laboratorio de Terapia Genica, Departamento de Genetica y Biologia Molecular, CINVESTAV, Av. IPN 2508, Mexico 07360 D.F. (Mexico)

    2011-06-10

    Highlights: {yields} In this study we examine miR-34c-3p and miR-34c-5p functions in SiHa cells. {yields} We study miRNA effect on cell proliferation, anchorage independent growth, apoptosis, cell motility and invasion. {yields} We find that miR-34c-3p and miR-34c-5p inhibition of proliferation and anchorage independent growth are exclusive to SiHa cells. {yields} miR-34c-3p induces apoptosis and inhibits cell motility and invasion in SiHa cells. {yields} In this study we conclude that miR-34c-3p functions as a tumor suppressor differ from miR-34c-5p. -- Abstract: MicroRNAs (miRNA) regulate expression of several genes associated with human cancer. Here, we analyzed the function of miR-34c, an effector of p53, in cervical carcinoma cells. Expression of either miR-34c-3p or miR-34c-5p mimics caused inhibition of cell proliferation in the HPV-containing SiHa cells but not in other cervical cells irrespective of tumorigenicity and HPV content. These results suggest that SiHa cells may lack of regulatory mechanisms for miR-34c. Monolayer proliferation results showed that miR-34c-3p produced a more pronounced inhibitory effect although both miRNAs caused inhibition of anchorage independent growth at similar extent. However, ectopic expression of pre-miR-34c-3p, but not pre-miR-34c-5p, caused S-phase arrest in SiHa cells triggering a strong dose-dependent apoptosis. A significant inhibition was observed only for miR-34c-3p on SiHa cells migration and invasion, therefore implying alternative regulatory pathways and targets. These results suggest differential tumor suppressor roles for miR-34c-3p and miR-34c-5p and provide new insights in the understanding of miRNA biology.

  19. MicroRNA-148b enhances proliferation and apoptosis in human renal cancer cells via directly targeting MAP3K9.

    Science.gov (United States)

    Nie, Fang; Liu, Tianming; Zhong, Liang; Yang, Xianggui; Liu, Yunhong; Xia, Hongwei; Liu, Xiaoqiang; Wang, Xiaoyan; Liu, Zhicheng; Zhou, Li; Mao, Zhaomin; Zhou, Qin; Chen, Tingmei

    2016-01-01

    Increasing evidence revealed that miRNAs, the vital regulators of gene expression, are involved in various cellular processes, including cell growth, differentiation, apoptosis and progression. In addition, miRNAs act as oncogenes and/or tumor suppressors. The present study aimed to verify the potential roles of miR148b in human renal cancer cells. miR‑148b was found to be downregulated in human renal cancel tissues and human renal cancer cell lines. Functional studies demonstrated that plasmid‑mediated overexpression of miR‑148b promoted cell proliferation, increased the S‑phase population of the cell cycle and enhanced apoptosis in the 786‑O and OS‑RC‑2 renal cancer cell lines, while it did not appear to affect the total number of viable cells according to a Cell Counting Kit‑8 assay. Subsequently, a luciferase reporter assay verified that miR148b directly targeted mitogen‑activated protein kinase (MAPK) kinase kinase 9 (MAP3K9), an upstream activator of MAPK kinase/c‑Jun N‑terminal kinase (JNK) signaling, suppressing the protein but not the mRNA levels. Furthermore, western blot analysis indicated that overexpression of miR148b in renal cancer cells inhibited MAPK/JNK signaling by decreasing the expression of phosphorylated (p)JNK. In addition, overexpression of MAP3K9 and pJNK was detected in clinical renal cell carcinoma specimens compared with that in their normal adjacent tissues. The present study therefore suggested that miR‑148b exerts an oncogenic function by enhancing the proliferation and apoptosis of renal cancer cells by inhibiting the MAPK/JNK pathway.

  20. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

    Science.gov (United States)

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3(+) and BrdU(+) subgranular cells as well as GFAP(+), Iba1(+) and cleaved caspase-3(+) cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3(+), GFAP(+) and 3-weeks-old BrdU(+) cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context.

  1. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis.

    Science.gov (United States)

    Xiao, Dong; Srivastava, Sanjay K; Lew, Karen L; Zeng, Yan; Hershberger, Pamela; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2003-05-01

    Dietary isothiocyanates (ITCs) are highly effective in affording protection against chemically induced cancers in laboratory animals. In the present study, we demonstrate that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits proliferation of cultured PC-3 (androgen-independent) and LNCaP (androgen-dependent) human prostate cancer cells in a dose-dependent manner with an IC(50) of approximately 15-17 micro M. On the other hand, survival of a normal prostate epithelial cell line (PrEC) was minimally affected by AITC even at concentrations that were highly cytotoxic to the prostate cancer cells. Reduced proliferation of PC-3 as well as LNCaP cells in the presence of AITC correlated with accumulation of cells in G(2)/M phase and induction of apoptosis. In contrast, AITC treatment failed to induce apoptosis or cause G(2)/M phase arrest in PrEC cells. A 24 h treatment of PC-3 and LNCaP cells with 20 micro M AITC caused a significant decrease in the levels of proteins that regulate G(2)/M progression, including Cdk1 (32-50% reduction), Cdc25B (44-48% reduction) and Cdc25C (>90% reduction). A significant reduction in the expression of cyclin B1 protein (approximately 45%) was observed only in LNCaP cells. A 24 h exposure of PC-3 and LNCaP cells to an apoptosis-inducing concentration of AITC (20 micro M) resulted in a significant decrease (31-68%) in the levels of anti-apoptotic protein Bcl-2 in both cell lines, and approximately 58% reduction in Bcl-X(L) protein expression in LNCaP cells. In conclusion, it seems reasonable to hypothesize that AITC, and possibly other ITCs, may find use in the treatment of human prostate cancers.

  2. Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration.

    Science.gov (United States)

    Wang, Weilan; Chen, Kaixu; Liu, Qing; Johnston, Nathan; Ma, Zhenghai; Zhang, Fuchun; Zheng, Xiufen

    2014-01-01

    Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment.

  3. Curcuminoid binding to embryonal carcinoma cells: reductive metabolism, induction of apoptosis, senescence, and inhibition of cell proliferation.

    Directory of Open Access Journals (Sweden)

    Wolfgang W Quitschke

    Full Text Available Curcumin preparations typically contain a mixture of polyphenols, collectively referred to as curcuminoids. In addition to the primary component curcumin, they also contain smaller amounts of the co-extracted derivatives demethoxycurcumin and bisdemethoxycurcumin. Curcuminoids can be differentially solubilized in serum, which allows for the systematic analysis of concentration-dependent cellular binding, biological effects, and metabolism. Technical grade curcumin was solubilized in fetal calf serum by two alternative methods yielding saturated preparations containing either predominantly curcumin (60% or bisdemethoxycurcumin (55%. Continual exposure of NT2/D1 cells for 4-6 days to either preparation in cell culture media reduced cell division (1-5 µM, induced senescence (6-7 µM or comprehensive cell death (8-10 µM in a concentration-dependent manner. Some of these effects could also be elicited in cells transiently exposed to higher concentrations of curcuminoids (47 µM for 0.5-4 h. Curcuminoids induced apoptosis by generalized activation of caspases but without nucleosomal fragmentation. The equilibrium binding of serum-solubilized curcuminoids to NT2/D1 cells incubated with increasing amounts of curcuminoid-saturated serum occurred with apparent overall dissociation constants in the 6-10 µM range. However, the presence of excess free serum decreased cellular binding in a hyperbolic manner. Cellular binding was overwhelmingly associated with membrane fractions and bound curcuminoids were metabolized in NT2/D1 cells via a previously unidentified reduction pathway. Both the binding affinities for curcuminoids and their reductive metabolic pathways varied in other cell lines. These results suggest that curcuminoids interact with cellular binding sites, thereby activating signal transduction pathways that initiate a variety of biological responses. The dose-dependent effects of these responses further imply that distinct cellular pathways are

  4. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  5. Proliferation inhibition, cell cycle arrest and apoptosis induced in HL-60 cells by a natural diterpene ester from Daphne mucronata

    Science.gov (United States)

    Nouri, K.; Yazdanparast, R.

    2011-01-01

    Background and the purpose of the study Gnidilatimonoein (Gn), a new diterpene ester from Daphne mucronata, possesses strong anti-metastasis and anti-tumor activities. In this study, its apoptosis and differentiation capabilities were evaluated by using the leukemia HL-60 cell line. Material and methods Cell prolifaration inhibition was estimated by MTT assay. The occurrence of apoptosis was evaluated by EtBr/AO double staining technique, cell cycle analyses and detection of apoptotic cells by Annexin V-FITC and propodium iodide (PI). Differentiation of the cells was determined by NBT reduction assay and the expression of specific cell surface markers such as CD14 and CD11b, were analyzed by flow cytometry. Results The drug decreased the growth of the cells dose- and time-dependently and the IC50 was found to be 1.3 µM. Our data suggested that Gn induced both monocytic differentiation and apoptosis among HL-60 cells. In addition, cell cycle analyses showed an increase in G1 phase population by 24 hrs, which was gradually replaced by Sub-G1 cell population (apoptotic cells) by 72 hrs. Conclusion Based on these data, the Gn-treated HL-60 cells displayed differentiation-dependent apoptosis. Thus, Gn might be a good candidate for differentiation therapy of leukemia, pending full biological evaluation of the compound among the wide array of leukemia cells. PMID:22615651

  6. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Wu, Wen-Jeng [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Huang, Huei-Sheng, E-mail: huanghs@mail.ncku.edu.tw [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-15

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21{sup WAF1/CIP1}) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF

  7. TSA suppresses miR-106b-93-25 cluster expression through downregulation of MYC and inhibits proliferation and induces apoptosis in human EMC.

    Science.gov (United States)

    Zhao, Zhi-Ning; Bai, Jiu-Xu; Zhou, Qiang; Yan, Bo; Qin, Wei-Wei; Jia, Lin-Tao; Meng, Yan-Ling; Jin, Bo-Quan; Yao, Li-Bo; Wang, Tao; Yang, An-Gang

    2012-01-01

    Histone deacetylase (HDAC) inhibitors are emerging as a novel class of anti-tumor agents and have manifested the ability to decrease proliferation and increase apoptosis in different cancer cells. A significant number of genes have been identified as potential effectors responsible for the anti-tumor function of HDAC inhibitor. However, the molecular mechanisms of these HDAC inhibitors in this process remain largely undefined. In the current study, we searched for microRNAs (miRs) that were affected by HDAC inhibitor trichostatin (TSA) and investigated their effects in endometrial cancer (EMC) cells. Our data showed that TSA significantly inhibited the growth of EMC cells and induced their apoptosis. Among the miRNAs that altered in the presence of TSA, the miR-106b-93-25 cluster, together with its host gene MCM7, were obviously down-regulated in EMC cells. p21 and BIM, which were identified as target genes of miR-106b-93-25 cluster, increased in TSA treated tumor cells and were responsible for cell cycle arrest and apoptosis. We further identified MYC as a regulator of miR-106b-93-25 cluster and demonstrated its down-regulation in the presence of TSA resulted in the reduction of miR-106b-93-25 cluster and up-regulation of p21 and BIM. More important, we found miR-106b-93-25 cluster was up-regulated in clinical EMC samples in association with the overexpression of MCM7 and MYC and the down-regulation of p21 and BIM. Thus our studies strongly indicated TSA inhibited EMC cell growth and induced cell apoptosis and cell cycle arrest at least partially through the down-regulation of the miR-106b-93-25 cluster and up-regulation of it's target genes p21 and BIM via MYC.

  8. Clinical significance of proliferation, apoptosis and senescence of nasopharyngeal cells by the simultaneously blocking EGF, IGF-1 receptors and Bcl-xl genes

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Guodong [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Peng, Tao; Zhou, Xuhong [Department of Otolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhu, Jun; Kong, Zhihua; Ma, Li; Xiong, Zhi [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China); Yuan, Yulin, E-mail: yuanyulin19620120@126.com [Anatomy and Embryology, Wuhan University School of Medicine, Wuhan, Hubei 430071 (China)

    2013-11-01

    Highlight: •Construction of shRNA segments expression vectors is valid by the investigation of RT-PCR for IGF1R, EGFR and Bcl-xl mRNA and protein expression. •Studies have suggested that the vectors in blocking these genes of the growth factor receptors and anti- apoptosis is capable of breaking the balance of tumor growth so that tumor trend apoptosis and senescence. •Simultaneously blocking multiple genes that are abnormally expressed may be more effective in treating cancer cells than silencing a single gene. -- Abstract: Background: In previous work, we constructed short hairpin RNA (shRNA) expression plasmids that targeted human EGF and IGF-1 receptors messenger RNA, respectively, and demonstrated that these vectors could induce apoptosis of human nasopharyngeal cell lines (CNE2) and inhibit ligand-induced pAkt and pErk activation. Method: We have constructed multiple shRNA expression vectors of targeting EGFR, IGF1R and Bcl-xl, which were transfected to the CNE2 cells. The mRNA expression was assessed by RT-PCR. The growth of the cells, cell cycle progression, apoptosis of the cells, senescent tumor cells and the proteins of EGFR, IGF1R and Bcl-xl were analyzed by MTT, flow cytometry, cytochemical therapy or Western blot. Results: In group of simultaneously blocking EGFR, IGF1R and Bcl-xl genes, the mRNA of EGFR, IGF1R and Bcl-xl expression was decreased by (66.66 ± 3.42)%, (73.97 ± 2.83)% and (64.79 ± 2.83)%, and the protein expressions was diminished to (67.69 ± 4.02)%, (74.32 ± 2.30)%, and (60.00 ± 3.34)%, respectively. Meanwhile, the cell apoptosis increased by 65.32 ± 0.18%, 65.16 ± 0.25% and 55.47 ± 0.45%, and senescent cells increased by 1.42 ± 0.15%, 2.26 ± 0.15% and 3.22 ± 0.15% in the second, third and fourth day cultures, respectively. Conclusions: Simultaneously blocking EGFR, IGF1R and Bcl-xl genes is capable of altering the balance between proliferating versus apoptotic and senescent cells in the favor of both of apoptosis and

  9. Expression of lysophosphatidic acid receptor 1 and relation with cell proliferation, apoptosis, and angiogenesis on preneoplastic changes induced by cadmium chloride in the rat ventral prostate.

    Directory of Open Access Journals (Sweden)

    Riánsares Arriazu

    Full Text Available BACKGROUND: Lysophosphatidic acid (LPA is a phospholipid growth factor involved in cell proliferation, differentiation, migration, inflammation, angiogenesis, wound healing, cancer invasion, and survival. This study was directed to evaluate the immunoexpression of LPA-1, cell proliferation, apoptosis, and angiogenesis markers in preneoplastic lesions induced with cadmium chloride in rat prostate. METHODS: The following parameters were calculated in ventral prostate of normal rats and rats that received Cd in drinking water during 24 months: percentages of cells immunoreactive to LPA-1 (LILPA1, PCNA (LIPCNA, MCM7 (LIMCM7, ubiquitin (LIUBI, apoptotic cells (LIAPO, and p53 (LIp53; volume fraction of Bcl-2 (VFBcl-2; and length of microvessels per unit of volume (LVMV/mm3. Data were analyzed using Student's t-test and Pearson correlation test. RESULTS: The LILPA1 in dysplastic lesions and normal epithelium of Cd-treated rats was significantly higher than those in the control group. Markers of proliferation were significantly increased in dysplastic lesions, whereas some apoptotic markers were significantly decreased. No significant differences between groups were found in VFBcl-2. Dysplastic lesions showed a significant increase of LIp53. The length of microvessels per unit of volume was elevated in dysplastic acini. Statistically significant correlations were found only between LILPA1 and LIUBI. CONCLUSIONS: Our results suggest that LPA-1 might be implicated in dysplastic lesions induced by cadmium chloride development. More studies are needed to confirm its potential contribution to the disease.

  10. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Zou, Lihui [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Xiao, Fei [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Wang, Chen, E-mail: chenwangcjfh@163.com [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China)

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  11. CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Johnson Erica L

    2010-06-01

    Full Text Available Abstract Background Cisplatin is more often used to treat ovarian cancer (OvCa, which provides modest survival advantage primarily due to chemo-resistance and up regulated anti-apoptotic machineries in OvCa cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in OvCa cell may improve therapeutic outcomes. We have shown that ovarian cancer cells express CC chemokine receptor-9 (CCR9. Others have also shown that CCL25, the only natural ligand for CCR9, up regulates anti-apoptotic proteins in immature T lymphocytes. Hence, it is plausible that CCR9-mediated cell signals might be involved in OvCa cell survival and inhibition of cisplatin-induced apoptosis. In this study, we investigated the potential role and molecular mechanisms of CCR9-mediated inhibition of cisplatin-induced apoptosis in OvCa cells. Methods Cell proliferation, vibrant apoptosis, and TUNEL assays were performed with or without cisplatin treatment in presence or absence of CCL25 to determine the role of the CCR9-CCL25 axis in cisplatin resistance. In situ Fast Activated cell-based ELISA (FACE assays were performed to determine anti-apoptotic signaling molecules responsible for CCL25-CCR9 mediated survival. Results Our results show interactions between CCR9 and CCL25 increased anti-apoptotic signaling cascades in OvCa cells, which rescued cells from cisplatin-induced cell death. Specifically, CCL25-CCR9 interactions mediated Akt, activation as well as GSK-3β and FKHR phosphorylation in a PI3K-dependent and FAK-independent fashion. Conclusions Our results suggest the CCR9-CCL25 axis plays an important role in reducing cisplatin-induced apoptosis of OvCa cells.

  12. Sodium orthovanadate associated with pharmacological doses of ascorbate causes an increased generation of ROS in tumor cells that inhibits proliferation and triggers apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Günther, T-hat nia Mara Fischer; Kviecinski, Maicon Roberto; Baron, Carla Cristine; Felipe, Karina Bettega; Farias, Mirelle Sifroni; Ourique da Silva, Fabiana; Bücker, Nádia Cristina Falcão [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Pich, Claus Tröger [Campus de Araranguá, Universidade Federal de Santa Catarina, Araranguá (Brazil); Ferreira, Eduardo Antonio [Universidade de Brasília, Faculdade de Ceilândia, DF (Brazil); Filho, Danilo Wilhelm [Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Verrax, Julien; Calderon, Pedro Buc [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium); Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil)

    2013-01-18

    Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na{sub 3}VO{sub 4}) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na{sub 3}VO{sub 4} was cytotoxic against T24 cells (EC{sub 50} = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC{sub 50} fell to 3.3 μM. Na{sub 3}VO{sub 4} plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na{sub 3}VO{sub 4} did not directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na{sub 3}VO{sub 4} and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na{sub 3}VO{sub 4} alone, or combined with ascorbate, increased catalase activity, but only Na{sub 3}VO{sub 4} plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na{sub 3}VO{sub 4} plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na{sub 3}VO{sub 4}. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na{sub 3}VO{sub 4} in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.

  13. Combined Effects of 50 Hz Magnetic Field and Magnetic Nanoparticles on the Proliferation and Apoptosis of PC12 Cells

    Institute of Scientific and Technical Information of China (English)

    JIA Hong Li; WANG Chao; LI Yue; LU Yan; WANG Ping Ping; PAN Wei Dong; SONG Tao

    2014-01-01

    ObjectiveTo investigate the bioeffects of extremely low frequency (ELF) magnetic field (MF) (50 Hz, 400μT) and magnetic nanoparticles (MNPs) via cytotoxicity and apoptosis assays on PC12 cells. MethodsMNPs modified by SiO2 (MNP-SiO2) were characterized by transmission electron microscopy (TEM), dynamic light scattering and hysteresis loop measurement.PC12 cells were administrated with MNP-SiO2 with or without MF exposure for 48 h. Cytotoxicity and apoptosis were evaluated with MTT assay and annexin V-FITC/PI staining, respectively. The morphology and uptake of MNP-SiO2 were determined by TEM. MF simulation was performed by Ansoft Maxwell based on the finite element method. ResultsMNP-SiO2 were identified as~20nm (diameter) ferromagnetic particles. MNP-SiO2reduced cell viability in a dose-dependent manner. MF also reduced cell viability with increasing concentrations of MNP-SiO2. MNP-SiO2 alone did not cause apoptosis in PC12 cells; instead, the proportion of apoptotic cells increased significantly under MF exposure and increasing doses of MNP-SiO2. MNP-SiO2 could be ingested andthen cause a slight change in cellmorphology. ConclusionCombined exposure of MF and MNP-SiO2 resulted in remarkable cytotoxicity and increased apoptosis in PC12 cells. The results suggested that MF exposure couldstrengthen the MF of MNPs, which may enhance the bioeffects of ELF MF.

  14. Effects of Thymus serpyllum extract on cell proliferation, apoptosis and epigenetic events in human breast cancer cells.

    Science.gov (United States)

    Bozkurt, Emir; Atmaca, Harika; Kisim, Asli; Uzunoglu, Selim; Uslu, Ruchan; Karaca, Burcak

    2012-01-01

    Thymus (T.) serpyllum (wild thyme) is an aromatic medicinal plant due to its several biological properties, including anticancer activity. Breast cancer is one of the most common malignancies and increasing evidence supports that it is not only a genetic but also an epigenetic disease. Epigenetics investigates changes in gene expression caused by mechanisms that do not involve alterations in DNA sequence. DNA methylation and histone acetylation are the most widely studied epigenetic changes in cancer cells. This study evaluated the effects of T. serpyllum on apoptosis and epigenetic events in breast cancer cells. XTT cell viability assay was used to determine cytotoxicity. DNA fragmentation and caspase 3/7 activity assays were used in the assesment of apoptosis. DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities were evaluated by ELISA and verified by qRT-PCR. T. serpyllum extract induced significant cytotoxicity in breast cancer cells (MCF-7 and MDA-MB-231) but not in normal cells. It also induced apoptosis and inhibited the DNMT and HDAC activities in MDA-MB-231 cells. In the present study, the first preliminary data on the effects of the methanolic extract of T. serpyllum in normal and breast cancer cells were obtained and suggest that T. serpyllum may be a promising candidate in the development of novel therapeutic drugs for breast cancer treatment.

  15. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells.

    Science.gov (United States)

    Ren, Kewei; Zhang, Wenzhe; Wu, Gang; Ren, Jianzhuang; Lu, Huibin; Li, Zongming; Han, Xinwei

    2016-12-01

    Galangin is an active pharmacological ingredient from propolis and Alpinia officinarum Hance, and has been reported to have anti-cancer and antioxidative properties. Berberine, a major component of Berberis vulgaris extract, exhibits potent anti-cancer activities through distinct molecular mechanisms. However, the anticancer effect of galangin in combination with berberine is still unknown. In the present study, we demonstrated that the combination of galangin with berberine synergistically resulted in cell growth inhibition, apoptosis and cell cycle arrest at G2/M phase with the increased intracellular reactive oxygen species (ROS) levels in oesophageal carcinoma cells. Pretreatment with ROS scavenger promoted the apoptosis dramatically induced by co-treatment with galangin and berberine. Treatment with galangin and berberine alone caused the decreased expressions of Wnt3a and β-catenin. Interestingly, combination of galangin with berberine could further suppress Wnt3a and β-catenin expression and induce apoptosis in cancer cells. Additionally, in nude mice with xenograft tumors, the combinational treatment of galangin and berberine significantly inhibited the tumor growth without obvious toxicity. Overall, galangin in combination with berberine presented outstanding synergistic anticancer role in vitro and in vivo, indicating that the beneficial combination of galangin and berberine might provide a promising treatment for patients with oesophageal carcinoma.

  16. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage

    Directory of Open Access Journals (Sweden)

    Chung-Yi Chen

    2016-11-01

    proliferation of oral cancer cells through apoptosis, ROS generation, mitochondrial membrane depolarization, and DNA damage.

  17. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage

    Science.gov (United States)

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-01-01

    The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N-acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of

  18. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Seok, Heon [Department of Biomedical Science, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Lee, Dong Gun [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  19. miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Mei [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China); Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Wang, Yan; Fan, Chun-Guang; Xu, Fei-Fei [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Sun, Wen-Sheng [Institute of Immunology, Shandong University School of Medicine, Jinan 250012 (China); Liu, Yu-Gang, E-mail: liu.yugang@sdu.edu.cn [Department of Pathophysiology, Shandong University School of Medicine, Jinan 250012 (China); Jia, Ji-Hui, E-mail: jiajihui@sdu.edu.cn [Department of Microbiology, Shandong University School of Medicine, Jinan 250012 (China)

    2011-08-05

    Highlights: {yields} miR-29c was significantly downregulated in HBV-related HCC. {yields} TNFAIP3 was found to be inversely correlated with miR-29c levels and identified as a target of miR-29c. {yields} Overexpression of miR-29c suppressed TNFAIP3. {yields} miR-29c inhibited HBV DNA replication, cell proliferation and induced apoptosis. -- Abstract: Recent studies have revealed that microRNA-29c (miR-29c) is involved in a variety of biological processes including carcinogenesis. Here, we report that miR-29c was significantly downregulated in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) cell lines as well as in clinical tissues compared with their corresponding controls. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), a key regulator in inflammation and immunity, was found to be inversely correlated with miR-29c levels and was identified as a target of miR-29c. Overexpression of miR-29c in HepG2.2.15 cells effectively suppressed TNFAIP3 expression and HBV DNA replication as well as inhibited cell proliferation and induced apoptosis. We conclude that miR-29c may play an important role as a tumor suppressive microRNA in the development and progression of HBV-related HCC by targeting TNFAIP3. Thus miR-29c and TNFAIP3 represent key diagnostic markers and potential therapeutic targets for the prevention and treatment of HBV infection.

  20. Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons

    Science.gov (United States)

    Guardado-Mendoza, Rodolfo; Davalli, Alberto M.; Chavez, Alberto O.; Hubbard, Gene B.; Dick, Edward J.; Majluf-Cruz, Abraham; Tene-Perez, Carlos E.; Goldschmidt, Lukasz; Hart, John; Perego, Carla; Comuzzie, Anthony G.; Tejero, Maria Elizabeth; Finzi, Giovanna; Placidi, Claudia; La Rosa, Stefano; Capella, Carlo; Halff, Glenn; Gastaldelli, Amalia; DeFronzo, Ralph A.; Folli, Franco

    2009-01-01

    β-Cell dysfunction is an important factor in the development of hyperglycemia of type-2 diabetes mellitus, and pancreatic islet amyloidosis (IA) has been postulated to be one of the main contributors to impaired insulin secretion. The aim of this study was to evaluate the correlation of IA with metabolic parameters and its effect on islets of Langerhans remodeling and relative endocrine-cell volume in baboons. We sequenced the amylin peptide, determined the fibrillogenic propensities, and evaluated pancreatic histology, clinical and biochemical characteristics, and endocrine cell proliferation and apoptosis in 150 baboons with different metabolic status. Amylin sequence in the baboon was 92% similar to humans and showed superimposable fibrillogenic propensities. IA severity correlated with fasting plasma glucose (FPG) (r = 0.662, P < 0.001) and HbA1c (r = 0.726, P < 0.001), as well as with free fatty acid, glucagon values, decreased homeostasis model assessment (HOMA) insulin resistance, and HOMA-B. IA severity was associated with a decreased relative β-cell volume, and increased relative α-cell volume and hyperglucagonemia. These results strongly support the concept that IA and β-cell apoptosis in concert with α-cell proliferation and hypertrophy are key determinants of islets of Langerhans “dysfunctional remodeling” and hyperglycemia in the baboon, a nonhuman primate model of type-2 diabetes mellitus. The most important determinants of IA were age and FPG (R2 = 0.519, P < 0.0001), and different FPG levels were sensitive and specific to predict IA severity. Finally, a predictive model for islet amyloid severity was generated with age and FPG as required variables. PMID:19666551

  1. Knockdown of AKT3 (PKBγ and PI3KCA Suppresses Cell Viability and Proliferation and Induces the Apoptosis of Glioblastoma Multiforme T98G Cells

    Directory of Open Access Journals (Sweden)

    Monika Paul-Samojedny

    2014-01-01

    Full Text Available Glioblastoma multiforme (GBM is the most malignant and invasive human brain tumor that is difficult to treat and has a very poor prognosis. Thus, new therapeutic strategies that target GBM are urgently needed. The PI3K/AKT/PTEN signaling pathway is frequently deregulated in a wide range of cancers. The present study was designed to examine the inhibitory effect of AKT3 or PI3KCA siRNAs on GBM cell growth, viability, and proliferation.T98G cells were transfected with AKT3 and/or PI3KCA siRNAs. AKT3 and PI3KCA protein-positive cells were identified using FC and Western blotting. The influence of specific siRNAs on T98G cell viability, proliferation, cell cycle, and apoptosis was evaluated as well using FC. Alterations in the mRNA expression of AKT3, PI3KCA, and apoptosis-related genes were analyzed using QRT-PCR. Knockdown of AKT3 and/or PI3KCA genes in T98G cells led to a significant reduction in cell viability, the accumulation of subG1-phase cells and, a reduced fraction of cells in the S and G2/M phases. Additionally, statistically significant differences in the BAX/BCL-2 ratio and an increased percentage of apoptotic cells were found. The siRNA-induced AKT3 and PI3KCA mRNA knockdown may offer a novel therapeutic strategy to control the growth of human GBM cells.

  2. Long non-coding RNA MALAT-1 is downregulated in preeclampsia and regulates proliferation, apoptosis, migration and invasion of JEG-3 trophoblast cells.

    Science.gov (United States)

    Chen, Haiying; Meng, Tao; Liu, Xuemin; Sun, Manni; Tong, Chunxiao; Liu, Jing; Wang, He; Du, Juan

    2015-01-01

    Long non-coding RNA (lncRNA), as a newly identified subset of the transcriptome, has been implicated in a variety of physiological and pathological processes. Metastasis associated lung adenocarcinoma transcript-1 (MALAT-1), a lncRNA that was initially detected in the metastatic lung cancer, was reported to be overexpressed in placenta previa increta/percreta (I/P), which is caused by excessive trophoblast invasion. However, the role of MALAT-1 in the regulation of trophoblast behavior is not fully understood. In this study, we first examined the expression of MALAT-1 in the placentas from the patients with preeclampsia, the pathology of which is associated with inadequate trophoblast invasion, and found that the expression of MALAT-1 was downregulated in the preeclamptic placentas as compared to the normal placentas. We further investigated the function of MALAT-1 in JEG-3 trophoblast cell line using short interfering RNA (siRNA) against MALAT-1 transcripts. Silencing of MALAT-1 in JEG-3 cells suppressed proliferation and induced cell cycle arrest at G0/G1 phase. Reduced expression of MALAT-1 by RNA interference resulted in enhanced apoptosis in JEG-3 cells, accompanied with elevated levels of the pro-apoptotic proteins including cleaved caspase-3, cleaved caspase-9 and cleaved poly (ADP-ribose) polymerase-1 (PARP-1). Moreover, the migration rate and the invasiveness of JEG-3 cells were suppressed when MALAT-1 was downregulated. In summary, our results suggest that MALAT-1 may play an important role in the regulation of proliferation, cell cycle, apoptosis, migration and invasion of trophoblast cells, and under-expression of MALAT-1 during early placentation may be involved in the pathogenesis of preeclampsia.

  3. Effect of phytic acid from rice and corn on morphology, cell proliferation, apoptosis and cyclooxygenase-2 expression in swine jejunal explants

    Directory of Open Access Journals (Sweden)

    Elisângela Olegário da Silva

    2014-06-01

    Full Text Available Phytic acid (IP6 is a potent antioxidant present in several natural foods. Beneficial effects on colon cancer and inflammation have been associated to IP6 in several studies, however, scarce data about the effect on small intestine are available. The aim of the present study was to evaluate the effect of different doses of IP6 from rice and corn on intestinal morphology, cellular proliferation, apoptosis and cyclooxygenase-2 (Cox-2 expression using swine jejunal explants as experimental model. This report demonstrated that explants treated with 0.5 mM, 2.5 mM and 5 mM of IP6 from rice and 2.5 mM and 5 mM from corn showed higher villi height compared to control. Explants treated with 2.5 mM and 5 mM IP6 from rice exhibited a significant reduction on intestinal histological changes (villi atrophy and fusion, edema, lymphatic vessel dilation, loss of apical enterocytes, cell vacuolation, necrotic debris, morphology of enterocytes and microvilli and number of villi. The cellular proliferation decreased in the explants treated with the dosages of 2.5 mM and 5 mM from rice and a significant decrease in cell apoptosis was observed in the treatments with 2.5 mM IP6 from rice and 5 mM IP6 from corn compared to the control. The explants treated with 2.5 mM and 5 mM IP6 from rice and corn showed a significant reduction of the Cox-2 expression. Higher dosages of IP6 from rice and corn used in this experiment increased the viability and preservation of intestinal tissue as evidenced by morphological and immunohistochemical assays.

  4. Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways-A proteomic approach

    Directory of Open Access Journals (Sweden)

    Reddivari Lavanya

    2011-08-01

    Full Text Available Abstract Background We and others have previously reported that resveratrol (RSV suppresses colon cancer cell proliferation and elevates apoptosis in vitro and/or in vivo, however molecular mechanisms are not fully elucidated. Particularly, little information is available on RSV's effects on metabolic pathways and the cell-extra cellular matrix (ECM communication that are critical for cancer cell growth. To identify important targets of RSV, we analyzed whole protein fractions from HT-29 advanced human colon cancer cell line treated with solvent control, IGF-1 (10 nM and RSV (150 μM using LC/MS/MS-Mud PIT (Multidimensional Protein Identification Technology. Results Pentose phosphate pathway (PPP, a vital metabolic pathway for cell cycle progression, was elevated and suppressed by IGF-1 and RSV, respectively in the HT-29 cell line. Enzymatic assays confirmed RSV suppression of glucose-6 phosphate dehydrogenase (rate limiting and transketolase, key enzymes of the PPP. RSV (150 μM suppressed, whereas IGF-1 (10 nM elevated focal adhesion complex (FAC proteins, talin and pFAK, critical for the cell-ECM communication. Western blotting analyses confirmed the suppression or elevation of these proteins in HT-29 cancer cells treated with RSV or IGF-1, respectively. Conclusions Proteomic analysis enabled us to establish PPP and the talin-pFAK as targets of RSV which suppress cancer cell proliferation and induce apoptosis in the colon cancer cell line HT-29. RSV (150 μM suppressed these pathways in the presence and absence of IGF-1, suggesting its role as a chemo-preventive agent even in obese condition.

  5. Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis.

    Directory of Open Access Journals (Sweden)

    Evandro Fei Fang

    Full Text Available Breast cancer ranks as a common and severe neoplasia in women with increasing incidence as well as high risk of metastasis and relapse. Translational and laboratory-based clinical investigations of new/novel drugs are in progress. Medicinal plants are rich sources of biologically active natural products for drug development. The 27-kDa trichosanthin (TCS is a ribosome inactivating protein purified from tubers of the Chinese herbal plant Trichosanthes kirilowii Maximowicz (common name Tian Hua Fen. In this study, we extended the potential medicinal applications of TCS from HIV, ferticide, hydatidiform moles, invasive moles, to breast cancer. We found that TCS manifested anti-proliferative and apoptosis-inducing activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cells. Flow cytometric analysis disclosed that TCS induced cell cycle arrest. Further studies revealed that TCS-induced tumor cell apoptosis was attributed to activation of both caspase-8 and caspase-9 regulated pathways. The subsequent events including caspase-3 activation, and increased PARP cleavage. With regard to cell morphology, stereotypical apoptotic features were observed. Moreover, in comparison with control, TCS- treated nude mice bearing MDA-MB-231 xenograft tumors exhibited significantly reduced tumor volume and tumor weight, due to the potent effect of TCS on tumor cell apoptosis as determined by the increase of caspase-3 activation, PARP cleavage, and DNA fragmentation using immunohistochemistry. Considering the clinical efficacy and relative safety of TCS on other human diseases, this work opens up new therapeutic avenues for patients with estrogen-dependent and/or estrogen-independent breast cancers.

  6. Concomitant Use of Sea Cucumber Organic Extract and Radiotherapy on Proliferation and Apoptosis of Cervical (HeLa Cell Line

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2016-04-01

    Full Text Available Background Cervical carcinoma is gynecologic malignancy with conventional treatment modality but drug resistance interferes with current therapeutic methods. Therefore, identification of novel new modality with low toxicity has uniquely favorable strategy. Objectives The aim of this study is evaluation of concomitant use of sea cucumber organic extract and radiotherapy on ovarian cancer. Materials and Methods In this in vitro experimental study, HeLa cancer cells were cultured and suspended in RPMI (Roswell Park Memorial Institute 1640 medium supplemented with 10 % FBS (Fetal Bovine Serum, 1 % antibiotic. Cells were treated with extract at different concentrations (0 to 100 μg/mL for 24 hours. After determination of suitable concentration, the cells were exposed to 2 Gray gamma radiation in presence of extract for 192 seconds and 66 hours were kept in incubator till anti-proliferative assay were evaluated. To assess apoptosis, flow cytometry with PI (Propodium Iodide and acridine orange staining were performed. Results Morphological analysis and results from cytotoxicity assay exhibited that 50 µg/mL of sea cucumber extract alone is considered IC50 and combination of gamma radiation became more valuable in growth inhibition. Also, flow cytometry histogram of treated cells indicated sub-G1 peak demonstrating disturbance in membrane integrity and apoptosis cell death. Fluorescence images have been confirmed apoptosis cell death in treatment groups. Conclusions These data indicate that sea cucumber extract as novel resource of aquatic natural products significantly can inhibit cervical cancer cell growth and synergistic effect of natural extract along with radiation therapy was more effective in anti-cervical cancer therapy.

  7. Fucoidan Inhibits the Proliferation of Human Urinary Bladder Cancer T24 Cells by Blocking Cell Cycle Progression and Inducing Apoptosis

    Directory of Open Access Journals (Sweden)

    Hye Young Park

    2014-05-01

    Full Text Available Although fucoidan has been shown to exert anticancer activity against several types of cancer cell lines, no reports have explored fucoidan-affected cell growth in human urinary bladder cancer cells. In this study, we investigated the anti-proliferative effects of fucoidan in human bladder cancer T24 cells. Our results indicated that fucoidan decreased the viability of T24 cells through the induction of G1 arrest and apoptosis. Fucoidan-induced G1 arrest is associated with the enhanced expression of the Cdk inhibitor p21WAF1/CIP1 and dephosphorylation of the pRB along with enhanced binding of p21 to Cdk4/6 as well as pRB to the transcription factor E2Fs. Further investigations showed the loss of mitochondrial membrane potential and the release of cytochrome c from mitochondria to cytosol, proving mitochondrial dysfunction upon fucoidan treatment with a corresponding increase in the Bax/Bcl-2 expression ratio. Fucoidan-triggered apoptosis was also accompanied by the up-regulation of Fas and truncated Bid as well as the sequential activation of caspase-8. Furthermore, a significant increased activation of caspase-9/-3 was detected in response to fucoidan treatment with the decreased expression of IAPs and degradation of PARP, whereas a pan-caspase inhibitor significantly suppressed apoptosis and rescued the cell viability reduction. In conclusion, these observations suggest that fucoidan attenuates G1-S phase cell cycle progression and serves as an important mediator of crosstalk between caspase-dependent intrinsic and extrinsic apoptotic pathways in T24 cells.

  8. Cucurbitacin B inhibits proliferation, induces G2/M cycle arrest and autophagy without affecting apoptosis but enhances MTT reduction in PC12 cells

    Directory of Open Access Journals (Sweden)

    Chuanhong Wu

    2016-03-01

    Full Text Available In the present study, the effect of cucurbitacin B (a natural product with anti-cancer effect was studied on PC12 cells. It significantly reduced the cell number, changed cell morphology and inhibited colony formation while MTT results showed increased cell viability. Cucurbitacin B treatment increased activity of succinode hydrogenase. No alteration in the integrity of mem-brane, the release of lactic dehydrogenase, the mitochondrial membrane potential, and the expression of apoptotic proteins suggested that cucurbitacin B did not induce apoptosis. The cell cycle was remarkably arrested at G2/M phase. Furthermore, cucurbitacin B induced autophagy as evidence by accumulation of autophagic vacuoles and the increase of LC3II. In addition, cucurbitacin B up-regulated the expression of p-beclin-1, p-ULK1, p-Wee1, p21 and down-regulated p-mTOR, p-p70S6K, CDC25C, CDK1, Cyclin B1. In conclusion, cucurbitacin B inhibited PC12 proliferation but caused MTT pitfall. Cucurbitacin B induced G2/M cell cycle arrest, autophagy, but not the apoptosis in PC12 cells.

  9. A eudesmane-type sesquiterpene isolated from Pluchea odorata (L.) Cass. combats three hallmarks of cancer cells: Unrestricted proliferation, escape from apoptosis and early metastatic outgrowth in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Michael [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); McKinnon, Ruxandra [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Nguyen, Chi Huu [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Holzner, Silvio [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Zehl, Martin [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Atanasov, Atanas Georgiev [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Schelch, Karin [Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria); Krieger, Sigurd [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Diaz, Rene; Frisch, Richard [Institute for Ethnobiology, Playa Diana, San José/Petén (Guatemala); Feistel, Björn [Finzelberg GmbH & Co. KG, Koblenzer Strasse 48-54, D-56626 Andernach (Germany); Jäger, Walter [Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Ecker, Gerhard F. [Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna (Austria); and others

    2015-07-15

    Highlights: • PO-1 perturbs cell cycle regulators and progression. • PO-1 inhibits HL-60 cell expansion. • PO-1 and PO-2 attenuate tumour cell intravasation through the endothelial barrier. - Abstract: Pluchea odorata is ethno pharmaceutically used to treat inflammation-associated disorders. The dichloromethane extract (DME) was tested in the carrageenan-induced rat paw oedema assay investigating its effect on inflammation that was inhibited by 37%. Also an in vitro anti-neoplastic potential was reported. However, rather limited information about the bio-activity of purified compounds and their cellular mechanisms are available. Therefore, two of the most abundant eudesmanes in P. odorata were isolated and their anti-neoplastic and anti-intravasative activities were studied. HL-60 cells were treated with P. odorata compounds and metabolic activity, cell number reduction, cell cycle progression and apoptosis induction were correlated with relevant protein expression. Tumour cell intravasation through lymph endothelial monolayers was measured and potential causal mechanisms were analyzed by Western blotting. Compound PO-1 decreased the metabolic activity of HL-60 cells (IC{sub 50} = 8.9 μM after 72 h) and 10 μM PO-1 induced apoptosis, while PO-2 showed just weak anti-neoplastic activities at concentrations beyond 100 μM. PO-1 arrested the cell cycle in G1 and this correlated with induction of JunB expression. Independent of this mechanism 25 μM PO-1 decreased MCF-7 spheroid intravasation through the lymph endothelial barrier. Hence, PO-1 inhibits an early step of metastasis, impairs unrestricted proliferation and induces apoptosis at low micromolar concentrations. These results warrant further testing in vivo to challenge the potential of PO-1 as novel lead compound.

  10. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Science.gov (United States)

    Barzegar, Elmira; Fouladdel, Shamileh; Movahhed, Tahereh Komeili; Atashpour, Shekoufeh; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Azizi, Ebrahim

    2015-01-01

    Objective(s): Berberine, a naturally occurring isoquinoline alkaloid, has shown antitumor properties in some in vitro systems. But the effect of berberine on breast cancer has not yet been completely studied. In this study, we evaluated anticancer properties of berberine in comparison to doxorubicin. Materials and Methods: The antiproliferative effects of berberine and doxorubicin alone and in combination were evaluated in T47D and MCF7 cell lines using MTT cytotoxicity assay. In addition, flow cytometry analysis was performed to evaluate the cell cycle alteration and apoptosis induction in these cell lines following exposure to berberine and doxorubicin alone and in combination. Results: The IC50 of berberine was determined to be 25 µM after 48 hr of treatment in both cell lines but for doxorubicin it was 250 nM and 500 nM in T47D and MCF-7 cell lines, respectively. Co-treatment with berberine and doxorubicin increased cytotoxicity in T47D cells more significantly than in MCF-7 cells. Flow cytometry results demonstrated that berberine alone or in combination with doxorubicin induced G2/M arrest in the T47D cells, but G0/G1 arrest in the MCF-7 cells. Doxorubicin alone induced G2/M arrest in both cell lines. Furthermore, berberine and doxorubicin alone or in combination significantly induced apoptosis in both cell lines. Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer. PMID:26019795

  11. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  12. Screening of mammalian DNA polymerase and topoisomerase inhibitors from Garcinia mangostana L. and analysis of human cancer cell proliferation and apoptosis.

    Science.gov (United States)

    Onodera, Takefumi; Takenaka, Yukiko; Kozaki, Sachiko; Tanahashi, Takao; Mizushina, Yoshiyuki

    2016-03-01

    We purified and identified eight xanthones from mangosteen (Garcinia mangostana L.) and investigated whether these compounds inhibited the activities of mammalian DNA polymerases (Pols) and human DNA topoisomerases (Topos). β-Mangostin was the strongest inhibitor of both mammalian Pols and human Topos among the isolated xanthones, with 50% inhibitory concentration (IC50) values of 6.4-39.6 and 8.5-10 µM, respectively. Thermal transition analysis indicated that β-mangostin did not directly bind to double-stranded DNA, suggesting that this compound directly bound the enzyme protein rather than the DNA substrate. β-Mangostin showed the strongest suppression of human cervical cancer HeLa cell proliferation among the eight compounds tested, with a 50% lethal dose (LD50) of 27.2 µM. This compound halted cell cycle in S phase at 12-h treatment and induced apoptosis. These results suggest that decreased proliferation by β-mangostin may be a result of the inhibition of cellular Pols rather than Topos, and β-mangostin might be an anticancer chemotherapeutic agent.

  13. Natural killer cell cytokine response to M. bovis BCG Is associated with inhibited proliferation, increased apoptosis and ultimate depletion of NKp44(+CD56(bright cells.

    Directory of Open Access Journals (Sweden)

    Damien Portevin

    Full Text Available Mycobacterium bovis BCG, a live attenuated strain of M. bovis initially developed as a vaccine against tuberculosis, is also used as an adjuvant for immunotherapy of cancers and for treatment of parasitic infections. The underlying mechanisms are thought to rely on its immunomodulatory properties including the recruitment of natural killer (NK cells. In that context, we aimed to study the impact of M. bovis BCG on NK cell functions. We looked at cytotoxicity, cytokine production, proliferation and cell survival of purified human NK cells following exposure to single live particles of mycobacteria. We found that M. bovis BCG mediates apoptosis of NK cells only in the context of IL-2 stimulation during which CD56(bright NK cells are releasing IFN-γ in response to mycobacteria. We found that the presence of mycobacteria prevented the IL-2 induced proliferation and surface expression of NKp44 receptor by the CD56(bright population. In summary, we observed that M. bovis BCG is modulating the functions of CD56(bright NK cells to drive this subset to produce IFN-γ before subsequent programmed cell death. Therefore, IFN-γ production by CD56(bright cells constitutes the main effector mechanism of NK cells that would contribute to the benefits observed for M. bovis BCG as an immunotherapeutic agent.

  14. Expression of TGF-β2 in LECs of Age- Related Nuclear, Cortex Cataract and the Relationship among TGF-β2, Proliferation, Apoptosis and Transdifferentiation

    Institute of Scientific and Technical Information of China (English)

    YE Lin; CAI Xiaojun; ZHANG Baifang; LUO Hong; Deng Ping

    2006-01-01

    To detect the pathogenesis of age-related cataract, we analyzed the expression of TGF-β2mRNA, proliferation cell nuclear antigen (PCNA), Bcl-2/Bax, fibronection (FN), vimentin protein and the density of lens epithelial cells(LECs) of nuclear cataract, cortex cataract and normal LECs. Results showed that the expression level of TGFβ2 mRNA, FN and vimentin protein was higher in LECs of cortex cataract than that of nuclear cataract and normal lens. But the level of Bcl-2/Bax and PCNA was on the contrary. The density of LECs was (4250. 63± 275.05)/mm2 in cortex cataract. It was (5438. 40 ± 262.30)/mm2 in nuclear cataract, and (5368.63 ±211.07)/mm2 in normal LECs resepectively. There was significant difference between cortex and nuclear cataract (p<0.05). These suggested that TGF-β2 might take an important part in the process of age-related cataract. Age-related nuclear cataract was related to the proliferation LECs. While cortex cataract was related to the apoptosis and transdifferentiation of LECs.

  15. Cestrum nocturnum Flower Extracts Attenuate Proliferation and Induce Apoptosis in Malignant Cells through Inducing DNA Damage and Inhibiting Topoisomerase II Activity.

    Science.gov (United States)

    Wu, Deng-Pan; Lin, Tian-Yu; Lv, Jin-Yan; Chen, Wen-Ya; Bai, Li-Ru; Zhou, Yan; Huang, Jin-Lan; Zhong, Zhen-Guo

    2017-01-01

    Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN) has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G0/G1 and G2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity.

  16. Cestrum nocturnum Flower Extracts Attenuate Proliferation and Induce Apoptosis in Malignant Cells through Inducing DNA Damage and Inhibiting Topoisomerase II Activity

    Directory of Open Access Journals (Sweden)

    Deng-Pan Wu

    2017-01-01

    Full Text Available Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G0/G1 and G2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity.

  17. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Directory of Open Access Journals (Sweden)

    E K Radhakrishnan

    Full Text Available We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale, in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  18. [6]-Gingerol induces caspase-dependent apoptosis and prevents PMA-induced proliferation in colon cancer cells by inhibiting MAPK/AP-1 signaling.

    Science.gov (United States)

    Radhakrishnan, E K; Bava, Smitha V; Narayanan, Sai Shyam; Nath, Lekshmi R; Thulasidasan, Arun Kumar T; Soniya, Eppurathu Vasudevan; Anto, Ruby John

    2014-01-01

    We report mechanism-based evidence for the anticancer and chemopreventive efficacy of [6]-gingerol, the major active principle of the medicinal plant, Ginger (Zingiber officinale), in colon cancer cells. The compound was evaluated in two human colon cancer cell lines for its cytotoxic effect and the most sensitive cell line, SW-480, was selected for the mechanistic evaluation of its anticancer and chemopreventive efficacy. The non-toxic nature of [6]-gingerol was confirmed by viability assays on rapidly dividing normal mouse colon cells. [6]-gingerol inhibited cell proliferation and induced apoptosis as evidenced by externalization of phosphatidyl serine in SW-480, while the normal colon cells were unaffected. Sensitivity to [6]-gingerol in SW-480 cells was associated with activation of caspases 8, 9, 3 &7 and cleavage of PARP, which attests induction of apoptotic cell death. Mechanistically, [6]-gingerol down-regulated Phorbol Myristate Acetate (PMA) induced phosphorylation of ERK1/2 and JNK MAP kinases and activation of AP-1 transcription factor, but had only little effects on phosphorylation of p38 MAP kinase and activation of NF-kappa B. Additionally, it complemented the inhibitors of either ERK1/2 or JNK MAP kinase in bringing down the PMA-induced cell proliferation in SW-480 cells. We report the inhibition of ERK1/2/JNK/AP-1 pathway as a possible mechanism behind the anticancer as well as chemopreventive efficacy of [6]-gingerol against colon cancer.

  19. NK/T细胞淋巴瘤细胞凋亡和细胞增殖特征及意义%The significance and features of apoptosis and proliferation of NK/T cell lymphoma

    Institute of Scientific and Technical Information of China (English)

    Dabin Wang; Meng Ming; Junhua Liu; Jianhua Yi; Dianding Zou

    2011-01-01

    Objective:The aim was to study the features and clinical significance of cell apoptosis and proliferation of NK/T cell lymphoma. Methods:TdT-mediated dUTP nick end labeling and immunohistochemical Streptavidin-peroxidase method were used to study cell apoptosis and the expression of proliferation cell nuclear antigen in 25 NK/T cell lymphoma and 10reactive lymphoid tissues. Results:Apoptotic index (AI) and proliferative index (PI) averaged (1.92% ± 0.86%) and (41.48%± 5.10%) respectively in the 25 NK/T cell lymphomas and (6.70% ± 1.89%) and (20.10% ± 2.77%) in the 10 reactive lymphoid tissues. Compared with reactive lymphoid tissues, AI was significantly reduced in NK/T cell lymphoma (t = 10.80, P < 0.01)while PI significantly increased (t = 12.39, P < 0.01). In addition, in NK/T cell lymphoma, AI and PI were positively related (r = 0.69, P < 0.01). Conclusion:In NK/T cell lymphoma, cell apoptosis is reduced while cell proliferation increased. The imbalance between cell apoptosis and cell proliferation is closely related to the development and progression of NK/T cell lymphoma.

  20. Construction of a cancer-perturbed protein-protein interaction network for discovery of apoptosis drug targets

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2008-06-01

    Full Text Available Abstract Background Cancer is caused by genetic abnormalities, such as mutations of oncogenes or tumor suppressor genes, which alter downstream signal transduction pathways and protein-protein interactions. Comparisons of the interactions of proteins in cancerous and normal cells can shed light on the mechanisms of carcinogenesis. Results We constructed initial networks of protein-protein interactions involved in the apoptosis of cancerous and normal cells by use of two human yeast two-hybrid data sets and four online databases. Next, we applied a nonlinear stochastic model, maximum likelihood parameter estimation, and Akaike Information Criteria (AIC to eliminate false-positive protein-protein interactions in our initial protein interaction networks by use of microarray data. Comparisons of the networks of apoptosis in HeLa (human cervical carcinoma cells and in normal primary lung fibroblasts provided insight into the mechanism of apoptosis and allowed identification of potential drug targets. The potential targets include BCL2, caspase-3 and TP53. Our comparison of cancerous and normal cells also allowed derivation of several party hubs and date hubs in the human protein-protein interaction networks involved in caspase activation. Conclusion Our method allows identification of cancer-perturbed protein-protein interactions involved in apoptosis and identification of potential molecular targets for development of anti-cancer drugs.

  1. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    Directory of Open Access Journals (Sweden)

    Rizos Helen

    2011-05-01

    Full Text Available Abstract Background Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the P53 tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of P53 in melanoma is uncommon; however, its function often appears abnormal. Methods In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts. Results The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant P53 compared to those with wild-type P53, suggesting that altered expression in melanoma was not related to P53 status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation. Conclusions These results indicate that P53 target genes involved in apoptosis and cell

  2. EPO improves the proliferation and inhibits apoptosis of trophoblast and decidual stromal cells through activating STAT-5 and inactivating p38 signal in human early pregnancy.

    Science.gov (United States)

    Ji, Yu Qing; Zhang, Yu Quan; Li, Ming Qing; Du, Mei Rong; Wei, Wei Wei; Li, Da Jin

    2011-01-01

    The erythropoietin (EPO) belongs to the family of angiogenic factors, which is regulated by Hypoxia-inducible factor- 1α (HIF-1α). As known, EPO are expressed in human villi and decidua, but the function is not clear. In this study, we investigated the expression and roles of HIF-1α, EPO and its receptor (EPOR) in the biological functions of trophoblast and decidual stromal cell (DSC) in human early pregnancy. The expression of EPO, EPOR and HIF-1α was evaluated in the villi and deciduas by RT-PCR and immunohistochemistry. Thereafter, we silenced HIF-1α expression in HTR-8/SVneo cell line and decidual stromal cells (DSCs). The effects of EPO on the proliferation and apoptosis of trophoblasts and DSCs, and activation of signal molecules were investigated by BrdU proliferation assay, flow cytometry and western blot, respectively. We have observed that the HIF-1α silence results in the lower expression of EPO in trophoblasts and DSCs. The anti-EPO neutralizing antibody can inactivate the phosphorylation of STAT5 and activate p38 of these cells in a dosage-dependent manner. Furthermore, the expressions of EPO, EPOR and HIF-1α in the villi and decidua from the unexplained miscarriage were significantly lower than that of the normal early pregnancy. This study suggests that HIF-1α may regulate the expression of EPO, which plays a favorable regulatory role in the proliferation and survival of human first-trimester trophoblast cells and DSCs via inactivating p38 and activating STAT5 in an autocrine manner, while the inadequate EPO expres