WorldWideScience

Sample records for apoptosis metallothionein expression

  1. Histological changes, apoptosis and metallothionein levels in Triturus carnifex (Amphibia, Urodela) exposed to environmental cadmium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Capaldo, Anna, E-mail: anna.capaldo@unina.it [Department of Biology, University of Naples Federico II, Naples (Italy); Gay, Flaminia [Department of Chemistry and Biology, University of Salerno, Salerno (Italy); Scudiero, Rosaria; Trinchella, Francesca [Department of Biology, University of Naples Federico II, Naples (Italy); Caputo, Ivana; Lepretti, Marilena; Marabotti, Anna; Esposito, Carla [Department of Chemistry and Biology, University of Salerno, Salerno (Italy); Laforgia, Vincenza [Department of Biology, University of Naples Federico II, Naples (Italy)

    2016-04-15

    Highlights: • Specimens of the newt Triturus carnifex were exposed to environmental Cd doses. • Newts exposed to Cd during 9 months accumulated Cd in their tissues. • Cd induced histological alterations in the skin, liver and kidneys. • Cd induced apoptosis only in the kidneys. • Cd did not increase metallothionein levels in the skin and the liver, nor MTs mRNA. - Abstract: The aim of this study was to verify if the freshwater safety values established from the European Community (1998) and the Italian Ministry of Health (2001) for cadmium (44.5 nM/L in drinking water and 178 nM/L in sewage waters) were safe for amphibians, since at these same concentrations cadmium induced endocrine disruption in the newt Triturus carnifex. Adult male specimens of T. carnifex were exposed daily to cadmium (44.5 nM/L and 178 nM/L as CdCl{sub 2}, nominal concentrations), respectively, during 3- and 9-months; at the same time, control newts were exposed to tap water only. The accumulation of cadmium in the skin, liver and kidney, the levels of metallothioneins in the skin and the liver, the expression of metallothionein mRNA in the liver, as well as the presence of histological alterations and of apoptosis in the target organs were evaluated. The 9-months exposure induced cadmium accumulation in all the tissues examined; moreover, histological changes were observed in all the tissues examined, irrespective of the dose or the time of exposure. Apoptosis was only detected in the kidney, whereas metallothioneins and metallothionein mRNA did not increase. This study demonstrates that the existing chronic water quality criterion established for cadmium induces in the newt T. carnifex cadmium accumulation and histological alterations in the target organs examined. Together with our previous results, showing that, at these same concentrations, cadmium induced endocrine disruption, the present results suggest that the existing chronic water quality criterion for cadmium appears to

  2. Metallothionein Isoform Expression in Benign and Malignant Thyroid Lesions.

    Science.gov (United States)

    Wojtczak, Beata; Pula, Bartosz; Gomulkiewicz, Agnieszka; Olbromski, Mateusz; Podhorska-Okolow, Marzena; Domoslawski, Paweł; Bolanowski, Marek; Daroszewski, Jacek; Dziegiel, Piotr

    2017-09-01

    Metallothioneins (MTs) are involved in numerous cell processes such as binding and transport of zinc and copper ions, differentiation, proliferation and apoptosis, therefore contributing to carcinogenesis. Scarce data exist on their expression in benign and malignant lesions of the thyroid. mRNA expression of functional isoforms of MT genes (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1X, MT2A, MT4) was studied in 17 nodular goiters (NG), 12 follicular adenomas (FA) and 26 papillary thyroid carcinomas (PTC). One-way ANOVA revealed significant differences in mRNA expression levels of MT1A (pbenign and malignant lesions. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Metallothionein as a useful marker in Hodgkin lymphoma subclassification

    DEFF Research Database (Denmark)

    Penkowa, Milena; Sørensen, Brit Ladegaard; Nielsen, Signe Lidou

    2009-01-01

    Metallothionein (MT) expression is considered to be a prognostic factor that promotes tumor resistance to apoptosis. In non-Hodgkin lymphomas, MT is differentially expressed and constitutes a risk factor. We have characterised MT in lymph nodes of Hodgkin lymphoma (HL) [patients with nodular...

  4. Metallothionein expression during liver regeneration after partial hepatectomy in cadmium-pretreated rats

    Energy Technology Data Exchange (ETDEWEB)

    Margeli, A.P. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Theocharis, S.E. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Yannacou, N.N. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Spiliopoulou, C. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece)); Koutselinis, A. (Dept. of Forensic Medicine and Toxicology, School of Medicine, Univ. of Athens (Greece))

    1994-10-01

    Metallothionein is a low molecular mass protein inducible mainly by heavy metals, having high affinity for binding cadmium, zinc and copper. In the present study we investigated the expression of metallothionein in regenerating liver, at different time intervals, in cadmium pretreated partially hepatectomized rats. Liver metallothionein is highly expressed during regeneration induced by partial hepatectomy in rats, providing zinc within the rapidly growing tissue. Cadmium pretreatment caused inhibition of the first peak of liver regeneration, while metallothionein expression was markedly more prominent in the liver residues of cadmium-pretreated rats. These results demonstrate that although metallothionein able to bind temporarily metal ions as zinc and cadmium has been highly expressed, the liver regenerative process was inhibited possibly due to the effects of cadmium on other pivotal events necessary to the DNA replication. (orig.)

  5. Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Carrasco, J; Hidalgo, J

    2001-01-01

    Multiple sclerosis is an inflammatory, demyelinating disease of the CNS. Metallothioneins-I+II are antioxidant proteins induced in the CNS by immobilisation stress, trauma or degenerative diseases which have been postulated to play a neuroprotective role, while the CNS isoform metallothionein......-III has been related to Alzheimer's disease. We have analysed metallothioneins-I-III expression in the CNS of mice with experimental autoimmune encephalomyelitis. Moreover, we have examined the putative role of interferon-gamma, a pro-inflammatory cytokine, in the control of metallothioneins expression...

  6. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Cousins, R.J.

    1990-01-01

    Attention has focused on the cytokine interleukin 6 (IL-6) as a major mediator of acute-phase protein synthesis in hepatocytes in response to infection and tissue injury. The authors have evaluated the effects of IL-6 and IL-1α as well as extracellular zinc and glucocorticoid hormone on metal-lothionein gene expression and cellular zinc accumulation in rat hepatocyte monolayer cultures. Further, they have evaluated the teleological basis for cytokine mediation by examining cyto-protection from CCl 4 -induced damage. Incubation of hepatocytes with IL-6 led to concentration-dependent and time-dependent increases in metallothionein-1 and -2 mRNA and metallothionein protein. The level of each was increased within 3 hr after the addition of IL-6 at 10 ng/ml. Maximal increases the metallothionein mRNA and metallothionein protein were achieved after 12 hr and 36 hr, respectively. Concomitant with the up-regulation of metallothionein gene expression, IL-6 also increased cellular zinc. Responses to IL-6 required the synthetic glucocorticoid hormone dexamethasone and were optimized by increased extracellular zinc. Thus, IL-6 is a major cytokine mediator of metallothionein gene expression and zinc metabolism in hepatocytes and provides cytoprotection from CCl 4 -induced hepatotoxicity via a mode consistent with dependence upon increased cellular metallothionein synthesis and zinc accumulation

  7. Metallothionein gene expression in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Deeksha Pal

    2014-01-01

    Full Text Available Introduction: Metallothioneins (MTs are a group of low-molecular weight, cysteine-rich proteins. In general, MT is known to modulate three fundamental processes: (1 the release of gaseous mediators such as hydroxyl radical or nitric oxide, (2 apoptosis and (3 the binding and exchange of heavy metals such as zinc, cadmium or copper. Previous studies have shown a positive correlation between the expression of MT with invasion, metastasis and poor prognosis in various cancers. Most of the previous studies primarily used immunohistochemistry to analyze localization of MT in renal cell carcinoma (RCC. No information is available on the gene expression of MT2A isoform in different types and grades of RCC. Materials and Methods: In the present study, total RNA was isolated from 38 histopathologically confirmed cases of RCC of different types and grades. Corresponding adjacent normal renal parenchyma was taken as control. Real-time polymerase chain reaction (RT PCR analysis was done for the MT2A gene expression using b-actin as an internal control. All statistical calculations were performed using SPSS software. Results: The MT2A gene expression was found to be significantly increased (P < 0.01 in clear cell RCC in comparison with the adjacent normal renal parenchyma. The expression of MT2A was two to three-fold higher in sarcomatoid RCC, whereas there was no change in papillary and collecting duct RCC. MT2A gene expression was significantly higher in lower grade (grades I and II, P < 0.05, while no change was observed in high-grade tumor (grade III and IV in comparison to adjacent normal renal tissue. Conclusion: The first report of the expression of MT2A in different types and grades of RCC and also these data further support the role of MT2A in tumorigenesis.

  8. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    Directory of Open Access Journals (Sweden)

    Gonzalez-Ruiz Gloriene

    2011-08-01

    Full Text Available Abstract Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1 and polyphosphate kinase (ppk genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and

  9. Metallothionein expression and roles in the CNS

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2002-01-01

      Metallothioneins (MTs) are low-molecular-weight (6-7 kDa) nonenzymatic proteins (60-68 amino acid residues, 25-30% being cysteine) expressed ubiquitous in the animal kingdom. In the central nervous system (CNS), three MT isoforms are known, namely MT-I to MT-III. MT-I and MT-II (MT...

  10. Differential metallothionein expression in oral lichen planus and amalgam-associated oral lichenoid lesions.

    Science.gov (United States)

    Mendes, G-G; Servato, J-P-S; Borges, F-C; Rosa, R-R; Siqueira, C-S; de Faria, P-R; Loyola, A-M; Cardoso, S-V

    2018-05-01

    Oral lichen planus (OLP) is a chronic inflammatory disease mediated by T cells, which manifests as reticular (white) or erosive (red) lesions, that are eventually painful. Oral lichenoid lesion (OLL) are distinguished from OLP by the presence of precipitating factors. The aim of this study was to evaluate whether the presence of metallothionein, which is involved in anti-apoptotic pathways and the anti-oxidative response, could serve as a differential diagnostic for OLP and OLL. We evaluated the expression of metallothionein in 40 cases of OLP and 20 cases of OLL using immunohistochemistry. White OLP has higher concentrations of metallothionein than red OLP in basal and parabasal layers. Moreover, metallothionein was more frequently observed in the cytoplasm and nuclei of basal cells in OLP patients compared to the same regions of OLL cases. Metallothionein levels are related to OLP severity and may contribute to a differential diagnosis between OLP and OLL.

  11. The role of metallothionein in oncogenesis and cancer treatment

    OpenAIRE

    Anna Bizoń; Kinga Jędryczko; Halina Milnerowicz

    2017-01-01

    Metallothionein is cysteine-rich low molecular mass protein. The involvement of MT in many physiological and pathophysiological processes such as apoptosis, proliferation, angiogenesis, and the detoxification of heavy metals suggested participation of this protein in carcinogenesis and tumor therapy.Depending on the type of tissue and classification of carcinoma various it was observed relation between MT expression and tumor type, stage, grade, poor prognosis and body resistance to radiother...

  12. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  13. Metallothionein-I plus II and receptor megalin are altered in relation to oxidative stress in cerebral lymphomas

    DEFF Research Database (Denmark)

    Pedersen, M.O.; Hansen, P.B.; Nielsen, Signe Ledou

    2010-01-01

    . This article characterizes the histopathology and expression profiles of metallothionein-I + II (MT-I + II) and their receptor megalin along with proliferation, oxidative stress, and apoptosis in PCNSL and in central nervous system (CNS) lymphomas due to relapse from DLBCL (collectively referred to as CNS...

  14. Neuronal apoptosis, metallothionein expression and proinflammatory responses during cerebral malaria in mice

    DEFF Research Database (Denmark)

    Wiese, Lothar; Kurtzhals, Jørgen A L; Penkowa, Milena

    2006-01-01

    -I + II) are increased during CNS pathology and disorders. As previously shown, MT-I + II are neuroprotective through anti-inflammatory, antioxidant and antiapoptotic functions. We have analyzed neuronal apoptosis and MT-I + II expression in brains of mice with experimental CM. METHODS: C57BL/6j mice...... of neurons in CM by TUNEL, pointing out a possible pathophysiological mechanism leading to persisting brain damage. The possible neuroprotective role of MT-I + II during CM deserves further attention....

  15. Metallothionein-I and -III expression in animal models of Alzheimer disease

    DEFF Research Database (Denmark)

    Carrasco, J; Adlard, P; Cotman, C

    2006-01-01

    Previous studies have described altered expression of metallothioneins (MTs) in neurodegenerative diseases like multiple sclerosis (MS), Down syndrome, and Alzheimer's disease (AD). In order to gain insight into the possible role of MTs in neurodegenerative processes and especially in human...

  16. Trace metals and over-expression of metallothioneins in bladder tumoral lesions: a case-control study

    Directory of Open Access Journals (Sweden)

    Cymbron Teresa

    2009-07-01

    Full Text Available Abstract Background Previous studies have provided some evidence of a possible association between cancer and metallothioneins. Whether this relates to an exposure to carcinogenic metals remains unclear. Methods In order to examine the association between the expression of metallothioneins and bladder tumors, and to compare the levels of arsenic, cadmium, chromium, lead and nickel in animals with bladder tumors and animals without bladder tumors, 37 cases of bovine bladder tumors and 17 controls were collected. The detection and quantification of metallothioneins in bladder tissue of both cases and controls was performed by immunohistochemistry. And the quantification of metals in tissue and hair was assessed by inductively coupled plasma – mass spectrometry. Results Increased expression of metallothioneins was associated with bladder tumors when compared with non-tumoral bladder tissue (OR = 9.3, 95% CI: 1.0 – 480. The concentrations of cadmium, chromium, lead and nickel in hair of cases were significantly higher than those of controls. However, as for the concentration of metals in bladder tissue, the differences were not significant. Conclusion Though the sample size was small, the present study shows an association between bladder tumors and metallothioneins. Moreover, it shows that concentrations of metals such as cadmium, chromium, lead and nickel in hair may be used as a biomarker of exposure.

  17. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability

    OpenAIRE

    Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-01-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) ...

  18. Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression

    DEFF Research Database (Denmark)

    Penkowa, Milena; Camats, Jordi; Giralt, Mercedes

    2003-01-01

    injury, such as a cryolesion, demonstrate a neuroprotective role of IL-6. Thus, the GFAP-IL-6 mice showed faster tissue repair and decreased oxidative stress and apoptosis compared with control litter-mate mice. The neuroprotective factors metallothionein-I+II (MT-I+II) were upregulated by the cryolesion...... the inflammatory response, decreased oxidative stress and apoptosis significantly, and increased brain tissue repair in comparison with either GFAP-IL-6 or control litter-mate mice. Overall, the results demonstrate that brain MT-I+II proteins are fundamental neuroprotective factors....

  19. Partial contribution of the Keap1–Nrf2 system to cadmium-mediated metallothionein expression in vascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shinkai, Yasuhiro [Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Kimura, Tomoki [Faculty of Science and Engineering, Setsunan University, 17-8 Ikedanaka-machi, Neyagawa, Osaka 572-8508 (Japan); Itagaki, Ayaka [Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa, Kanazawa, 920-1181, Ishikawa (Japan); Yamamoto, Chika [Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa, Kanazawa, 920-1181, Ishikawa (Japan); Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510 (Japan); Taguchi, Keiko; Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Kumagai, Yoshito, E-mail: yk-em-tu@md.tsukuba.ac.jp [Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 (Japan); Kaji, Toshiyuki, E-mail: t-kaji@rs.tus.ac.jp [Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa, Kanazawa, 920-1181, Ishikawa (Japan); Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2016-03-15

    Cadmium is an environmental electrophile that modifies protein reactive thiols such as Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of nuclear factor-erythroid 2-related factor 2 (Nrf2). In the present study, we investigated a role of the Keap1–Nrf2 system in cellular response to cadmium in vascular endothelial cells. Exposure of bovine aortic endothelial cells to cadmium resulted in modification of Keap1 and Nrf2 activation, thereby up-regulating not only its typical downstream proteins but also metallothionein-1/2. Experiments with siRNA-mediated knockdown of Nrf2 or Keap1 supported participation of the Keap1–Nrf2 system in the modulation of metallothionein-1/2 expression. Furthermore, chromatin immunoprecipitation assay showed that Nrf2 was recruited to the antioxidant response element of the promoter region of the bovine metallothionein-2 gene in the presence of cadmium. These results suggest that the transcription factor Nrf2 plays, at least in part, a role in the changes in metallothionein expression mediated by exposure to cadmium. - Highlights: • Role of the Keap1–Nrf2 system in cellular response to cadmium was examined. • We used bovine aortic endothelial cells as a model of the vascular endothelium. • Exposure of cells to cadmium resulted in modification of Keap1 and Nrf2 activation. • Keap1–Nrf2 system participated in the modulation of metallothionein-1/2 expression. • Nrf2 was recruited to the antioxidant response element of MT2 promoter region.

  20. A cadmium metallothionein gene of ridgetail white prawn Exopalaemon carinicauda (Holthuis, 1950) and its expression

    Science.gov (United States)

    Zhang, Jiquan; Wang, Jing; Xiang, Jianhai

    2013-11-01

    Metallothioneins (MTs) are a group of low molecular weight cysteine-rich proteins capable of binding heavy metal ions. A cadmium metallothionein ( EcMT — Cd) cDNA with a 189 bp open reading frame (ORF) that encoded a 62 amino acid protein was obtained from Exopalaemon carinicauda. Seventeen cysteines were in the deduced amino acid sequence, and the cysteine (Cys)-rich characteristic was revealed in different metallothioneins in other species. In addition, the deduced amino acid sequence did not contain any aromatic amino acid residues, such as tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). EcMT—Cd mRNA was expressed in all tested tissues (the ovary, muscle, stomach, and hepatopancreas), and its expression profiles in the hepatopancreas were very different when shrimps were exposed to seawater containing either 50 μmol/L CuSO4 or 2.5 μmol/L CdCl 2. The expression of EcMT-Cd was significantly up-regulated in shrimp exposed to CuSO4 for 12 h and down-regulated in shrimps exposed to CdCl2 for 12 h. After 24 h exposure to both metals, its expression was down-regulated. By contrast, at 48 h the EcMT-Cd was up-regulated in test shrimps exposed to CdCl2. The transcript of EcMT-Cd was very low or even absent before the zoea stage, and the expression of EcMT-Cd was detected from mysis larvae-I, then its expression began to rise. In conclusion, a cadmium MT exists in E. carinicauda that is expressed in different tissues and during different developmental stages, and responds to the challenge with heavy metal ions, which provides a clue to understanding the function of cadmium MT.

  1. Time-course expression of CNS inflammatory, neurodegenerative tissue repair markers and metallothioneins during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Penkowa, M; Demestre, M

    2005-01-01

    -inflammatory, neuroprotective, antioxidant proteins expressed during EAE and MS, in which they might play a protective role. The present study aimed to describe the expression profile of a group of inflammatory, neurodegenerative and tissue repair markers as well as metallothioneins during proteolipid protein-induced EAE...

  2. The role of metallothionein in oncogenesis and cancer treatment.

    Science.gov (United States)

    Bizoń, Anna; Jędryczko, Kinga; Milnerowicz, Halina

    2017-02-14

    Metallothionein is cysteine-rich low molecular mass protein. The involvement of MT in many physiological and pathophysiological processes such as apoptosis, proliferation, angiogenesis, and the detoxification of heavy metals suggested participation of this protein in carcinogenesis and tumor therapy. Depending on the type of tissue and classification of carcinoma various it was observed relation between MT expression and tumor type, stage, grade, poor prognosis and body resistance to radiotherapy and chemotherapy. MT in tumor cell plays important role in defense mechanism against the effect of radiation by inhibiting the processes that lead to the apoptosis. A number of studies have shown an increased expression of MT in various human tumors of larynx, pancreas, kidney, uterus and breast, whereas lower MT expression was detected in liver tumors. Variable MT expression was detected in case of thyroid, prostate, lung, stomach and central nervous system tumors. Also MT plays crucial role in the cytostatics treatment. MT can bind cis-platinum compounds and removes them from the cells, which may lead to multidrug resistance. However, the same functions of MT protect against the negative effects of chemotherapeutic treatment. It is especially important in case of heart cells. Analysis of MT expression in tumor cells may be useful in choosing method of treatment. It is difficult to determine whether increased expression of MT is only a inducing factor of the development of the carcinogenesis, its malignances and multidrug resistance, or it is a factor inhibiting the induction and development of cancer.

  3. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    Science.gov (United States)

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  4. Metallothionein as an Anti-Inflammatory Mediator

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Inoue

    2009-01-01

    Full Text Available The integration of knowledge concerning the regulation of MT, a highly conserved, low molecular weight, cystein-rich metalloprotein, on its proposed functions is necessary to clarify how MT affects cellular processes. MT expression is induced/enhanced in various tissues by a number of physiological mediators. The cellular accumulation of MT depends on the availability of cellular zinc derived from the diet. MT modulates the binding and exchange/transport of heavy metals such as zinc, cadmium, or copper under physiological conditions and cytoprotection from their toxicities, and the release of gaseous mediators such as hydroxyl radicals or nitric oxide. In addition, MT reportedly affects a number of cellular processes, such as gene expression, apoptosis, proliferation, and differentiation. Given the genetic approach, the apparently healthy status of MT-deficient mice argues against an essential biological role for MT; however, this molecule may be critical in cells/tissues/organs in times of stress, since MT expression is also evoked/enhanced by various stresses. In particular, because metallothionein (MT is induced by inflammatory stress, its roles in inflammation are implied. Also, MT expression in various organs/tissues can be enhanced by inflammatory stimuli, implicating in inflammatory diseases. In this paper, we review the role of MT of various inflammatory conditions.

  5. Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Guo, Hui; Li, Kexu; Wang, Wei; Wang, Chenggui; Shen, Yuchun

    2017-10-01

    Copper, a common chemical contaminant in aquatic environment, is known to be toxic to aquatic life at high concentrations. In the present study, we evaluated the apoptotic cell ratio and ROS production in hemocytes of the white shrimp Litopenaeus vannamei exposed to 1 or 5 mg L -1 Cu for 0, 3, 6, 12, 24, and 48 h. The expression changes of antioxidant biomarker genes, i.e., copper-zinc superoxide dismutase (Cu-Zn SOD) and catalase (CAT), apoptosis-related genes, i.e., caspase-3 and inhibitor of apoptosis protein (IAP), and a specific biomarker gene of heavy metal pollution, i.e., metallothionein (MT), were also determined in hemocytes. Significant increases in ROS production were observed in both treatment groups at each time points. The apoptotic cell ratios were significantly increased at 6-48 h among shrimp exposed to 1 mg L -1 Cu and at each time points in 5 mg L -1 Cu group. These results indicated that Cu would induce oxidative stress and apoptosis in the hemocyte of L. vannamei. Quantitative real-time PCR analysis revealed that the relative expression levels of Cu-Zn SOD, CAT, caspase-3, IAP, and MT were upregulated in a dose-dependent and time-dependent manner, suggesting the involvement of these genes in stress response against Cu exposure.

  6. The role of metallothionein in oncogenesis and cancer treatment

    Directory of Open Access Journals (Sweden)

    Anna Bizoń

    2017-02-01

    Full Text Available Metallothionein is cysteine-rich low molecular mass protein. The involvement of MT in many physiological and pathophysiological processes such as apoptosis, proliferation, angiogenesis, and the detoxification of heavy metals suggested participation of this protein in carcinogenesis and tumor therapy.Depending on the type of tissue and classification of carcinoma various it was observed relation between MT expression and tumor type, stage, grade, poor prognosis and body resistance to radiotherapy and chemotherapy. MT in tumor cell plays important role in defense mechanism against the effect of radiation by inhibiting the processes that lead to the apoptosis. A number of studies have shown an increased expression of MT in various human tumors of larynx, pancreas, kidney, uterus and breast, whereas lower MT expression was detected in liver tumors. Variable MT expression was detected in case of thyroid, prostate, lung, stomach and central nervous system tumors.Also MT plays crucial role in the cytostatics treatment. MT can bind cis-platinum compounds and removes them from the cells, which may lead to multidrug resistance. However, the same functions of MT protect against the negative effects of chemotherapeutic treatment. It is especially important in case of heart cells.Analysis of MT expression in tumor cells may be useful in choosing method of treatment. It is difficult to determine whether increased expression of MT is only a inducing factor of the development of the carcinogenesis, its malignances and multidrug resistance, or it is a factor inhibiting the induction and development of cancer.

  7. Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats.

    Directory of Open Access Journals (Sweden)

    Yuping Wang

    Full Text Available To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense.Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA and collagen III (Col III were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD and malondialdehyde (MDA in liver homogenates were determined. Metallothionein (MT expression was detected by real-time RT-PCR and immunohistochemical techniques.Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT, increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver.Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis.

  8. Expression of metallothioneins I and II related to oxidative stress in the liver of aluminium-treated rats.

    Science.gov (United States)

    Ghorbel, Imen; Chaabane, Mariem; Elwej, Awatef; Boudawara, Ons; Abdelhedi, Sameh; Jamoussi, Kamel; Boudawara, Tahya; Zeghal, Najiba

    2016-10-01

    Hepatotoxicity, induced by aluminium chloride (AlCl 3 ), has been well studied but there are no reports about liver metallothionein (MT) genes induction. Therefore, it is of interest to establish the mechanism involving the relation between MT gene expression levels and the oxidative stress status in hepatic cells of aluminium-treated rats. Aluminium (Al) was administered to rats in their drinking water at a dose of 50 mg/kg body weight for three weeks. AlCl 3 provoked hepatotoxicity objectified by an increase in malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), advanced oxidation protein products (AOPP), protein carbonyls (PCO) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH) and vitamin C. CAT and Glutathione peroxidase (GPx) activities were decreased while Mn-SOD gene expression, total Metallothionein content and MT I and MT II genes induction were increased. There are changes in plasma of some trace elements, albumin levels, transaminases, LDH and ALP activities. All these changes were supported by histopathological observations.

  9. Metallothionein (MT)-III

    DEFF Research Database (Denmark)

    Carrasco, J; Giralt, M; Molinero, A

    1999-01-01

    Metallothionein-III is a low molecular weight, heavy-metal binding protein expressed mainly in the central nervous system. First identified as a growth inhibitory factor (GIF) of rat cortical neurons in vitro, it has subsequently been shown to be a member of the metallothionein (MT) gene family...... injected rats. The specificity of the antibody was also demonstrated in immunocytochemical studies by the elimination of the immunostaining by preincubation of the antibody with brain (but not liver) extracts, and by the results obtained in MT-III null mice. The antibody was used to characterize...... the putative differences between the rat brain MT isoforms, namely MT-I+II and MT-III, in the freeze lesion model of brain damage, and for developing an ELISA for MT-III suitable for brain samples. In the normal rat brain, MT-III was mostly present primarily in astrocytes. However, lectin staining indicated...

  10. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yuhui; Huang, Jiawei; Gu, Ying; Liu, Cong; Li, Hong; Liu, Jing; Ren, Jiong; Yang, Zhangyou [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China); Peng, Shuangqing [Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Science, 20 Dongdajie Street, Fengtai District, Beijing 100071 (China); Wang, Weidong, E-mail: wwdwyl@sina.com [Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Li, Rong, E-mail: yuhui_hao@126.com [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China)

    2015-09-15

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MT −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after exposure to

  11. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    International Nuclear Information System (INIS)

    Hao, Yuhui; Huang, Jiawei; Gu, Ying; Liu, Cong; Li, Hong; Liu, Jing; Ren, Jiong; Yang, Zhangyou; Peng, Shuangqing; Wang, Weidong; Li, Rong

    2015-01-01

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MT −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after exposure to

  12. The renal metallothionein expression profile is altered in human lupus nephritis

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Penkowa, Milena; Andersen, Claus Bøgelund

    2008-01-01

    of standard statistical methods. RESULTS: Proximal tubules displaying epithelial cell MT-I+II depletion in combination with luminal MT-I+II expression were observed in 31 out of 37 of the lupus nephritis specimens, but not in any of the control sections (P = 0.006). The tubular MT score, defined as the median......INTRODUCTION: Metallothionein (MT) isoforms I + II are polypeptides with potent antioxidative and anti-inflammatory properties. In healthy kidneys, MT-I+II have been described as intracellular proteins of proximal tubular cells. The aim of the present study was to investigate whether the renal MT......-I+II expression profile is altered during lupus nephritis. METHODS: Immunohistochemistry was performed on renal biopsies from 37 patients with lupus nephritis. Four specimens of healthy renal tissue served as controls. Clinicopathological correlation studies and renal survival analyses were performed by means...

  13. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    Science.gov (United States)

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  14. Comparative population analysis of metallothionein promoter alleles suggests stress-induced microevolution in the field.

    NARCIS (Netherlands)

    Janssens, T.K.S.; Del Rio Lopez, R.; Mariën, A.G.H.; Timmermans, M.J.T.N.; Montagne-Wajer, K; van Straalen, N.M.; Roelofs, D.

    2008-01-01

    We investigate a model system for microevolution of transcriptional regulation: metallothionein expression in springtails. A previous survey of the metallothionein promoter in Orchesella cincta (Collembola) revealed nine alleles with differential basal activities and responses to cadmium and

  15. Comparative population analysis of metallothionein promoter alleles suggests stress-induced microevolution in the field

    NARCIS (Netherlands)

    Janssens, Thierry K S; Lopéz, Ricardo del Rio; Mariën, Janine; Timmermans, Martijn J T N; Montagne-Wajer, K; van Straalen, Nico M; Roelofs, Dick

    2008-01-01

    We investigate a model system for microevolution of transcriptional regulation: metallothionein expression in springtails. A previous survey of the metallothionein promoter in Orchesella cincta (Collembola) revealed nine alleles with differential basal activities and responses to cadmium and

  16. Cytotoxicant-induced trophoblast dysfunction and abnormal pregnancy outcomes: role of zinc and metallothionein.

    Science.gov (United States)

    McAleer, Mary Frances; Tuan, Rocky S

    2004-12-01

    Normal trophoblast function, including implantation, hormone production, and formation of the selectively permeable maternofetal barrier, is essential for the establishment and maintenance of the fetoplacental unit and proper fetal development. Maternal cytotoxicant exposure causes the destruction of these cells, especially the terminally differentiated syncytiotrophoblasts, and results in a myriad of poor pregnancy outcomes. These outcomes range from intrauterine growth retardation and malformation to spontaneous abortion or stillbirth. There is recent evidence that the metal-binding protein, metallothionein, is involved in the protection of human trophoblastic cells from heavy metal-induced and severe oxidative stress-induced apoptosis. Metallothionein, with its unique biochemical structure, can both bind essential metal ions, such as the transcription modulator zinc, and yet allow their ready displacement by toxic nonessential metal ions or damaging free radicals. These properties suggest that metallothionein may be responsible not only for sequestering the cytotoxic agents, but also for altering signal transduction in the affected cells. Here, we review several identified causes of adverse pregnancy outcomes (specifically, prenatal exposure to cigarette smoke and alcohol, gestational infection, and exposure to environmental contaminants), discuss the role of zinc in modulating the cellular response to these toxic insults, and then propose how metallothionein may function to mediate this protective response. Published 2005 Wiley-Liss, Inc.

  17. Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells.

    NARCIS (Netherlands)

    Reinecke, F.; Levanets, O.; Olivier, Y.; Louw, R.; Semete, B.; Grobler, A.; Hidalgo, J.; Smeitink, J.A.M.; Olckers, A.; Westhuizen, F.H. van der

    2006-01-01

    The role of MT (metallothionein) gene expression was investigated in rotenone-treated HeLa cells to induce a deficiency of NADH:ubiquinone oxidoreductase (complex I). Complex I deficiency leads to a diversity of cellular consequences, including production of ROS (reactive oxygen species) and

  18. A synthetic cadmium metallothionein gene (PMCd1syn) of Paramecium species: expression, purification and characteristics of metallothionein protein.

    Science.gov (United States)

    Dar, Saira; Shuja, Rukhsana N; Shakoori, Abdul Rauf

    2013-02-01

    Metallothioneins (MTs) are metal binding proteins that are rich in cysteine residues constituting 10-30 % of the total protein, and in which the thiol groups bind to the metal ions. The increasing amount of metal ions in the medium have shown increased production of MTs by different organisms such as bacteria, protozoa and mammals like humans. PMCd1 is the first gene ever discovered in Paramecium, a ciliated protozoan, that could produce this MT in response to cadmium. In this study the PMCd1syn gene has been cloned in pET41a expression vector and expressed in an Escherichia coli BL21-codonplus strain for the first time. Since the gene PMCd1 amplified from Paramecium contained 10 codons, which could act as stop codons during expression in E. coli, this gene of 612 bps was synthesized to substitute these (stop) codons for the Paramecium sp. specific amino acids. For stability of the expressed protein, glutathione-S-transferase gene was fused with PMCd1syn gene and coexpressed. The cells expressing PMCd1syn demonstrated increased accumulation of cadmium. This is the first report of cadmium MT protein expressed from Paramecium species, particularly from synthetic MT gene (PMCd1syn). This fusion protein, the molecular weight of which has been confirmed to be 53.03 kDa with MALDI analysis, is rich in cysteine residues, and has been shown for the first time in this ciliate to bind to and sequester Cd(2+)-ions.

  19. Effect of cadmium on glutathione S-transferase and metallothionein gene expression in coho salmon liver, gill and olfactory tissues

    International Nuclear Information System (INIS)

    Espinoza, Herbert M.; Williams, Chase R.; Gallagher, Evan P.

    2012-01-01

    Highlights: ► Developed qPCR assays to distinguish closely related GST isoforms in salmon. ► Examined the effect of cadmium on GST and metallothionein genes in 3 tissues. ► Modulation of GST varied among isoforms, tissues, and included a loss of expression. ► Metallothionein outperformed, but generally complemented, GSTs as biomarkers. ► Salmon olfactory genes were among the most responsive to cadmium. - Abstract: The glutathione S-transferases (GSTs) are a multifunctional family of phase II enzymes that detoxify a variety of environmental chemicals, reactive intermediates, and secondary products of oxidative damage. GST mRNA expression and catalytic activity have been used as biomarkers of exposure to environmental chemicals. However, factors such as species differences in induction, partial analyses of multiple GST isoforms, and lack of understanding of fish GST gene regulation, have confounded the use of GSTs as markers of pollutant exposure. In the present study, we examined the effect of exposure to cadmium (Cd), a prototypical environmental contaminant and inducer of mammalian GST, on GST mRNA expression in coho salmon (Oncorhynchus kisutch) liver, gill, and olfactory tissues. GST expression data were compared to those for metallothionein (MT), a prototypical biomarker of metal exposure. Data mining of genomic databases led to the development of quantitative real-time PCR (qPCR) assays for salmon GST isoforms encompassing 9 subfamilies, including alpha, mu, pi, theta, omega, kappa, rho, zeta and microsomal GST. In vivo acute (8–48 h) exposures to low (3.7 ppb) and high (347 ppb) levels of Cd relevant to environmental scenarios elicited a variety of transient, albeit minor changes (<2.5-fold) in tissue GST profiles, including some reductions in GST mRNA expression. In general, olfactory GSTs were the earliest to respond to cadmium, whereas, more pronounced effects in olfactory and gill GST expression were observed at 48 h relative to earlier time

  20. Short-term exposure of mice to gasoline vapor increases the metallothionein expression in the brain, lungs and kidney.

    Science.gov (United States)

    Grebić, D; Jakovac, H; Mrakovcić-Sutić, I; Tomac, J; Bulog, A; Micović, V; Radosević-Stasić, B

    2007-06-01

    Environmental airborne pollution has been repeatedly shown to affect multiple aspects of brain and cardiopulmonary function, leading to cognitive and behavioral changes and to the pronounced inflammatory response in the respiratory airways. Since in the cellular defense system the important role might have stress proteins-metallothionein (MT)-I and MT-II, which are involved in sequestration and dispersal of metal ions, regulation of the biosynthesis and activities of zinc-dependent transcription factors, as well as in cellular protection from reactive oxygen species, genotoxicity and apoptosis, in this study we investigated their expression in the brain, lungs and kidney, following intermittent exposure of mice to gasoline vapor. Control groups consisted of intact mice and of those closed in the metabolic chamber and ventilated with fresh air. The data obtained by immunohistochemistry showed that gasoline inhalation markedly upregulated the MTs expression in tissues which were directly or indirectly exposed to toxic components, significantly increasing the number of MT I+II positive cells in CNS (the entorhinal cortex, ependymal cells, astroglial cells in subventricular zone and inside the brain parenchyma, subgranular and CA1-CA3 zone of the dentate gyrus in hippocampus and macrophages-like cells in perivascular spaces), in the lungs (pneumocytes type I and type II) and in the kidneys (parietal wall of Bowman capsule, proximal and distal tubules). The data point to the protective and growth-regulatory effects of MT I + II on places of injuries, induced by inhalation of gasoline vapor.

  1. Tetrahymena metallothioneins fall into two discrete subfamilies.

    Directory of Open Access Journals (Sweden)

    Silvia Díaz

    2007-03-01

    Full Text Available Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals.We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5. Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize the structure of these proteins. We now formally subdivide the known metallothioneins from the ciliate genus Tetrahymena into two well defined subfamilies, 7a and 7b, based on phylogenetic analysis, on the pattern of clustering of Cys residues, and on the pattern of inducibility by the heavy metals Cd and Cu. Sequence alignment also reveals a remarkably regular, conserved and hierarchical modular structure of all five subfamily 7a MTs, which include MTT3 and MTT5. The former has three modules, while the latter has only two. Induction levels of the three T. thermophila genes were determined using quantitative real time RT-PCR. Various stressors (including heavy metals brought about dramatically different fold-inductions for each gene; MTT5 showed the highest fold-induction. Conserved DNA motifs with potential regulatory significance were identified, in an unbiased way, upstream of the start codons of subfamily 7a MTs. EST evidence for alternative splicing in the 3' UTR of the MTT5 mRNA with potential regulatory activity is reported.The small number and remarkably regular structure of Tetrahymena MTs, coupled with the experimental tractability of this model organism for studies of in vivo function, make it an attractive system for the experimental dissection of the roles, structure/function relationships, regulation of gene expression, and adaptive evolution of these proteins, as well as for the development of biotechnological applications for the environmental monitoring of toxic substances.

  2. Heterologous expression of a rice metallothionein isoform (OsMTI-1b in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance

    Directory of Open Access Journals (Sweden)

    Zahra Ansarypour

    Full Text Available Abstract Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.

  3. METALLOTHIONEINS AS SENSORS AND CONTROLS EXCHANGE OF METALS IN THE CELLS

    Directory of Open Access Journals (Sweden)

    V. A. Kutyakov

    2014-01-01

    Full Text Available The basic information on the classification, structure, induction and degradation, functions of the protein family – metallothionein (MT, including CNS in health and disease are presented in this review. It was found that four major isoforms of metallothionein perform different biological roles, are localized in dif- ferent tissues. Induction of MT is a universal reaction to the impact of a variety of stress factors. In recent years, understanding of the role of metallothioneins in metal homeostasis in the tissues in normal and pathological conditions have changed significantly. Notes polyfunctionality metallothioneins (transport of metal ions, maintaining redox reactions, tread, signal, modulated and regulatory functions and their im- pact on basic cellular functions such as proliferation, differentiation, programmed cell death. Further- more, a special role is shown MT in the pathogenesis of cardiovascular, neurodegenerative and neoplastic disorders.Currently, these molecules are increasingly considered as potential targets for therapy of a wide range of diseases and the development of targeted approaches to the regulation of expression of MT – one of the promising areas of pharmacology and toxicology. Stressed the safety of metallothioneins as therapeutic agents.

  4. Barley metallothioneins

    DEFF Research Database (Denmark)

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas

    2012-01-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the prot......Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization...

  5. High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2011-01-01

    Full Text Available Metallothionein (MT is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2 are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.

  6. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  7. Metallothionein expression in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Ortega-Aznar, A

    2003-01-01

    Multiple sclerosis (MS) is a major chronic demyelinating and inflammatory disease of the central nervous system (CNS) in which oxidative stress likely plays a pathogenic role in the development of myelin and neuronal damage. Metallothioneins (MTs) are antioxidant proteins induced in the CNS...

  8. Induction of Metallothionein Expression After Exposure to Conventional Cigarette Smoke but Not Electronic Cigarette (ECIG-Generated Aerosol in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Eric Cobb

    2018-04-01

    Full Text Available Aim: With the invention of electronic cigarettes (ECIG, many questions have been raised regarding their safety as an alternative to smoking conventional cigarettes. Conventional cigarette smoke contains a variety of toxicants including heavy metals. However, ECIG-generated aerosol contains only trace amounts of metals, adding to the argument for it being a safer alternative. In response to heavy metal exposure, metallothioneins are induced in cells to help store the metal, detoxify the body, and are also known responders to oxidative stress. In an attempt to add to the evaluation of the safety of ECIGs, metallothionein expression was quantified using the nematode Caenorhabditis elegans as an assessment of stress induced cellular damage caused by exposure.Methods: Adult nematodes were exposed to either ECIG aerosol or conventional cigarette smoke at doses of 15, 30, and 45 puffs, the equivalent of one, two, and three cigarettes, respectively. Movement, survival, and stress-induced sleep were assessed for up to 24 h after exposure. Relative expression levels for mtl-1 and mtl-2, C. elegans metallothionein genes, were analyzed after 1, 5, and 24 h post exposure using quantitative RT-PCR.Results: Nematodes exposed to conventional cigarette smoke underwent stress-induced sleep in a dose dependent manner with animals recovering to values within the range of air control after 5 h post exposure. Those exposed to ECIG aerosol did not undergo stress-induced sleep and were indistinguishable from controls. The expression of mtl-1 increased in a dose and time dependent manner in C. elegans exposed to conventional cigarette smoke, with a maximum expression observed at 5 h post exposure of 45 puffs. No induction of mtl-2 was observed in any animals. Additionally, ECIG aerosol did not induce expression of mtl-1 and mtl-2 at levels different than those of untreated.Conclusion: ECIG aerosol failed to induce a stress response in C. elegans. In contrast

  9. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  10. Metallothionein treatment reduces proinflammatory cytokines IL-6 and TNF-alpha and apoptotic cell death during experimental autoimmune encephalomyelitis (EAE)

    DEFF Research Database (Denmark)

    Penkowa, M; Hidalgo, J

    2001-01-01

    cytokines and apoptosis during EAE could contribute to the reported diminution of clinical symptoms and mortality in EAE-immunized rats receiving Zn-MT-II treatment. Our results demonstrate that MT-II reduces the CNS expression of proinflammatory cytokines and the number of apoptotic neurons during EAE......, which is characterized by significant inflammation and neuroglial damage. We have recently shown that the exogenous administration of the antioxidant protein zinc-metallothionein-II (Zn-MT-II) significantly decreased the clinical symptoms, mortality, and leukocyte infiltration of the CNS during EAE....... However, it is not known how EAE progression is regulated nor how cytokine production and cell death can be reduced. We herewith demonstrate that treatment with Zn-MT-II significantly decreased the CNS expression of IL-6 and TNF-alpha during EAE. Zn-MT-II treatment could also significantly reduce...

  11. Metallothionein, a marker of antiapoptosis, is associated with clinical forms of oral lichen planus.

    Science.gov (United States)

    Allon, Irit; Ofir, Merav; Vered, Hanna; Hirshberg, Abraham

    2014-11-01

    To investigate the expression of anti- and proapoptosis markers, metallothionein (MT), and caspase-2, in the epithelial and inflammatory cells of oral lichen planus (OLP) patients, and to investigate the association with clinical parameters. Included were biopsies of 70 OLP patients. The clinical data were collected from patients' charts. The expression of MT and caspase-2 was immunomorphometrically analyzed in the epithelial and inflammatory cells, and the results were correlated with the clinical presentation. The epithelial and inflammatory cells expressed MT (10.2 ± 5.75 and 0.68 ± 0.86) and caspase-2 (1.54 ± 2.6 and 0.98 ± 1.15) which show a trend toward an inverse expression. The expression of MT in the epithelium was significantly higher in patients presenting with keratotic lichen planus than in patients with the atrophic and erosive forms (P = 0.0008). In the inflammatory cells, the expression of MT was inversely correlated with increasing age (R = 0.34, P = 0.0069). The pattern of expression of MT and caspase-2 in OLP suggests an extensive antiapoptotic response in the keratotic form of the disease. Symptomatic patients may benefit from therapy targeted to apoptosis in the future. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Cucumber Metallothionein-Like 2 (CsMTL2 Exhibits Metal-Binding Properties

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2016-11-01

    Full Text Available We identified a novel member of the metallothionein (MT family, Cucumis sativus metallothionein-like 2 (CsMTL2, by screening a young cucumber fruit complementary DNA (cDNA library. The CsMTL2 encodes a putative 77-amino acid Class II MT protein that contains two cysteine (Cys-rich domains separated by a Cys-free spacer region. We found that CsMTL2 expression was regulated by metal stress and was specifically induced by Cd2+ treatment. We investigated the metal-binding characteristics of CsMTL2 and its possible role in the homeostasis and/or detoxification of metals by heterologous overexpression in Escherichia coli cells. Furthermore, we produced a deletion mutant form of the protein, CsMTL2m, that contained the two Cys-rich clusters but lacked the spacer region, in E. coli. We compared the metal-binding properties of CsMTL2 with those of CsMTL2m, the β domain of human metallothionein-like protein 1 (HsMTXb, and phytochelatin-like (PCL heterologously expressed in E. coli using metal-binding assays. We found that E. coli cells expressing CsMTL2 accumulated the highest levels of Zn2+ and Cd2+ of the four transformed cell types, with levels being significantly higher than those of control cells containing empty vector. E. coli cells expressing CsMTL2 had a higher tolerance for cadmium than for zinc ions. These findings show that CsMTL2 improves metal tolerance when heterologously expressed in E. coli. Future studies should examine whether CsMTL2 improves metal tolerance in planta.

  13. Expression of Metallothionein and Vascular Endothelial Growth Factor Isoforms in Breast Cancer Cells.

    Science.gov (United States)

    Wierzowiecka, Barbara; Gomulkiewicz, Agnieszka; Cwynar-Zajac, Lucja; Olbromski, Mateusz; Grzegrzolka, Jedrzej; Kobierzycki, Christopher; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2016-01-01

    Metallothioneins (MTs) are low-molecular-weight and cysteine-rich proteins that bind heavy metal ions and oxygen-free radicals. MTs are commonly expressed in various tissues of mammals and are involved in regulation of cell proliferation and differentiation, and may be engaged in angiogenesis. Expression of MTs has been studied in many cancer types, especially breast cancer. The research results indicate that MTs may play important, although not yet fully known, roles in cancer angiogenesis. The aim of this study was to analyze the level of gene expression of selected MT isoforms induced with zinc ions in correlation with vascular endothelial growth factor (VEGF) isoforms in in vitro models of breast cancer. The studies were carried out in three breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231). An epithelial cell line derived from normal breast tissue (Me16c) was used as a control. The levels of expression of selected MT isoforms and selected genes involved in angiogenesis were studied with real-time PCR. Expression of different MT isoforms was induced by zinc ions to differing degrees in individual breast cancer cell lines. An increase in the expression of some MT isoforms was associated with a slight increase in the level of expression of VEGFA. The research results may indicate certain correlation between an increased expression of selected MT isoforms and a pro-angiogenic factor VEGF in specific types of breast cancer cells. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Survey of ABC transporter and metallothionein genes expressions in tall fescue inoculated with Funneliformis intraradices under Nickel toxicity

    Directory of Open Access Journals (Sweden)

    Massomeh Rafiei-Demneh

    2016-09-01

    Full Text Available In plants, there are complex network of transport, chelation, and sequestration processes that functions in maintaining concentrations of essential metal ions in different cellular compartments, thus minimizing the damage caused by entry of non-essential metal ions into the cytosol. In the presence of toxic ones, arbuscular mycorrhizal (AM fungi are able to alleviate metal toxicity in the plant. In this study the effect of an arbuscular mycorrhizal fungi Funneliformis intraradices on growth, Nickel tolerance, and ABC transporter and metallothionein expression in leaves and roots of tall fescue (Festuca arundinacea plants cultivated in Ni polluted soil were evaluated. The fungi infected (M+ and uninfected (M- fescue plants were cultivated in soil under different Ni concentrations (0, 30, 90 and 180 ppm for 3 months. Results demonstrated the positive effect of fungi colonization on the increase in growth and reduction in Ni uptake (90 and 180 ppm and Ni translocation from roots to shoot of tall fescue under Ni stress. The results also demonstrated that the level of ABC transporterand metallothionein transcripts accumulation in roots was considerably higher for both M- and M+ plants compared to the control. Also, M+ plants showed less ABC and MET expression compared to the M- plants. These results demonstrated the importance of mycorrhizal colonization of F. intraradices in reduction of Ni transport from root to shoot of tall fescue which alleviates Ni-induced stress.

  15. Metallothionein-1+2 protect the CNS after a focal brain injury

    DEFF Research Database (Denmark)

    Giralt, Mercedes; Penkowa, Milena; Lago, Natalia

    2002-01-01

    We have evaluated the physiological relevance of metallothionein-1+2 (MT-1+2) in the CNS following damage caused by a focal cryolesion onto the cortex. In comparison to normal mice, transgenic mice overexpressing the MT-1 isoform (TgMTI* mice) showed a significant decrease of the number...... dramatically reduced the cryolesion-induced oxidative stress and neuronal apoptosis. Remarkably, these effects were also obtained by the intraperitoneal administration of MT-2 to both normal and MT-1+2 knock-out mice. These results fully support the notion that MT-1+2 are essential in the CNS for coping...

  16. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress.

    Science.gov (United States)

    Schor-Fumbarov, Tamar; Goldsbrough, Peter B; Adam, Zach; Tel-Or, Elisha

    2005-12-01

    A cDNA encoding a type 2 metallothionein (MT) was isolated from Azolla filiculoides, termed AzMT2, accession no. AF482470. The AzMT2 transcript was expressed in sterile A. filiculoides that were free of the cyanobiont Anabaena azollae after erythromycin treatment, proving that AzMT2 is encoded by the fern genome. AzMT2 RNA expression was enhanced by the addition of Cd(+2), Cu(+2), Zn(+2) and Ni(+2) to the growth medium. The transcript level of AzMT2 correlated with the metal content in the plants. Temporal analysis of AzMT2 expression demonstrated that Cd(2+) and Ni(2+) induction of AzMT2 RNA expression occurred within 48 h. AzMT2-enhanced expression responded more intensely to the toxic Cd and Ni ions in A. filiculoides suggesting that AzMT2 may participate in detoxification mechanism. The more moderate response of AzMT2 to Zn and Cu ions, which are essential micronutrients, suggest a role for AzMT2 in metal homeostasis.

  17. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    2015-02-01

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% and 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.

  18. Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress

    Energy Technology Data Exchange (ETDEWEB)

    Huang Guoyong, E-mail: huang_gyh@sina.com [Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang Youshao [Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China)

    2010-08-01

    Metallothioneins (MTs) are a family of low-molecular-weight cysteine-rich proteins and are thought to play possible roles in metal metabolism or detoxification. To evaluate the roles of metallothioneins in metal homeostasis or tolerance in Avicennia marina, a real-time quantitative PCR protocol was developed to directly evaluate the expression of AmMT2 mRNA, when A. marina seedlings were exposed to different concentrations of zinc (Zn), copper (Cu) or lead (Pb) for 3 and 7 d. Real-time quantitative PCR results indicated that the regulation of AmMT2 mRNA expression by Zn, Cu and Pb was strongly dependent on concentration and time of exposure. A significant increase in the transcripts of AmMT2 gene was also found in response to Zn, Cu and Pb, at least under some experimental conditions. When AmMT2 was overexpressed in Escherichia coli BL21 as a carboxy-terminal extension of glutathione-S-transferase (GST), the transgenic bacteria showed an increased tolerance to Zn, Cu, Pb and Cd exposure as compared to control strains. Moreover, GST-AmMT2 was purified from E. coli cells grown in the presence of 400 {mu}M Zn, Cu, Pb or Cd. The purified GST-AmMT2 fusion protein could bind higher levels of all four metals than GST alone. Taken together, these data support the hypothesis that AmMT2 may be involved in processes of metal homeostasis or tolerance in A. marina.

  19. Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta

    Directory of Open Access Journals (Sweden)

    van Straalen Nico M

    2007-06-01

    Full Text Available Abstract Background Metallothionein (mt transcription is elevated in heavy metal tolerant field populations of Orchesella cincta (Collembola. This suggests that natural selection acts on transcriptional regulation of mt in springtails at sites where cadmium (Cd levels in soil reach toxic values This study investigates the nature and the evolutionary origin of polymorphisms in the metallothionein promoter (pmt and their functional significance for mt expression. Results We sequenced approximately 1600 bp upstream the mt coding region by genome walking. Nine pmt alleles were discovered in NW-European populations. They differ in the number of some indels, consensus transcription factor binding sites and core promoter elements. Extensive recombination events between some of the alleles can be inferred from the alignment. A deviation from neutral expectations was detected in a cadmium tolerant population, pointing towards balancing selection on some promoter stretches. Luciferase constructs were made from the most abundant alleles, and responses to Cd, paraquat (oxidative stress inducer and moulting hormone were studied in cell lines. By using paraquat we were able to dissect the effect of oxidative stress from the Cd specific effect, and extensive differences in mt induction levels between these two stressors were observed. Conclusion The pmt alleles evolved by a number of recombination events, and exhibited differential inducibilities by Cd, paraquat and molting hormone. In a tolerant population from a metal contaminated site, promoter allele frequencies differed significantly from a reference site and nucleotide polymorphisms in some promoter stretches deviated from neutral expectations, revealing a signature of balancing selection. Our results suggest that the structural differences in the Orchesella cincta metallothionein promoter alleles contribute to the metallothionein -over-expresser phenotype in cadmium tolerant populations.

  20. Erythrocyte metallothionein as an index of zinc status in humans

    International Nuclear Information System (INIS)

    Grider, A.; Bailey, L.B.; Cousins, R.J.

    1990-01-01

    Metallothionein concentrations in erythrocyte lysates derived from human subjects were measured by an ELISA procedure. IgG obtained from serum of sheep injected with human metallothionein 1 was used in this competitive assay. Subjects were fed a semipurified zinc-deficient diet for an 8-day depletion period after 3 days of acclimation. Fasting plasma zinc concentrations were reduced ∼7%. Metallothionein in the erythrocyte lysates was significantly decreased to 59% of the initial level by the end of the depletion period. Supplementation of these depleted subjects with zinc did not increase erythrocyte metallothionein levels within 24 hr. Daily supplementation of control subjects with zinc increased erythrocyte metallothionein to a 7-fold maximum within 7 days. These levels were reduced by 61% within 14 days after zinc supplementation was terminated. Incubation of rat [ 35 S]metallothionein with human erythrocyte lysate showed a time-dependent increase in 35 S soluble in 20% trichloroacetic acid, indicating degradation of the labeled protein, presumably via protease activity in the lysate. It is proposed that zinc supplementation induces erythrocyte metallothionein during erythropoiesis and that low zinc intake decreases synthesis and/or accelerates degradation of the protein in reticulocytes/erythrocytes. Metallothionein levels in erythrocytes may provide a useful index upon which to assess zinc status in humans

  1. An Effect of Cadmium and Lead Ions on Escherichia coli with the Cloned Gene for Metallothionein (MT-3) Revealed by Electrochemistry

    International Nuclear Information System (INIS)

    Adam, Vojtech; Chudobova, Dagmar; Tmejova, Katerina; Cihalova, Kristyna; Krizkova, Sona; Guran, Roman; Kominkova, Marketa; Zurek, Michal; Kremplova, Monika; Jimenez, Ana Maria Jimenez; Konecna, Marie

    2014-01-01

    This study was focused on the application of electrochemical methods for studying of bacterial strains Escherichia coli and Escherichia coli expressing human metallothionein gene (MT-3) before and after the application of cadmium and/or lead ions in four concentrations (25, 50, 75 and 150 μM). Bacterial strains Escherichia coli and Escherichia coli expressing human metallothionein gene (MT-3) were used like model organisms for studying of metals influence to metallothionein expression. Metallothionein was isolated using fast protein liquid chromatography and quantified by electrochemical methods. The occurrence of metallothionein in E.coli was confirmed by gel electrophoresis by the presence of the bands at 15 (MT dimer) and 22 kDa (MT trimer). The changes in electrochemical records due to the interactions of metallothioneins (MT-3 and MT-2A) with cadmium and lead ions showed decline of Cat2 signal of MT with the increasing interaction time because of metal ions binding to cysteines. Electrochemical determination also revealed that Cd(II) remains in E. coli cells in the higher amount than Pb (II). Opposite situation was found at E. coli–MT-3 strain. The antimicrobial effect of cadmium ions was determined by IC 50 and was statistically calculated as 39.2 and 95.5 μM for E. coli without cloned MT-3 and E. coli carrying MT-3 gene, respectively. High provided concentration IC 50 in strains after lead ions application (352.5 μM for E. coli without cloning and 207.0 μM for E. coli carrying cloned MT-3 gene) indicates lower toxicity of lead ions on bacterial strains compared to the cadmium ions

  2. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    International Nuclear Information System (INIS)

    Asselman, Jana; Shaw, Joseph R.; Glaholt, Stephen P.; Colbourne, John K.; De Schamphelaere, Karel A.C.

    2013-01-01

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species

  3. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Asselman, Jana, E-mail: jana.asselman@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium); Shaw, Joseph R.; Glaholt, Stephen P. [The School of Public and Environmental Affairs, Indiana University, Bloomington, IN (United States); Colbourne, John K. [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium)

    2013-10-15

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.

  4. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Bing; Xiao, Bo [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Liang, Desheng [State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078 (China); Xia, Jian; Li, Ye [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Yang, Huan, E-mail: yangh69@yahoo.cn [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China)

    2011-06-24

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the

  5. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    International Nuclear Information System (INIS)

    Wang Xiaojuan; Song, Yu; Ma Yanhua; Zhuo Renying; Jin Liang

    2011-01-01

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: → Evaluate Cd tolerance in wide sources of alfalfa accessions. → Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. → Cloned differentially expressed metallothionein (MT) genes. → Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. → MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  6. Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.)

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaojuan, E-mail: xiaojuanwang@lzu.edu.cn [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Song, Yu [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China); Environment Management College of China, Qinhuangdao 066004 (China); Ma Yanhua [Hebei Normal University of Science and Technology, Qinhuangdao 066004 (China); Zhuo Renying [Key Lab of Tree Genomics, Research Institute of Subtropical of Forest, Chinese Academy of Forest, Fuyang 311400 (China); Jin Liang [School of Pastoral Agriculture Science and Technology, Lanzhou University, P.O. Box 61, Lanzhou 730020 (China)

    2011-12-15

    In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible. - Highlights: > Evaluate Cd tolerance in wide sources of alfalfa accessions. > Identify Cd-hyperaccumulators potentially useful for restoring Cd-contaminated environments. > Cloned differentially expressed metallothionein (MT) genes. > Characteristics and deduced protein sequence of MsMT2a and MsMT2b were analyzed. > MsMT2a might be a universally gene of alfalfa but MsMT2b might be an inductive gene. - Two Cd tolerant alfalfa genotypes were screened and their metallothionein genes were cloned which showed that MsMT2a was universally expressed but MsMT2b was Cd inducible expression.

  7. Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines

    Directory of Open Access Journals (Sweden)

    ÁNGELA D ARMENDÁRIZ

    2006-01-01

    Full Text Available The role of metallothioneins (MT in copper homeostasis is of great interest, as it appears to be partially responsible for the regulation of intracellular copper levels during adaptation to extracellular excess of the metal. To further investigate a possible role of MTs in copper metabolism, a genomics approach was utilized to evaluate the role of MT on gene expression. Microarray analysis was used to examine the effects of copper overload in fibroblast cells from normal and MT I and II double knock-out mice (MT-/-. As a first step, we compared genes that were significantly upregulated in wild-type and MT-/- cells exposed to copper. Even though wild-type and mutant cells are undistinguishable in terms of their morphological features and rates of growth, our results show that MT-/- cells do not respond with induction of typical markers of cellular stress under copper excess conditions, as observed in the wild-type cell line, suggesting that the transcription initiation rate or the mRNA stability of stress genes is affected when there is an alteration in the copper store capacity. The functional classification of other up-regulated genes in both cell lines indicates that a large proportion (>80% belong to two major categories: 1 metabolism; and 2 cellular physiological processes, suggesting that at the transcriptional level copper overload induces the expression of genes associated with diverse molecular functions. These results open the possibility to understand how copper homeostasis is being coordinated with other metabolic pathways.

  8. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Saijoh, Kiyofumi; Sumino, Kimiaki [Department of Public Health, Kobe University School of Medicine (Japan); Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako [Department of Pharmacology, Kobe University of Medicine (Japan)

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using /sup 32/P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author).

  9. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    International Nuclear Information System (INIS)

    Saijoh, Kiyofumi; Sumino, Kimiaki; Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using 32 P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author)

  10. High expression of markers of apoptosis in Langerhans cell histiocytosis

    DEFF Research Database (Denmark)

    Petersen, Bodil Laub; Lundegaard, Pia Rengtved; Bank, M I

    2003-01-01

    53 and the number of cells in apoptosis detected with TUNEL. Langerhans cell histiocytosis cells showed strong expression of p53 and in some cases co-expression of Fas and Fas-L. The expression of Fas-L was significantly higher in infiltrates from patients with single-system disease. The actual...... number of pathological Langerhans cells in apoptosis as estimated by TUNEL was low. CONCLUSIONS: The low number of TUNEL-reactive cells can be explained by the rapid turnover of apoptotic cells in the tissue, not leaving the apoptotic cells long enough in the tissue to be detected. The co......-expression of Fas and Fas-L in some Langerhans cells can lead to an autocrine apoptotic shortcut, mediating the death of the double-positive cells. Our findings suggest that apoptosis mediated through the Fas/Fas-L pathway may contribute to the spontaneous regression of lesions in single-system disease. A delicate...

  11. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    International Nuclear Information System (INIS)

    Seong, J. S.

    1997-01-01

    To analyze the involvement of apoptosis regulatory genes p53, p21 waf1/cip1 , bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21 waf1/cip1 , and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21 waf1/cip1 , although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21 waf1/cip1 as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21 waf1/cip1 . These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author)

  12. Induction of Apoptosis and expression of Apoptosis-related gene products in response to radiation in murine tumors

    Energy Technology Data Exchange (ETDEWEB)

    Seong, J S [Yonsei Univ., Seoul (Korea, Republic of). Coll. of Medicine; Hunter, N R; Milas, L [Texas Univ., Houston, TX (United States)

    1997-09-01

    To analyze the involvement of apoptosis regulatory genes p53, p21{sup waf1/cip1}, bax and bcl-2 in induction of apoptosis by radiation in murine tumors. The radiation-sensitive ovarian carcinoma OCa-I and the radiation-resistant hepatocarcinoma HCa-I were used. Tumors, 8mm in diameter, were irradiated with 25Gy and at various times after irradiation, ranging from 1 to 48 h, were analyzed histologically for apoptosis and by western blot for alterations in the expression of these genes. The p53 status of the tumors were determined by the polymerase chain reaction-single strand conformation polymorphism assay. Both tumors were positive for wild-type p53. Radiation induced apoptosis in OCa-I but not in HCa-I. Apoptosis developed rapidly, peaked at 2 h after irradiation and returned to almost the background level at 48 h. In OCa-I radiation upregulated the expression of p53, p21{sup waf1/cip1}, and the bcl-2/bax ratio was decreased. In HCa-I radiation increased the expression of both p53 and p21{sup waf1/cip1}, although the increase of the latter was small. The bcl-2/bax ratio was greatly increased. In general the observed changes occurred within a few hours after irradiation, and either preceded or coincided with development of apoptosis. The development of apoptosis required upregulation of both p53 and p21{sup waf1/cip1} as well as a decrease in bcl-2/bax ratio. In contrast, an increase in bcl-2/bax ratio prevented apoptosis in the presence of upregulated p53 and p21{sup waf1/cip1}. These findings identified the involvement of multiple oncogenes in apoptosis regulation in vivo and demonstrate the complexity that may be associated with the use of a single oncogene assessment for predicting the outcome of cancer therapy with cytotoxic agents. (author).

  13. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  14. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    International Nuclear Information System (INIS)

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-01-01

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction

  15. Metallothionein-1 and nitric oxide expression are inversely correlated in a murine model of Chagas disease

    Directory of Open Access Journals (Sweden)

    Martha Elba Gonzalez-Mejia

    2014-04-01

    Full Text Available Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO, has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf, infected N-monomethyl-L-arginine treated (Inf L-NAME, non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001. In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels.

  16. Prognostic role of sensitive-to-apoptosis gene expression in rectal cancer

    DEFF Research Database (Denmark)

    Ozden, Sevgi A; Ozyurt, Hazan; Ozgen, Zerrin

    2011-01-01

    To investigate the association between prognosis of rectal cancer treated with chemoradiotherapy (CRT) and expression of sensitive-to-apoptosis (SAG), B-cell lymphoma-extra large (Bcl-X(L)) and Bcl-2 homologous antagonist/killer (Bak).......To investigate the association between prognosis of rectal cancer treated with chemoradiotherapy (CRT) and expression of sensitive-to-apoptosis (SAG), B-cell lymphoma-extra large (Bcl-X(L)) and Bcl-2 homologous antagonist/killer (Bak)....

  17. Expression of hepatitis C virus envelope protein 2 induces apoptosis in cultured mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; You-Hua Xie; Yu-Ying Kong; Ye Ye; Chun-Lin Wang; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To explore the role of hepatitis C virus (HCV) envelope protein 2 (E2) in the induction of apoptosis.METHODS: A carboxyterminal truncated E2 (E2-661) was transiently expressed in several cultured mammalian cell lines or stably expressed in Chinese hamster ovary (CHO)cell line. Cell proliferation was assessed by 3H thymidine uptake. Apoptosis was examined by Hoechst 33258staining, flow cytometry and DNA fragmentation analysis.RESULTS: Reduced proliferation was readily observed in the E2-661 expressing cells. These cells manifested the typical features of apoptosis, including cell shrinkage,chromatin condensation and hypodiploid genomic DNA content. Similar apoptotic cell death was observed in an E2-661 stably expressing cell line.CONCLUSION: HCV E2 can induce apoptosis in cultured mammalian cells.

  18. Local IGFBP-3 mRNA expression, apoptosis and risk of colorectal adenomas

    Directory of Open Access Journals (Sweden)

    Omofoye Oluwaseun

    2008-05-01

    Full Text Available Abstract Background IGF binding protein-3 (IGFBP-3 regulates the bioavailability of insulin-like growth factors I and II, and has both anti-proliferative and pro-apoptotic properties. Elevated plasma IGFBP-3 has been associated with reduced risk of colorectal cancer (CRC, but the role of tissue IGFBP-3 is not well defined. We evaluated the association between tissue or plasma IGFBP-3 and risk of colorectal adenomas or low apoptosis. Methods Subjects were consenting patients who underwent a clinically indicated colonoscopy at UNC Hospitals and provided information on diet and lifestyle. IGFBP-3 mRNA in normal colon was assessed by real time RT-PCR. Plasma IGFBP-3 was measured by ELISA and apoptosis was determined by morphology on H & E slides. Logistic regression was used to compute odds ratio (OR and 95% confidence intervals. Results We observed a modest correlation between plasma IGFBP-3 and tissue IGFBP-3 expression (p = 0.007. There was no significant association between plasma IGFBP-3 and adenomas or apoptosis. Tissue IGFBP-3 mRNA expression was significantly lower in cases than controls. Subjects in the lowest three quartiles of tissue IGFBP-3 gene expression were more likely to have adenomas. Consistent with previous reports, low apoptosis was significantly associated with increased risk of adenomas (p = 0.003. Surprisingly, local IGFBP-3 mRNA expression was inversely associated with apoptosis. Conclusion Low expression of IGFBP-3 mRNA in normal colonic mucosa predicts increased risk of adenomas. Our findings suggest that local IGFBP-3 in the colon may directly increase adenoma risk but IGFBP-3 may act through a pathway other than apoptosis to influence adenoma risk.

  19. Local IGFBP-3 mRNA expression, apoptosis and risk of colorectal adenomas

    International Nuclear Information System (INIS)

    Keku, Temitope O; Sandler, Robert S; Simmons, James G; Galanko, Joseph; Woosley, John T; Proffitt, Michelle; Omofoye, Oluwaseun; McDoom, Maya; Lund, Pauline K

    2008-01-01

    IGF binding protein-3 (IGFBP-3) regulates the bioavailability of insulin-like growth factors I and II, and has both anti-proliferative and pro-apoptotic properties. Elevated plasma IGFBP-3 has been associated with reduced risk of colorectal cancer (CRC), but the role of tissue IGFBP-3 is not well defined. We evaluated the association between tissue or plasma IGFBP-3 and risk of colorectal adenomas or low apoptosis. Subjects were consenting patients who underwent a clinically indicated colonoscopy at UNC Hospitals and provided information on diet and lifestyle. IGFBP-3 mRNA in normal colon was assessed by real time RT-PCR. Plasma IGFBP-3 was measured by ELISA and apoptosis was determined by morphology on H & E slides. Logistic regression was used to compute odds ratio (OR) and 95% confidence intervals. We observed a modest correlation between plasma IGFBP-3 and tissue IGFBP-3 expression (p = 0.007). There was no significant association between plasma IGFBP-3 and adenomas or apoptosis. Tissue IGFBP-3 mRNA expression was significantly lower in cases than controls. Subjects in the lowest three quartiles of tissue IGFBP-3 gene expression were more likely to have adenomas. Consistent with previous reports, low apoptosis was significantly associated with increased risk of adenomas (p = 0.003). Surprisingly, local IGFBP-3 mRNA expression was inversely associated with apoptosis. Low expression of IGFBP-3 mRNA in normal colonic mucosa predicts increased risk of adenomas. Our findings suggest that local IGFBP-3 in the colon may directly increase adenoma risk but IGFBP-3 may act through a pathway other than apoptosis to influence adenoma risk

  20. Metallothionein in brook trout (salvelinus fontinalis) as a biological indicator of inorganic chemical contaminant stress

    International Nuclear Information System (INIS)

    Hamilton, S.J.

    1985-01-01

    A technique for quantifying metallothionein was evaluated with fish tissue. Adult brook trout were administered 3 mg 109 cadmium/kg body weight by intraperitoneal injection over a 5 day period to induce metallothionein concentrations in liver and kidney tissues. The method was modified so cadmium bound to unsaturated metallothionein could be measured. The method gave precise measurements and was used to evaluate the toxicological significant of metallothionein in two 30-day chronic toxicity studies of cadmium on brook trout. In particular, metallothionein was evaluated as a biological indicator of inorganic chemical stress in brook trout. Pathological effects in animals resulting from exposure to inorganic chemicals is thought to occur when metallothionein's sequestering ability is exceeded; a phenomenon explained by the spillover hypothesis. The presence of free cadmium in tissues of fish from all exposures suggests metallothionein was not saturated with cadmium perhaps because of competition for binding sites on metallothionein between cadmium and other inorganic chemicals such as copper and zinc. Based on results of the two toxicity studies, the spillover hypothesis should be redefined to a continuum of toxic responses to varying balances between the relative abundance of inorganic chemicals present and their respective binding affinities for metallothionein

  1. Studies on hematopoietic cell apoptosis and the relative gene expression in irradiated mouse bone marrow

    International Nuclear Information System (INIS)

    Peng Ruiyun; Wang Dewen; Xiong Chengqi; Gao Yabing; Yang Hong; Cui Yufang; Wang Baozhen

    2001-01-01

    Objective: To study apoptosis and expressions bcl-2 and p53 in irradiated mouse bone marrow. Methods: LACA mice were irradiated with 60 Co γ-rays. By means of in situ terminal labelling, in situ hybridization and image analysis, the authors studied radiation-induced apoptosis of hematopoietic cells and the expressions of bcl-2 and p53. Results: The characteristics of apoptosis appeared in hematopoietic cells at 6 hrs after irradiation. The expression of bcl-2 was obviously decreased when apoptosis of hematopoietic cells occurred, whereas it increased in the early recovery phase; p53 protein increased during both apoptosis of hematopoietic cells and the recovery phase, and mutant type p53 DNA was positive only in the recovery phase. Conclusion: Radiation may induced apoptosis of hematopoietic cells in a dose-dependent manner; Both bcl-2 and p53 genes play an important role in apoptosis and recovery phase

  2. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    International Nuclear Information System (INIS)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-01-01

    Highlights: ► VCC-1 is hypothesized to be associated with carcinogenesis. ► Levels of VCC-1 are increased significantly in HCC. ► Over-expression of VCC-1 could promotes cellular proliferation rate. ► Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. ► VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  3. Metallothioneins in human tumors and potential roles in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cherian, M. George; Jayasurya, A.; Bay, Boon-Huat

    2003-12-10

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  4. Metallothioneins in human tumors and potential roles in carcinogenesis

    International Nuclear Information System (INIS)

    Cherian, M. George; Jayasurya, A.; Bay, Boon-Huat

    2003-01-01

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  5. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    International Nuclear Information System (INIS)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-01

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV XS ; 400 μg/ml), UV-irradiated virus (CIV UV ; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV UV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV UV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV UV , CIV XS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and

  6. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus

    International Nuclear Information System (INIS)

    Jaeckel, Petra; Krauss, Gudrun; Menge, Sieglinde; Schierhorn, Angelika; Ruecknagel, Peter; Krauss, Gerd-Joachim

    2005-01-01

    Cadmium stress response was measured at the thiol peptide level in an aquatic hyphomycete (Heliscus lugdunensis). In liquid culture, 0.1mM cadmium increased the glutathione (GSH) content and induced the synthesis of additional thiol peptides. HPLC, electrospray ionization mass spectrometry, and Edman degradation confirmed that a novel small metallothionein as well as phytochelatin (PC2) were synthesized. The metallothionein has a high homology to family 8 metallothioneins (http://www.expasy.ch/cgi-bin/lists?metallo.txt). The bonding of at least two cadmium ions to the metallothionein was demonstrated by mass spectrometry (MALDI MS). This is the first time that simultaneous induction of metallothionein and phytochelatin accompanied by an increase in GSH level has been shown in a fungus under cadmium stress, indicating a potential function of these complexing agents for in vivo heavy metal detoxification. The method presented here should be applicable as biomarker tool. ol

  7. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    Science.gov (United States)

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  8. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis

    Czech Academy of Sciences Publication Activity Database

    Hložková, K.; Matěnová, M.; Žáčková, P.; Strnad, Hynek; Hršelová, Hana; Hroudová, Miluše; Kotrba, P.

    2016-01-01

    Roč. 120, č. 3 (2016), s. 358-369 ISSN 1878-6146 R&D Projects: GA ČR(CZ) GAP504/11/0484 Institutional support: RVO:61388971 ; RVO:68378050 Keywords : Ectomycorrhizal fungi * Gene expression * Metal binding * Metallothionein Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) Impact factor: 2.184, year: 2016

  9. Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    JUAN DIEGO MAYA

    2004-01-01

    Full Text Available Proteins rich in sulfhydryl groups, such as metallothionein, are present in several strains of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease. Metallothionein-like protein concentrations ranged from 5.1 to 13.2 pmol/mg protein depending on the parasite strain and growth phase. Nifurtimox and benznidazole, used in the treatment of Chagas' disease, decreased metallothionein activity by approximately 70%. T. cruzi metallothionein was induced by ZnCl2. Metallothionein from T. cruzi was partially purified and its monobromobimane derivative showed a molecular weight of approximately 10,000 Da by SDS-PAGE analysis. The concentration of trypanothione, the major glutathione conjugate in T. cruzi, ranged from 3.8 to 10.8 nmol/mg protein, depending on the culture phase. The addition of buthionine sulfoximine to the protozoal culture considerably reduced the concentration of trypanothione and had no effect upon the metallothionein concentration. The possible contribution of metallothionein-like proteins to drug resistance in T. cruzi is discussed.

  10. Expression response of duplicated metallothionein 3 gene to copper stress in Silene vulgaris ecotypes

    Czech Academy of Sciences Publication Activity Database

    Nevrtalová, Eva; Baloun, Jiří; Hudzieczek, Vojtěch; Čegan, Radim; Vyskot, Boris; Doležel, Jaroslav; Šafář, Jan; Milde, D.; Hobza, Roman

    2014-01-01

    Roč. 251, č. 6 (2014), s. 1427-1439 ISSN 0033-183X R&D Projects: GA ČR(CZ) GAP501/12/2220; GA ČR(CZ) GBP501/12/G090; GA ČR(CZ) GP13-34962P; GA ČR(CZ) GA522/09/0083 Institutional support: RVO:68081707 Keywords : Copper * Gene duplication * Metallothionein Subject RIV: BO - Biophysics; EF - Botanics (UEB-Q) Impact factor: 2.651, year: 2014

  11. Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina.

    Science.gov (United States)

    Averbeck, N B; Borghouts, C; Hamann, A; Specke, V; Osiewacz, H D

    2001-01-01

    The lifespan of the ascomycete Podospora anserina was previously demonstrated to be significantly increased in a copper-uptake mutant, suggesting that copper is a potential stressor involved in degenerative processes. In order to determine whether changes in copper stress occur in the cells during normal aging of cultures, we cloned and characterized a gene coding for a component of the molecular machinery involved in the control of copper homeostasis. This gene, PaMt1, is a single-copy gene that encodes a metallothionein of 26 amino acids. The coding sequence of PaMt1 is interrupted by a single intron. The deduced amino acid sequence shows a high degree of sequence identity to metallothioneins of the filamentous ascomycete Neurospora crassa and the basidiomycete Agaricus bisporus, and to the N-terminal portion of mammalian metallothioneins. Levels of PaMt1 transcript increase in response to elevated amounts of copper in the growth medium and during aging of wild-type cultures. In contrast, in the long-lived mutant grisea, transcript levels first increase but then decrease again. The ability of wild-type cultures to respond to exogenous copper stress via the induction of PaMt1 transcription is not affected as they grow older.

  12. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Directory of Open Access Journals (Sweden)

    Nakamura Shinichiro

    2011-01-01

    Full Text Available Abstract Background Runt-related transcription factor 3 (RUNX3 is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC. Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91% and tissues (90%. RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.

  13. The studies on thyrocyte apoptosis and expression of Bcl-2 and Bax in Hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Zhao Yaping; Wang Jialing; Fan Zhiyong; Liu Zehong; Wu HeJun; Zhou Wei; Jia Meizhai

    2003-01-01

    To investigate the thyrocyte apoptosis, the expression of Bcl-2, Bax and the relationship between apoptosis and the pathogenesis in Hashimoto's thyroiditis (HT), 41 HT thyroid and 10 normal thyroid specimens were selected. The level of apoptosis was detected by TUNEL methods. The expression and distribution of Bcl-2 and Bax were detected using immunohistochemical methods and analyzed by Mias99 pathological image system. Immunohistochemical staining was carried out using S-P kit. The Result showed that an increased level of apoptosis was observed in Hashimoto's glands. The apoptosis mainly distributed in thyroid follicles destruction area. This was associated with increased Bax expression. The strongly positive Bcl-2 staining was observed in the thyrocyte of intact thyroid follicles. The ratios of positive granule area and total light density of Bcl-2 to those of Bax in HT thyroid follicle area were lower than those in normal thyroid. The apoptosis of thyrocyte induced by dysregulation of Bcl-2 and Bax may be involved in the pathogeneses of HT

  14. Intraneuronal signaling pathways of metallothionein

    DEFF Research Database (Denmark)

    Asmussen, Johanne Wirenfeldt; Von Sperling, Marie Louise; Penkowa, Milena

    2009-01-01

    Metallothionein (MT) belongs to a family of metal-binding cysteine-rich proteins comprising several structurally related proteins implicated in tissue protection and regeneration after injuries and functioning as antiapoptotic antioxidants in neurological disorders. This has been demonstrated in ...

  15. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    Science.gov (United States)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  16. Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis.

    Science.gov (United States)

    Oldereid, N B; Angelis, P D; Wiger, R; Clausen, O P

    2001-05-01

    We investigated the frequency of spontaneous apoptosis and expression of the Bcl-2 family of proteins during normal spermatogenesis in man. Testicular tissue with both normal morphology and DNA content was obtained from necro-donors and fixed in Bouin's solution. A TdT-mediated dUTP end-labelling method (TUNEL) was used for the detection of apoptotic cells. Expression of apoptosis regulatory Bcl-2 family proteins and of p53 and p21(Waf1) was assessed by immunohistochemistry. Germ cell apoptosis was detected in all testes and was mainly seen in primary spermatocytes and spermatids and in a few spermatogonia. Bcl-2 and Bak were preferentially expressed in the compartments of spermatocytes and differentiating spermatids, while Bcl-x was preferentially expressed in spermatogonia. Bax showed a preferential expression in nuclei of round spermatids, whereas Bad was only seen in the acrosome region of various stages of spermatids. Mcl-1 staining was weak without a particular pattern, whereas expression of Bcl-w, p53 and p21(Waf1) proteins was not detected by immunohistochemistry. The results show that spontaneous apoptosis occurs in all male germ cell compartments in humans. Bcl-2 family proteins are distributed preferentially within distinct germ cell compartments suggesting a specific role for these proteins in the processes of differentiation and maturation during human spermatogenesis.

  17. Increased Dickkopf-1 expression accelerates bone cell apoptosis in femoral head osteonecrosis.

    Science.gov (United States)

    Ko, Jih-Yang; Wang, Feng-Sheng; Wang, Ching-Jen; Wong, To; Chou, Wen-Yi; Tseng, Shin-Ling

    2010-03-01

    Intensive bone cell apoptosis contributes to osteonecrosis of femoral head (ONFH). Dickkopf-1 (DKK1) reportedly mediates various types of skeletal disorders. This study investigated whether DKK1 was linked to the occurrence of ONFH. Thirty-nine patients with various stages of ONFH were recruited. Bone specimens were harvested from 34 ONFH patients underwent hip arthroplasty, and from 10 femoral neck fracture patients. Bad, Bcl2 TNFalpha, DKK1, Wnt3a, LRP5, and Axin1 expressions were analyzed by quantitative RT-PCR and ELISA. Apoptotic cells were assayed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labelling (TUNEL). Primary bone-marrow mesenchymal cells were treated with DKK1 RNA interference and recombinant DKK1 protein. ONFH patients with the histories of being administrated corticosteroids and excessive alcohol consumption had significantly higher Bad and DKK1 mRNA expressions in bone tissue and DKK1 abundances in serum than femoral neck fracture patients. Bone cells adjacent to osteonecrotic bone displayed strong DKK1 immunoreactivity and TUNEL staining. Increased DKK1 expression in bone tissue and serum correlated with Bad expression and TUNEL staining. Serum DKK1 abundance correlated with the severity of ONFH. The DKK1 RNA interference and recombinant DKK1 protein regulated Bad expression and apoptosis of primary bone-marrow mesenchymal cells. Knock down of DKK1 reduced dexamethasone-induced apoptosis of mesenchymal cells. Taken together, promoted DKK1 expression was associated with bone cell apoptosis in the occurrence of ONFH patients with the histories of corticosteroid and alcohol intake and progression of ONFH. DKK1 expression in injured tissue provides new insight into ONFH pathogenesis.

  18. Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E. [Argonne National Lab., IL (United States)]|[Loyola Univ. Medical Center, Maywood, IL (United States); Chang-Liu, Chin-Mei [Argonne National Lab., IL (United States); Chung, Jen; Libertin, C.R. [Loyola Univ. Medical Center, Maywood, IL (United States)

    1993-09-01

    Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic and thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.

  19. Neuroprotective Effects of Metallothionein Against Rotenone-Induced Myenteric Neurodegeneration in Parkinsonian Mice

    OpenAIRE

    Murakami, Shinki; Miyazaki, Ikuko; Sogawa, Norio; Miyoshi, Ko; Asanuma, Masato

    2014-01-01

    Parkinson's disease (PD) is a neurodegenerative disease with motor symptoms as well as non-motor symptoms that precede the onset of motor symptoms. Mitochondrial complex I inhibitor, rotenone, has been widely used to reproduce PD pathology in the central nervous system (CNS) and enteric nervous system (ENS). We reported previously that metallothioneins (MTs) released from astrocytes can protect dopaminergic neurons against oxidative stress. The present study examined the changes in MT express...

  20. Apoptosis related genes expressed in cultured Fallopian tube epithelial cells infected in vitro with Neisseria gonorrhoeae

    Directory of Open Access Journals (Sweden)

    PAZ A REYES

    2007-01-01

    Full Text Available Background: Infection of the Fallopian tubes (FT by Neisseria gonorrhoeae (Ngo can lead to acute salpingitis, an inflammatory condition resulting in damage primarily to the ciliated cells, with loss of ciliary activity and sloughing of the cells from the epithelium. Recently, we have shown that Ngo infection induced apoptosis in FT epithelium cells by a TNF-alpha dependent mechanism that could contribute to the cell and tissue damage observed in gonococcal salpingitis. Aim: To investigate the apoptosis-related genes expressed during apoptosis induction in cultured FT epithelial cells infected in vitro by Ngo. Materials and Methods: In the current study, we used cDNA macroarrays and real time PCR to identify and determine the expression levels of apoptosis related genes during the in vitro gonococci infection of FT epithelial cells. Results: Significant apoptosis was induced following infection with Ngo. Macroarray analysis identified the expression of multiple genes of the TNF receptor family (TNFRSF1B, -4, -6, -10A, -10B and -10D and the Bcl-2 family (BAK1, BAX, BLK, HRK and MCL-1 without differences between controls and infected cells. This lack of difference was confirmed by RT-PCR of BAX, Bcl-2, TNFRS1A (TNFR-I and TNFRSF1B (TNFR-II. Conclusion: Several genes related to apoptosis are expressed in primary cultures of epithelial cells of the human Fallopian tube. Infection with Ngo induces apoptosis without changes in the pattern of gene expression of several apoptosis-related genes. Results strongly suggest that Ngo regulates apoptosis in the FT by post-transcriptional mechanisms that need to be further addressed

  1. LyGDI expression in HeLa cells increased its sensitivity to radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Zhou Xinwen; Xu Yaxiang

    2006-01-01

    Objective: In order to confirm whether LyGDI has apoptotic signal transduction function and can increase the apoptotic rate of radiation-induced cell death, the lyGDI and mutant D19lyGDI gene, which constructed with the pCDNA3. 1 His A, were transfected into no-endogenous lyGDI HeLa cells. Methods Transient expressions of lyGDI and D19lyGDI in HeLa cells were analyzed by Western blot using anti-mono antibody of LyGDI and Xpress tag. Cell apoptosis was assayed with Annexin V-FITC apoptosis kit. To select stable clone, the transferred HeLa cells had been maintained in G418 medium for 3 weeks, then a cell line, which stably expressed LyGDI and mutant D19lyGDI, was selected. The selected cell line was irradiated with 12 Gy 60 Co y-rays. Caspase-3 activity of the cells was determined by Western blot and cell viability by clone-forming assay after 48 hours post-irradiation culture. Results: Western blot and Annexin V-FITC apoptotic analysis revealed that lyGDI and D19lyGDI transient expressions in HeLa cells induced apoptosis; Caspase-3 activity measurement and clone-forming assay showed that lyGDI increased sensitivity to radiation-induced cell apoptosis. Conclusions: lyGDI performs function in apoptosis signal transduction, its expression in HeLa cells can increase the sensitivity to radiation-induced cell apoptosis. (authors)

  2. Apoptosis induced by radionuclide 153Sm and expression of relevant genes in three different cancer cells

    International Nuclear Information System (INIS)

    Zou Baomin; Duan Xiaoyi; Chen Wei; Hu Guoying

    2003-01-01

    To study apoptosis of PC-3, ER-75-30 and A549 cells induced by radionuclide 153 Sm and the expression of bcl-2, bax in apoptosis cells, MTT assay was used to detect the anti-tumor effect, light microscope, transmission electron microscope, flow cytometer were used to detect apoptosis, while image analysis was used to detect the expression of bcl-2 and bax. 153 Sm showed anti-tumor effect and could induce tumor cell apoptosis. Both bcl-2 and bax played an important role in apoptosis. Different kind of cells had different sensitivity to 153 Sm

  3. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis.

    Science.gov (United States)

    Wan, Chunyun; Xiang, Jinmei; Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein-protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including 'Fatty acid metabolism', 'Alanine, aspartate, and glutamate metabolism', and 'Biosynthesis of unsaturated fatty acids') and cell signaling pathways (including 'PPAR signaling pathway', 'Adipocytokine signaling pathway', 'TGF-beta signaling pathway', 'MAPK signaling pathway', and 'p53 signaling pathway'). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and unsaturated fatty acids. These

  4. Anti-metallothionein IgG and levels of metallothionein in autistic children with GI disease

    Directory of Open Access Journals (Sweden)

    A J Russo

    2009-01-01

    Full Text Available A J RussoMount Saint Mary’s University, Emmitsburg, MD, USAAim: To assess both serum concentration of metallotionein (MT and anti-metallothionein (anti-MT immunoglobulin G (IgG in autistic children with gastrointestinal (GI symptoms and controls, and to test the hypothesis that there is an association between the presence of MT, anti-MT IgG, and inflammatory GI disease seen in many children with autistic spectrum disorder (ASD.Subjects and methods: ELISAs were used to measure serum MT and anti-MT IgG in 41 autistic children with chronic digestive disease (many with ileo-colonic lymphoid nodular hyperplasia [LNH] and inflammation of the colorectum, small bowel, and/or stomach, and 33 controls (17 age-matched autistic children with no GI disease and 16 age-matched children without autism or GI disease.Results: Ten of 41 autistic children with chronic digestive disease had high serum concentration of MT compared to only one of the 33 controls (p < 0.01. Thirteen of the 41 autistic children with chronic digestive disease had anti-MT IgG compared to only four of 33 controls (p < 0.01. Nine of 10 (90% of autistic children with GI disease with high MT levels had a regressive onset (compared to the expected 25 of 41, or 61%, in this group (p < 0.05, whereas only nine of 13 of the autistic children with GI disease and anti-MT IgG had a regressive onset (70% which was not significantly higher than the expected. We didn’t find any correlation between severity of GI disease and MT concentration or anti-MT IgG.Discussion: These results suggest a relationship between MT, anti-MT IgG and GI disease seen in many ASD individuals.Keywords: autism, metallothionein, anti-metallothionein, GI disease

  5. Study of apoptosis and Caspase-3, Fas expression in rat glioma after treatment with gamma knife

    International Nuclear Information System (INIS)

    Zhao Qingqiu; Zhao Wenqing; Yue Xiangyong; Du Yali; Dong Liying; Zhou Lixia

    2003-01-01

    Objective: To investigate the apoptosis and Caspase-3, Fas expression in rat glioma after treatment with gamma knife. Methods: Setting up C6 glioma model with 60 rats, which were divided into a treatment group ( n= 30) and a control group (n=30). On the 14 th day after planting glioma cells, rats of the treatment group were subjected to gamma knife irradiation. At the 12 th hr, 24 th hr, 48 th hr, 7 th day, 14 th day, 21 st day, flow cytometry was performed to estimate the glioma cells' apoptosis and the expression of Caspase-3 and Fas. The relation between apoptosis and the two kinds of proteins was analysed. Results: Compared with the control group, the apoptosis rate of the glioma cells in the treatment group increased obviously (P th hr reached its peak, then decreased gradually. The expression of Caspase-3 and Fas was positively correlated with apoptosis (r 1 =0.928, r 2 =0.916). Conclusion: The apoptosis of the tumor cells is a kind of effect of gamma knife treatment. Caspase-3 and Fas gene may take part in the regulation of apoptosis

  6. [Gene Expression Profile of Apoptosis in Leukemia Cells Induced by Hsp90 Selective inhibitor 17-AAG].

    Science.gov (United States)

    Wang, Na-Na; Li, Zhi-Heng; Tao, Yan-Fang; Xu, Li-Xiao; Pan, Jian; Hu, Shao-Yan

    2016-06-01

    To investigate the apoptotic effects of Hsp90 selective inhibitor 17-AAG on human leukemia HL-60 and NB4 cells and analyse its possible mechanism. CCK-8 assay was used to quantify the growth inhibition of cells after exposure to 17-AAG for 24 hours. Flow cytometrve with annexin V/propidium iodide staining was used to detect apoptosis of leukemia cells. Then Western blot was used to detect the activation of apoptosis related protein caspase-3 and PARP level. Gene expression profile of NB4 cells treated with 17-AAG was analyzed with real-time PCR arrays. The inhibition of leukemia cell proliferation displayed a dose-dependent manner. Annexin V assay, cell cycle analysis and activation of PARP demonstrate that 17-AAG induced apoptosis leukemia cells. Real-time PCR array analysis showed that expression of 56 genes significantly up-regulated and expression of 23 genes were significantly down-regulated after 17-AAG treatment. The 17-AAG can inhibit the proliferation and induce the apoptosis of leukemia cells. After leukemia cells are treated with 17-AAG, the significant changes of apoptosis-related genes occured, and the cell apoptosis occurs via activating apoptosis related signaling pathway.

  7. Unexpected Interactions of the Cyanobacterial Metallothionein SmtA with Uranium.

    Science.gov (United States)

    Acharya, Celin; Blindauer, Claudia A

    2016-02-15

    Molecules for remediating or recovering uranium from contaminated environmental resources are of high current interest, with protein-based ligands coming into focus recently. Metallothioneins either bind or redox-silence a range of heavy metals, conferring protection against metal stress in many organisms. Here, we report that the cyanobacterial metallothionein SmtA competes with carbonate for uranyl binding, leading to formation of heterometallic (UO2)(n)Zn4SmtA species, without thiol oxidation, zinc loss, or compromising secondary or tertiary structure of SmtA. In turn, only metalated and folded SmtA species were found to be capable of uranyl binding. (1)H NMR studies and molecular modeling identified Glu34/Asp38 and Glu12/C-terminus as likely adventitious, but surprisingly strong, bidentate binding sites. While it is unlikely that these interactions correspond to an evolved biological function of this metallothionein, their occurrence may offer new possibilities for designing novel multipurpose bacterial metallothioneins with dual ability to sequester both soft metal ions including Cu(+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+) and hard, high-oxidation state heavy metals such as U(VI). The concomitant protection from the chemical toxicity of uranium may be valuable for the development of bacterial strains for bio-remediation.

  8. The Metallothionein Gene, TaMT3, from Tamarix androssowii Confers Cd2+ Tolerance in Tobacco

    Directory of Open Access Journals (Sweden)

    Boru Zhou

    2014-06-01

    Full Text Available Cadmium (Cd is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD activity and chlorophyll concentration, but decreases of peroxidase (POD activity and malondialdehyde (MDA accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  9. The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco.

    Science.gov (United States)

    Zhou, Boru; Yao, Wenjing; Wang, Shengji; Wang, Xinwang; Jiang, Tingbo

    2014-06-10

    Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  10. Modulation of metallothionein, pi-GST and Se-GPx mRNA expression in the freshwater bivalve Dreissena polymorpha transplanted into polluted areas

    Directory of Open Access Journals (Sweden)

    Périne Doyen

    2015-04-01

    Full Text Available Glutathione S-transferases (GST, glutathione peroxidases (GPx and metallothioneins (MT are essential components of cellular detoxication systems. We studied the expression of pi-GST, Se-GPx, and MT transcripts in the digestive gland of Dreissena polymorpha exposed to organic and metallic pollutants. Mussels from a control site were transplanted during 3, 15 and 30 days into the Moselle River, upstream and downstream to the confluence with the Fensch River, a tributary highly polluted by polycyclic aromatic hydrocarbons and heavy metals. Se-GPx and pi-GST mRNA expression increased in mussels transplanted into the upstream site, Se-GPx response being the earliest. These genes were also induced after 3-days exposure at the downstream site. These inductions suggest an adaptative response to an alteration of the environment. Moreover, at this site, a significant decrease of the expression of MT, pi-GST and Se-GPx transcripts was observed after 30 days which could correspond to an inefficiency of detoxification mecanisms. The results are in correlation with the levels of pollutants in the sediments and their bioaccumulation in mussels, they confirm the environmental deleterious impact of the pollutants carried by the Fensch River.

  11. Shapes of Differential Pulse Voltammograms and Level of Metallothionein at Different Animal Species

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2007-10-01

    Full Text Available Metallothioneins play a key role in maintaining homeostasis of essential metalsand in protecting of cells against metal toxicity as well as oxidative damaging. Exceptinghumans, blood levels of metallothionein have not yet been reported from any animalspecies. Blood plasma samples of 9 animal species were analysed by the adsorptive transferstripping technique to obtain species specific voltammograms. Quite distinct records wereobtained from the Takin (Budorcas taxicolor, while other interesting records were observedin samples from the European Bison (Bison bonasus bonasus and the Red-eared Slider(Trachemys scripta elegans. To quantify metallothionein the catalytic peak Cat2 was used,well developed in the Domestic Fowl (Gallus gallus f. domestica and showing a very lowsignal in the Red Deer (Cervus elaphus. The highest levels of metallothionein reachingover 20 μM were found in the Domestic Fowl. High levels of MT were also found in theBearded Dragon (Pogona vitticeps and the Grey Wolf (Canis lupus lupus. The lowestvalues of about 1-3 μM were determined in the Red-eared Slider, Takin and Red Deer. Employing a simple electrochemical detection it was possible to examine variation in blood metallothionein in different species of vertebrates.

  12. Expression and function analysis of metallothionein in the testis of stone crab Charybdis japonica exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Mao Huan [Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Tan Fuqing [The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Wang Dahui [Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Zhu Junquan [Faculty of Life Science and Bioengineering, Ningbo University, Zhejiang 315211 (China); Zhou Hong [Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China); Yang Wanxi, E-mail: wxyang@spermlab.org [Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058 (China)

    2012-11-15

    Metallothionein (MT) participates in metallic homeostasis and detoxification in living animals. Previous studies have focused mainly on the functions of MT in vertebrates, but the functions of MT during spermiogenesis in invertebrates remain unclear. In order to investigate the functions of MT during spermiogenesis in the Japanese stone crab (Charybdis japonica), we identified the C. japonica MT complete cDNA sequence from the total RNA of the testis using RT-PCR and RACE. The 587 bp MT cDNA contains: an 80 bp 5 Prime untranslated region, a 333 bp 3 Prime untranslated region, and a 174 bp open reading frame. MT has 57 amino acids including 19 cysteines. The protein alignment between MT sequences of C. japonica and other crabs shows a high similarity and a strong identity in cysteine residues vital for the metal-binding affinity of MT. After the cadmium (Cd) exposure, the testis displays both abnormal morphology and MT mRNA expression both of which indicate a sensitive response of testis MT to Cd. Therefore, we suggest that MT is an excellent biomarker candidate for evaluating Cd pollution.

  13. The relationship between radiation-induced apoptosis and the expression of cytokines in the rat's liver

    International Nuclear Information System (INIS)

    An, Eun Joo; Lee, Kyung Ja; Rhee, Chung Sik

    2000-01-01

    To determine the role of cytokines in the apoptosis of rat's liver following irradiation. Sprague-Dawley rats were irradiated to entire body with a single dose of 8 Gy. The rats were divided into 5 groups according to the sacrifice day after irradiation. The liver and blood after 1, 3, 5, 7, and 14 days irradiation were sampled for evaluation of mechanism of apoptosis and role of cytokine in relation to radiation-induced tissue damage. The study was composed of microscopic evaluation of liver tissue, in situ detection method for apoptosis, immunohistochemical stain of IL-1, IL-4, IL-6 and TNF, bioassay and radioimmunoassay of IL-6 in liver tissue and blood. Radiation-induced liver damage was noted from first day of radiation, and most severe parenchymal damage associated with infiltration of chronic inflammatory cells was seen in the groups of 5 days after radiation. A number of apoptosis were observed 1 day after radiation on both light microscope and in situ method. Afterwards, the number of apoptosis was gradually diminished. On immunohistochemical study, IL-1 and TNF were expressed 1, 3 days after radiation, but not expressed after that. IL-4 was not expressed in the entire groups. IL-6 was expressed with strong positivity in 1, 3 days after radiation. Bioassay and RIA of IL-6 in liver tissue and blood showed the highest value in 1 day after radiation, and the value is diminished after then. Apoptosis seemed to be the important mechanism of radiation-induced liver damage, and is possibly induced by the release of cytokines, such as IL-1, IL-6, TNF in view the simultaneously increased appearance of apoptosis and cytokines

  14. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    International Nuclear Information System (INIS)

    Srisuttee, Ratakorn; Koh, Sang Seok; Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae; Jhun, Byung Hak; Horio, Yoshiyuki; Chung, Young-Hwa

    2012-01-01

    Highlights: ► Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. ► Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. ► Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. ► Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of β-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  15. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  16. TAF6delta controls apoptosis and gene expression in the absence of p53.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Wilhelm

    Full Text Available BACKGROUND: Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6delta that can be induced during apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the impact of TAF6delta on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6delta. The induction of endogenous TAF6delta triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6delta activates gene expression independently of cellular p53 status. CONCLUSIONS: Our data define TAF6delta as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53.

  17. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    Science.gov (United States)

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  18. Metallothionein in Brain Disorders

    Directory of Open Access Journals (Sweden)

    Daniel Juárez-Rebollar

    2017-01-01

    Full Text Available Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I–IV, three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.

  19. Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells.

    Science.gov (United States)

    Ajjimaporn, Amornpan; Swinscoe, John; Shavali, Shaik; Govitrapong, Piyarat; Ebadi, Manuchair

    2005-11-30

    Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.

  20. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mendoza, Daniel [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico); Moreno, Adriana Quiroz [Unidad de biotecnologia, CICY, Merida, Yucatan (Mexico); Zapata-Perez, Omar [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico)]. E-mail: ozapata@mda.cinvestav.mx

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd{sup 2+} and Cu{sup 2+} concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4 h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd{sup 2+} and Cu{sup 2+} detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu{sup 2+}) in A. germinans leaves.

  1. Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli.

    Science.gov (United States)

    Chin, Wei-Chih; Lin, Kuo-Hsing; Liu, Chun-Chi; Tsuge, Kenji; Huang, Chieh-Chen

    2017-04-11

    N-Butanol has favorable characteristics for use as either an alternative fuel or platform chemical. Bio-based n-butanol production using microbes is an emerging technology that requires further development. Although bio-industrial microbes such as Escherichia coli have been engineered to produce n-butanol, reactive oxygen species (ROS)-mediated toxicity may limit productivity. Previously, we show that outer-membrane-targeted tilapia metallothionein (OmpC-TMT) is more effective as an ROS scavenger than human and mouse metallothioneins to reduce oxidative stress in the host cell. The host strain (BUT1-DE) containing the clostridial n-butanol pathway displayed a decreased growth rate and limited n-butanol productivity, likely due to ROS accumulation. The clostridial n-butanol pathway was co-engineered with inducible OmpC-TMT in E. coli (BUT3-DE) for simultaneous ROS removal, and its effect on n-butanol productivity was examined. The ROS scavenging ability of cells overexpressing OmpC-TMT was examined and showed an approximately twofold increase in capacity. The modified strain improved n-butanol productivity to 320 mg/L, whereas the control strain produced only 95.1 mg/L. Transcriptomic analysis revealed three major KEGG pathways that were significantly differentially expressed in the BUT3-DE strain compared with their expression in the BUT1-DE strain, including genes involved in oxidative phosphorylation, fructose and mannose metabolism and glycolysis/gluconeogenesis. These results indicate that OmpC-TMT can increase n-butanol production by scavenging ROS. The transcriptomic analysis suggested that n-butanol causes quinone malfunction, resulting in oxidative-phosphorylation-related nuo operon downregulation, which would diminish the ability to convert NADH to NAD + and generate proton motive force. However, fructose and mannose metabolism-related genes (fucA, srlE and srlA) were upregulated, and glycolysis/gluconeogenesis-related genes (pfkB, pgm) were

  2. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    International Nuclear Information System (INIS)

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Washida, Naoki; Tokuyama, Hirobumi; Hayashi, Koichi; Itoh, Hiroshi

    2008-01-01

    NAD + -dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H 2 O 2 . Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H 2 O 2 , Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H 2 O 2 -induced apoptosis through the upregulation of catalase. H 2 O 2 induced the nuclear accumulation of forkhead transcription factor, FoxO3a and the gene silencing of FoxO3a enhanced H 2 O 2 -induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels

  3. Apoptosis and expression of argyrophilic nucleolus organizer regions in epithelial neoplasms of the larynx

    Directory of Open Access Journals (Sweden)

    Christiana Vargas Ribeiro

    2015-04-01

    Full Text Available INTRODUCTION: Occurrence of apoptosis and expression of proliferative markers are powerful tools to establish a prognosis in the follow-up of cancer.OBJECTIVE: To evaluate the growth fraction in papillomas and laryngeal squamous cell carcinomas with three degrees of differentiation through apoptosis and the expression of nucleolus organizer regions.METHODS: Retrospective study from which paraffin material was submitted to microtomy and hematoxylin-eosin and silver staining. Stained slides were used to quantify the apoptotic index and the number of nucleolus organizer regions by morphometry.RESULTS: Apoptosis was significantly more frequent in well differentiated carcinomas and in papillomas, and a higher growth fraction of expressed nucleolus organizer regions and cells that expressed a greater than average number of nucleolus organizer regions were more frequently noted in undifferentiated carcinomas.CONCLUSIONS: Thus, it was possible to verify that a high apoptotic index was associated with a lower chance of tumor differentiation in carcinomas, while a greater number of total nucleolus organizer regions, cells expressing nucleolus organizer regions above average and a higher growth fraction were associated with greater likelihood of abnormal cell proliferation and increased tumor differentiation.

  4. METALLOTHIONEIN: CLASSIFICATION, BIOCHEMICAL FEATURES AND CLINICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Tooba Naz Shamsi

    2014-03-01

    Full Text Available Metallothionein (MT is a ubiquitous low molecular weight protein with high cysteine content and has strong affinity for heavy metals. MT provides protection against heavy metal toxicity, oxidative stress, and participates in the regulation of physiological metals like zinc (Zn2+ and copper (Cu. Abnormal MT expression and function presumably leads to various diseases like diabetes, cancer and neuro-degenerative diseases. MT gene expression is induced by a high variety of stimuli like metal exposure, oxidative stress, glucocorticoids, hydric stress etc. The level of the response to these inducers depends on the MT gene. These activities are regulated through intracellular metal ion modulation and free radical scavenging. MT participates in the uptake, transport, and regulation of zinc in biological system. It regulates zinc homeostasis by binding and releasing zinc ions which are a key element for the activation and binding of certain transcription factors through its participation in the zinc finger region of the protein. It also seems to be important for the regulation of tumor suppressor protein, p 53. Because MT plays an important role in transcription factor regulation, problems with MT function or expression may lead to malignant transformation of cells and ultimately cancer. There are variou

  5. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells

    Directory of Open Access Journals (Sweden)

    Kyoung-jin Min

    2017-08-01

    Full Text Available Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose polymerase (PARP, which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5 expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  6. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    International Nuclear Information System (INIS)

    Homa, Joanna; Olchawa, Ewa; Stuerzenbaum, Stephen R.; John Morgan, A.; Plytycz, Barbara

    2005-01-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes

  7. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomocytes after dermal exposure to metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Homa, Joanna [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Olchawa, Ewa [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland); Stuerzenbaum, Stephen R. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); John Morgan, A. [Cardiff School of Biosciences, Cardiff University, PO Box 915, Cardiff Wales CF10 3TL (United Kingdom); Plytycz, Barbara [Department of Evolutionary Immunobiology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, PL 30-060 Cracow (Poland)]. E-mail: plyt@zuk.iz.uj.edu.pl

    2005-05-01

    This paper provides direct evidence that earthworm immune cells, coelomocytes, are exposed to bio-reactive quantities of metals within 3 days after dermal exposure, and that they respond by upregulating metallothionein (MT) and heat shock protein (HSP70, HSP72) expression. Indirect support for the hypothesis that coelomocytes are capable of trafficking metals was also obtained. Coelomocytes were expelled from adult individuals of Eisenia fetida after 3-day exposure either to metal ions (Zn, Cu, Pb, Cd) or to distilled water (controls) via filter papers. The number of coelomocytes was significantly decreased after Cu, Pb, or Cd treatment. Cytospin preparations of coelomocytes were subjected to immunoperoxidase staining with monoclonal antibodies against human heat shock proteins (HSP70 or HSP72), or rabbit polyclonal antibodies raised against metallothionein 2 (w-MT2) of Lumbricus rubellus. Applied antibodies detected the respective proteins of E. fetida and revealed that the expression of HSP70, HSP72 and w-MT2 proteins was either induced or significantly enhanced in coelomocytes from metal-exposed animals. In conclusion, stress protein expression in earthworm coelomocytes may be used as sensitive biomarkers of metal contaminations. Further experimentation is needed for quantitative analysis of kinetics of metal-induced stress protein expression in earthworm coelomocytes. - Metals upregulate stress response proteins in earthworm coelomocytes.

  8. [Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].

    Science.gov (United States)

    Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong

    2018-03-01

    Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.

  9. Structure and Function of Vertebrate Metallothioneins

    DEFF Research Database (Denmark)

    Penkowa, Milena; Vasak, Milan; Hidalgo, Juan

    2009-01-01

    In 1957, Margoshes and Vallee reported on the isolation of a protein from horse kidney, which showed a high affinity for cadmium, and soon thereafter the protein was named metallothionein (MT) by the leading scientists Ka¨ gi and Vallee. Fifty years of intense research has dissected out many of t...

  10. [Baicalein promotes the apoptosis of HeLa cells by inhibiting ERK1/2 expression].

    Science.gov (United States)

    Wang, Yongzhou; Xia, Jiyi; Tang, Xiaoping; Tang, Li; Mao, Xiguang; Zhang, Yujiao; Yu, Xiaolan

    2016-11-01

    Objective To investigate the effects of baicalein and U0126 treatment on the apoptosis of human cervical carcinoma HeLa cells and the potential mechanism. Methods HeLa cells were subjected to (1, 2, 5, 10, 20, 50, 100, 200, 300) μmol/L baicalein or (1, 2, 5, 10, 20, 30) μmol/L U0126 treatment for 24 hours. The optimal concentrations of baicalein and U0126 for HeLa inhibition was determined by a cell counting Kit-8 assay. HeLa cells were then treated with these inhibitory concentrations for 24 hours separately or in combination. The cell cycle and the degree of apoptosis were analyzed by flow cytometry. The cell apoptosis index was evaluated by the TUNEL assay. The expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), Bax, and Bcl-2 at the mRNA and protein levels were examined by real-time PCR and Western blotting, respectively. Results Optimal inhibitory concentrations of baicalein and U0126 for HeLa cells were 200 μmol/L and 10 μmol/L, respectively. Compared with the control group, baicalein treatment increased the growth rate of cells in the G0/G1 phase but decreased the S phase. Combination treatment of 200 μmol/L baicalein and 10 μmol/L U0126 for 24 hours further reduced the S phase growth rate. Treatment with 10 μmol/L U0126 or 200 μmol/L baicalein for 24 hours induced cell apoptosis, and the combination treatment induced more apoptosis. Treatment by baicalein alone or in combination with U0126 for 24 hours significantly decreased ERK1/2 and Bcl-2 mRNA expressions, and upregulated Bax mRNA expression. It also downregulated ERK1/2 phosphorylation and Bcl-2 protein expression, while increasing Bax protein expression. Conclusion Both baicalein and U012 appear to inhibit proliferation, induce apoptosis, and increase the growth rate in the G0/G1 phase but reduce the S phase of HeLa cells. This effect is enhanced when they are used synergistically.

  11. Induced synthesis of metallothionein by pig kidney cells in vitro in response to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M; Daniel, M

    1975-01-01

    Cells of a line (K7), derived from the cortex of the adult pig kidney, synthesize and accumulate high levels of metallothionein when grown in vitro in the presence of low concentrations (0.5 ..mu..g/ml) of Cd/sup 2 +/. This indicates that the accumulation of this protein in the kidneys of animals exposed to cadmium is due at least partly to synthesis in situ, and not solely to uptake by the renal cells of metallothionein produced by the liver. It is suggested that the ability to synthesize large amounts of metallothionein indicates the tubular origin of the cells of this line.

  12. Characterization of the expanded T cell population in infectious mononucleosis: apoptosis, expression of apoptosis-related genes, and Epstein–Barr virus (EBV) status

    Science.gov (United States)

    Verbeke, C S; Wenthe, U; Bergler, W F; Zentgraf, H

    2000-01-01

    Infectious mononucleosis (IM), a manifestation of primary infection with EBV, is characterized by a massive expansion of the T cell population. In this study we examined this expanded T cell population regarding its EBV status, its proliferative and apoptotic activity, and its expression of apoptosis-related genes. Whereas previous studies were performed on ex vivo cultures or on peripheral blood, our investigations included in vivo analysis of IM tonsillectomy specimens (14 cases) by in situ hybridization for viral RNA (EBERs) combined with immunohistochemistry (IHC; CD3, CD45RO, CD20, CD79a, Ki-67, Bcl-2, Bax, Fas, FasL) and the TUNEL method. Of the EBER+ cells 50–70% showed expression of the B cell markers CD20/CD79a. The remainder of the EBER+ cells expressed neither B nor T cell antigens. No co-expression of EBERs and T cell antigens was detected in any of the specimens. In accordance with a high rate of apoptosis (up to 2·37%) within the expanded T cell population, Bcl-2 expression was drastically reduced and FasL expression remarkably increased. The levels of Bax and Fas expression showed no or moderate up-regulation. In conclusion, the massive expansion of IM T cells is not caused by EBV infection of these cells but merely represents an intense immune reaction. Through altered expression of Bcl-2/Bax and Fas/FasL, the activated T cells are subject to enhanced apoptosis while residing within the lymphoid tissue, which eventually allows the efficient silencing of this potentially damaging T cell response. PMID:10792379

  13. Deletion of Metallothionein Exacerbates Intermittent Hypoxia-Induced Oxidative and Inflammatory Injury in Aorta

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2014-01-01

    Full Text Available The present study was to explore the effect of metallothionein (MT on intermittent hypoxia (IH induced aortic pathogenic changes. Markers of oxidative damages, inflammation, and vascular remodeling were observed by immunohistochemical staining after 3 days and 1, 3, and 8 weeks after IH exposures. Endogenous MT was induced after 3 days of IH but was significantly decreased after 8 weeks of IH. Compared with the wild-type mice, MT knock-out mice exhibited earlier and more severe pathogenic changes of oxidative damages, inflammatory responses, and cellular apoptosis, as indicated by the significant accumulation of collagen, increased levels of connective tissue growth factor, transforming growth factor β1, tumor necrosis factor-alpha, vascular cell adhesion molecule 1,3-nitrotyrosine, and 4-hydroxy-2-nonenal in the aorta. These findings suggested that chronic IH may lead to aortic damages characterized by oxidative stress and inflammation, and MT may play a pivotal role in the above pathogenesis process.

  14. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  15. Expression and function analysis of metallothionein in the testis of Portunus trituberculatus exposed to cadmium

    International Nuclear Information System (INIS)

    Xiang, Dong-Fang; Zhu, Jun-Quan; Jin, Shan; Hu, Yan-Jun; Tan, Fu-Qing; Yang, Wan-Xi

    2013-01-01

    Highlights: •We identified P. trituberculatus MT-1 and MT-2 complete cDNA sequence. •We analyzed the protein alignment comparisons and phylogenetic trees of MT-1 and MT-2. •RT-PCR analysis the tissue expression of MT-1 and MT-2 mRNA. •The spatial and temporal distribution pattern of MT-1 and MT-2 mRNA during spermiogenesis. •Testis MT-1 and MT-2 mRNA expression are dramatically affected after the cadmium exposure. -- Abstract: Metallothioneins (MTs) possess a unique molecular structure that provides metal-binding and redox capabilities. These capabilities include the maintenance of metal equilibria that protect against heavy metals (especially cadmium) and oxidative damage. Past studies have focused on the function of MTs in vertebrates. However, the functions of MTs during spermiogenesis in invertebrates remain unclear. In order to investigate the function of MTs during spermiogenesis in Portunus trituberculatus, we used RT-PCR and RACE to identify two MT complete cDNA sequences in the total RNA from the P. trituberculatus testis. The 450 bp MT-1 cDNA consists of a 77 bp 5′ untranslated region, a 196 bp 3′ untranslated region, and a 177 bp open reading frame that encodes 58 amino acids including 19 cysteines. The 581 bp MT-2 cDNA consists of 73 bp 5′ untranslated region, a 328 bp 3′ untranslated region, and a 180 bp open reading frame that encodes 59 amino acids including 18 cysteines. MT-1 and MT-2 of P. trituberculatus more closely resemble invertebrate (especially crab) MT homologues than vertebrate MT homologues as indicated by protein alignment comparisons and phylogenetic tree analysis. MT-1 and MT-2 were detected in the heart, testis, muscle, hepatopancreas, and gill of P. trituberculatus by tissue expression analysis. In addition, MT-1 and MT-2 are present during the entire process of spermiogenesis in P. trituberculatus as indicated by H and E staining and in situ hybridization. MT-1 and MT-2 expression levels significantly increase

  16. Expression and function analysis of metallothionein in the testis of Portunus trituberculatus exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dong-Fang [School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211 (China); The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 (China); Zhu, Jun-Quan; Jin, Shan [School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211 (China); Hu, Yan-Jun [Department of Reproductive Endocrinology, Women' s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Tan, Fu-Qing [The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003 (China); Yang, Wan-Xi, E-mail: wxyang@spermlab.org [The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2013-09-15

    Highlights: •We identified P. trituberculatus MT-1 and MT-2 complete cDNA sequence. •We analyzed the protein alignment comparisons and phylogenetic trees of MT-1 and MT-2. •RT-PCR analysis the tissue expression of MT-1 and MT-2 mRNA. •The spatial and temporal distribution pattern of MT-1 and MT-2 mRNA during spermiogenesis. •Testis MT-1 and MT-2 mRNA expression are dramatically affected after the cadmium exposure. -- Abstract: Metallothioneins (MTs) possess a unique molecular structure that provides metal-binding and redox capabilities. These capabilities include the maintenance of metal equilibria that protect against heavy metals (especially cadmium) and oxidative damage. Past studies have focused on the function of MTs in vertebrates. However, the functions of MTs during spermiogenesis in invertebrates remain unclear. In order to investigate the function of MTs during spermiogenesis in Portunus trituberculatus, we used RT-PCR and RACE to identify two MT complete cDNA sequences in the total RNA from the P. trituberculatus testis. The 450 bp MT-1 cDNA consists of a 77 bp 5′ untranslated region, a 196 bp 3′ untranslated region, and a 177 bp open reading frame that encodes 58 amino acids including 19 cysteines. The 581 bp MT-2 cDNA consists of 73 bp 5′ untranslated region, a 328 bp 3′ untranslated region, and a 180 bp open reading frame that encodes 59 amino acids including 18 cysteines. MT-1 and MT-2 of P. trituberculatus more closely resemble invertebrate (especially crab) MT homologues than vertebrate MT homologues as indicated by protein alignment comparisons and phylogenetic tree analysis. MT-1 and MT-2 were detected in the heart, testis, muscle, hepatopancreas, and gill of P. trituberculatus by tissue expression analysis. In addition, MT-1 and MT-2 are present during the entire process of spermiogenesis in P. trituberculatus as indicated by H and E staining and in situ hybridization. MT-1 and MT-2 expression levels significantly increase

  17. Metallothionein from Wild Populations of the African Catfish Clarias gariepinus: From Sequence, Protein Expression and Metal Binding Properties to Transcriptional Biomarker of Metal Pollution

    Directory of Open Access Journals (Sweden)

    Ethel M’kandawire

    2017-07-01

    Full Text Available Anthropogenic pollution with heavy metals is an on-going concern throughout the world, and methods to monitor release and impact of heavy metals are of high importance. With a view to probe its suitability as molecular biomarker of metal pollution, this study has determined a coding sequence for metallothionein of the African sharptooth catfish Clarias gariepinus. The gene product was recombinantly expressed in Escherichia coli in presence of Zn(II, Cd(II, or Cu, and characterised by Electrospray Ionisation Mass Spectrometry and elemental analysis. C. gariepinus MT displays typical features of fish MTs, including 20 conserved cysteines, and seven bound divalent cations (Zn(II or Cd(II when saturated. Livers from wild C. gariepinus fish collected in all three seasons from four different sites on the Kafue River of Zambia were analysed for their metal contents and for MT expression levels by quantitative PCR. Significant correlations were found between Zn and Cu levels and MT expression in livers, with MT expression clearly highest at the most polluted site, Chililabombwe, which is situated in the Copperbelt region. Based on our findings, hepatic expression of MT from C. gariepinus may be further developed as a major molecular biomarker of heavy metal pollution resulting from mining activities in this region.

  18. Metallothionein from Wild Populations of the African Catfish Clarias gariepinus: From Sequence, Protein Expression and Metal Binding Properties to Transcriptional Biomarker of Metal Pollution.

    Science.gov (United States)

    M'kandawire, Ethel; Mierek-Adamska, Agnieszka; Stürzenbaum, Stephen R; Choongo, Kennedy; Yabe, John; Mwase, Maxwell; Saasa, Ngonda; Blindauer, Claudia A

    2017-07-18

    Anthropogenic pollution with heavy metals is an on-going concern throughout the world, and methods to monitor release and impact of heavy metals are of high importance. With a view to probe its suitability as molecular biomarker of metal pollution, this study has determined a coding sequence for metallothionein of the African sharptooth catfish Clarias gariepinus . The gene product was recombinantly expressed in Escherichia coli in presence of Zn(II), Cd(II), or Cu, and characterised by Electrospray Ionisation Mass Spectrometry and elemental analysis. C. gariepinus MT displays typical features of fish MTs, including 20 conserved cysteines, and seven bound divalent cations (Zn(II) or Cd(II)) when saturated. Livers from wild C. gariepinus fish collected in all three seasons from four different sites on the Kafue River of Zambia were analysed for their metal contents and for MT expression levels by quantitative PCR. Significant correlations were found between Zn and Cu levels and MT expression in livers, with MT expression clearly highest at the most polluted site, Chililabombwe, which is situated in the Copperbelt region. Based on our findings, hepatic expression of MT from C. gariepinus may be further developed as a major molecular biomarker of heavy metal pollution resulting from mining activities in this region.

  19. STAT6 silencing induces hepatocellular carcinoma-derived cell apoptosis and growth inhibition by decreasing the RANKL expression.

    Science.gov (United States)

    Qing, Tian; Yamin, Zhang; Guijie, Wang; Yan, Jin; Zhongyang, Shen

    2017-08-01

    Signal transducer and activator of transcription-6 (STAT6) is highly expressed in various human cancers and considered a regulator of multiple biological processes in cancers, including cell apoptosis. Evidence has indicated that STAT6 predicts a worse prognosis in hepatocellular carcinoma (HCC) patients. The objective of this study was to investigate the effects and mechanism of STAT6 in human HCC cells. We found that STAT6 silencing significantly inhibited HepG2 and Hep3B cell survival and proliferation. We observed that depletion of STAT6 increased HepG2 and Hep3B cell apoptosis by using a histone DNA ELISA detection kit. STAT6 silencing induced expression of apoptosis-associated genes Bax and caspase-3/7 and inhibited anti-apoptosis gene Bcl-2 levels. We also observed that STAT6 silencing downregulated the expression of receptor activator of NF-κB ligand (RANKL). Our results demonstrated that treatment with pcDNA3.1-RANKL abolished STAT6 depletion-induced HepG2 and Hep3B cell apoptosis and growth inhibition. Based on these findings, we believe that RANKL plays a major role in STAT6-induced HCC cell apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Directory of Open Access Journals (Sweden)

    Senthil kumar M

    2011-05-01

    Full Text Available Abstract The Metallothionein (MT is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems. Strong evidence exists that MT modulates complex diseases and the immune system in the body but the primary function of MT still remains unknown. This review's main objective is to explore the capability to specifically manipulate MT levels in cells and in animals to provide answers regarding how MT could impact those complex disease scenarios. The experimental result mentioned in this review related among MT, zinc, cadmium, diabetic, heart disease, bone retardation, neuro toxicity, kidney dysfunction, cancer, and brain suggest novel method for exploration and contribute significantly to the growing scientist to research further in this field.

  1. A preliminary study on action mechanisms of surviving expression in cell apoptosis induced by high-LET radiation

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Gong Li; Wu Qingfeng; Li Ping; Dai Zhongying; Liu Xinguo; Tao Jiajun

    2010-01-01

    It has been proven that over-expression of surviving in cancerous cell lines is related to the radioresistance of cells to high-LET radiation in previous work. In this study, action mechanisms of surviving gene in apoptosis induced by high-LET radiation were investigated. We found that inhibiting surviving by siRNA had no notable influence on Bcl-2 and Bax expressions induced by carbon ions. Surviving depressed cell apoptosis through the inhibition of the activities of caspase-3 and -9 possibly in cell apoptosis induced by high-LET radiation. (authors)

  2. RCC2 over-expression in tumor cells alters apoptosis and drug sensitivity by regulating Rac1 activation.

    Science.gov (United States)

    Wu, Nan; Ren, Dong; Li, Su; Ma, Wenli; Hu, Shaoyan; Jin, Yan; Xiao, Sheng

    2018-01-10

    Small GTP binding protein Rac1 is a component of NADPH oxidases and is essential for superoxide-induced cell death. Rac1 is activated by guanine nucleotide exchange factors (GEFs), and this activation can be blocked by regulator of chromosome condensation 2 (RCC2), which binds the switch regions of Rac1 to prevent access from GEFs. Three cancer cell lines with up- or down-regulation of RCC2 were used to evaluate cell proliferation, apoptosis, Rac1 signaling and sensitivity to a group of nine chemotherapeutic drugs. RCC2 expression in lung cancer and ovarian cancer were studied using immunochemistry stain of tumor tissue arrays. Forced RCC2 expression in tumor cells blocked spontaneous- or Staurosporine (STS)-induced apoptosis. In contrast, RCC2 knock down in these cells resulted in increased apoptosis to STS treatment. The protective activity of RCC2 on apoptosis was revoked by a constitutively activated Rac1, confirming a role of RCC2 in apoptosis by regulating Rac1. In an immunohistochemistry evaluation of tissue microarray, RCC2 was over-expressed in 88.3% of primary lung cancer and 65.2% of ovarian cancer as compared to non-neoplastic lung and ovarian tissues, respectively. Because chemotherapeutic drugs can kill tumor cells by activating Rac1/JNK pathway, we suspect that tumors with RCC2 overexpression would be more resistant to these drugs. Tumor cells with forced RCC2 expression indeed had significant difference in drug sensitivity compared to parental cells using a panel of common chemotherapeutic drugs. RCC2 regulates apoptosis by blocking Rac1 signaling. RCC2 expression in tumor can be a useful marker for predicting chemotherapeutic response.

  3. Egr-1 Upregulates Siva-1 Expression and Induces Cardiac Fibroblast Apoptosis

    Directory of Open Access Journals (Sweden)

    Karin Zins

    2014-01-01

    Full Text Available The early growth response transcription factor Egr-1 controls cell specific responses to proliferation, differentiation and apoptosis. Expression of Egr-1 and downstream transcription is closely controlled and cell specific upregulation induced by processes such as hypoxia and ischemia has been previously linked to multiple aspects of cardiovascular injury. In this study, we showed constitutive expression of Egr-1 in cultured human ventricular cardiac fibroblasts, used adenoviral mediated gene transfer to study the effects of continuous Egr-1 overexpression and studied downstream transcription by Western blotting, immunohistochemistry and siRNA transfection. Apoptosis was assessed by fluorescence microscopy and flow cytometry in the presence of caspase inhibitors. Overexpression of Egr-1 directly induced apoptosis associated with caspase activation in human cardiac fibroblast cultures in vitro assessed by fluorescence microscopy and flow cytometry. Apoptotic induction was associated with a caspase activation associated loss of mitochondrial membrane potential and transient downstream transcriptional up-regulation of the pro-apoptotic gene product Siva-1. Suppression of Siva-1 induction by siRNA partially reversed Egr-1 mediated loss of cell viability. These findings suggest a previously unknown role for Egr-1 and transcriptional regulation of Siva-1 in the control of cardiac accessory cell death.

  4. Comparison of minichromosome maintenance proteins (MCM-3, MCM-7) and metallothioneins (MT-I/II, MT-III) expression in relation to clinicopathological data in ovarian cancer.

    Science.gov (United States)

    Kobierzycki, Christopher; Pula, Bartosz; Skiba, Mateusz; Jablonska, Karolina; Latkowski, Krzysztof; Zabel, Maciej; Nowak-Markwitz, Ewa; Spaczynski, Marek; Kedzia, Witold; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2013-12-01

    Despite great progress in the understanding of ovarian cancer biology, clinicopathological data (i.e. grade, stage, histological type and residual disease after surgery) seem to be the most important prognostic factors. The present study aimed to investigate the relationship between expression of minichromosome maintenance proteins (MCM-3, MCM-7), metallothioneins (MT-I/II, MT-III), and Ki-67 in 103 ovarian cancer cases, mostly of the serous histological type. Statistical analysis revealed strong positive correlations in the expression of MCM-3 vs. Ki-67 (r=0.492), MCM-7 vs. Ki-67 (r=0.651), and MCM-3 vs. MCM-7 (r=0.515) (all pMCM-3 and Ki-67 with increasing grade of histological malignancy (p=0.0011, p=0.029, respectively). Regarding clinical progression, cytoplasmic MT-I/II expression was significantly higher in more advanced disease stages (III+IV vs. I+II; p=0.0247). Due to the correlations shown here, the determination of MCM proteins as proliferation markers of ovarian cancer, should be strongly considered.

  5. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    International Nuclear Information System (INIS)

    Nakamori, Taizo; Fujimori, Akira; Kinoshita, Keiji; Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi

    2010-01-01

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by γ-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  6. mRNA expression of a cadmium-responsive gene is a sensitive biomarker of cadmium exposure in the soil collembolan Folsomia candida

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, Taizo, E-mail: taizo@ynu.ac.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Fujimori, Akira [Heavy-Ion Radiobiology Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kinoshita, Keiji [Nagoya University Avian Bioscience Research Centre, Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Ban-nai, Tadaaki; Kubota, Yoshihisa; Yoshida, Satoshi [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-05-15

    The gene expression of environmental organisms is useful as a biomarker of environmental pollution. One of its advantages is high sensitivity. We identified the cDNA of a novel cadmium-responsive gene in the soil collembolan Folsomia candida. The deduced protein, designated 'metallothionein-like motif containing protein' (MTC), was cysteine-rich and contained a metallothionein-like motif with similarity to metallothionein, but had a much longer sequence than metallothionein and contained repeated sequences of amino acids. Expression of MTC mRNA was sensitively induced by cadmium exposure at 0.3 mg/kg of dry food, a concentration at which toxic effects are not observed, but expression was not affected by gamma-ray exposure (an inducer of oxidative stress). These findings suggest that MTC is involved in cadmium-binding processes rather than in oxidative-stress responses. In conclusion, we suggest that gene expression of MTC may be a candidate biomarker for detecting low levels of cadmium contamination in soil. - The mRNA expression of a gene potentially encoding a metallothionein-like motif containing protein is sensitively induced by cadmium exposure in the soil collembolan Folsomia candida.

  7. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Sam [School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL (United Kingdom); School of Biomedical and Health Sciences, Pharmaceutical Sciences Research Division, King' s College London, 150 Stamford Street, London SE1 9NH (United Kingdom); Stuerzenbaum, Stephen R. [School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL (United Kingdom) and School of Biomedical and Health Sciences, Pharmaceutical Sciences Research Division, King' s College London, 150 Stamford Street, London SE1 9NH (United Kingdom)]. E-mail: stephen.sturzenbaum@kcl.ac.uk

    2007-01-15

    The genome of the nematode Caenorhabditis elegans contains two metallothionein genes, both involved in metal homeostasis and/or detoxification. Single metallothionein knockout mutants have been created and now, for the first time, a double mutant has been isolated. Life history studies in the presence or absence of cadmium showed that all metallothionein mutants are viable. Although cadmium did not influence longevity, a dose dependent reduction in total brood size and volumetric growth was observed in wild type animals, which was magnified in single knockouts and further exacerbated in the double knockout. However, the metallothionein deletion caused two effects that are independent of cadmium exposure, namely all knockout strains displayed a reduced total brood size and the deletion of both metallothionein loci caused a significant reduction in volumetric growth. In summary, metallothionein is undoubtedly an important player in cadmium detoxification, but evidently also an important factor in cadmium independent pathways. - Metallothionein is a modifier of life-history parameters.

  8. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits

    International Nuclear Information System (INIS)

    Hughes, Sam; Stuerzenbaum, Stephen R.

    2007-01-01

    The genome of the nematode Caenorhabditis elegans contains two metallothionein genes, both involved in metal homeostasis and/or detoxification. Single metallothionein knockout mutants have been created and now, for the first time, a double mutant has been isolated. Life history studies in the presence or absence of cadmium showed that all metallothionein mutants are viable. Although cadmium did not influence longevity, a dose dependent reduction in total brood size and volumetric growth was observed in wild type animals, which was magnified in single knockouts and further exacerbated in the double knockout. However, the metallothionein deletion caused two effects that are independent of cadmium exposure, namely all knockout strains displayed a reduced total brood size and the deletion of both metallothionein loci caused a significant reduction in volumetric growth. In summary, metallothionein is undoubtedly an important player in cadmium detoxification, but evidently also an important factor in cadmium independent pathways. - Metallothionein is a modifier of life-history parameters

  9. Short-term exposure of mice to gasoline vapor increases the metallothionein expression in the brain, lungs and kidney

    OpenAIRE

    Grebic, Damir; Jakovac, Hrvoje; Mrakovcic-Sutic, Ines; Tomac, J.; Bulog, A.; Micovic, V.; Radosevic-Stasic, Biserka

    2007-01-01

    Environmental airborne pollution has been repeatedly shown to affect multiple aspects of brain and cardiopulmonary function, leading to cognitive and behavioral changes and to the pronounced inflammatory response in the respiratory airways. Since in the cellular defense system the important role might have stress proteins-metallothionein (MT)-I and MT-II, which are involved in sequestration and dispersal of metal ions, regulation of the biosynthesis and activities of z...

  10. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xia; Zhou, Shanshan [The First Hospital of Jilin University, Changchun, 130021 (China); KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Zheng, Yang, E-mail: zhengyang@jlu.edu.cn [The First Hospital of Jilin University, Changchun, 130021 (China); Tan, Yi [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Chinese–American Research Institute for Diabetic Complications, Wenzhou Medical College School of Pharmacy, Wenzhou, 325035 (China); Kong, Maiying [Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202 (United States); Wang, Bo [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Department of Pathology, Inner Mongolia Forestry General Hospital, Yakeshi, 022150 (China); Feng, Wenke [Department of Medicine, School of Medicine, University of Louisville, Louisville, 40202 (United States); Epstein, Paul N. [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Cai, Jun, E-mail: j0cai002@louisville.edu [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Cai, Lu [KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202 (United States); Chinese–American Research Institute for Diabetic Complications, Wenzhou Medical College School of Pharmacy, Wenzhou, 325035 (China); Department of Medicine, School of Medicine, University of Louisville, Louisville, 40202 (United States)

    2014-05-15

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O{sub 2}/8% O{sub 2} F{sub I}O{sub 2} (30 episodes per hour) with 20 s at the nadir F{sub I}O{sub 2} for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage.

  11. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    International Nuclear Information System (INIS)

    Yin, Xia; Zhou, Shanshan; Zheng, Yang; Tan, Yi; Kong, Maiying; Wang, Bo; Feng, Wenke; Epstein, Paul N.; Cai, Jun; Cai, Lu

    2014-01-01

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O 2 /8% O 2 F I O 2 (30 episodes per hour) with 20 s at the nadir F I O 2 for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage

  12. Apoptosis Gene Hunting Using Retroviral Expression Cloning: Identification of Vacuolar ATPase Subunit E

    Directory of Open Access Journals (Sweden)

    Claire L. Anderson

    2003-01-01

    Full Text Available Over the past 10-15 years there has been an explosion of interest in apoptosis. The delayed realisation that cell death is an essential part of life for any multicellular organism has meant that, despite the recent and rapid developments of the last decade, the precise biochemical pathways involved in apoptosis remain incomplete and potentially novel genes may, as yet, remain undiscovered. The hunt is therefore on to bridge the remaining gaps in our knowledge. Our contribution to this research effort utilises a functional cloning approach to isolate important regulatory genes involved in apoptosis. This mini-review focuses on the use and advantages of a retroviral expression cloning strategy and describes the isolation and identification of one such potential apoptosis regulatory gene, namely that encoding vacuolar ATPase subunit E.

  13. Acute and subacute pulmonary toxicity caused by a single intratracheal instillation of colloidal silver nanoparticles in mice: pathobiological changes and metallothionein responses.

    Science.gov (United States)

    Kaewamatawong, Theerayuth; Banlunara, Wijit; Maneewattanapinyo, Pattwat; Thammachareon, Chuchaat; Ekgasit, Sanong

    2014-01-01

    To study the acute and subacute pulmonary toxicity of colloidal silver nanoparticles (Ag-NPs), 0 or 100 ppm of Ag-NPs were instilled intratracheally in mice. Cellular and biochemical parameters in bronchoalveolar lavage fluid (BALF) and histological alterations were determined 1, 3, 7, 15, and 30 days after instillation. Ag-NPs induced moderate pulmonary inflammation and injury on BALF indices during the acute period; however, these changes gradually regressed in a time-dependent manner. Concomitant histopathological and laminin immunohistochemical findings generally correlated to BALF data. Superoxide dismutase and metallothionein expression occurred in particle-laden macrophages and alveolar epithelial cells, which correlated to lung lesions in mice treated with Ag-NPs. These findings suggest that instillation of Ag-NPs causes transient moderate acute lung inflammation and tissue damage. Oxidative stress may underlie the induction of injury to lung tissue. Moreover, the expression of metallothionein in tissues indicated the protective response to exposure to Ag-NPs.

  14. Cyclooxygenase inhibitors induce apoptosis in oral cavity cancer cells by increased expression of nonsteroidal anti-inflammatory drug-activated gene

    International Nuclear Information System (INIS)

    Kim, Kyung-Su; Yoon, Joo-Heon; Kim, Jin Kook; Baek, Seung Joon; Eling, Thomas E.; Lee, Won Jae; Ryu, Ji-Hwan; Lee, Jeung Gweon; Lee, Joo-Hwan; Yoo, Jong-Bum

    2004-01-01

    We have investigated whether NAG-1 is induced in oral cavity cancer cells by various NSAIDs and if apoptosis induced by NSAIDs can be linked directly with the induction of NAG-1. NAG-1 expression was increased by diclofenac, aceclofenac, indomethacin, ibuprofen, and sulindac sulfide, in the order of NAG-1 induction, but not by acetaminophen, piroxicam or NS-398. Diclofenac was the most effective NAG-1 inducer. Incubation with diclofenac inhibited cell proliferation and induced apoptosis. The expression of NAG-1 was observed in advance of the induction of apoptosis. Conditioned medium from NAG-1-overexpressing Drosophila cells inhibited SCC 1483 cells proliferation and induced apoptosis. In summary, some NSAIDs induce NAG-1 expression in oral cavity cancer cells and the induced NAG-1 protein appears to mediate apoptosis. Therefore, NSAIDs may be considered as a possible chemopreventive agent against oral cavity cancer

  15. Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in Duck.

    Science.gov (United States)

    Shi, Lele; Cao, Huabin; Luo, Junrong; Liu, Ping; Wang, Tiancheng; Hu, Guoliang; Zhang, Caiying

    2017-11-01

    Molybdenum (Mo) is an essential element for human beings and animals; however, high dietary intake of Mo can lead to adverse reactions. Cadmium (Cd) is one of the major transitional metals which has toxic effects in animals. To investigate the co-induced toxic effects of Mo and Cd on oxidative damage and kidney apoptosis in duck, 120 ducks were randomly divided into control group and 5 treatment groups which were treated with a commercial diet containing different dosages of Mo and Cd. Kidney samples were collected on the 60th and 120th days to determine the mRNA expression levels of ceruloplasmin (CP), metallothionein (MT), Bak-1, and Caspase-3 by quantitative RT-PCR. Additionally, we also determined the antioxidant activity indexes and contents of Mo, Cd, copper (Cu), iron (Fe), zinc (Zn), and selenium (Se) in serum. Meanwhile, ultrastructural changes of the kidney were observed. The results showed that glutathione reductase (GR) activity and CP level in serum were decreased in combination groups. In addition, the antioxidant indexes were decreased in co-treated groups compared with single treated groups. The mRNA expression levels of Bak-1 and Caspase-3 increased in co-treated groups. The mRNA expression level of CP in high-dose combination group was downregulated, while the mRNA expression of MT was upregulated except for low-dose Mo group. Additionally, in the later period the content of Cu in serum decreased in joint groups while the contents of Mo and Cd increased. In addition, ultrastructural changes showed mitochondrial crest fracture, swelling, deformed nuclei, and karyopyknosis in co-treated groups. Taken together, it was suggested that dietary Mo and Cd might lead to oxidative stress, kidney apoptosis and disturb homeostasis of trace elements in duck, and it showed a possible synergistic relationship between the two elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Fascaplysin sensitizes cells to TRAIL-induced apoptosis through upregulating DR5 expression

    Science.gov (United States)

    Wang, Feng; Chen, Haimin; Yan, Xiaojun; Zheng, Yanling

    2013-05-01

    This study investigated the molecular mechanism of anti-tumor effect of fascaplysin, a nitrogenous red pigment firstly isolated from a marine sponge. Microarray analysis show that the TNF and TNF receptor superfamily in human umbilical vein endothelial cells (HUVEC) and human hepatocarcinoma cells (BEL-7402) were significantly regulated by fascaplysin. Western Blot results reveal that fascaplysin increased the expression of cleaved caspase-9, active caspase-3, and decreased the level of procaspase-8 and Bid. Flow cytometry and cytotoxicity tests indicate that fascaplysin sensitized cells to tumor necrosis-related apoptosisinducing ligand-(TRAIL) induced apoptosis, which was markedly blocked by TRAIL R2/Fc chimera, a dominant negative form of TRAIL receptor DR5. Therefore, our results demonstrate that fascaplysin promotes apoptosis through the activation of TRAIL signaling pathway by upregulating DR5 expression.

  17. [Knock-down of BCL11A expression in breast cancer cells promotes MDA-MB-231 cell apoptosis].

    Science.gov (United States)

    Li, Hongli; Gui, Chen; Yan, Lijun

    2016-11-01

    Objective To detect the expression and pathological significance of B-cell CLL/lymphoma 11A (BCL11A) in breast cancer and investigate the effect of its silencing on the apoptosis of human MDA-MB-231 breast cancer cells. MethodsImmunohistochemistry was used to detect the expression of BCL11A in 62 cases of human breast cancer tissues and 8 cases of normal tissues. We synthesized siRNA targeting BCL11A, and then siRNA was transfected into MDA-MB-231 cells. Forty-eight hours later, the suppression effect of siRNA on BCL11A was determined by quantitative real-time PCR and Western blotting. The apoptosis of MDA-MB-231 cells was detected by flow cytometry. Results The BCL11A protein was mainly expressed in cytoplasm. The expression level of BCL11A in breast cancer tissues was higher than that in paracancerous tissues. The expression had correlations with tumor grade, tumor stage, while it had no correlations with the patients' age and tumor size. BCL11A-siRNA significantly suppressed the expression of BCL11A mRNA and protein as compared with the control group. MDA-MB-231 cells transfected with BCL11A-siRNA had higher apoptosis rate compared with the control group. Conclusion The BCL11A protein is highly expressed in breast cancer and knock-down of BCL11A promotes the apoptosis of MDA-MB-231 cells.

  18. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    International Nuclear Information System (INIS)

    Li, Ruizhao; Zhang, Li; Shi, Wei; Zhang, Bin; Liang, Xinling; Liu, Shuangxin; Wang, Wenjian

    2013-01-01

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca 2+ was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca 2+ ]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may

  19. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  20. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    International Nuclear Information System (INIS)

    Parra, E.R.; Pincelli, M.S.; Teodoro, W.R.; Velosa, A.P.P.; Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L.

    2014-01-01

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis

  1. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Parra, E.R.; Pincelli, M.S. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Teodoro, W.R.; Velosa, A.P.P. [Disciplina de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-04

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.

  2. Temporal variations in metallothionein concentration and subcellular distribution of metals in gills and digestive glands of the oyster Crassostrea angulata

    Directory of Open Access Journals (Sweden)

    Chiara Trombini

    2010-11-01

    Full Text Available The metallothionein levels and metal concentrations in whole body, digestive gland and gills of Crassostrea angulata were analyzed in field samples collected from the River Guadalquivir estuary over several years following a mining waste spill upstream. The subcellular distribution of metals was analyzed to determine the mechanisms involved in the detoxification process. The highest metallothionein levels were reported in the digestive gland shortly after the mining contamination event. In this organ, metals are stored preferentially in the non-cytosolic fraction when increased bioaccumulation takes place. In the cytosol of the gills, metals are associated with metallothionein, whereas in the digestive gland, the distribution of metals between metallothioneins and high molecular weight proteins is similar. Metallothionein variation cannot be explained by metals alone; other abiotic factors must be taken into account. In order to use metallothionein as a metal exposure biomarker in field studies, natural variability needs to be taken into account for the correct interpretation of results.

  3. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  4. Determination of metallothioneins based on the enhanced peroxidase-like activity of mercury-coated gold nanoparticles aggregated by metallothioneins

    International Nuclear Information System (INIS)

    Li, Xue-Jiao; Wang, Yong-Sheng; Yang, Sheng-Yuan; Tang, Xian; Zhou, Bin; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin; He, Shun-Zhen; Liu, Lu

    2016-01-01

    We report on a photometric method for the determination of the metallothioneins (MTs). It is known that citrate capped gold nanoparticles (AuNPs) coated with traces of mercury possess peroxidase-like properties that can catalyze the oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline- 6-sulfonate) (ABTS) to form a blue product in acetate buffer of pH 4.5. It is found that if the AuNPs are first aggregated by the cysteine-rich metallothioneins, the peroxidase-like properties of the resulting aggregates (AuNP-Hg-MTs) cause a largely accelerated oxidation of ABTS. The effect of adding MTs to such a solution is used to quantify the MTs by a kinetic assay. Changes in absorbance at 416 nm are linearly correlated to the concentration of MTs in the 4.3 to 49 nM range, and the detection limit is 1.3 nM. The method was successfully applied to the determination of MTs in (spiked) human urine. The strategy may pave the way for related detection platforms. (author)

  5. p53-Dependent radiation-induced apoptosis in vivo: relationship to Bcl-2 and Bax expression

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Suzuki, Yoshiyuki; Furuta, Masaya; Yamakawa, Michitaka; Maebayashi, Katsuya; Hayakawa, Kayoko; Saito, Yoshihiro; Mitsuhashi, Norio; Niibe, Hideo

    1997-01-01

    Purpose: A close correlation between p53 protein expression and radiation-induced apoptosis has already been reported, however, Bcl-2 and Bax expression and the ratio of Bcl-2 to Bax have been also suggested to play an important role in the regulation of apoptotic cell death. In this study, we investigated the relationship between p53-dependent radiation-induced apoptosis and expression of Bcl-2 and Bax by using human tumors transplanted into nude mice. Materials and Methods: Three human tumors (an ependymoblastoma, a glioblastoma, and a small cell lung cancer) were subcutaneously transplanted into nude mice and irradiated with single doses of 1, 2, 5, or 10 Gy. The tumors were excised 1, 3, 6, 12, 24, and 48 hours after irradiation, fixed in 10% formalin for 24 hours, and embedded in paraffin. Slides were stained with hematoxylin and eosin for morphologic examination. Immunohistochemical studies were performed with mouse monoclonal antibodies to demonstrate p53, p21 (WAF-1), Bcl-2, and Bax expression. TdT-mediated dUTP-biotin nick-end labeling (TUNEL) and electron microscopic studies were performed to identify apoptosis, and PCR-SSCP analysis was used to evaluate p53 gene mutation. Results: All of the tumors showed only a few cells undergoing apoptosis before irradiation. Beginning several hours after irradiation, only the ependymoblastoma showed a large increase in the number of cells undergoing apoptosis, peaking at 6 hours after irradiation, and there was a clear dose-effect relationship. In contrast, the other tumors showed much less change following irradiation, and the dose-effect relationship was not as clear as in the ependymoblastoma. Immunohistochemically, the non-irradiated ependymoblastoma was negative for p53, p21, Bcl-2, and Bax. Following irradiation, however, many of the tumor cells became positive for p53 and p21, and a few cells became positive for bcl-2. In contrast, the glioblastoma and the small cell lung cancer were positive for p53 and Bcl-2

  6. Amount and metal composition of midgut gland metallothionein in shore crabs (Carcinus maenas) after exposure to cadmium in the food

    International Nuclear Information System (INIS)

    Pedersen, Knud Ladegaard; Bach, Louise Thornhøj; Bjerregaard, Poul

    2014-01-01

    Highlights: • Crabs were fed with Cd in concentrations of 1.1–5.1 μg g −1 food. • Metallothionein concentrations only increased at 5.1 μg g −1 . • Cd contents of metallothionein increased linearly with exposure. • A marked influence by the variable Cu contents on metal composition was recorded. • Digestive gland metallothionein is a poor biomarker for Cd exposure. - Abstract: Accumulation of cadmium in aquatic invertebrates may compromise human food safety and anthropogenic additions of cadmium to coastal areas cause concern. Induction of crustacean metallothionein has been suggested as a useful biomarker for contamination of the aquatic environment with cadmium. We investigated how exposure to low concentrations of cadmium in the food affects the subcellular binding of cadmium with the shore crab Carcinus maenas as model organism. Approximately 80% of the assimilated cadmium was bound in the soluble fraction of the midgut gland and of this, 82% was found in the metallothionein fraction. Metallothionein synthesis was only induced at the highest exposure level. However, the number of cadmium atoms bound per molecule of metallothionein increased linearly with exposure, from approximately 0.18 in the control group to 1.4 in a group administered food containing 5.1 μg Cd g −1 . We noted a marked interaction between the presence of copper and zinc in the midgut gland and the binding of cadmium. The usefulness of crustacean midgut gland metallothionein as a biomarker for cadmium exposure at modest levels was questioned since exposures at levels producing significant increases in the tissue contents of the metal did not result in elevated concentrations of metallothionein in the midgut gland

  7. Amount and metal composition of midgut gland metallothionein in shore crabs (Carcinus maenas) after exposure to cadmium in the food

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Knud Ladegaard; Bach, Louise Thornhøj; Bjerregaard, Poul, E-mail: poul@biology.sdu.dk

    2014-05-01

    Highlights: • Crabs were fed with Cd in concentrations of 1.1–5.1 μg g⁻¹ food. • Metallothionein concentrations only increased at 5.1 μg g⁻¹. • Cd contents of metallothionein increased linearly with exposure. • A marked influence by the variable Cu contents on metal composition was recorded. • Digestive gland metallothionein is a poor biomarker for Cd exposure. - Abstract: Accumulation of cadmium in aquatic invertebrates may compromise human food safety and anthropogenic additions of cadmium to coastal areas cause concern. Induction of crustacean metallothionein has been suggested as a useful biomarker for contamination of the aquatic environment with cadmium. We investigated how exposure to low concentrations of cadmium in the food affects the subcellular binding of cadmium with the shore crab Carcinus maenas as model organism. Approximately 80% of the assimilated cadmium was bound in the soluble fraction of the midgut gland and of this, 82% was found in the metallothionein fraction. Metallothionein synthesis was only induced at the highest exposure level. However, the number of cadmium atoms bound per molecule of metallothionein increased linearly with exposure, from approximately 0.18 in the control group to 1.4 in a group administered food containing 5.1 μg Cd g⁻¹. We noted a marked interaction between the presence of copper and zinc in the midgut gland and the binding of cadmium. The usefulness of crustacean midgut gland metallothionein as a biomarker for cadmium exposure at modest levels was questioned since exposures at levels producing significant increases in the tissue contents of the metal did not result in elevated concentrations of metallothionein in the midgut gland.

  8. Metallothionein induction in aquatic oligochaete tubifex tubifex exposed to herbicide isoproturon.

    Science.gov (United States)

    Mosleh, Y Y; Paris-Palacios, S; Arnoult, F; Couderchet, M; Biagianti-Risbourg, S; Vernet, G

    2004-02-01

    Metallothioneins (MTs) are low-molecular-weight proteins mainly involved in metal ion detoxification. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth and antioxidative defenses. Moreover, pesticides can induce their synthesis. The aim of the current work was to determine the effects of isoproturon, either pure or formulated as Matin (suspension containing an isoproturon concentration of 500 g. L(-1)), on the metallothionein and total protein contents of the aquatic worm Tubifex tubifex. MT levels in exposed worms increased significantly after 7 and 15 days of exposure to a concentration of the herbicide of 50 mg. L(-1). Isoproturon reduced the metal (Cu, Zn, and Cd) content of metallothioneins, and it also increased the total protein content of the worms. These results suggest that MT induction may not be considered a specific biomarker of metal exposure but that it can be used as a nonspecific biomarker of the effect of isoproturon effect in aquatic worms. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 88-93, 2004.

  9. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression.

    Science.gov (United States)

    Feuerborn, Renata; Becker, Susen; Potì, Francesco; Nagel, Petra; Brodde, Martin; Schmidt, Harmut; Christoffersen, Christina; Ceglarek, Uta; Burkhardt, Ralph; Nofer, Jerzy-Roch

    2017-02-01

    Macrophage apoptosis is critically involved in atherosclerosis. We here examined the effect of anti-atherogenic high density lipoprotein (HDL) and its component sphingosine-1-phosphate (S1P) on apoptosis in RAW264.7 murine macrophages. Mitochondrial or endoplasmic reticulum-dependent apoptosis was induced by exposure of macrophages to etoposide or thapsigargin/fukoidan, respectively. Cell death induced by these compounds was inhibited by S1P as inferred from reduced annexin V binding, TUNEL staining, and caspase 3, 9 and 12 activities. S1P induced expression of the inhibitor of apoptosis protein (IAP) family proteins cIAP1, cIAP2 and survivin, but only the inhibitor of survivin expression YM155 and not the cIAP1/2 blocker GDC0152 reversed the inhibitory effect of S1P on apoptosis. Moreover, S1P activated signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2) and the stimulatory effect of S1P on survivin expression and inhibitory effects on apoptosis were attenuated by STAT3 or JAK2 inhibitors, S3I-201 or AG490, respectively. The effects of S1P on STAT3 activation, survivin expression and macrophage apoptosis were emulated by HDL, HDL lipids, and apolipoprotein (apo) M-containing HDL, but not by apoA-I or HDL deprived of S1P or apoM. In addition, JTE013 and CAY10444, S1P receptor 2 and 3 antagonists, respectively, compromised the S1P and HDL capacities to stimulate STAT3 activation and survivin expression, and to inhibit apoptosis. HDL-associated S1P inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. The suppression of macrophage apoptosis may represent a novel mechanism utilized by HDL to exert its anti-atherogenic effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Recent Developments in Quantification Methods for Metallothionein

    Czech Academy of Sciences Publication Activity Database

    Dabrio, M.; Rodriquez, A. R.; Bordin, G.; Bebiano, M. J.; De Ley, M.; Šestáková, Ivana; Vašák, M.; Nordberg, M.

    2002-01-01

    Roč. 88, č. 2 (2002), s. 123-134 ISSN 0162-0134 R&D Projects: GA MŠk OC D21.002; GA MŠk OC D8.10 Institutional research plan: CEZ:AV0Z4040901 Keywords : electrochemistry * metallothionein * mass spectrometry Subject RIV: CG - Electrochemistry Impact factor: 2.204, year: 2002

  11. Smoking specifically induces metallothionein-2 isoform in human placenta at term

    International Nuclear Information System (INIS)

    Ronco, Ana Maria; Garrido, Fernando; Llanos, Miguel N.

    2006-01-01

    Recently, we reported the presence of higher levels of metallothionein (MT) in placentas of smokers compared to non-smokers. In the present study, we designed experiments to separate and evaluate two isoforms of MT (MT-1 and MT-2) in placentas of smokers and non-smokers. Metallothionein was extracted and separated by ion-exchange high performance liquid chromatography (HPLC), previous saturation with cadmium chloride. Two peaks eluting at 6 and 12.5 min, corresponding to MT-1 and MT-2, respectively, were obtained. Metallothionein present in both peaks was identified by Western blot analysis using a monoclonal antibody directed against MT-1 and MT-2. Each isoform concentration was calculated after measuring its cadmium content by atomic absorption spectrometry with inductively coupled-plasma. In placentas of smokers, MT-2 levels increased by seven-fold compared to non-smokers, whereas MT-1 was not changed. Total placental cadmium and zinc concentrations, determined by atomic absorption spectrometry and neutron activation analysis, respectively, were higher in smokers. Metallothioneins levels were clearly in excess to bind all cadmium ions present in placentas. However, most of placental zinc remains unbound to MTs, although as much as twice zinc ions could be bound to MT in smokers. In conclusion, MT-2 is the main isoform induced by smoking, suggesting that this isoform could be involved in placental cadmium and zinc retention. This fact, which could contribute to reduce the transference of zinc to the fetus, may be associated to detrimental effects on fetal growth and development

  12. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes.

    Science.gov (United States)

    Lee, Sook-Jeong; Koh, Jae-Young

    2010-10-26

    Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress.Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological

  13. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes

    Directory of Open Access Journals (Sweden)

    Lee Sook-Jeong

    2010-10-01

    Full Text Available Abstract Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the

  14. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Nana Pei

    Full Text Available Increased expression of angiotensin II type 2 receptor (AT2R induces apoptosis in numerous tumor cell lines, with either Angiotensin II-dependent or Angiotensin II-independent regulation, but its molecular mechanism remains poorly understood. Here, we used PCR Array analysis to determine the gene and microRNA expression profiles in human prostate cancer cell lines transduced with AT2R recombinant adenovirus. Our results demonstrated that AT2R over expression leads to up-regulation of 6 apoptosis-related genes (TRAIL-R2, BAG3, BNIPI, HRK, Gadd45a, TP53BP2, 2 cytokine genes (IL6 and IL8 and 1 microRNA, and down-regulation of 1 apoptosis-related gene TNFSF10 and 2 cytokine genes (BMP6, BMP7 in transduced DU145 cells. HRK was identified as an up-regulated gene in AT2R-transduced PC-3 cells by real-time RT-PCR. Next, we utilized siRNAs to silence the up-regulated genes to further determine their roles on AT2R overexpression mediated apoptosis. The results showed downregulation of Gadd45a reduced the apoptotic effect by ∼30% in DU145 cells, downregulation of HRK reduced AT2R-mediated apoptosis by more than 50% in PC-3 cells, while downregulation of TRAIL-R2 enhanced AT2R-mediated apoptosis more than 4 times in DU145 cells. We also found that the effects on AT2R-mediated apoptosis caused by downregulation of Gadd45a, TRAIL-R2 and HRK were independent in activation of p38 MAPK, p44/42 MAPK and p53. Taken together, our results demonstrated that TRAIL-R2, Gadd45a and HRK may be novel target genes for further study of the mechanism of AT2R-mediated apoptosis in prostate cancer cells.

  15. The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein.

    OpenAIRE

    Welch, J; Fogel, S; Buchman, C; Karin, M

    1989-01-01

    The yeast CUP1 gene codes for a copper-binding protein similar to metallothionein. Copper sensitive cup1s strains contain a single copy of the CUP1 locus. Resistant strains (CUP1r) carry 12 or more multiple tandem copies. We isolated 12 ethyl methane sulfonate-induced copper sensitive mutants in a wild-type CUP1r parental strain, X2180-1A. Most mutants reduce the copper resistance phenotype only slightly. However, the mutant cup2 lowers resistance by nearly two orders of magnitude. We cloned ...

  16. Tissue- and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT-PCR

    International Nuclear Information System (INIS)

    Zorita, I.; Bilbao, E.; Schad, A.; Cancio, I.; Soto, M.; Cajaraville, M.P.

    2007-01-01

    Metallothioneins (MTs) are metal-inducible proteins that can be used as biomarkers of metal exposure. In mussels two families of MT isoforms (MT10 and MT20) have been characterized. In this study, mussels (Mytilus galloprovincialis) were exposed to 200 ppb Cd and 40 ppb Cu for 2 and 9 days to characterize the tissue and isoform specificity of metal-induced MT expression. Non-radioactive in situ hybridization demonstrated that both MT isoforms were mainly transcribed in digestive tubule epithelial cells, especially in basophilic cells. Weaker MT expression was detected in non-ciliated duct cells, stomach and gill epithelial cells, haemocytes, adipogranular cells, spermatic follicles and oocytes. RT-PCR resulted in cloning of a novel M. galloprovincialis isoform homologous to recently cloned Mytilus edulis intron-less MT10B isoform. In gills, Cd only affected MT10 gene expression after 2 days of exposure while increases in MT protein levels occurred at day 9. In the digestive gland, a marked increase of both isoforms, but especially of MT20, was accompanied by increased levels of MT proteins and basophilic cell volume density (Vv BAS ) after 2 and 9 days and of intralysosomal metal accumulation in digestive cells after 9 days. Conversely, although metal was accumulated in digestive cells lysosomes and the Vv BAS increased in Cu-exposed mussels, Cu exposure did not produce an increase of MT gene expression or MT protein levels. These data suggest that MTs are expressed in a tissue-, cell- and isoform-specific way in response to different metals

  17. Effect of helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue

    Directory of Open Access Journals (Sweden)

    Hua Xin

    2017-05-01

    Full Text Available Objective: To study the effect of Helicobacter pylori L-form infection on proliferation, apoptosis and invasion molecule expression in gastric cancer tissue. Methods: The gastric cancer tissues surgically removed in our hospital between May 2013 and October 2016 were collected and divided into Hp negative, Hp-L negative and Hp-L positive according to the condition of helicobacter pylori infection. The proliferation, apoptosis and invasion gene expression were detected. Results: LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-positive gastric cancer tissues were significantly higher than those in Hp-L-negative and Hp-negative gastric cancer tissues while ING5, PTPN13, Beclin1 and Mst1 mRNA expression were significantly lower than those in Hp-L-negative and Hp-negative gastric cancer tissues; LOXL2, PCNA, CyclinD1, Rab1A, Bcl-2, ING5, PTPN13, Beclin1, Mst1, Snail, N-cadherin, UHRF1 and AnnexinII mRNA expression in Hp-L-negative gastric cancer tissues were not different from those in Hpnegative gastric cancer tissues. Conclusion: Helicobacter pylori L-form infection can influence the proliferation, apoptosis and invasion gene expression to promote cell proliferation and invasion, and inhibit cell apoptosis.

  18. Mechanism of effect of ionizing radiation on bcl-2 protein expression and apoptosis in mouse thymus

    International Nuclear Information System (INIS)

    Liu Jiamei; Chen Aijun; Chen Dong; Liu Shuzheng

    2002-01-01

    Objective: To study the mechanism of effect of ionizing radiation in varied doses of X-rays on bcl-2 express and apoptosis in mouse thymus. Methods: Immunohistochemistry, image analysis and transmission electron microscope were used in the study. Results: The expression of bcl-2 protein was limited within thymic medulla, decreased with 2 Gy, however, increased with 0.075 Gy after whole-body irradiation. Some typical apoptotic cells were found in thymic cortex after 2 Gy irradiation. The apoptotic cells decreased and mitotic metaphase increased after 0.075 Gy irradiation. Conclusion: The mechanism of effect of ionizing radiation on apoptosis of thymus was related with the expression of bcl-2 proteins

  19. PIDDosome Expression and the Role of Caspase-2 Activation for Chemotherapy-Induced Apoptosis in RCCs

    Directory of Open Access Journals (Sweden)

    Sebastian Heikaus

    2010-01-01

    Full Text Available Background: The importance of caspase-2 activation for mediating apoptosis in cancer is not clear and seems to differ between different tumour types. Furthermore, only few data have been obtained concerning the expression of caspase-2, which can be alternatively spliced into caspase-2L and caspase-2S, and the other PIDDosome members PIDD and RAIDD in human tumours in vivo. We, therefore, investigated their expression in renal cell carcinomas (RCCs of the clear cell type in vivo and analysed the role of caspase-2 in chemotherapy-induced apoptosis in RCCs in vitro.

  20. Effect of Bcl-2/Bax gene expression on apoptosis of spermatogenic cells of mouse testes induced by low dose radiation

    International Nuclear Information System (INIS)

    Liu Guangwei; Wang Chunyan; Lu Zhe; Liu Shunchun; Gong Shouliang

    2003-01-01

    The different kinds of spermatogenic cells were separated using density gradient centrifugation and their apoptosis and Bcl-2 and Bax protein expression were measured with flow cytometry and immunohistochemical method, respectively. The results showed the apoptosis in all kinds of spermatogenic cells induced by low dose radiation (LDR) had a obvious regularity. When the doses were 0.025 and 0.05 Gy, spermatogonia apoptosis was dominant. With the increase of irradiation dose (0.075-0.2 Gy), spermatocytes also showed an apoptotic change, but the apoptotic percentage of spermatogonia was significantly higher than that of spermatocytes. Moreover, the apoptosis of spermatids and spermatozoa scarcely occurred after LDR. Bax protein was primarily expressed in spermatogonia and spermatocytes, and the former was significantly higher than that of the latter after LDR. With the increase of irradiation dose, Bax protein expression showed a upgrading tendency, but that of spermatids and spermatozoa scarcely occurred. Bcl-2 protein was primarily expressed in spermatids and spermatozoa, but the Bcl-2 protein expressions of spermatogonia and spermatocytes scarcely occurred after LDR. These results imply that the interacting regulation of Bcl-2 and Bax gene expression might be involved in selective apoptosis of spermatogenic cells induced by LDR, which provided an experimental evidence for further exploring the apoptotic mechanism of adaptive response of spermatogenic cells by LDR

  1. Soluble Prokaryotic Expression and Purification of Bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand.

    Science.gov (United States)

    Do, Bich Hang; Nguyen, Minh Tan; Song, Jung-A; Park, Sangsu; Yoo, Jiwon; Jang, Jaepyeong; Lee, Sunju; So, Seoungjun; Yoon, Yejin; Kim, Inki; Lee, Kyungjin; Jang, Yeon Jin; Choe, Han

    2017-12-28

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as an antitumor agent owing to its ability to induce apoptosis of cancer cells without imparting toxicity toward most normal cells. TRAIL is produced in poor yield because of its insoluble expression in the cytoplasm of E. coli . In this study, we achieved soluble expression of TRAIL by fusing maltose-binding protein (MBP), b'a' domain of protein disulfide isomerase (PDIb'a'), or protein disulfide isomerase at the N-terminus of TRAIL. The TRAIL was purified using subsequent immobilized metal affinity chromatography and amylose-binding chromatography, with the tag removal using tobacco etch virus protease. Approximately 4.5 mg of pure TRAIL was produced from 125 ml flask culture with a purification yield of 71.6%. The endotoxin level of the final product was 0.4 EU/μg, as measured by the Limulus amebocyte lysate endotoxin assay. The purified TRAIL was validated and shown to cause apoptosis of HeLa cells with an EC₅₀ and Hill coefficient of 0.6 ± 0.03 nM and 2.41 ± 0.15, respectively. The high level of apoptosis in HeLa cells following administration of purified TRAIL indicates the significance and novelty of this method for producing high-grade and high-yield TRAIL.

  2. Expression, purification of metallothionein genes from freshwater crab (Sinopotamon yangtsekiense) and development of an anti-metallothionein ELISA

    Science.gov (United States)

    Zhang, Hao; Zhou, Hui

    2017-01-01

    Using the phoA-fusion technology, the recombinant metallothionein (MT) from freshwater crab (Sinopotamon yangtsekiense) has been successfully produced in Escherichia coli. MT purified from the bacterial suspension showed one polypeptide with a molecular weight of 7 kDa by tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine-SDS-PAGE). Western-blotting confirmed the polypeptides had a specific reactivity with mouse polyclonal MT anti-serum. Based on the purified MT and MT anti-serum, the reaction parameters for an enzyme-linked immunosorbent assay (ELISA) were developed. The direct coating ELISA showed a higher linear relationship compared to antibody sandwich coating ELISA. The optimal dilution rates of purified MT anti-serum and coating period were shown to be 1:160,000 and 12 hours at 4°C. At 37°C, the appropriate reaction duration of the first antibody and the second antibody were 2 hours and 1 hour, respectively. According to these optimal parameters, the standard linear equation, y = 0.0032x + 0.1769 (R2 = 0.9779, x, y representing MT concentration and OD450 value), was established for the determination of MT concentration with a valid range of 3.9–500 ng/ml. In verification experiments, the mean coefficients of variation of the intra-assay and inter-assay were 3.260% and 3.736%, respectively. According to the result of MT recovery, ELISA with an approaching 100% MT recovery was more reliable and sensitive than the Cd saturation assay. In conclusion, the newly developed ELISA of this study was precise, stable and repeatable, and could be used as a biomarker tool to monitor pollution by heavy metals. PMID:28350826

  3. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    International Nuclear Information System (INIS)

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR −/− ) and wild-type (AhR +/+ ) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR −/− cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR −/− compared to AhR +/+ cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR +/+ fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR +/+ lung fibroblasts in response to serum, corresponding to a decrease in p27 KIP1 protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27 KIP1 in AhR −/− fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the expression of the microRNA miR-196a independent of

  4. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  5. Star-PAP Control of BIK Expression and Apoptosis Is Regulated by Nuclear PIPKIα and PKCδ Signaling

    Science.gov (United States)

    Li, Weimin; Laishram, Rakesh S.; Ji, Zhe; Barlow, Christy A.; Tian, Bin; Anderson, Richard A.

    2012-01-01

    SUMMARY BIK protein is an initiator of mitochondrial apoptosis and BIK expression is induced by pro-apoptotic signals including DNA damage. Here we demonstrate that 3′-end processing and expression of BIK mRNA are controlled by the nuclear PI4,5P2-regulated poly(A) polymerase Star-PAP downstream of DNA damage. Nuclear PKCδ is a key mediator of apoptosis and DNA damage stimulates PKCδ association with the Star-PAP complex where PKCδ is required for Star-PAP-dependent BIK expression. PKCδ binds the PI4,5P2-generating enzyme PIPKIα, which is essential for PKCδ interaction with the Star-PAP complex and PKCδ activity is directly stimulated by PI4,5P2. Features in the BIK 3′-UTR uniquely define Star-PAP specificity and may block canonical PAP activity toward BIK mRNA. This reveals a nuclear phosphoinositide signaling nexus where PIPKIα, PI4,5P2 and PKCδ regulate Star-PAP control of BIK expression and induction of apoptosis. This pathway is distinct from the Star-PAP-mediated oxidative stress pathway indicating signal-specific regulation of mRNA 3′-end processing. PMID:22244330

  6. Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (Scophthalmus maximus) exposed to Cd, Cu, Zn and after a depuration treatment

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Nelva E. [Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, P.O. Box 644, E-48080 Bilboa (Spain); Quesada, Iban [Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, P.O. Box 644, E-48080 Bilboa (Spain); Hylland, Ketil [Norwegian Institute for Water Research (NIVA), Brekkeveien 19, P.O. Box 173, Kjelsaas, N-0411 Oslo (Norway); Marigomez, Ionan [Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, P.O. Box 644, E-48080 Bilboa (Spain); Soto, Manu [Department of Zoology and Animal Cell Biology, School of Science and Technology, University of the Basque Country, P.O. Box 644, E-48080 Bilboa (Spain)]. E-mail: zopsolom@lg.ehu.es

    2006-04-20

    Turbot (Scophthalmus maximus) were exposed to two sublethal concentrations (1 and 10 mg metal/l) of cadmium (8.9 and 89 {mu}M Cd), copper (15.26 and 152.6 {mu}M Cu) and zinc (15.3 and 153 {mu}M Zn) for 7 days, and afterwards were maintained depurating for 14 days. Immunoreactive metallothioneins (irMTs) and metal ions were localized in the branchial epithelium by immunohistochemistry (using an anti-Cod MT antibody) and autometallography (AMG), respectively. Metal ions were demonstrated by AMG as black silver deposits (BSD), mainly in mucocytes (MC) and to a lesser extent in the other branchial cell-types (respiratory cells (RC), chloride cells (CC) and basal layer cells (BLC)). Irrespective of the metal supplied, BSD were rapidly visualized in MC after 1 h of exposure. This accumulation did not increase with increasing exposure time and concentration. Metallothionein expression was mainly observed in mature CC in the interlamellar space for all exposure conditions and it was shown that all mature cells express the same amount of irMT. The number of CC exhibiting irMT in metal-exposed turbots increased following short exposure times (1 h-1 day) in the filament epithelium and following longer exposure times (1-7 days) in the secondary lamellae. Total levels of irMT in the gills (quantified by image analysis and densitometry) increased significantly in metal-exposed turbot and were related to increased exposure times. It can be concluded that the total content of irMT in the gills of metal-exposed turbot is governed by changes in the number of mature CC expressing the protein. The quantification of total irMT in branchial CC can be considered as a reliable biomarker of metal exposure since reflects changes in metal bioavailability. This approach based on cell-selective immunohistochemistry can be simplified by only quantifying the number of mature CC. In addition, the dramatic increase of CC in the gills that produces epithelial thickening of the FE enhances migration

  7. Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (Scophthalmus maximus) exposed to Cd, Cu, Zn and after a depuration treatment

    International Nuclear Information System (INIS)

    Alvarado, Nelva E.; Quesada, Iban; Hylland, Ketil; Marigomez, Ionan; Soto, Manu

    2006-01-01

    Turbot (Scophthalmus maximus) were exposed to two sublethal concentrations (1 and 10 mg metal/l) of cadmium (8.9 and 89 μM Cd), copper (15.26 and 152.6 μM Cu) and zinc (15.3 and 153 μM Zn) for 7 days, and afterwards were maintained depurating for 14 days. Immunoreactive metallothioneins (irMTs) and metal ions were localized in the branchial epithelium by immunohistochemistry (using an anti-Cod MT antibody) and autometallography (AMG), respectively. Metal ions were demonstrated by AMG as black silver deposits (BSD), mainly in mucocytes (MC) and to a lesser extent in the other branchial cell-types (respiratory cells (RC), chloride cells (CC) and basal layer cells (BLC)). Irrespective of the metal supplied, BSD were rapidly visualized in MC after 1 h of exposure. This accumulation did not increase with increasing exposure time and concentration. Metallothionein expression was mainly observed in mature CC in the interlamellar space for all exposure conditions and it was shown that all mature cells express the same amount of irMT. The number of CC exhibiting irMT in metal-exposed turbots increased following short exposure times (1 h-1 day) in the filament epithelium and following longer exposure times (1-7 days) in the secondary lamellae. Total levels of irMT in the gills (quantified by image analysis and densitometry) increased significantly in metal-exposed turbot and were related to increased exposure times. It can be concluded that the total content of irMT in the gills of metal-exposed turbot is governed by changes in the number of mature CC expressing the protein. The quantification of total irMT in branchial CC can be considered as a reliable biomarker of metal exposure since reflects changes in metal bioavailability. This approach based on cell-selective immunohistochemistry can be simplified by only quantifying the number of mature CC. In addition, the dramatic increase of CC in the gills that produces epithelial thickening of the FE enhances migration of CC

  8. Gefitinib upregulates death receptor 5 expression to mediate rmhTRAIL-induced apoptosis in Gefitinib-sensitive NSCLC cell line

    Directory of Open Access Journals (Sweden)

    Yan D

    2015-07-01

    Full Text Available Dong Yan,1,2 Yang Ge,1 Haiteng Deng,3 Wenming Chen,4 Guangyu An1 1Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China; 2Translational Molecular pathology, M.D Anderson Cancer Center, Houston, TX, USA; 3School of Sciences, Tsinghua University, 4Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL triggers apoptosis in tumor cells, but when used alone, it is not effective in the treatment of TRAIL-resistant tumors. Some studies have shown that gefitinib interacts with recombinant mutant human TRAIL (rmhTRAIL to induce high levels of apoptosis in gefitinib-responsive bladder cancer cell lines; however, the molecular mechanisms underlying the anticancer effects are not fully understood. Several reports have shown that the death receptor 5 (DR5 plays an important role in sensitizing cancer cells to apoptosis induced by TRAIL. Therefore, we investigated the effects of the combination of drugs and the expression of the DR5 to analyze the growth of a gefitinib-responsive non-small cell lung cancer cell line PC9, which was treated with rmhTRAIL and gefitinib individually or in combination.Methods: Human PC9 non-small cell lung cancer cells harboring an epidermal growth factor receptor mutation were used as a model for the identification of the therapeutic effects of gefitinib alone or in combination with rmhTRAIL, and cytotoxicity was assessed by MTT assays. Cell cycle and apoptosis were investigated using flow cytometry. Moreover, the effects of drugs on DR5, BAX, FLIP, and cleaved-caspase3 proteins expressions were analyzed using Western blot analyses. Finally, quantitative polymerase chain reaction analysis was carried out to assess whether rmhTRAIL and gefitinib modulate the expression of genes related to drug activity.Results: Gefitinib and rmh

  9. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-01-01

    Full Text Available Abstract Background Tanshinone IIA (Tan IIA is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. Methods The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. Results Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L- sulforaphane (L-SFN, an inhibitor of Pregnane × receptor (PXR significantly

  10. Diurnal-and sex-related difference of metallothionein expression in mice

    Directory of Open Access Journals (Sweden)

    Zhang Dan

    2012-07-01

    Full Text Available Abstract Background Metallothionein (MT is a small, cysteine-rich, metal-binding protein that plays an important role in protecting against toxicity of heavy metal and chemicals. This study was aimed to define diurnal and sex variation of MT in mice. Methods Adult mice were maintained in light- and temperature-controlled facilities for 2 weeks with light on at 8:00 and light off at 20:00. The blood, liver, and kidneys were collected every 4 h during the 24 h period. Total RNA was isolated, purified, and subjected to real-time RT-PCR analysis and MT protein was determined by western blot and the Cd/hemoglobin assay. Results The diurnal variations in mRNA levels of MT-1 and MT-2in liver were dramatic, up to a 40-foldpeak/trough ratio. MT mRNA levels in kidneys and blood also showed diurnal variation, up to 5-fold peak/trough ratio. The diurnal variation of MT mRNAs resembled the clock gene albumin site D-binding protein (Dbp, and was anti-phase to the clock gene Brain and Muscle ARNT-like Protein 1 (Bmal1 in liver and kidneys. The peaks of MT mRNA levels were higher in females than in males. Hepatic MT protein followed a similar pattern, with about a 3-fold difference. Conclusion MT mRNA levels and protein showed diurnal- and sex-variation in liver, kidney, and blood of mice, which could impact the body defense against toxic stimuli.

  11. Metallothionein as biomarker of mussel exposure to heavy metals

    International Nuclear Information System (INIS)

    Raspor, B.; Erk, M.; Pavicic, J.; Juric, D.; Kwokal, Z.; Odzak, N.

    1999-01-01

    The biological effect of marine pollution with heavy metals is followed in bivalves by means of the induced amount of metallothioneins (MTs), determined in different tissue types. The biological effect of the available toxic metals, cadmium and mercury, are related to the amount of MTs in the whole edible part, gills and the digestive gland of Mytilus galloprovincialis. For that purpose highly sensitive chemical and biochemical methods for metal and metallothionein content determination were developed and applied. The study was conducted in the Kastela Bay, which is the urban and industrial center of Dalmatia, Croatia, with two groups of mussels, indigenous and the transplanted. In accordance with the objective of the Symposium the results on monitoring the marine pollution by means of MTs as a biomarker, isolated from the edible, sessile and filter-feeding bivalves are discussed. (author)

  12. Pretransplant Immune- and Apoptosis-Related Gene Expression Is Associated with Kidney Allograft Function

    Directory of Open Access Journals (Sweden)

    Dorota Kamińska

    2016-01-01

    Full Text Available Renal transplant candidates present immune dysregulation, caused by chronic uremia. The aim of the study was to investigate whether pretransplant peripheral blood gene expression of immune factors affects clinical outcome of renal allograft recipients. Methods. In a prospective study, we analyzed pretransplant peripheral blood gene expression in87 renal transplant candidates with real-time PCR on custom-designed low density arrays (TaqMan. Results. Immediate posttransplant graft function (14-day GFR was influenced negatively by TGFB1 (P=0.039 and positively by IL-2 gene expression (P=0.040. Pretransplant blood mRNA expression of apoptosis-related genes (CASP3, FAS, and IL-18 and Th1-derived cytokine gene IFNG correlated positively with short- (6-month GFR CASP3: P=0.027, FAS: P=0.021, and IFNG: P=0.029 and long-term graft function (24-month GFR CASP3: P=0.003, FAS: P=0.033, IL-18: P=0.044, and IFNG: P=0.04. Conclusion. Lowered pretransplant Th1-derived cytokine and apoptosis-related gene expressions were a hallmark of subsequent worse kidney function but not of acute rejection rate. The pretransplant IFNG and CASP3 and FAS and IL-18 genes’ expression in the recipients’ peripheral blood is the possible candidate for novel biomarker of short- and long-term allograft function.

  13. Protective/detoxicative function of metallothionein in the rat brain and blood induced by controlled cadmium doses

    Directory of Open Access Journals (Sweden)

    H. N. Shiyntum

    2015-09-01

    Full Text Available Cadmiumclassified as a major carcinogen is considered a poisonous and unwanted heavy metal to a lot of tissues in many organisms. Of many publications already available, the general consensus is that the cadmium attenuating element is metallothionein (MT through its interchangeable mechanism with Zn triggered by the presence of Cd, providing binding sites for Cd ions. MT was first discovered in the kidney cortex of the horse; it represents a low molecular weight protein, rich in cysteine residues which effectively bind with metals. Its functions consist in detoxification of heavy metals like mercury, arsenic, cadmium, homeostasis of essential metals including copper and zinc, anti-oxidation against reactive oxygen species, protection against DNA damage, oxidative stress, cell survival, angiogenesis, apoptosis, and increase of proliferation. In this work, we sought to highlight the protective function of MT in the brain and serum of rats by means of detoxification under induced effects of controlled Cd doses. We have done this by exposing Wistar rats to Cd at different doses in drinking water at different time intervals. In two independent experiments, 58 rats were subjected to 0.1 or 1.0 µg Cd2+/kg of body weight for 15 or 36 days under different conditions. The obtained data indicates the different functioning systems for the brain and the blood for MT metabolism under Cd effect. Our results indicate significant loss of metallothionein level in the brain and important increases in the amount of MT in serum proving that even minimal ingestion of toxic Cd is enough to trigger the release of MT protein in blood.

  14. Metallothioneins I and II: neuroprotective significance during CNS pathology

    DEFF Research Database (Denmark)

    Penkowa, Milena; Stankovic, Roger; Chung, Roger

    2006-01-01

    Metallothioneins (MTs) constitutes a superfamily of highly conserved, low molecular weight polypeptides, which are characterized by high contents of cysteine (sulphur) and metals. As intracellular metal-binding proteins they play a significant role in the regulation of essential metals. The major...

  15. Effects of intrauterine growth restriction during late pregnancy on the cell apoptosis and related gene expression in ovine fetal liver.

    Science.gov (United States)

    Liu, Yingchun; Ma, Chi; Li, Hui; Li, Lingyao; Gao, Feng; Ao, Changjin

    2017-03-01

    This study investigated the effect of intrauterine growth restriction (IUGR) during late pregnancy on the cell apoptosis and related gene expression in ovine fetal liver. Eighteen time-mated Mongolian ewes with singleton fetuses were allocated to three groups at d 90 of pregnancy: Restricted Group 1 (RG1, 0.18 MJ ME kg BW -0.75  d -1 , n = 6), Restricted Group 2 (RG2, 0.33 MJ ME kg BW -0.75  d -1 , n = 6) and a Control Group (CG, ad libitum, 0.67 MJ ME kg BW -0.75  d -1 , n = 6). Fetuses were recovered at slaughter on d 140. Fetal liver weight, DNA content and protein/DNA ratio, proliferation index, cytochrome c, activities of Caspase-3, 8, and 9 were examined, along with relative expression of genes related to apoptosis. Fetuses in both restricted groups exhibited decreased BW, hepatic weight, DNA content, and protein/DNA ratio when compared to CG (P restricted groups (P  0.05). Hepatic expression of gene related to apoptosis showed reduced protein 21 (P21), B-cell lymphoma 2 (Bcl-2) and apoptosis antigen 1 ligand (FasL) expression in RG1 and RG2 (P < 0.05). In contrast, the increased hepatic expression of protein 53 (P53), Bcl-2 associated X protein (Bax) and apoptosis antigen 1 (Fas) in both IUGR fetuses were found (P < 0.05). These results indicate that the fetal hepatocyte proliferation were arrested in G1 cell cycle, and the fetal hepatocyte apoptosis was sensitive to the IUGR resulted from maternal undernutrition. The cell apoptosis in IUGR fetal liver were the potential mechanisms for its retarded proliferation and impaired development. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner

    International Nuclear Information System (INIS)

    Hwang, Yong Pil; Kim, Hyung Gyun; Han, Eun Hee; Jeong, Hye Gwang

    2008-01-01

    The zinc-binding protein metallothionein-III (MT-III) is associated with resistance to neuronal injury. However, the underlying mechanism for its effects is unclear. In this study, we demonstrate that MT-III prevents the accumulation of reactive oxygen species (ROS) in dopaminergic SH-SY5Y cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves phosphatidylinositol 3-kinase (PI3K) and ERK kinase/NF-E2-related factor 2 (Nrf2) dependent induction of the stress response protein heme oxygenase-1 (HO-1). Pretreatment of SH-SY5Y cells with MT-III significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Also, MT-III up-regulates HO-1 expression and this expression confers neuroprotection against oxidative injury induced by 6-OHDA. Moreover, MT-III induces Nrf2 nuclear translocation, which is upstream of MT-III-induced HO-1 expression, and PI3K and ERK1/2 activation, a pathway that is involved in induced Nrf2 nuclear translocation, HO-1 expression and neuroprotection. Taken together, these results suggest that the PI3K and ERK/Nrf2 signaling pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1

  17. Renal cells express different forms of vimentin: the independent expression alteration of these forms is important in cell resistance to osmotic stress and apoptosis.

    Directory of Open Access Journals (Sweden)

    Bettina S Buchmaier

    Full Text Available Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight, besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis.

  18. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  19. Peroxireduxin-4 is Over-Expressed in Colon Cancer and its Down-Regulation Leads to Apoptosis

    Directory of Open Access Journals (Sweden)

    Sandra M. Leydold

    2011-01-01

    Full Text Available The objective of this study was to gain insight into the biological basis of colon cancer progression by characterizing gene expression differences between normal colon epithelium, corresponding colorectal primary tumors and metastases. We found a close similarity in gene expression patterns between primary tumors and metastases, indicating a correlation between gene expression and morphological characteristics. PRDX4 was identified as highly expressed both in primary colon tumors and metastases, and selected for further characterization. Our study revealed that “Prdx4” (PrxIV, AOE372 shows functional similarities to other Prx family members by negatively affecting apoptosis induction in tumor cells. In addition, our study links Prdx4 with Hif-1α, a key regulatory factor of angiogenesis. Targeting Prdx4 may be an attractive approach in cancer therapy, as its inhibition is expected to lead to induction of apoptosis and blockage of Hif-1α-mediated tumor angiogenesis.

  20. 2'-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression.

    Science.gov (United States)

    Nguyen, Hai-Anh; Kim, Soo-A

    2017-01-01

    BAG3, a member of BAG co-chaperone family, is induced by stressful stimuli such as heat shock and heavy metals. Through interaction with various binding partners, BAG3 is thought to play a role in cellular adaptive responses against stressful conditions in normal and neoplastic cells. 2'-Hydroxycinnamaldehyde (HCA) is a natural derivative of cinnamaldehyde and has antitumor activity in various cancer cells. In the present study, for the first time, we identified that HCA induced BAG3 expression and BAG3-mediated apoptosis in cancer cells. The apoptotic cell death induced by HCA was demonstrated by caspase-7, -9 and PARP activation, and confirmed by Annexin V staining in both SW480 and SW620 colon cancer cells. Notably, both the mRNA and protein levels of BAG3 were largely induced by HCA in a dose- and time-dependent manner. By showing transcription factor HSF1 activation, we demonstrated that HCA induces the expression of BAG3 through HSF1 activation. More importantly, knockdown of BAG3 expression using siRNA largely inhibited HCA-induced apoptosis, suggesting that BAG3 is actively involved in HCA-induced cancer cell death. Considering the importance of the stress response mechanism in cancer progression, our results strongly suggest that BAG3 could be a potential target for anticancer therapy.

  1. Metal and metallothionein content in tissues from wild and farmed Anguilla anguilla at commercial size.

    Science.gov (United States)

    Ureña, R; Peri, S; del Ramo, J; Torreblanca, A

    2007-05-01

    Metallothionein and metal content (Cd, Zn, Hg, Cu, Fe, Pb and Mn) were determined in various organs of commercially available eel (Anguilla anguilla) of similar size obtained from a local farm and from The Albufera Lake in Valencia (Spain). Farmed fish showed statistically significant higher Cd concentrations in liver and kidney whereas wild individuals had higher levels of Pb in blood and Zn in kidney. Significant positive correlations were found between metallothionein and Cd in kidney of farmed eel and between metallothionein and Cu in liver of wild ones. No statistically significant differences were found between the two populations in the concentration of any of the metals analyzed in muscle and in all instances these levels were lower than the limits established by the Spanish legislation for fish destined for human consumption.

  2. Review on methods for determination of metallothioneins in aquatic organisms.

    Science.gov (United States)

    Shariati, Fatemeh; Shariati, Shahab

    2011-06-01

    One aspect of environmental degradation in coastal areas is pollution from toxic metals, which are persistent and are bioaccumulated by marine organisms, with serious public health implications. A conventional monitoring system of environmental metal pollution includes measuring the level of selected metals in the whole organism or in respective organs. However, measuring only the metal content in particular organs does not give information about its effect at the subcellular level. Therefore, the evaluation of biochemical biomarker metallothionein may be useful in assessing metal exposure and the prediction of potential detrimental effects induced by metal contamination. There are some methods for the determination of metallothioneins including spectrophotometric method, electrochemical methods, chromatography, saturation-based methods, immunological methods, electrophoresis, and RT-PCR. In this paper, different methods are discussed briefly and the comparison between them will be presented.

  3. Metallothionein response in earthworms Lampito mauritii (Kinberg) exposed to fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Maity, S.; Hattacharya, S.; Chaudhury, S. [Visva Bharati, Santini Ketan (India)

    2009-10-15

    Among pollutants, the coal fly ash occupies a significant position in industrial wastes. The fly ash matrix is a complex mixture of various organic (polyhalogenated compounds) and inorganic (Si, Al, Fe, As, Cd, Bi, Hg, etc.) chemicals. The application of fly ash for agricultural purposes and as landfills may lead to the contamination of the land with some of the toxic chemical compounds present in fly ash. Thus prior to the application of fly ash for developmental activities, it requires bio-monitoring and risk characterization. In order to achieve this objective adult Lampito mauritii were exposed to different proportions of fly ash in soil for 30 d and the concentrations of metallothionein in earthworm were assessed. The results revealed that up to 50% of fly ash amendment does not apparently harm the earthworm in respect of their survival and growth. A significant increase in tissue metallothionein level was recorded in L mauritii exposed to fly ash amended soil without tissue metal accumulation indicating that metallothionein is involved in scavenging of free radicals and reactive oxygen species metabolites. It is concluded that this biochemical response observed in L mauritii exposed to fly ash amended soil could be used in ecotoxicological field monitoring.

  4. Identification of apoptosis-related PLZF target genes

    International Nuclear Information System (INIS)

    Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes; Campillo, Jose Antonio; Parrado, Antonio

    2007-01-01

    The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localization is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression

  5. Cadmium modulates adipocyte functions in metallothionein-null mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya, E-mail: suzukis@ph.bunri-u.ac.jp

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  6. Effect of metallothionein core promoter region polymorphism on cadmium, zinc and copper levels in autopsy kidney tissues from a Turkish population

    International Nuclear Information System (INIS)

    Kayaalti, Zeliha; Mergen, Goerkem; Soeylemezoglu, Tuelin

    2010-01-01

    Metallothioneins (MTs) are metal-binding, low molecular weight proteins and are involved in pathophysiological processes like metabolism of essential metals, metal ion homeostasis and detoxification of heavy metals. Metallothionein expression is induced by various heavy metals especially cadmium, mercury and zinc; MTs suppress toxicity of heavy metals by binding themselves to these metals. The aim of this study was to investigate the association between the - 5 A/G metallothionein 2A (MT2A) single nucleotide polymorphism (SNP) and Cd, Zn and Cu levels in the renal cortex from autopsy cases. MT2A core promoter region - 5 A/G SNP was analyzed by PCR-RFLP method using 114 autopsy kidney tissues and the genotype frequencies of this polymorphism were found as 87.7% homozygote typical (AA), 11.4% heterozygote (AG) and 0.9% homozygote atypical (GG). In order to assess the Cd, Zn and Cu levels in the same autopsy kidney tissues, a dual atomic absorption spectrophotometer system was used and the average levels of Cd, Zn and Cu were measured as 95.54 ± 65.58 μg/g, 181.20 ± 87.72 μg/g and 17.14 ± 16.28 μg/g, respectively. As a result, no statistical association was found between the - 5 A/G SNP in the MT2A gene and the Zn and Cu levels in the renal cortex (p > 0.05), but considerably high accumulation of Cd was monitored for individuals having AG (151.24 ± 60.21 μg/g) and GG genotypes (153.09 μg/g) compared with individuals having AA genotype (87.72 ± 62.98 μg/g) (p < 0.05). These results show that the core promoter region polymorphism of metallothionein 2A increases the accumulation of Cd in human renal cortex.

  7. Increased levels of metallothionein in placenta of smokers

    International Nuclear Information System (INIS)

    Ronco, Ana Maria; Arguello, Graciela; Suazo, Myriam; Llanos, Miguel N.

    2005-01-01

    Experiments were designed to evaluate and compare metallothionein (MT), zinc and cadmium levels in human placentas of smoking and non-smoking women. Smoking was assessed by self-reported cigarette consumption and urine cotinine levels before delivery. Smoking pregnant women with urine cotinine levels higher than 130 ng/ml were included in the smoking group. Determination of placental MT was performed by western blot analysis after tissue homogenization and saturation with cadmium chloride (1000 ppm). Metallothionein was analyzed with a monoclonal antibody raised against MT-1 and MT-2 and with a second anti mouse antibody conjugated to alkaline phosphatase. Zinc and cadmium were determined by neutron activation analysis and atomic absorption spectrometry respectively. Smokers showed higher placental MT and cadmium levels, together with decreased newborn birth weights, as compared to non-smokers. The semi-quantitative analysis of western blots by band densitometry indicated that darker bands corresponded to MT present in smokers' samples. This study confirms that cigarette smoking increases cadmium accumulation in placental tissue and suggests that this element has a stimulatory effect on placental MT production

  8. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    Science.gov (United States)

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  9. Apoptosis in response to heat stress is positively associated with heat-shock protein 90 expression in chicken myocardial cells in vitro.

    Science.gov (United States)

    Zhang, Xiao-Hui; Wu, Hong; Tang, Shu; Li, Qiao-Ning; Xu, Jiao; Zhang, Miao; Su, Ya-Nan; Yin, Bin; Zhao, Qi-Ling; Kemper, Nicole; Hartung, Joerg; Bao, En-Dong

    2017-06-30

    To determine heat-shock protein (Hsp)90 expression is connected with cellular apoptotic response to heat stress and its mechanism, chicken ( Gallus gallus ) primary myocardial cells were treated with the Hsp90 promoter, aspirin, and its inhibitor, geldanamycin (GA), before heat stress. Cellular viability, heat-stressed apoptosis and reactive oxygen species level under different treatments were measured, and the expression of key proteins of the signaling pathway related to Hsp90 and their colocalization with Hsp90 were detected. The results showed that aspirin treatment increased the expression of protein kinase B (Akt), the signal transducer and activator of transcription (STAT)-3 and p-IKKα/β and the colocalization of Akt and STAT-3 with Hsp90 during heat stress, which was accompanied by improved viability and low apoptosis. GA significantly inhibited Akt expression and p-IKKα/β level, but not STAT-3 quantity, while the colocalization of Akt and STAT-3 with Hsp90 was weakened, followed by lower cell viability and higher apoptosis. Aspirin after GA treatment partially improved the stress response and apoptosis rate of tested cells caused by the recovery of Akt expression and colocalization, rather than the level of STAT-3 (including its co-localization with Hsp90) and p-IKKα/β. Therefore, Hsp90 expression has a positive effect on cellular capacity to resist heat-stressed injury and apoptosis. Moreover, inhibition of Hsp90 before stress partially attenuated its positive effects.

  10. Effects of hypo- and hyperthyroidism on proliferation, angiogenesis, apoptosis and expression of COX-2 in the corpus luteum of female rats.

    Science.gov (United States)

    Silva, J F; Ocarino, N M; Vieira, A L S; Nascimento, E F; Serakides, R

    2013-08-01

    Although thyroid dysfunction occurs frequently in humans and some animal species, the mechanisms by which hypo- and hyperthyroidism affect the corpus luteum have not been thoroughly elucidated. This study evaluated the levels of proliferative activity, angiogenesis, apoptosis and expression of cyclooxygenase-2 in the corpus luteum of female rats with thyroid dysfunction. These processes may be important in understanding the reproductive changes caused by thyroid dysfunction. A total of 18 adult female rats were divided into three groups (control, hypothyroid and hyperthyroid) with six animals per group. Three months after treatment to induce thyroid dysfunction, the rats were euthanized in the dioestrus phase. The ovaries were collected and immunohistochemically analysed for expression of the cell proliferation marker CDC-47, vascular endothelial growth factor (VEGF), VEGF receptor Flk-1 and cyclooxygenase-2 (COX-2). Apoptosis was evaluated using the TUNEL assay. Hypothyroidism reduced the intensity and area of COX-2 expression in the corpus luteum (p hyperthyroidism did not alter COX-2 expression in the dioestrus phase. Hypothyroidism significantly reduced the expression of CDC-47 in endothelial cells and pericytes in the corpus luteum, whereas hyperthyroidism did not induce a detectable change in CDC-47 expression (p > 0.05). Hypothyroidism reduced the level of apoptosis in luteal cells (p hyperthyroidism increased the level of apoptosis in the corpus luteum (p < 0.05). In conclusion, thyroid dysfunction differentially affects the levels of proliferative activity, angiogenesis and apoptosis and COX-2 expression in the corpus luteum of female rats. © 2013 Blackwell Verlag GmbH.

  11. [Effects of blueberry on apoptosis and expression of Bcl-2 and Bax in HSC-T6].

    Science.gov (United States)

    Lu, Shuang; Cheng, Mingliang; Yang, Demeng; Liu, Yang; Guan, Li; Wu, Jun

    2015-08-18

    To investigate the effects of blueberry on the apoptosis, expression of Bcl-2 and Bax in rat hepatic stellate cell (HSC-T6). 10% blueberry serum at low, middle and high dose, 10% Fu-Fang-Bie-Jia-Ruan-Gan tablet serum and 10% saline serum were prepared by method of serum pharmacology. Subcultured HSC-T6 was divided into saline serum control group, blueberry serum at low, middle, high dose and Fu-Fang-Bie-Jia-Ruan-Gan tablet serum group, and then was respectively incubated at different dose of 10% blueberry serum, 10% Fu-Fang-Bie-Jia-Ruan-Gan tablet serum and 10% saline serum for 72 hours.Apoptosis of HSC-T6 was detected using flow cytometry with annexin V FITC/PI double staining. The expression of Bcl-2 and Bax in HSC-T6 were examined using immunocytochemistry and Western blotting, respectively. There was no significant difference for HSC-T6 Bax protein expression in the low, middle and high dose blueberry serum groups, compared with saline serum control group, respectively.In the high-dose blueberry serum group HSC-T6 early and total apoptosis rate increased significantly compared with the saline serum control group (5.55% ± 0.98% vs 2.53% ± 0.46%, 7.01% ± 1.05% vs 2.96% ± 0.81%, both Pblueberry serum group showed no significant difference with the saline serum control group. Blueberry can induce HSC-T6 apoptosis by down-regulating Bcl-2 expression and decreasing the ratio of Bcl-2/Bax in HSC-T6 cells, so it may have potential interference effects on hepatic fibrosis.

  12. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  13. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  14. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm

    Directory of Open Access Journals (Sweden)

    Junjie Lu

    2018-04-01

    Full Text Available Differentiation of human pluripotent stem cells towards definitive endoderm (DE is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency. Keywords: hPSC, Differentiation, Definitive endoderm, Heterogeneity, Single cell, RNA sequencing

  15. Apoptosis and Bax expression are increased by coal dust in the polycyclic aromatic hydrocarbon-exposed lung

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, M.M.; Battelli, L.A.; Mercer, R.R.; Scabilloni, J.F.; Kashon, M.L.; Ma, J.Y.C.; Nath, J.; Hubbs, A.F.

    2006-09-15

    Miners inhaling respirable coal dust (CD) frequently develop coal workers' pneumoconiosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptosis was reported to play a critical role in the development of another pneumoconiosis of miners, silicosis. In addition, CID was reported to suppress cytochrome P450 1A1 (CYP1A1) induction by PAHs. We exposed rats intratracheally to 0.0, 2.5, 10.0, 20.0, or 40.0 mg/rat CD and, 11 days later, to intraperitoneal P-naphthoflavone (BNF), a PAH. In another group of rats exposed to CD and BNF, caspase activity was inhibited by injection of the pan-caspase inhibitor Q-VD-OPH (quinoline-Val-Asp (OMe)-CH{sub 2}-OPH). In rats exposed to BNF, CD exposure increased alveolar expression of the proapoptotic mediator Bax but decreased CYP1A1 induction relative to BNF exposure alone. Pan-caspase inhibition decreased CD-associated Bax expression and apoptosis but did not restore CYP1A1 activity. Further, CD-induced lung inflammation and alveolar epithelial cell hypertrophy and hyperplasia were not suppressed by caspase inhibition. It is concluded that combined BNF and CD exposure increased Bax expression and apoptosis in the lung, but Bax and apoptosis were not the major determinants of early lung injury in this model.

  16. The Expression of HMGB1 in Bone Marrow MSCs Is Upregulated by Hypoxia with Regulatory Effects on the Apoptosis and Adhesion

    Directory of Open Access Journals (Sweden)

    Mei-Yun Tan

    2016-01-01

    Full Text Available Background and Aims. Hypoxia regulates the survival of mesenchymal stem cells (MSCs but the mechanism is unclear. In hypoxia, the level of high mobility group box 1 (HMGB1 was increased in many cells which may be involved in the regulation of cell biology. The aim is to determine whether hypoxia affects the expression of HMGB1 in bone marrow MSCs (BM-MSCs and to investigate the role of HMGB1 in the apoptosis and adhesion. Methods. BM-MSCs were exposed to hypoxia (1% O2 and normoxia (20% O2 and the expression of HMGB1 was measured by RT-PCR and western blotting. The apoptosis and adhesion of BM-MSCs were evaluated after interfered by different concentrations of HMGB1. Results. Expression of HMGB1 in BM-MSCs showed a significant upregulation in hypoxia when compared to those in normoxia. The adhesion of BM-MSCs was increased by HMGB1 in a concentration-dependent manner; the apoptosis effect of HMGB1 depended on its concentrations: HMGB1 at low concentration (50 ng/mL promoted the apoptosis of BM-MSCs while HMGB1 at high concentration (≥100 ng/mL reduced this apoptosis. Conclusions. Hypoxia enhanced the expression of HMGB1 in BM-MSCs with influences on apoptosis and adhesion and this could have a significant effect on the regenerative potential of MSC-based strategies.

  17. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  18. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  19. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  20. Metallothioneins: Emerging Modulators in Immunity and Infection

    Directory of Open Access Journals (Sweden)

    Kavitha Subramanian Vignesh

    2017-10-01

    Full Text Available Metallothioneins (MTs are a family of metal-binding proteins virtually expressed in all organisms including prokaryotes, lower eukaryotes, invertebrates and mammals. These proteins regulate homeostasis of zinc (Zn and copper (Cu, mitigate heavy metal poisoning, and alleviate superoxide stress. In recent years, MTs have emerged as an important, yet largely underappreciated, component of the immune system. Innate and adaptive immune cells regulate MTs in response to stress stimuli, cytokine signals and microbial challenge. Modulation of MTs in these cells in turn regulates metal ion release, transport and distribution, cellular redox status, enzyme function and cell signaling. While it is well established that the host strictly regulates availability of metal ions during microbial pathogenesis, we are only recently beginning to unravel the interplay between metal-regulatory pathways and immunological defenses. In this perspective, investigation of mechanisms that leverage the potential of MTs to orchestrate inflammatory responses and antimicrobial defenses has gained momentum. The purpose of this review, therefore, is to illumine the role of MTs in immune regulation. We discuss the mechanisms of MT induction and signaling in immune cells and explore the therapeutic potential of the MT-Zn axis in bolstering immune defenses against pathogens.

  1. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90.

    Science.gov (United States)

    Li, Wanxia; Tao, Shaoyu; Wu, Qinghua; Wu, Tao; Tao, Ran; Fan, Jun

    2017-12-01

    Myocardial cell injury and cardiac myocyte apoptosis are associated with sepsis. Glutamine (Gln) has been reported to repair myocardial cell injury. The aim of this study was to explore the role of Gln on cardiac myocytes in a cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Following induction of sepsis in a CLP rat model, viral encoding heat shock protein 90 (Hsp90) gene and Hsp90dsDNA were designed to express and knockdown Hsp90, respectively. Rat cardiac tissues were examined histologically, and apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, Hsp90, p53 upregulated modulator of apoptosis, and p53 was measured by western blotting and real-time polymerase chain reaction. Caspase-3, caspase-8, and caspase-9 were detected by enzyme-linked immunosorbent assay. Rat cardiac myocyte damage induced by CLP was reduced by Gln treatment and Hsp90 overexpression, and these changes were reversed by Hsp90 knockdown. Bcl-2 expression, Bcl-2-associated X protein, p53, p53 upregulated modulator of apoptosis, caspase-8, caspase-9, and caspase-3 activities were significantly upregulated in the CLP model, which were reduced by Gln treatment and Hsp90 overexpression. Gln reduced apoptosis of cardiac myocytes in a rat model of sepsis, by promoting Hsp90 expression. Further studies are needed to determine the possible therapeutic action of Gln in sepsis in human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The effects of air pollution and smoking on placental cadmium, zinc concentration and metallothionein expression

    International Nuclear Information System (INIS)

    Sorkun, Hulya Cetin; Bir, Ferda; Akbulut, Metin; Divrikli, Umit; Erken, Gulten; Demirhan, Huriye; Duzcan, Ender; Elci, Latif; Celik, Ismail; Yozgatli, Unsal

    2007-01-01

    This study is designed to determine the placental zinc (Zn) and cadmium (Cd) levels in mothers who were smokers, mothers who were thought to be exposed to air pollution, and mothers who were non-smokers and to investigate the relationship between the expression of placental metallothionein (MT) binding these metals and blood progesterone level. Placental Zn and Cd levels were measured by atomic absorption spectrometry. Presence of placental MT was determined immunohistochemically. Placental changes were examined by light microscope after H and E and PAS staining. Immunohistochemical MT staining of syncytiotrophoblastic and villous interstitial cells were scored as positive or negative. Among the 92 mothers included in the study, 33 were smokers (Group I), 29 had been exposed to air pollution (Group II) and 30 were non-smoker rural residents who had never been exposed to air pollution (Group III). Mean off-spring birth weight of 3198.62 ± 380.01 g and mean placenta weight of 561.38 ± 111.55 g of Group II were lower when compared with those of other two groups. In Group I, mean placental Cd and Zn were 0.063 ± 0.022 μg/g and 39.84 ± 15.5 μg/g, respectively, being higher than in other groups. In Group II, mean placental Cd and Zn levels were higher than those of Group III. Blood progesterone levels of subjects in Group I (121 ng/ml) were the lowest of all groups. While the mean count of villi was the highest in Group III; the highest mean count of syncytial knots was in Group II. Thickening of vasculo-syncytial membrane was most prominent in Group I. Similarly, MT staining was positive and very dense in 72.7% (24/33) of cases in Group I (p ≤ 0.05). MT staining was positive in 69.0% (29/20) and denser in Group II cases compared to 36% (11/30) in Group III (p ≤ 0.05). This study showed that smoking increased Cd levels in placenta and accompanied an increase in placental MT expression immunohistochemically. The effects of exposure to air pollution are equally

  3. Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis

    International Nuclear Information System (INIS)

    Tamagiku, Yuji; Sonoda, Yoshiko; Kunisawa, Mari; Ichikawa, Daiju; Murakami, Yayoi; Aizu-Yokota, Eriko; Kasahara, Tadashi

    2004-01-01

    We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells

  4. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells.

    Science.gov (United States)

    Li, Lian; Wu, Jie; Luo, Man; Sun, Yu; Wang, Genlin

    2016-05-01

    Summer heat stress (HS) is a major contributing factor in low fertility in lactating dairy cows in hot environments. Heat stress inhibits ovarian follicular development leading to diminished reproductive efficiency of dairy cows during summer. Ovarian follicle development is a complex process. During follicle development, granulosa cells (GCs) replicate, secrete hormones, and support the growth of the oocyte. To obtain an overview of the effects of heat stress on GCs, digital gene expression profiling was employed to screen and identify differentially expressed genes (DEGs; false discovery rate (FDR) ≤ 0.001, fold change ≥2) of cultured GCs during heat stress. A total of 1211 DEGs including 175 upregulated and 1036 downregulated ones were identified, of which DEGs can be classified into Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results suggested that heat stress triggers a dramatic and complex program of altered gene expression in GCs. We hypothesized that heat stress could induce the apoptosis and dysfunction of GCs. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the expression of steroidogenic genes (steroidogenic acute regulatory protein (Star), cytochrome P-450 (CYP11A1), CYP19A1, and steroidogenic factor 1 (SF-1)) and apoptosis-related genes (caspase-3, BCL-2, and BAX). Radio immunoassay (RIA) was used to analyze the level of 17β-estradiol (E2) and progesterone (P4). We also assessed the apoptosis of GCs by flow cytometry. Our data suggested that heat stress induced GC apoptosis through the BAX/BCL-2 pathway and reduced the steroidogenic gene messenger RNA (mRNA) expression and E2 synthesis. These results suggest that the decreased function of GCs may cause ovarian dysfunction and offer an improved understanding of the molecular mechanism responsible for the low fertility in cattle in summer.

  5. Dysregulated IER3 Expression is Associated with Enhanced Apoptosis in Titin-Based Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Qifeng Zhou

    2017-03-01

    Full Text Available Apoptosis (type I programmed cell death of cardiomyocytes is a major process that plays a role in the progression of heart failure. The early response gene IER3 regulates apoptosis in a wide variety of cells and organs. However, its role in heart failure is largely unknown. Here, we investigate the role of IER3 in an inducible heart failure mouse model. Heart failure was induced in a mouse model that imitates a human titin truncation mutation we found in a patient with dilated cardiomyopathy (DCM. Transferase dUTP nick end labeling (TUNEL and ssDNA stainings showed induction of apoptosis in titin-deficient cardiomyocytes during heart failure development, while IER3 response was dysregulated. Chromatin immunoprecipitation and knock-down experiments revealed that IER3 proteins target the promotors of anti-apoptotic genes and act as an anti-apoptotic factor in cardiomyocytes. Its expression is blunted during heart failure development in a titin-deficient mouse model. Targeting the IER3 pathway to reduce cardiac apoptosis might be an effective therapeutic strategy to combat heart failure.

  6. Study of miR-155 expression in villus tissue of patients with recurrent spontaneous abortion and its relationship with apoptosis molecules and angiogenesis molecules

    Institute of Scientific and Technical Information of China (English)

    Hong-Ying Du; Man-Zhen Zuo; Qiao-Ling Wang; Xiao-Juan Xie

    2016-01-01

    Objective:To study miR-155 expression in villus tissue of patients with recurrent spontaneous abortion and its relationship with apoptosis molecules and angiogenesis molecules.Methods:40 cases of patients with unexplained recurrent spontaneous abortion were selected as URSA group, 30 cases of normal early pregnant women receiving artificial abortion were selected as control group, and villus tissue was collected to detect expression levels of miR-155, apoptosis molecules (Bcl-2, Bcl-xl, Bax, Bad, Fas and FasL) and angiogenesis molecules (HIF-1α, VEGF and sFlt-1).Results: MiR-155 expression level in villus tissue of URSA group was significantly lower than that of control group and the more the times of abortion, the lower the miR-155 expression level; pro-apoptosis molecules Bax, Bad, Fas and FasL expression levels in villus tissue of URSA group were higher than those of control group and negatively correlated with miR-155 expression level, and anti-apoptosis genes Bcl-2 and Bcl-xl expression levels were lower than those of control group and positively correlated with miR-155 expression level; HIF-1α and VEGF expression levels in villus tissue of URSA group were lower than those of control group and positively correlated with miR-155 expression level, and sFlt-1 expression level was higher than that of control group and negatively correlated with miR-155 expression level.Conclusions:MiR-155 is lowly expressed in villus tissue of patients with recurrent spontaneous abortion, and miR-155 may be involved in the occurrence and development of the disease through regulating the expression of apoptosis molecules and angiogenesis molecules.

  7. Hsp27, Hsp70, and metallothionein in MDCK and LLC-PK1 renal epithelial cells: effects of prolonged exposure to cadmium

    International Nuclear Information System (INIS)

    Bonham, Rita T.; Fine, Michael R.; Pollock, Fiona M.; Shelden, Eric A.

    2003-01-01

    Cadmium is a widely distributed industrial and environmental toxin. The principal target organ of chronic sublethal cadmium exposure is the kidney. In renal epithelial cells, acute high-dose cadmium exposure induces differential expression of proteins, including heat shock proteins. However, few studies have examined heat shock protein expression in cells after prolonged exposure to cadmium at sublethal concentrations. Here, we assayed total cell protein, neutral red uptake, cell death, and levels of metallothionein and heat shock proteins Hsp27 and inducible Hsp70 in cultures of MDCK and LLC-PK1 renal epithelial cells treated with cadmium for 3 days. Treatment with cadmium at concentrations equal to or greater than 10 μM (LLC-PK1) or 25 μM (MDCK) reduced measures of cell vitality and induced cell death. However, a concentration-dependent increase in Hsp27 was detected in both cell types treated with as little as 5 μM cadmium. Accumulation of Hsp70 was correlated only with cadmium treatment at concentrations also causing cell death. Metallothionein was maximally detected in cells treated with cadmium at concentrations that did not reduce cell vitality, and further increases were not detected at greater concentrations. These results reveal that heat shock proteins accumulate in renal epithelial cells during prolonged cadmium exposure, that cadmium induces differential expression of heat shock protein in epithelial cells, and that protein expression patterns in epithelial cells are specific to the cadmium concentration and degree of cellular injury. A potential role for Hsp27 in the cellular response to sublethal cadmium-induced injury is also implicated by our results

  8. Protection against UVA-induced photooxidative damage in mammalian cell lines expressing increased levels of metallothionein

    International Nuclear Information System (INIS)

    Dudek, E.J.; Roth, R.M.

    1990-01-01

    Metallothionein (MT) is an endogenous low molecular weight protein that is inducible in a variety of eukaryotic cells and has the ability to selectivity bind heavy metal ions such as zinc and the cadmium. Although the exact physiological role of MT is still not understood, there is strong evidence that MT is involved in providing cellular resistance against the damaging effects of heavy metals and in the regulation of intracellular zinc and copper. Recently, it has been demonstrated that MT can scavenge radiation-induced reactive oxygen intermediates in vitro, specifically hydroxyl and superoxide radicals, and because of these observations it has been suggested that MT may provide protection against radiation-induced oxidative stress in vivo. Cell lines expressing increased levels of MT have demonstrated resistance to ionizing radiation, to ultraviolet radiation, and also to various DNA damaging agents including melphalan and cis-diaminedichloroplatinum. It is therefore important to gain some insight into the relationship between cellular MT content and cellular resistance to radiation and other DNA damaging agents. In this study we investigated the role of MT in providing protection against monochromatic 365-nm UVA radiation, which is known to generate intracellular reactive oxygen species that are involved in both DNA damage and cell killing. For this purpose, we used zinc acetate, a potent inducer of MT, to elevate MT levels in V79 Chinese hamster fibroblasts prior to UVA exposure and determined cell survival for uninduced and induced cultures. In order to eliminate any zinc effects other than MT induction, we also isolated and characterized cadmium chloride-resistant clones of V79 cells that have increased steady-state levels of both MT mRNA and protein, and we examined their survival characteristics against 365-nm radiation in the absence of zinc acetate. 14 refs., 3 figs

  9. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents.

    OpenAIRE

    Kaina, B; Lohrer, H; Karin, M; Herrlich, P

    1990-01-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of re...

  10. cDNA cloning and nucleotide sequence comparison of Chinese hamster metallothionein I and II mRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B B; Walters, R A; Enger, M D; Hildebrand, C E; Griffith, J K

    1983-01-01

    Polyadenylated RNA was extracted from a cadmium resistant Chinese hamster (CHO) cell line, enriched for metal-induced, abundant RNA sequences and cloned as double-stranded cDNA in the plasmid pBR322. Two cDNA clones, pCHMT1 and pCHMT2, encoding two Chinese hamster isometallothioneins were identified, and the nucleotide sequence of each insert was determined. The two Chinese hamster metallothioneins show nucleotide sequence homologies of 80% in the protein coding region and approximately 35% in both the 5' and 3' untranslated regions. Interestingly, an 8 nucleotide sequence (TGTAAATA) has been conserved in sequence and position in the 3' untranslated regions of each metallothionein mRNA sequenced thus far. Estimated nucleotide substitution rates derived from interspecies comparisons were used to calculate a metallothionein gene duplication time of 45 to 120 million years ago. 39 references, 1 figure, 1 table.

  11. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Konecna, Marie; Novotny, Karel; Krizkova, Sona; Blazkova, Iva; Kopel, Pavel; Kaiser, Jozef; Hodek, Petr; Kizek, Rene

    2014-01-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected. - Highlights: • We describe determination of biomolecules labeled with quantum dots by LIBS. • LIBS and immunoassay are applied for the determination of metallothionein. • Metallothionein amount detected by LIBS is 10-times lower compared to ELISA

  12. Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konecna, Marie [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Novotny, Karel [Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Krizkova, Sona [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Blazkova, Iva [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kopel, Pavel [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Kaiser, Jozef [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Hodek, Petr [Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 00 Prague,Czech Republic (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); and others

    2014-11-01

    The technique described in this paper allows detection of quantum dots (QDs) specifically deposited on the polystyrene surface by laser-induced breakdown spectroscopy (LIBS). Using LIBS, the distribution of QDs or their conjugates with biomolecules deposited on the surface can be observed, regardless of the fact if they exhibit fluorescence or not. QDs deposited on the specific surface of polystyrene microplate in the form of spots are detected by determination of the metal included in the QDs structure. Cd-containing QDs (CdS, CdTe) stabilized with mercaptopropionic (MPA) or mercaptosuccinic (MSA) acid, respectively, alone or in the form of conjugates with metallothionein (MT) biomolecule are determined by using the 508.58 nm Cd emission line. The observed absolute detection limit for Cd in CdTe QDs conjugates with MT in one spot was 3 ng Cd. Due to the high sensitivity of this technique, the immunoanalysis in combination with LIBS was also investigated. Cd spatial distribution in sandwich immunoassay was detected. - Highlights: • We describe determination of biomolecules labeled with quantum dots by LIBS. • LIBS and immunoassay are applied for the determination of metallothionein. • Metallothionein amount detected by LIBS is 10-times lower compared to ELISA.

  13. Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.

    Science.gov (United States)

    Yang, Jingli; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping; Li, Chenghao

    2011-03-01

    A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd(2+), Zn(2+), Cu(2+), and NaCl stress. Transgenic yeast also accumulated more Cd(2+), Zn(2+), and NaCl, but not Cu(2+). Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd(2+)) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in ThMT3-transgenic yeast. H(2)O(2) levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in the transgenic yeast. Cd(2+), Zn(2+), and Cu(2+) increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.

  14. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  15. Induction of Bim and Bid gene expression during accelerated apoptosis in severe sepsis.

    Science.gov (United States)

    Weber, Stefan U; Schewe, Jens-Christian; Lehmann, Lutz E; Müller, Stefan; Book, Malte; Klaschik, Sven; Hoeft, Andreas; Stüber, Frank

    2008-01-01

    In transgenic animal models of sepsis, members of the Bcl-2 family of proteins regulate lymphocyte apoptosis and survival of sepsis. This study investigates the gene regulation of pro-apoptotic and anti-apoptotic members of the Bcl-2 family of proteins in patients with early stage severe sepsis. In this prospective case-control study, patients were recruited from three intensive care units (ICUs) in a university hospital. Sixteen patients were enrolled when they fulfilled the criteria of severe sepsis. Ten critically ill but non-septic patients and 11 healthy volunteers served as controls. Blood samples were immediately obtained at inclusion. To confirm the presence of accelerated apoptosis in the patient groups, caspase-3 activation and phosphatidylserine externalisation in CD4+, CD8+ and CD19+ lymphocyte subsets were assessed using flow cytometry. Specific mRNAs of Bcl-2 family members were quantified from whole blood by real-time PCR. To test for statistical significance, Kruskal-Wallis testing with Dunn's multiple comparison test for post hoc analysis was performed. In all lymphocyte populations caspase-3 (p < 0.05) was activated, which was reflected in an increased phosphatidylserine externalisation (p < 0.05). Accordingly, lymphocyte counts were decreased in early severe sepsis. In CD4+ T-cells (p < 0.05) and B-cells (p < 0.001) the Bcl-2 protein was decreased in severe sepsis. Gene expression of the BH3-only Bim was massively upregulated as compared with critically ill patients (p < 0.001) and 51.6-fold as compared with healthy controls (p < 0.05). Bid was increased 12.9-fold compared with critically ill patients (p < 0.001). In the group of mitochondrial apoptosis inducers, Bak was upregulated 5.6-fold, while the expression of Bax showed no significant variations. By contrast, the pro-survival members Bcl-2 and Bcl-xl were both downregulated in severe sepsis (p < 0.001 and p < 0.05, respectively). In early severe sepsis a gene expression pattern with

  16. Noncooperative cadmium(II) binding to human metallothionein 1a

    International Nuclear Information System (INIS)

    Sutherland, Duncan E.K.; Stillman, Martin J.

    2008-01-01

    The two-domain (βα) mammalian metallothionein binds seven divalent metals, however, the binding mechanism is not well characterized and recent reports require the presence of the partially metallated protein. In this paper, step-wise metallation of the metal-free, two-domain βα-rhMT and the isolated β-rhMT using Cd(II) is shown to proceed in a noncooperative manner by analysis of electrospray ionization mass spectrometric data. Under limiting amounts of Cd(II), all intermediate metallation states up to the fully metallated Cd 3 -β-rhMT and Cd 7 -βα-rhMT were observed. Addition of excess Cd(II), resulted in formation of the supermetallated (metallation in excess of normal levels) Cd 4 -β- and Cd 8 -βα-metallothionein species. These data establish that noncooperative cadmium metallation is a property of each isolated domain and the complete two-domain protein. Our data now also establish that supermetallation is a property that may provide information about the mechanism of metal transfer to other proteins

  17. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway.

    Science.gov (United States)

    Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu

    2017-06-01

    Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Effects of nuclear factor κB expression on retinal neovascularization and apoptosis in a diabetic retinopathy rat model

    Institute of Scientific and Technical Information of China (English)

    Ning; Jiang; Xiao-Long; Chen; Hong-Wei; Yang; Yu-Ru; Ma

    2015-01-01

    AIM: To investigate the expression and role of nuclear factor κB(NF-κB) in diabetic retinopathy(DR) and its relationship with neovascularization and retinal cell apoptosis. METHODS: A total of 80 male Wistar rats were randomly assigned to control(4, 8, 12 and 16 wk, n =10 in each group) and diabetes mellitus(DM) groups(4, 8, 12 and 16wk, n =10 in each group). A diabetic rat model was established by intraperitoneal injection of streptozotocin(60 mg/kg). After 4, 8, 12 and 16 wk, rats were sacrificed.Retinal layers and retinal neovascularization growth were stained with hematoxylin-eosin and examined under light microscopy. Cell apoptosis in the retina was detected by Td T-mediated d UTP nick end labeling, and NF-κB distribution and expression in the retina was determined using immunohistochemistry. RESULTS: DM model success rate up to 100%.Diabetes model at each time point after the experimental groupcompared with the control group, the blood glucose was significantly increased, decreased body weight, each time point showed significant differences compared with the control group(P <0.01). After 12 wk other pathological changes in the retina of diabetic rats were observed; after 16 wk, neovascularization were observed. After 1mo, retinal cell apoptosis was observed.Compared with the control group, NF-κB expression in the DM group significantly increased with disease duration.CONCLUSION: With the prolonging of DM progression,the expression NF-κB increases. NF-κB may be related to retinal cell apoptosis and neovascularization.

  19. Alterations of tissue metallothionein and vitellogenin concentrations in tropical cup oysters (Saccostrea sp.) following short-term (96 h) exposure to cadmium

    International Nuclear Information System (INIS)

    Moncaleano-Niño, Angela M.; Barrios-Latorre, Sergio A.; Poloche-Hernández, Javier F.; Becquet, Vanessa; Huet, Valérie; Villamil, Luisa; Thomas-Guyon, Hélène; Ahrens, Michael J.; Luna-Acosta, Andrea

    2017-01-01

    Highlights: • The cup oyster Saccostrea sp. is present in Santa Marta, Colombian Caribbean. • 96 h exposure of oysters to Cd increased metallothionein concentrations in digestive glands up to 2-fold. • 96 h exposure of oysters to Cd decreased vitellogenin concentrations in gonads up to 6-fold. • Metallothionein and vitellogenin tissue concentrations correlated with whole tissue Cd concentrations. • Significant changes in metallothionein and vitellogenin levels were only evident at Cd concentrations above 100 μg/L. - Abstract: Metallothioneins and vitellogenins are low molecular weight proteins that have been used widely in environmental monitoring as biomarkers of exposure and damage to metals and estrogenic compounds, respectively. In the present study, the responses of metallothionein and vitellogenin tissue concentrations were measured following acute (96 h) aqueous exposures to cadmium in Saccostrea sp., a tropical cup oyster native to the Western Pacific Ocean that has recently established itself in the Caribbean Sea. Adult oysters (1.5–5.0 cm shell length) collected from the municipal marina of Santa Marta, Colombia (Caribbean Sea) and acclimated for 5 days in the laboratory, were exposed to Cd at five concentrations (0, 1, 10, 100 and 1000 μg/L) and their tissues (gills, digestive gland and adductor muscle) were analyzed in pools of 5 individuals (3 replicates per concentration). Metallothioneins in digestive glands of oysters exposed to Cd concentrations ≥ 100 μg/L showed a significant increase, from 8.0 to 14.8 μg MT/mg total protein, whereas metallothionein concentrations in gills increased to lesser extent, and no differences were observed in adductor muscle. Metallothionein concentrations in digestive gland and gills correlated directly with whole soft tissue Cd concentrations (ranging from 2 to 297 μg/g dw Cd). Vitellogenin in homogenates of oyster gonad tissue, after 96 h of exposure to 1000 μg/L Cd, were significantly lower (0

  20. Alterations of tissue metallothionein and vitellogenin concentrations in tropical cup oysters (Saccostrea sp.) following short-term (96 h) exposure to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Moncaleano-Niño, Angela M.; Barrios-Latorre, Sergio A.; Poloche-Hernández, Javier F. [Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota (Colombia); Becquet, Vanessa; Huet, Valérie [Littoral Environnement et Sociétés (LIENSs) – UMR 7266, CNRS-Université de La Rochelle, Bâtiment ILE 2, rue Olympe de Gouges, 17 000 La Rochelle (France); Villamil, Luisa [Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota (Colombia); Thomas-Guyon, Hélène [Littoral Environnement et Sociétés (LIENSs) – UMR 7266, CNRS-Université de La Rochelle, Bâtiment ILE 2, rue Olympe de Gouges, 17 000 La Rochelle (France); Ahrens, Michael J., E-mail: michael.ahrens@utadeo.edu.co [Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota (Colombia); Luna-Acosta, Andrea [Department of Biological Sciences, Universidad de Bogota Jorge Tadeo Lozano, Carrera 4 No. 22-61, Bogota (Colombia)

    2017-04-15

    Highlights: • The cup oyster Saccostrea sp. is present in Santa Marta, Colombian Caribbean. • 96 h exposure of oysters to Cd increased metallothionein concentrations in digestive glands up to 2-fold. • 96 h exposure of oysters to Cd decreased vitellogenin concentrations in gonads up to 6-fold. • Metallothionein and vitellogenin tissue concentrations correlated with whole tissue Cd concentrations. • Significant changes in metallothionein and vitellogenin levels were only evident at Cd concentrations above 100 μg/L. - Abstract: Metallothioneins and vitellogenins are low molecular weight proteins that have been used widely in environmental monitoring as biomarkers of exposure and damage to metals and estrogenic compounds, respectively. In the present study, the responses of metallothionein and vitellogenin tissue concentrations were measured following acute (96 h) aqueous exposures to cadmium in Saccostrea sp., a tropical cup oyster native to the Western Pacific Ocean that has recently established itself in the Caribbean Sea. Adult oysters (1.5–5.0 cm shell length) collected from the municipal marina of Santa Marta, Colombia (Caribbean Sea) and acclimated for 5 days in the laboratory, were exposed to Cd at five concentrations (0, 1, 10, 100 and 1000 μg/L) and their tissues (gills, digestive gland and adductor muscle) were analyzed in pools of 5 individuals (3 replicates per concentration). Metallothioneins in digestive glands of oysters exposed to Cd concentrations ≥ 100 μg/L showed a significant increase, from 8.0 to 14.8 μg MT/mg total protein, whereas metallothionein concentrations in gills increased to lesser extent, and no differences were observed in adductor muscle. Metallothionein concentrations in digestive gland and gills correlated directly with whole soft tissue Cd concentrations (ranging from 2 to 297 μg/g dw Cd). Vitellogenin in homogenates of oyster gonad tissue, after 96 h of exposure to 1000 μg/L Cd, were significantly lower (0

  1. Regulation of tissue levels of metallothionein with emphasis on metallothionein degradation

    International Nuclear Information System (INIS)

    Chen, M.L.

    1988-01-01

    The synthesis and degradation of metallothionein (MT) was studied in streptozotocin-induced diabetic rats and monolayer cultures of adult rat hepatocytes. Critical analysis of in vivo studies with diabetic rats and other literature revealed that cytoplasmic turnover of MT may not reflect actual degradation of this protein. Therefore, the characteristics of MT degradation in primary cultures of hepatocytes were investigated in subsequent studies. Hepatocytes were incubated in medium containing 35 S-cysteine and 100 μM Zn overnight to induce MT synthesis. The level of 35 S-MT was quantified in heat stable extracts of cell homogenates by Fast Protein Liquid Chromatography (FPLC). When Zn was removed from medium, the rate of 35 S-MT turnover was found times faster than general 3 H-protein. This decrease in cellular MT level reflected degradation since less than 1% of cellular MT was secreted. The rate of MT degradation was inversely proportional to cellular Zn status

  2. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    Science.gov (United States)

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  3. Insight on trace element detoxification in the Black-tailed Godwit (Limosa limosa) through genetic, enzymatic and metallothionein analyses

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, Magali, E-mail: m.lucia33@laposte.net [Littoral, Environnement et Societes (LIENSs), UMR 7266 CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Bocher, Pierrick [Littoral, Environnement et Societes (LIENSs), UMR 7266 CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Cosson, Richard P. [Mer Molecules Sante (MMS), Universite de Nantes, EA 2663, 2 rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France); Churlaud, Carine; Robin, Frederic; Bustamante, Paco [Littoral, Environnement et Societes (LIENSs), UMR 7266 CNRS-Universite de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France)

    2012-04-15

    Trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn) were investigated in the liver, kidneys, muscle and feathers of 31 black-tailed godwits (Limosa limosa) accidentally killed during catches by mist net in the Pertuis Charentais, Atlantic coast of France. Analyses of carbon and nitrogen stable isotope ratios were carried out in liver, muscle and feathers in order to elucidate dietary patterns and to determine whether differences in diet explained the variation in elemental uptake. This study also aimed to have a preliminary assessment of sub-lethal effects triggered by trace elements through the investigation of gene expressions by quantitative real-time PCR, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase), and metallothionein (MT) levels. The results showed that Cr and Ni concentrations in tissues of adults were lower than in juveniles in part because adults may have eliminated these trace elements through moulting. Except for Cd and Ni, trace element concentrations were negatively correlated to the body mass of godwits. Ag, As, Hg and Se concentrations were positively linked with the trophic position of birds. The diet could be considered as a fundamental route of exposure for these elements demonstrating therefore the qualitative linkage between dietary habits of godwits and their contaminant concentrations. Our results strongly suggest that even though trace element concentrations were mostly below toxicity threshold level, the elevated concentrations of As, Ag, Cd, Cu, Fe and Se may however trigger sub-lethal effects. Trace elements appear to enhance expression of genes involved in oxidative stress defence, which indicates the production of reactive oxygen species. Moreover, birds with the highest concentrations appeared to have an increased mitochondrial metabolism suggesting that the fight against trace element toxicity requires additional energetic needs notably to produce detoxification

  4. Insight on trace element detoxification in the Black-tailed Godwit (Limosa limosa) through genetic, enzymatic and metallothionein analyses

    International Nuclear Information System (INIS)

    Lucia, Magali; Bocher, Pierrick; Cosson, Richard P.; Churlaud, Carine; Robin, Frédéric; Bustamante, Paco

    2012-01-01

    Trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn) were investigated in the liver, kidneys, muscle and feathers of 31 black-tailed godwits (Limosa limosa) accidentally killed during catches by mist net in the Pertuis Charentais, Atlantic coast of France. Analyses of carbon and nitrogen stable isotope ratios were carried out in liver, muscle and feathers in order to elucidate dietary patterns and to determine whether differences in diet explained the variation in elemental uptake. This study also aimed to have a preliminary assessment of sub-lethal effects triggered by trace elements through the investigation of gene expressions by quantitative real-time PCR, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase), and metallothionein (MT) levels. The results showed that Cr and Ni concentrations in tissues of adults were lower than in juveniles in part because adults may have eliminated these trace elements through moulting. Except for Cd and Ni, trace element concentrations were negatively correlated to the body mass of godwits. Ag, As, Hg and Se concentrations were positively linked with the trophic position of birds. The diet could be considered as a fundamental route of exposure for these elements demonstrating therefore the qualitative linkage between dietary habits of godwits and their contaminant concentrations. Our results strongly suggest that even though trace element concentrations were mostly below toxicity threshold level, the elevated concentrations of As, Ag, Cd, Cu, Fe and Se may however trigger sub-lethal effects. Trace elements appear to enhance expression of genes involved in oxidative stress defence, which indicates the production of reactive oxygen species. Moreover, birds with the highest concentrations appeared to have an increased mitochondrial metabolism suggesting that the fight against trace element toxicity requires additional energetic needs notably to produce detoxification

  5. Expression, regulation and function of phosphofructo-kinase/fructose-biphosphatases (PFKFBs) in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Carlet, Michela; Kofler, Reinhard; Janjetovic, Kristina; Rainer, Johannes; Schmidt, Stefan; Panzer-Grümayer, Renate; Mann, Georg; Prelog, Martina; Meister, Bernhard; Ploner, Christian

    2010-01-01

    Glucocorticoids (GCs) cause apoptosis and cell cycle arrest in lymphoid cells and constitute a central component in the therapy of lymphoid malignancies, most notably childhood acute lymphoblastic leukemia (ALL). PFKFB2 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-2), a kinase controlling glucose metabolism, was identified by us previously as a GC response gene in expression profiling analyses performed in children with ALL during initial systemic GC mono-therapy. Since deregulation of glucose metabolism has been implicated in apoptosis induction, this gene and its relatives, PFKFB1, 3, and 4, were further analyzed. Gene expression analyses of isolated lymphoblasts were performed on Affymetrix HGU133 Plus 2.0 microarrays. GCRMA normalized microarray data were analyzed using R-Bioconductor packages version 2.5. Functional gene analyses of PFKFB2-15A and -15B isoforms were performed by conditional gene over-expression experiments in the GC-sensitive T-ALL model CCRF-CEM. Expression analyses in additional ALL children, non-leukemic individuals and leukemic cell lines confirmed frequent PFKFB2 induction by GC in most systems sensitive to GC-induced apoptosis, particularly T-ALL cells. The 3 other family members, in contrast, were either absent or only weakly expressed (PFKFB1 and 4) or not induced by GC (PFKFB3). Conditional PFKFB2 over-expression in the CCRF-CEM T-ALL in vitro model revealed that its 2 splice variants (PFKFB2-15A and PFKFB2-15B) had no detectable effect on cell survival. Moreover, neither PFKFB2 splice variant significantly affected sensitivity to, or kinetics of, GC-induced apoptosis. Our data suggest that, at least in the model system investigated, PFKFB2 is not an essential upstream regulator of the anti-leukemic effects of GC

  6. MicroRNA-661 Enhances TRAIL or STS Induced Osteosarcoma Cell Apoptosis by Modulating the Expression of Cytochrome c1

    Directory of Open Access Journals (Sweden)

    Lin Fan

    2017-04-01

    Full Text Available Aim: Osteosarcoma (OS is an aggressive bone malignancy that affects rapidly growing bones and is associated with a poor prognosis. Our previous study showed that cytochrome c1 (CYC1, a subunit of the cytochrome bc1 complex (complex III of the mitochondrial electron chain, is overexpressed in human OS tissues and cell lines and its silencing induces apoptosis in vitro and inhibits tumor growth in vivo. Here, we investigated the mechanism underlying the modulation of CYC1 expression in OS and its role in the resistance of OS to apoptosis. Methods: qRT-PCR, luciferase reporter assay, western blotting, fow cytometry, and animal experiments were performed in this study. Results: MicroRNA (miR-661 was identified as a downregulated miRNA in OS tissues and cells and shown to directly target CYC1. Ectopically expressed miR-661 inhibited OS cell growth, promoted apoptosis, and reduced the activity of mitochondrial complex III. miR-661 overexpression enhanced TRAIL or STS induced apoptosis and promoted the release of cytochrome c into the cytosol, which induced caspase-9 activation, and these effects were abolished by a caspase-3 inhibitor. Overexpression of CYC1 rescued the effects of miR-661 on sensitizing OS cells to TRAIL or STS induced apoptosis, indicating that the antitumor effect of miR-661 is mediated by the downregulation of CYC1. In vivo, miR-661 overexpression sensitized tumors to TRAIL or STS induced apoptosis in a xenograft mouse model, and these effects were attenuated by co-expression of CYC1. Conclusion: Taken together, our results indicate that miR-661 plays a tumor suppressor role in OS mediated by the downregulation of CYC1, suggesting a potential mechanism underlying cell death resistance in OS.

  7. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5).

    Science.gov (United States)

    Li, Dong; Liu, Yu; Li, Hua; Peng, Jing-Jing; Tan, Yan; Zou, Qiang; Song, Xiao-Feng; Du, Min; Yang, Zheng-Hui; Tan, Yong; Zhou, Jin-Jun; Xu, Tao; Fu, Zeng-Qiang; Feng, Jian-Qiong; Cheng, Peng; chen, Tao; Wei, Dong; Su, Xiao-Mei; Liu, Huan-Yi; Qi, Zhong-Chun; Tang, Li-Jun; Wang, Tao; Guo, Xin; Hu, Yong-He; Zhang, Tao

    2015-01-02

    Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Expression of apoptosis-related genes in acute β-irradiated skin injury in rats

    International Nuclear Information System (INIS)

    Zhao Xiaoyu; He Hanliang; Qi Qiang; Lin Wei; Shen Guoliang

    2012-01-01

    Objective: To investigate the dynamic expression of apoptosis-related genes Bcl-2, Bax and P53 in acute radiation-induced skin ulcers, and to explore the underlying mechanism involved in retarded healing of the ulcer. Methods: Fifty-four female SD rats were divided into 3 groups. The model of acute radiation-induced skin injury, in rats was replicated with 45 Gy electron accelerator β-ray to the skin as radiation group (n=24); the model of deep second degree scald in rats was established as burn group (n=24); 6 normal rats were served as normal control group. From different periods skin wounds, the expression of Bcl-2, Bax and P53 were respectively assessed by means of immunohistochemical technique and. apoptosis was observed by TUNEL assay. Results: (1) The result of the TUNEL manifested that the integral absorbance (IA) of the radiation group was much higher than that of the control group. There is statistical significance between the two groups (P<0.05). (2) 0, 1, 2, 3 weeks after wound emerging, the Bax and P53 integral absorbance (IA) in radiation group was much higher than that of the control group. The Bcl-2 integral absorbance (IA) in bum group was much higher than that of the radiation group. There is statistical significance between the two groups (P<0.05). Conclusions: It was shown that apoptosis of β radiation manifested three typical characteristics, namely early occurrence, high frequency and delayed disappearance after radiation, which might explain the delayed wound healing caused by β radiation. (authors)

  9. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Xin, Ying, E-mail: xiny@jlu.edu.cn [KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021 (China); Cai, Lu, E-mail: l0cai001@louisville.edu [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States)

    2014-09-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after

  10. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    International Nuclear Information System (INIS)

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo; Xin, Ying; Cai, Lu

    2014-01-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after

  11. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  12. Expression of the bile acid receptor FXR in Barrett's esophagus and enhancement of apoptosis by guggulsterone in vitro

    Directory of Open Access Journals (Sweden)

    Frossard Jean-Louis

    2006-10-01

    Full Text Available Abstract Background Barrett's esophagus, a risk factor for esophageal adenocarcinoma, is associated with reflux disease. The aim of this study was to assess the expression of bile acid receptors in the esophagus (normal, esophagitis, Barrett's esophagus and adenocarcinoma and to investigate their possible function. Results the expression of the bile acid receptors FXR and VDR in esophageal biopsies from patients with a normal mucosa, esophagitis, Barrett's esophagus or adenocarcinoma (n = 6 per group and in cell lines derived from Barrett's esophagus and esophageal adenocarcinoma, was assessed by real time Q-PCR and immunohistochemistry. The effect of guggulsterone, an antagonist of bile acid receptors, on apoptosis of Barrett's esophagus-derived cells was assessed morphologically, by flow cytometry and by measuring caspase 3 activity. The expression of FXR was increased in esophagitis, Barrett's esophagus and adenocarcinoma compared to normal mucosa by a mean of 44, 84 and 16, respectively. Immunohistochemistry showed a weak expression in normal esophagus, a strong focal reactivity in Barrett's esophagus, and was negative in adenocarcinoma. VDR expression did not significantly differ between groups. In cell cultures, the expression of FXR was high in Barrett's esophagus-derived cells and almost undetectable in adenocarcinoma-derived cells, whereas VDR expression in these cell lines was not significantly different. In vitro treatment with guggulsterone was associated with a significant increase in the percentage of apoptotic cells and of the caspase 3 activity. Conclusion the bile acid receptor FXR is significantly overexpressed in Barrett's esophagus compared to normal mucosa, esophagitis and esophageal adenocarcinoma. The induction of apoptosis by guggulsterone in a Barrett's esophagus-derived cell line suggests that FXR may contribute to the regulation of apoptosis.

  13. Gene expression and apoptosis induction in p53-heterozygous irradiated mice

    International Nuclear Information System (INIS)

    Di Masi, Alessandra; Antoccia, Antonio; Dimauro, Ivan; Argentino-Storino, Alberta; Mosiello, Alberto; Mango, Ruggiero; Novelli, Giuseppe; Tanzarella, Caterina

    2006-01-01

    The role of the p53-genetic background in the expression of genes involved in either cell cycle checkpoint activation or apoptosis was evaluated in p53+/+ and p53+/- mouse strains at both basal levels and after DNA-induced damage. The spleen, colon, kidneys, lungs and liver of both strains were harvested from untreated animals and from mice exposed to 7.5 Gy of X-rays and sacrificed after 5 h. No significant differences were observed in the basal levels of p53 protein, CDKN1A and bax mRNA and spontaneous apoptosis, neither among the different organs within the same strain, nor between the same organ in the p53+/+ and p53+/- strains. After X-ray exposure, p53-dependent regulation was strikingly tissue-specific. In wild-type irradiated mice, p53 protein level increased after radiation treatment in all the organs analysed, whereas both CDKN1A and bax genes transcription increased in the spleen, colon and lungs, as assessed by means of quantitative RT-PCR. In p53+/- irradiated mice, on the contrary, a significant p53 induction was detected only in the spleen, while CDKN1A and bax genes levels increased in the spleen, colon and lungs, revealing the existence of different mechanisms of gene regulation in different organs. Apoptosis induction was observed in the spleen and colon of both strains, even if to lower extent in p53+/- mice compared to p53+/+ animals. In conclusion, in the spleen and colon, target gene transcription and apoptosis may be related to p53 genotype after DNA damage-induction. Moreover, our findings highlight the selectivity of p53 in transactivation following DNA damage in vivo, resulting in tissue-specific responses

  14. Gene expression and apoptosis induction in p53-heterozygous irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Di Masi, Alessandra [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy); Antoccia, Antonio [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy); Dimauro, Ivan [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy); Argentino-Storino, Alberta [Research Toxicology Centre S.p.A., Via Tito Speri, 18, 00040 Pomezia (RM) (Italy); Mosiello, Alberto [Research Toxicology Centre S.p.A., Via Tito Speri, 18, 00040 Pomezia (RM) (Italy); Mango, Ruggiero [Centre of Excellence for Genomic Risk Assessment in Multifactorial and Complex Diseases, School of Medicine, University of Rome ' Tor Vergata' , Rome (Italy); Novelli, Giuseppe [Centre of Excellence for Genomic Risk Assessment in Multifactorial and Complex Diseases, School of Medicine, University of Rome ' Tor Vergata' , Rome (Italy); Tanzarella, Caterina [Department of Biology, University of Rome ' Roma Tre' , Viale G. Marconi, 446, 00146 Rome (Italy)]. E-mail: tanzarel@uniroma3.it

    2006-02-22

    The role of the p53-genetic background in the expression of genes involved in either cell cycle checkpoint activation or apoptosis was evaluated in p53+/+ and p53+/- mouse strains at both basal levels and after DNA-induced damage. The spleen, colon, kidneys, lungs and liver of both strains were harvested from untreated animals and from mice exposed to 7.5 Gy of X-rays and sacrificed after 5 h. No significant differences were observed in the basal levels of p53 protein, CDKN1A and bax mRNA and spontaneous apoptosis, neither among the different organs within the same strain, nor between the same organ in the p53+/+ and p53+/- strains. After X-ray exposure, p53-dependent regulation was strikingly tissue-specific. In wild-type irradiated mice, p53 protein level increased after radiation treatment in all the organs analysed, whereas both CDKN1A and bax genes transcription increased in the spleen, colon and lungs, as assessed by means of quantitative RT-PCR. In p53+/- irradiated mice, on the contrary, a significant p53 induction was detected only in the spleen, while CDKN1A and bax genes levels increased in the spleen, colon and lungs, revealing the existence of different mechanisms of gene regulation in different organs. Apoptosis induction was observed in the spleen and colon of both strains, even if to lower extent in p53+/- mice compared to p53+/+ animals. In conclusion, in the spleen and colon, target gene transcription and apoptosis may be related to p53 genotype after DNA damage-induction. Moreover, our findings highlight the selectivity of p53 in transactivation following DNA damage in vivo, resulting in tissue-specific responses.

  15. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway.

    Science.gov (United States)

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-10-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.

  16. Metallothionein metabolism in the streptozotocin-diabetic rat

    International Nuclear Information System (INIS)

    Chen, M.L.; Failla, M.L.

    1986-01-01

    Earlier reports from their laboratory showed the induction of the insulin-deficient diabetic state in adult rats was associated with an accumulation of zinc, copper, and a metallothionein-like zinc and copper binding protein in the soluble fraction of liver and kidney. Based upon chromatographic and electrophoretic properties, -SH to metal ratio and amino acid composition, they now report that elevated concentrations of metallothioneins (MT)-I and -II are indeed present in diabetic rat liver and kidney cytosol. The relative rates of MT synthesis in tissues from diabetic and control rats were measured by comparing incorporation of 35 S-cysteine into MT vs. total cytoplasmic proteins at 5 h after injection of the precursor. The relative rates of MT synthesis in livers from rats diabetic for 10 d and fed either chow or purified diet containing 13 or 35 ppm copper were 1.4, 2.3 and 2.8 times greater, respectively, than control rats fed the same diets. Higher relative rates of MT synthesis were also observed in kidneys from diabetic rats fed purified diets compared to controls. Maximal relative rates of MT synthesis in diabetic liver and kidney were observed at 4 and 10 d, respectively, after onset of diabetes. The half-lives of cytoplasmic MT in liver and kidney from diabetic (10 d) rats were 1.3 and 2.6 days, respectively; half-lives of MT in control liver and kidney were 5.0 and 2.1 days, respectively

  17. XIAP over-expression is an independent poor prognostic marker in Middle Eastern breast cancer and can be targeted to induce efficient apoptosis.

    Science.gov (United States)

    Hussain, Azhar R; Siraj, Abdul Khalid; Ahmed, Maqbool; Bu, Rong; Pratheeshkumar, Poyil; Alrashed, Alanood M; Qadri, Zeeshan; Ajarim, Dahish; Al-Dayel, Fouad; Beg, Shaham; Al-Kuraya, Khawla S

    2017-09-11

    Breast cancer is the most common cancer in females and is ranked second in cancer-related deaths all over the world in women. Despite improvement in diagnosis, the survival rate of this disease has still not improved. X-linked Inhibitor of Apoptosis (XIAP) has been shown to be over-expressed in various cancers leading to poor overall survival. However, the role of XIAP in breast cancer from Middle Eastern region has not been fully explored. We examined the expression of XIAP in more than 1000 Middle Eastern breast cancer cases by immunohistochemistry. Apoptosis was measured by flow cytometry. Protein expression was determined by western blotting. Finally, in vivo studies were performed on nude mice following xenografting and treatment with inhibitors. XIAP was found to be over-expressed in 29.5% of cases and directly associated with clinical parameters such as tumor size, extra nodal extension, triple negative breast cancer and poorly differentiated breast cancer subtype. In addition, XIAP over-expression was also significantly associated with PI3-kinase pathway protein; p-AKT, proliferative marker; Ki-67 and anti-apoptotic marker; PARP. XIAP over-expression in our cohort of breast cancer was an independent poor prognostic marker in multivariate analysis. Next, we investigated inhibition of XIAP using a specific inhibitor; embelin and found that embelin treatment led to inhibition of cell viability and induction of apoptosis in breast cancer cells. Finally, breast cancer cells treated with combination of embelin and PI3-kinase inhibitor; LY294002 synergistically induced apoptosis and caused tumor growth regression in vivo. These data suggest that XIAP may be playing an important role in the pathogenesis of breast cancer and can be therapeutically targeted either alone or in combination with PI3-kinase inhibition to induce efficient apoptosis in breast cancer cells.

  18. Expression of Fas and Bcl-2 and their relationship to apoptosis in spleen lymphocytes of mice irradiated with large dose 60Co γ-rays

    International Nuclear Information System (INIS)

    Gao Linlu; Cui Yufang; Yang Hong; Xia Guowei; Peng Ruiyun; Gao Yabin; Wang Dewen

    2000-01-01

    Objective: To investigate the expressions of Fas and Bcl-2 and their significance in apoptosis of spleen lymphocyte of mice after large dose γ-ray irradiation. Methods: At 3,6,12,24 h, 3, 7, 14 and 28 d after 6-20 Gy γ-ray irradiation mice were sacrificed and their spleens were removed. The expressions of Fas and Bcl-2 oncoprotein were analysed by LSAB immunohistochemical method. Results: The expression of Fas was strongly positive at 6 h after irradiation, especially in 6-12 Gy groups. It become less obvious along with prolongation of time after irradiation and almost disappeared on d 7 after irradiation. The expression of Bcl-2 was nearly negative at 6 h after irradiation, especially in 12-20 Gy groups, and did not recover on d 28 after irradiation. Conclusion: After large dose γ-ray irradiation the expression of Fas in mouse spleen lymphocytes shows a better relationship to lymphocyte apoptosis; in other words, Fas can prompt apoptosis. On the other hand, the action of Bcl-2 is reduced or even disappeared. Both of them play an important role in spleen lymphocyte apoptosis after large dose of γ-irradiation

  19. p,p'-DDT induces testicular oxidative stress-induced apoptosis in adult rats.

    Science.gov (United States)

    Marouani, Neila; Hallegue, Dorsaf; Sakly, Mohsen; Benkhalifa, Moncef; Ben Rhouma, Khémais; Tebourbi, Olfa

    2017-05-26

    The 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) is a known persistent organic pollutant and male reproductive toxicant. The present study is designed to test the hypothesis that oxidative stress mediates p,p'-DDT-induced apoptosis in testis. Male Wistar rats received an intraperitoneal (ip) injection of the pesticide at doses of 50 and 100mg/kg for 10 consecutive days. The oxidative stress was evaluated by biomarkers such lipid peroxidation (LPO) and metallothioneins (MTs) levels. Antioxidant enzymes activities was assessed by determination of superoxide dismutase (SOD), catalase (CAT) and hydrogen peroxide (H 2 O 2 ) production. In addition, glutathione-dependent enzymes and reducing power in testis was evaluated by glutathione peroxidase (Gpx), glutathione reductase (GR), glutathione S-transferase (GST) activities and reduced and oxidized glutathione (GSH - GSSG) levels. Apoptosis was evaluated by DNA fragmentation detected by agarose gel electrophoresis. Germinal cells apoptosis and the apoptotic index was assessed through the TUNEL assay. After 10 days of treatment, an increase in LPO level and H 2 O 2 production occurred, while MTs level, SOD and CAT activities were decreased. Also, the Gpx, GR, GST, and GSH activities were decreased, whereas GSSG activity was increased. Testicular tissues of treated rats showed pronounced degradation of the DNA into oligonucleotides as seen in the typical electrophoretic DNA ladder pattern. Intense apoptosis was observed in germinal cells of DDT-exposed rats. In addition, the apoptotic index was significantly increased in testis of DDT-treated rats. These results clearly suggest that DDT sub-acute treatment causes oxidative stress in rat testis leading to apoptosis.

  20. Correlation between spontaneous apoptosis and the expression of angiogenic factors in advanced gastric adenocarcinoma.

    Science.gov (United States)

    Ikeguchi, M; Cai, J; Fukuda, K; Oka, S; Katano, K; Tsujitani, S; Maeta, M; Kaibara, N

    2001-06-01

    The aim of this study was to investigate whether angiogenic factors influence the occurrence of spontaneous apoptosis in advanced gastric cancer. The apoptotic indices (AIs) of 97 tumors from 97 patients with advanced gastric cancer (pT3, pN0, pM0, Stage II) were analyzed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL) method. Intratumoral microvessel densities (IMVDs) of tumors stained with anti-CD34 monoclonal antibody were quantified under x 200 magnification using computer-assisted image analysis. The expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF), thymidine phosphorylase (dThdPase), transforming growth factor-alpha (TGF-alpha), and p53 were analyzed immunohistochemically and compared with IMVDs and AIs. The mean IMVD of the 97 tumors was 365/mm2 (range 147-990/mm2). The mean AI of tumors was 2.1% (range 0-11.3%). A significant inverse correlation between the AIs and the IMVDs was shown (p = -0.278, P = 0.0064). The mean IMVDs of tumors with high expressions of dThdPase, TGF-alpha, or p53 were significantly higher than those of tumors with low expressions of these factors. The mean AI of tumors with high expressions of dThdPase was significantly lower than that of tumors with low expressions of dThdPase (P = 0.023). However, no significant correlations were detected between AIs and the expression levels of VEGF, TGF-alpha, or p53. In gastric cancer, dThdPase may play an important role in tumor progression by increasing microvessels and by suppressing apoptosis of cancer cells.

  1. Metallothionein Zn(2+)- and Cu(2+)-clusters from first-principles calculations

    DEFF Research Database (Denmark)

    Greisen, Per Junior; Jespersen, Jakob Berg; Kepp, Kasper Planeta

    2012-01-01

    Detailed electronic structures of Zn(ii) and Cu(ii) clusters from metallothioneins (MT) have been obtained using density functional theory (DFT), in order to investigate how oxidative stress-caused Cu(ii) intermediates affect Zn-binding to MT and cooperatively lead to Cu(i)MT. The inferred accura...

  2. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    Directory of Open Access Journals (Sweden)

    Lavinia Liliana Ruta

    Full Text Available In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I, Zn(II or Cd(II. The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3 were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyperaccumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II, Zn(II or Cd(II, but also non-canonical metal ions, such as Co(II, Mn(II or Ni(II, myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  3. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    Science.gov (United States)

    Ruta, Lavinia Liliana; Lin, Ya-Fen; Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M; Farcasanu, Ileana Cornelia

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  4. Effects of Cetuximab Combined with Celecoxib on Apoptosis and KDR and AQP1 
Expression in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Honggang XIA

    2013-12-01

    Full Text Available Background and objective Neoadjuvant chemotherapy is a new development in the treatment of lung cancer. In recent years, cetuximab and celecoxib have been commonly used in this procedure. This study aims to explore the effect of cetuximab combined with celecoxib on apoptosis and KDR and AQP1 expression in lung cancer A549 cells. Method The cells were cultured in RPMI-1640 and then divided into four groups: control group, 1 nmol/L cetuximab group, 25 µmol/L celecoxib group, and 1 nmol/L cetuximab+25 µmol/L celecoxib group. The treatment time was 48 h. The mRNA and protein expression levels of KDR and AQP1 were detected by RT-PCR and Western blot, respectively. The apoptosis, proliferation, and invasive ability of A549 cells before and after transfection were examined using flow cytometry, MTT, and transwell methods. Results Cetuximab and celecoxib inhibited the growth of A549 cells in a dose-dependent manner. Their combination produced a greater growth inhibition than when either was used alone (P<0.01. Cetuximab and celecoxib both induced the apoptosis of A549 cells, and their combination produced a higher apoptosis rate (P<0.01. Cetuximab in combination with celecoxib also induced G1 phase arrest and downregulated the expression of KDR and AQP1 in A549 cells (P<0.05. As a result, the invasion ability of the A549 cells was significantly decreased. Conclusion Cetuximab in combination with celecoxib can synergistically inhibit the growth of A549 cells and downregulate the expression of KDR and AQP1 in A549 cells. The combination of cetuximab and celecoxib is a potential strategy for lung cancer therapy.

  5. Cetuximab enhances cisplatin-induced endoplasmic reticulum stress-associated apoptosis in laryngeal squamous cell carcinoma cells by inhibiting expression of TXNDC5.

    Science.gov (United States)

    Peng, Fusen; Zhang, Hailin; Du, Youhong; Tan, Pingqing

    2018-03-01

    Cisplatin and cetuximab, an anti‑epidermal growth factor receptor (EGFR) monoclonal humanized antibody, have been used for treatment of laryngeal squamous cell carcinoma (LSCC). It has been demonstrated that cisplatin and inhibition of EGFR signaling may induce endoplasmic reticulum (ER) stress‑associated apoptosis. However, ER protein thioredoxin domain‑containing protein 5 (TXNDC5) reportedly protects cells from ER stress‑associated apoptosis. The present study investigated the interaction between cisplatin, cetuximab and TXNDC5 on ER stress‑associated apoptosis in LSCC cells. AMC‑HN‑8 human LSCC cells with or without TXNDC5 overexpression or knockdown were treated with cisplatin (5, 10, 20 and 40 µM) and/or cetuximab (10, 50, 100 and 150 µg/ml), for 12, 24, 36 and 48 h. Cisplatin and cetuximab concentration‑ and time‑dependently increased and decreased the expression of TXNDC5 in AMC‑HN‑8 cells, respectively. Knockdown of TXNDC5 markedly augmented cisplatin‑induced levels of CCAAT/enhancer‑binding protein homologous protein (CHOP), caspase‑3 activity and apoptosis; while overexpression of TXNDC5 largely eliminated cetuximab‑induced levels of CHOP, caspase‑3 activity and apoptosis. Cisplatin and cetuximab demonstrated a combinatorial effect on increasing the levels of CHOP, caspase‑3 activity and apoptosis, which was largely eliminated by overexpression of TXNDC5 or a reactive oxygen species (ROS) scavenger/antagonist. In addition, promoter/luciferase reporter assays revealed that cisplatin and cetuximab regulated the expression of TXNDC5 at the gene transcription/promoter level. In conclusion, the findings suggested that ER stress‑associated apoptosis is a major mechanism underlying the apoptotic effect of cisplatin and cetuximab on LSCC cells; cetuximab enhanced cisplatin‑induced ER stress‑associated apoptosis in LSCC cells largely by inhibiting the expression of TXNDC5 and thereby increasing ROS production

  6. The expression of Smad4 after radiation of electromagnetic pulses and apoptosis in spermatogenic cells in mouse

    International Nuclear Information System (INIS)

    Ji Xinxin; Hou Wugang; Zhao Jie; Zhao Yong; Li Wei; Zhang Yuanqiang

    2007-01-01

    The aim of the study was to investigate the relationships between apoptosis induced by radiation of electromagnetic pulses (EMP) and the expression of Smad4 in mouse spermatogenic cells. 40 adult Balb/c mice were used, and 20 were irradiated with whole-body 400kV/m EMP. The mice were sacrificed and specimens were harvested at 1, 7, 14, 21 and 28 days after the irradiation. Histological changes were observed through Hematoxylin-Eosin staining (H-E staining), the apoptosis of spermatogenic cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method (TUNEL method) and the Smad4 expression was observed using immunohistochemistry SABC methods. Severe injuries were observed 1 day after the radiation and seminiferous epithelium was mostly recovered 28d after the radiation. The localization of smad4 was significantly different in EMP group compared to the control group, and the expression densities of smad4 decreased significantly at 7, 14 and 21d after irradiation (p<0.05). TUNEL assays demonstrated that there was a significant increase in the mean apoptotic index (AI) in irradiation groups than that of control groups (p<0.01). The results suggested that Smad4 and TGF-13/Smad signal pathway might play an important role in spermatogenic cells apoptosis induced by radiation of EMP. (authors)

  7. Prenatal ionizing radiation-induced apoptosis of the developing murine brain with special references to the expression of some proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Makiko; Itoh, Kyoko; Matsumoto, Akira; Hayashi, Yoshitake; Sasaki, Ryohei; Imai, Yukihiro; Itoh, Hiroshi [Kobe Univ. (Japan). School of Medicine

    2001-04-01

    Apoptosis induced by ionizing irradiation of the developing mouse brain was investigated by using histology, analysis of DNA fragmentation on agarose gel and electron microscopy. A TUNEL-labeled index (L.I.) was calculated from the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay in 4 specific regions, cortical plate, intermediate zone, subependymal zone, and subependymal germinal matrix. The kinetics of apoptosis associated protein was examined by western blotting and immunofluorescence. C57BL/6J mice pregnant on embryonic day 14 (E14) were exposed to a single dose of 1.5-Gy irradiation. Irradiaited fetal brains at E15 and E17 showed extensive apoptosis with morphological characteristics. In all 4 regions, L.I. was greater in irradiated brains than in control brains at E15 and E17. Most of TUNEL-labeled cells expressed a mature neuronal marker (NeuN) and Bax protein, which is up-regulated in irradiation-induced apoptosis. Ionizing radiation moderately enhanced expression of Bax, Bcl-xL, and Cpp32 proteins. Postnatal irradiated mice showed microencephaly as compared to age-matched mice and the weight of whole body including brain decreased moderately. (author)

  8. Prenatal ionizing radiation-induced apoptosis of the developing murine brain with special references to the expression of some proteins

    International Nuclear Information System (INIS)

    Kitamura, Makiko; Itoh, Kyoko; Matsumoto, Akira; Hayashi, Yoshitake; Sasaki, Ryohei; Imai, Yukihiro; Itoh, Hiroshi

    2001-01-01

    Apoptosis induced by ionizing irradiation of the developing mouse brain was investigated by using histology, analysis of DNA fragmentation on agarose gel and electron microscopy. A TUNEL-labeled index (L.I.) was calculated from the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay in 4 specific regions, cortical plate, intermediate zone, subependymal zone, and subependymal germinal matrix. The kinetics of apoptosis associated protein was examined by western blotting and immunofluorescence. C57BL/6J mice pregnant on embryonic day 14 (E14) were exposed to a single dose of 1.5-Gy irradiation. Irradiated fetal brains at E15 and E17 showed extensive apoptosis with morphological characteristics. In all 4 regions, L.I. was greater in irradiated brains than in control brains at E15 and E17. Most of TUNEL-labeled cells expressed a mature neuronal marker (NeuN) and Bax protein, which is up-regulated in irradiation-induced apoptosis. Ionizing radiation moderately enhanced expression of Bax, Bcl-xL, and Cpp32 proteins. Postnatal irradiated mice showed microencephaly as compared to age-matched mice and the weight of whole body including brain decreased moderately. (author)

  9. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  10. PageRank analysis reveals topologically expressed genes correspond to psoriasis and their functions are associated with apoptosis resistance.

    Science.gov (United States)

    Zeng, Xue; Zhao, Jingjing; Wu, Xiaohong; Shi, Hongbo; Liu, Wali; Cui, Bingnan; Yang, Li; Ding, Xu; Song, Ping

    2016-05-01

    Psoriasis is an inflammatory skin disease. Deceleration in keratinocyte apoptosis is the most significant pathological change observed in psoriasis. To detect a meaningful correlation between the genes and gene functions associated with the mechanism underlying psoriasis, 927 differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus database, GSE13355 [false discovery rate (FDR) 1] with the package in R langue. The selected DEGs were further constructed using the search tool for the retrieval of interacting genes, in order to analyze the interaction network between the DEGs. Subsequent to PageRank analysis, 14 topological hub genes were identified, and the functions and pathways in the hub genes network were analyzed. The top‑ranked hub gene, estrogen receptor‑1 (ESR1) is downregulated in psoriasis, exhibited binding sites enriched with genes possessing anti‑apoptotic functions. The ESR1 gene encodes estrogen receptor α (ERα); a reduced level of ERα expression provides a crucial foundation in response to the anti‑apoptotic activity of psoriatic keratinocytes by activating the expression of anti‑apoptotic genes. Furthermore, it was detected that the pathway that is associated most significantly with psoriasis is the pathways in cancer. Pathways in cancer may protect psoriatic cells from apoptosis by inhibition of ESR1 expression. The present study provides support towards the investigation of ESR1 gene function and elucidates that the interaction with anti‑apoptotic genes is involved in the underlying biological mechanisms of resistance to apoptosis in psoriasis. However, further investigation is required to confirm the present results.

  11. Induction of Cellular Metallothionein in Irradiated Rats Supplemented with Egyptian Propolis Extract

    International Nuclear Information System (INIS)

    Nada, A.SH.; Azab, KH.SH.

    2005-01-01

    Proplis, a resinous yellow to dark substance collected by worker honeybees has been extensively used in folk medicine for management of a wide spectrum of disorders. The current study was conducted to evaluate the role of Egyptian propolis extract in modification of metallothionen (MT) induction in rats exposed to whole body fractionated gamma irradiation (delivered as 1.5 Gy every day up to 7.5 Gy total dose) and the relevance of certain metals (Cu, Zn, Mg, Mn and Fe) for metallothionein induction. In addition, lipid peroxides (thiobarbituric acid reactive substance; TEARS) and reduced glutathione (GSH) concentrations were observed in different subjected tissues. Metal content of crude propolis and certain related natural forms (bee pollen and honey) were also identified. Propolis extract was supplemented daily to rats (10 ml/kg body wt/day) by stomach tube, 15 days before and during exposure to gamma radiation. Experimental investigations were carried out on the 1st and 10th days after the last irradiation fraction in liver, kidney, brain, heart, lung and spleen tissues. The results obtained reveal that the administration of propolis extract increased significantly the metallothionein (MT) concentration in all examined tissues as compared with control rats. Records on all subjected tissues imparted that propolis extract supplementation has significantly minimized the radiation-induced increases in the amount of TBARS, maintained GSH con centration within normal levels except for lung and spleen and increased MT levels comparing to irradiated rats. Furthermore, significant amelioration in the levels of trace metals was observed such as zinc and copper in liver, kidney and brain. It could be postulated that the prolonged administration of Egyptian propolis extract attenuates the lipid peroxidation process in different rat's tissues and that might attributed to its antioxidant potency partially expressed through MT induction, maintenance of GSH levels and the

  12. Reduced Pms2 expression in non-neoplastic flat mucosa from patients with colon cancer correlates with reduced apoptosis competence.

    Science.gov (United States)

    Bernstein, Harris; Prasad, Anil; Holubec, Hana; Bernstein, Carol; Payne, Claire M; Ramsey, Lois; Dvorakova, Katerina; Wilson, Megan; Warneke, James A; Garewal, Harinder

    2006-06-01

    Pms2 protein is a component of the DNA mismatch repair complex responsible both for post-replication correction of DNA nucleotide mispairs and for early steps in apoptosis. Germline mutations in DNA mismatch repair genes give rise to hereditary non-polyposis colon cancer, which accounts for about 4% of colon cancers. However, little is known about the expression of mismatch repair proteins in relation to sporadic colon cancer, which accounts for the great majority of colon cancers. Multiple samples were taken from the non-neoplastic flat mucosa of colon resections from patients with no colonic neoplasia, a tubulovillous adenoma, or an adenocarcinoma. Expression of Pms2 was assessed using semiquantitative immunohistochemistry. Apoptosis was assessed in polychrome-stained epoxy sections using morphologic criteria. Samples from patients without colonic neoplasia had moderate to strong staining for Pms2 in cell nuclei at the base of crypts, while samples from 2 of the 3 colons with a tubulovillous adenoma, and from 6 of the 10 colons with adenocarcinomas, showed reduced Pms2 expression. Samples from patients with an adenocarcinoma that had reduced Pms2 expression also exhibited reduced apoptosis capability in nearby tissue samples, evidenced when this paired tissue was stressed ex vivo with bile acid. Reduced Pms2 expression in the colonic mucosa may be an early step in progression to colon cancer. This reduction may cause decreased mismatch repair, increased genetic instability, and/or reduced apoptotic capability. Immunohistochemical determination of reduced Pms2 expression, upon further testing, may prove to be a promising early biomarker of risk of progression to malignancy.

  13. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chen, Yue Yi; Yang, Shu Guang; Tian, Wei Min, E-mail: wmtian9110@126.com

    2015-05-22

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372 bp in length and had a 237 bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97 was up-regulated by Me-JA, ABA, PEG, H{sub 2}O{sub 2}, Cu{sup 2+} and Zn{sup 2+}, but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H{sub 2}O{sub 2}. - Highlights: • Cloning an HbMT2a gene from rubber tree. • Analyzing expression patterns of HbMT2a upon abiotic stress and heavy metal stress. • Finding different expression patterns of HbMT2a among two Hevea germplasm. • The expressed protein of HbMT2a enhances copper and zinc tolerance in Escherichia coli.

  14. Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway.

    Science.gov (United States)

    Zhao, Ping; Meng, Meng; Xu, Bin; Dong, Aiping; Ni, Guangzhen; Lu, Lianfang

    2017-12-06

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed in > 60% of human pancreatic cancers (PCs), and is associated with poor prognosis and enhanced metastasis. Here, we report the effect of silencing MUC1 expression on the growth, migration and invasive ability of pancreatic cancer cells, and explored its mechanisms. We observed that siRNA mediated suppression of the MUC1 expression significantly reduced invasive and migrative capability and induced apoptosis of the pancreatic cancer PANC-1 cells. We found that Slug was inhibited in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Expression of PUMA and E-cadherin was increased in the MUC1 siRNA/PANC-1 cells. PANC-1 cells overexpressing full long Slug gene (when transfected with Slug cDNA plasmid) significantly inhibited PUMA and E-cadherin expression in the MUC1 siRNA/PANC-1 cells. Silencing PUMA expression inhibited apoptosis in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Silencing E-cadherin expression restored the invasion and migration ability in the MUC1 siRNA/PANC-1 cells. We therefore concluded that silencing MUC1 expression inhibited migration and invasion, and induced apoptosis of PANC-1 cells via downregulation of Slug and upregulation of Slug dependent PUMA and E-cadherin expression. MUC1 could serve as a potential therapeutic target in pancreatic cancer.

  15. Identification of deregulation of apoptosis and cell cycle in neuroendocrine tumors of the lung via NanoString nCounter expression analysis

    Science.gov (United States)

    Walter, Robert Fred Henry; Werner, Robert; Ting, Saskia; Vollbrecht, Claudia; Theegarten, Dirk; Christoph, Daniel Christian; Schmid, Kurt Werner; Wohlschlaeger, Jeremias; Mairinger, Fabian Dominik

    2015-01-01

    Background Neuroendocrine tumors of the lung comprise typical (TC) and atypical carcinoids (AC), large-cell neuroendocrine cancer (LCNEC) and small-cell lung cancer (SCLC). Cell cycle and apoptosis are key pathways of multicellular homeostasis and deregulation of these pathways is associated with cancerogenesis. Materials and Methods Sixty representative FFPE-specimens (16 TC, 13 AC, 16 LCNEC and 15 SCLC) were used for mRNA expression analysis using the NanoString technique. Eight genes related to apoptosis and ten genes regulating key points of cell cycle were investigated. Results ASCL1, BCL2, CASP8, CCNE1, CDK1, CDK2, CDKN1A and CDKN2A showed lower expression in carcinoids compared to carcinomas. In contrast, CCNE1 and CDK6 showed elevated expression in carcinoids compared to carcinomas. The calculated BCL2/BAX ratio showed increasing values from TC to SCLC. Between SCLC and LCNEC CDK2, CDKN1B, CDKN2A and PNN expression was significantly different with higher expression in SCLC. Conclusion Carcinoids have increased CDK4/6 and CCND1 expression controlling RB1 phosphorylation via this signaling cascade. CDK2 and CCNE1 were increased in carcinomas showing that these use the opposite way to control RB1. BAX and BCL2 are antagonists in regulating apoptosis. BCL2 expression increased over BAX expression with increasing malignancy of the tumor from TC to SCLC. PMID:26008974

  16. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression.

    Science.gov (United States)

    Yao, Shutong; Zong, Chuanlong; Zhang, Ying; Sang, Hui; Yang, Mingfeng; Jiao, Peng; Fang, Yongqi; Yang, Nana; Song, Guohua; Qin, Shucun

    2013-01-01

    This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.

  17. A metallothionein mimetic peptide protects neurons against kainic acid-induced excitotoxicity

    DEFF Research Database (Denmark)

    Sonn, Katrin; Pankratova, Stanislava; Korshunova, Irina

    2010-01-01

    Metallothioneins I and II (MTI/II) are metal-binding proteins overexpressed in response to brain injury. Recently, we have designed a peptide, termed EmtinB, which is modeled after the beta-domain of MT-II and mimics the biological effects of MTI/II in vitro. Here, we demonstrate the neuroprotect...

  18. Transcriptional profiling of Vero E6 cells over-expressing SARS-CoV S2 subunit: Insights on viral regulation of apoptosis and proliferation

    International Nuclear Information System (INIS)

    Yeung, Y.-S.; Yip, C.-W.; Hon, C.-C.; Chow, Ken Y.C.; Ma, Iris C.M.; Zeng Fanya; Leung, Frederick C.C.

    2008-01-01

    We have previously demonstrated that over-expression of spike protein (S) of severe acute respiratory syndrome coronavirus (SARS-CoV) or its C-terminal subunit (S2) is sufficient to induce apoptosis in vitro. To further investigate the possible roles of S2 in SARS-CoV-induced apoptosis and pathogenesis of SARS, we characterized the host expression profiles induced upon S2 over-expression in Vero E6 cells by oligonucleotide microarray analysis. Possible activation of mitochondrial apoptotic pathway in S2 expressing cells was suggested, as evidenced by the up-regulation of cytochrome c and down-regulation of the Bcl-2 family anti-apoptotic members. Inhibition of Bcl-2-related anti-apoptotic pathway was further supported by the diminution of S2-induced apoptosis in Vero E6 cells over-expressing Bcl-xL. In addition, modulation of CCN E2 and CDKN 1A implied the possible control of cell cycle arrest at G1/S phase. This study is expected to extend our understanding on the pathogenesis of SARS at a molecular level

  19. Apoptosis and BCL-2 expression as predictors of survival in radiation-treated non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Hwang, Jun-Hwa; Lim, Sung-Chul; Kim, Young-Chul; Park, Kyung-Ok; Ahn, Sung-Ja; Chung, Woong-Ki

    2001-01-01

    Objectives: We assessed the role of apoptosis and the expression of bcl-2, p53, and c-myc oncoproteins in pretreatment histologic specimens as a predictor of response to radiation therapy and survival in non-small-cell lung cancer (NSCLC) patients. Methods: Pretreatment biopsy specimens of 68 patients with NSCLC (62 squamous cell carcinoma, 6 adenocarcinoma) were stained with hematoxylin and eosin. From 5 high-powered fields, the apoptotic index (AI) was calculated as the ratio of apoptotic tumor cells to the total number of tumor cells. Bcl-2, p53, and c-myc oncoprotein expression was detected by immunohistochemical staining. Results: Twenty-nine cases showed partial or complete remission, whereas 39 showed no response. AI ranged from 0.2 to 12.0% (mean ± SD; 4.3±2.6%, median 4.0%). There was no difference in AI between responders (4.0±2.3) and nonresponders (4.5±2.8, p>0.05). However, in the responders, AI was correlated with the degree of change in tumor volume (r=0.41, p<0.05). In an analysis of 53 subjects who survived more than 1 month after the completion of radiation therapy, the patients with a higher AI (n=27, MST=22.8 m) survived longer than those with a lower AI (n=26, MST=9.2, log-rank, p=0.03). Patients expressing bcl-2 had poorer survival (n=22, MST=6.0 m) than patients without bcl-2 (n=31, 22.8 m, p<0.003). According to multivariate analysis, three variables, bcl-2 expression, AI, and response to radiation, were independent prognostic factors for survival. Conclusion: A low level of spontaneous apoptosis and expression of apoptosis blocking bcl-2 protein in pretreatment histology predict a poor prognosis for radiation-treated NSCLC patients

  20. Human T-Cell Leukemia Virus Type 1 Tax-Deregulated Autophagy Pathway and c-FLIP Expression Contribute to Resistance against Death Receptor-Mediated Apoptosis

    Science.gov (United States)

    Wang, Weimin; Zhou, Jiansuo; Shi, Juan; Zhang, Yaxi; Liu, Shilian

    2014-01-01

    ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) Tax protein is considered to play a central role in the process that leads to adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 Tax-expressing cells show resistance to apoptosis induced by Fas ligand (FasL) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). The regulation of Tax on the autophagy pathway in HeLa cells and peripheral T cells was recently reported, but the function and underlying molecular mechanism of the Tax-regulated autophagy are not yet well defined. Here, we report that HTLV-1 Tax deregulates the autophagy pathway, which plays a protective role during the death receptor (DR)-mediated apoptosis of human U251 astroglioma cells. The cellular FLICE-inhibitory protein (c-FLIP), which is upregulated by Tax, also contributes to the resistance against DR-mediated apoptosis. Both Tax-induced autophagy and Tax-induced c-FLIP expression require Tax-induced activation of IκB kinases (IKK). Furthermore, Tax-induced c-FLIP expression is regulated through the Tax-IKK-NF-κB signaling pathway, whereas Tax-triggered autophagy depends on the activation of IKK but not the activation of NF-κB. In addition, DR-mediated apoptosis is correlated with the degradation of Tax, which can be facilitated by the inhibitors of autophagy. IMPORTANCE Our study reveals that Tax-deregulated autophagy is a protective mechanism for DR-mediated apoptosis. The molecular mechanism of Tax-induced autophagy is also illuminated, which is different from Tax-increased c-FLIP. Tax can be degraded via manipulation of autophagy and TRAIL-induced apoptosis. These results outline a complex regulatory network between and among apoptosis, autophagy, and Tax and also present evidence that autophagy represents a new possible target for therapeutic intervention for the HTVL-1 related diseases. PMID:24352466

  1. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haogang [Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081 (China); Jia, Ruichun [Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081 (China); Wang, Chunjing; Hu, Tianming [Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081 (China); Wang, Fujing, E-mail: wangfujing-hyd@163.com [Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081 (China)

    2014-09-26

    Highlights: • Piceatannol induces apoptosis in cultured CRC cells. • Piceatannol promotes expression of miR-129. • miR-129 mediates proapoptotic effects of piceatannol. - Abstract: Piceatannol, a naturally occurring analog of resveratrol, has been confirmed as an antitumor agent by inhibiting proliferation, migration, and metastasis in diverse cancer. However, the effect and mechanisms of piceatannol on colorectal cancer (CRC) have not been well understood. This study aimed to test whether piceatannol could inhibit growth of CRC cells and reveal its underlying molecular mechanism. MTT assay was used to detect the cell viability in HCT116 and HT29 cells. Flow cytometry analysis was employed to measure apoptosis of CRC cells. Bcl-2, Bax and caspase-3 levels were analyzed by Western blot and miR-129 levels were determined by real-time RT-PCR. Our study showed that piceatannol inhibited HCT116 and HT29 cells growth in a concentration- and time-dependent manner. Piceatannol induced apoptosis by promoting expression of miR-129, and then inhibiting expression of Bcl-2, an known target for miR-129. Moreover, knock down of miR-129 could reverse the reduction of cell viability induced by piceatannol in HCT116 and HT29 cells. Taken together, our study unraveled the ability of piceatannol to suppress colorectal cancer growth and elucidated the participation of miR-129 in the anti-cancer action of piceatannol. Our findings suggest that piceatannol can be considered to be a promising anticancer agent for CRC.

  2. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  3. Urinary metallothionein as a biological indicator of occupational cadmium exposure

    International Nuclear Information System (INIS)

    Tohyama, C.; Shaikh, Z.A.; Ellis, K.J.; Cohn, S.H.

    1981-01-01

    Radioimmunoassay and neutron activation data indicate that the urinary metallothionein concentration is related to the liver Cd concentration in occupational Cd exposure. It is also related to the kidney Cd content - but only before the onset of renal dysfunction. Further epidemiological studies are needed to establish a dose-response relationship, which may be useful in minimizing the hazard of Cd-induced renal dysfunction

  4. Metallothioneins are multipurpose neuroprotectants during brain pathology

    DEFF Research Database (Denmark)

    Penkowa, Milena

    2006-01-01

    Metallothioneins (MTs) constitute a family of cysteine-rich metalloproteins involved in cytoprotection during pathology. In mammals there are four isoforms (MT-I - IV), of which MT-I and -II (MT-I + II) are the best characterized MT proteins in the brain. Accumulating studies have demonstrated MT......-I overexpression demonstrated the importance of MT-I + II for coping with brain pathology. In addition, exogenous MT-I or MT-II injected intraperitoneally is able to promote similar effects as those of endogenous MT-I + II, which indicates that MT-I + II have both extra- and intracellular actions. In injured brain...

  5. Response of the common cutworm Spodoptera litura to zinc stress: Zn accumulation, metallothionein and cell ultrastructure of the midgut

    International Nuclear Information System (INIS)

    Shu, Yinghua; Zhang, Guren; Wang, Jianwu

    2012-01-01

    By exposing the common cutworm Spodoptera litura Fabricius larvae to a range of Zinc (Zn) stress, we investigated the effects of dietary Zn on Zn accumulation, metallothionein (MT), and on the ultrastructure of the midgut. The techniques we used were inductively coupled plasma-atomic emission spectrometer (ICP-AES), real-time PCR combined with cadmium-hemoglobin total saturation, and transmission electron microscopy (TEM), respectively. There was a significant dose–response relationship between the Zn accumulations in the midgut of the larvae and the Zn concentrations in the diet. Furthermore, both MT content and MT gene expression in the midgut were significantly induced in the 50–500 mg Zn/kg treatments, and were significantly positively correlated with the Zn accumulations in the midgut. When S. litura larvae were fed with the diet treated with 500 mg Zn/kg, Zn accumulation and MT content in the midgut was 4450.85 mg Zn/kg and 372.77 mg/kg, respectively, thereafter there was a little increase; the level of MT gene expression was maximal, thereafter there was a sharp decrease. TEM showed that numerous electron-dense granules (EDGs) and vacuoles appeared in the cytoplasm of the midgut cells, their number and size being closely correlated with the Zn accumulations in the midgut. Moreover, the nuclei were strongly influenced by Zn stress, evidenced by chromatin condensation and irregular nuclear membranes. Therefore, after being exposed to Zn in the threshold (500 mg Zn/kg) range, S. litura larvae could accumulate Zn in the midgut, which led to the induction of MT and changes in cell ultrastructure (mainly the presence of EDGs). The induction of MT and precipitation of Zn in EDGs may be the effective detoxification mechanisms by which the herbivorous insect S. litura defends itself against heavy metals. -- Graphical abstract: When the herbivorous insect Spodoptera litura Fabricius larvae were fed on the artificial diet with different concentrations of Zn

  6. Chronic ethanol exposure induces SK-N-SH cell apoptosis by increasing N-methyl-D-aspartic acid receptor expression and intracellular calcium.

    Science.gov (United States)

    Wang, Hongbo; Wang, Xiaolong; Li, Yan; Yu, Hao; Wang, Changliang; Feng, Chunmei; Xu, Guohui; Chen, Jiajun; You, Jiabin; Wang, Pengfei; Wu, Xu; Zhao, Rui; Zhang, Guohua

    2018-04-01

    It has been identified that chronic ethanol exposure damages the nervous system, particularly neurons. There is scientific evidence suggesting that neuronal loss caused by chronic ethanol exposure has an association with neuron apoptosis and intracellular calcium oscillation is one of the primary inducers of apoptosis. Therefore, the present study aimed to investigate the inductive effects of intracellular calcium oscillation on apoptosis in SK-N-SH human neuroblastoma cells and the protective effects of the N-methyl-D-aspartic acid receptor (NMDAR) antagonist, memantine, on SK-N-SH cell apoptosis caused by chronic ethanol exposure. SK-N-SH cells were treated with 100 mM ethanol and memantine (4 µM) for 2 days. Protein expression of NR1 was downregulated by RNA interference (RNAi). Apoptosis was detected by Annexin V/propidium iodide (PI) double-staining and flow cytometry and cell viability was detected using an MTS kit. Fluorescence dual wavelength spectrophotometry was used to determine the intracellular calcium concentration and the levels of NR1 and caspase-3 were detected using western blotting. NR1 mRNA levels were also detected using qPCR. It was found that chronic ethanol exposure reduced neuronal cell viability and caused apoptosis of SK-N-SH cells, and the extent of damage in SK-N-SH cells was associated with ethanol exposure concentration and time. In addition, chronic ethanol exposure increased the concentration of intracellular calcium in SK-N-SH cells by inducing the expression of NMDAR, resulting in apoptosis, and memantine treatment reduced ethanol-induced cell apoptosis. The results of the present study indicate that the application of memantine may provide a novel strategy for the treatment of alcoholic dementia.

  7. Evaluation of cadmium, lead and metallothionein contents in the tissues of mussels (Mytilus galloprovincialis) from the Campania coast (Italy): levels and seasonal trends.

    Science.gov (United States)

    Scudiero, Rosaria; Cretì, Patrizia; Trinchella, Francesca; Grazia Esposito, Maria

    2014-01-01

    The biological effect of seasonality on cadmium, lead and metallothionein contents was assessed in mussels Mytilus galloprovincialis from natural banks located along the coastline of the Gulf of Naples (Campania, Italy). Heavy metals and metallothionein concentrations were measured in digestive and reproductive glands. The results showed a clear correlation between metallothionein content and the reproductive gland status determined during the seasons; on the contrary, no correlation was found between metallothionein and metal contents. Data allow us to hypothesize that metallothionein functions go beyond metal detoxification, thus opening new scenarios for these proteins in invertebrates. The effect of seasons on metals concentration in mussel tissues showed similar seasonal patterns between the sites, regardless of their anthropogenic impacts. Cadmium content was not strictly related to seasonal periods, whereas lead content was significantly lower in summer. The results also indicate that the metal contents in mussels from the Gulf of Naples do not represent a risk to human health, even in the period of their maximum accumulation, and that the relaying of mussels before marketing could improve the animal stress conditions, but having a slight effect on metal excretion. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  8. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats

    Directory of Open Access Journals (Sweden)

    Yang J

    2017-08-01

    Full Text Available Jing Yang,1,* Shifu Hu,1,* Meng Rao,1 Lixia Hu,2 Hui Lei,1 Yanqing Wu,1 Yingying Wang,1 Dandan Ke,1 Wei Xia,1,3 Chang-hong Zhu1,3 1Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 2Department of Histology and Embryology, Preclinical Medicine College, Xinxiang Medical University, Henan Province, Xinxiang, 3Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Abstract: Numerous studies have reported the accumulation of copper nanoparticles (Cu NPs in organs and the corresponding damage, although whether Cu NPs can be translocated to the ovaries and their ovarian toxicity are still unknown. In this study, three groups of female rats were injected with 3.12, 6.25, or 12.5 mg/kg Cu NPs for 14 consecutive days. The pathological changes, hormone levels, apoptosis and apoptotic proteins, oxidative stress, and gene expression characteristics in the ovaries were then investigated. The results demonstrated that the Cu NPs exhibited obvious accumulation in the rat ovaries, leading to ovarian injury, an imbalance of sex hormones, and ovarian cell apoptosis. Cu NP exposure activated caspase 3, caspase 8, caspase 9, and tBid, decreased the protein levels of Bcl-2, increased the expression levels of the proteins Bax and cytochrome c, and promoted malondialdehyde (MDA accumulation and superoxide dismutase (SOD reduction. Furthermore, gene microarray analysis showed that Cu NPs (12.5 mg/kg/d caused 321 differentially expressed genes. Of these, 180 and 141 genes were upregulated and downregulated, respectively. Hsd17b1, Hsd3b1, Hsd3b6, and Hsd3b were involved in steroid and hormone metabolism, whereas Mt3 and Cebpb were associated with apoptosis. Overall, these findings provide strong evidence that Cu NPs trigger both intrinsic and extrinsic

  9. C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells.

    Science.gov (United States)

    Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi

    2018-06-13

    Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.

  10. Assessment of apoptosis and MMP-1, MMP-3 and TIMP-2 expression in tibial hyaline cartilage after viable medial meniscus transplantation in the rabbit.

    Science.gov (United States)

    Zwierzchowski, Tomasz J; Stasikowska-Kanicka, Olga; Danilewicz, Marian; Fabiś, Jarosław

    2012-12-20

    The porpuse of this animal study was to assess chondrocyte apoptosis and MMP-1, MMP-3 and TIMP-2 expression in rabbit tibial cartilage 6 months after viable medial meniscal autografts and allografts. Twenty white male New Zealand rabbits were chosen for the study. The medial meniscus was excised from 14 animals and stored under tissue culture conditions for 2 weeks, following which t of them were implantated as autografts and 7 as allografts. The control group consisted of 6 animals which underwent arthtrotomy. When the animals were eutanized, the tibial cartilage was used for immunohisochemical examination. Apoptosis (TUNEL method) and MMP-1, MMP-3 and TIMP-2 expression were estimated semiquantatively. An increased level of chodrocyte apoptosis in the tibail cartilage was observed after both kinds of transplants (p hyaline cartilage against excessive apoptosis. The results of experimantal studies on humans indicate the need to device a method of apoptosis inhibition in the hyaline cartilage to improve long-term results of meniscal transplantation.

  11. Metallothionein and a peptide modeled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Asmussen, Johanne W; Lindstam, Mats

    2007-01-01

    outgrowth and survival. MT-mediated neurite outgrowth was furthermore inhibited by an anti-megalin serum. EmtinB-mediated inhibition of apoptosis occurred without a reduction of caspase-3 activity, but was associated with reduced expression of the pro-apoptotic B-cell leukemia/lymphoma-2 interacting member...

  12. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  13. Expression of the antiapoptotic gene seladin-1 and octreotide-induced apoptosis in growth hormone-secreting and nonfunctioning pituitary adenomas.

    Science.gov (United States)

    Luciani, Paola; Gelmini, Stefania; Ferrante, Emanuele; Lania, Andrea; Benvenuti, Susanna; Baglioni, Silvana; Mantovani, Giovanna; Cellai, Ilaria; Ammannati, Franco; Spada, Anna; Serio, Mario; Peri, Alessandro

    2005-11-01

    Seladin-1 (from selective Alzheimer's disease indicator-1) is a recently discovered gene that has been found to be down-regulated in brain regions affected by Alzheimer's disease. Seladin-1 effectively protects neurons against beta-amyloid-mediated toxicity and prevents apoptosis via inhibition of the activation of caspase-3, a key mediator of the apoptotic cascade. Although seladin-1 is expressed in the pituitary gland, no study addressed the expression or the function of this gene in pituitary adenomas. The aim of the present study was to determine the expression level of the seladin-1 gene in pituitary tumors, i.e. GH-secreting and nonfunctioning pituitary adenomas (NFPA), and to determine whether differential expression might be associated with different somatostatin (sst)-induced apoptosis. We found by quantitative real-time RT-PCR that the expression level of seladin-1 was significantly higher in NFPA (n = 21) than in GH-secreting adenomas (n = 30; mean +/- se, 25.69 +/- 6.39 vs. 8.02 +/- 2.68 pg/microg total RNA; P = 0.006). Although the amount of activated caspase-3 did not differ between the two groups of tumors, in primary cell cultures, octreotide was able to increase apoptosis, evaluated by the level of cleaved cytokeratin 18 and the presence of apoptotic nuclei, in GH-secreting adenomas, but not in NFPA. This different response was not attributable to differences in the amount of transcript of sst receptors 2 and 5, which was similar in the two groups of tumors. Our results suggest that differential seladin-1 expression in pituitary adenomas may be associated with a different apoptotic response to sst analogs.

  14. Bioaccumulation, morphological changes, and induction of metallothionein gene expression in the digestive system of the freshwater crab Sinopotamon henanense after exposure to cadmium.

    Science.gov (United States)

    Wu, Hao; Li, Yingjun; Lang, Xingping; Wang, Lan

    2015-08-01

    To study the responses of digestive system of the freshwater crab Sinopotamon henanense to the exposure with cadmium (Cd), crabs were acutely exposed to 7.25, 14.50, and 29.00 mg/l Cd for 96 h and subchronically exposed to 0.725, 1.450, and 2.900 mg/l for 21 days. Cd bioaccumulation in the hepatopancreas and digestive tract (esophagus and intestine) was examined. Furthermore, histopathological alterations of the esophagus, midgut, hindgut, and hepatopancreas were assessed in animals from the 29.0 and 2.90 mg/l Cd treatment groups, and expression of metallothionein messenger RNA (MT mRNA) in the hepatopancreas and intestine was measured in all treatment groups. The results showed difference in the middle and high concentrations between acute and subchronic treatment groups. Cd content in digestive tract after acute 14.5 and 29.0 mg/l Cd exposure was significantly higher than that at subchronic 1.45 and 2.90 mg/l exposure, but Cd levels in hepatopancreas were not significantly different under the same condition. Acute exposure to Cd induced greater morphological damage than subchronic exposure: large areas of epithelial cells were necrotic in hepatopancreas and midgut, which detached from the basal lamina. Vacuolated muscle cells were observed in the hindgut of animals from the acute exposure group, but the changes of esophageal morphology were not obvious after acute or subchronic treatments. The expression of MT mRNA increased with increasing Cd concentration, and MT mRNA level in acute exposure groups was significantly lower when compared to the subchronic exposure groups. Higher Cd content and lower MT mRNA expression in the acutely exposed groups may be responsible for more severe damage of digestive system in these exposure groups.

  15. Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a.

    Science.gov (United States)

    Chen, Chao; Cheng, Guangqing; Yang, Xiaoni; Li, Changsheng; Shi, Ran; Zhao, Ningning

    2016-01-01

    Endothelial cell (EC) apoptosis is a crucial process for the development of atherosclerosis. Tanshinol is reported to protect vascular endothelia and attenuate the formation of atherosclerosis. However, the potential molecule mechanism of the protective role of tanshinol in atherosclerosis need to be further investigated. ApoE(-/-)mice were fed with a high-fat diet and treated with tanshinol to detect the effect of tanshinol on endothelial cells apoptosis with TUNEL staining assay. qRT-PCR and Western blot were performed to examine the expression of TUG1 and miR-26a in endothelial cells. RNA-binding protein immunoprecipitation assay was performed to verify the relationship between TUG1 and miR-26a. It has been shown that tanshinol reduced the aortic atherosclerotic lesion area in the entire aorta and aortic sinus in a concentration dependent manner, and suppressed the endothelial cells apoptosis in ApoE(-/-) mice. We further found that the mRNA level of TUG1 was reduced and the expression of miR-26a was up-regulated by tanshinol in endothelial cells. In addition, TUG1 down-regulated the expression of miR-26a in ECV304 cells. Finally, it was shown that overexpression of TUG1 removed the reversed effect of tanshinol on oxidized low-density lipoprotein (ox-LDL)-induced endothelial cells apoptosis. Taken together, our study reveals that tanshinol could attenuate the endothelial cells apoptosis in atherosclerotic ApoE(-/-) mice. Moreover, low TUG1 expression and high level of miR-26a are associated with the endothelial protecting effect of tanshinol.

  16. Increased spontaneous apoptosis, but not survivin expression, is associated with histomorphologic response to neoadjuvant chemoradiation in rectal cancer.

    LENUS (Irish Health Repository)

    McDowell, Dermot T

    2009-11-01

    Survivin has been shown to be an important mediator of cellular radioresistance in vitro. This study aims to compare survivin expression and apoptosis to histomorphologic responses to neoadjuvant radiochemotherapy (RCT) in rectal cancer.

  17. Role of metallothionein-III following central nervous system damage

    DEFF Research Database (Denmark)

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes

    2003-01-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area...... the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process....

  18. Expression of measles virus nucleoprotein induces apoptosis and modulates diverse functional proteins in cultured mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ashima Bhaskar

    Full Text Available BACKGROUND: Measles virus nucleoprotein (N encapsidates the viral RNA, protects it from endonucleases and forms a virus specific template for transcription and replication. It is the most abundant protein during viral infection. Its C-terminal domain is intrinsically disordered imparting it the flexibility to interact with several cellular and viral partners. PRINCIPAL FINDINGS: In this study, we demonstrate that expression of N within mammalian cells resulted in morphological transitions, nuclear condensation, DNA fragmentation and activation of Caspase 3 eventuating into apoptosis. The rapid generation of intracellular reactive oxygen species (ROS was involved in the mechanism of cell death. Addition of ascorbic acid (AA or inhibitor of caspase-3 in the extracellular medium partially reversed N induced apoptosis. We also studied the protein profile of cells expressing N protein. MS analysis revealed the differential expression of 25 proteins out of which 11 proteins were up regulated while 14 show signs of down regulation upon N expression. 2DE results were validated by real time and semi quantitative RT-PCR analysis. CONCLUSION: These results show the pro-apoptotic effects of N indicating its possible development as an apoptogenic tool. Our 2DE results present prima facie evidence that the MV nucleoprotein interacts with or causes differential expression of a wide range of cellular factors. At this stage it is not clear as to what the adaptive response of the host cell is and what reflects a strategic modulation exerted by the virus.

  19. Bcl-2, Bax, and c-Fos expression correlates to RPE cell apoptosis induced by UV-light and daunorubicin

    DEFF Research Database (Denmark)

    Liang, Y G; Jorgensen, A G; Kaestel, C G

    2000-01-01

    PURPOSE. The aim of this study was to determine the role of Bcl-2, Bcl-X L, Bax, and c-Fos in regulation of apoptosis, induced by ultraviolet-light A (UV-A) and daunorubicin (DNR), in retinal pigment epithelium (RPE) cells grown on bovine extracellular matrix (ECM)-coated or uncoated plastic dishes....... METHODS. Apoptosis in confluent RPE cells cultured on ECM-coated or uncoated dishes was induced by UV-A or DNR. Apoptosis was detected by 7-amino-actinomycin D labeling followed by flow cytometry and by terminal deoxy-transferase mediated X-dUTP nick end labeling (TUNEL). Cellular expression of Bcl-2, Bcl......-X L, Bax, and c-Fos was determined by the use of antibodies and flow cytometry, Western blot analysis, and immunocytochemical staining. RESULTS. Both UV-A and DNR induce apoptosis in human RPE cells in vitro. Human fetal RPE cells grown on ECM-coated dishes were significantly more resistant to UV...

  20. GSK-3β inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression

    International Nuclear Information System (INIS)

    Beurel, Eleonore; Kornprobst, Michel; Blivet-Van Eggelpoel, Marie-Jose; Ruiz-Ruiz, Carmen; Cadoret, Axelle; Capeau, Jacqueline; Desbois-Mouthon, Christele

    2004-01-01

    Lithium exerts neuroprotective actions that involve the inhibition of glycogen synthase kinase-3β (GSK-3β). Otherwise, recent studies suggest that sustained GSK-3β inhibition is a hallmark of tumorigenesis. In this context, the present study was undertaken to examine whether lithium modulated cancer cell sensitivity to apoptosis induced by chemotherapy agents. We observed that, in different human cancer cell lines, lithium significantly reduced etoposide- and camptothecin-induced apoptosis. In HepG2 cells, lithium repressed drug induction of CD95 expression and clustering at the cell surface as well as caspase-8 activation. Lithium acted through deregulation of GSK-3β signaling since (1) it provoked a rapid and sustained phosphorylation of GSK-3β on the inhibitory serine 9 residue; (2) the GSK-3β inhibitor SB-415286 mimicked lithium effects by repressing drug-induced apoptosis and CD95 membrane expression; and (3) lithium promoted the disruption of nuclear GSK-3β/p53 complexes. Moreover, the overexpression of an inactivated GSK-3β mutant counteracted the stimulatory effects of etoposide and camptothecin on a luciferase reporter plasmid driven by a p53-responsive sequence from the CD95 gene. In conclusion, we provide the first evidence that lithium confers resistance to apoptosis in cancer cells through GSK-3β inhibition and subsequent repression of CD95 gene expression. Our study also highlights the concerted action of GSK-3β and p53 on CD95 gene expression

  1. Metallothionein and heavy metals in daphnia pulex from Jose Antonio Alzate reservoir

    International Nuclear Information System (INIS)

    Avila Perez, P.; Zarazua Ortega, G.; Barcelo Quintal, D.; Rosas, I.; Diazdelgado, C.

    2001-01-01

    Water and specimens of the freshwater cladoceran Dhapnia pulex were collected at 4 different sites located in an area influenced by industrial, agricultural and urban activities in the Jose Antonio Alzate Reservoir in two different seasons. The Jose Antonio Alzate Reservoir fed by the Lerma river is the first significant water reservoir downstream of the main industrial areas in the State of Mexico. There are about 2,500 industrial discharges between the river source and the Alzate Reservoir which makes the Lerma river and the Jose Antonio Alzate Reservoir the most contaminated water bodies in the State of Mexico. The Monitoring National Network recognises these waters as highly contaminated, especially in the zone located between the Mexico-Toluca highway and the Alzate Reservoir. Water samples and freshwater cladoceran were analysed for Cu and Zn by Energy Dispersive X-Ray Fluorescence (EDXRF) and for Hg and Cd by Neutron Activation Analysis (NAA). As a general feature, the heavy metal concentrations of the water were found to decrease in the sequence: Cu > Zn > Hg > Cd. Metallothioneins (MT) were determined by silver saturation method. Tissue concentrations of MT in Dhapnia pulex varied between 5.69 and 8.96 (mg MT/ g wet wt) in rain season and between 48.87 and 74.00 (mg MT/ g wet wt) in dry season. Metallothioneins levels in Dhapnia pulex were significantly correlated (P < 0.01) with tissue Hg concentrations. In contrast, correlations between MT and tissue levels of Cu and Zn were weak. These observations suggest that Hg2+ activity is the key environmental factor to which metallothionein levels in Daphnia pulex are responding in the studied reservoir

  2. The relationship between apoptosis and the expression of proliferating cell nuclear antigen and the clinical stages in gastric carcinoma.

    Science.gov (United States)

    Tao, K; Chen, D; Tian, Y; Lu, X; Yang, X

    2000-01-01

    The relationship between the apoptosis and the expression of proliferating cell nuclear antigen (PCNA) and the clinical stages in gastric cancers was studied. By using terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) technique and PCNA immunohistochemical staining, the apoptosis and the expression of PCNA in tissue of gastric carcinoma were assayed in situ, the index of apoptosis (AI), index of PCNA (PI) and the rate of AI/PI were calculated. AI and PI in gastric cancer tissues were (6.5 +/- 3.7)% and (49.8 +/- 15.9)% respectively, and the rate of AI/PI was 0.13 +/- 0.05, which were obviously different from those of normal gastric mucosa in paragastric cancer (P stages of gastric carcinoma, the AI was decreased, PI was increased and the rate of AI/PI decreased in gastric carcinoma. There was significant difference in them between the gastric cancer tissues and normal gastric mucosa in pericarcinoma in TNM stage II to IV (P gastric carcinoma. The AI, PI and the rate of AI/PI would become the prognostic factors in advanced gastric carcinoma.

  3. The characteristics and mechanism of apoptosis induced by internal irradiation

    International Nuclear Information System (INIS)

    Hong Chengjiao; Zhang Junning; Zhu Shoupeng

    2001-01-01

    Apoptosis in tumor cells induced by radionuclides is likely the most effective way to cure cancer. In order to explore the possibility in clinic application, the characteristics and mechanism of apoptosis induced by internal irradiation were investigated. The apoptosis and expressions of bcl-2mRNA, bcl-2 and bax of K 562 cells following internal exposure with different accumulated absorbed doses of strontium-89 were studied. 6 h after irradiation, the characteristics of apoptosis and necrosis appeared in K 562 cells. The apoptosis and necrosis enhanced with the prolongation of internally contaminated time at 6 h, 9 h, 12 h, 24 h and 48 h. The expressions of bcl-2mRNA decreased at 12 h, most remarkably at 24 h. The expressions of bcl-2 decreased after irradiation whereas bax had no obvious changes. The results suggest that the apoptosis induced by internal exposure may be regulated by lower expressions of bcl-2mRNA and bcl-2, lower bcl-2/bax value

  4. Stat3 Expression and Its Correlation with Proliferation and Apoptosis/Autophagy in Gliomas

    Directory of Open Access Journals (Sweden)

    Valentina Caldera

    2008-01-01

    Full Text Available Signal transducer and activator of transcription-3 (Stat3 was studied along with several steps of the PI3/Akt pathway in a series of 64 gliomas that included both malignant and low-grade tumors, using quantitative immunohistochemistry, Western blotting, and molecular biology techniques. The goal of the study was to investigate whether activated Stat3 (phospho-Stat3 levels correlated with cell proliferation, apoptosis, and autophagy. Stat3 and activated Akt (phospho-Akt expression increased with malignancy grade, but did not correlate with proliferation and survival within the category of glioblastomas. A correlation of Stat3 with Akt was found, indicating a regulation of the former by the PI3/Akt pathway, which, in turn, was in relation with EGFR amplification. Stat3 and Akt did not show any correlation with apoptosis, whereas they showed an inverse correlation with Beclin 1, a stimulator of autophagy, which was rarely positive in glioblastomas. Autophagy seems then to be inactivated in malignant gliomas.

  5. Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3β protein expression.

    Science.gov (United States)

    Suh, Jong Hui; Choi, Eunmi; Cha, Min-Ji; Song, Byeong-Wook; Ham, Onju; Lee, Se-Yeon; Yoon, Cheesoon; Lee, Chang-Yeon; Park, Jun-Hee; Lee, Sun Hee; Hwang, Ki-Chul

    2012-06-29

    Myocardial ischemia is the major cause of morbidity and mortality due to cardiovascular diseases. This disease is a severe stress condition that causes extensive biochemical changes which trigger cardiac cell death. Stress conditions such as deprivation of glucose and oxygen activate the endoplasmic reticulum in the cytoplasm of cells, including cardiomyocytes, to generate and propagate apoptotic signals in response to these conditions. microRNAs (miRNAs) are a class of small non-coding RNAs that mediate posttranscriptional gene silencing. The miRNAs play important roles in regulating cardiac physiological and pathological events such as hypertrophy, apoptosis, and heart failure. However, the roles of miRNAs in reactive oxygen species (ROS)-mediated injury on cardiomyocytes are uncertain. In this study, we identified at the apoptotic concentration of H(2)O(2), miR-26a expression was increased. To determine the potential roles of miR-26a in H(2)O(2)-mediated cardiac apoptosis, miR-26a expression was regulated by a miR-26a or an anti-miR-26a. Overexpression of miR-26a increased apoptosis as determined by upregulation of Annexin V/PI positive cell population, caspase-3 activity and expression of pro-apoptotic signal molecules, whereas inhibition of miR-26a reduced apoptosis. We identified GSK3B as a direct downstream target of miR-26a. Furthermore, miR-26a attenuated viability and increased caspase-3 activity in normal cardiomyocytes. This study demonstrates that miR-26a promotes ROS-induced apoptosis in cardiomyocytes. Thus, miR-26a affects ROS-mediated gene regulation and cellular injury response. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Expression of mtc in Folsomia candida indicative of metal pollution.

    NARCIS (Netherlands)

    Nota, B.; Vooijs, H.; van Straalen, N.M.; Roelofs, D.

    2011-01-01

    The soil-living springtail Folsomia candida is frequently used in reproduction bioassays to assess soil contamination. Alternatively, the response of genes to contamination is assessed. In this study the expression of F. candida's gene encoding the deduced metallothionein-like motif containing

  7. Effects of hyperthyroidism on expression of vascular endothelial growth factor (VEGF and apoptosis in fetal adrenal glands

    Directory of Open Access Journals (Sweden)

    T. Karaca

    2015-11-01

    Full Text Available This study investigated the expression of vascular endothelial growth factor (VEGF, vascular density, and apoptosis in fetal rat adrenal glands with hyperthyroidism in late gestation. Twelve mature female Wistar albino rats with the same biological and physiological features were used for this study. Rats were divided into two groups: control and hyperthyroidism. Hyperthyroidism was induced by daily subcutaneous injections of L-thyroxine (250 μg/kg before pregnancy for 21 days and during pregnancy. Rats in the control and hyperthyroidism groups were caged according to the number of male rats. Zero day of pregnancy (Day 0 was indicated when the animals were observed to have microscopic sperm in vaginal smears. Pregnant rats were sacrificed on the 20th day of pregnancy; blood from each animal was collected to determine the concentrations of maternal adrenocorticotropic hormone and thyroxine. Rat fetuses were then quickly removed from the uterus, and the adrenal glands of the fetuses were dissected. VEGF expression, vascular density, and apoptosis were analyzed in fetal rat adrenal glands. Maternal serum levels of the adrenocorticotropic hormone and free thyroxine were significantly higher in the hyperthyroidism group than in the control group. Immunohistochemistry revealed that the number of VEGF positive cells and vessel density significantly increased in the hyperthyroidism rat fetal adrenal group compared with the control group. Hyperthyroidism did not change the fetal and placental weights and the number of fetuses. This study demonstrates that hyperthyroidism may have an effect on the development of rat adrenal glands mediated by VEGF expression, angiogenesis, and apoptosis

  8. Effects of hyperthyroidism on expression of vascular endothelial growth factor (VEGF) and apoptosis in fetal adrenal glands.

    Science.gov (United States)

    Karaca, T; Hulya Uz, Y; Karabacak, R; Karaboga, I; Demirtas, S; Cagatay Cicek, A

    2015-11-26

    This study investigated the expression of vascular endothelial growth factor (VEGF), vascular density, and apoptosis in fetal rat adrenal glands with hyperthyroidism in late gestation. Twelve mature female Wistar albino rats with the same biological and physiological features were used for this study. Rats were divided into two groups: control and hyperthyroidism. Hyperthyroidism was induced by daily subcutaneous injections of L-thyroxine (250 μg/kg) before pregnancy for 21 days and during pregnancy. Rats in the control and hyperthyroidism groups were caged according to the number of male rats. Zero day of pregnancy (Day 0) was indicated when the animals were observed to have microscopic sperm in vaginal smears. Pregnant rats were sacrificed on the 20th day of pregnancy; blood from each animal was collected to determine the concentrations of maternal adrenocorticotropic hormone and thyroxine. Rat fetuses were then quickly removed from the uterus, and the adrenal glands of the fetuses were dissected. VEGF expression, vascular density, and apoptosis were analyzed in fetal rat adrenal glands. Maternal serum levels of the adrenocorticotropic hormone and free thyroxine were significantly higher in the hyperthyroidism group than in the control group. Immunohistochemistry revealed that the number of VEGF positive cells and vessel density significantly increased in the hyperthyroidism rat fetal adrenal group compared with the control group. Hyperthyroidism did not change the fetal and placental weights and the number of fetuses. This study demonstrates that hyperthyroidism may have an effect on the development of rat adrenal glands mediated by VEGF expression, angiogenesis, and apoptosis.

  9. Linc00472 suppresses proliferation and promotes apoptosis through elevating PDCD4 expression by sponging miR-196a in colorectal cancer.

    Science.gov (United States)

    Ye, Yafei; Yang, Shengnan; Han, Yanping; Sun, Jingjing; Xv, Lijuan; Wu, Lina; Wang, Yongfeng; Ming, Liang

    2018-06-21

    Long intergenic non-coding RNA Linc00472 has been considered as a tumor suppressor in some cancers. However, the function and mechanism of Linc00472 in colorectal cancer has not been well elucidated. In this study, we found that Linc00472 was down-regulated in colorectal cancer tissues and cells. Elevated Linc00472 expression suppressed proliferation and induced apoptosis in colorectal cancer cells. Moreover, Linc00472 acted as a competing endogenous RNA (ceRNA) of miR-196a to release programmed cell death 4 (PDCD4). Furthermore, miR-196a overexpression or PDCD4 knockdown reversed Linc00472-mediated proliferation inhibition and apoptosis induction in colorectal cancer cells. Ectopic Linc00472 expression hindered tumor growth in vivo . Our study demonstrated that Linc00472 suppressed proliferation and induced apoptosis through up-regulating PDCD4 by decoying miR-196a, which may be an effective therapeutic target for colorectal cancer.

  10. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  11. Platycodon grandiflorum (PG) reverses angiotensin II-induced apoptosis by repressing IGF-IIR expression.

    Science.gov (United States)

    Lin, Yuan-Chuan; Lin, Chih-Hsueh; Yao, Hsien-Tsung; Kuo, Wei-Wen; Shen, Chia-Yao; Yeh, Yu-Lan; Ho, Tsung-Jung; Padma, V Vijaya; Lin, Yu-Chen; Huang, Chih-Yang; Huang, Chih-Yang

    2017-06-09

    Platycodon grandiflorum (PG) is a Chinese medical plant used for decades as a traditional prescription to eliminate phlegm, relieve cough, reduce inflammation and lower blood pressure. PG also has a significant effect on the cardiovascular systems. The aqueous extract of Platycodon grandiflorum (JACQ.) A. DC. root was screened for inhibiting Ang II-induced IGF-IIR activation and apoptosis pathway in H9c2 cardiomyocytes. The effects were also studied in spontaneously hypertensive rats (five groups, n=5) using low and high doses of PG for 50 days. The Ang II-induced IGF-IIR activation was analyzed by luciferase reporter, RT-PCR, western blot and surface IGF-IIR expression assay. Furthermore, the major active constituent of PG was carried out by high performance liquid chromatography-mass spectrometry (HPLC-MS). Our results indicate that a crude extract of PG significantly suppresses the Ang II-induced IGF-IIR signaling pathway to prevent cardiomyocyte apoptosis. PG extract inhibits Ang II-mediated JNK activation and SIRT1 degradation to reduce IGF-IIR activity. Moreover, PG maintains SIRT1 stability to enhance HSF1-mediated IGF-IIR suppression, which prevents cardiomyocyte apoptosis. In animal models, the administration of PG markedly reduced this apoptotic pathway in the heart of SHRs. Taken together, PG may be considered as an effective treatment for cardiac diseases in hypertensive patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  12. Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica

    Czech Academy of Sciences Publication Activity Database

    Strouhal, M.; Kizek, René; Vacek, Jan; Trnková, L.; Němec, M.

    2003-01-01

    Roč. 60, 1-2 (2003), s. 29-36 ISSN 1567-5394 R&D Projects: GA AV ČR IAA4004110; GA ČR GA203/02/0422 Institutional research plan: CEZ:AV0Z5004920; CEZ:MSM 143100005 Keywords : electrochemical determination of metallothionein and heavy metals * yeast * Yarrowia lipolytica Subject RIV: BO - Biophysics Impact factor: 1.482, year: 2003

  13. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    Science.gov (United States)

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  14. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  15. [Effect of sodium phenylbutyrate on the apoptosis of human tongue squamous cancer cell line and expression of p21 and survivin genes].

    Science.gov (United States)

    Chen, Wei-qiang; Feng, Feng-lan; Gu, Hong-biao; Pan, De-shun

    2010-07-01

    To examine the effects of sodium phenylbutyrate on the apoptosis of human tongue squamous cancer cell line and expression of p21 and survivin genes. The inhibition effects of sodium phenylbutyrate on Tca8113 and human tongue squamous cell carcinoma (TCSSA) cell lines were detected by methyl thiazoly terazolium (MTT) and the apoptosis of the cancer cells after being induced by sodium phenylbutyrate examined by flow cytometry (FCM). The expression of p21 and survivin genes were observed with Western blotting and RT-PCR. Compared with control group, the level of p21 mRNA and protein of Tca8113 cellline increased to 0.09 ± 0.08 and increased 0.72 ± 0.10, that of TCSSA cellline increased 1.34 ± 0.12 and 1.56 ± 0.09 (P Sodium phenylbutyrate inhibited the cell proliferation, promoted cell apoptosis and arrested the cells in G₁/G₀ phase. The amount of p21 mRNA and protein were increased, and the expression of survivin gene was decreased. Sodium phenylbutyrate exhibited remarkable inhibitory effects on human tongue squamous cancer cell proliferation and induced cancer cell apoptosis. The mechanism may be due to up-regulation of p21 gene and down-regulation of survivin gene. The mRNA level of p21 gene and survivin gene showed a strong correlation.

  16. Elevated expression of CD147 in patients with endometriosis and its role in regulating apoptosis and migration of human endometrial cells.

    Science.gov (United States)

    Jin, Aihong; Chen, Hao; Wang, Chaoqun; Tsang, Lai Ling; Jiang, Xiaohua; Cai, Zhiming; Chan, Hsiao Chang; Zhou, Xiaping

    2014-06-01

    To examine the expression of CD147 in 60 human endometriosis lesions and how CD147 regulates migration and apoptosis in human uterine epithelial (HESs) cells. Experimental clinical study and laboratory-based investigation. Hospital and academic research center. Sixty women with chocolate cysts and 16 control women without endometriosis. Human uterine epithelial cells were treated with anti-CD147 antibody. Real-time polymerase chain reaction for detecting CD147 expression in 60 human endometriosis lesions; migration assay and CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS) assay for cell functional investigation; Western blot for detecting protein levels; gelatin zymography for evaluating the activity of matrix metalloproteinase-2 (MMP-2) in cultured cells. Expression of CD147 was significantly higher in ectopic endometrial tissues from patients with endometriosis than in normal endometrial tissues. Interference with CD147 function led to decreased migration and cell viability in HESs cells. Surprisingly, MMP-2 expression and activity were not changed after treating HESs cells with anti-CD147 antibody. Further examination revealed that immunodepletion of CD147 induced apoptosis in HESs cells, leading to the activation of caspase 3 and poly(ADP-ribose) polymerase. The results of the present study suggest that abnormally high expression of CD147 in ovarian endometriosis lesions with enhanced cell survival (reduced apoptosis) and migration, in an MMP-2-independent manner, may underlie the progression of endometriosis in humans. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Response of the common cutworm Spodoptera litura to zinc stress: Zn accumulation, metallothionein and cell ultrastructure of the midgut

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Yinghua [Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642 (China); Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642 (China); Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou 510642 (China); State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Guren [State Key Laboratory of Biological Control and Institute of Entomology, Sun Yat-sen University, Guangzhou 510275 (China); Wang, Jianwu, E-mail: wangjw@scau.edu.cn [Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642 (China); Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642 (China); Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou 510642 (China)

    2012-11-01

    By exposing the common cutworm Spodoptera litura Fabricius larvae to a range of Zinc (Zn) stress, we investigated the effects of dietary Zn on Zn accumulation, metallothionein (MT), and on the ultrastructure of the midgut. The techniques we used were inductively coupled plasma-atomic emission spectrometer (ICP-AES), real-time PCR combined with cadmium-hemoglobin total saturation, and transmission electron microscopy (TEM), respectively. There was a significant dose-response relationship between the Zn accumulations in the midgut of the larvae and the Zn concentrations in the diet. Furthermore, both MT content and MT gene expression in the midgut were significantly induced in the 50-500 mg Zn/kg treatments, and were significantly positively correlated with the Zn accumulations in the midgut. When S. litura larvae were fed with the diet treated with 500 mg Zn/kg, Zn accumulation and MT content in the midgut was 4450.85 mg Zn/kg and 372.77 mg/kg, respectively, thereafter there was a little increase; the level of MT gene expression was maximal, thereafter there was a sharp decrease. TEM showed that numerous electron-dense granules (EDGs) and vacuoles appeared in the cytoplasm of the midgut cells, their number and size being closely correlated with the Zn accumulations in the midgut. Moreover, the nuclei were strongly influenced by Zn stress, evidenced by chromatin condensation and irregular nuclear membranes. Therefore, after being exposed to Zn in the threshold (500 mg Zn/kg) range, S. litura larvae could accumulate Zn in the midgut, which led to the induction of MT and changes in cell ultrastructure (mainly the presence of EDGs). The induction of MT and precipitation of Zn in EDGs may be the effective detoxification mechanisms by which the herbivorous insect S. litura defends itself against heavy metals. -- Graphical abstract: When the herbivorous insect Spodoptera litura Fabricius larvae were fed on the artificial diet with different concentrations of Zn, amounts of

  19. Preparation of Preproinsulin Gene Construct Containing the Metallothionein2A (pBINDMTChIns and Its Expression in NIH3T3 Cell Line and Muscle Tissue of Alloxan Diabetic Rabbits

    Directory of Open Access Journals (Sweden)

    Piri

    2014-08-01

    Full Text Available Background Diabetes mellitus type 1, formerly called insulin-dependent diabetes, is one of the autoimmune diseases where insulin-producing cells are destroyed by autoimmune response via T cells. The new approaches in treatment of diabetes are using the stem cells, cell transplantation of islet β cell, gene transfer by virus based plasmids, and non-viral gene constructs. Objectives The purpose of this study was to construct glucose inducible insulin gene plasmid and use it in the muscle tissue of the rabbit. Materials and Methods To achieve this goal, the preproinsulin, metallothionein2A promoter and the response element to carbohydrate genes were cloned into pBIND plasmid by standard cloning methods, to construct pBINDMTChIns. The gene cloning products were confirmed by the polymerase chain reaction (PCR and restriction enzyme digestion template. The recombinant plasmid, containing the preproinsulin gene, was transferred into NIH3T3 cells and insulin gene expression was evaluated by reverse transcriptase PCR and western blotting techniques. Plasmid naked DNA containing the preproinsulin gene was injected into the rabbits’ thigh muscles, and its expression was confirmed by western blotting method. Results This study shows the prepared gene construct is inducible by glucose. Gene expression of preproinsulin was observed in muscle tissue of rabbits. Conclusions These finding indicated that research in diabetes mellitus gene therapy could be performed on larger animals.

  20. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2006-01-01

    AP-1/cJun, NF-κB and STAT3 transcription factors control expression of numerous genes, which regulate critical cell functions including proliferation, survival and apoptosis. Sodium arsenite is known to suppress both the IKK-NF-κB and JAK2-STAT3 signaling pathways and to activate the MAPK/JNK-cJun pathways, thereby committing some cancers to undergo apoptosis. Indeed, sodium arsenite is an effective drug for the treatment of acute promyelocytic leukemia with little nonspecific toxicity. Malignant melanoma is highly refractory to conventional radio- and chemotherapy. In the present study, we observed strong effects of sodium arsenite treatment on upregulation of TRAIL-mediated apoptosis in human and mouse melanomas. Arsenite treatment upregulated surface levels of death receptors, TRAIL-R1 and TRAIL-R2, through increased translocation of these proteins from cytoplasm to the cell surface. Furthermore, activation of cJun and suppression of NF-κB by sodium arsenite resulted in upregulation of the endogenous TRAIL and downregulation of the cFLIP gene expression (which encodes one of the main anti-apoptotic proteins in melanomas) followed by cFLIP protein degradation and, finally, by acceleration of TRAIL-induced apoptosis. Direct suppression of cFLIP expression by cFLIP RNAi also accelerated TRAIL-induced apoptosis in these melanomas, while COX-2 suppression substantially increased levels of both TRAIL-induced and arsenite-induced apoptosis. In contrast, overexpression of permanently active AKTmyr inhibited TRAIL-mediated apoptosis via downregulation of TRAIL-R1 levels. Finally, AKT overactivation increased melanoma survival in cell culture and dramatically accelerated growth of melanoma transplant in vivo, highlighting a role of AKT suppression for effective anticancer treatment

  1. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner

    Directory of Open Access Journals (Sweden)

    Gretel G. Pellegrini

    2016-07-01

    Full Text Available Oats contain unique bioactive compounds known as avenanthramides (AVAs with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT and Nrf2 Knockout (KO osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast

  2. Expression of Caspase-1 in breast cancer tissues and its effects on cell proliferation, apoptosis and invasion.

    Science.gov (United States)

    Sun, Yanxia; Guo, Yingzhen

    2018-05-01

    The present study aimed to detect the expression of Caspase-1 in the tumor tissues and tumor-adjacent tissues of patients with breast cancer, and to investigate the effects of Caspase-1 on the proliferation, apoptosis and invasion of breast cancer cells. Reverse transcription-quantitative polymerase chain reaction was used to detect Caspase-1 mRNA expression in breast cancer tissues and tumor-adjacent tissues from patients. Additionally, the human breast cancer MDA-MB-231 cell line was treated with the Caspase-1 small molecule inhibitor Ac-YVAD-CMK, following which the changes to Caspase-1 protein expression were detected via western blotting. The MTT method detected the changes to cell proliferation, flow cytometry detected the rate of apoptosis, and a Transwell assay was employed to assess invasion. Caspase-1 mRNA expression was significantly decreased in the breast cancer tissues of patients, compared with in the tumor-adjacent tissues, a difference that was statistically significant (P<0.05). Treatment with the Ac-YVAD-CMK markedly decreased the protein expression of Caspase-1 in MDA-MB-231 cells, and the difference was statistically significant (P<0.05). Following this treatment of Ac-YVAD-CMK cells, the proliferation and invasion abilities markedly increased, while the apoptotic levels significantly decreased (P<0.05). In conclusion, the expression of Caspase-1 is low in breast cancer tissues, which may promote the proliferation and invasion of breast cancer cells and could be closely associated with the occurrence and development of breast cancer.

  3. Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, M.O., E-mail: mari.mauro@hotmail.com [Graduate Program in Biological Sciences (Cell and Molecular Biology), Institute of Biosciences, UNESP, Rio Claro (SP) (Brazil); Sartori, Daniele [General Biology Department, State University of Londrina (UEL), Londrina (Brazil); Oliveira, Rodrigo Juliano [Coordination of Open and Distance Education, Graduate Program in Animal Science, Federal University of Mato Grosso do Sul (UFMS), Campo Grande (MS) (Brazil); Ishii, Priscila Lumi [Graduate Program in Biological Sciences (Cell and Molecular Biology), Institute of Biosciences, UNESP, Rio Claro (SP) (Brazil); Mantovani, Mario Sergio [General Biology Department, State University of Londrina (UEL), Londrina (Brazil); Ribeiro, Lucia Regina [Graduate Program in Biological Sciences (Cell and Molecular Biology), Institute of Biosciences, UNESP, Rio Claro (SP) (Brazil)

    2011-10-01

    Intestinal cancers are correlated with diet. Thus, determining and understanding nutrient-genome interactions is important. The present work assessed the action of the oligoelement selenium on cell proliferation, cytotoxicity, and in situ apoptosis induction and on the expression CASP9, BCL-XL and APC genes in intestinal adenocarcinoma cells (HT29). HT29 cells were cultured and treated with selenium at concentrations of 5, 50 and 500 ng/mL with or without the damage-inducing agent doxorubicin. These cells were then evaluated for cytotoxicity (MTT), cell proliferation and in situ apoptosis induction. To evaluate gene expression, only the cells treated with 500 ng/mL of selenium were used. RNA was extracted from these cells, and the expressions of CASP9, BCL-XL and APC were analyzed by the RT-PCR method. The GAPDH gene was used as a reference gene. The MTT assay showed that selenium was not cytotoxic at any of the concentrations tested. The cell proliferation assay showed that selenium did not interfere with cell proliferation at the three concentrations tested. In contrast, when the three concentrations were combined with doxorubicin, a significant decrease in the proliferation rate was observed. The apoptosis rate was significantly increased in the selenium (500 ng/mL) and doxorubicin group. CASP9 expression was increased and BCL-XL expression decreased in the selenium (500 ng/mL) and doxorubicin group. APC was significantly increased in the selenium group alone. These results show that selenium increases apoptosis, especially when it is associated with a damage-inducing agent. Also, selenium has an important role in the expression of the APC gene, which is related to cell cycle regulation.

  4. Activity of selenium on cell proliferation, cytotoxicity, and apoptosis and on the expression of CASP9, BCL-XL and APC in intestinal adenocarcinoma cells

    International Nuclear Information System (INIS)

    Mauro, M.O.; Sartori, Daniele; Oliveira, Rodrigo Juliano; Ishii, Priscila Lumi; Mantovani, Mario Sergio; Ribeiro, Lucia Regina

    2011-01-01

    Intestinal cancers are correlated with diet. Thus, determining and understanding nutrient-genome interactions is important. The present work assessed the action of the oligoelement selenium on cell proliferation, cytotoxicity, and in situ apoptosis induction and on the expression CASP9, BCL-XL and APC genes in intestinal adenocarcinoma cells (HT29). HT29 cells were cultured and treated with selenium at concentrations of 5, 50 and 500 ng/mL with or without the damage-inducing agent doxorubicin. These cells were then evaluated for cytotoxicity (MTT), cell proliferation and in situ apoptosis induction. To evaluate gene expression, only the cells treated with 500 ng/mL of selenium were used. RNA was extracted from these cells, and the expressions of CASP9, BCL-XL and APC were analyzed by the RT-PCR method. The GAPDH gene was used as a reference gene. The MTT assay showed that selenium was not cytotoxic at any of the concentrations tested. The cell proliferation assay showed that selenium did not interfere with cell proliferation at the three concentrations tested. In contrast, when the three concentrations were combined with doxorubicin, a significant decrease in the proliferation rate was observed. The apoptosis rate was significantly increased in the selenium (500 ng/mL) and doxorubicin group. CASP9 expression was increased and BCL-XL expression decreased in the selenium (500 ng/mL) and doxorubicin group. APC was significantly increased in the selenium group alone. These results show that selenium increases apoptosis, especially when it is associated with a damage-inducing agent. Also, selenium has an important role in the expression of the APC gene, which is related to cell cycle regulation.

  5. c-Jun N-terminal kinase 3 expression in the retina of ocular hypertension mice: a possible target to reduce ganglion cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yue He

    2015-01-01

    Full Text Available Glaucoma, a type of optic neuropathy, is characterized by the loss of retinal ganglion cells. It remains controversial whether c-Jun N-terminal kinase (JNK participates in the apoptosis of retinal ganglion cells in glaucoma. This study sought to explore a possible mechanism of action of JNK signaling pathway in glaucoma-induced retinal optic nerve damage. We established a mouse model of chronic ocular hypertension by reducing the aqueous humor followed by photocoagulation using the laser ignition method. Results showed significant pathological changes in the ocular tissues after the injury. Apoptosis of retinal ganglion cells increased with increased intraocular pressure, as did JNK3 mRNA expression in the retina. These data indicated that the increased expression of JNK3 mRNA was strongly associated with the increase in intraocular pressure in the retina, and correlated positively with the apoptosis of retinal ganglion cells.

  6. Acetylation of FoxO1 Activates Bim Expression to Induce Apoptosis in Response to Histone Deacetylase Inhibitor Depsipeptide Treatment

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2009-04-01

    Full Text Available Histone deacetylase (HDAC inhibitors have been shown to induce cell cycle arrest and apoptosis in cancer cells. However, the mechanisms of HDAC inhibitor induced apoptosis are incompletely understood. In this study, depsipeptide, a novel HDAC inhibitor, was shown to be able to induce significant apoptotic cell death in human lung cancer cells. Further study showed that Bim, a BH3-only proapoptotic protein, was significantly upregulated by depsipeptide in cancer cells, and Bim's function in depsipeptide-induced apoptosis was confirmed by knockdown of Bim with RNAi. In addition, we found that depsipeptide-induced expression of Bim was directly dependent on acetylation of forkhead box class O1 (FoxO1 that is catalyzed by cyclic adenosine monophosphate-responsive element-binding protein-binding protein, and indirectly induced by a decreased four-and-a-half LIM-domain protein 2. Moreover, our results demonstrated that FoxO1 acetylation is required for the depsipeptide-induced activation of Bim and apoptosis, using transfection with a plasmid containing FoxO1 mutated at lysine sites and a luciferase reporter assay. These data show for the first time that an HDAC inhibitor induces apoptosis through the FoxO1 acetylation-Bim pathway.

  7. Influence of vitamin D on cell cycle, apoptosis, and some apoptosis related molecules in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Nafise Tabasi

    2015-11-01

    Full Text Available Objective(s:Genetic and environmental factors are involved in the pathogenesis of systemic lupus erythematosus (SLE. Autoreactive lymphocytes are cleared through apoptosis and any disturbance in the apoptosis or clearance of apoptotic cells may disturb tolerance and lead to autoimmunity. Vitamin D has anti-proliferative effects and controls cell cycle progression. In this study we investigated the effects of vitamin D on cell cycle and apoptosis induction in lupus patients. Materials and Methods:Isolated peripheral blood mononuclear cells (PBMCs from 25 SLE patients were cultured in the presence of 50 nM of 1,25(OH2D3; then one part of the cells were stained with FITC labeled Annexin V and PI and were analyzed for apoptosis determination. For gene expression assessment of FasL, Bcl-2 and Bax, RNA was extracted from one another part of the cells, cDNA was synthesized and gene expression analysis was performed using Real time PCR. An additional part of the cells were treated with PI and the cell cycle was analyzed using flowcytometer. Results: The mean number of early apoptotic cells in vitamin D treated cells decreased significantly (18.48±7.9% compared to untreated cells (22.02±9.4% (P=0.008. Cell cycle analysis showed a significant increase in G1 phase in vitamin D treated cells (67.33±5.2% compared to non treated ones (60.77±5.7% (P =0.02. Vitamin D up-regulated the expression levels of Bcl-2 by (18.87 fold increase, and down-regulated expression of Bax (23% and FasL (25%. Conclusion:Vitamin D has regulatory effects on cell cycle progression, apoptosis and apoptosis related molecules in lupus patients.

  8. Zingiber officinale, Piper retrofractum and Combination Induced Apoptosis and p53 Expression in Myeloma and WiDr Cell Lines

    Directory of Open Access Journals (Sweden)

    HENY EKOWATI

    2012-09-01

    Full Text Available In previous studies, Zingiber officinale, Piper retrofractum, and the combination showed cytotoxic activity, induced apoptosis, and p53 expression of HeLa, T47D, and MCF-7 cell lines. This study was conducted to investigate the cytotoxic and apoptotic activity of Zingiber officinale (ZO, Piper retrofractum (PR, and the combination as well as their effect to p53 expression on Myeloma and WiDr cells. The powder of ZO, PR, and ZO + PR combination (1:1 were macerated with 96% ethanol for 3 x 24 hours. MTT cytotoxic assay was performed on Myeloma and WiDr cell lines. Apoptotic cells were stained with ethidium bromide and acridine orange. Imunohistochemical expression of p53 was examined on Myeloma and WiDr cell lines. Doxorubicin was used as positive control in all assays. Results showed that ZO, PR, and ZO + PR combination had cytotoxic activity on Myeloma cells with IC50 of 28, 36, and 55 mg/ml respectively and WiDr cell lines with IC50 of 74, 158, and 64 mg/ml respectively, induced apoptotic activity, and increased p53 expression on Myeloma and WiDr cells. These results suggest that ZO, PR, and their combination induced Myeloma and WiDr cells in apoptosis through p53 expression.

  9. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-05-11

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.

  10. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    Science.gov (United States)

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  11. PPAR-alpha agonist treatment increases trefoil factor family-3 expression and attenuates apoptosis in the liver tissue of bile duct-ligated rats.

    Science.gov (United States)

    Karakan, Tarkan; Kerem, Mustafa; Cindoruk, Mehmet; Engin, Doruk; Alper, Murat; Akın, Okan

    2013-01-01

    Peroxisome proliferators-activated receptor alpha activation modulates cholesterol metabolism and suppresses bile acid synthesis. The trefoil factor family comprises mucin-associated proteins that increase the viscosity of mucins and help protect epithelial linings from insults. We evaluated the effect of short-term administration of fenofibrate, a peroxisome proliferators activated receptor alpha agonist, on trefoil factor family-3 expression, degree of apoptosis, generation of free radicals, and levels of proinflammatory cytokines in the liver tissue of bile duct-ligated rats. Forty male Wistar rats were randomly divided into four groups: 1 = sham operated, 2 = bile duct ligation, 3 = bile duct-ligated + vehicle (gum Arabic), and 4 = bile duct-ligated + fenofibrate (100 mg/kg/day). All rats were sacrificed on the 7 th day after obtaining blood samples and liver tissue. Liver function tests, tumor necrosis factor-alpha and interleukin 1 beta in serum, and trefoil factor family-3 mRNA expression, degree of apoptosis (TUNEL) and tissue malondialdehyde (malondialdehyde, end-product of lipid peroxidation by reactive oxygen species) in liver tissue were evaluated. Fenofibrate administration significantly reduced serum total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, and tumor necrosis factor-alpha and interleukin-1β levels. Apoptosis and malondialdehyde were significantly reduced in the fenofibrate group. Trefoil factor family-3 expression increased with fenofibrate treatment in bile duct-ligated rats. The peroxisome proliferators-activated receptor alpha agonist fenofibrate significantly increased trefoil factor family-3 expression and decreased apoptosis and lipid peroxidation in the liver and attenuated serum levels of proinflammatory cytokines in bile duct-ligated rats. Further studies are needed to determine the protective role of fenofibrate in human cholestatic disorders.

  12. Up regulation of K A I 1 gene expression and apoptosis effect of imatinib mesylate in gastric adenocarcinoma (AGS cell line

    Directory of Open Access Journals (Sweden)

    eyed Ataollah Sadat Shandiz

    2016-02-01

    Full Text Available Objective: To evaluate the effect of imatinib mesylate on KAI1 gene expression and apoptosis properties in human gastric carcinoma AGS cell line. Methods: Cell viability was assessed by MTT assay and quantitative real time PCR method was applied for investigation of Bax, Bcl-2, and KAI1 gene expression in AGS cells. The quantity of KAI1, Bax, and Bcl-2 compared to GAPDH gene expressions were examined using the formula 2-∆∆Ct. Furthermore, cell apoptosis/necrosis was carried out by annexin V/PI staining and quantified with flow cytometry after treatment with imatinib. Results: Imatinib mesylate was showed to have a dose-dependent toxicity effect against AGS cells. KAI1/GAPDH gene expression ratios were 1.07 ± 0.02 (P > 0.05, 1.68 ± 0.19 (P > 0.05, 3.60 ± 0.55 (P < 0.05, 6.54 ± 0.27 (P < 0.001 for 20, 50, 80 and 100 μmol/L of imatinib concentrations. The mRNA levels of Bax detected by real-time PCR after treatment with imatinib mesylate were significantly increased. Also, the number of apoptotic cells was increased from 3.72% (statistically significant; P < 0.05 in untreated AGS cells to 21.72%, 83.04% and 85.80%, respectively, following treatment with 20, 40, and 60 μmol/L imatinib mesylate. Conclusions: The results suggest that imatinib mesylate can induce apoptosis pathway in a dose-dependent mode and might modulate metastasis by up regulating KAI1 gene expression in human gastric carcinoma AGS cell line.

  13. Potential biological process of X-linked inhibitor of apoptosis protein in renal cell carcinoma based upon differential protein expression analysis.

    Science.gov (United States)

    Chen, Chao; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is the best characterized member of the IAP family and is a potent inhibitor of the caspase/apoptosis pathway. It has also been revealed that XIAP has additional biological functions that rely on its direct inhibition of apoptosis. In the present study, stably transfected Caki-1 cells with XIAP-knockdown were generated, and an isobaric tag for relative and absolute quantitation-based proteomics approach was employed to investigate the regulatory mechanism of XIAP in renal cell carcinoma (RCC). The results demonstrate that the sensitivity of the RCC cell line to apoptotic stimulation increased markedly with XIAP-knockdown. A number of differentially expressed proteins were detected between the original Caki-1 cell line and the XIAP-knockdown Caki-1 cell line; 87 at 0 h (prior to etoposide treatment), 178 at 0.5 h and 169 at 3 h, while no differentially expressed proteins were detected (ratio >1.5 or <0.5; P<0.05) at 12 h after etoposide treatment. Through analysis of the differentially expressed proteins, it was revealed that XIAP may participate in the tumor protein p53 pathway, the Wnt signaling pathway, glucose metabolism, endoplasmic reticulum stress, cytoskeletal regulation and DNA repair. These results indicate that XIAP may have a number of biological functions and may provide an insight into the biomedical significance of XIAP overexpression in RCC.

  14. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase

    Directory of Open Access Journals (Sweden)

    Xiuying Li

    2016-01-01

    Full Text Available It has been reported that human mesenchymal stem cells are able to inhibit T lymphocyte activation; however, the discrepancy among different sources of MSCs is not well documented. In this study, we have compared the MSCs from bone marrow (BM, adipose tissue (AT, placenta (PL, and umbilical cord (UC to determine which one displayed the most efficient immunosuppressive effects on phytohemagglutinin-induced T cell proliferation. Among them we found that hUC-MSC has the strongest effects on inhibiting T cell proliferation and is chosen to do the further study. We observed that T lymphocyte spontaneously released abundant IFN-γ. And IFN-γ secreted by T lymphocyte could induce the expression of indoleamine 2, 3-dioxygenase (IDO in hUC-MSCs. IDO was previously reported to induce T lymphocyte apoptosis and cell cycle arrest in S phase. When cocultured with hUC-MSCs, T lymphocyte expression of caspase 3 was significantly increased, while Bcl2 and CDK4 mRNA expression decreased dramatically. Addition of 1-methyl tryptophan (1-MT, an IDO inhibitor, restored T lymphocyte proliferation, reduced apoptosis, and induced resumption of the cell cycle. In addition, the changes in caspase 3, CDK4, and Bcl2 expression were reversed by 1-MT. These findings demonstrate that hUC-MSCs induce T lymphocyte apoptosis and cell cycle arrest by expressing abundant IDO and provide an explanation for some of the immunomodulatory effects of MSCs.

  15. Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice.

    Science.gov (United States)

    Wang, Jian; Menchenton, Trevor; Yin, Shankai; Yu, Zhiping; Bance, Manohar; Morris, David P; Moore, Craig S; Korneluk, Robert G; Robertson, George S

    2010-07-01

    Apoptosis of cochlear cells plays a significant role in age-related hearing loss or presbycusis. In this study, we evaluated whether over-expression of the anti-apoptotic protein known as X-linked Inhibitor of Apoptosis Protein (XIAP) slows the development of presbycusis. We compared the age-related hearing loss between transgenic (TG) mice that over-express human XIAP tagged with 6-Myc (Myc-XIAP) on a pure C57BL/6J genetic background with wild-type (WT) littermates by measuring auditory brainstem responses. The result showed that TG mice developed hearing loss considerably more slowly than WT littermates, primarily within the high-frequency range. The average total hair cell loss was significantly less in TG mice than WT littermates. Although levels of Myc-XIAP in the ear remained constant at 2 and 14 months, there was a marked increase in the amount of endogenous XIAP from 2 to 14 months in the cochlea, but not in the brain, in both genotypes. These results suggest that XIAP over-expression reduces age-related hearing loss and hair cell death in the cochlea. Copyright 2008 Elsevier Inc. All rights reserved.

  16. Relative cadmium-binding capacity of metallothionein and other cytosolic fractions in various tissues of the rat

    International Nuclear Information System (INIS)

    Chen, R.W.; Ganther, H.E.

    1975-01-01

    The Cd-binding capacity of soluble proteins in 10 tissues of normal rats not excessively exposed to heavy metals was measured by saturation of freshly isolated cytosol with 109 CdCl 2 in vitro followed by Sephadex G-75 chromatography. The Cd-binding capacity of a 10,000 molecular weight Cd-binding peak (10,000 MW Cd-BP), which had a high affinity for Cd and was probably metallothionein, was the highest in kidney (78 nmol Cd/g fresh tissue), followed by testis (63 nmol/g), liver (38 nmol/g) and then by brain (14 nmol/g). The amount of the Cd-BP in these tissues (assuming that it was metallothionein and bound 9 mol Cd/10,000 g) was calculated to be 87, 70, 42 and 16 mg/kg fresh tissue in kidney, testis, liver and brain, respective-ly, or in the order of 10 -5 to 10 -6 mol/kg tissue. A significant amount of the 10,000 MW Cd-BP was also found in small intestine. It was present in rather small amounts in heart and lung, and possibly in spleen and skeletal muscle as well. In contrast, the protein was not detectable by this technique in plasma. The results suggest that metallothionein is a rather ubiquitous, intracellular protein in tissues of normal animals and may have other biological functions, besides its possible fortuitous role in heavy metal detoxification. A 30,000 molecular weight Cd-binding peak (30,000 MW Cd-BP) having a very high affinity to Cd, apparently higher than that of the 10,000 MW Cd-BP, was found only in testes, among the 10 tissues examined. Its estimated Cd-binding capacity was 51 nmol Cd/g of testis, slightly less than that of metallothionein in testis. These findings support the hypothesis that the 30,000 MW Cd-BP is a plausible target of Cd in Cd-induced testicular injury, and suggest a basis for the peculiar sensitivity of the rat testis to Cd. (author)

  17. cAMP/PKA signaling pathway contributes to neuronal apoptosis via regulating IDE expression in a mixed model of type 2 diabetes and Alzheimer's disease.

    Science.gov (United States)

    Li, Huajie; Yang, Song; Wu, Jian; Ji, Lei; Zhu, Linfeng; Cao, Liping; Huang, Jinzhong; Jiang, Qingqing; Wei, Jiang; Liu, Meng; Mao, Keshi; Wei, Ning; Xie, Wei; Yang, Zhilong

    2018-02-01

    Type 2 diabetes (T2D) may play a relevant role in the development of Alzheimer's disease (AD), however, the underlying mechanism was not clear yet. We developed an animal model presenting both AD and T2D, morris water maze (MWM) test and recognition task were performed to trace the cognitive function. Fasting plasma glucose (FPG) and oral glucose tolerance test (OGTT) were determined to trace the metabolism evolution. TUNEL assay and apoptosis-related protein levels were analyzed for the detection of neuronal apoptosis. Cyclic adenosine monophosphate (cAMP) agonist bucladesine or protein kinase (PKA) inhibitor H-89 were used to determine the effects of cAMP/PKA signaling pathway on IDE expression and neuronal apoptosis. The results showed that T2D contributes to the AD progress by accelerating and worsening spatial memory and recognition dysfunctions. Metabolic parameters and glucose tolerance were significantly changed in the presence of the AD and T2D. The significantly induced neuronal apoptosis and increased pro-apoptotic proteins in mice with AD and T2D were also observed. We showed the decreased expression level of IDE and the activating of cAMP/PKA signaling pathway in AD and T2D mice. Further studies indicated that cAMP agonist decreased the expression level of IDE and induced the neuronal apoptosis in mice with AD and T2D; whereas PKA inhibitor H-89 treatment showed the completely opposite results. Our study indicated that, in the T2D and AD mice, cAMP/PKA signaling pathway and IDE may participate in the contribute role of T2D in accelerating the pathological process of AD via causing the accumulation of Aβ and neuronal apoptosis. © 2017 Wiley Periodicals, Inc.

  18. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Leopold F Fröhlich

    Full Text Available The lack of knowledge about molecular pathology of uterine sarcomas with a representation of 3-7% of all malignant uterine tumors prevents the establishment of effective therapy protocols. Here, we explored advanced therapeutic options to the previously discovered antitumorigenic effects of the histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA by combined treatment with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L. In addition, we investigated the uterine sarcoma cell lines, MES-SA and ESS-1, regarding the underlying molecular mechanisms of SAHA and TRAIL-induced apoptosis and their resistance towards TRAIL. Compared to single SAHA or TRAIL treatment, the combination of SAHA with TRAIL led to complete cell death of both tumor cell lines after 24 to 48 hours. In contrast to single SAHA treatment, apoptosis occured faster and was more pronounced in ESS-1 cells than in MES-SA cells. Induction of SAHA- and TRAIL-induced apoptosis was accompanied by upregulation of the intrinsic apoptotic pathway via reduction of mitochondrial membrane potential, caspase-3, -6, and -7 activation, and PARP cleavage, but was also found to be partially caspase-independent. Apoptosis resistance was caused by reduced expression of caspase-8 and DR 4/TRAIL-R1 in ESS-1 and MES-SA cells, respectively, due to epigenetic silencing by DNA hypermethylation of gene promoter sequences. Treatment with the demethylating agent 5-Aza-2'-deoxycytidine or gene transfer therefore restored gene expression and increased the sensitivity of both cell lines against TRAIL-induced apoptosis. Our data provide evidence that deregulation of epigenetic silencing by histone acetylation and DNA hypermethylation might play a fundamental role in the origin of uterine sarcomas. Therefore, tumor growth might be efficiently overcome by a cytotoxic combinatorial treatment of HDAC inhibitors with TRAIL.

  19. Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression

    International Nuclear Information System (INIS)

    Han, Peng; Kang, Jin-He; Li, Hua-Liang; Hu, Su-Xian; Lian, Hui-Hui; Qiu, Ping-Ping; Zhang, Jian; Li, Wen-Gang; Chen, Qing-Xi

    2009-01-01

    Tamoxifen (TAM) is a nonsteroidal antiestrogen that has been used in the treatment of breast cancer for over 30 years. Recently, it was shown that TAM also has efficacy on gastrointestinal neoplasms such as hepatocarcinoma and pancreatic carcinoma, and that the chemopreventive activities of TAM might be due to its abilities to inhibit cell growth and induce apoptosis. In the present study, we investigated the effects of tamoxifen on growth and apoptosis in the human bile duct carcinoma (BDC) cell line QBC939 using MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, classic DNA fragmentation agarose gel electrophoresis assay, PI single- and FITC/PI double-staining flow cytometry, and Western blotting. Our data revealed that TAM could significantly inhibit growth and induce apoptosis in QBC939 cells. Increased expression of p53 was observed in TAM-treated cells, indicating that p53 might play an important role in TAM-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of TAM on BDC.

  20. Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Peng; Kang, Jin-He; Li, Hua-Liang [Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Hu, Su-Xian [First Hospital Attached to Fujian Medical University, Xiamen 361004 (China); Lian, Hui-Hui; Qiu, Ping-Ping; Zhang, Jian [Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Li, Wen-Gang [First Hospital Attached to Fujian Medical University, Xiamen 361004 (China); Chen, Qing-Xi [Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005 (China)

    2009-07-24

    Tamoxifen (TAM) is a nonsteroidal antiestrogen that has been used in the treatment of breast cancer for over 30 years. Recently, it was shown that TAM also has efficacy on gastrointestinal neoplasms such as hepatocarcinoma and pancreatic carcinoma, and that the chemopreventive activities of TAM might be due to its abilities to inhibit cell growth and induce apoptosis. In the present study, we investigated the effects of tamoxifen on growth and apoptosis in the human bile duct carcinoma (BDC) cell line QBC939 using MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, classic DNA fragmentation agarose gel electrophoresis assay, PI single- and FITC/PI double-staining flow cytometry, and Western blotting. Our data revealed that TAM could significantly inhibit growth and induce apoptosis in QBC939 cells. Increased expression of p53 was observed in TAM-treated cells, indicating that p53 might play an important role in TAM-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of TAM on BDC.

  1. Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells

    International Nuclear Information System (INIS)

    Wolff, Natascha A.; Lee, Wing-Kee; Abouhamed, Marouan; Thevenod, Frank

    2008-01-01

    Filtered metal-protein complexes, such as cadmium-metallothionein-1 (CdMT-1) or transferrin (Tf) are apically endocytosed partly via megalin/cubilin by kidney proximal tubule (PT) cells where CdMT-1 internalization causes apoptosis. Small GTPase ARF (ADP-ribosylation factor) proteins regulate endocytosis and vesicular trafficking. We investigated roles of ARF6, which has been shown to be involved in internalization of ligands and endocytic trafficking in PT cells, following MT-1/CdMT-1 and Tf uptake by PT cells. WKPT-0293 Cl.2 cells derived from rat PT S1 segment were transfected with hemagglutinin-tagged wild-type (ARF6-WT) or dominant negative (ARF6-T27N) forms of ARF6. Using immunofluorescence, endogenous ARF6 was associated with the plasma membrane (PM) as well as juxtanuclear and co-localized with Rab5a and Rab11 involved in early and recycling endosomal trafficking. Immunofluorescence staining of megalin showed reduced surface labelling in ARF6 dominant negative (ARF6-DN) cells. Intracellular Alexa Fluor 546-conjugated MT-1 uptake was reduced in ARF6-DN cells and CdMT-1 (14.8 μM for 24 h) toxicity was significantly attenuated from 27.3 ± 3.9% in ARF6-WT to 11.1 ± 4.0% in ARF6-DN cells (n = 6, P < 0.02). Moreover, reduced Alexa Fluor 546-conjugated Tf uptake was observed in ARF-DN cells (75.0 ± 4.6% versus 3.9 ± 3.9% of ARF6-WT cells, n = 3, P < 0.01) and/or remained near the PM (89.3 ± 5. 6% versus 45.2 ± 14.3% of ARF6-WT cells, n = 3, P < 0.05). In conclusion, the data support roles for ARF6 in receptor-mediated endocytosis and trafficking of MT-1/Tf to endosomes/lysosomes and CdMT-1 toxicity of PT cells

  2. Molecular cloning of chicken metallothionein. Deduction of the complete amino acid sequence and analysis of expression using cloned cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Wei, D; Andrews, G K

    1988-01-25

    A cDNA library was constructed using RNA isolated from the livers of chickens which had been treated with zinc. This library was screened with a RNA probe complementary to mouse metallothionein-I (MT), and eight chicken MT cDNA clones were obtained. All of the cDNA clones contained nucleotide sequences homologous to regions of the longest (375 bp) cDNA clone. The latter contained an open reading frame of 189 bp, and the deduced amino acid sequence indicates a protein of 63 amino acids of which 20 are cysteine residues. Amino acid composition and partial amino acid sequence analyses of purified chicken MT protein agreed with the amino acid composition and sequence deduced from the cloned cDNA. Amino acid sequence comparison establish that chicken MT shares extensive homology with mammalian MTs. Southern blot analysis of chicken DNA indicates that the chicken MT gene is not a part of a large family of related sequences, but rather is likely to be a unique gene sequence. In the chicken liver, levels of chicken MT mRNA were rapidly induced by metals (Cd/sup 2 +/, Zn/sup 2 +/, Cu/sup 2 +/), glucocorticoids and lipopolysaccharide. MT mRNA was present in low levels in embryonic liver and increased to high levels during the first week after hatching before decreasing again to the basal levels found in adult liver. The results of this study establish that MT is highly conserved between birds and mammals and is regulated in the chicken by agents which also regulate expression of mammalian MT genes. However, in contrast to the mammals, the results suggest the existence of a single isoform of MT in the chicken.

  3. Effect of lycium barbarum polysaccharides on high glucose-induced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Ma

    2017-05-01

    Full Text Available Objective: To study the effect of lycium barbarum polysaccharides (LBP on high glucoseinduced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current. Methods: RGC-5 retinal ganglion cell lines were cultured and divided into control group, high glucose group and LBP group that were treated with normal DMEM, highglucose DMEM as well as high-glucose DMEM containing 500 ng/mL LBP respectively. After treatment, the Annexin V-FITC/PI kits were used to measure the number of apoptotic cells, fluorescence quantitative PCR kits were used to determine the expression of apoptosis genes and antioxidant genes, and patch clamp was used to test delayed rectifier potassium current. Results: 12, 24, 36 and 48 h after intervention, the number of apoptotic cells of high glucose group was significantly higher than that of control group, and the number of apoptotic cells of LBP group was significantly lower than that of high glucose group (P<0.05; 24 and 48 h after intervention, c-fos, c-jun, caspase-3, caspase-9, Nrf-2, NQO1 and HO-1 mRNA expression as well as potassium current amplitude (IK and maximum conductance (Gmax of high glucose group were significantly higher than those of control group while half maximum activation voltage (V1/2 was significantly lower than that of control group (P<0.05; c-fos, c-jun, caspase-3 and caspase-9 mRNA expression as well as IK and Gmax of LBP group were significantly lower than those of high glucose group, while Nrf-2, NQO1 and HO-1 mRNA expression as well as V1/2 of LBP group were significantly higher than those of high glucose group (P<0.05. Conclusions: LBP can reduce the high glucose-induced retinal ganglion cell apoptosis and inhibit the delayed rectifier potassium current amplitude.

  4. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  5. Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages.

    Science.gov (United States)

    Palaga, Tanapat; Ratanabunyong, Siriluk; Pattarakankul, Thitiporn; Sangphech, Naunpun; Wongchana, Wipawee; Hadae, Yukihiro; Kueanjinda, Patipark

    2013-09-01

    Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.

  6. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Science.gov (United States)

    Gong, Gu; Yuan, Libang; Cai, Lin; Ran, Maorong; Zhang, Yulan; Gong, Huaqu; Dai, Xuemei; Wu, Wei; Dong, Hailong

    2014-01-01

    Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  7. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Gu Gong

    Full Text Available Tetramethylpyrazine (TMP has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD. The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32 induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  8. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Ruo-Jing Wei

    2018-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  9. Post-operative infection and sepsis in humans is associated with deficient gene expression of γc cytokines and their apoptosis mediators.

    LENUS (Irish Health Repository)

    White, Mary

    2011-06-01

    Lymphocyte homeostasis is dependent on the γc cytokines. We hypothesised that sepsis in humans is associated with differential gene expression of the γc cytokines and their associated apoptosis mediators.

  10. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Yuanli Dong

    2015-01-01

    Full Text Available Background: Hypocretin (HCRT signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy. Our previous study showed that xingshentongqiao decoction (XSTQ is clinically effective for the treatment of narcolepsy. To determine whether XSTQ improves narcolepsy by modulating HCRT signaling, we investigated its effects on SH-SY5Y cell proliferation, apoptosis, and HCRT receptor 1/2 (orexin receptor 1 [OX1R] and orexin receptor 2 [OX2R] expression. The signaling pathways involved in these processes were also assessed. Methods: The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays. OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis. Western blotting for mitogen-activated protein kinase (MAPK pathway activation was performed to further assess the signaling mechanism of XSTQ. Results: XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells. This effect was accompanied by the upregulation of OX1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK. Conclusions: XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells. XSTQ also promotes OX1R and OX2R expression. These effects are associated with the repression of the Erk1/2, p38 MAPK, and JNK signaling pathways. These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation, which may explain its ability to treat narcolepsy.

  11. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Daiji; Ishihara, Noriko [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Bujo, Hideaki [Department of Clinical Laboratory Medicine, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Shirai, Kohji [Department of Vascular Function, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Tatsuno, Ichiro, E-mail: ichiro.tatsuno@med.toho-u.ac.jp [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan)

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  12. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  13. Colorectal cancer: can nutrients modulate NF-kappaB and apoptosis?

    Science.gov (United States)

    Ravasco, Paula; Aranha, Márcia M; Borralho, Pedro M; Moreira da Silva, Isabel B; Correia, Luís; Fernandes, Afonso; Rodrigues, Cecília M P; Camilo, Maria

    2010-02-01

    NF-kappaB may promote carcinogenesis by altering cell cycle, inflammatory responses and apoptosis-related gene expression, though cell mechanisms relating diet and colorectal cancer (CRC) remain unveiled in humans. This study in patients with CRC aimed to explore potential interactions between the dietary pattern, nutrient intake, expression of NF-kappaB, apoptosis and tumour histological aggressiveness. Usual diet was assessed by diet history; nutrient composition was determined by DIETPLAN software. Histologically classified patient tissue samples (adenoma, adenocarcinoma and normal surrounding mucosa) were obtained via biopsies during colonoscopy (n=16) or surgery (n=8). NF-kappaB expression was determined by immunohistochemistry and apoptosis by TUNEL assay. NF-kappaB expression and apoptosis were higher in tumours (p<0.01), greater along with histological aggressiveness (p<0.01). Highest intake terciles of animal protein, refined carbohydrates, saturated fat, n-6 fatty acids and alcohol were associated with higher NF-kappaB, apoptosis and histological aggressiveness (p<0.01); the opposite tissue characteristics were associated with highest intake terciles of n-3 fatty acids, fibre, vitamin E, flavonoids, isoflavones, beta-carotene and selenium (p<0.002). Additionally, higher n-6:n-3 fatty acids ratio (median 26:1) was associated with higher NF-kappaB (p<0.006) and apoptosis (p<0.01), and more aggressive histology (p<0.01). Conversely, lower n-6:n-3 fatty acids ratio (median 6:1) was associated with lower NF-kappaB (p<0.002) and apoptosis (p<0.002), and less aggressive histology (p<0.002). NF-kappaB expression and apoptosis increased from adenoma to poorly differentiated adenocarcinoma. This degenerative transition, recognized as key in carcinogenesis, appear to have been influenced by a diet promoting a pro-inflammatory milieu that can trigger NF-kappaB. Copyright 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Activation/proliferation and apoptosis of bystander goat lymphocytes induced by a macrophage-tropic chimeric caprine arthritis encephalitis virus expressing SIV Nef

    International Nuclear Information System (INIS)

    Bouzar, Baya Amel; Rea, Angela; Hoc-Villet, Stephanie; Garnier, Celine; Guiguen, Francois; Jin Yuhuai; Narayan, Opendra; Chebloune, Yahia

    2007-01-01

    Caprine arthritis encephalitis virus (CAEV) is the natural lentivirus of goats, well known for its tropism for macrophages and its inability to cause infection in lymphocytes. The viral genome lacks nef, tat, vpu and vpx coding sequences. To test the hypothesis that when nef is expressed by the viral genome, the virus became toxic for lymphocytes during replication in macrophages, we inserted the SIVsmm PBj14 nef coding sequences into the genome of CAEV thereby generating CAEV-nef. This recombinant virus is not infectious for lymphocytes but is fully replication competent in goat macrophages in which it constitutively expresses the SIV Nef. We found that goat lymphocytes cocultured with CAEV-nef-infected macrophages became activated, showing increased expression of the interleukin-2 receptor (IL-2R). Activation correlated with increased proliferation of the cells. Interestingly, a dual effect in terms of apoptosis regulation was observed in exposed goat lymphocytes. Nef was found first to induce a protection of lymphocytes from apoptosis during the first few days following exposure to infected macrophages, but later it induced increased apoptosis in the activated lymphocytes. This new recombinant virus provides a model to study the functions of Nef in the context of infection of macrophages, but in absence of infection of T lymphocytes and brings new insights into the biological effects of Nef on lymphocytes

  15. Markers of potential malignancy in chronic hyperplastic candidiasis.

    Science.gov (United States)

    Darling, Mark R; McCord, Christina; Jackson-Boeters, Linda; Copete, Maria

    2012-08-01

    To examine the presence of markers associated with malignancy, including p53, p21 cyclin-dependent kinase inhibitor 1A, murine double minutes-2, and others, in chronic hyperplastic candidiasis. Immunohistochemical methods were used to examine the expression of p53, murine double minutes-2, p21 cyclin-dependent kinase inhibitor 1A, metallothionein, and proliferating cell nuclear antigen in 42 chronic hyperplastic candidiasis lesions and 11 non-infected control tissues. Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling was used to examine apoptosis, which was correlated with p53 expression. These markers were measured in lesions of chronic hyperplastic candidiasis that did not show any epithelial dysplasia or histological signs of malignancy. p53 scores were higher in chronic hyperplastic candidiasis than in controls (P = 0.0046). Murine double-minutes 2 levels were not elevated. p21 cyclin-dependent kinase inhibitor 1A was increased in parabasal (P candidiasis lesions showed a similar basal/parabasal metallothionein staining pattern to that seen in normal squamous epithelium. Proliferating cell nuclear antigen was increased (P = 0.0007), as was apoptosis (P = 0.0033). Increased p53 in oral chronic hyperplastic candidiasis suggests an increased potential for malignant change in the epithelium, above that of normal tissues. Further functional investigation is required, as well as clinical follow-up studies. © 2012 Blackwell Publishing Asia Pty Ltd.

  16. The metal-binding function of metallothioneins and the state of antioxidant defense of carp gills under water pollution by heavy metals

    International Nuclear Information System (INIS)

    Stolyar, O.B.; Fal'fushins'ka, G.Yi.; Arsan, V.O.

    2005-01-01

    To investigate the influence of waterborne heavy metal ions on the metal-binding function of metallothioneins and the antioxidant defence in gills, carp (Cyprinus carpio L.) was exposed to copper, zinc, manganese, and lead ions in environmentally realistic concentrations (0.01, 0.1, 0.12, and 0.01 mg/l, respectively) or their mix for 14 days. The results indicate that the metal poisoning provokes the changes in the copper, manganese, and zinc contents in gills and their distribution among the molecular forms of metallothioneins and another tissue targets

  17. Endoplasmic reticulum stress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): a possible role for Minpp1 in cellular stress response.

    Science.gov (United States)

    Kilaparty, Surya P; Agarwal, Rakhee; Singh, Pooja; Kannan, Krishnaswamy; Ali, Nawab

    2016-07-01

    Inositol polyphosphates represent a group of differentially phosphorylated inositol metabolites, many of which are implicated to regulate diverse cellular processes such as calcium mobilization, vesicular trafficking, differentiation, apoptosis, etc. The metabolic network of these compounds is complex and tightly regulated by various kinases and phosphatases present predominantly in the cytosol. Multiple inositol polyphosphate phosphatase 1 (Minpp1) is the only known endoplasmic reticulum (ER) luminal enzyme that hydrolyzes various inositol polyphosphates in vitro as well as in vivo conditions. However, access of the Minpp1 to cytosolic substrates has not yet been demonstrated clearly and hence its physiological function. In this study, we examined a potential role for Minpp1 in ER stress-induced apoptosis. We generated a custom antibody and characterized its specificity to study the expression of Minpp1 protein in multiple mammalian cells under experimentally induced cellular stress conditions. Our results demonstrate a significant increase in the expression of Minpp1 in response to a variety of cellular stress conditions. The protein expression was corroborated with the expression of its mRNA and enzymatic activity. Further, in an attempt to link the role of Minpp1 to apoptotic stress, we studied the effect of Minpp1 expression on apoptosis following silencing of the Minpp1 gene by its specific siRNA. Our results suggest an attenuation of apoptotic parameters following knockdown of Minpp1. Thus, in addition to its known role in inositol polyphosphate metabolism, we have identified a novel role for Minpp1 as a stress-responsive protein. In summary, our results provide, for the first time, a probable link between ER stress-induced apoptosis and Minpp1 expression.

  18. Expression of Egr1 and p53 in human carotid plaques and apoptosis induced by 7-oxysterol or p53.

    Science.gov (United States)

    Miah, Sayem; Zadeh, Shahram Nour Mohammad; Yuan, Xi-Ming; Li, Wei

    2013-07-01

    Egr-1 and p53 are involved in pathology of both atherosclerosis and cancer. However, it is unknown whether p53 and Egr1 are interactively involved in apoptosis in atherosclerosis. We found that in human carotid plaques, the expression of p53 was inversely correlated with Egr1. In U937 cells, 7β-hydroxycholesterol and 7-ketocholesterol induced production of reactive oxygen species (ROS), transient up-regulation of Egr1 followed by late induction of p53 and apoptosis. Cells with nuclear fragmentation induced by 7-oxysterol or p53 showed increased levels of p53, but decreased levels of Egr1. In conclusion, ROS induced by 7-oxysterols may function as an early initiator of Egr1 expression. The late induced p53 by 7-oxysterols contributes to apoptotic cell death and is linked to the reduction of Egr1 levels, which resembles the differential expression of p53 and Egr1 in human atheroma progression. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Apoptosis of murine melanoma B16-BL6 cells induced by quercetin targeting mitochondria, inhibiting expression of PKC-alpha and translocating PKC-delta.

    Science.gov (United States)

    Zhang, Xian-Ming; Chen, Jia; Xia, Yu-Gui; Xu, Qiang

    2005-03-01

    In our previous study, quercetin was found to induce apoptosis of murine melanoma B16-BL6 cells. The cellular and molecular mechanism of quercetin-induced apoptosis was investigated in the present study. Nuclear morphology was determined by fluorescence microscopy. DNA fragmentation was analyzed by electrophoresis and quantified by the diphenylamine method. The transmembrane potential of mitochondria was measured by flow cytometry. Bcl-2, Bcl-X(L), PKC-alpha, PKC-beta, and PKC-delta were detected by Western blotting. Caspase activity was determined spectrophotometrically. Quercetin induced the condensation of nuclei of B16-BL6 cells in a dose-dependent pattern as visualized by Hoechst 33258 and propidium iodide dying. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, significantly enhanced apoptosis induced by quercetin, while doxorubicin, a PKC inhibitor, markedly decreased it. Both PMA and doxorubicin showed a consistent effect on the fragmentation of nuclear DNA caused by various dosages of quercetin. Quercetin dose-dependently led to loss of the mitochondrial membrane potential, which was also significantly reinforced or antagonized by PMA and doxorubicin, respectively. Moreover, PMA showed reinforcement, while doxorubicin showed significant antagonization, of the quercetin-mediated decrease in the expression of Bcl-2. Quercetin promoted caspase-3 activity in a dose-dependent manner, which was also regulated by PMA and doxorubicin with a pattern similar to that seen in their effect on apoptosis, mitochondrial membrane potential and Bcl-2 expression, but none of these were directly affected by PMA and doxorubicin. Free fatty acid and chlorpromazine, a PKC activator and inhibitor, respectively, did not interfere with these effects of quercetin. B16-BL6 cells expressed PKC-alpha, PKC-beta, and PKC-delta. Quercetin dose-dependently inhibited the expression of PKC-alpha but not that of PKC-beta and PKC-delta. Doxorubicin almost completely blocked the effect of

  20. Structure and function of the human metallothionein gene family: Final technical report

    International Nuclear Information System (INIS)

    Karin, M.

    1986-01-01

    The full nucleotide sequence of two additional human metallothionein (hMT) genes has been determined. These genes, hMT-I/sub B/ and hMT-I/sub F/, are located within the MT-I gene cluster we have described originally. The hMT-I/sub F/ gene is the first hMT-I gene whose amino acid sequence is in complete agreement with the published sequence of the human MT-I proteins. Therefore it is likely to be an active gene encoding a functional protein. However, since we have just completed the sequence analysis, we have not characterized this gene further yet. The hMT-I/sub B/ gene is closely linked to the hMT-I/sub A/ gene, and two pseudogenes, hMT-I/sub C/ and hMT-I/sub D/ separate the two. From its nucleotide sequence hMT-I/sub B/ seems to be an active gene, encoding a functional protein even though it differs in four positions from the published sequence of human MT-I proteins. This gene is expressed in a human hepatoma cell line, HepG2, and its expression is stimulated by Cd ++ . Using gene fusions to the viral thymidine-kinase gene we find that hMT-I/sub B/, like the hMT-I/sub A/ and hMT-II/sub A/ genes, contains a heavy metal responsive promoterregulatory element within its 5' flanking region. We analyzed the level of hMT-I/sub B/ mRNA in a variety of human cell lines by the S1 nuclease technique, and compared it to the expression of the hMT-II/sub A/ gene. While the hMT-II/sub A/ gene was expressed in all of the cell lines analyzed, the hMT-I/sub B/ gene was expressed in liver and kidney derived cell lines cells. This suggest that the expression of the hMT-I/sub B/ gene is controlled in a tissue specific manner. 13 refs

  1. Expression of Apoptosis Inducing-Ligands, TRAIL and Fas-L in Hydatid Cyst Germinal Layer and Normal Tissue

    Directory of Open Access Journals (Sweden)

    Adel Spotin

    2012-04-01

    Full Text Available Background & objectives: Hydaticosis is a zoonotic helminthic disease of human and other intermediated hosts in which larval stages of the tapeworm Echinococcus granulosu transfect human. The liver and lung are the host tissues for the hydatid cyst . It is unknown which mechanisms are involved in infertility of the cyst and suppression of the fertile cyst. This study was aimed to evaluate the expression of the apoptosis inducing-ligands such as TRAIL and Fas-L in germinal layer of the cyst and human normal tissue surrounding the cyst that is one of the unknown host innate immunity mechanisms against the hydatid cyst.   Methods: In this study, four isolated hydatid cysts were used which had been diagnosed in patients by radiography and parasitological examination in Mashhad Ghaem hospital. Furthermore, the germinal layer of the cyst and accompanied normal peripheral tissues were separated by scalpel in sterile conditions. After homogenization, expression of TRAIL and Fas-L genes were studied by semi-quantitive RT-PCR method.   Results: The TRAIL and Fas-L showed significant higher level expression in germinal layer of infertile cyst than the fertile cyst and host normal tissues.   Conclusion: The host tissue-induced apoptosis of germinal layer of the fertile cysts is probably one of the infertility mechanism in patients with hydaticosis

  2. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    Science.gov (United States)

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  3. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    International Nuclear Information System (INIS)

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid; Gjerloev, Simon; Birk, Jesper; Roepke, Carsten; Norrild, Bodil

    2004-01-01

    Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation and induction of cell death. We have used the osteosarcoma cell line U2OS cells provided with E7 and the cdk2 inhibitor p21 (cip1/waf1) under inducible control, as a model system for the analysis of E7-mediated apoptosis. Our data shows that simultaneous expression of E7 and p21 proteins induces cell death, possibly because of conflicting growth control. Interestingly, E7/p21-induced cell death is associated with the activation of a newly identified mediator of apoptosis, namely cathepsin B. Activation of the cellular caspases is undetectable in cells undergoing E7/p21-induced apoptosis. To our knowledge, this is the first time a role for cathepsin B is reported in HPV-induced apoptotic signalling

  4. Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins

    Directory of Open Access Journals (Sweden)

    Atrian Sílvia

    2011-01-01

    Full Text Available Abstract Background The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT were used as model molecules in order to elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD and ultra violet-visible (UV-Vis spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was

  5. Determination of content of metallothionein and low molecular mass stress peptides in transgenic tobacco plants

    Czech Academy of Sciences Publication Activity Database

    Diopan, V.; Shestivska, V.; Adam, V.; Macek, Tomáš; Macková, M.; Havel, L.; Kizek, R.

    2008-01-01

    Roč. 94, č. 3 (2008), s. 291-298 ISSN 0167-6857 R&D Projects: GA MŠk 1M06030 Institutional research plan: CEZ:AV0Z40550506 Keywords : metallothionein * Nicotiana tabacum * thiols * phytoremediation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.017, year: 2008

  6. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts

    International Nuclear Information System (INIS)

    Chang, J.-K.; Li, C.-J.; Liao, H.-J.; Wang, C.-K.; Wang, G.-J.; Ho, M.-L.

    2009-01-01

    It has been reported that anti-inflammatory drugs (AIDs) inhibited bone repair in animal studies, and suppressed proliferation and induced cell death in rat osteoblast cultures. In this study, we further investigated the molecular mechanisms of AID effects on proliferation and cell death in human osteoblasts (hOBs). We examined the effects of dexamethasone (10 -7 and 10 -6 M), non-selective non-steroidal anti-inflammatory drugs (NSAIDs): indomethacin, ketorolac, piroxicam and diclofenac (10 -5 and 10 -4 M), and COX-2 inhibitor: celecoxib (10 -6 and 10 -5 M) on proliferation, cytotoxicity, cell death, and mRNA and protein levels of cell cycle and apoptosis-related regulators in hOBs. All the tested AIDs significantly inhibited proliferation and arrested cell cycle at G0/G1 phase in hOBs. Celecoxib and dexamethasone, but not non-selective NSAIDs, were found to have cytotoxic effects on hOB, and further demonstrated to induce apoptosis and necrosis (at higher concentration) in hOBs. We further found that indomethacin, celecoxib and dexamethasone increased the mRNA and protein expressions of p27 kip1 and decreased those of cyclin D2 and p-cdk2 in hOBs. Bak expression was increased by celecoxib and dexamethasone, while Bcl-XL level was declined only by dexamethasone. Furthermore, the replenishment of PGE1, PGE2 or PGF2α did not reverse the effects of AIDs on proliferation and expressions of p27 kip1 and cyclin D2 in hOBs. We conclude that the changes in expressions of regulators of cell cycle (p27 kip1 and cyclin D2) and/or apoptosis (Bak and Bcl-XL) by AIDs may contribute to AIDs caused proliferation suppression and apoptosis in hOBs. This effect might not relate to the blockage of prostaglandin synthesis by AIDs

  7. Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Boudreau, Nancy; Sympson, C. J.; Werb, Zena; Bissell, Mina J.

    1994-12-01

    Apoptosis (programmed cell death) plays a major role in development and tissue regeneration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. Apoptosis was induced by antibodies to beta 1 integrins or by overexpression of stromelysin-1, which degrades ECM. Expression of interleukin-1 beta converting enzyme (ICE) correlated with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin-dependent negative regulation of ICE expression.

  8. Increased MiR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro

    International Nuclear Information System (INIS)

    Rong, Minhua; Chen, Gang; Dang, Yiwu

    2013-01-01

    MiR-221 is over-expressed in human hepatocellular carcinoma (HCC), but its clinical significance and function in HCC remains uncertain. The aim of the study was to investigate the relationship between miR-221 overexpression and clinicopathological parameters in HCC formalin-fixed paraffin-embedded (FFPE) tissues, and the effect of miR-221 inhibitor and mimic on different HCC cell lines in vitro. MiR-221 expression was detected using real time RT-qPCR in FFPE HCC and the adjacent noncancerous liver tissues. The relationship between miR-221 level and clinicopathological features was also analyzed. Furthermore, miR-221 inhibitor and mimic were transfected into HCC cell lines HepB3, HepG2 and SNU449. The effects of miR-221 on cell growth, cell cycle, caspase activity and apoptosis were also investigated by spectrophotometry, fluorimetry, fluorescence microscopy and flow cytometry, respectively. The relative expression of miR-221 in clinical TNM stages III and IV was significantly higher than that in the stages I and II. The miR-221 level was also upregulated in the metastatic group compared to the nonmetastatic group. Furthermore, miR-221 over-expression was related to the status of tumor capsular infiltration in HCC clinical samples. Functionally, cell growth was inhibited, cell cycle was arrested in G1/S-phase and apoptosis was increased by miR-221 inhibitor in vitro. Likewise, miR-221 mimic accelerated the cell growth. Expression of miR-221 in FFPE tissues could provide predictive significance for prognosis of HCC patients. Moreover, miR-221 inhibitor could be useful to suppress proliferation and induce apoptosis in HCC cells. Thus miR-221 might be a critical targeted therapy strategy for HCC

  9. Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis

    International Nuclear Information System (INIS)

    Patel, Divya; Chaudhary, Jaideep

    2012-01-01

    Highlights: ► E2A, considered as a tumor suppressor is highly expressed in prostate cancer. ► Silencing of E2A attenuates cell proliferation and promotes apoptosis. ► E2A regulates c-myc, Id1, Id3 and CDKN1A expression. ► Loss of E2A promotes doxorubicin dependent apoptosis in prostate cancer cells. ► Results suggest that E2A acts as a tumor promoter at least in prostate cancer. -- Abstract: E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer.

  10. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis

    Science.gov (United States)

    Sun, Xin-zhi; Liao, Ying; Li, Wei; Guo, Li-mei

    2017-01-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H2O2) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H2O2-induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects. PMID:28761429

  11. Effects of resveratrol and other wine polyphenols on the proliferation, apoptosis and androgen receptor expression in LNCaP cells.

    Science.gov (United States)

    Ferruelo, A; Romero, I; Cabrera, P M; Arance, I; Andrés, G; Angulo, J C

    2014-01-01

    To address the effect of resveratrol and other red wine polyphenols on cell proliferation, apoptosis and androgen receptor (AR) expression in human prostate cancer LNCaP cells. LNCaP cells (5 × 102) were cultured in microtiter plate modules and treated with gallic acid, tannic acid and quercetin (1, 5 and 10 μM), rutin and morin (25, 50 and 75 μM) and resveratrol (5, 10 and 25 μM). To address the extent of proliferation at 24, 48, 72 and 96 hours, a colorimetric immunoassay method was used. An activity caspase 3/7 detection assay was used to disclose apoptosis at 24, 48 and 72 hours. AR mARN levels were determined by real time RT-PCR. All polyphenols studied significantly inhibited (P<.05) cell proliferation compared to control. However, there were moderate differences between them. Resveratrol was the strongest inhibitor at different times and doses. Also, caspase-3 and caspase-7 activity was significantly higher (P<.05) than control in the presence of all the compounds, but the earlier response was achieved by resveratrol. Resveratrol, quercetin and morin were the only nutrients that significantly inhibited AR mRNA expression. Again resveratrol produced the highest inhibition (90-250 times less than control), followed by morin (67-100 times) and quercetin (55-91 times). All polyphenols studied showed important antiproliferative effects and induced apoptosis when added to LNCaP cells culture. We confirm that resveratrol, morin and quercetin may achieve such effect through reduced expression of AR. The synergistic effects of these compounds and their potential to prevent progression of hormone-dependent prostate cancer merit further study. Copyright © 2014 AEU. Published by Elsevier Espana. All rights reserved.

  12. A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury

    Directory of Open Access Journals (Sweden)

    Gordon W. Irvine

    2017-03-01

    Full Text Available Metallothioneins (MTs are a family of cysteine-rich proteins whose biological roles include the regulation of essential metal ions and protection against the harmful effects of toxic metals. Due to its high affinity for many toxic, soft metals, recombinant human MT isoform 1a was incorporated into an electrochemical-based biosensor for the detection of As3+ and Hg2+. A simple design was chosen to maximize its potential in environmental monitoring and MT was physically adsorbed onto paper discs placed on screen-printed carbon electrodes (SPCEs. This system was tested with concentrations of arsenic and mercury typical of contaminated water sources ranging from 5 to 1000 ppb. The analytical performance of the MT-adsorbed paper discs on SPCEs demonstrated a greater than three-fold signal enhancement and a lower detection limit compared to blank SPCEs, 13 ppb for As3+ and 45 ppb for Hg2+. While not being as low as some of the recommended drinking water limits, the sensitivity of the simple MT-biosensor would be potentially useful in monitoring of areas of concern with a known contamination problem. This paper describes the ability of the metal binding protein metallothionein to enhance the effectiveness of a simple, low-cost electrochemical sensor.

  13. INTRODUKSI GEN METALLOTHIONEIN TIPE II KE DALAM RUMPUT LAUT Kappaphycus alvarezii MENGGUNAKAN Agrobacterium tumefaciens

    Directory of Open Access Journals (Sweden)

    Ulia Fajriah

    2014-12-01

    Full Text Available Kappaphycus alvarezii adalah jenis alga merah yang memproduksi kappa karagenan yang sangat penting untuk industri makanan, farmasi, dan kosmetik. Untuk meningkatkan produksi, diperlukan ketersediaan bahan baku yang baik. Salah satu yang memengaruhi ketersediaan bahan baku adalah kondisi ingkungan perairan untuk budidaya. Metallothionein (MT adalah protein yang memiliki kemampuan untuk mengikat ion logam seperti Cd, Zn, dan Cu. Tujuan penelitian ini adalah untuk mengintroduksi gen Metallothionein Tipe II (MaMt2 ke dalam genom K. alvarezii menggunakan Agrobacterium tumefaciens. Talus rumput laut diinokulasi dengan A. tumefaciens mengandung plasmid pIG6-SMt2 yang membawa gen MaMt2, selanjutnya dilakukan seleksi bertingkat menggunakan higromisin 10 mg/L dan 20 mg/L. Hasil efisiensi transformasi yang diperoleh adalah 27,4%, efisiensi regenerasi tunas transgenik adalah 27,6%. Analisis molekuler dengan PCR menunjukkan bahwa 13 tunas transgenik mengandung gen MaMt2. Tunas transgenik putatif ditumbuhkan hingga menjadi talus baru dan dapat dilakukan uji tantang pada penelitian selanjutnya.

  14. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  15. Curcumin induces G2/M arrest, apoptosis, NF-κB inhibition, and expression of differentiation genes in thyroid carcinoma cells.

    Science.gov (United States)

    Schwertheim, Suzan; Wein, Frederik; Lennartz, Klaus; Worm, Karl; Schmid, Kurt Werner; Sheu-Grabellus, Sien-Yi

    2017-07-01

    The therapy of unresectable advanced thyroid carcinomas shows unfavorable outcome. Constitutive nuclear factor-κB (NF-κB) activation in thyroid carcinomas frequently contributes to therapeutic resistance; the radioiodine therapy often fails due to the loss of differentiated functions in advanced thyroid carcinomas. Curcumin is known for its anticancer properties in a series of cancers, but only few studies have focused on thyroid cancer. Our aim was to evaluate curcumin's molecular mechanisms and to estimate if curcumin could be a new therapeutic option in advanced thyroid cancer. Human thyroid cancer cell lines TPC-1 (papillary), FTC-133 (follicular), and BHT-101 (anaplastic) were treated with curcumin. Using real-time PCR analysis, we investigated microRNA (miRNA) and mRNA expression levels. Cell cycle, Annexin V/PI staining, and caspase-3 activity analysis were performed to detect apoptosis. NF-κB p65 activity and cell proliferation were analyzed using appropriate ELISA-based colorimetric assay kits. Treatment with 50 μM curcumin significantly increased the mRNA expression of the differentiation genes thyroglobulin (TG) and sodium iodide symporter (NIS) in all three cell lines and induced inhibition of cell proliferation, apoptosis, and decrease of NF-κB p65 activity. The miRNA expression analyses showed a significant deregulation of miRNA-200c, -21, -let7c, -26a, and -125b, known to regulate cell differentiation and tumor progression. Curcumin arrested cell growth at the G2/M phase. Curcumin increases the expression of redifferentiation markers and induces G2/M arrest, apoptosis, and downregulation of NF-κB activity in thyroid carcinoma cells. Thus, curcumin appears to be a promising agent to overcome resistance to the conventional cancer therapy.

  16. Comparison of Metallothionein Detection by Using Brdicka Reaction and Enzyme-Linked Immunosorbent Assay Employing Chicken Yolk Antibodies

    Czech Academy of Sciences Publication Activity Database

    Křížková, S.; Bláhová, P.; Nakielna, J.; Fabrik, I.; Adam, V.; Eckschlager, T.; Beklová, M.; Svobodová, Z.; Horák, Vratislav; Krížek, R.

    2009-01-01

    Roč. 21, č. 23 (2009), s. 2575-2583 ISSN 1040-0397 Institutional research plan: CEZ:AV0Z50450515 Keywords : Metallothionein * Differential pulse voltammetry * ELISA Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  17. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  18. CYP24A1 exacerbated activity during diabetes contributes to kidney tubular apoptosis via caspase-3 increased expression and activation.

    Directory of Open Access Journals (Sweden)

    Alexandre Tourigny

    Full Text Available Decreases in circulating 25,hydroxyl-vitamin D3 (25 OH D3 and 1,25,dihydroxyl-vitamin D3 (1,25 (OH2 D3 have been extensively documented in patients with type 2 diabetes. Nevertheless, the molecular reasons behind this drop, and whether it is a cause or an effect of disease progression is still poorly understood. With the skin and the liver, the kidney is one of the most important sites for vitamin D metabolism. Previous studies have also shown that CYP24A1 (an enzyme implicated in vitamin D metabolism, might play an important role in furthering the progression of kidney lesions during diabetic nephropathy. In this study we show a link between CYP24A1 increase and senescence followed by apoptosis induction in the renal proximal tubules of diabetic kidneys. We show that CYP24A1 expression was increased during diabetic nephropathy progression. This increase derived from protein kinase C activation and increased H(2O(2 cellular production. CYP24A1 increase had a major impact on cellular phenotype, by pushing cells into senescence, and later into apoptosis. Our data suggest that control of CYP24A1 increase during diabetes has a beneficial effect on senescence induction and caspase-3 increased expression. We concluded that diabetes induces an increase in CYP24A1 expression, destabilizing vitamin D metabolism in the renal proximal tubules, leading to cellular instability and apoptosis, and thereby accelerating tubular injury progression during diabetic nephropathy.

  19. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    2016-04-22

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5p might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2 are down

  20. Long Non-Coding RNA TUG1 Promotes Proliferation and Inhibits Apoptosis of Osteosarcoma Cells by Sponging miR-132-3p and Upregulating SOX4 Expression.

    Science.gov (United States)

    Li, Gang; Liu, Keyu; Du, Xinhui

    2018-03-01

    Long non-coding RNA taurine upregulated gene 1 (TUG1) is reported to be a vital regulator of the progression of various cancers. This study aimed to explore the exact roles and molecular mechanisms of TUG1 in osteosarcoma (OS) development. Real-time quantitative PCR was applied to detect the expressions of TUG1 and microRNA-132-3p (miR-132-3p) in OS tissues and cells. Western blot was performed to measure protein levels of sex determining region Y-box 4 (SOX4). Cell viability was assessed using XTT assay. Cell apoptosis was evaluated using flow cytometry and caspase-3 activity detection assays. Bioinformatics analysis and luciferase reporter experiments were employed to confirm relationships among TUG1, miR-132-3p, and SOX4. TUG1 was highly expressed in human OS tissues, OS cell lines, and primary OS cells. TUG1 knockdown hindered proliferation and induced apoptosis in human OS cell lines and primary OS cells. Moreover, TUG1 inhibited miR-132-3p expression by direct interaction, and introduction of miR-132-3p inhibitor partly abrogated the effect of TUG1 knockdown on the proliferation and apoptosis of OS cells. Furthermore, SOX4 was validated as a target of miR-132-3p. Further functional analyses revealed that miR-132-3p inhibited proliferation and induced apoptosis of OS cells, while this effect was greatly abated following SOX4 overexpression. Moreover, TUG1 knockdown suppressed proliferation and promoted apoptosis by upregulating miR-132-3p and downregulating SOX4 in primary OS cells. TUG1 facilitated proliferation and suppressed apoptosis by regulating the miR-132-3p/SOX4 axis in human OS cell lines and primary OS cells. This finding provides a potential target for OS therapy. © Copyright: Yonsei University College of Medicine 2018

  1. Transcriptional responses of metallothionein gene to different stress factors in Pacific abalone (Haliotis discus hannai).

    Science.gov (United States)

    Lee, Sang Yoon; Nam, Yoon Kwon

    2016-11-01

    A novel metallothionein (MT) gene from the Pacific abalone H. discus hannai was characterized and its mRNA expression patterns (tissue distribution, developmental expression and differential expression in responsive to various in vivo stimulatory treatments) were examined. Abalone MT shares conserved structural features with previously known gastropod orthologs at both genomic (i.e., tripartite organization) and amino acid (conserved Cys motifs) levels. The 5'-flanking regulatory region of abalone MT gene displayed various transcription factor binding motifs particularly including ones related with metal regulation and stress/immune responses. Tissue distribution and basal expression patterns of MT mRNAs indicated a potential association between ovarian MT expression and sexual maturation. Developmental expression pattern suggested the maternal contribution of MT mRNAs to embryonic and early larval developments. Abalone MT mRNAs could be significantly induced by various heavy metals in different tissues (gill, hepatopancreas, muscle and hemocyte) in a tissue- and/or metal-dependent fashion. In addition, the abalone MT gene was highly modulated in responsive to other non-metal, stimulatory treatments such as immune challenge (LPS, polyI:C and bacterial injections), hypoxia (decrease from normoxia 8 ppm-2 ppm), thermal elevation (increase from 20 °C to 30 °C), and xenobiotic exposure (250 ppb of 17α-ethynylestradiol and 0.25 ppb of 2,3,7,8-tetrachlorodibenzodioxin) where differential expression patterns were toward either up- or down-regulation depending on types of stimulations and tissues examined. Taken together, our results highlight that MT is a multifunctional effector playing in wide criteria of cellular pathways especially associated with development and stress responses in this abalone species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. JNK1 protects against glucolipotoxicity-mediated beta-cell apoptosis

    DEFF Research Database (Denmark)

    Prause, Michala; Christensen, Dan Ploug; Billestrup, Nils

    2014-01-01

    Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity. Endoplas......Pancreatic β-cell dysfunction is central to type 2 diabetes pathogenesis. Prolonged elevated levels of circulating free-fatty acids and hyperglycemia, also termed glucolipotoxicity, mediate β-cell dysfunction and apoptosis associated with increased c-Jun N-terminal Kinase (JNK) activity....... Endoplasmic reticulum (ER) and oxidative stress are elicited by palmitate and high glucose concentrations further potentiating JNK activity. Our aim was to determine the role of the JNK subtypes JNK1, JNK2 and JNK3 in palmitate and high glucose-induced β-cell apoptosis. We established insulin-producing INS1...... INS1 cells showed increased apoptosis and cleaved caspase 9 and 3 compared to non-sense shRNA expressing control INS1 cells when exposed to palmitate and high glucose associated with increased CHOP expression, ROS formation and Puma mRNA expression. JNK2 shRNA expressing INS1 cells did not affect...

  3. Vitamin B12-impaired metabolism produces apoptosis and Parkinson phenotype in rats expressing the transcobalamin-oleosin chimera in substantia nigra.

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Orozco-Barrios

    Full Text Available BACKGROUND: Vitamin B12 is indispensable for proper brain functioning and cytosolic synthesis of S-adenosylmethionine. Whether its deficiency produces effects on viability and apoptosis of neurons remains unknown. There is a particular interest in investigating these effects in Parkinson disease where Levodopa treatment is known to increase the consumption of S-adenosylmethionine. To cause deprivation of vitamin B12, we have recently developed a cell model that produces decreased synthesis of S-adenosylmethionine by anchoring transcobalamin (TCII to the reticulum through its fusion with Oleosin (OLEO. METHODOLOGY: Gene constructs including transcobalamin-oleosin (TCII-OLEO and control constructs, green fluorescent protein-transcobalamin-oleosin (GFP-TCII-OLEO, oleosin-transcobalamin (OLEO-TCII, TCII and OLEO were used for expression in N1E-115 cells (mouse neuroblastoma and in substantia nigra of adult rats, using a targeted transfection with a Neurotensin polyplex system. We studied the viability and the apoptosis in the transfected cells and targeted tissue. The turning behavior was evaluated in the rats transfected with the different plasmids. PRINCIPAL FINDINGS: The transfection of N1E-115 cells by the TCII-OLEO-expressing plasmid significantly affected cell viability and increased immunoreactivity of cleaved Caspase-3. No change in propidium iodide uptake (used as a necrosis marker was observed. The transfected rats lost neurons immunoreactive to tyrosine hydroxylase. The expression of TCII-OLEO was observed in cells immunoreactive to tyrosine hydroxylase of the substantia nigra, with a superimposed expression of cleaved Caspase-3. These cellular and tissular effects were not observed with the control plasmids. Rats transfected with TCII-OLEO expressing plasmid presented with a significantly higher number of turns, compared with those transfected with the other plasmids. CONCLUSIONS/SIGNIFICANCE: In conclusion, the TCII-OLEO transfection

  4. Dying a thousand death. Radionuclide imaging of apoptosis

    International Nuclear Information System (INIS)

    Blankenberg, F.; Ohtsuki, K.; Strauss, H.W.

    1999-01-01

    Programmed cell death, apoptosis, in an inducible, organized, energy requiring form of demise that results in the disappearance of a cell without the induction of an inflammatory response. Apoptotic cell death is strikingly different than necrotic death, which is disorderly, does not require energy and results in local inflammation, usually secondary to sudden release of intercellular contents. Apoptosis is induced when cells undergo severe injury to their nucleus, as occurs following exposure to gamma or X-radiation, or mitochondria, as as occurs in variety of viral illnesses. Apoptosis can also be induced by externals signals, such as interaction of 'fas' ligand with 'fas' receptors. Once the cell is committed to apoptosis, the caspase enzyme cascade is activate. An early effect of caspase activation is the rapid expression of phosphatidylserine on the external leaflet of the cell membrane. Membrane bound phosphatidylserine expression serves as a signal to surrounding cells, identifying the expressing cell as undergoing apoptosis. A deficiency or an excess of programmed cell death is an integral component of autoimmune disorders, transplant rejection and cancer. A technique to image programmed cell death would be used to assist in the development of drugs, designed to treat these diseases, and to monitor the effectiveness of therapy The sudden expression of phosphatidylserine on the cell membrane is target that could be used for this purpose. A 35 kD physiologic protein, Annexin V lipocortin, binds with nanomolar affinity to membrane bound phosphatidylserine. Annexin V has been radiolabeled with Technetium-99m by direct coupling to free sulfhydryl groups, and through the hydrazinonicatinamide and N2S2 linking agents. The biodistribution of the agents labeled with each of the methods is slightly different. In all cases the radiopharmaceutical binds to cell undergoing apoptosis 'in vitro', and permits imaging of the process in experimental animals

  5. Host and Viral Factors in HIV-Mediated Bystander Apoptosis

    Science.gov (United States)

    Garg, Himanshu; Joshi, Anjali

    2017-01-01

    Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis. PMID:28829402

  6. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Science.gov (United States)

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  7. X-linked inhibitor of apoptosis regulates T cell effector function

    DEFF Research Database (Denmark)

    Zehntner, Simone P; Bourbonnière, Lyne; Moore, Craig S

    2007-01-01

    To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice with exper......To understand how the balance between pro- and anti-apoptotic signals influences effector function in the immune system, we studied the X-linked inhibitor of apoptosis (XIAP), an endogenous regulator of cellular apoptosis. Real-time PCR showed increased XIAP expression in blood of mice...... dramatically reduced within the CNS. Flow cytometry showed an 88-93% reduction in T cells. The proportion of TUNEL(+) apoptotic CD4(+) T cells in the CNS was increased from Neurons...... and oligodendrocytes were not affected; neither did apoptosis increase in liver, where XIAP knockdown also occurred. ASO-XIAP increased susceptibility of T cells to activation-induced apoptosis in vitro. Our results identify XIAP as a critical controller of apoptotic susceptibility of effector T cell function...

  8. In vivo nuclear imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Cheon, Gi Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-04-01

    Apoptosis plays a role in the pathophysiology of many kinds of diseases and in the response of treatment. Compared to the necrosis, the apoptosis a genetically controlled and energy-dependent process which removes the unwanted cells from the body; programmed cell death or cell suicide. During the apoptosis, phosphatidylserine is expressed in the cytoplasmic outer membrane in the early phase. Annexin V, an endogenous human protein (MW=35 kD), has an affinity of about 10{sup -9} M for the phosphatidylserine exposed on the outer membrane of apoptotic cells. Annexin V can be radiolabeled with {sup 99}mTc by HYNIC or EC chelators, which can be used as an radiotracer for the in vivo imaging of apoptosis. In this article, we reviewed the apoptosis, radiolabeling of annexin V, and the experimental and clinical data using annexin V imaging.

  9. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  10. THE EXPRESSION AND CLINICAL VALUE OF APOPTOSIS CONTROL GENE Bcl-2 AND Bax IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun; YAO Zhen-xiang; ZHANG Jing

    1999-01-01

    Objective: To study the expression and clinical value of apoptosis control gene bcl-2 and bax in breast cancer.Methods: Protein bax and bcl-2 in 41 breast cancers obtained from operations in our hospital in 1996 were detected using ABC immunohistochemical stain assay and compared with 10 cases with normal breast tissues.Results: The positive rate of bax in normal breast tissue was 90% and in breast cancer was 59%, with a significant statistical difference between them (P<0.05), but there was no statistical difference in bcl-2 protein expression. Among the 41 breast cancer, the group with lymph node metastasis (21 cases) had obviously low bax expression (43%) and high bcl-2 expression (76%), showing significant difference to the group without lymph node metastasis (P<0.05).Conclusion: The antiapoptosis function of bcl-2 was stronger than bax in breast cancer. Protein bax and bcl-2 assay may be useful in understanding the biological behaviors of breast cancer.

  11. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    International Nuclear Information System (INIS)

    Adams, Scott V.; Barrick, Brian; Christopher, Emily P.; Shafer, Martin M.; Makar, Karen W.; Song, Xiaoling; Lampe, Johanna W.; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.

    2015-01-01

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  12. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Scott V., E-mail: sadams@fhcrc.org [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Barrick, Brian [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Christopher, Emily P. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Shafer, Martin M. [Environmental Chemistry and Technology, Wisconsin State Laboratory of Hygiene, University of Wisconsin, 2601 Agriculture Dr., Madison, WI 53718 (United States); Makar, Karen W.; Song, Xiaoling [Public Health Science Biomarker Laboratory, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Lampe, Johanna W. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Vilchis, Hugo [Border Epidemiology and Environmental Health Center, New Mexico State University, Box 30001 MSC 3BEC, Las Cruces, NM 88003 (United States); Ulery, April [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Newcomb, Polly A. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States)

    2015-12-15

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  13. Effect of recombinant human erythropoietin expressions of apoptosis ...

    African Journals Online (AJOL)

    apoptosis genes in rats following traumatic brain injury. Xuesong Yuan1* ... ĸB)-, c-myc-, and Fas/Fasl-positive cells were identified in brain tissues by ... stem cells present in the bone marrow. ... neuronal regeneration [12], lowering toxicity of.

  14. Expression and functional analysis of apoptosis-related gene ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... conducted a molecular cloning and functional analysis to study a specific silkworm gene BmICAD related to apoptosis. .... blocking with 5% non-fat milk for 1 h at room temperature, the .... requirements for all next experiments.

  15. Differential Apoptosis in Mucosal and Dermal Wound Healing

    Science.gov (United States)

    Johnson, Ariel; Francis, Marybeth; DiPietro, Luisa Ann

    2014-01-01

    Objectives: Dermal and mucosal healing are mechanistically similar. However, scarring and closure rates are dramatically improved in mucosal healing, possibly due to differences in apoptosis. Apoptosis, nature's preprogrammed form of cell death, occurs via two major pathways, extrinsic and intrinsic, which intersect at caspase3 (Casp3) cleavage and activation. The purpose of this experiment was to identify the predominant pathways of apoptosis in mucosal and dermal wound healing. Approach: Wounds (1 mm biopsy punch) were made in the dorsal skin (n=3) or tongue (n=3) of female Balb/C mice aged 6 weeks. Wounds were harvested at 6 h, 24 h, day 3 (D3), D5, D7, and D10. RNA was isolated and analyzed using real time reverse transcriptase–polymerase chain reaction. Expression levels for genes in the intrinsic and extrinsic apoptotic pathways were compared in dermal and mucosal wounds. Results: Compared to mucosal healing, dermal wounds exhibited significantly higher expression of Casp3 (at D5; phealing compared to skin. Conclusion: Expression patterns of key regulators of apoptosis in wound healing indicate that apoptosis occurs predominantly through the intrinsic pathway in the healing mucosa, but predominantly through the extrinsic pathway in the healing skin. The identification of differences in the apoptotic pathways in skin and mucosal wounds may allow the development of therapeutics to improve skin healing. PMID:25493209

  16. Podophyllum hexandrum (Himalayan mayapple) extract provides radioprotection by modulating the expression of proteins associated with apoptosis.

    Science.gov (United States)

    Kumar, Raj; Singh, Pankaj Kumar; Sharma, Ashok; Prasad, Jagdish; Sagar, Ravinder; Singh, Surender; Arora, Rajesh; Sharma, Rakesh Kumar

    2005-08-01

    Podophyllum hexandrum Royale (Himalayan mayapple), a high-altitude Himalayan plant, has been shown to provide over 80% whole-body radioprotection in mice. To investigate the radioprotective potential of P. hexandrum at the molecular level, expression patterns of various proteins associated with apoptosis were studied in the spleen of male Swiss albino strain A mice by immunoblotting. Treatment with P. hexandrum [200 mg/kg of body weight; an ethanolic 50% (w/v) extract delivered intraperitoneally] 2 h before irradiation resulted in MAPKAP (mitogen-activated protein kinase-activated protein) kinase-2 activation along with HSF-1 (heat-shock transcription factor-1), leading to up-regulation of HSP-70 (heat-shock protein-70) as compared with sham-irradiated (10 Gy) mice. Strong inhibition of AIF (apoptosis-inducing factor) expression was observed in the mice treated with P. hexandrum 2 h before irradiation as compared with the sham-irradiated group. Inhibition in the translocation of free NF-kappaB (nuclear factor kappaB) from cytoplasm to nucleus was observed upon P. hexandrum pretreatment 2 h before irradiation when compared with radiation-treated mice. P. hexandrum pre-treatment (2 h before irradiation) resulted in inhibition of NF-kappaB translocation, and the expression of tumour suppressor protein p53 was observed to be down-regulated as compared with sham-irradiated control. An increase in the expression of proteins responsible for cell proliferation [Bcl-2 (B-cell chronic lymphocytic lymphoma 2), Ras-GAP (Ras-GTPase-activating protein) and PCNA (proliferating cell nuclear antigen)] was observed in the P. hexandrum-pretreated irradiated mice as compared with sham-irradiated controls. Caspase 3 activation resulted PARP [poly(ADP-ribose) DNA polymerase] cleavage, and DNA degradation was strongly inhibited in the mice treated with P. hexandrm (+/-irradiation) as compared with the mice treated with radiation (+/-heat shock). The present study thus clearly

  17. Roles of acid sphingomyelinase activation in neuronal cells apoptosis induced by microwave irradiation

    International Nuclear Information System (INIS)

    Zhang Lei; Xu Shangcheng; Zhang Guangbin; Yu Zhengping

    2009-01-01

    The present study is to examine the effect of microwave on acid sphingomyelinase (ASM) activity and expression, and to explore the role of ASM activation in neuronal cells apoptosis induced by microwave irradiation. Primary cultured hippocampal neurons were irradiated by 30 W/cm 2 microwave for 10 min, and ASM activity assay was used to investigate ASM activity alteration. RT-PCR and western blot were used to detect ASM mRNA and protein expression respectively. Apoptosis was observed by Hoechst 33342 fluorescence staining. ASM specific inhibitor imipramine was applied to inhibit ASM activation. It has been found that apoptosis rate of primary cultured hippocampal neurons increased significantly after microwave irradiation. ASM was activated while ASM mRNA and protein expression were upregulated in neurons after microwave irradiation. Pretreatment with imipramine could reverse neuronal apoptosis induced by microwave irradiation. Results show that microwave irradiation causes increment of ASM activation and expression and ASM activation is involved in microwave induced neuronal apoptosis. (authors)

  18. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  19. Snake venom toxin from vipera lebetina turanica induces apoptosis of colon cancer cells via upregulation of ROS- and JNK-mediated death receptor expression

    International Nuclear Information System (INIS)

    Park, Mi Hee; Jo, MiRan; Won, Dohee; Song, Ho Sueb; Han, Sang Bae; Song, Min Jong; Hong, Jin Tae

    2012-01-01

    Abundant research suggested that the cancer cells avoid destruction by the immune system through down-regulation or mutation of death receptors. Therefore, it is very important that finding the agents that increase the death receptors of cancer cells. In this study, we demonstrated that the snake venom toxin from Vipera lebetina turanica induce the apoptosis of colon cancer cells through reactive oxygen species (ROS) and c-Jun N-terminal kinases (JNK) dependent death receptor (DR4 and DR5) expression. We used cell viability assays, DAPI/TUNEL assays, as well as western blot for detection of apoptosis related proteins and DRs to demonstrate that snake venom toxin-induced apoptosis is DR4 and DR5 dependent. We carried out transient siRNA knockdowns of DR4 and DR5 in colon cancer cells. We showed that snake venom toxin inhibited growth of colon cancer cells through induction of apoptosis. We also showed that the expression of DR4 and DR5 was increased by treatment of snake venom toxin. Moreover, knockdown of DR4 or DR5 reversed the effect of snake venom toxin. Snake venom toxin also induced JNK phosphorylation and ROS generation, however, pretreatment of JNK inhibitor and ROS scavenger reversed the inhibitory effect of snake venom toxin on cancer cell proliferation, and reduced the snake venom toxin-induced upregulation of DR4 and DR5 expression. Our results indicated that snake venom toxin could inhibit human colon cancer cell growth, and these effects may be related to ROS and JNK mediated activation of death receptor (DR4 and DR5) signals

  20. Apoptosis and Necrosis in the Liver

    Science.gov (United States)

    Guicciardi, Maria Eugenia; Malhi, Harmeet; Mott, Justin L.; Gores, Gregory J.

    2013-01-01

    Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of “programmed” necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article. PMID:23720337

  1. Effects of maternal smoking on the placental expression of genes related to angiogenesis and apoptosis during the first trimester.

    Directory of Open Access Journals (Sweden)

    Akihiro Kawashima

    Full Text Available Maternal cigarette smoking is reportedly associated with miscarriage, fetal growth restriction and placental abruption, and is paradoxically associated with a decreased risk of developing preeclampsia. In the present study, we investigated the gene expression levels of villous tissues in early gestation. We compared the expression levels of the genes related to angiogenesis and apoptosis in the villous tissues obtained from smoking and non-smoking pregnant women.We collected villous tissue samples from 57 women requesting surgical termination due to non-medical reasons at 6-8 weeks of gestation. The maternal cigarette smoking status was evaluated by the level of serum cotinine and patients were divided into active smokers and non-smokers by the serum cotinine level. The placental levels of VEGFA, PGF, FLT1, HIF1A, TP53, BAX and BCL2 mRNA were quantified by real time PCR.The gene expression level of PGF and HIF1A in the active smoker group was significantly higher than that in the non-smoker group. We did not observe any significant differences in the VEGFA or FLT1 expression between the groups. In active smoker group, the gene expression levels of TP53 and BAX were significantly higher than those in the non-smoker group. The ratio of BAX/BCL2 mRNA in the active smoker group was significantly higher than that in the non-smoker group.Our findings revealed that smoking might affect the placenta during early pregnancy. Maternal cigarette smoking in early pregnancy may be associated with villus hypoxia, which may influence angiogenesis and apoptosis.

  2. miR-183 inhibits TGF-β1-induced apoptosis by downregulation of PDCD4 expression in human hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Li, Jipeng; Fu, Hanjiang; Xu, Chengwang; Tie, Yi; Xing, Ruiyun; Zhu, Jie; Qin, Yide; Sun, Zhixian; Zheng, Xiaofei

    2010-01-01

    In recent years, some miRNAs have been reported to be connected closely with the development of human hepatocellular carcinoma. In our previous studies, a set of miRNAs were revealed to be dysregulated in HCC tissues. However, the functions of these miRNAs in HCC remain largely undefined. The expression profiles of miR-183 were compared between HCC tissues and adjacent normal liver tissues using qRT-PCR method. This method was used to screen the potential target genes of miR-183. A luciferase reporter assay was conducted to confirm target association. Finally, the functional effect of miR-183 in hepatoma cells was examined. Among the 25 HCC samples analyzed, microRNA-183 was significantly up-regulated (twofold to 367-fold) in 17 samples compared with the matching nontumoral liver tissues. Programmed cell death 4 (PDCD4) was identified as the target gene of miR-183. Moreover, PDCD4 is a proapoptotic molecule involved in TGF-β1-induced apoptosis in human HCC cells, we found that miR-183 transfectants were resistant to apoptosis induced by TGF-β1. We conclude that miR-183 can inhibit apoptosis in human HCC cells by repressing the PDCD4 expression, and miR-183 may play an important role in HCC development

  3. Blocking CHK1 Expression Induces Apoptosis and Abrogates the G2 Checkpoint Mechanism

    Directory of Open Access Journals (Sweden)

    Yan Luo

    2001-01-01

    Full Text Available Checkpoint kinase 1 (Chki is a checkpoint gene that is activated after DNA damage. It phosphorylates and inactivates the Cdc2 activating phosphatase Cdc25C. This in turn inactivates Cdc2, which leads to G2/M arrest. We report that blocking Chki expression by antisense or ribozymes in mammalian cells induces apoptosis and interferes with the G2/M arrest induced by adriamycin. The Chki inhibitor UCN-01 also blocks the G2 arrest after DNA damage and renders cells more susceptible to adriamycin. These results indicate that Chki is an essential gene for the checkpoint mechanism during normal cell proliferation as well as in the DNA damage response.

  4. Apoptosis in chondrogenesis of human mesenchymal stem cells: effect of serum and medium supplements.

    Science.gov (United States)

    Wang, Chien-Yuan; Chen, Ling-Lan; Kuo, Pei-Yin; Chang, Jia-Ling; Wang, Yng-Jiin; Hung, Shih-Chieh

    2010-04-01

    Apoptosis is an inevitable process during development and is evident in the formation of articular cartilage and endochondral ossification of growth plate. Mesenchymal stem cells (MSCs) can serve as alternative sources for cell therapy in focal chondral lesions or diffuse osteoarthritis. But there are few, if any, studies investigating apoptosis during chondrogenesis by MSCs. The aim of this study was to find the better condition to prevent apoptosis during chondrogenesis by MSCs. Apoptosis were evaluated in MSCs induced in different chondrogenic media by the use of Annexin V, TUNEL staining, lysosomal labeling with lysotracker and immunostaining of apoptotic markers. We found apparent apoptosis was demonstrated by Annexin V, TUNEL staining and lysosomal labeling during chondrogenesis. Meanwhile, the degree of apoptosis was related to the reagents of the defined chondrogenic medium. Adding serum in medium increased apoptosis, however, TGF-beta1 inhibited apoptosis. The apoptosis was associated with the activation of caspase-3, the increase in the Bax/Bcl-2 ratio, the loss of lysosomal integrity, and the increase of PARP-cleavage. Pro-inflammatory cytokines, IL-1alpha, IL-1beta and TNFalpha did not induce any increase in apoptosis. Interestingly, the inhibition of apoptosis by serum free medium supplemented with ITS was also associated with an increase in the expression of type II collagen, and a decrease in the expression of type X collagen, Runx2, and other osteogenic genes, while TGF-beta1 increased the expression of Sox9, type II and type X collagen and decreased the expression of osteogenic genes. These data suggest apoptosis occurs during chondrogenesis by MSCs by cell death intrinsic pathway activation and this process may be modulated by culture conditions.

  5. Proteomics analysis of apoptosis-regulating proteins in tissues with different radiosensitivity

    International Nuclear Information System (INIS)

    An, Jeung-Hee; Seong, Jin-Sil

    2006-01-01

    The aim of this study was to identify of radiosusceptibility proteins in tissues with different radiosensitivity. C3H/HeJ mice were exposed to 10 Gy. The tissues were processed for proteins extraction and were analyzed by 2-dimensional electrophoresis. The proteins were identified by matrix-assisted laser desorption ionizing time-of-flight mass spectrometry and validated by immunohistochemical staining and Western blotting. The peaks of apoptosis levels were 35.3±1.7% and 0.6±0.2% in the spleen and the liver, respectively, after ionizing radiation. Analysis of liver tissue showed that the expression level of reactive oxygen species (ROS) related proteins such as cytochrome c, glutathione S transferase, NADH dehydrogenase and peroxiredoxin VI increased after radiation. The expression level of cytochrome c increased to 3-fold after ionizing radiation in both tissues. However in spleen tissue, the expression level of various kinds of apoptosis regulating proteins increased after radiation. These involved iodothyronine, CD 59A glycoprotein precursor, fas antigen and tumor necrosis factor -inducible protein TSG-6nprecursor after radiation. The difference in the apoptosis index between the liver and spleen tissues is closely associated with the expression of various kinds of apoptosis-related proteins. The result suggests that the expression of apoptosis-related protein and redox proteins play important roles in this radiosusceptibility. (author)

  6. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis

    International Nuclear Information System (INIS)

    Mohseni, Mehran; Mihandoost, Ehsan; Shirazi, Alireza; Sepehrizadeh, Zargham; Bazzaz, Javad Tavakkoly; Ghazi-khansari, Mahmoud

    2012-01-01

    The close relationship between free radicals effects and apoptosis process has been proved. Melatonin has been reported as a direct free radical scavenger. We investigated the capability of melatonin in the modification of radiation-induced apoptosis and apoptosis-associated upstream regulators expression in rat peripheral blood lymphocytes. Rats were irradiated with a single whole body Cobalt 60-gamma radiation dose of 8 Gy at a dose rate of 101 cGy/min with or without melatonin pretreatments at different concentrations of 10 and 100 mg/kg body weight. The rats were divided into eight groups of control, irradiation-only, vehicle-only, vehicle plus irradiation, 10 mg/kg melatonin alone, 10 mg/kg melatonin plus irradiation, 100 mg/kg melatonin alone and 100 mg/kg melatonin plus irradiation. Rats were given an intraperitoneal (IP) injection of melatonin or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were taken 4, 24, 48 and 72 h after irradiation for evaluation of flow cytometric analysis of apoptotic lymphocytes using Annexin V/PI assay and measurement of bax and bcl-2 expression using quantitative real-time PCR (RT 2 qPCR). Irradiation-only and vehicle plus irradiation showed an increase in the percentage of apoptotic lymphocytes significantly different from control group (P < 0.01), while melatonin pretreatments in a dose-dependent manner reduced it as compared with the irradiation-only and vehicle plus irradiation groups (P < 0.01) in all time points. This reduced apoptosis by melatonin was related to the downregulation of bax, upregulation of bcl-2, and therefore reduction of bax/bcl-2 ratio. Our results suggest that melatonin in these doses may provide modulation of bax and bcl-2 expression as well as bax/bcl-2 ratio to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis.

  7. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Mehran [Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan (Iran, Islamic Republic of); Mihandoost, Ehsan, E-mail: mihandoost.e@gmail.com [Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shirazi, Alireza [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sepehrizadeh, Zargham [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Bazzaz, Javad Tavakkoly [Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghazi-khansari, Mahmoud [Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2012-10-15

    The close relationship between free radicals effects and apoptosis process has been proved. Melatonin has been reported as a direct free radical scavenger. We investigated the capability of melatonin in the modification of radiation-induced apoptosis and apoptosis-associated upstream regulators expression in rat peripheral blood lymphocytes. Rats were irradiated with a single whole body Cobalt 60-gamma radiation dose of 8 Gy at a dose rate of 101 cGy/min with or without melatonin pretreatments at different concentrations of 10 and 100 mg/kg body weight. The rats were divided into eight groups of control, irradiation-only, vehicle-only, vehicle plus irradiation, 10 mg/kg melatonin alone, 10 mg/kg melatonin plus irradiation, 100 mg/kg melatonin alone and 100 mg/kg melatonin plus irradiation. Rats were given an intraperitoneal (IP) injection of melatonin or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were taken 4, 24, 48 and 72 h after irradiation for evaluation of flow cytometric analysis of apoptotic lymphocytes using Annexin V/PI assay and measurement of bax and bcl-2 expression using quantitative real-time PCR (RT{sup 2}qPCR). Irradiation-only and vehicle plus irradiation showed an increase in the percentage of apoptotic lymphocytes significantly different from control group (P < 0.01), while melatonin pretreatments in a dose-dependent manner reduced it as compared with the irradiation-only and vehicle plus irradiation groups (P < 0.01) in all time points. This reduced apoptosis by melatonin was related to the downregulation of bax, upregulation of bcl-2, and therefore reduction of bax/bcl-2 ratio. Our results suggest that melatonin in these doses may provide modulation of bax and bcl-2 expression as well as bax/bcl-2 ratio to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis.

  8. Mechanism research of miR-181 regulating human lens epithelial cell apoptosis

    Directory of Open Access Journals (Sweden)

    Yu Qin

    2015-05-01

    Full Text Available AIM: To investigate the expression of miR-181 in the lens tissue of cataract and the regulating mechanism of miR-181 on apoptosis of human lens epithelial cell.METHODS:Real time q-PCR was used to measure the expression of miR-181 in the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model. miR-181 mimic and inhibitor were transfected using Lipofectamine 2 000 to regulate the expression of miR-181, and then Real time q-PCR was used to verify transfection efficiency. Flow cytometry was used to detect the change of cell apoptosis rate. RESULTS: Compared with control group, the expression of miR-181 was significantly higher in both the anterior lens capsules of age-related cataract and human lens epithelial cell apoptosis model; the relative expression of miR-181 in lens epithelial cells transfected with miR-181 mimic was increased, whereas decreased in cells transfected with miR-181 inhibitor; the apoptosis rate of cells transfected with miR-181 mimic was increased, while reduced in miR-181 inhibitor group. Each result was statistically significant(PCONCLUSION: High expression of miR-181 is detected in anterior lens capsule of age-related cataract. miR-181 might play a certain role in the pathogenesis of cataract via promoting human lens epithelial cell apoptosis. miR-181 probably becomes a new approach for the nonoperative treatment of cataract, but the concrete mechanism still needs to be further studied.

  9. Aspartame-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Effect of small dose of radiation on induction of apoptosis in murine tumors

    International Nuclear Information System (INIS)

    Seong, Jin Sil; Pyo, Hong Ryull; Chung, Eun Ji; Kim, Sung Hee; Suh, Chang Ok

    1999-01-01

    To investigate the presence of adaptive response by low dose radiation in murine tumors in relation to radiation induced apoptosis as well as related mechanism. Syngeneic murine tumors, OCa-1 and HCa-l, were given 0.05 Gy pretreatment followed by therapeutic dose of 25 Gy radiation. Induction of apoptosis was analyzed for each treatment group. Regulating molecules of apoptosis. p53, Bcl-2, Sax, Bel-X, were also analyzed by Western blotting. In 0.05 Gy pretreatment group of OCa-l, 25 Gy-induced apoptosis per 1000 cells was 229, which was estimated at 30% lower level than the expected (p<0.05). In contrast, this reduction in radiation induced apoptosis was not seen in HCa-1. In the expression of apoptosis regulating molecules, p53 increased in both tumors in response to radiation. Bcl-2 and Bax did not show significant change in both tumors however, the expression of Bcl-2 surpassed that of Bax in 0.05 Gy pretreatment group of OCa-1. Bcl-X was not expressed in OCa-1. In HCa-l, ScI-X showed increased expression even with 0.05 Gy. Adaptive response by low dose radiation is shown in one murine tumor, OCa-I, in relation to radiation induced apoptosis. Apoptosis regulating molecules including Bcl-2/Bax and Bcl-X, appear to related. This study shows an evidence that adaptive response is present, but not a generalized phenomenon in vivo

  11. Role of CD137 signaling in dengue virus-mediated apoptosis

    International Nuclear Information System (INIS)

    Nagila, Amar; Netsawang, Janjuree; Srisawat, Chatchawan; Noisakran, Sansanee; Morchang, Atthapan; Yasamut, Umpa; Puttikhunt, Chunya; Kasinrerk, Watchara

    2011-01-01

    Highlights: → For the first time the role of CD137 in dengue virus (DENV) infection. → Induction of DENV-mediated apoptosis by CD137 signaling. → Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). → Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  12. Role of CD137 signaling in dengue virus-mediated apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nagila, Amar [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Srisawat, Chatchawan [Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Morchang, Atthapan; Yasamut, Umpa [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Puttikhunt, Chunya [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Kasinrerk, Watchara [Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai (Thailand); Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at Chiang Mai University, Chiang Mai (Thailand); and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  13. Recovery of ovary size, follicle cell apoptosis, and HSP70 expression in fish exposed to bleached pulp mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Janz, D. M.; Weber, L. P. [Oklahoma State Univ., Stillwater, OK (United States); McMaster, M. E.; Munkittrrick, K. R. [Environment Canada, Burlington, ON (Canada); Van Der Kraak, G. [Guelph Univ., Dept. of Zoology, ON (Canada)

    2001-03-01

    Apoptosis of granulosa cells that provide hormonal support for the oocyte is the normal mechanism by which atresia ( reduced ovarian size, decreased fecundity, delayed sexual maturation, alterations in plasma sex steroid levels, etc) occurs in mammals, birds and possibly fish. The objective of this study is to determine ovarian cell apoptosis, gonadosomatic index (GSI) and heat shock protein (HSP70) expression during the growth stage of ovarian development in white sucker fish in order to compare samples of fish collected upstream and downstream of a bleached kraft pulp mill in Ontario. Fish for the study were collected in two different years, before and after the pulp mill undertook a number of improvements to eliminate the release of process chemicals. Results showed a 3.4-fold increase in ovarian cell apoptosis in growing white sucker collected four km downstream of the bleached kraft pulp mill in 1996 (before the improvements) compared to fish collected from upstream sources. The elevated ovarian cell apoptosis was associated with significant reduction in gonadosomatic index in fish collected downstream. There were no differences in ovarian cell apoptosis or gonadosomatic index between fish collected upstream and four km downstream of the mill in September 1998 (after the improvements.) Based on the results, it may be concluded that chronic stimulation of ovarian cell apoptosis by certain components of bleached kraft pulp mill effluents represents an important cellular mechanism for reducing the size of ovaries and other related reproductive responses in female fish exposed to these effluents. Although the specific effluent components are not known, the improvements undertaken between 1996 and 1998 resulted in significant enough recovery of these responses to justify the belief in a cause-effect relationship. 32 refs., 1 tab., 2 figs.

  14. MG132 plus apoptosis antigen-1 (APO-1) antibody cooperate to restore p53 activity inducing autophagy and p53-dependent apoptosis in HPV16 E6-expressing keratinocytes.

    Science.gov (United States)

    Lagunas-Martínez, Alfredo; García-Villa, Enrique; Arellano-Gaytán, Magaly; Contreras-Ochoa, Carla O; Dimas-González, Jisela; López-Arellano, María E; Madrid-Marina, Vicente; Gariglio, Patricio

    2017-01-01

    The E6 oncoprotein can interfere with the ability of infected cells to undergo programmed cell death through the proteolytic degradation of proapoptotic proteins such as p53, employing the proteasome pathway. Therefore, inactivation of the proteasome through MG132 should restore the activity of several proapoptotic proteins. We investigated whether in HPV16 E6-expressing keratinocytes (KE6 cells), the restoration of p53 levels mediated by MG132 and/or activation of the CD95 pathway through apoptosis antigen-1 (APO-1) antibody are responsible for the induction of apoptosis. We found that KE6 cells underwent apoptosis mainly after incubation for 24 h with MG132 alone or APO-1 plus MG132. Both treatments activated the extrinsic and intrinsic apoptosis pathways. Autophagy was also activated, principally by APO-1 plus MG132. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in the elevation of p53 protein levels and its phosphorylation in Ser46 and Ser20; the p53 protein was localized mainly at nucleus after treatment with MG132 or APO-1 plus MG132. In addition, induction of its transcriptional target genes such as p21, Bax and TP53INP was observed 3 and 6 h after treatment. Also, LC3 mRNA was induced after 3 and 6 h, which correlates with lipidation of LC3B protein and induction of autophagy. Finally, using pifithrin alpha we observed a decrease in apoptosis induced by MG132, and by APO-1 plus MG132, suggesting that restoration of APO-1 sensitivity occurs in part through an increase in both the levels and the activity of p53. The use of small molecules to inhibit the proteasome pathway might permit the activation of cell death, providing new opportunities for CC treatment.

  15. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ken-ichiro, E-mail: ken1nai@med.shimane-u.ac.jp; Yamaguchi, Toru, E-mail: yamaguch@med.shimane-u.ac.jp; Kanazawa, Ippei, E-mail: ippei.k@med.shimane-u.ac.jp; Sugimoto, Toshitsugu, E-mail: sugimoto@med.shimane-u.ac.jp

    2015-05-29

    In diabetes mellitus (DM), high glucose (HG) and advanced glycation end products (AGEs) are involved in bone quality deterioration. Osteocytes produce sclerostin and receptor activator of nuclear factor-kB ligand (RANKL) and regulate osteoblast and osteoclast function. However, whether HG or AGEs directly affect osteocytes and regulate sclerostin and RANKL production is unknown. Here, we examined the effects of HG, AGE2, and AGE3 on the expression of sclerostin and RANKL and on apoptosis in osteocyte-like MLO-Y4-A2 cells. Treatment of the cells with 22 mM glucose, 100 μg/mL either AGE2 or AGE3 significantly increased the expression of sclerostin protein and mRNA; however, both AGEs, but not glucose, significantly decreased the expression of RANKL protein and mRNA. Moreover, treatment of the cells with HG, AGE2, or AGE3 for 72 h induced significant apoptosis. These detrimental effects of HG, AGE2, and AGE3 on sclerostin and RANKL expressions and on apoptosis were antagonized by pretreatment of the cells with 10{sup −8} M human parathyroid hormone (PTH)-(1–34). Thus, HG and AGEs likely suppress bone formation by increasing sclerostin expression in osteocytes, whereas AGEs suppress bone resorption by decreasing RANKL expression. Together, these processes may cause low bone turnover in DM. In addition, HG and AGEs may cause cortical bone deterioration by inducing osteocyte apoptosis. PTH may effectively treat these pathological processes and improve osteocyte function. - Highlights: • AGEs are involved in bone quality deterioration in diabetes mellitus (DM). • AGEs increased sclerostin as well as apoptosis, and decreased RANKL in osteocytes. • The effects of AGEs on osteocyte function were antagonized by human PTH-(1–34). • AGEs may cause low bone turnover and cortical porosity in DM. • PTH may be effective in bone quality deterioration by improving osteocyte function.

  16. SDF-1/CXCR4 expression in bladder cancer tissue and the correlation with negative costimulatory molecule PD-L1, cell apoptosis and invasion

    Directory of Open Access Journals (Sweden)

    Ming-Bao Ye

    2017-06-01

    Full Text Available Objective: To study the SDF-1/CXCR4 expression in bladder cancer tissue and the correlation with negative costimulatory molecule PD-L1, cell apoptosis and invasion. Methods: A total of 118 cases of bladder cancer tissue and para-carcinoma tissue surgically removed in our hospital between May 2014 and May 2016 were selected as the research samples, the RNA was extracted and then reverse-transcribed into cDNA, and the expression levels of SDF-1/ CXCR4, PD-L1/PD-1, cell apoptosis-related molecules and cell invasion-related molecules were detected. Results: SDF-1 and CXCR4 mRNA expression in bladder cancer tissue were significantly higher than those in para-carcinoma tissue; PD-L1, PD-1, Rec1, Survivin, MRPS5, Nanog, BCAPP2Ac, TRPM8, TRPV2, ILK, β-catenin and GUGBP1 mRNA expression in bladder cancer tissue were significantly higher than those in para-carcinoma tissue and positively correlated with SDF-1 and CXCR4 mRNA expression. Conclusion: Highly expressed SDF-1/CXCR4 in bladder cancer tissue are closely related to the high expression of negative costimulatory molecule PD-L1, pro-proliferation molecules and proinvasion molecules, and SDF-1/CXCR4 can promote the immune escape, proliferation and invasion of bladder cancer cells.

  17. Induction of metallothionein(s) in organ-cultured duodenum: relationship to 1α,25-(OH)2-D3-induced CaBP synthesis

    International Nuclear Information System (INIS)

    Corradino, R.A.; Fullmer, C.S.; Frelier, E.; Maxwell, S.

    1979-01-01

    The embryonic chick duodenum contains no vitamin D-induced, calcium-binding protein (CaBP). However, when maintained in organ culture, the duodenum responds to 1α,25-(OH) 2 -D 3 in the culture medium by de novo synthesis of CaBP. Studies with this system have provided evidence that CaBP is directly involved in calcium transport at least at the mucosal surface. The present paper extends previous observations on the effects of the extremely toxic environmental pollutant, cadmium. Cadmium was found to inhibit 1α,25-(OH) 2 -D 3 -mediated responses in the organ-cultured duodenum, i.e., CaBP biosynthesis and 45 Ca uptake at the mucosal surface. Cadmium also stimulated concomitent production of a specific metallothionein (MT). Zinc had similar actions in inhibiting CaBP and stimulating Mt biosynthesis

  18. The pathway of estradiol-induced apoptosis in patients with systemic lupus erythematosus.

    Science.gov (United States)

    Rastin, Maryam; Hatef, Mohammad Reza; Tabasi, Nafisseh; Mahmoudi, Mahmoud

    2012-03-01

    Systemic lupus erythematosus (SLE) is a disease with unknown etiology. The pathologic role of sex hormones and apoptosis in SLE has often been discussed. We studied the effects of estradiol in the pathway of induced apoptosis in Iranian SLE patients. T lymphocytes from 35 SLE patients and 20 age-matched controls were isolated and cultured in the presence of 10(-8) M 17-β estradiol. The expression levels of Fas, Fas ligand (FasL), Bcl-2, caspase-8, and caspase-9 mRNAs were determined semiquantitatively in comparison to the expression level of beta actin RNA. Estradiol exposure did not have any significant effects on the expression levels of Fas, Bcl-2, and caspase-9 in SLE patients and controls. However, the expression levels of FasL and caspase-8 were significantly increased in SLE patients, but not in controls. This suggests the probable involvement of extrinsic apoptosis pathway in estradiol-induced apoptosis in SLE.

  19. Inflammation induction of Dickkopf-1 mediates chondrocyte apoptosis in osteoarthritic joint.

    Science.gov (United States)

    Weng, L-H; Wang, C-J; Ko, J-Y; Sun, Y-C; Su, Y-S; Wang, F-S

    2009-07-01

    Dysregulated Wnt signaling appears to modulate chondrocyte fate and joint disorders. Dickkopf-1 (DKK1) regulates the pathogenesis of skeletal tissue by inhibiting Wnt actions. This study examined whether DKK1 expression is linked to chondrocyte fate in osteoarthritis (OA). Articular cartilage specimens harvested from nine patients with knee OA and from six controls with femoral neck fracture were assessed for DKK1, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), Bad, Bax, Bcl2 and caspase-3 expression by real time-polymerase chain reaction (RT-PCR) and immunohistochemistry. Apoptotic chondrocytes were detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labelling (TUNEL) and 4', 6-dianidino-2-phenylindole dihydrochloride (DAPI) staining. Human chondrocyte cultures were treated with recombinant IL-1beta and monoclonal DKK1 antibody to determine whether DKK1 impairs chondrocyte survival. Expression of DKK1 correlated with inflammatory cytokine levels (IL-1beta and TNF-alpha expressions), proapoptosis regulators (Bad and caspase-3 expressions) and TUNEL staining in OA cartilage tissues. The IL-1beta induced expressions of DKK1, Bax, Bad and caspase-3-dependent apoptosis of chondrocyte cultures. Neutralization of DKK1 by monoclonal DKK1 antibody significantly abrogated IL-1beta-mediated caspase-3 cleavage and apoptosis and reversed chondrocyte proliferation. Recombinant DKK1 treatment impaired chondrocyte growth and promoted apoptosis. By suppressing nuclear beta-catenin accumulation and Akt phosphorylation, DKK1 mediated IL-1beta promotion of chondrocyte apoptosis. Chondrocyte apoptosis correlates with joint OA. Expression of DKK1 contributes to cartilage deterioration and is a potent factor in OA pathogenesis. Attenuating DKK1 may reduce cartilage deterioration in OA.

  20. CD36 Mediated Fatty Acid-Induced Podocyte Apoptosis via Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Wei Hua

    Full Text Available Hyperlipidemia-induced apoptosis mediated by fatty acid translocase CD36 is associated with increased uptake of ox-LDL or fatty acid in macrophages, hepatocytes and proximal tubular epithelial cells, leading to atherosclerosis, liver damage and fibrosis in obese patients, and diabetic nephropathy (DN, respectively. However, the specific role of CD36 in podocyte apoptosis in DN with hyperlipidemia remains poorly investigated.The expression of CD36 was measured in paraffin-embedded kidney tissue samples (Ctr = 18, DN = 20 by immunohistochemistry and immunofluorescence staining. We cultured conditionally immortalized mouse podocytes (MPC5 and treated cells with palmitic acid, and measured CD36 expression by real-time PCR, Western blot analysis and immunofluorescence; lipid uptake by Oil red O staining and BODIPY staining; apoptosis by flow cytometry assay, TUNEL assay and Western blot analysis; and ROS production by DCFH-DA fluorescence staining. All statistical analyses were performed using SPSS 21.0 statistical software.CD36 expression was increased in kidney tissue from DN patients with hyperlipidemia. Palmitic acid upregulated CD36 expression and promoted its translocation from cytoplasm to plasma membrane in podocytes. Furthermore, palmitic acid increased lipid uptake, ROS production and apoptosis in podocytes, Sulfo-N-succinimidyloleate (SSO, the specific inhibitor of the fatty acid binding site on CD36, decreased palmitic acid-induced fatty acid accumulation, ROS production, and apoptosis in podocytes. Antioxidant 4-hydroxy-2,2,6,6- tetramethylpiperidine -1-oxyl (tempol inhibited the overproduction of ROS and apoptosis in podocytes induced by palmitic acid.CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress might participate in the process of DN.

  1. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  2. Location-specific epigenetic regulation of the metallothionein 3 gene in esophageal adenocarcinomas.

    Directory of Open Access Journals (Sweden)

    Dunfa Peng

    Full Text Available Metallothionein 3 (MT3 maintains intracellular metal homeostasis and protects against reactive oxygen species (ROS-induced DNA damage. In this study, we investigated the epigenetic alterations and gene expression of the MT3 gene in esophageal adenocarcinomas (EACs.Using quantitative bisulfite pyrosequencing, we detected unique DNA methylation profiles in the MT3 promoter region. The CpG nucleotides from -372 to -306 from the transcription start site (TSS were highly methylated in tumor (n = 64 and normal samples (n = 51, whereas CpG nucleotides closest to the TSS (-4 and +3 remained unmethylated in all normal and most tumor samples. Conversely, CpG nucleotides in two regions (from -139 to -49 and +296 to +344 were significantly hypermethylated in EACs as compared to normal samples [FDR3.0]. The DNA methylation levels from -127 to -8 CpG sites showed the strongest correlation with MT3 gene expression (r = -0.4, P<0.0001. Moreover, the DNA hypermethylation from -127 to -8 CpG sites significantly correlated with advanced tumor stages and lymph node metastasis (P = 0.005 and P = 0.0313, respectively. The ChIP analysis demonstrated a more repressive histone modification (H3K9me2 and less active histone modifications (H3K4me2, H3K9ace in OE33 cells than in FLO-1 cells; concordant with the presence of higher DNA methylation levels and silencing of MT3 expression in OE33 as compared to FLO-1 cells. Treatment of OE33 cells with 5-Aza-deoxycitidine restored MT3 expression with demethylation of its promoter region and reversal of the histone modifications towards active histone marks.In summary, EACs are characterized by frequent epigenetic silencing of MT3. The choice of specific regions in the CpG island is a critical step in determining the functional role and prognostic value of DNA methylation in cancer cells.

  3. Expression levels of the BAK1 and BCL2 genes highlight the role of apoptosis in age-related hearing impairment

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-07-01

    Full Text Available Masoumeh Falah,1,2 Mohammad Najafi,2 Massoud Houshmand,3 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran Abstract: Age-related hearing impairment (ARHI is a progressive and a common sensory disorder in the elderly and will become an increasingly important clinical problem given the growing elderly population. Apoptosis of cochlear cells is an important factor in animal models of ARHI. As these cells cannot regenerate, their loss leads to irreversible hearing impairment. Identification of molecular mechanisms can facilitate disease prevention and effective treatment. In this study, we compared the expression of the genes BAK1 and BCL2 as two arms of the intrinsic apoptosis pathway between patients with ARHI and healthy subjects. ARHI and healthy subjects were selected after an ear nose throat examination, otoscopic investigation, and pure tone audiometry. RNA was extracted from peripheral blood samples, and relative gene expression levels were measured using quantitative real-time polymerase chain reaction. BAK1 and the BAK1/BCL2 ratio were statistically significantly upregulated in the ARHI subjects. The BAK1/BCL2 ratio was positively correlated with the results of the audiometric tests. Our results indicate that BAK-mediated apoptosis may be a core mechanism in the progression of ARHI in humans, similar to finding in animal models. Moreover, the gene expression changes in peripheral blood samples could be used as a rapid and simple biomarker for early detection of ARHI. Keywords: age-related hearing impairment (ARHI, presbycusis, biomarker, treatment

  4. Apoptosis and Molecular Targeting Therapy in Cancer

    Science.gov (United States)

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  5. The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer.

    Science.gov (United States)

    Su, Jingna; Zhou, Xiux