WorldWideScience

Sample records for apoptosis intersecting signaling

  1. Crash patterns at signalized intersections

    OpenAIRE

    Polders, Evelien; Daniels, Stijn; HERMANS, Elke; Brijs, Tom; Wets, Geert

    2015-01-01

    Traffic signals are often implemented to provide for efficient movement and to improve traffic safety. Nevertheless, severe crashes still occur at signalized intersections. This study aims to improve the understanding of signalized intersection safety by identifying crash types, locations and factors associated with signalized intersections. For this purpose, 1295 police-reported crashes at 87 signalized intersections are analyzed based on detailed crash descriptions, i.e. crash data and c...

  2. Modelling of urban traffic networkof signalized intersections

    OpenAIRE

    2013-01-01

    This report presents how traffic network of signalized intersection in a chosen urban area called Tema is synchronized. Using a modular approach, two different types of traffic intersection commonly found in an urban area were modelled i.e. a simple intersection and a complex intersection. A direct road, even though not an intersection, was also included in the modelling because it’s commonly found in an urban area plus it connects any two intersections. Each of these scenarios was modelled u...

  3. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  4. Information point and saturation flow at signalized intersections

    Directory of Open Access Journals (Sweden)

    Lijun Gao

    2016-08-01

    Full Text Available This paper introduces an information point factor and attempts to identify how it affects saturation flow and their relationship at signalized intersections. An information point is defined as any object, structure, or activity located outside of a traveling vehicle that can potentially attract the visual attention of the driver. Saturation flow rates are studied at three pairs of signalized intersections in Toledo, Ohio, USA. Each pair of intersections consists of one intersection with a high number of information points and one intersection with a low number of information points. Study results reveal that, for each pair of intersections, the one with high information points has a lower saturation flow rate than the one with low information points. A statistical analysis shows that the differences are significant. Based on the saturation flow data of the paired intersections, information point effect models are developed and presented in this paper.

  5. Simulation of Intersection Rivet at Non-signalized Intersection in Housing Scheme

    Science.gov (United States)

    Nazmi, Mohd; Takaba, Sadao; Ohno, Sumio; Yusoff, Mohd Nazaruddin

    Accident in the residential area are become serious case in Malaysia. Most of the incidents occur among pedestrians, bicycles, motorcycles and vehicles. Our research purpose is to avoid collision at the non-signalized intersection in the housing scheme. We committed to reduce injuries and increase pedestrians' safety. Our research provides important information that can help driver predict common problems and take steps to prevent collisions. Intersection rivet is proposed for this matter. This type of signal system can prevent any accident in a dangerous non-signalized intersection. Simulation tools and systems are developed to find and solve the problem in order to decrease any fatal incident. Investigation data were used to simulate the situation more precisely. The result will be effective as reference to set the parameter of control system of the intersection rivet.

  6. Simulation of queue with cyclic service in signalized intersection system

    Directory of Open Access Journals (Sweden)

    Muhammad Dermawan Mulyodiputro

    2015-03-01

    Full Text Available The simulation was implemented by modeling the queue with cyclic service in the signalized intersection system. The service policies used in this study were exhaustive and gated, the model was the M/M/1 queue, the arrival rate used was Poisson distribution and the services rate used was Exponential distribution. In the gated service policy, the server served only vehicles that came before the green signal appears at an intersection. Considered that there were 2 types of exhaustive policy in the signalized intersection system, namely normal exhaustive (vehicles only served during the green signal was still active, and exhaustive (there was the green signal duration addition at the intersection, when the green signal duration at an intersection finished. The results of this queueing simulation program were to obtain characteristics and performance of the system, i.e. average number of vehicles and waiting time of vehicles in the intersection and in the system, as well as system utilities. Then from these values, it would be known which of the cyclic service policies (normal exhaustive, exhaustive and gated was the most suitable when applied to a signalized intersection system

  7. Modeling signalized intersection safety with corridor-level spatial correlations.

    Science.gov (United States)

    Guo, Feng; Wang, Xuesong; Abdel-Aty, Mohamed A

    2010-01-01

    Intersections in close spatial proximity along a corridor should be considered as correlated due to interacted traffic flows as well as similar road design and environmental characteristics. It is critical to incorporate this spatial correlation for assessing the true safety impacts of risk factors. In this paper, several Bayesian models were developed to model the crash data from 170 signalized intersections in the state of Florida. The safety impacts of risk factors such as geometric design features, traffic control, and traffic flow characteristics were evaluated. The Poisson and Negative Binomial Bayesian models with non-informative priors were fitted but the focus is to incorporate spatial correlations among intersections. Two alternative models were proposed to capture this correlation: (1) a mixed effect model in which the corridor-level correlation is incorporated through a corridor-specific random effect and (2) a conditional autoregressive model in which the magnitude of correlations is determined by spatial distances among intersections. The models were compared using the Deviance Information Criterion. The results indicate that the Poisson spatial model provides the best model fitting. Analysis of the posterior distributions of model parameters indicated that the size of intersection, the traffic conditions by turning movement, and the coordination of signal phase have significant impacts on intersection safety.

  8. Delay Analysis and Formulation Inference of Signalized Intersection for Traffic Congestion Conditions

    Institute of Scientific and Technical Information of China (English)

    刘广萍; 丁建梅

    2004-01-01

    Vehicle delay is an important measure to evaluate the signal timings of signalized intersections.When optimization the signal control parameters, delays of vehicles from all approach directions of an intersection should be considered. Based on the analysis of the vehicle delay on an approach of intersection, directed against the typical condition of a congested intersection-over-saturated condition, the paper has analyzed and inferred the intersection delay dynamic formulation, and has established the relation between intersection delay,the signal timings, vehicle arrival rate and the queue lengths, and that provides useful information for understanding vehicle delay of signalized intersection and for establishing performance index function of signal timing optimization.

  9. Research on Driver Behavior in Yellow Interval at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Zhaosheng Yang

    2014-01-01

    Full Text Available Vehicles are often caught in dilemma zone when they approach signalized intersections in yellow interval. The existence of dilemma zone which is significantly influenced by driver behavior seriously affects the efficiency and safety of intersections. This paper proposes the driver behavior models in yellow interval by logistic regression and fuzzy decision tree modeling, respectively, based on camera image data. Vehicle’s speed and distance to stop line are considered in logistic regression model, which also brings in a dummy variable to describe installation of countdown timer display. Fuzzy decision tree model is generated by FID3 algorithm whose heuristic information is fuzzy information entropy based on membership functions. This paper concludes that fuzzy decision tree is more accurate to describe driver behavior at signalized intersection than logistic regression model.

  10. Modeling Traffic Flow and Management at Un-signalized, Signalized and Roundabout Road Intersections

    Directory of Open Access Journals (Sweden)

    R. Kakooza

    2005-01-01

    Full Text Available Traffic congestion continues to hinder economic and social development and also has a negative impact on the environment. A simple mathematical model is used to analyze the different types of road intersections in terms of their Performance in relation to managing traffic congestion and to establish the condition for stability of the road intersections after sufficiently longer periods of time (steady-state. In the analysis, single and double lane un-signalized, signalized and roundabout intersections are evaluated on the basis of their performance (expected number of vehicles and waiting time. Experimental scenarios are carefully designed to analyze the performance of the different types of intersections. It is noted that under light traffic, roundabout intersections perform better than un-signalized and signalized in terms of easing congestion. However under heavy traffic, signalized intersection perform better in terms of easing traffic congestion compared to un-signalized and roundabout intersections. It is further noted that for stability of a road intersection, the proportion of the time a road link stopping at an intersection is delayed should not exceed the utilization factor (the ratio of the arrival rate of vehicles to the product of number of service channels and service rate.

  11. Road Impedance Model Study under the Control of Intersection Signal

    Directory of Open Access Journals (Sweden)

    Yunlin Luo

    2015-01-01

    Full Text Available Road traffic impedance model is a difficult and critical point in urban traffic assignment and route guidance. The paper takes a signalized intersection as the research object. On the basis of traditional traffic wave theory including the implementation of traffic wave model and the analysis of vehicles’ gathering and dissipating, the road traffic impedance model is researched by determining the basic travel time and waiting delay time. Numerical example results have proved that the proposed model in this paper has received better calculation performance compared to existing model, especially in flat hours. The values of mean absolute percentage error (MAPE and mean absolute deviation (MAD are separately reduced by 3.78% and 2.62 s. It shows that the proposed model has feasibility and availability in road traffic impedance under intersection signal.

  12. Infiuence of Bicycle Traffic on Capacity of Typical Signalized Intersection

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaoming; SHAO Chunfu; YUE Hao

    2007-01-01

    Bicycle traffic has a significant effect on the capacity of signalized intersections. This paper divides the influence of bicyclists on vehicular flow into four types with the time durations estimated based on probability, shock wave, and gap acceptance theory. Vehicular saturation flow rate is predicted for various conditions on the basis of the speed-flow curve for the capacity of typical intersections influenced by bicycle traffic.The model overcomes the limitations of the Highway Capacity Manual (HCM, 2000) method for left-turns due to data collection, and takes into account the effect of trapped bicycles on the through vehicular traffic.The numerical results show that the left-turn and through capacities predicted by the model are lower than those of the HCM method. The right-turn capacity is close to that of the HCM method at Iow bicycle volumes and higher than that of the HCM method at high bicycle volumes.

  13. Urban Intersection Traffic Signal Control Based on Fuzzy Logic

    Institute of Scientific and Technical Information of China (English)

    魏武; 张毅; 张佐; 宋靖雁

    2002-01-01

    This paper presents a fuzzy logic adaptive traffic signal control method for an isolated four-approach intersection with through and left-turning movements. In the proposed method, the fuzzy logic controller can make adjustments to signal timing in response to observed changes. The "urgency degree" term that can describe different user's demands for a green light is used in the fuzzy logic decision-making. In addition, a three-level fuzzy controller model decides whether to extend or terminate the current signal phase and the sequence of phases. Simulation results show that the fuzzy controller can adjust its signal timing in response to changing traffic conditions on a real-time basis and that the proposed fuzzy logic controller leads to less vehicle delays and a lower percentage of stopped vehicles.

  14. A Comparison of Tram Priority at Signalized Intersections

    CERN Document Server

    Zhang, Lele

    2013-01-01

    We study tram priority at signalized intersections using a stochastic cellular automaton model for multimodal traffic flow. We simulate realistic traffic signal systems, which include signal linking and adaptive cycle lengths and split plans, with different levels of tram priority. We find that tram priority can improve service performance in terms of both average travel time and travel time variability. We consider two main types of tram priority, which we refer to as full and partial priority. Full tram priority is able to guarantee service quality even when traffic is saturated, however, it results in significant costs to other road users. Partial tram priority significantly reduces tram delays while having limited impact on other traffic, and therefore achieves a better result in terms of the overall network performance. We also study variations in which the tram priority is only enforced when trams are running behind schedule, and we find that those variations retain almost all of the benefit for tram op...

  15. Multinomial Logit Model of Pedestrian Crossing Behaviors at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Zhu-Ping Zhou

    2013-01-01

    Full Text Available Pedestrian crashes, making up a large proportion of road casualties, are more likely to occur at signalized intersections in China. This paper aims to study the different pedestrian behaviors of regular users, late starters, sneakers, and partial sneakers. Behavior information was observed manually in the field study. After that, the survey team distributed a questionnaire to the same participant who has been observed, to acquire detailed demographic and socioeconomic characteristics as well as attitude and preference indicators. Totally, 1878 pedestrians were surveyed at 16 signalized intersections in Nanjing. First, correlation analysis is performed to analyze each factor’s effect. Then, five latent variables including safety, conformity, comfort, flexibility, and fastness are obtained by structure equation modeling (SEM. Moreover, based on the results of SEM, a multinomial logit model with latent variables is developed to describe how the factors influence pedestrians’ behavior. Finally, some conclusions are drawn from the model: (1 for the choice of being late starters, arrival time, the presence of oncoming cars, and crosswalk length are the most important factors; (2 gender has the most significant effect on the pedestrians to be sneakers; and (3 age is the most important factor when pedestrians choose to be partial sneakers.

  16. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  17. Capacity Reliability of Signalized Intersections with Mixed Traffic Conditions

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaoming; SHAO Chunfu; LI Da; DONG Chunjiao

    2009-01-01

    The reliability of capacity of signalized intersections in mixed traffic conditions involving vehicles, bicycles, and pedestrians was investigated to complete the conventional, deterministic capacity calculations. Simulations using VISSIM provided estimates of capacity distributions, and demonstrated the effects of the analysis intervals on the distributions. With the random vehicle arrivals taken into account, a capacity reli-ability assessment method was given as a function. Assessments were also performed regarding the effects of the conflicting pedestrian and bicycle volumes on capacity reliability. The simulation indicates that the pe-destrians and bicycles result in greater random fluctuations of exclusive tuming lane capacities, but have less effect on the variability of shared lane capacities. Normal distributions can be used to model the capaci-ties for intervals not less than 10 min. At higher vehicular volumes, the capacity reliability is more sensitive to the mean and standard deviation of the pedestrian and bicycle volumes.

  18. Molecular signal transduction in vascular cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  19. An extended car-following model at signalized intersections

    Science.gov (United States)

    Yu, Shaowei; Shi, Zhongke

    2014-08-01

    To simulate car-following behaviors better when the traffic light is red, three successive car-following data at a signalized intersection of Jinan in China were collected by using a new proposed data acquisition method and then analyzed to select input variables of the extended car-following model. An extended car-following model considering two leading cars' accelerations was proposed, calibrated and verified with field data obtained on the basis of the full velocity difference model and then a comparative model used for comparative research was also proposed and calibrated in the light of the GM model. The results indicate that the extended car-following model could fit measured data well, and that the fitting precision of the extended model is prior to the comparative model, whose mean absolute error is reduced by 22.83%. Finally a theoretical car-following model considering multiple leading cars' accelerations was put forward which has potential applicable to vehicle automation system and vehicle safety early warning system, and then the linear stability analysis and numerical simulations were conducted to analyze some observed physical features existing in the realistic traffic.

  20. Characteristics of traffic flow at a non-signalized intersection in the framework of game theory

    Science.gov (United States)

    Fan, Hongqiang; Jia, Bin; Tian, Junfang; Yun, Lifen

    2014-12-01

    At a non-signalized intersection, some vehicles violate the traffic rules to pass the intersection as soon as possible. These behaviors may cause many traffic conflicts even traffic accidents. In this paper, a simulation model is proposed to research the effects of these behaviors at a non-signalized intersection. Vehicle’s movement is simulated by the cellular automaton (CA) model. The game theory is introduced for simulating the intersection dynamics. Two types of driver participate the game process: cooperator (C) and defector (D). The cooperator obey the traffic rules, but the defector does not. A transition process may occur when the cooperator is waiting before the intersection. The critical value of waiting time follows the Weibull distribution. One transition regime is found in the phase diagram. The simulation results illustrate the applicability of the proposed model and reveal a number of interesting insights into the intersection management, including that the existence of defectors is benefit for the capacity of intersection, but also reduce the safety of intersection.

  1. Using Cellular Automata to Investigate Pedestrian Conflicts with Vehicles in Crosswalk at Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Xiaomeng Li

    2012-01-01

    Full Text Available The operational efficiency and safety of pedestrian flows at intersections is an important aspect of urban traffic. Particularly, conflicts between pedestrians and vehicles in crosswalk are one of the most influential factors for intersection safety. This paper presents a cellular automata model that simulates pedestrian and vehicle crossing behaviors at signalized intersections. Through the simulation, we investigate the effects of different pedestrian signal timing and crosswalk widths on the crosswalk capacity, the number of traffic conflicts between pedestrians and vehicles, and pedestrian delay due to the conflicts. The simulation results indicate that the cellular automata is an effective simulation platform for investigating complex pedestrian-related traffic phenomenon at signalized intersections.

  2. OPTIMIZATION OF CONSECUTIVE SIGNALIZED INTERSECTIONS BASED ON COMBINED ALGORITHMS – COMPARING RESULTS WITH MICROSIMULATION

    Directory of Open Access Journals (Sweden)

    Shahriar Afandizadeh Zargari

    2015-12-01

    Full Text Available The primary objective of this research is to optimize signal timing in consecutive signalized intersections. In this paper, the combination of genetic programming (GP with genetic algorithms (GA and neural network (NN with genetic algorithm (GA were used and compared in order to optimize signal timing in consecutive signalized intersections. First, genetic programming and neural network were constructed from existing signal timing data to predict the delay of intersections. Then genetic algorithm was applied to optimize these predictive networks (GP and NN. The results and comparisons of timing process and error percentage showed that neural network is more efficient than genetic programming. However, the ability of genetic programming in producing formula is a specific characteristic which makes it more applicable than neural network. Finally, for validating the results, Aimsun and Synchro micro simulation software were used, and accuracy of our models was approved.

  3. Neuronal apoptosis: signal and cell diversity

    Directory of Open Access Journals (Sweden)

    Lina Vanessa Becerra

    2009-12-01

    Full Text Available Programmed cell death occurs as a physiological process during development. In the brain and spinal cord this event determines the number and location of the different cell types. In adulthood, programmed cell death or apoptosis is more restricted but it may play a major role in different acute and chronic pathological entities. However, in contrast to other tissues where apoptosis has been widely documented from a morphological point of view, in the central nervous system complete anatomical evidence of apoptosis is scanty. In spite of this there is consensus about the activation of different signal systems associated to programmed cell death. In the present article we attempt to summarize the main apoptotic pathways so far identified in nervous tissue. Considering that apoptotic pathways are multiple, the neuronal cell types are highly diverse and specialized and that neuronal response to injury and survival depends upon tissue context, (i.e., preservation of connectivity, glial integrity and cell matrix, blood supply and trophic factors availability what is relevant for the apoptotic process in a sector of the brain may not be important in another.

  4. Empirical Analysis and Modeling of Stop-Line Crossing Time and Speed at Signalized Intersections

    Science.gov (United States)

    Tang, Keshuang; Wang, Fen; Yao, Jiarong; Sun, Jian

    2016-01-01

    In China, a flashing green (FG) indication of 3 s followed by a yellow (Y) indication of 3 s is commonly applied to end the green phase at signalized intersections. Stop-line crossing behavior of drivers during such a phase transition period significantly influences safety performance of signalized intersections. The objective of this study is thus to empirically analyze and model drivers’ stop-line crossing time and speed in response to the specific phase transition period of FG and Y. High-resolution trajectories for 1465 vehicles were collected at three rural high-speed intersections with a speed limit of 80 km/h and two urban intersections with a speed limit of 50 km/h in Shanghai. With the vehicle trajectory data, statistical analyses were performed to look into the general characteristics of stop-line crossing time and speed at the two types of intersections. A multinomial logit model and a multiple linear regression model were then developed to predict the stop-line crossing patterns and speeds respectively. It was found that the percentage of stop-line crossings during the Y interval is remarkably higher and the stop-line crossing time is approximately 0.7 s longer at the urban intersections, as compared with the rural intersections. In addition, approaching speed and distance to the stop-line at the onset of FG as well as area type significantly affect the percentages of stop-line crossings during the FG and Y intervals. Vehicle type and stop-line crossing pattern were found to significantly influence the stop-line crossing speed, in addition to the above factors. The red-light-running seems to occur more frequently at the large intersections with a long cycle length.

  5. Quality of pedestrian flow and crosswalk width at signalized intersections

    Directory of Open Access Journals (Sweden)

    Wael K.M. Alhajyaseen

    2010-07-01

    Full Text Available Among various pedestrian facilities, signalized crosswalks are the most complex and critical ones. Their geometry and configuration including width, position and angle directly affect the safety, cycle length and resulting delays for all users. Existing manuals do not provide clear and rational specifications for the required crosswalk width under different pedestrian demand combinations and properties. Furthermore, they do not consider the bi-directional flow effects on crossing speed and time when addressing pedestrian flow at signalized crosswalks. However, quantifying the effects of such interactions on the behavior of pedestrian flow is a prerequisite for improving the geometric design and configuration of signalized crosswalks. The objective of this paper is to develop a methodology for estimating the required crosswalk width at different pedestrian demand combinations and a pre-defined LOS. The developed methodology is based on theoretical modeling for total pedestrian platoon crossing time, which consists of discharge and crossing times. The developed models are utilized to generate the fundamental diagrams of pedestrian flow at signalized crosswalks. A comprehensive discussion about the effects of bi-directional flow and various pedestrian age groups on the characteristics of pedestrian flow and the capacity of signalized crosswalks is presented. It is found that the maximum reduction in the capacity of signalized crosswalks occurs at roughly equal pedestrian flows from both sides of the crosswalk. By utilizing existing LOS thresholds for pedestrian flow at signalized crosswalks, the required crosswalk widths for various pedestrian demand combinations are proposed for implementation.

  6. Guidelines for Assessing the Need for Adaptive Devices for Visually Impaired Pedestrians at Signalized Intersections.

    Science.gov (United States)

    Gallagher, Brian R.; de Oca, Patricia Montes

    1998-01-01

    Presents guidelines for orientation and mobility instructors and traffic engineers to assess the need for adaptive devices to make crosswalks at signalized intersections accessible to pedestrians with visual impairments. The discussions of audible and tactile pedestrian devices, along with case examples, distinguish when each device should be…

  7. Phase diagram of a non-signalized T-shaped intersection

    Science.gov (United States)

    Echab, H.; Lakouari, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-11-01

    In this paper, we investigated a non-signalized T-shaped intersection using the cellular automata model under the open boundary condition. Two different priority rules at intersection are introduced (Rule 1, Rule 2) to eliminate the jam-packed state. Phase diagram and its variation with the ratios of right and/or left turning vehicles are investigated. The space-time and the density profiles are also studied. The simulation results indicate that the system does not show the same performance under different priority rules, where Rule 1 (resp. Rule 2) can be better than Rule 2 (resp. Rule 1) according to the ratios of turning vehicles.

  8. Estimating intersection turning volumes from actuated traffic signal information

    Directory of Open Access Journals (Sweden)

    Ali Gholami

    2016-12-01

    Full Text Available Actuated traffic signals usually use loop detectors. The current practice in many cities is to install four consecutive loop detectors in each lane to reduce the chance of undetected vehicles. Due to practical reasons, all four loop detectors in each lane and other detectors referring to the same phase are spliced together. Thus, it is possible for several vehicles to be counted as one single car. This way of detector wiring to the cabinet reduces the accuracy of detectors for collecting traffic volumes. Our preliminary studies show cases with an error greater than 75 percent. Therefore, the purpose of this paper is to provide a simple method to obtain turning volumes from signal information in actuated non-coordinated traffic signals without using loop detector data. To produce the required data, a simulation was performed in VISSIM with different input volumes. To change turning volumes, a code was developed in COM interface. With this code, the inputs did not have to be changed manually. In addition, the COM code stored the outputs. Data were then exported to a single Excel file. Afterwards, regression and the adaptive neural fuzzy inference system (ANFIS were used to build models to obtain turning volumes. The accuracy of models is defined in terms of mean absolute percent error (MAPE. Results of our two case studies show that during peak hours, there is a high correlation between actuated green time and volumes. This method does not need extensive data collection and is easy to be employed. The results also show that ANFIS produces more accurate models compared to regression.

  9. Cyclist activity and injury risk analysis at signalized intersections: a Bayesian modelling approach.

    Science.gov (United States)

    Strauss, Jillian; Miranda-Moreno, Luis F; Morency, Patrick

    2013-10-01

    This study proposes a two-equation Bayesian modelling approach to simultaneously study cyclist injury occurrence and bicycle activity at signalized intersections as joint outcomes. This approach deals with the potential presence of endogeneity and unobserved heterogeneities and is used to identify factors associated with both cyclist injuries and volumes. Its application to identify high-risk corridors is also illustrated. Montreal, Quebec, Canada is the application environment, using an extensive inventory of a large sample of signalized intersections containing disaggregate motor-vehicle traffic volumes and bicycle flows, geometric design, traffic control and built environment characteristics in the vicinity of the intersections. Cyclist injury data for the period of 2003-2008 is used in this study. Also, manual bicycle counts were standardized using temporal and weather adjustment factors to obtain average annual daily volumes. Results confirm and quantify the effects of both bicycle and motor-vehicle flows on cyclist injury occurrence. Accordingly, more cyclists at an intersection translate into more cyclist injuries but lower injury rates due to the non-linear association between bicycle volume and injury occurrence. Furthermore, the results emphasize the importance of turning motor-vehicle movements. The presence of bus stops and total crosswalk length increase cyclist injury occurrence whereas the presence of a raised median has the opposite effect. Bicycle activity through intersections was found to increase as employment, number of metro stations, land use mix, area of commercial land use type, length of bicycle facilities and the presence of schools within 50-800 m of the intersection increase. Intersections with three approaches are expected to have fewer cyclists than those with four. Using Bayesian analysis, expected injury frequency and injury rates were estimated for each intersection and used to rank corridors. Corridors with high bicycle volumes

  10. IMPACTS OF GROUP-BASED SIGNAL CONTROL POLICY ON DRIVER BEHAVIOR AND INTERSECTION SAFETY

    Directory of Open Access Journals (Sweden)

    Keshuang TANG

    2008-01-01

    Full Text Available Unlike the typical stage-based policy commonly applied in Japan, the group-based control (often called movement-based in the traffic control industry in Japan refers to such a control pattern that the controller is capable of separately allocating time to each signal group instead of stage based on traffic demand. In order to investigate its applicability at signalized intersections in Japan, an intersection located in Yokkaichi City of Mie Prefecture was selected as an experimental application site by the Japan Universal Traffic Management Society (UTMS. Based on the data collected at the intersection before and after implementing the group-based control policy respectively, this study evaluated the impacts of such a policy on driver behavior and intersection safety. To specify those impacts, a few models utilizing cycle-based data were first developed to interpret the occurrence probability and rate of red-light-running (RLR. Furthermore, analyses were performed on the yellow-entry time (Ye of the last cleared vehicle and post encroachment time (PET during the phase switching. Conclusions supported that the group-based control policy, along with certain other factors, directly or indirectly influenced the RLR behavior of through and right-turn traffics. Meanwhile, it has potential safety benefits as well, indicated by the declined Ye and increased PET values.

  11. Waiting Endurance Time Estimation of Electric Two-Wheelers at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Mei Huan

    2014-01-01

    Full Text Available The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders’ waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities.

  12. Vehicle Delay Estimation for an Isolated Intersection under Actuated Signal Control

    Directory of Open Access Journals (Sweden)

    Shumin Feng

    2014-01-01

    Full Text Available Vehicle delay at an actuated signal control (ASC intersection is analyzed and computed with the aim of reflecting the effects of ASC and optimizing its parameters. The operation characteristics of traffic flows at the intersections serve as the foundation to present the mechanism of vehicle delay under the ASC; given that the arrival of vehicles obeys the Poisson distribution, probability algorithms of vehicle delay are put forward under the semi-ASC and fully ASC depending on discretization of green time. Computation process is illustrated by case study and CORSIM simulation experiments. Finally, the primary results indicate that the appropriate control modes can decrease vehicle delay, which is significantly affected by unit extension. Hopefully, the study will provide useful information for selecting different ASC modes and optimizing signal control parameters.

  13. Cycle-by-Cycle Queue Length Estimation for Signalized Intersections Using Multi-Source Data

    Institute of Scientific and Technical Information of China (English)

    Zhongyu Wang; Qing Cai; Bing Wu; Yinhai Wang; Linbo Li

    2015-01-01

    In order to estimate vehicular queue length at signalized intersections accurately and overcome the shortcomings and restrictions of existing studies especially those based on shockwave theory, a new methodology is presented for estimating vehicular queue length using data from both point detectors and probe vehicles. The methodology applies the shockwave theory to model queue evolution over time and space. Using probe vehicle locations and times as well as point detector measured traffic states, analytical formulations for calculating the maximum and minimum ( residual) queue length are developed. The proposed methodology is verified using ground truth data collected from numerical experiments conducted in Shanghai, China. It is found that the methodology has a mean absolute percentage error of 17�09%, which is reasonably effective in estimating the queue length at traffic signalized intersections. Limitations of the proposed models and algorithms are also discussed in the paper.

  14. Modeling Left-Turn Driving Behavior at Signalized Intersections with Mixed Traffic Conditions

    Directory of Open Access Journals (Sweden)

    Hong Li

    2016-01-01

    Full Text Available In many developing countries, mixed traffic is the most common type of urban transportation; traffic of this type faces many major problems in traffic engineering, such as conflicts, inefficiency, and security issues. This paper focuses on the traffic engineering concerns on the driving behavior of left-turning vehicles caused by different degrees of pedestrian violations. The traffic characteristics of left-turning vehicles and pedestrians in the affected region at a signalized intersection were analyzed and a cellular-automata-based “following-conflict” driving behavior model that mainly addresses four basic behavior modes was proposed to study the conflict and behavior mechanisms of left-turning vehicles by mathematic methodologies. Four basic driving behavior modes were reproduced in computer simulations, and a logit model of the behavior mode choice was also developed to analyze the relative share of each behavior mode. Finally, the microscopic characteristics of driving behaviors and the macroscopic parameters of traffic flow in the affected region were all determined. These data are important reference for geometry and capacity design for signalized intersections. The simulation results show that the proposed models are valid and can be used to represent the behavior of left-turning vehicles in the case of conflicts with illegally crossing pedestrians. These results will have potential applications on improving traffic safety and traffic capacity at signalized intersections with mixed traffic conditions.

  15. Intersection of AHR and Wnt Signaling in Development, Health, and Disease

    Directory of Open Access Journals (Sweden)

    Andrew J. Schneider

    2014-10-01

    Full Text Available The AHR (aryl hydrocarbon receptor and Wnt (wingless-related MMTV integration site signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1 the roles of both AHR and Wnt signaling in development and disease, and (2 the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD-induced disruption of Wnt signaling impairs fetal prostate development.

  16. A Signal Coordination Control Based on Traversing Empty between Mid-Block Street Crossing and Intersection

    Directory of Open Access Journals (Sweden)

    Changjiang Zheng

    2012-01-01

    Full Text Available To solve the problem in pedestrian Mid-Block street crossing, the method of signal coordination control between mid-block street crossing and intersection is researched in this paper. The paper proposes to use “distance-flow rate-time” graph as the tool for building coordination control system model which is for different situations of traffic control. Through alternating the linear optimization model, the system outputs the distribution of signal timing and system operational factors (delays in vehicles and mid-block street crossing. Finally, taking one section on the Taiping North Road in Nanjing as an example, the signal coordination control is carried out. And the results which are delays in the vehicles and mid-block street crossing are compared to those in the current distribution of signal timing.

  17. Effects of flashing green on driver’s stop/go decision at signalized intersection

    Institute of Scientific and Technical Information of China (English)

    沈家军; 王炜

    2015-01-01

    The primary objective of this work is to explore how drivers react to flashing green at signalized intersections. Through video taping and data procession based on photogrammetry, the operating speeds of vehicles before and after the moment when flashing green started was compared using paired-samples T-test. The critical distances between go and stop decisions was defined through cumulative percentage curve. The boundary of dilemma zone was determined by comparing stop distance and travel distance. Amber-running violation was analyzed on the basis of the travel time to the stop line. And finally, a logistic model for stop and go decisions was constructed. The results shows that the stopping ratios of the first vehicles of west-bound and east-bound approaches are 41.3% and 39.8%, respectively; the amber-light running violation ratios of two approaches are 31.6% and 25.4%, respectively; the operating speed growth ratios of first vehicles selecting to cross intersection after the moment when flashing green started are 26.7% and 17.7%, respectively; and the critical distances are 48 m and 46 m, respectively, which are close to 44 m, the boundary of dilemma zone. The developed decision models demonstrate that the probability of go decision is higher when the distance from the stop line is shorter or operating speed is higher. This indicates that flashing green is an effective way to enhance intersection safety, but it should work together with a strict enforcement. In addition, traffic signs near critical distance and reasonable speed limitation are also beneficial to the safety of intersections.

  18. Four-phase or two-phase signal plan? A study on four-leg intersection by cellular automaton simulations

    Science.gov (United States)

    Jin, Cheng-Jie; Wang, Wei; Jiang, Rui

    2016-08-01

    The proper setting of traffic signals at signalized intersections is one of the most important tasks in traffic control and management. This paper has evaluated the four-phase traffic signal plans at a four-leg intersection via cellular automaton simulations. Each leg consists of three lanes, an exclusive left-turn lane, a through lane, and a through/right-turn lane. For a comparison, we also evaluate the two-phase signal plan. The diagram of the intersection states in the space of inflow rate versus turning ratio has been presented, which exhibits four regions: In region I/II/III, congestion will propagate upstream and laterally and result in queue spillover with both signal plans/two-phase signal plan/four-phase signal plan, respectively. Therefore, neither signal plan works in region I, and only the four-phase signal plan/two-phase signal plan works in region II/III. In region IV, both signal plans work, but two-phase signal plan performs better in terms of average delays of vehicles. Finally, we study the diagram of the intersection states and average delays in the asymmetrical configurations.

  19. A Model for Capacity Considering the Interference by Pedestrian Traffic at Signal Intersections

    Institute of Scientific and Technical Information of China (English)

    Yixin Chen; Yulong He; Xiaoduan Sun

    2016-01-01

    The capacity is impacted badly by pedestrians’ violation behavior at signal intersections. In order to quantify the impact, the time⁃headway and the vehicular speed from start⁃up to reach the stable saturation flow with and without pedestrian traffic are used as the direct measurements. Using the statistical analysis, the time⁃headway of saturation flow is mainly affected by the position of pedestrians and the degree of pedestrians ’ influence is classified into four levels. Then the speed⁃time profile for the vehicular acceleration at each level is fitted by Curve Fitting Software. Based on the effect to the time⁃headway and acceleration time, the model of capacity influenced by pedestrians is established and the influence is quantified, which enriches the fundamental theory of traffic engineering. The result shows that the vehicular capacity can be decreased by 14%at the worst case ( level I ) . The conclusions obtained in this paper are valuable for better management of the signal intersection.

  20. Impact of stretching-segment on saturated flow rate of signalized intersection using cellular automation

    Institute of Scientific and Technical Information of China (English)

    李岩; 陈宽民; 过秀成

    2013-01-01

    In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch model was improved by adding different slow probabilities, turning deceleration rules and modified lane changing rules. The relationship between the saturated flow rate of stretching-segments and adjacent lanes was tested in numerical simulation. The length of stretching-segment, cycle length and green time were selected as impact factors of the cellular automation model. The simulation result indicates that the geometrics design of stretching-segment and the traffic signal timing scenario have major effects on the saturated flow rate of the intersection approach. The saturated flow rate will continually increase with increasing stretching-segment length until it reaches a threshold. After reaching the threshold, the stretching-segment can be treated as a separate lane. The green time is approximately linearly related to the threshold length of the stretching-segment. An optimum cycle length exists when the length of the stretching-segment is not long enough, and it is approximately linearly related to the length of stretching-segment.

  1. Influence of bus stop with left-turn lines between two adjacent signalized intersections

    Science.gov (United States)

    Pang, Ming-Bao; Ye, Lan-Hang; Pei, Ya-Nan

    2016-08-01

    Based on the symmetric two-lane Nagel-Schreckenberg (STNS) model, a three-lane cellular automaton model between two intersections containing a bus stop with left-turning buses is established in which model the occurrences of vehicle accidents are taken into account. The characteristics of traffic flows with different ratios of left-turn lines are discussed via the simulation experiments. The results indicate that the left-turn lines have more negative effects on capacity, accident rate as well as delay if the stop is located close to the intersections, where the negative effect in a near-side stop is more severe than that in a far-side one. The range of appropriate position for a bus stop without the bottleneck effect becomes more and more narrow with the increase of the ratio of left-turn bus lines. When the inflow is small, a short signal cycle and a reasonable offset are beneficial. When the inflow reaches or exceeds the capacity, a longer signal cycle is helpful. But if the stop position is inappropriate, the increase of cycle fails in reducing the negative effect of left-turning buses and the effectiveness of offset is weakened. Project supported by the National Natural Science Foundation of China (Grant No. 50478088) and the Natural Science Foundation of Hebei Province, China (Grant No. E2015202266).

  2. Autotaxin-mediated lipid signaling intersects with LIF and BMP signaling to promote the naive pluripotency transcription factor program

    Science.gov (United States)

    Kime, Cody; Sakaki-Yumoto, Masayo; Goodrich, Leeanne; Hayashi, Yohei; Sami, Salma; Derynck, Rik; Asahi, Michio; Panning, Barbara; Yamanaka, Shinya; Tomoda, Kiichiro

    2016-01-01

    Developmental signaling molecules are used for cell fate determination, and understanding how their combinatorial effects produce the variety of cell types in multicellular organisms is a key problem in biology. Here, we demonstrate that the combination of leukemia inhibitory factor (LIF), bone morphogenetic protein 4 (BMP4), lysophosphatidic acid (LPA), and ascorbic acid (AA) efficiently converts mouse primed pluripotent stem cells (PSCs) into naive PSCs. Signaling by the lipid LPA through its receptor LPAR1 and downstream effector Rho-associated protein kinase (ROCK) cooperated with LIF signaling to promote this conversion. BMP4, which also stimulates conversion to naive pluripotency, bypassed the need for exogenous LPA by increasing the activity of the extracellular LPA-producing enzyme autotaxin (ATX). We found that LIF and LPA-LPAR1 signaling affect the abundance of signal transducer and activator of transcription 3 (STAT3), which induces a previously unappreciated Kruppel-like factor (KLF)2-KLF4-PR domain 14 (PRDM14) transcription factor circuit key to establish naive pluripotency. AA also affects this transcription factor circuit by controlling PRDM14 expression. Thus, our study reveals that ATX-mediated autocrine lipid signaling promotes naive pluripotency by intersecting with LIF and BMP4 signaling. PMID:27738243

  3. A PREDICTIVE STUDY: CARBON MONOXIDE EMISSION MODELING AT A SIGNALIZED INTERSECTION

    Directory of Open Access Journals (Sweden)

    FREDDY WEE LIANG KHO

    2014-02-01

    Full Text Available CAL3QHC dispersion model was used to predict the present and future carbonmonoxide (CO levels at a busy signalized intersection. This study attempted to identify CO “hot-spots” at nearby areas of the intersection during typical A.M. and P.M. peak hours. The CO concentration “hot-spots” had been identified at 101 Commercial Park and the simulated maximum 1-hour Time-Weighted Average (1-h TWA ground level CO concentrations of 18.3 ppm and 18.6 ppm had been observed during A.M. and P.M. peaks, respectively in year 2006. This study shows that there would be no significant increment in CO level for year 2014 although a substantial increase in the number of vehicles is assumed to affect CO levels. It was also found that CO levels would be well below the Malaysian Ambient Air Quality Guideline of 30 ppm (1-h TWA. Comparisons between the measured and simulated CO levels using quantitative data analysis technique and statistical methods indicated that CAL3QHC dispersion model correlated well with measured data.

  4. Polycyclic’ Aromatic Hydrocarbon Induced Intracellular Signaling and Lymphocyte Apoptosis

    DEFF Research Database (Denmark)

    Schneider, Alexander M.

    lymphocytes. Our experiments on preB lymphocytes supported by stromal cells suggest that apoptosis is one of the mechanisms for PAH immunosuppression. It could be either due to direct effect of the PAH on the B cells, via stromal cell signaling. Ubiquitous PAH-like toxin, fluoranthene, was tested for it...

  5. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  6. Safety surrogate histograms (SSH): A novel real-time safety assessment of dilemma zone related conflicts at signalized intersections.

    Science.gov (United States)

    Ghanipoor Machiani, Sahar; Abbas, Montasir

    2016-11-01

    Drivers' indecisiveness in dilemma zones (DZ) could result in crash-prone situations at signalized intersections. DZ is to the area ahead of an intersection in which drivers encounter a dilemma regarding whether to stop or proceed through the intersection when the signal turns yellow. An improper decision to stop by the leading driver, combined with the following driver deciding to go, can result in a rear-end collision, unless the following driver recognizes a collision is imminent and adjusts his or her behavior at or shortly after the onset of yellow. Considering the significance of DZ-related crashes, a comprehensive safety measure is needed to characterize the level of safety at signalized intersections. In this study, a novel safety surrogate measure was developed utilizing real-time radar field data. This new measure, called safety surrogate histogram (SSH), captures the degree and frequency of DZ-related conflicts at each intersection approach. SSH includes detailed information regarding the possibility of crashes, because it is calculated based on the vehicles conflicts. An example illustrating the application of the new methodology at two study sites in Virginia is presented and discussed, and a comparison is provided between SSH and other DZ-related safety surrogate measures mentioned in the literature. The results of the study reveal the efficacy of the SSH as complementary to existing surrogate measures.

  7. Signaling pathway for apoptosis: a racetrack for life or death.

    Science.gov (United States)

    Wang, E; Marcotte, R; Petroulakis, E

    1999-01-01

    Apoptosis, or programmed cell death, is a gene-directed mechanism activated as a suicidal event to get rid of excess, damaged, or infected cells. The recent astounding pace of research in this area has expanded our horizon of understanding that this mechanism is regulated largely by pro- and anti-apoptosis factors acting for or against the final death event. The driving force behind these factors, either pro-apoptosis or pro-survival, is largely determined by signal transduction pathways, starting with the initiation of a death signal at the plasma membrane, and following through a complex cytoplasmic network before reaching the end point of cell demise. Enmeshed in this intricate cytoplasmic network are many checkpoints, where complexes of pro- and anti-apoptosis factors function to facilitate or deter the death signals. The culmination of the balancing act between these two camps of factors at these signal transduction checkpoints may then result in the final decision to die or to live. Thus, the eventual death of a cell may require successful passage through all the checkpoints, a mechanism Nature has provided as a safeguard to prevent erroneous triggering of death. With the advent of a new biotechnology revolution at the dawn of the new millenium, we look forward to an exciting era when we can gain fuller understanding of the operation of all these checkpoints. Ultimately, this gain will pave the way to control the apoptosis event at the checkpoints, and to support the organism's functionality as long as possible. J. Cell. Biochem. Suppls. 32/33:95-102, 1999.

  8. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  9. Puerarin Suppress Apoptosis of Human Osteoblasts via ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ling-juan Liu

    2013-01-01

    Full Text Available Puerarin, the main isoflavone glycoside extracted from Radix Puerariae, is an isoflavone traditional Chinese herb. Previous studies have demonstrated that puerarin could regulate osteoblast proliferation and differentiation to promote bone formation. However, the effect of puerarin on the process of human osteoblasts (hOBs apoptosis is still unclear. In this study, we detected the function of puerarin on serum-free-induced cell apoptosis using ELISA and TUNEL arrays and then found that the mortality of hOBs was significantly decreased after exposure to 10−10–10−6 M puerarin and reached the maximal antiapoptotic effect at the concentration of 10−8 M. In addition, compared with the control group, puerarin notably increased the Bcl-2 protein levels while it decreased the Bax protein levels in the hOBs in a dose-dependent way. 10−7 M puerarin decreased the Bax/Bcl-2 ratio with a maximal decrease to 0.08. Moreover, puerarin activated ERK signaling pathways in hOBs, and the antiapoptotic effect induced by puerarin was abolished by incubation of ERK inhibitor PD98059. Similarly, the estrogen receptor antagonist ICI182780 also suppressed the inhibitory effect of puerarin on hOBs apoptosis. In conclusion, puerarin could prevent hOBs apoptosis via ERK signaling pathway, which might be effective in providing protection against bone loss and bone remolding associated with osteoporosis.

  10. Implications of advanced warning messages on eliminating sun glare disturbances at signalized intersections

    Directory of Open Access Journals (Sweden)

    Qing Li

    2016-08-01

    Full Text Available Due to sun glare disturbances, drivers encounter fatal threats on roadways, particularly at signalized intersections. Many studies have attempted to develop applicable solutions, such as avoiding sun positions, applying road geometric re-directions, and wearing anti-glare glasses. None of these strategies have fully solved the problem. As one of the “Connected Vehicle” practices proposed by the U.S. Department of Transportation, advanced warning messages (AWMs are capable of providing wireless information about traffic controls. AWM acts as a supplement to conventional signs and signals, which can be blocked by obstacles or natural disturbances, such as sun glare. The drivers' smart advisory system (DSAS can provide drivers with AWM. Using a driving simulator this research explores the effects of DSAS messages on driving behaviors under sun glare disturbance. Statistical analyses were applied to assess (1 the negative impacts of sun glare, (2 the compensation of the DSAS AWM to sun glare effects, and (3 the improvement in driving performance due to DSAS AWM. Four performance indexes were measured, including (1 half kinetic energy speed, (2 mean approach speed, (3 brake response time, and (4 braking distance. The effects of the socio-demographic factors, such as gender, age, educational background, and driving experience were also studied. The analytical results illustrate that the DSAS can compensate for reduced visibility due to sun glare and improve driving performance to a normal visual situation, particularly for left turn and through movement.

  11. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewski, Markus, E-mail: mkowalew@uci.edu; Mukamel, Shaul, E-mail: smukamel@uci.edu [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States)

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  12. Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model.

    Science.gov (United States)

    Ren, Yilong; Wang, Yunpeng; Wu, Xinkai; Yu, Guizhen; Ding, Chuan

    2016-10-01

    Red light running (RLR) has become a major safety concern at signalized intersection. To prevent RLR related crashes, it is critical to identify the factors that significantly impact the drivers' behaviors of RLR, and to predict potential RLR in real time. In this research, 9-month's RLR events extracted from high-resolution traffic data collected by loop detectors from three signalized intersections were applied to identify the factors that significantly affect RLR behaviors. The data analysis indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the preceding vehicle runs through the intersection during yellow, and whether there is a vehicle passing through the intersection on the adjacent lane were significantly factors for RLR behaviors. Furthermore, due to the rare events nature of RLR, a modified rare events logistic regression model was developed for RLR prediction. The rare events logistic regression method has been applied in many fields for rare events studies and shows impressive performance, but so far none of previous research has applied this method to study RLR. The results showed that the rare events logistic regression model performed significantly better than the standard logistic regression model. More importantly, the proposed RLR prediction method is purely based on loop detector data collected from a single advance loop detector located 400 feet away from stop-bar. This brings great potential for future field applications of the proposed method since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly.

  13. PASSENGER CAR EQUIVALENT (PCE OF THROUGH VEHICLES AT SIGNALIZED INTERSECTIONS IN DHAKA METROPOLITAN CITY, BANGLADESH

    Directory of Open Access Journals (Sweden)

    Partha SAHA

    2009-01-01

    PCE currently used in Bangladesh is based on the values given in Geometric Design of Highways (MoC, 2001, which is the modification of the values given by Webster (1958 on the study performed in the United Kingdom in the 50's and 60's. But now-a-days, the situation is far different both for traffic and road user as the characteristics have changed from that time. Hence, in this paper an empirical study was carried out to determine the PCE of different types of vehicle that reflect the actual traffic conditions of Dhaka Metropolitan City. Data were collected from ten signalized intersections and the headway ratio method was used to estimate the PCE of different types of vehicle. The main vehicle compositions observed during the study period consist of passenger cars, auto-rickshaws, mini-buses and buses. The PCE obtained in this study were compared to the values established earlier. It was found that the estimated PCE are smaller than those being used in Bangladesh.

  14. Prediction of CO concentrations from road traffic at signalized intersections using CAL3QHC model: the Khon Kaen case study

    Directory of Open Access Journals (Sweden)

    Prungchan Wongwises

    2005-11-01

    Full Text Available Based on the US EPA air pollution model, CAL3QHC version 2.0 was applied to predict carbon monoxide (CO concentrations from road traffic at three signalized intersections in Khon Kaen province. Four data groups required by the model, namely site parameters, traffic parameters, meteorological parameters and emission parameters were collected at each intersection and have been used as the inputs to the model. The prediction results were compared to the measurement. The results showed that the predicted CO concentration variations corresponding mostly to the measurement except at some hours when there was not good agreement due to an extreme upwind location of receptor, low wind speed, raining period, other out-sources of CO concentration such as another near intersection and parking lot. However, this study shows that the CAL3QHC model can be applied to predict CO concentration in the environmental condition of Thailand quite well. Moreover, the model might be used as a tool for assessing traffic air pollution at roadway intersection as well as for air quality management.

  15. Micro-simulation of vehicle conflicts involving right-turn vehicles at signalized intersections based on cellular automata.

    Science.gov (United States)

    Chai, C; Wong, Y D

    2014-02-01

    At intersection, vehicles coming from different directions conflict with each other. Improper geometric design and signal settings at signalized intersection will increase occurrence of conflicts between road users and results in a reduction of the safety level. This study established a cellular automata (CA) model to simulate vehicular interactions involving right-turn vehicles (as similar to left-turn vehicles in US). Through various simulation scenarios for four case cross-intersections, the relationships between conflict occurrences involving right-turn vehicles with traffic volume and right-turn movement control strategies are analyzed. Impacts of traffic volume, permissive right-turn compared to red-amber-green (RAG) arrow, shared straight-through and right-turn lane as well as signal setting are estimated from simulation results. The simulation model is found to be able to provide reasonable assessment of conflicts through comparison of existed simulation approach and observed accidents. Through the proposed approach, prediction models for occurrences and severity of vehicle conflicts can be developed for various geometric layouts and traffic control strategies.

  16. Set methods of left-turn waiting zone at signalized intersection

    Institute of Scientific and Technical Information of China (English)

    DING Wei; YANG Xiao-guang; YANG Xiao-long

    2009-01-01

    To maximize the number of vehicles passing by the stop-line in a cycle and improve the operation ef-ficiency of intersection in China, the settlement of left-turn lane waiting-zone is becoming prevailing. Based on conflicting-point method, the internal mechanism of left-turn flow after stopping line was analyzed through taking postposition left-turn lane waiting-zone intersection for instance. The relationship between the first left-turn vehi-cle and the last vehicle of previous phase passing the conflicting point was expounded. According to the time of successive arriving of two vehicle flows at conflicting-point, the reasonable layout for waiting area of left-turn ve-hicles was researched when the clearance index was less than O. The results suggest that the appropriate layoutfor waiting area of left-turning vehicles can improve the operation efficiency of intersections.

  17. Ecdysone signaling at metamorphosis triggers apoptosis of Drosophila abdominal muscles.

    Science.gov (United States)

    Zirin, Jonathan; Cheng, Daojun; Dhanyasi, Nagaraju; Cho, Julio; Dura, Jean-Maurice; Vijayraghavan, Krishnaswamy; Perrimon, Norbert

    2013-11-15

    One of the most dramatic examples of programmed cell death occurs during Drosophila metamorphosis, when most of the larval tissues are destroyed in a process termed histolysis. Much of our understanding of this process comes from analyses of salivary gland and midgut cell death. In contrast, relatively little is known about the degradation of the larval musculature. Here, we analyze the programmed destruction of the abdominal dorsal exterior oblique muscle (DEOM) which occurs during the first 24h of metamorphosis. We find that ecdysone signaling through Ecdysone receptor isoform B1 is required cell autonomously for the muscle death. Furthermore, we show that the orphan nuclear receptor FTZ-F1, opposed by another nuclear receptor, HR39, plays a critical role in the timing of DEOM histolysis. Finally, we show that unlike the histolysis of salivary gland and midgut, abdominal muscle death occurs by apoptosis, and does not require autophagy. Thus, there is no set rule as to the role of autophagy and apoptosis during Drosophila histolysis.

  18. A hazard-based duration model for analyzing crossing behavior of cyclists and electric bike riders at signalized intersections.

    Science.gov (United States)

    Yang, Xiaobao; Huan, Mei; Abdel-Aty, Mohamed; Peng, Yichuan; Gao, Ziyou

    2015-01-01

    This paper presents a hazard-based duration approach to investigate riders' waiting times, violation hazards, associated risk factors, and their differences between cyclists and electric bike riders at signalized intersections. A total of 2322 two-wheeled riders approaching the intersections during red light periods were observed in Beijing, China. The data were classified into censored and uncensored data to distinguish between safe crossing and red-light running behavior. The results indicated that the red-light crossing behavior of most riders was dependent on waiting time. They were inclined to terminate waiting behavior and run against the traffic light with the increase of waiting duration. Over half of the observed riders cannot endure 49s or longer. 25% of the riders can endure 97s or longer. Rider type, gender, waiting position, conformity tendency and crossing traffic volume were identified to have significant effects on riders' waiting times and violation hazards. Electric bike riders were found to be more sensitive to the external risk factors such as other riders' crossing behavior and crossing traffic volume than cyclists. Moreover, unobserved heterogeneity was examined in the proposed models. The finding of this paper can explain when and why cyclists and electric bike riders run against the red light at intersections. The results of this paper are useful for traffic design and management agencies to implement strategies to enhance the safety of riders.

  19. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis.

    Science.gov (United States)

    Zeng, Chong; Xing, Rui; Liu, Jing; Xing, Feiyue

    2016-01-01

    Apoptosis is a normally biological phenomenon in various organisms, involving complexly molecular mechanisms with a series of signaling processes. Notch signaling is found evolutionarily conserved in many species, playing a critical role in embryonic development, normal tissue homeostasis, angiogenesis and immunoregulation. The focus of this review is on currently novel advances about roles of CSL-dependent and independent Notch signaling pathways in cell apoptosis. The CSL can bind Notch intracellular domain (NIC) to act as a switch in mediating transcriptional activation or inactivation of the Notch signaling pathway downstream genes in the nucleus. It shows that CSL-dependent signaling regulates the cell apoptosis through Hes-1-PTEN-AKT-mTOR signaling, but rather the CSL-independent signaling mediates the cell apoptosis possibly via NIC-mTORC2-AKT-mTOR signaling, providing a new insight into apoptotic mechanisms.

  20. E2F and p53 induce apoptosis independently during Drosophila development but intersect in the context of DNA damage.

    Directory of Open Access Journals (Sweden)

    Nam-Sung Moon

    2008-08-01

    Full Text Available In mammalian cells, RB/E2F and p53 are intimately connected, and crosstalk between these pathways is critical for the induction of cell cycle arrest or cell death in response to cellular stresses. Here we have investigated the genetic interactions between RBF/E2F and p53 pathways during Drosophila development. Unexpectedly, we find that the pro-apoptotic activities of E2F and p53 are independent of one another when examined in the context of Drosophila development: apoptosis induced by the deregulation of dE2F1, or by the overexpression of dE2F1, is unaffected by the elimination of dp53; conversely, dp53-induced phenotypes are unaffected by the elimination of dE2F activity. However, dE2F and dp53 converge in the context of a DNA damage response. Both dE2F1/dDP and dp53 are required for DNA damage-induced cell death, and the analysis of rbf1 mutant eye discs indicates that dE2F1/dDP and dp53 cooperatively promote cell death in irradiated discs. In this context, the further deregulation in the expression of pro-apoptotic genes generates an additional sensitivity to apoptosis that requires both dE2F/dDP and dp53 activity. This sensitivity differs from DNA damage-induced apoptosis in wild-type discs (and from dE2F/dDP-induced apoptosis in un-irradiated rbf1 mutant eye discs by being dependent on both hid and reaper. These results show that pro-apoptotic activities of dE2F1 and dp53 are surprisingly separable: dp53 is required for dE2F-dependent apoptosis in the response to DNA damage, but it is not required for dE2F-dependent apoptosis caused simply by the inactivation of rbf1.

  1. Delay Estimates of Mixed Traffic Flow at Signalized Intersections in China

    Institute of Scientific and Technical Information of China (English)

    SU Yuelong; WEI Zheng; CHENG Sihan; YAO Danya; ZHANG Yi; LI Li

    2009-01-01

    Two characteristics of Chinese mixed traffic invalidate the conventional queuing delay estimates for western countries. First, the driving characteristics of Chinese drivers lead to different delays even though the other conditions are the same. Second, urban traffic flow in China is often hindered by pedestrians at intersections, such that imported intelligent traffic control systems do not work appropriately. Typical delay estimates for Chinese conditions were obtained from data for over 500 vehicle queues in Beijing collected using charge coupled device (CCD) cameras. The results show that the delays mainly depend on the pro-portion and positions of heavy vehicles in the queue, as well as the start-up situations (with or without inter-ference). A simplified delay estimation model considers vehicle types and positions that compares well with the observed traffic delays.

  2. Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Selvi Kunnimalaiyaan

    Full Text Available Despite improvement in therapeutic strategies, median survival in advanced hepatocellular carcinoma (HCC remains less than one year. Therefore, molecularly targeted compounds with less toxic profiles are needed. Xanthohumol (XN, a prenylated chalcone has been shown to have anti-proliferative effects in various cancers types in vitro. XN treatment in healthy mice and humans yielded favorable pharmacokinetics and bioavailability. Therefore, we determined to study the effects of XN and understand the mechanism of its action in HCC. The effects of XN on a panel of HCC cell lines were assessed for cell viability, colony forming ability, and cellular proliferation. Cell lysates were analyzed for pro-apoptotic (c-PARP and cleaved caspase-3 and anti-apoptotic markers (survivin, cyclin D1, and Mcl-1. XN concentrations of 5 μM and above significantly reduced the cell viability, colony forming ability and also confluency of all four HCC cell lines studied. Furthermore, growth suppression due to apoptosis was evidenced by increased expression of pro-apoptotic and reduced expression of anti-apoptotic proteins. Importantly, XN treatment inhibited the Notch signaling pathway as evidenced by the decrease in the expression of Notch1 and HES-1 proteins. Ectopic expression of Notch1 in HCC cells reverses the anti-proliferative effect of XN as evidenced by reduced growth suppression compared to control. Taken together these results suggested that XN mediated growth suppression is appeared to be mediated by the inhibition of the Notch signaling pathway. Therefore, our findings warrants further studies on XN as a potential agent for the treatment for HCC.

  3. Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma.

    Science.gov (United States)

    Kunnimalaiyaan, Selvi; Sokolowski, Kevin M; Balamurugan, Mariappan; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2015-01-01

    Despite improvement in therapeutic strategies, median survival in advanced hepatocellular carcinoma (HCC) remains less than one year. Therefore, molecularly targeted compounds with less toxic profiles are needed. Xanthohumol (XN), a prenylated chalcone has been shown to have anti-proliferative effects in various cancers types in vitro. XN treatment in healthy mice and humans yielded favorable pharmacokinetics and bioavailability. Therefore, we determined to study the effects of XN and understand the mechanism of its action in HCC. The effects of XN on a panel of HCC cell lines were assessed for cell viability, colony forming ability, and cellular proliferation. Cell lysates were analyzed for pro-apoptotic (c-PARP and cleaved caspase-3) and anti-apoptotic markers (survivin, cyclin D1, and Mcl-1). XN concentrations of 5 μM and above significantly reduced the cell viability, colony forming ability and also confluency of all four HCC cell lines studied. Furthermore, growth suppression due to apoptosis was evidenced by increased expression of pro-apoptotic and reduced expression of anti-apoptotic proteins. Importantly, XN treatment inhibited the Notch signaling pathway as evidenced by the decrease in the expression of Notch1 and HES-1 proteins. Ectopic expression of Notch1 in HCC cells reverses the anti-proliferative effect of XN as evidenced by reduced growth suppression compared to control. Taken together these results suggested that XN mediated growth suppression is appeared to be mediated by the inhibition of the Notch signaling pathway. Therefore, our findings warrants further studies on XN as a potential agent for the treatment for HCC.

  4. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou, E-mail: xinzhou_yang@hotmail.com

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  5. Game Theory Model of Traffic Participants within Amber Time at Signalized Intersection

    Directory of Open Access Journals (Sweden)

    Weiwei Qi

    2014-01-01

    Full Text Available The traffic light scheme is composed of red, green, and amber lights, and it has been defined clearly for the traffic access of red and green lights; however, the definition of that for the amber light is indistinct, which leads to the appearance of uncertainty factors and serious traffic conflicts during the amber light. At present, the traffic administrations are faced with the decision of whether to forbid passing or not during the amber light in the cities of China. On one hand, it will go against the purpose of setting amber lights if forbidding passing; on the other hand, it may lead to a mess of traffic flow running if not. And meanwhile the drivers are faced with the decision of passing the intersection or stopping during the amber light as well. So the decision-making behavior of traffic administrations and drivers can be converted into a double game model. And through quantification of their earnings in different choice conditions, the optimum decision-making plan under specific conditions could be solved via the Nash equilibrium solution concept. Thus the results will provide a basis for the formulation of the traffic management strategy.

  6. Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections

    Science.gov (United States)

    Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2016-01-01

    With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network. PMID:27455270

  7. Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Leyre Azpilicueta

    2016-07-01

    Full Text Available With the growing demand of Intelligent Transportation Systems (ITS for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network.

  8. Evaluation of Deployment Challenges of Wireless Sensor Networks at Signalized Intersections.

    Science.gov (United States)

    Azpilicueta, Leyre; López-Iturri, Peio; Aguirre, Erik; Martínez, Carlos; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2016-07-22

    With the growing demand of Intelligent Transportation Systems (ITS) for safer and more efficient transportation, research on and development of such vehicular communication systems have increased considerably in the last years. The use of wireless networks in vehicular environments has grown exponentially. However, it is highly important to analyze radio propagation prior to the deployment of a wireless sensor network in such complex scenarios. In this work, the radio wave characterization for ISM 2.4 GHz and 5 GHz Wireless Sensor Networks (WSNs) deployed taking advantage of the existence of traffic light infrastructure has been assessed. By means of an in-house developed 3D ray launching algorithm, the impact of topology as well as urban morphology of the environment has been analyzed, emulating the realistic operation in the framework of the scenario. The complexity of the scenario, which is an intersection city area with traffic lights, vehicles, people, buildings, vegetation and urban environment, makes necessary the channel characterization with accurate models before the deployment of wireless networks. A measurement campaign has been conducted emulating the interaction of the system, in the vicinity of pedestrians as well as nearby vehicles. A real time interactive application has been developed and tested in order to visualize and monitor traffic as well as pedestrian user location and behavior. Results show that the use of deterministic tools in WSN deployment can aid in providing optimal layouts in terms of coverage, capacity and energy efficiency of the network.

  9. Signaling pathways of the ING proteins in apoptosis.

    Science.gov (United States)

    Shah, Sitar; Riabowol, Karl

    2009-05-01

    Members of the ING family of type II tumor suppressors reside in different chromatin regulatory complexes and are stoichiometeric members of histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes. It has been frequently observed that expressing ING proteins promotes apoptosis in both normal and transformed cells of different species. They have also been reported to either rely upon p53, or to add to its ability to promote programmed cell death (apoptosis) although whether ING proteins require p53 to induce apoptosis is now questionable based upon observations using knockout cell lines and animal models. Genetic studies in model organisms, and particularly in Caenorhabditis elegans, have identified different pathways involved in apoptosis during development, in the germ line and in response to various forms of stress including DNA damage. In this review we summarize structural features of the INGs and recent observations made in knockout models of Mus musculus and Caenorhabditis elegans that have helped to further clarify the functions of the ING proteins in biochemical pathways leading to apoptosis. Based upon these observations we propose a model for how ING proteins may act both independently and in concert with p53 to promote apoptosis.

  10. Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway.

    Science.gov (United States)

    Niu, Huiyan; Zhang, Yifei; Wu, Baogang; Zhang, Yi; Jiang, Hongfang; He, Ping

    2014-09-01

    Lung cancer is the leading cause of cancer‑related mortality in humans. The prognosis for advanced lung cancer patients is extremely poor. Current standard care is rather ineffective for prolonging patient life while preserving satisfactory quality of life due to adverse side-effects. Matrine extracted from the traditional Chinese herbal plant Sophora flavescens was shown to induce cancer cell death in vitro. The aim of this study was to investigate the effect of matrine on the proliferation and apoptosis of lung cancer cells and the molecular basis of matrine-induced apoptosis. The results showed that matrine inhibited cell proliferation and induced apoptosis in lung cancer A549 and 95D cells in a dose- and time-dependent manner. The apoptotic effects of matrine on lung cancer cells appeared to act via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway and downregulation of the expression of the inhibitor of apoptosis protein (IAP) family proteins. Matrine exerts its cancer-killing effect via promoting apoptosis in lung cancer cells and may be a useful adjuvant therapeutic scheme for treating advanced lung cancer patients.

  11. Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells.

    Science.gov (United States)

    Espinoza, Ingrid; Miele, Lucio

    2013-11-28

    Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal and postnatal tissue differentiation. Roles for Notch in carcinogenesis, in the biology of cancer stem cells, tumor angiogenesis and epithelial-to-mesenchymal transition (EMT) have been reported. This mini-review describes the role of Notch signaling deregulation in EMT and tumor aggressiveness. We describe how accumulated evidence suggests that Notch inhibition is an attractive strategy for the treatment of several cancers, at least in part because of its potential to reverse or prevent EMT.

  12. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    Science.gov (United States)

    Breitel, Dario A; Chappell-Maor, Louise; Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-03-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.

  13. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response.

    Science.gov (United States)

    Zhang, Lu; Wang, Kui; Lei, Yunlong; Li, Qifu; Nice, Edouard Collins; Huang, Canhua

    2015-12-01

    Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer.

  14. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    Directory of Open Access Journals (Sweden)

    Dario A Breitel

    2016-03-01

    Full Text Available The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A, a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA. Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1 protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.

  15. The molecular machinery regulating apoptosis signal transduction and its implication in human physiology and pathophysiologies.

    Science.gov (United States)

    Hellwig, C T; Passante, E; Rehm, M

    2011-02-01

    The regulation of apoptotic cell death, a terminal and fatal cell fate decision, has been intensely investigated and, due to its paramount implications for human health and disease, has sparked one of the most prolific and competitive research fields in biological and biomedical sciences of the past decades. Many key components of the molecular machinery processing and transducing apoptotic cell death signals have been described in great detail by now, dramatically advancing our understanding of how the network of apoptosis signaling proteins integrates and regulates cell death signals, and ultimately executes apoptosis. Building on the latest significant advances in deciphering apoptosis signal transduction as well as on the central original groundbreaking discoveries in cell death research, we here present an in-depth description of the current knowledge on the core molecular machinery of apoptotic signaling and how it is implicated in human physiology and pathophysiologies.

  16. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway.

    Science.gov (United States)

    Wang, Wen-Ke; Lu, Qing-Hua; Zhang, Jia-Ning; Wang, Ben; Liu, Xiang-Juan; An, Feng-Shuang; Qin, Wei-Dong; Chen, Xue-Ying; Dong, Wen-Qian; Zhang, Cheng; Zhang, Yun; Zhang, Ming-Xiang

    2014-11-01

    Apoptosis is a key event involved in diabetic cardiomyopathy. The expression of high mobility group box 1 protein (HMGB1) is up-regulated in diabetic mice. However, the molecular mechanism of high glucose (HG)-induced cardiomyocyte apoptosis remains obscure. We aimed to determine the role of HMGB1 in HG-induced apoptosis of cardiomyocytes. Treating neonatal primary cardiomyocytes with HG increased cell apoptosis, which was accompanied by elevated levels of HMGB1. Inhibition of HMGB1 by short-hairpin RNA significantly decreased HG-induced cell apoptosis by reducing caspase-3 activation and ratio of Bcl2-associated X protein to B-cell lymphoma/leukemia-2 (bax/bcl-2). Furthermore, HG activated E26 transformation-specific sequence-1 (Ets-1), and HMGB1 inhibition attenuated HG-induced activation of Ets-1 via extracellular signal-regulated kinase 1/2 (ERK1/2) signalling. In addition, inhibition of Ets-1 significantly decreased HG-induced cardiomyocyte apoptosis. Similar results were observed in streptozotocin-treated diabetic mice. Inhibition of HMGB1 by short-hairpin RNA markedly decreased myocardial cell apoptosis and activation of ERK and Ets-1 in diabetic mice. In conclusion, inhibition of HMGB1 may protect against hyperglycaemia-induced cardiomyocyte apoptosis by down-regulating ERK-dependent activation of Ets-1.

  17. Stress-activated signaling responses leading to apoptosis following photodynamic therapy

    Science.gov (United States)

    Oleinick, Nancy L.; He, Jin; Xue, Liang-yan; Separovic, Duska

    1998-05-01

    Photodynamic treatment with the phthalocyanine Pc 4, a mitochondrially localizing photosensitizer, is an efficient inducer of cell death by apoptosis, a cell suicide pathway that can be triggered by physiological stimuli as well as by various types of cellular damage. Upon exposure of the dye- loaded cells to red light, several stress signalling pathways are rapidly activated. In murine L5178Y-R lymphoblasts, caspase activation and other hallmarks of the final phase of apoptosis are observed within a few minutes post-PDT. In Chinese hamster CHO-K1 cells, the first signs of apoptosis are not observed for 1 - 2 hours. The possible involvement of three parallel mitogen-activated protein kinase (MAPK) signalling pathways has been investigated. The extracellular- regulated kinases (ERK-1 and ERK-2), that are thought to promote cell growth, are not appreciably altered by PDT. However, PDT causes marked activation of the stress-activated protein kinase (SAPK) cascade in both cell types and of the p38/HOG-type kinase in CHO cells. Both of these latter pathways have been demonstrated to be associated with apoptosis. A specific inhibitor of the ERK pathway did not alter PDT-induced apoptosis; however, an inhibitor of the p38 pathway partially blocked PDT-induced apoptosis. Blockage of the SAPK pathway is being pursued by a genetic approach. It appears that the SAPK and p38 pathways may participate in signaling apoptosis in response to PDT with Pc 4.

  18. PTEN regulates colorectal epithelial apoptosis through Cdc42 signalling

    OpenAIRE

    Deevi, R; A. Fatehullah; Jagan, I; Nagaraju, M; Bingham, V; Campbell, F C

    2011-01-01

    Background: Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) regulation of the Rho-like GTPase Cdc42 has a central role in epithelial polarised growth, but effects of this molecular network on apoptosis remain unclear. Methods: To investigate the role of Cdc42 in PTEN-dependent cell death, we used flow cytometry, in vitro pull-down assays, poly(ADP ribose) polymerase (PARP) cleavage and other immunoblots in isogenic PTEN-expressing and -deficient colorectal cells (HCT116PTEN+/...

  19. Livin abrogates apoptosis of SPC-A1 cell by regulating JNKI signaling pathway.

    Science.gov (United States)

    Chen, Yu-Sheng; Li, Hong-Ru; Lin, Ming; Chen, Gang; Xie, Bao-Song; Xu, Neng-Luan; Lin, Li-Fang

    2010-06-01

    Livin, a novel member of inhibitors of apoptosis protein, is highly expressed in tumor tissues. It is a potential target in tumor therapy. Silencing its gene expression has been found to promote tumor cell apoptosis or increase tumor sensitivity to therapies. This paper studied the effect of livin anti-apoptotic activity and examined its molecular mechanisms. In the study, higher levels of cell apoptosis were measured by FACS in the experiment group with livin expression silenced than that in controls (P SPC-A1 by activating JNK1 signaling pathway and inhibiting caspase-3 activation.

  20. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis.

    Science.gov (United States)

    Endo, Tsutomu; Romer, Katherine A; Anderson, Ericka L; Baltus, Andrew E; de Rooij, Dirk G; Page, David C

    2015-05-05

    Mammalian spermatogenesis--the transformation of stem cells into millions of haploid spermatozoa--is elaborately organized in time and space. We explored the underlying regulatory mechanisms by genetically and chemically perturbing spermatogenesis in vivo, focusing on spermatogonial differentiation, which begins a series of amplifying divisions, and meiotic initiation, which ends these divisions. We first found that, in mice lacking the retinoic acid (RA) target gene Stimulated by retinoic acid gene 8 (Stra8), undifferentiated spermatogonia accumulated in unusually high numbers as early as 10 d after birth, whereas differentiating spermatogonia were depleted. We thus conclude that Stra8, previously shown to be required for meiotic initiation, also promotes (but is not strictly required for) spermatogonial differentiation. Second, we found that injection of RA into wild-type adult males induced, independently, precocious spermatogonial differentiation and precocious meiotic initiation; thus, RA acts instructively on germ cells at both transitions. Third, the competencies of germ cells to undergo spermatogonial differentiation or meiotic initiation in response to RA were found to be distinct, periodic, and limited to particular seminiferous stages. Competencies for both transitions begin while RA levels are low, so that the germ cells respond as soon as RA levels rise. Together with other findings, our results demonstrate that periodic RA-STRA8 signaling intersects with periodic germ-cell competencies to regulate two distinct, cell-type-specific responses: spermatogonial differentiation and meiotic initiation. This simple mechanism, with one signal both starting and ending the amplifying divisions, contributes to the prodigious output of spermatozoa and to the elaborate organization of spermatogenesis.

  1. Role of cell adhesion signal molecules in hepatocellular carcinoma cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jian-Min Su; Li-Ying Wang; Yu-Long Liang; Xi-Liang Zha

    2005-01-01

    AIM: Cell adhesion molecules and their signal molecules play a very important role in carcinogenesis. The aim of this study is to elucidate the role of these molecules and the signal molecules of integrins and E-cadherins, such as (focal adhesion kinase) FAK, (integrin linked kinase)ILK, and β-catenin in hepatocellular carcinoma cell apoptosis.METHODS: We first synthesized the small molecular compound, S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and identified it, by element analysis and 1H NMR. To establish the apoptosis model of the SMMC-7721 hepatocellular carcinoma cell, we treated cells with DCVC in EBSS for different concentrations or for various length times in the presence of 20 μmol/L N,N-diphenyl-p-phenylenediamine,which blocks necrotic cell death and identified this model by flow cytometry and DNA ladder. Then we studied the changes of FAK, ILK, β-catenin, and PKB in this apoptotic model by Western blot.RESULTS: We found that the loss or decrease of cell adhesion signal molecules is an important reason in apoptosis of SMMC-7721 hepatocellular carcinoma cell and the apoptosis of SMMC-7721 cell was preceded by the loss or decrease of FAK, ILK, PKB, and β-catenin or the damage of cell-matrix and cell-cell adhesion.CONCLUSION: Our results suggested that the decrease of adhesion signal molecules, FAK, ILK, PKB, and β-catenin,could induce hepatocellular carcinoma cell apoptosis.

  2. Phloroglucinol induces apoptosis via apoptotic signaling pathways in HT-29 colon cancer cells

    Science.gov (United States)

    KANG, MI-HYE; KIM, IN-HYE; NAM, TAEK-JEO NG

    2014-01-01

    Phloroglucinol is a polyphenolic compound that is used to treat and prevent several human diseases, as it exerts beneficial biological activities, including anti-oxidant, anti-inflammatory and anticancer properties. The aim of the present study was to investigate the effects of phloroglucinol on apoptotic signaling pathways in HT-29 colon cancer cells. The results indicated that phloroglucinol suppressed cell viability and induced apoptosis in HT-29 cells in a concentration-dependent manner. Phloroglucinol treatment of HT-29 cells resulted in characteristic apoptosis-related changes: altered Bcl-2 family proteins, cytochrome c release, and activation of caspase-3 and caspase-8. This study also showed that proteins involved in apoptosis were stimulated by treatment with phloroglucinol. These findings demonstrated that phloroglucinol exerts anticancer activity in HT-29 colon cancer cells through induction of apoptosis. PMID:25070748

  3. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: dwtong@nwsuaf.edu.cn [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  4. TGF-β1/SMAD SIGNALING PATHWAY MEDIATES p53-DEPENDENT APOPTOSIS IN HEPATOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To determine whether transforming growth factor betal ( TGF-β1 )/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines. Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study. TGF-β31-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay. For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements. After transfection, cells were treated with TGF-β1, then assayed for luciferase activity. Results The apoptosis rate of HepG2 cell lines (48.51% ± 8.21% ) was significantly higher than control (12. 72% ±2. 18%, P <0. 05 ). But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines. The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4. 38) was significantly higher than control (1.00, P <0. 05). But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control. Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines. Smad4 is a central mediator of TGF-β1 signaling transdution pathway. TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.

  5. The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells.

    Directory of Open Access Journals (Sweden)

    Gwendaline Guidicelli

    Full Text Available BACKGROUND: The amount of inosine monophosphate dehydrogenase (IMPDH, a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP, is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we strengthened the essential role played by this small GTPase in the necrotic signal by silencing Cdc42 and by the ectopic expression of a constitutive active mutant of Cdc42. Since resistance to apoptosis is an essential step for the tumorigenesis process, we next examined the effect of the MPA-mediated necrotic signal on different tumor cells demonstrating various mechanisms of resistance to apoptosis (Bcl2-, HSP70-, Lyn-, BCR-ABL-overexpressing cells. All tested cells remained sensitive to MPA-mediated necrotic signal. Furthermore, inhibition of IMPDH activity in Chronic Lymphocytic Leukemia cells was significantly more efficient at eliminating malignant cells than apoptotic inducers. CONCLUSIONS/SIGNIFICANCE: These findings indicate that necrosis and apoptosis are split signals that share few if any common hub of signaling. In addition, the necrotic signaling pathway induced by depletion of the cellular amount of GTP/GDP would be of great interest to eliminate apoptotic-resistant tumor cells.

  6. Activation of Wnt/β-catenin signaling increases apoptosis in melanoma cells treated with trail.

    Directory of Open Access Journals (Sweden)

    Zachary F Zimmerman

    Full Text Available While the TRAIL pathway represents a promising therapeutic target in melanoma, resistance to TRAIL-mediated apoptosis remains a barrier to its successful adoption. Since the Wnt/β-catenin pathway has been implicated in facilitating melanoma cell apoptosis, we investigated the effect of Wnt/β-catenin signaling on regulating the responses of melanoma cells to TRAIL. Co-treatment of melanoma cell lines with WNT3A-conditioned media and recombinant TRAIL significantly enhanced apoptosis compared to treatment with TRAIL alone. This apoptosis correlates with increased abundance of the pro-apoptotic proteins BCL2L11 and BBC3, and with decreased abundance of the anti-apoptotic regulator Mcl1. We then confirmed the involvement of the Wnt/β-catenin signaling pathway by demonstrating that siRNA-mediated knockdown of an intracellular β-catenin antagonist, AXIN1, or treating cells with an inhibitor of GSK-3 also enhanced melanoma cell sensitivity to TRAIL. These studies describe a novel regulation of TRAIL sensitivity in melanoma by Wnt/β-catenin signaling, and suggest that strategies to enhance Wnt/β-catenin signaling in combination with TRAIL agonists warrant further investigation.

  7. Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets

    Indian Academy of Sciences (India)

    Chen Li; Qi-Wei Ge; Mitsuru Nakata; Hiroshi Matsuno; Satoru Miyano

    2007-01-01

    This paper first presents basic Petri net components representing molecular interactions and mechanisms of signalling pathways, and introduces a method to construct a Petri net model of a signalling pathway with these components. Then a simulation method of determining the delay time of transitions, by using timed Petri nets – i.e. the time taken in firing of each transition – is proposed based on some simple principles that the number of tokens flowed into a place is equivalent to the number of tokens flowed out. Finally, the availability of proposed method is confirmed by observing signalling transductions in biological pathways through simulation experiments of the apoptosis signalling pathways as an example.

  8. The suppressor of cytokine signaling SOCS1 promotes apoptosis of intestinal epithelial cells via p53 signaling in Crohn's disease.

    Science.gov (United States)

    Cui, Xiaopeng; Shan, Xiaohang; Qian, Ji; Ji, Qianqian; Wang, Liang; Wang, Xiaotong; Li, Manhua; Ding, Haifang; Liu, Qingqing; Chen, Lingling; Zhang, Dongmei; Ni, Runzhou

    2016-08-01

    The suppressor of cytokine signaling SOCS1 is a member of the cytokine signaling pathway inhibitor family, which is induced by the IFN-γ induced JAK signaling pathway. The expression of SOCS1 has been found to increase in Crohn's disease (CD) patients, but the role of SOCS1 in intestinal epithelium is unclear. This study was designed to investigate whether SOCS1 has a role in the death of intestinal epithelial cells and intestinal injury. The results showed that the expression of SOCS1 increased in CD patients, and the expression of SOCS1, p-p53 and PUMA increased in the mouse TNBS induced colitis model. Using IFN-γ treated HT-29 cells as an apoptotic model of intestinal epithelial cells in vitro, we confirmed that SOCS1 promoted apoptosis of intestinal epithelial cells by activating p53. In HT-29 cells which were treated with IFN-γ, the interaction between p53 and SOCS1 and phosphorylation of p53 were significantly higher than untreated cells. When knocking SOCS1 down by using SOCS1 siRNA, phosphorylation of p53 and apoptosis of intestinal epithelial cells which was induced by IFN-γ were significantly inhibited. In summary, our findings suggest that SOCS1 may promote apoptosis of intestinal epithelial cells at least partly through mediating p53 signaling.

  9. Chloral Hydrate Treatment Induced Apoptosis of Macrophages via Fas Signaling Pathway

    Science.gov (United States)

    Cai, Jun; Peng, Yanxia; Chen, Ting; Liao, Huanjin; Zhang, Lifang; Chen, Qiuhua; He, Yiming; Wu, Ping; Xie, Tong; Pan, Qingjun

    2016-01-01

    Background There are recent reports on several anesthetics that have anti-inflammatory and anti-infective effects apart from their uses for pain relief and muscle relaxation. Chloral hydrate is a clinical anesthetic drug and sedative that has also been reported to attenuate inflammatory response, but the mechanisms are not clearly understood. Material/Methods This study investigated the effect of chloral hydrate treatment on the apoptosis of macrophages and explored the underlying mechanisms. RAW264.7 macrophages were treated with various concentrations of chloral hydrate for various lengths of time. Morphological changes were observed under a light microscope and apoptosis was detected with annexin-V-FITC/PI double-staining assay, Hochest 33258 and DNA ladder assay, the expression of Fas/FasL was detected with a flow cytometer, and the Fas signaling pathway was assessed by Western blotting. Results The results showed that chloral hydrate treatment induced the morphology of RAW264.7 macrophages to change shape from typical fusiform to round in a concentration- and time-dependent manner, and was finally suspended in the supernatant. For the induction of apoptosis, chloral hydrate treatment induced the apoptosis of RAW264.7 macrophages from early-to-late stage apoptosis in a concentration- and time-dependent manner. For the mechanism, chloral hydrate treatment induced higher expression of Fas on RAW264.7 macrophages, and was also associated with changes in the expression of proteins involved in Fas signaling pathways. Conclusions Chloral hydrate treatment can induce the apoptosis of RAW264.7 macrophages through the Fas signaling pathway, which may provide new options for adjunctive treatment of acute inflammation. PMID:27941708

  10. Phenotype-dependent apoptosis signalling in mesothelioma cells after selenite exposure

    Directory of Open Access Journals (Sweden)

    Rundlöf Anna-Klara

    2009-06-01

    Full Text Available Abstract Background Selenite is a promising anticancer agent which has been shown to induce apoptosis in malignant mesothelioma cells in a phenotype-dependent manner, where cells of the chemoresistant sarcomatoid phenotype are more sensitive. Methods In this paper, we investigate the apoptosis signalling mechanisms in sarcomatoid and epithelioid mesothelioma cells after selenite treatment. Apoptosis was measured with the Annexin-PI assay. The mitochondrial membrane potential, the expression of Bax, Bcl-XL, and the activation of caspase-3 were assayed with flow cytometry and a cytokeratin 18 cleavage assay. Signalling through JNK, p38, p53, and cathepsins B, D, and E was investigated with chemical inhibitors. Furthermore, the expression, nuclear translocation and DNA-binding activity of p53 was investigated using ICC, EMSA and the monitoring of p21 expression as a downstream event. Levels of thioredoxin (Trx were measured by ELISA. Results In both cell lines, 10 μM selenite caused apoptosis and a marked loss of mitochondrial membrane potential. Bax was up-regulated only in the sarcomatoid cell line, while the epithelioid cell line down-regulated Bcl-XL and showed greater caspase-3 activation. Nuclear translocation of p53 was seen in both cell lines, but very little p21 expression was induced. Chemical inhibition of p53 did not protect the cells from apoptosis. p53 lost its DNA binding ability after selenite treatment and was enriched in an inactive form. Levels of thioredoxin decreased after selenite treatment. Chemical inhibition of MAP kinases and cathepsins showed that p38 and cathepsin B had some mediatory effect while JNK had an anti-apoptotic role. Conclusion We delineate pathways of apoptosis signalling in response to selenite, showing differences between epithelioid and sarcomatoid mesothelioma cells. These differences may partly explain why sarcomatoid cells are more sensitive to selenite.

  11. Pedestrians´and cyclists´effect on capacity of right turn movement at signalized intersections

    DEFF Research Database (Denmark)

    Aagaard, Pierre E.; Rysgaard, Rikke; Jørgensen, N O

    1998-01-01

    Observations from 4 intersections in Copenhagen are used to formulate a model for the delays which right turning car traffic experience due to straight ahead going pedestrians and cyclists. The empirical data are used to formulate a simulation model which allows estimation of delays in cases...

  12. Silver Nanoparticles Induce HePG-2 Cells Apoptosis Through ROS-Mediated Signaling Pathways

    Science.gov (United States)

    Zhu, Bing; Li, Yinghua; Lin, Zhengfang; Zhao, Mingqi; Xu, Tiantian; Wang, Changbing; Deng, Ning

    2016-04-01

    Recently, silver nanoparticles (AgNPs) have been shown to provide a novel approach to overcome tumors, especially those of hepatocarcinoma. However, the anticancer mechanism of silver nanoparticles is unclear. Thus, the purpose of this study was to estimate the effect of AgNPs on proliferation and activation of ROS-mediated signaling pathway on human hepatocellular carcinoma HePG-2 cells. A simple chemical method for preparing AgNPs with superior anticancer activity has been showed in this study. AgNPs were detected by transmission electronic microscopy (TEM) and energy dispersive X-ray (EDX). The size distribution and zeta potential of silver nanoparticles were detected by Zetasizer Nano. The average size of AgNPs (2 nm) observably increased the cellular uptake by endocytosis. AgNPs markedly inhibited the proliferation of HePG-2 cells through induction of apoptosis with caspase-3 activation and PARP cleavage. AgNPs with dose-dependent manner significantly increased the apoptotic cell population (sub-G1). Furthermore, AgNP-induced apoptosis was found dependent on the overproduction of reactive oxygen species (ROS) and affecting of MAPKs and AKT signaling and DNA damage-mediated p53 phosphorylation to advance HePG-2 cells apoptosis. Therefore, our results show that the mechanism of ROS-mediated signaling pathways may provide useful information in AgNP-induced HePG-2 cell apoptosis.

  13. Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice.

    Science.gov (United States)

    Putcha, Girish V; Harris, Charles A; Moulder, Krista L; Easton, Rachael M; Thompson, Craig B; Johnson, Eugene M

    2002-04-29

    Trophic factor deprivation (TFD)-induced apoptosis in sympathetic neurons requires macromolecular synthesis-dependent BAX translocation, cytochrome c (cyt c) release, and caspase activation. Here, we report the contributions of other intrinsic and extrinsic pathway signals to these processes. Sympathetic neurons expressed all antiapoptotic BCL-2 proteins examined, yet expressed only certain BH3-only and multidomain proapoptotic BCL-2 family members. All coexpressed proapoptotic proteins did not, however, exhibit functional redundancy or compensatory expression, at least in the Bax-/-, Bak-/-, Bim-/-, Bid-/-, and Bad-/- neurons examined. Although the subcellular distribution or posttranslational modification of certain BCL-2 proteins changed with TFD, neither transcriptional nor posttranslational mechanisms regulated the expression or subcellular localization of BID, BAD, or BAK in this paradigm. Despite modest induction of Fas and FasL expression, Fas-mediated signaling did not contribute to TFD-induced apoptosis in sympathetic neurons. Similar findings were obtained with K+ withdrawal-induced apoptosis in cerebellar granule neurons, a model for activity-dependent neuronal survival in the CNS. Thus, expression alone does not guarantee functional redundancy (or compensation) among BCL-2 family members, and, at least in some cells, extrinsic pathway signaling and certain BH3-only proteins (i.e., BID and BAD) do not contribute to BAX-dependent cyt c release or apoptosis caused by TFD.

  14. A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway.

    Science.gov (United States)

    Kim, So Yong; Kim, Tae Jin; Lee, Ki-Young

    2008-06-11

    We report a novel function of peroxiredoxin-1 (Prx-1) in the ASK1-mediated signaling pathway. Prx-1 interacts with ASK1 via the thioredoxin-binding domain of ASK1 and this interaction is highly inducible by H2O2. However, catalytic mutants of Prx1, C52A, C173A, and C52A/C173A, could not undergo H2O2 inducible interactions, indicating that the redox-sensitive catalytic activity of Prx-1 is required for the interaction with ASK1. Prx-1 overexpression inhibited the activation of ASK1, and resulted in the inhibition of downstream signaling cascades such as the MKK3/6 and p38 pathway. In Prx-1 knockdown cells, ASK1, p38, and JNK were quickly activated, leading to apoptosis in response to H2O2. These findings suggest a negative role of Prx-1 in ASK1-induced apoptosis.

  15. Kinase Signaling in Apoptosis Induced by Saturated Fatty Acids in Pancreatic β-Cells.

    Science.gov (United States)

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Kovář, Jan

    2016-09-12

    Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells.

  16. MAPK signaling pathways regulate mitochondrial-mediated apoptosis induced by isoorientin in human hepatoblastoma cancer cells.

    Science.gov (United States)

    Yuan, Li; Wang, Jing; Xiao, Haifang; Wu, Wanqiang; Wang, Yutang; Liu, Xuebo

    2013-03-01

    Isoorientin (ISO) (CAS RN: 4261-42-1) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum. ISO is able to induce apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cells, however, the effects of ISO on MAPK signaling pathways remain unknown. The present study investigated the effects of ISO on this pathway, and the roles of MAPK kinases on mitochondrial-mediated apoptosis in HepG2 cells. The results showed that ISO induced cell death in a dose- and time-dependent manner, and induction apoptosis is main cause for ISO-induced cytotoxicity in HepG2 cells. ISO significantly inhibited the levels of ERK1/2 kinase and increased the expression of JNK and p38 kinases. Furthermore, U0126 (an ERK1/2 inhibitor) significantly enhanced the ISO-induced the Bax/Bcl-2 ratio, the release of cytochrome c to the cytosol fraction, and the levels of cleaved caspase-3. While SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor) markedly prevented the expression of these proteins induced by ISO. Furthermore, the ROS inhibitor (NAC) notably promoted the inhibited effect of ISO on the ERK1/2 kinase. NAC also suppressed the p-JNK and p-p38, but failed to reverse the effects of ISO. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells through inactivating ERK1/2 kinase and activating JNK and p38 kinases, and ROS stimulated by ISO is able to activate the MAPK singaling pathway as the upstream signaling molecules. Initiating event of the mitochondrial-mediated apoptosis induced by ISO is MAPK signals.

  17. Sangivamycin induces apoptosis by suppressing Erk signaling in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wakao, Kazufumi [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Takadama, Tadatoshi; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu-shi 400-8511 (Japan); Shigemi, Zenpei; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Higashi, Chizuka; Ohga, Rie; Taira, Takahiro [Department of Molecular Cell Biology, Faculty of Medicine, University of Yamanashi, Chuoh-shi 409-3898 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-02-07

    Highlights: • Sangivamycin induces the apoptosis of B cell lymphoma PEL cells. • Sangivamycin suppresses Erk signaling by inhibiting Erk phosphorylation in PEL cells. • The activation of Erk signaling is essential for PEL cell survival. • Sangivamycin induces the apoptosis of PEL cells without production of progeny virus. • Sangivamycin may serve as a novel drug for the treatment of PEL. - Abstract: Sangivamycin, a structural analog of adenosine and antibiotic exhibiting antitumor and antivirus activities, inhibits protein kinase C and the synthesis of both DNA and RNA. Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients and HIV-infected homosexual males. PEL cells are derived from post-germinal center B cells, and are infected with KSHV. Herein, we asked if sangivamycin might be useful to treat PEL. We found that sangivamycin killed PEL cells, and we explored the underlying mechanism. Sangivamycin treatment drastically decreased the viability of PEL cell lines compared to KSHV-uninfected B lymphoma cell lines. Sangivamycin induced the apoptosis of PEL cells by activating caspase-7 and -9. Further, sangivamycin suppressed the phosphorylation of Erk1/2 and Akt, thus inhibiting activation of the proteins. Inhibitors of Akt and MEK suppressed the proliferation of PEL cells compared to KSHV-uninfected cells. It is known that activation of Erk and Akt signaling inhibits apoptosis and promotes proliferation in PEL cells. Our data therefore suggest that sangivamycin induces apoptosis by inhibiting Erk and Akt signaling in such cells. We next investigated whether sangivamycin, in combination with an HSP90 inhibitor geldanamycin (GA) or valproate (valproic acid), potentiated the cytotoxic effects of the latter drugs on PEL cells. Compared to treatment with GA or valproate alone, the addition of sangivamycin enhanced cytotoxic activity. Our data thus indicate that

  18. Fluid shear stress inhibits TNF-α-induced osteoblast apoptosis via ERK5 signaling pathway.

    Science.gov (United States)

    Bin, Geng; Cuifang, Wang; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Yonggang, Chen; Liping, An; Jinglin, Ma; Yayi, Xia

    2015-10-09

    Fluid shear stress (FSS) is a potent mechanical stimulus and prevents cells from TNF-a-induced apoptosis. Recently, Extracellular-signal-regulated kinase 5 (ERK5) has been found to be involved in regulation of cell survival. However, little is known about the role of ERK5 signaling pathway in FSS-mediated anti-apoptotic effects in osteoblast. In this study, we show that FSS blocks TNF-a-induced apoptosis of MC3T3-E1 cells via ERK5 signaling pathway. We found that physiological FSS for 1 h significantly decreased TNF-α-induced MC3T3-E1 cells apoptosis. After inhibition of ERK5 activity by XMD8-92, a highly-selective inhibitor of ERK5 activity, the ability of FSS to inhibit TNF-α induced apoptosis was significantly decreased. Analysis of anti-apoptotic mechanisms indicated that exposure of MC3T3-E1 cells to FSS for 1 h increased phosphorylation of Bad and inhibited caspase-3 activity. After treatment with XMD8-92, phosphorylation of Bad by FSS was significantly blocked, but caspase-3 activity was increased. In summary, these findings indicated that FSS inhibits TNF-α-mediated signaling events in osteoblast by a mechanism dependent on activation of ERK5, and Bad is a crucial downstream target for ERK5. Those results implied that ERK5 signaling pathway play a crucial role in FSS-mediated anti-apoptotic effect in osteoblast. Thus, ERK5 signaling pathway may be a new drug treatment target of osteoporosis and related bone-wasting diseases.

  19. PE-induced apoptosis in SMMC-7721 cells: Involvement of Erk and Stat signalling pathways

    Science.gov (United States)

    XUE, LI; LI, MING; CHEN, TENG; SUN, HAIFENG; ZHU, JIE; LI, XIA; WU, FENG; WANG, BIAO; LI, JUPING; CHEN, YANJIONG

    2014-01-01

    Emerging evidence indicates that the redistribution of phosphatidylethanolamine (PE) across the bilayer of the plasma membrane is an important molecular marker for apoptosis. However, the effect of PE on apoptosis and the underlying mechanism of PE remain unclear. In the current study, MTT and flow cytometric assays were used to examine the effects of PE on apoptosis in SMMC-7721 cells. The level of mitochondrial membrane potential (ΔΨm) and the expression of Bax, Bcl-2, caspase-3, phospho-Erk and phospho-Stat1/2 in SMMC-7721 cells that were exposed to PE were also investigated. The results showed that PE inhibited proliferation, caused G0/G1 phase cell cycle arrest and induced apoptosis in SMMC-7721 cells in a dose-dependent manner. Rhodamine 123 staining showed that the treatment of SMMC-7721 cells with different concentrations of PE for 24 h significantly decreased the level of ΔΨm and exerted dose-dependent effects. Using immunofluorescence and western blotting, we found that the expression of Bax was upregulated, whereas that of Bcl-2 was downregulated in PE-induced apoptotic cells. In addition, these events were accompanied by an increase in caspase-3 expression in a dose-dependent manner following PE treatment. PE-induced apoptosis was accompanied by a decrease in Erk phosphorylation and by the activation of Stat1/2 phosphorylation in SMMC-7721 cells. In conclusion, the results suggested that PE-induced apoptosis is involved in upregulating the Bax/Bcl-2 protein ratio and decreasing the ΔΨm. Moreover, the results showed that the Erk and Stat1/2 signalling pathways may be involved in the process of PE-induced apoptosis. PMID:24821075

  20. China Intersections

    Institute of Scientific and Technical Information of China (English)

    Barbara Harbin Cobb

    2009-01-01

    <正>I’m a few years older than the People’s Re- public of China, but hardly an infant compared to China’s vast history and culture. China and I have intersected at many points, and I want to tell you about a few of them.

  1. Grounded Intersectionality

    DEFF Research Database (Denmark)

    Marfelt, Mikkel Mouritz

    2016-01-01

    oriented but still emphasizes stable concepts. Moreover, it does not give primacy to oppression. Finally, it adopts a critical stance on the nature of the macro, meso, and micro levels as dominant analytical perspectives. As a result, this paper focusses on the importance of intersectionality...

  2. Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Directory of Open Access Journals (Sweden)

    Benzhi Cai

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases.

  3. XIAP acts as a switch between type I and type II FAS-induced apoptosis signalling

    Science.gov (United States)

    Jost, Philipp J.; Grabow, Stephanie; Gray, Daniel; McKenzie, Mark D.; Nachbur, Ueli; Huang, David C.S.; Bouillet, Philippe; Thomas, Helen E.; Borner, Christoph; Silke, John; Strasser, Andreas; Kaufmann, Thomas

    2010-01-01

    FAS (APO-1/CD95) and its physiological ligand, FASL, regulate apoptotic death of unwanted or dangerous cells in many tissues, functioning as a guardian against autoimmunity and cancer development1-4. Distinct cell types differ in the mechanisms by which the ‘death receptor’ FAS triggers their apoptosis1-4. In type I cells, such as lymphocytes, activation of ‘effector caspases’ by FAS-induced activation of caspase-8 suffices for cell killing whereas in type II cells, including hepatocytes and pancreatic β-cells, amplification of the caspase cascade through caspase-8 mediated activation of the pro-apoptotic BCL-2 family member BID5 is essential6-8. Here we show, that loss of X-chromosome linked inhibitor of apoptosis (XIAP)9,10 function by gene-targeting or treatment with a second mitochondria-derived activator of caspases (SMAC11, also called DIABLO12: direct IAP binding protein with low pI) mimetic drug rendered hepatocytes independent of BID for FAS-induced apoptosis signalling. These results show that XIAP is the critical discriminator between type I versus type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions. PMID:19626005

  4. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway

    OpenAIRE

    ZHAO, XIANGQIAN; Jiang, Kai; Liang, Bin; Huang, Xiaoqiang

    2015-01-01

    Xanthohumol may prevent and cure diabetes and atherosis, have oxidation resistance and antiviral function as well as anticancer effect preventing cancer cell metastasis. We investigate whether the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Human liver cancer HepG2 cell were treated with 10, 20, 30 and 40 µM xanthohumol for 48 h. The present study showed that the anticancer effect of xanthohumol ...

  5. 无灯控错位交叉口交通流模型研究%Traffic Flow Model for Staggered Intersection without Signal Lamp

    Institute of Scientific and Technical Information of China (English)

    刘小明; 郑淑晖

    2012-01-01

    错位交叉口交通特性研究对于制定合理有效的错位交叉口交通管控策略具有重要意义.针对无灯控错位交叉口交通流间的冲突过程分别建立了相应的元胞自动机行为规则,进而应用上述规则对不同参数设置下的交通流演化过程进行数值模拟,并分析和讨论了主路进口道交通流密度变化对不同路段交通流平均速度的影响.研究结果表明,错位交叉口主路上较小的车流密度也能导致主路进口道及两T型口中间路段发生交通堵塞,每个T型口主路进口道交通流量变化会对另一个T型口主路进口道交通流平均速度产生较大影响,此外,无灯控下的交通堵塞也会呈现周期性的排队-消散过程.上述方法及结果可为错位交叉口实施信号控制提供有意义的指导.%Traffic characteristics investigation of staggered intersection lays the foundation of scientific and reasonable traffic control strategies. This paper first proposes the cellular automaton rules on the basis of the traffic conflict process analysis. Then with these rules, the traffic flow evolution under different parameters is presented by numerical simulations. The relationship between the arterial road traffic flow density and the average speed is explored. It is revealed that low traffic density on the main road of staggered intersections may lead to traffic congestions on the approach of main road and the road between two T-type intersections, and the average speed of traffic flow on each T-type import of main road was affected by the traffic flow changes of the other T-type approaches. Moreover, the traffic congestion on intersection without signal lamp is presented as a periodically queuing-dissipates process. The above methods and results provide meaningful guidance for traffic management and control implementation of staggered intersections without signal lamp.

  6. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis

    Science.gov (United States)

    Wu, L.; Xu, F.; Reinhard, B. M.

    2016-07-01

    It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF

  7. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts

    DEFF Research Database (Denmark)

    Friis, Martin B; Friborg, Christel R; Schneider, Linda;

    2005-01-01

    Cell shrinkage is a hallmark of the apoptotic mode of programmed cell death, but it is as yet unclear whether a reduction in cell volume is a primary activation signal of apoptosis. Here we studied the effect of an acute elevation of osmolarity (NaCl or sucrose additions, final osmolarity 687...... mosmol l(-1)) on NIH 3T3 fibroblasts to identify components involved in the signal transduction from shrinkage to apoptosis. After 1.5 h the activity of caspase-3 started to increase followed after 3 h by the appearance of many apoptotic-like bodies. The caspase-3 activity increase was greatly enhanced...... in cells expressing a constitutively active G protein, Rac (RacV12A3 cell), indicating that Rac acts upstream to caspase-3 activation. The stress-activated protein kinase, p38, was significantly activated by phosphorylation within 30 min after induction of osmotic shrinkage, the phosphorylation being...

  8. HCV upregulates Bim through the ROS/JNK signalling pathway, leading to Bax-mediated apoptosis.

    Science.gov (United States)

    Deng, Lin; Chen, Ming; Tanaka, Motofumi; Ku, Yonson; Itoh, Tomoo; Shoji, Ikuo; Hotta, Hak

    2015-09-01

    We previously reported that hepatitis C virus (HCV) infection induces Bax-triggered, mitochondrion-mediated apoptosis by using the HCV J6/JFH1 strain and Huh-7.5 cells. However, it was still unclear how HCV-induced Bax activation. In this study, we showed that the HCV-induced activation and mitochondrial accumulation of Bax were significantly attenuated by treatment with a general antioxidant, N-acetyl cysteine (NAC), or a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, with the result suggesting that the reactive oxygen species (ROS)/JNK signalling pathway is upstream of Bax activation in HCV-induced apoptosis. We also demonstrated that HCV infection transcriptionally activated the gene for the pro-apoptotic protein Bim and the protein expression of three major splice variants of Bim (BimEL, BimL and BimS). The HCV-induced increase in the Bim mRNA and protein levels was significantly counteracted by treatment with NAC or SP600125, suggesting that the ROS/JNK signalling pathway is involved in Bim upregulation. Moreover, HCV infection led to a marked accumulation of Bim on the mitochondria to facilitate its interaction with Bax. On the other hand, downregulation of Bim by siRNA (small interfering RNA) significantly prevented HCV-mediated activation of Bax and caspase 3. Taken together, these observations suggest that HCV-induced ROS/JNK signalling transcriptionally activates Bim expression, which leads to Bax activation and apoptosis induction.

  9. The Signaling Cascades of Ginkgolide B-Induced Apoptosis in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2007-11-01

    Full Text Available Ginkgolide B, the major active component of Ginkgo biloba extracts, can bothstimulate and inhibit apoptotic signaling. Here, we demonstrate that ginkgolide B caninduce the production of reactive oxygen species in MCF-7 breast cancer cells, leading toan increase in the intracellular concentrations of cytoplasmic free Ca2+ and nitric oxide(NO, loss of mitochondrial membrane potential (MMP, activation of caspase-9 and -3,and increase the mRNA expression levels of p53 and p21, which are known to be involvedin apoptotic signaling. In addition, prevention of ROS generation by pretreatment withN-acetyl cysteine (NAC could effectively block intracellular Ca2+ concentrationsincreases and apoptosis in ginkgolide B-treated MCF-7 cells. Moreover, pretreatment withnitric oxide (NO scavengers could inhibit ginkgolide B-induced MMP change andsequent apoptotic processes. Overall, our results signify that both ROS and NO playedimportant roles in ginkgolide B-induced apoptosis of MCF-7 cells. Based on these studyresults, we propose a model for ginkgolide B-induced cell apoptosis signaling cascades inMCF-7 cells.

  10. Role of CD137 signaling in dengue virus-mediated apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nagila, Amar [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Srisawat, Chatchawan [Department of Biochemistry, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Morchang, Atthapan; Yasamut, Umpa [Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok (Thailand); Puttikhunt, Chunya [Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Kasinrerk, Watchara [Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai (Thailand); Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at Chiang Mai University, Chiang Mai (Thailand); and others

    2011-07-08

    Highlights: {yields} For the first time the role of CD137 in dengue virus (DENV) infection. {yields} Induction of DENV-mediated apoptosis by CD137 signaling. {yields} Sensitization to CD137-mediated apoptosis by dengue virus capsid protein (DENV C). {yields} Nuclear localization of DENV C is required for CD137-mediated apoptosis. -- Abstract: Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.

  11. Potential Therapeutic Role of Hispidulin in Gastric Cancer through Induction of Apoptosis via NAG-1 Signaling

    Directory of Open Access Journals (Sweden)

    Chao Yuan Yu

    2013-01-01

    Full Text Available Gastric cancer is one of the most common malignant cancers due to poor prognoses and high mortality rates worldwide. However, an effective chemotherapeutic drug without side effects remains lacking. Saussurea involucrata (SI Kar. et Kir., also known as snow lotus, grows in mountainous rocky habitats at 2600 m elevation in the Tian Shan and A’er Tai regions of China. The ethyl acetate extract of SI had been shown to inhibit proliferation and induce apoptosis in various tumor cells. In this study, we demonstrated that Hispidulin, active ingredients in SI, inhibits the growth of AGS gastric cancer cells. After Hispidulin treatment, NAG-1 remained highly expressed, whereas COX-2 expression was downregulated. Flow cytometric analysis indicated that Hispidulin induces G1/S phase arrest and apoptosis in time- and concentration-dependent manners. G1/S arrest correlated with upregulated p21/WAF1 and p16 and downregulated cyclin D1 and cyclin E, independent of p53 pathway. In addition, Hispidulin can elevate Egr-1 expression and ERK1/2 activity, whereas ERK1/2 inhibitor markedly attenuated NAG-1 mediated apoptosis. Taken together, Hispidulin can efficiently activate ERK1/2 signaling followed by NAG-1 constitutive expression and trigger cell cycle arrest as well as apoptosis in cancer cell. It can be a potential compound for combination therapy of gastric cancer in the future.

  12. Blocking lhh Signaling Pathway Inhibits the Proliferation and Pro-motes the Apoptosis of PSCs

    Institute of Scientific and Technical Information of China (English)

    Kai XU; Fengjing GUO; Shuwei ZHANG; Cheng LIU; Feixiong WANG; Zhiguo ZHOU; Anmin CHEN

    2009-01-01

    The roles of Indian hedgehog (Ihh) signaling pathway in the proliferation and apoptosis of precartilaginous stem cells (PSCs) were investigated.PSCs,labeled with fibroblast growth factor receptor 3 (FGFR-3),were isolated from neonatal rats by immanomagnetic separation.After identifi-cation with FGFR-3 and Col Ⅱ,the cells were incubated with different concentrations of cyclopamine (cyclo),the specific inhibitor of lhh signaling pathway.The morphologic changes of the cells were observed under the inverted phase contrast microscope.The mRNA expression levels of Ibh,para-thyroid hormonerelated peptide (PTHrP),protein Patched (Ptch),Bcl-2 and p21 were detected by RT-PCR.The protein expression levels of Ihh and Ptch were measured by Western blot.MTT assay was used to examine the effects of cyclo on proliferation of PSCs.Apoptosis rate of PSCs was exam-ined by Annexin V/PI assay of flow cytometric analyses.After PSCs were incubated with cyclo,ob-vious morphologic changes were observed as compared with the control group.The mRNA expres-sion levels of PTHrP,Ptch and Bcl-2 were decreased to varying degrees in a cyclo dose-dependent manner.However,the expression levels of lhh and p21 mRNA were increased.The protein expres-sion of Ptch and Ihh had the same change as the mRNA expression.Meanwhile,cyclo could obvi-ously inhibit the proliferation and promote the apoptosis of PSCs.The results indicated that Ihh sig-naling pathway plays an important role in regulating the proliferation and apoptosis of PSCs,which is probably mediated by Bcl-2 and p21.

  13. Sorbitol induces apoptosis of human colorectal cancer cells via p38 MAPK signal transduction.

    Science.gov (United States)

    Lu, Xue; Li, Chun; Wang, Yong-Kun; Jiang, Kun; Gai, Xiao-Dong

    2014-06-01

    Sorbitol has been reported to have anticancer effects in several tumor models, however its effects on colorectal cancer remain elusive. In the present study, the effects of sorbitol on growth inhibition and apoptosis in the colorectal cancer HCT116 cell line were evaluated and its mechanism of action was examined. An MTT assay was utilized to determine the effect of sorbitol on HCT116 cell proliferation at different time points and variable doses. Western blot analysis was used to examine the effect of sorbitol on apoptosis-related protein expression and the p38 MAPK signaling pathway. The results revealed that sorbitol may inhibit the growth of HCT116 cells in a time- and dose-dependent manner. Following treatment with sorbitol for 3 h, western blotting demonstrated cleavage of the caspase-3 zymogen protein and a cleavage product of poly (ADP-ribose) polymerase (PARP), a known substrate of caspase-3, was also evident. During sorbitol-induced apoptosis, the mitochondrial pathway was activated by a dose-dependent increase in Bax expression and cytochrome c release, while the expression of anti-apoptotic protein Bcl-2 was significantly decreased in a dose-dependent manner. The investigation for the downstream signal pathway revealed that sorbitol-induced apoptosis was mediated by an increase in phosphorylated p38 MAPK expression. Overall, the observations from the present study imply that sorbitol causes increased levels of Bax in response to p38 MAPK signaling, which results in the initiation of the mitochondrial death cascade. Therefore, sorbitol is a promising candidate as a potential chemotherapeutic agent for the treatment of colorectal cancer HCT116 cells.

  14. Fractalkine is a "find-me" signal released by neurons undergoing ethanol-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Jennifer D Sokolowski

    2014-11-01

    Full Text Available Apoptotic neurons generated during normal brain development or secondary to pathologic insults are efficiently cleared from the central nervous system. Several soluble factors, including nucleotides, cytokines, and chemokines are released from injured neurons, signaling microglia to find and clear debris. One such chemokine that serves as a neuronal-microglial communication factor is fractalkine, with roles demonstrated in several models of adult neurological disorders. Lacking, however, are studies investigating roles for fractalkine in perinatal brain injury, an important clinical problem with no effective therapies. We used a well-characterized mouse model of ethanol-induced apoptosis to assess the role of fractalkine in neuronal-microglial signaling. Quantification of apoptotic debris in fractalkine-knockout and CX3CR1-knockout mice following ethanol treatment revealed increased apoptotic bodies compared to wild type mice. Ethanol-induced injury led to release of soluble, extracellular fractalkine. The extracellular media harvested from apoptotic brains induces microglial migration in a fractalkine-dependent manner that is prevented by neutralization of fractalkine with a blocking antibody or by deficiency in the receptor, CX3CR1. This suggests fractalkine acts as a ‘find-me’ signal, recruiting microglial processes toward apoptotic cells to promote their clearance. Next, we aimed to determine whether there are downstream alterations in cytokine gene expression due to fractalkine signaling. We examined mRNA expression in fractalkine-knockout and CX3CR1-knockout mice after alcohol-induced apoptosis and found differences in cytokine production in the brains of these knockouts by 6 hours after ethanol treatment. Collectively, this suggests that fractalkine acts as a ‘find me’ signal released by apoptotic neurons, and subsequently plays a critical role in modulating both phagocytic clearance and inflammatory cytokine gene expression after

  15. Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Gourlay, C W; Ayscough, K R

    2006-09-01

    Recent research has revealed a conserved role for the actin cytoskeleton in the regulation of aging and apoptosis among eukaryotes. Here we show that the stabilization of the actin cytoskeleton caused by deletion of Sla1p or End3p leads to hyperactivation of the Ras signaling pathway. The consequent rise in cyclic AMP (cAMP) levels leads to the loss of mitochondrial membrane potential, accumulation of reactive oxygen species (ROS), and cell death. We have established a mechanistic link between Ras signaling and actin by demonstrating that ROS production in actin-stabilized cells is dependent on the G-actin binding region of the cyclase-associated protein Srv2p/CAP. Furthermore, the artificial elevation of cAMP directly mimics the apoptotic phenotypes displayed by actin-stabilized cells. The effect of cAMP elevation in inducing actin-mediated apoptosis functions primarily through the Tpk3p subunit of protein kinase A. This pathway represents the first defined link between environmental sensing, actin remodeling, and apoptosis in Saccharomyces cerevisiae.

  16. Bz-423 superoxide signals B cell apoptosis via Mcl-1, Bak, and Bax.

    Science.gov (United States)

    Blatt, Neal B; Boitano, Anthony E; Lyssiotis, Costas A; Opipari, Anthony W; Glick, Gary D

    2009-10-15

    Bz-423 is a pro-apoptotic 1,4-benzodiazepine with therapeutic properties in murine models of lupus demonstrating selectivity for autoreactive lymphocytes. Bz-423 modulates the F(1)F(0)-ATPase, inducing the formation of superoxide within the mitochondrial respiratory chain, which then functions as a second messenger initiating apoptosis. In order to understand some of the features that contribute to the increased sensitivity of lymphocytes, we report the signaling pathway engaged by Bz-423 in a Burkitt lymphoma cell line (Ramos). Following the generation of superoxide, Bz-423-induced apoptosis requires the activation of Bax and Bak to induce mitochondrial outer membrane permeabilization and cytochrome c release. Knockdown of the BH3-only proteins Bad, Bim, Bik, and Puma inhibits Bz-423 apoptosis, suggesting that these proteins serve as upstream sensors of the oxidant stress induced by Bz-423. Treatment with Bz-423 results in superoxide-dependent Mcl-1 degradation, implicating this protein as the link between Bz-423-induced superoxide and Bax and Bak activation. In contrast to fibroblasts, B cell death induced by Bz-423 is independent of c-Jun N-terminal kinase. These results demonstrate that superoxide generated from the mitochondrial respiratory chain as a consequence of a respiratory transition can signal a specific apoptotic response that differs across cell types.

  17. Down-regulation apoptosis signal-regulating kinase 1 gene reduced the Litopenaeus vannamei hemocyte apoptosis in WSSV infection.

    Science.gov (United States)

    Yuan, Feng-Hua; Chen, Yong-Gui; Zhang, Ze-Zhi; Yue, Hai-Tao; Bi, Hai-Tao; Yuan, Kai; Weng, Shao-Ping; He, Jian-Guo; Chen, Yi-Hong

    2016-03-01

    Apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, is crucial in various cellular responses. In the present study, we identified and characterized an ASK1 homolog from Litopenaeus vannamei (LvASK1). The full-length cDNA of LvASK1 was 5400 bp long, with an open reading frame encoding a putative 1420 amino acid protein. LvASK1 was highly expressed in muscle, hemocyte, eyestalk and heart. Real-time RT-PCR analysis showed that the expression of the LvASK1 was upregulated during the white spot syndrome virus (WSSV) challenge. The knocked-down expression of LvASK1 by RNA interference significantly reduced the apoptotic ratio of the hemocytes collected from WSSV-infected L. vannamei. Furthermore, the down-regulation of LvASK1 also decreased the cumulative mortality of WSSV-infected L. vannamei. These results suggested that down-regulation of LvASK1 decreased the apoptotic rate of hemocytes in WSSV-infected shrimp, and that it could contribute to the reduction of cumulative mortality in WSSV-infected L. vannamei.

  18. Bz-423 superoxide signals apoptosis via selective activation of JNK, Bak, and Bax.

    Science.gov (United States)

    Blatt, Neal B; Boitano, Anthony E; Lyssiotis, Costas A; Opipari, Anthony W; Glick, Gary D

    2008-11-01

    Bz-423 is a proapoptotic 1,4-benzodiazepine with potent therapeutic properties in murine models of lupus and psoriasis. Bz-423 modulates the F(1)F(0)-ATPase, inducing the formation of superoxide within the mitochondrial respiratory chain, which then functions as a second messenger initiating apoptosis. Herein, we report the signaling pathway activated by Bz-423 in mouse embryonic fibroblasts containing knockouts of key apoptotic proteins. Bz-423-induced superoxide activates cytosolic ASK1 and its release from thioredoxin. A mitogen-activated protein kinase cascade follows, leading to the specific phosphorylation of JNK. JNK signals activation of Bax and Bak which then induces mitochondrial outer membrane permeabilization to cause the release of cytochrome c and a commitment to apoptosis. The response of these cells to Bz-423 is critically dependent on both superoxide and JNK activation as antioxidants and the JNK inhibitor SP600125 prevents Bax translocation, cytochrome c release, and cell death. These results demonstrate that superoxide generated from the mitochondrial respiratory chain as a consequence of a respiratory transition can signal a sequential and specific apoptotic response. Collectively, these data suggest that the selectivity of Bz-423 observed in vivo results from cell-type specific differences in redox balance and signaling by ASK1 and Bcl-2 proteins.

  19. Catching Conical Intersections in the Act; Monitoring Transient Electronic Coherences by Attosecond Stimulated X-Ray Raman Signals

    CERN Document Server

    Kowalewski, Markus; Dorfman, Konstantin E; Mukamel, Shaul

    2015-01-01

    Conical intersections (CoIn) dominate the pathways and outcomes of virtually all photophysical and photochemical molecular processes. Despite extensive experimental and theoretical effort, CoIns have not been directly observed yet and the experimental evidence is being inferred from fast reaction rates and some vibrational signatures. We show that short X-ray (rather than optical) pulses can directly detect the passage through a CoIn with the adequate temporal and spectral sensitivity. The technique is based on a coherent Raman process that employs a composite femtosecond/attosecond X-ray pulse to detect the electronic coherences (rather than populations) that are generated as the system passes through the CoIn.

  20. Graveoline isolated from ethanolic extract of Ruta graveolens triggers apoptosis and autophagy in skin melanoma cells: a novel apoptosis-independent autophagic signaling pathway.

    Science.gov (United States)

    Ghosh, Samrat; Bishayee, Kausik; Khuda-Bukhsh, Anisur Rahman

    2014-08-01

    Anti-cancer drugs generally kill cancer cells by apoptosis but fail to do so when they become resistant and escape apoptosis signals. But these resistant cells can still be killed by autophagy. Therefore, drugs having both apoptotic and autophagic abilities are solicited in effective cancer management. In search of such a drug, we examined the efficacy of graveoline, a bioactive compound isolated from Ruta graveolens on skin melanoma A375 cells through the use of specific signaling cascades and their inhibitors. Cytotoxicity of graveoline was tested by conducting MTT assay. Induction of autophagy and apoptosis was checked. Expression of related proteins and their localization were studied by conducting immunoblot assay and through confocal microscopy, respectively. We found graveoline-induced Beclin-1 associated autophagy in A375 cells and 3-methyladenine, an inhibitor of autophagy did not affect apoptosis. Conversely, caspase inhibitor that blocked apoptosis did not affect autophagic cell death, suggesting thereby that these two were independent events. Use of reactive oxygen species (ROS) scavengers inhibited cell death, but blocking autophagy did not affect graveoline-induced ROS generation, suggesting that ROS generation ensued autophagy. Thus, graveoline-induced both apoptotic and autophagic cell death in skin melanoma cells, a desirable quality in effective anti-cancer drug design.

  1. Anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway.

    Science.gov (United States)

    Zhao, Xiangqian; Jiang, Kai; Liang, Bin; Huang, Xiaoqiang

    2016-02-01

    Xanthohumol may prevent and cure diabetes and atherosis, have oxidation resistance and antiviral function as well as anticancer effect preventing cancer cell metastasis. We investigate whether the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through NF-κB/p53-apoptosis signaling pathway. Human liver cancer HepG2 cell were treated with 10, 20, 30 and 40 µM xanthohumol for 48 h. The present study showed that the anticancer effect of xanthohumol was effective in inhibiting proliferation and inducing apoptosis of human liver cancer HepG2 cells. Furthermore, the caspase-3 activity of human liver cancer HepG2 cells was increased by xanthohumol. In addition, 48-h treatment with xanthohumol suppressed NF-κB expression and promoted p53, cleaved PARP, AIF and cytochrome c expression and downregulated XIAP and Bcl-2/Bax expression in human liver cancer HepG2 cells. Therefore, the anticancer effect of xanthohumol induces growth inhibition and apoptosis of human liver cancer through the NF-κB/p53-apoptosis signaling pathway.

  2. Selective control of the apoptosis signaling network in heterogeneous cell populations.

    Directory of Open Access Journals (Sweden)

    Diego Calzolari

    Full Text Available BACKGROUND: Selective control in a population is the ability to control a member of the population while leaving the other members relatively unaffected. The concept of selective control is developed using cell death or apoptosis in heterogeneous cell populations as an example. Control of apoptosis is essential in a variety of therapeutic environments, including cancer where cancer cell death is a desired outcome and Alzheimer's disease where neuron survival is the desired outcome. However, in both cases these responses must occur with minimal response in other cells exposed to treatment; that is, the response must be selective. METHODOLOGY AND PRINCIPAL FINDINGS: Apoptosis signaling in heterogeneous cells is described by an ensemble of gene networks with identical topology but different link strengths. Selective control depends on the statistics of signaling in the ensemble of networks, and we analyze the effects of superposition, non-linearity and feedback on these statistics. Parallel pathways promote normal statistics while series pathways promote skew distributions, which in the most extreme cases become log-normal. We also show that feedback and non-linearity can produce bimodal signaling statistics, as can discreteness and non-linearity. Two methods for optimizing selective control are presented. The first is an exhaustive search method and the second is a linear programming based approach. Though control of a single gene in the signaling network yields little selectivity, control of a few genes typically yields higher levels of selectivity. The statistics of gene combinations susceptible to selective control in heterogeneous apoptosis networks is studied and is used to identify general control strategies. CONCLUSIONS AND SIGNIFICANCE: We have explored two methods for the study of selectivity in cell populations. The first is an exhaustive search method limited to three node perturbations. The second is an effective linear model, based on

  3. Intersection cohomology

    CERN Document Server

    Borel, Armand

    1984-01-01

    This book is a publication in Swiss Seminars, a subseries of Progress in Mathematics. It is an expanded version of the notes from a seminar on intersection cohomology theory, which met at the University of Bern, Switzerland, in the spring of 1983. This volume supplies an introduction to the piecewise linear and sheaf-theoretic versions of that theory as developed by M. Goresky and R. MacPherson in Topology 19 (1980), and in Inventiones Mathematicae 72 (1983). While some familiarity with algebraic topology and sheaf theory is assumed, the notes include a self-contained account of further material on constructibility, derived categories, Verdier duality, biduality, and on stratified spaces, which is used in the second paper but not found in standard texts. "The volume should be useful to someone interested in acquiring some basic knowledge about the field..." —Mathematical Reviews.

  4. Weaning Induced Hepatic Oxidative Stress, Apoptosis, and Aminotransferases through MAPK Signaling Pathways in Piglets

    Science.gov (United States)

    Luo, Zhen; Zhu, Wei; Guo, Qi; Luo, Wenli; Zhang, Jing; Xu, Weina

    2016-01-01

    This study investigated the effects of weaning on the hepatic redox status, apoptosis, function, and the mitogen-activated protein kinase (MAPK) signaling pathways during the first week after weaning in piglets. A total of 12 litters of piglets were weaned at d 21 and divided into the weaning group (WG) and the control group (CG). Six piglets from each group were slaughtered at d 0 (d 20, referred to weaning), d 1, d 4, and d 7 after weaning. Results showed that weaning significantly increased the concentrations of hepatic free radicals H2O2 and NO, malondialdehyde (MDA), and 8-hydroxy-2′-deoxyguanosine (8-OHdG), while significantly decreasing the inhibitory hydroxyl ability (IHA) and glutathione peroxidase (GSH-Px), and altered the level of superoxide dismutase (SOD). The apoptosis results showed that weaning increased the concentrations of caspase-3, caspase-8, caspase-9 and the ratio of Bax/Bcl-2. In addition, aspartate aminotransferase transaminase (AST) and alanine aminotransferase (ALT) in liver homogenates increased after weaning. The phosphorylated JNK and ERK1/2 increased, while the activated p38 initially decreased and then increased. Our results suggested that weaning increased the hepatic oxidative stress and aminotransferases and initiated apoptosis, which may be related to the activated MAPK pathways in postweaning piglets.

  5. Hyperoxia accelerates Fas-mediated signaling and apoptosis in the lungs of Legionella pneumophila pneumonia

    Directory of Open Access Journals (Sweden)

    Tanabe Yoshinari

    2011-04-01

    Full Text Available Abstract Background Oxygen supplementation is commonly given to the patients with severe pneumonia including Legionella disease. Recent data suggested that apoptosis may play an important role, not only in the pathogenesis of Legionella pneumonia, but also in oxygen-induced tissue damage. In the present study, the lethal sensitivity to Legionella pneumonia were compared in the setting of hyperoxia between wild-type and Fas-deficient mice. Findings C57BL/6 mice and B6.MRL-Faslpr mice characterized with Fas-deficiency were used in this study. After intratracheal administration of L. pneumophila, mice were kept in hyperoxic conditions (85-90% O2 conc. in an airtight chamber for 3 days. Bone-marrow derived macrophages infected with L. pneumophila were also kept in hyperoxic conditions. Caspase activity and cytokine production were determined by using commercially available kits. Smaller increases of several apoptosis markers, such as caspase-3 and -8, were demonstrated in Fas-deficient mice, even though the bacterial burdens in Fas-deficient and wild type mice were similar. Bone-marrow derived macrophages from Fas-deficient mice were shown to be more resistant to Legionella-induced cytotoxicity than those from wild-type mice under hyperoxia. Conclusions These results demonstrated that Fas-mediated signaling and apoptosis may be a crucial factor in the pathogenesis of Legionella pneumonia in the setting of hyperoxia.

  6. BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

    Science.gov (United States)

    Vin, Harina; Ojeda, Sandra S; Ching, Grace; Leung, Marco L; Chitsazzadeh, Vida; Dwyer, David W; Adelmann, Charles H; Restrepo, Monica; Richards, Kristen N; Stewart, Larissa R; Du, Lili; Ferguson, Scarlett B; Chakravarti, Deepavali; Ehrenreiter, Karin; Baccarini, Manuela; Ruggieri, Rosamaria; Curry, Jonathan L; Kim, Kevin B; Ciurea, Ana M; Duvic, Madeleine; Prieto, Victor G; Ullrich, Stephen E; Dalby, Kevin N; Flores, Elsa R; Tsai, Kenneth Y

    2013-01-01

    Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001 PMID:24192036

  7. Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC).

    Science.gov (United States)

    Ivanov, Vladimir N; Hei, Tom K

    2014-12-01

    Ionizing radiation alone or in combination with chemotherapy is the main treatment modality for brain tumors including glioblastoma. Adult neurons and astrocytes demonstrate substantial radioresistance; in contrast, human neural stem cells (NSC) are highly sensitive to radiation via induction of apoptosis. Irradiation of tumor cells has the potential risk of affecting the viability and function of NSC. In this study, we have evaluated the effects of irradiated glioblastoma cells on viability, proliferation and differentiation potential of non-irradiated (bystander) NSC through radiation-induced signaling cascades. Using media transfer experiments, we demonstrated significant effects of the U87MG glioblastoma secretome after gamma-irradiation on apoptosis in non-irradiated NSC. Addition of anti-TRAIL antibody to the transferred media partially suppressed apoptosis in NSC. Furthermore, we observed a dramatic increase in the production and secretion of IL8, TGFβ1 and IL6 by irradiated glioblastoma cells, which could promote glioblastoma cell survival and modify the effects of death factors in bystander NSC. While differentiation of NSC into neurons and astrocytes occurred efficiently with the corresponding differentiation media, pretreatment of NSC for 8 h with medium from irradiated glioblastoma cells selectively suppressed the differentiation of NSC into neurons, but not into astrocytes. Exogenous IL8 and TGFβ1 increased NSC/NPC survival, but also suppressed neuronal differentiation. On the other hand, IL6 was known to positively affect survival and differentiation of astrocyte progenitors. We established a U87MG neurosphere culture that was substantially enriched by SOX2(+) and CD133(+) glioma stem-like cells (GSC). Gamma-irradiation up-regulated apoptotic death in GSC via the FasL/Fas pathway. Media transfer experiments from irradiated GSC to non-targeted NSC again demonstrated induction of apoptosis and suppression of neuronal differentiation of NSC. In

  8. Catching Conical Intersections in the Act; Monitoring Transient Electronic Coherences by Attosecond Stimulated X-Ray Raman Signals

    Science.gov (United States)

    Bennett, Kochise; Kowalewski, Markus; Dorfman, Konstantin; Mukamel, Shaul

    Conical intersections (CIs) dominate the pathways and outcomes of virtually all photochemical molecular processes. Despite extensive experimental and theoretical effort, CIs have not been directly observed yet and the experimental evidence is inferred from fast reaction rates and vibrational signatures. We show that short X-ray pulses can directly detect the passage through a CI with the adequate temporal and spectral sensitivity. The non-adiabatic coupling that exists in the region of a CI redistributes electronic population but also generates electronic coherence. This coherent oscillation can then be detected via a coherent Raman process that employs a composite femtosecond/attosecond X-ray pulse. This technique, dubbed Transient Redistribution of Ultrafast Electronic Coherences (TRUECARS) is reminiscent of Coherent Anti-Stokes Raman Spectroscopy (CARS) in that a coherent oscillation is set in motion and then monitored, but differs in that the dynamics is electronic (CARS generally observes nuclear dynamics) and the coherence is generated internally by passage through a region of non-adiabatic coupling rather than by an externally applied laser. Support provided by U.S. Department of Energy through Award No. DE-FG02-04ER15571, the National Science Foundation (Grant No CHE-1361516), and the Alexander von Humboldt foundation through the Feodor Lynen program.

  9. Role of Notch1/2 signaling pathway in the apoptosis process of SGC-7901 induced by Oxaliplatin

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ling Tang; Ke-Quan Chen; Fan-Bao Yao; Hao Chen

    2015-01-01

    Objective:To explore the role of Notch1/2 signaling pathway in the apoptosis process of SGC-7901 induced by oxaliplatin.Methods:The cell viability was detected by CCK8 and the expression of Notch1/2 and Caspase9 was detected by Western Blotting before and after treatment of oxaliplatin.Results:Oxaliplatin medication decreased the viability of SCG-7901 and increased the Notch1/2 as well as Caspase9 expression. Notch signaling pathway inhibitor L685458 normalized those abnormalities greatly.Conclusion: Oxaliplatin promotes SGC-7901 apoptosis by activating Notch signaling pathway and up-regulating Caspase9 protein.

  10. Psorinum 6× triggers apoptosis signals in human lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    Jesmin Mondal; Asmita Samadder; Anisur Rahman Khuda-Bukhsh

    2016-01-01

    OBJECTIVE:To providein vitro evidence of Psorinum treatment against cancer cels in a controled study. METHODS:Effects of homeopathic Psorinum 6× on cel viabilitywereinitialy determined in several cancer cel lines, including A549, HepG2 and MCF-7, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and an ethanol 6× control.The cel line thatexhibited highest inhibition wasselected and used in the folowing experiments.A range ofPsorinum 6×doseswas used to explore treatment effects on cel cycle arrest, cel death (apoptosis),generation of reactive oxygen species (ROS) and change in mitochondrial membrane potential (MMP)using lfowcytometry and lfuorescence microscopy,respectively. Expression of several signal proteins related to apoptosis and cel survival were quantiifed with Western blotting and confocal microscopy. Further, circular dichroism (CD) spectroscopy was used to determine possible drug-DNA interactions, as wel as the induction of conformational changes. RESULTS:Treatment of cancer cel lines with Psorinum showed greater anticancer effects in A549 cels than in others.In A549 cels Psorinum treatment inhibitedcelproliferation at 24 h after treatment,and arrested cel cycle at sub-G1 stage. It also induced ROS generation, MMP depolarization, morphological changes and DNA damage, as wel as externalization of phosphatidyl serine. Further, increases in p53 expression,Bax expression,cytochromecrelease,along with reduction of Bcl-2 level and caspase-3 activation wereobserved afterPsorinum 6× treatment,which eventualy drove A549 cels towards the mitochondria-mediated caspase-3-dependent pathway. CD spectroscopy revealed direct interaction of Psorinum with DNA, using calf thymus-DNA as target. CONCLUSION:Psorinum 6×triggered apoptosis in A549celsvia both up- and down-regulations of relevant signal proteins, including p53, caspase-3, Bax and Bcl-2.

  11. Utilization of Alternative Polyadenylation Signals in the Novel Human Apoptosis-Inducing Gene hap

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    hap, a novel human apoptosis-inducing gene which can interact with another newly discovered apoptosis-inducing gene ASY, was identified by cloning its cDNAs from human lung cell line (WI-38) cDNA library. Two major mRNA species (1.8 and 2. 7 kb in length, respectively) were previously identified by Northern blot analysis of poly(A)+ RNA from human multiple tissues using partial hap cDNA as a probe. In the present work, the molecular mechanism accounting for the generation of the two hap transcripts were investigated. The rapid amplification of cDNA 3'-ends (3'-RACE) technique and the sequential Southern blot analysis, in conjunction with the sequencing analysis demonstrated that the two hap transcripts derive from the alternative polyadenylation site selection: a AATAAA signal at position 1 528 -1 533 nt for the 1.8 kb hap mRNA; and a AATAAA signal at position 2 375 -2 380 nt for the 2. 7 kb hap mRNA. Furthermore, a number of regulatory elements within hap 3'-untranslated region (3'-UTR) were also examined.

  12. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes

    OpenAIRE

    Wang, Jieting; Deng, Xiaobei; Zhang, Fang; Chen, Deliang; Ding, Wenjun

    2014-01-01

    It has been documented in in vitro studies that zinc oxide nanoparticles (ZnO NPs) are capable of inducing oxidative stress, which plays a crucial role in ZnO NP-mediated apoptosis. However, the underlying molecular mechanism of apoptosis in neurocytes induced by ZnO NP exposure was not fully elucidated. In this study, we investigated the potential mechanisms of apoptosis provoked by ZnO NPs in cultured primary astrocytes by exploring the molecular signaling pathways triggered after ZnO NP ex...

  13. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway.

    Science.gov (United States)

    Lin, Xiaojing; Fang, Qin; Chen, Shuya; Zhe, Nana; Chai, Qixiang; Yu, Meisheng; Zhang, Yaming; Wang, Ziming; Wang, Jishi

    2015-05-01

    There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.

  14. CYP72B1 Inactivates Brassinosteroid Hormones: An Intersection between Photomorphogenesis and Plant Steroid Signal Transduction1

    Science.gov (United States)

    Turk, Edward M.; Fujioka, Shozo; Seto, Hideharu; Shimada, Yukihisa; Takatsuto, Suguru; Yoshida, Shigeo; Denzel, Megan A.; Torres, Quetzal I.; Neff, Michael M.

    2003-01-01

    Active brassinosteroids, such as brassinolide (BL) and castasterone, are growth promoting plant hormones. An Arabidopsis cytochrome P450 monooxygenase encoded by CYP72B1 has been implicated in brassinosteroid catabolism as well as photomorphogenesis. We expressed CYP72B1 in yeast, coupled with brassinosteroid feeding, and established the biochemical function to be the hydroxylation of BL and castasterone, to give 26-hydroxybrassinolide and 26-hydroxycastasterone, respectively. Brassinosteroid feeding experiments with wild-type Arabidopsis, a CYP72B1 null mutant, and a CYP72B1 overexpression line demonstrated that carbon 26 hydroxylation of active brassinosteroids is an endogenous function of CYP72B1. Seedling growth assays demonstrated that 26-hydroxybrassinolide is an inactive brassinosteroid. Genetic and physiological analysis of the hypocotyl response to exogenous BL and varying intensities of white and monochromatic light suggested that CYP72B1 modulates photomorphogenesis primarily through far-red light and to a lesser extent through blue- and red-light pathways. CYP72B1 transcript accumulation in dark-grown seedlings was organ specific and down-regulated after 1 h of illumination in dim white, red, and blue light, but not far-red light. CYP72B1 translational fusions with the β-glucuronidase reporter gene demonstrated that protein levels increased in the hypocotyl elongation zone when shifted from the dark to far-red light, but not blue or red light. We propose a model in which Arabidopsis seedling development switches from dark-grown development (skotomorphogenesis) to light-grown development (photomorphogenesis) in part by rapid modulation of brassinosteroid sensitivity and levels. CYP72B1 provides an intersection between the light and brassinosteroid pathways mainly by far-red-light-dependent modulation of brassinosteroid levels. PMID:14605216

  15. Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Shacka, J J; Sahawneh, M A; Gonzalez, J D; Ye, Y-Z; D'Alessandro, T L; Estévez, A G

    2006-09-01

    The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.

  16. Polycystin-1 Induces Resistance to Apoptosis through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway

    Science.gov (United States)

    Boca, Manila; Distefano, Gianfranco; Boletta, Alessandra; Qian, Feng; Bhunia, Anil K.; Germino, Gregory G.

    2006-01-01

    Polycystin-1 (PC-1), the PKD1 gene product, is a large receptor whose expression in renal epithelial cells results in resistance to apoptosis and tubulogenesis, a model consistent with the phenotype observed in patients. This study links PC-1 expression to a signaling pathway that is known to be both antiapoptotic and important for normal tubulogenesis. This study found that PC-1 expression results in phosphorylation of Akt and downstream effectors and that phosphatidylinositol 3-kinase (PI3-K) inhibitors prevent this process. In addition, it is shown that dominant negative Akt can revert PC-1-induced protection from apoptosis. Furthermore, it was observed that increased PI3-K β activity in PC-1- expressing MDCK cells seems to be dependent on both tyrosine-kinase activity and heterotrimeric G proteins. It also was found that PC-1-induced tubulogenesis is inhibited by PI3-K inhibitors. Taken together, these data suggest that the PI3-K/Akt cascade may be a central modulator of PC-1 function and that its deregulation might be important in autosomal dominant polycystic kidney disease. PMID:16452497

  17. Aluminum—induced apoptosis in cultured cortical neurons and its effects on SAPK/JNK signal transduction pathway

    Institute of Scientific and Technical Information of China (English)

    FuHJ; DongSZ

    2002-01-01

    Aluminum (Al) exposure and apoptotic cell death have been implicated in several neurodegenerative diseases.the mechanisms by which Al interacts with the nervous system are only partly understood.In this study,we used cultured cortical neurons to investigate the ability of Al to induce the apoptosis of neurons and to explore the role of SAPK/JNK signal transduction pathway on the apoptosis induced by Al.It was found that Al-induced degeneration of cortical neurons involved the DNA fragmentation characteristic of apoptosis.The rate of apoptosis increased significantly,which was measured by TdT-mediated dUTKP nick end labeling.Westerm blot analysis showed that SAPK/JNK activities of cortical neurons varied when the dose and exposure time of AlCl3 were different.Our study demonstrates that Al can induce the apoptosis of cortical neurons and SAPK/JNK signal transduction pathway may play a great role in the apoptosis.

  18. Endothelial Cell Apoptosis Induces TGF-β Signaling-Dependent Host Endothelial-Mesenchymal Transition to Promote Transplant Arteriosclerosis.

    Science.gov (United States)

    Li, J; Xiong, J; Yang, B; Zhou, Q; Wu, Y; Luo, H; Zhou, H; Liu, N; Li, Y; Song, Z; Zheng, Q

    2015-12-01

    Endothelial cells (ECs) apoptosis is an initial event in transplant arteriosclerosis (TA), resulting in allograft function loss. To elucidate the precise mechanisms of ECs apoptosis leading to neointimal smooth muscle cells (SMCs) accumulation during TA. We induced apoptosis in cultured ECs by overexpressing p53 through lentivirus-mediated transfection. ECs apoptosis induced the production of transforming growth factor (TGF)-β1 in both apoptotic and neighboring viable cells, leading to increased TGF-β1 in the culture media. Conditioned media from Ltv-p53-transfected ECs further promoted transition of cultured ECs to SM-like cells by activating TGF-β/Smad3, PI3K/Akt/mTOR, and MAPK/ERK signaling in a TGF-β-dependent manner. In transgenic rat aorta transplantation models, inhibition of ECs apoptosis in Bcl-xL(+/+) knock-in rat aortic allografts significantly reduced TGF-β1 production both in allograft endothelia and in blood plasma, which in turn decreased accumulation of SM22α+ cells from transgenic recipient ECs originally marked with EGFP knock-in in neointima and alleviated TA. Systemic treatment with SIS3, AP23573, or PD98059 also prevented recipient ECs-originated SM-like cells accumulation and intima hyperplasia in aortic allografts. These data suggest that allograft EC apoptosis induced recipient endothelial-mesenchymal (smooth muscle) transition via TGF-β signaling, resulting in recipient EC-derived SMC accumulation as a major mechanism of vascular remodeling during TA.

  19. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells

    Directory of Open Access Journals (Sweden)

    Ya-Qin Hou

    2016-01-01

    Full Text Available Juglanthraquinone C (JC, a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels.

  20. Juglanthraquinone C Induces Intracellular ROS Increase and Apoptosis by Activating the Akt/Foxo Signal Pathway in HCC Cells

    Science.gov (United States)

    2016-01-01

    Juglanthraquinone C (JC), a naturally occurring anthraquinone extracted from Juglans mandshurica, could induce apoptosis of cancer cells. This study aims to investigate the detailed cytotoxicity mechanism of JC in HepG2 and BEL-7402 cells. The Affymetrix HG-U133 Plus 2.0 arrays were first used to analyze the mRNA expression exposed to JC or DMSO in HepG2 cells. Consistent with the previous results, the data indicated that JC could induce apoptosis and hyperactivated Akt. The Western blot analysis further revealed that Akt, a well-known survival protein, was strongly activated in HepG2 and BEL-7402 cells. Furthermore, an obvious inhibitory effect on JC-induced apoptosis was observed when the Akt levels were decreased, while the overexpression of constitutively active mutant Akt greatly accelerated JC-induced apoptosis. The subsequent results suggested that JC treatment suppressed nuclear localization and increased phosphorylated levels of Foxo3a, and the overexpression of Foxo3a abrogated JC-induced apoptosis. Most importantly, the inactivation of Foxo3a induced by JC further led to an increase of intracellular ROS levels by suppressing ROS scavenging enzymes, and the antioxidant N-acetyl-L-cysteine and catalase successfully decreased JC-induced apoptosis. Collectively, this study demonstrated that JC induced the apoptosis of hepatocellular carcinoma (HCC) cells by activating Akt/Foxo signaling pathway and increasing intracellular ROS levels. PMID:26682007

  1. Exogenous Estradiol Benzoate Induces Spermatogenesis Disorder through Influencing Apoptosis and Oestrogen Receptor Signalling Pathway.

    Science.gov (United States)

    Lei, X; Cui, K; Liu, Q; Zhang, H; Li, Z; Huang, B; Shi, D

    2016-02-01

    As the exact role for exogenous oestrogen in spermatogenesis is not fully understood, the aim of this study was to investigate the effect of estradiol benzoate (EB) exposure to male mice on their spermatogenesis and fertility. Sixty male mice aged 4 weeks were randomly divided into three groups, including a control group and two treatment groups. The mice of the control group were injected with 250 μl paraffin oil only by every other day subcutaneous injection for 4 weeks. Meantime, the mice of the treatment groups were injected with EB at the concentration of 5 or 10 mg/kg, respectively. Results showed that EB slowed down the body weight gains and generated testicular atrophy with spermatogenesis disorder compared with that of the control mice, and consequently induced their infertility. Moreover, the number of TUNEL-positive cells in the testis of EB-treated mice was significantly increased with the EB concentration rise. In comparison with controls, the mRNA expression level of pro-apoptosis factors (Fas, TNF, Cytochrome C, Apaf1, Chop, Caspase-3, Caspase-8, Caspase-9 and Caspase-12) and key genes in oestrogen receptor (ER) signalling pathway (ER α, ER β, Erk1/2, Hsp90 and DAX-1) were upregulated in the testes of the treatment groups. Furthermore, Western blotting results proved the protein expression level of Fas, TNF, Cytochrome C, Chop, Caspase-3, cleaved Caspase-3, Caspase-9, Erk1/2 and Hsp90 were upregulated, and the phosphorylation level of Erk1/2 was also increased. These results indicate that EB may impair spermatogenesis through influencing the apoptosis and ER signalling pathway.

  2. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency.

    Science.gov (United States)

    Ceccon, M; Merlo, M E Boggio; Mologni, L; Poggio, T; Varesio, L M; Menotti, M; Bombelli, S; Rigolio, R; Manazza, A D; Di Giacomo, F; Ambrogio, C; Giudici, G; Casati, C; Mastini, C; Compagno, M; Turner, S D; Gambacorti-Passerini, C; Chiarle, R; Voena, C

    2016-07-21

    Most of the anaplastic large-cell lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK (nucleophosmin-anaplastic lymphoma kinase). NPM-ALK-deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines, NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive because of heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or relocalization of NPM-ALK to the cytoplasm by NPM genetic knockout or knockdown caused ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) increased phosphorylation and cell death through the engagement of an ATM/Chk2- and γH2AX (phosphorylated H2A histone family member X)-mediated DNA-damage response. Remarkably, human NPM-ALK-amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A 'drug holiday' where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification.

  3. Cisplatin induced apoptosis of ovarian cancer A2780s cells by activation of ERK/p53/PUMA signals.

    Science.gov (United States)

    Song, Hao; Wei, Mei; Liu, Wenfen; Shen, Shulin; Li, Jiaqun; Wang, Liming

    2017-03-13

    Cisplatin (CDDP) is one of the most effective anticancer agents widely used in the treatment of solid tumors, including ovarian cancer. It is generally considered as a cytotoxic drug which kills cancer cells by causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, the underlying mechanisms leading to cell apoptosis remain obscure. In this study, the signaling pathways involved in CDDP -induced apoptosis were examined using CDDP-sensitive ovarian cancer A2780s cells. A2780s cells were treated with CDDP (1.5-3 μg/ml) for 6 h, 12 h and 24 h. Using siRNA targeting P53 and PUMA, and a selective MEK inhibitor, PD98059 to examine the relation between ERK1/2 activation, p53 and PUMA expression after exposure to CDDP, and the effect on CDDP-induced apoptosis. The results shown that treatment of A2780s cells with CDDP (3 μg/ml) for 6-24 h induced apoptosis, resulting in the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and accumulation of p53 and PUMA (p53 upregulated modulator of apoptosis) protein. Knockdown of P53 or PUMA by siRNA transfection blocked CDDP-induced apoptosis. Inhibition of ERK1/2 using PD98059, a selective MEK inhibitor, blocked the apoptotic cell death but prevented CDDP-induced accumulation of p53 and PUMA. Knockdown of P53 by siRNA transfection also blocked CDDP-induced accumulation of PUMA. We therefore concluded that CDDP activated ERK1/2 and induced-p53-dependent PUMA upregulation, resulting in triggering apoptosis in A2780s cells. Our study clearly demonstrates that the ERK1/2/p53/PUMA axis is related to CDDP-induced cell death in A2780s cells.

  4. Involvement of mitochondrial and B-RAF/ERK signaling pathways in berberine-induced apoptosis in human melanoma cells.

    Science.gov (United States)

    Burgeiro, Ana; Gajate, Consuelo; Dakir, El Habib; Villa-Pulgarín, Janny A; Oliveira, Paulo J; Mollinedo, Faustino

    2011-07-01

    The natural isoquinoline alkaloid berberine exhibits a wide spectrum of biological activities including antitumor activity, but its mechanism of action remains to be fully elucidated. Here, we report that berberine induced apoptosis in human melanoma cells, through a process that involved mitochondria and caspase activation. Berberine-induced activation of a number of caspases, including caspases 3, 4, 7, 8, and 9. Pan-caspase inhibitor, z-VAD-fmk, and caspase-8 and caspase-9 inhibitors prevented apoptosis. Berberine also led to the generation of the p20 cleavage fragment of BAP31, involved in directing proapoptotic signals between the endoplasmic reticulum and the mitochondria. Treatment of SK-MEL-2 melanoma cells with berberine induced disruption of the mitochondrial transmembrane potential, release of cytochrome c and apoptosis-inducing factor from the mitochondria to the cytosol, generation of reactive oxygen species (ROS), and a decreased ATP/ADP ratio. Overexpression of bcl-xL by gene transfer prevented berberine-induced cell death, mitochondrial transmembrane potential loss, and cytochrome c and apoptosis-inducing factor release, but not ROS generation. N-acetyl-L-cysteine inhibited the production of ROS, but did not abrogate the berberine-induced apoptosis. Inhibition of extracellular signal-regulated kinase (ERK) phosphorylation, by using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059, and reduction of B-RAF levels by silencing RNA induced cell death of SK-MEL-2 cells, and diminished the berberine concentration required to promote apoptosis. These data show that berberine-induced apoptosis in melanoma cells involves mitochondria and caspase activation, but ROS generation was not essential. Our results indicate that inhibition of B-RAF/ERK survival signaling facilitates the cell death response triggered by berberine.

  5. Salvianolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling.

    Directory of Open Access Journals (Sweden)

    Chen-Li Liu

    Full Text Available BACKGROUND: Salvianolic acid B (Sal B is one of the most bioactive components of Salvia miltiorrhiza, a traditional Chinese herbal medicine that has been commonly used for prevention and treatment of cerebrovascular disorders. However, the mechanism responsible for such protective effects remains largely unknown. It has been considered that cerebral endothelium apoptosis caused by reactive oxygen species including hydrogen peroxide (H(2O(2 is implicated in the pathogenesis of cerebrovascular disorders. METHODOLOGY AND PRINCIPAL FINDINGS: By examining the effect of Sal B on H(2O(2-induced apoptosis in rat cerebral microvascular endothelial cells (rCMECs, we found that Sal B pretreatment significantly attenuated H(2O(2-induced apoptosis in rCMECs. We next examined the signaling cascade(s involved in Sal B-mediated anti-apoptotic effects. We showed that H(2O(2 induces rCMECs apoptosis mainly through the PI3K/ERK pathway, since a PI3K inhibitor (LY294002 blocked ERK activation caused by H(2O(2 and a specific inhibitor of MEK (U0126 protected cells from apoptosis. On the other hand, blockage of the PI3K/Akt pathway abrogated the protective effect conferred by Sal B and potentated H(2O(2-induced apoptosis, suggesting that Sal B prevents H(2O(2-induced apoptosis predominantly through the PI3K/Akt (upstream of ERK pathway. SIGNIFICANCE: Our findings provide the first evidence that H(2O(2 induces rCMECs apoptosis via the PI3K/MEK/ERK pathway and that Sal B protects rCMECs against H(2O(2-induced apoptosis through the PI3K/Akt/Raf/MEK/ERK pathway.

  6. Salvianolic Acid B Inhibits Hydrogen Peroxide-Induced Endothelial Cell Apoptosis through Regulating PI3K/Akt Signaling

    Science.gov (United States)

    Liu, Chen-Li; Xie, Li-Xia; Li, Min; Durairajan, Siva Sundara Kumar; Goto, Shinya; Huang, Jian-Dong

    2007-01-01

    Background Salvianolic acid B (Sal B) is one of the most bioactive components of Salvia miltiorrhiza, a traditional Chinese herbal medicine that has been commonly used for prevention and treatment of cerebrovascular disorders. However, the mechanism responsible for such protective effects remains largely unknown. It has been considered that cerebral endothelium apoptosis caused by reactive oxygen species including hydrogen peroxide (H2O2) is implicated in the pathogenesis of cerebrovascular disorders. Methodology and Principal Findings By examining the effect of Sal B on H2O2-induced apoptosis in rat cerebral microvascular endothelial cells (rCMECs), we found that Sal B pretreatment significantly attenuated H2O2-induced apoptosis in rCMECs. We next examined the signaling cascade(s) involved in Sal B-mediated anti-apoptotic effects. We showed that H2O2 induces rCMECs apoptosis mainly through the PI3K/ERK pathway, since a PI3K inhibitor (LY294002) blocked ERK activation caused by H2O2 and a specific inhibitor of MEK (U0126) protected cells from apoptosis. On the other hand, blockage of the PI3K/Akt pathway abrogated the protective effect conferred by Sal B and potentated H2O2-induced apoptosis, suggesting that Sal B prevents H2O2-induced apoptosis predominantly through the PI3K/Akt (upstream of ERK) pathway. Significance Our findings provide the first evidence that H2O2 induces rCMECs apoptosis via the PI3K/MEK/ERK pathway and that Sal B protects rCMECs against H2O2-induced apoptosis through the PI3K/Akt/Raf/MEK/ERK pathway. PMID:18091994

  7. Risk Factor Analysis for Signalized Intersections Along Corridors with a Consideration of Spatial Correlation%考虑空间相关性的信控交叉口安全分析

    Institute of Scientific and Technical Information of China (English)

    王雪松; 谢琨; 陈小鸿; 王珂

    2012-01-01

    Generalized estimating equation (GEE) was applied to account for the correlation among intersections from corridors. Risk factors including intersection location, geometric design, signal control, and operation condition were identified. The results show that GEE with the autoregressive correlation structure is the most effective way to deal with the spatially correlated data. It confirms that intersections in close proximity, with greater ratio of turning lanes, more number of phrases, and more ADT tend to have higher crash frequencies; 4-legged intersections and intersections under elevated expressways are associated with more crashes.%利用广义估计方程(generalized estimating equation,GEE)考虑交叉口的空间相关性,分析交叉口所处位置、几何设计、信号控制、运行状况等因素对于安全的影响.结果表明,以自回归型(autoregressive)为关联矩阵的GEE模型具有最优的拟合效果;交叉口间距越小、转向车道比例越大、相位数越多、日均流量越大,事故产生的风险越大;十字交叉口、低交通密度、位于高架下的交叉口的事故发生几率较高.

  8. Fas-Induced Apoptosis of Renal Cell Carcinoma is Mediated by Apoptosis Signal-Regulating Kinase 1 via Mitochondrial Damage-Dependent Caspase-8 Activation

    Directory of Open Access Journals (Sweden)

    Mohamed Hassan

    2009-01-01

    Full Text Available Renal cell carcinoma (RCC is a prototype of a chemo refractory tumour. It remains the most lethal of the common urologic cancers and is highly resistant to conventional therapy. Here, we confirmed the efficiency of anti-Fas monoclonal antibody (CH11 as alternative therapeutic approach for the treatment of RCC and investigated the molecular mechanism(s, whereby CH11 induces apoptosis of RCC cells. The present study shows an essential role for apoptosis signal-regulating kinase 1 (ASK1, together with both c-jun-N-terminal kinase (JNK and p38 pathways, and caspase-8 in this process. Furthermore, CH11-dependent induction of the ASK1–JNK/p38 pathways was found to activate the transcription factors AP-1 and ATF-2, and FADD-caspase-8-Bid signalling, resulting in the translocation of both Bax and Bak proteins, and subsequently mitochondrial dysregulation that is characterized by the loss of mitochondrial membrane potential (ΔΨm, cytochrome c release and cleavage of caspase-9, caspase-3 and PARP. Thus, the described molecular mechanisms of CH11-induced apoptosis suggest the reliability of Fas activation as an alternative therapeutic approach for the treatment of patients with advanced renal cell carcinoma.

  9. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two major apoptosis pathways have been defined in mammalian cells, the Fas/TNF-R1 death receptor pathway and the mitochondria pathway. The Bcl-2 family proteins consist of both anti-apoptosis and pro- apoptosis members that regulate apoptosis, mainly by controlling the release of cytochrome c and other mitochondrial apoptotic events. However, death signals mediated by Fas/TNF-R1 receptors can usually activate caspases directly, bypassing the need for mitochondria and escaping the regulation by Bcl-2 family proteins. Bid is a novel pro-apoptosis Bcl-2 family protein that is activated by caspase 8 in response to Fas/TNF-R1 death receptor signals. Activated Bid is translocated to mitochondria and induces cytochrome c release, which in turn activates downstream caspases. Such a connection between the two apoptosis pathways could be important for induction of apoptosis in certain types of cells and responsible for the pathogenesis of a number of human diseases.

  10. Fuzzy Decision Tree Model for Driver Behavior Confronting Yellow Signal at Signalized Intersection%交叉口黄灯期间驾驶员行为的模糊决策树模型

    Institute of Scientific and Technical Information of China (English)

    龙科军; 赵文秀; 肖向良

    2011-01-01

    Drivers decision to go or stop during the yellow interval belongs to uncertain decision making. This paper collects drivers behavior data at four similar intersections. Fuzzy Decision Tree(FDT) is applied to model driver behavior at signalized intersection. Considering vehicle location,velocity and countdown timer as the influencing factors, the FDT model is constructed using FID3 algorithm, and decision roles are generated as well. Test sample is applied to test FDT model, and results indicate that FDT model can predict drivers' decision with overall accuracy of 84.8%.%采集黄灯期间驾驶员行为的相关数据,考虑车辆位置、车速、倒计时表3个影响因素,分别设定其隶属度函数,应用模糊决策树中的FID3算法,以模糊信息熵为启发信息,构建驾驶员选择的模糊决策树模型,生成决策规则.利用测试样本对模型进行检验,结果表明,基于模糊决策树的预测结果准确率总体达到84.8%.

  11. Suppressor of cytokine signaling 1 protects rat pancreatic islets from cytokine-induced apoptosis through Janus kinase/signal transducers and activators of transcription pathway

    Institute of Scientific and Technical Information of China (English)

    SUN Qi; XIANG Ruo-lan; YANG Yan-li; FENG Kai; ZHANG Kui; DING Wen-yi

    2013-01-01

    Background Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytokine signaling pathway involved in negative feedback loops.Although SOCS1 is an important intracellular suppressor of apoptosis in a variety of cell types,its role in cytokine-induced pancreatic β-cell apoptosis remains unclear.The present study investigated potential effects of SOCS1 on the cytokine-induced pancreatic β-cell apoptosis.Methods After successfully transfected with SOCS1/pEGFP-C1 or pEGFP-C1 plasmids to overexpress SOCS1,RINm5F (rat insulinoma cell line) cells were exposed to cytokines,interferon (IFN)-γ alone,IFN-γ+interleukin (IL)-1β,IFN-y+IL-1β+tumor necrosis factor (TNF)-α respectively.Pancreatic β-cell apoptosis was assessed by using MTT,FACS,and caspase-3 activity assays.Protein phosphorylation of Janus kinase 2 (JAK2) and signal transducers and activators of transcription 1 (STAT1) were verified by Western blotting and mRNA expression of inducible nitric oxide synthase (iNOS),NF-κB and Fas were analyzed by RT-PCR.Results Overexpression of SOCS1 in RINm5F cells was shown to attenuate IFN-γ alone,IFN-γ+IL-1β and IFN-γ+TNF-α+IL-1β mediated apoptosis.Phosphorylation of JAK2 and STAT1 significantly decreased in RINm5F cells which overexpressed SOCS1 protein.Overexpression of SOCS1 significantly suppressed cytokine-induced iNOS mRNA levels.Conclusion Overexpression of SOCS1 protects pancreatic islets from cytokine-induced cell apoptosis via the JAK2/STAT1 pathway.

  12. Regulation of Caenorhabditis elegans p53/CEP-1-dependent germ cell apoptosis by Ras/MAPK signaling.

    Directory of Open Access Journals (Sweden)

    Rachael Rutkowski

    2011-08-01

    Full Text Available Maintaining genome stability in the germline is thought to be an evolutionarily ancient role of the p53 family. The sole Caenorhabditis elegans p53 family member CEP-1 is required for apoptosis induction in meiotic, late-stage pachytene germ cells in response to DNA damage and meiotic recombination failure. In an unbiased genetic screen for negative regulators of CEP-1, we found that increased activation of the C. elegans ERK orthologue MPK-1, resulting from either loss of the lip-1 phosphatase or activation of let-60 Ras, results in enhanced cep-1-dependent DNA damage induced apoptosis. We further show that MPK-1 is required for DNA damage-induced germ cell apoptosis. We provide evidence that MPK-1 signaling regulates the apoptotic competency of germ cells by restricting CEP-1 protein expression to cells in late pachytene. Restricting CEP-1 expression to cells in late pachytene is thought to ensure that apoptosis doesn't occur in earlier-stage cells where meiotic recombination occurs. MPK-1 signaling regulates CEP-1 expression in part by regulating the levels of GLD-1, a translational repressor of CEP-1, but also via a GLD-1-independent mechanism. In addition, we show that MPK-1 is phosphorylated and activated upon ionising radiation (IR in late pachytene germ cells and that MPK-1-dependent CEP-1 activation may be in part direct, as these two proteins interact in a yeast two-hybrid assay. In summary, we report our novel finding that MAP kinase signaling controls CEP-1-dependent apoptosis by several different pathways that converge on CEP-1. Since apoptosis is also restricted to pachytene stage cells in mammalian germlines, analogous mechanisms regulating p53 family members are likely to be conserved throughout evolution.

  13. Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Zhihong Chen; Yaqiang He; Chengjun Song; Zhijun Dong; Zhejun Su; Jingfeng Xue

    2012-01-01

    In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.

  14. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion.

    Directory of Open Access Journals (Sweden)

    Xiaoying Li

    Full Text Available Our previous in vitro studies suggested that cyclic AMP (cAMP signaling prevents adriamycin (ADR and puromycin aminonucleoside (PAN-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA or exchange protein directly activated by cAMP (Epac pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator, PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.

  15. cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion.

    Science.gov (United States)

    Li, Xiaoying; Tao, Hua; Xie, Kewei; Ni, Zhaohui; Yan, Yucheng; Wei, Kai; Chuang, Peter Y; He, John Cijiang; Gu, Leyi

    2014-01-01

    Our previous in vitro studies suggested that cyclic AMP (cAMP) signaling prevents adriamycin (ADR) and puromycin aminonucleoside (PAN)-induced apoptosis in podocytes. As cAMP is an important second messenger and plays a key role in cell proliferation, differentiation and cytoskeleton formation via protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac) pathways, we sought to determine the role of PKA or Epac signaling in cAMP-mediated protection of podocytes. In the ADR nephrosis model, we found that forskolin, a selective activator of adenylate cyclase, attenuated albuminuria and improved the expression of podocyte marker WT-1. When podocytes were treated with pCPT-cAMP (a selective cAMP/PKA activator), PKA activation was increased in a time-dependent manner and prevented PAN-induced podocyte loss and caspase 3 activation, as well as a reduction in mitochondrial membrane potential. We found that PAN and ADR resulted in a decrease in Mfn1 expression and mitochondrial fission in podocytes. pCPT-cAMP restored Mfn1 expression in puromycin or ADR-treated podocytes and induced Drp1 phosphorylation, as well as mitochondrial fusion. Treating podocytes with arachidonic acid resulted in mitochondrial fission, podocyte loss and cleaved caspase 3 production. Arachidonic acid abolished the protective effects of pCPT-cAMP on PAN-treated podocytes. Mdivi, a mitochondrial division inhibitor, prevented PAN-induced cleaved caspase 3 production in podocytes. We conclude that activation of cAMP alleviated murine podocyte caused by ADR. PKA signaling resulted in mitochondrial fusion in podocytes, which at least partially mediated the effects of cAMP.

  16. Signal Timing Optimization of BRT Station near Intersection%BRT车站濒临交叉口的信号配时优化算法研究及应用

    Institute of Scientific and Technical Information of China (English)

    郑淑鉴; 徐建闽

    2011-01-01

    For BRT stations in the vicinity of intersection, the signal control of the upstream intersection affects the queue and delay of the downstream station. By minimizing the total delay of vehicles at the station and in the intersection, an intersection signal timing optimization algorithm is established with dynamic control of traffic flow and implemented by using Visual Basic. Finally, taking Chebei Intersection and Chebei Station of the BRT of Zhongshan Road in Guangzhou as an example, the paper verifies the algorithm by VISSIM simulation. The simulation results show that the algorithm is effective and practical to achieve the minimum total delay of the vehicles.%当BRT车站濒临交叉口时,上游交叉口的信号控制易影响下游车站的进站排队,进而影响车辆在车站的延误;以车辆在交叉口的延误和在车站的延误总和最小为目标,采用动力学、信号控制和交通流等方法建立交叉口的信号配时优化算法,并用Visual Basic实现算法.以广州市中山大道BRT的车陂交叉口与车陂站为案例,用Vissim仿真验证算法.仿真结果表明算法的正确性与实用性,实现了车辆的总延误最小.

  17. Deburring small intersecting holes

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1980-08-01

    Deburring intersecting holes is one of the most difficult deburring tasks faced by many industries. Only 14 of the 37 major deburring processes are applicable to most intersecting hole applications. Only five of these are normally applicable to small or miniature holes. Basic process capabilities and techniques used as a function of hole sizes and intersection depths are summarized.

  18. INTERSECTIONAL DISCRIMINATION AGAINST CHILDREN

    DEFF Research Database (Denmark)

    Ravnbøl, Camilla Ida

    This paper adds a perspective to existing research on child protection by engaging in a debate on intersectional discrimination and its relationship to child protection. The paper has a twofold objective, (1) to further establish intersectionality as a concept to address discrimination against ch...... children, and (2) to illustrate the importance of addressing intersectionality within rights-based programmes of child protection....

  19. Targeting hedgehog signalling by arsenic trioxide reduces cell growth and induces apoptosis in rhabdomyosarcoma.

    Science.gov (United States)

    Boehme, Karen A; Zaborski, Julian J; Riester, Rosa; Schweiss, Sabrina K; Hopp, Ulrike; Traub, Frank; Kluba, Torsten; Handgretinger, Rupert; Schleicher, Sabine B

    2016-02-01

    Rhabdomyosarcomas (RMS) are soft tissue tumours treated with a combination of surgery and chemotherapy. However, mortality rates remain high in case of recurrences and metastatic disease due to drug resistance and failure to undergo apoptosis. Therefore, innovative approaches targeting specific signalling pathways are urgently needed. We analysed the impact of different hedgehog (Hh) pathway inhibitors on growth and survival of six RMS cell lines using MTS assay, colony formation assay, 3D spheroid cultures, flow cytometry and western blotting. Especially the glioma-associated oncogene family (GLI) inhibitor arsenic trioxide (ATO) effectively reduced viability as well as clonal growth and induced cell death in RMS cell lines of embryonal, alveolar and sclerosing, spindle cell subtype, whereas normal skeletal muscle cells were hardly compromised by ATO. Combination of ATO with itraconazole potentiated the reduction of colony formation and spheroid size. These results show that ATO is a promising substance for treatment of relapsed and refractory RMS by directly targeting GLI transcription factors. The combination with itraconazole or other chemotherapeutic drugs has the opportunity to enforce the treatment efficiency of resistant and recurrent RMS.

  20. TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    Full Text Available 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant tumor-promoting effect compared with TCDD or low-dose NNK alone. Resistance to apoptosis is a hallmark of cancer and is thought to be one of the tumor-promoting mechanisms regulated by TCDD. We performed an additional series of experiments in the normal human bronchial epithelial cell line Beas2B cells, in which TCDD was combined with the apoptosis inducer staurosporine. Our in vitro results confirmed that TCDD could rescue cells from apoptosis induced by staurosporine. The inhibition of apoptosis is likely mediated by the activation of the Akt and ERK1/2 pathways, as determined by the effectiveness of pathway-specific inhibitors in abrogating the anti-apoptotic activity of TCDD. In conclusion, we demonstrated that TCDD promoted NNK-induced lung tumorigenesis and revealed that TCDD inhibits staurosporine-induced apoptosis, at least in part, through the Akt and ERK1/2 signaling pathways.

  1. TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways.

    Science.gov (United States)

    Chen, Rong-Jane; Siao, Shih-He; Hsu, Chung-Huei; Chang, Chu-Yung; Chang, Louis W; Wu, Chih-Hsiung; Lin, Pinpin; Wang, Ying-Jan

    2014-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant tumor-promoting effect compared with TCDD or low-dose NNK alone. Resistance to apoptosis is a hallmark of cancer and is thought to be one of the tumor-promoting mechanisms regulated by TCDD. We performed an additional series of experiments in the normal human bronchial epithelial cell line Beas2B cells, in which TCDD was combined with the apoptosis inducer staurosporine. Our in vitro results confirmed that TCDD could rescue cells from apoptosis induced by staurosporine. The inhibition of apoptosis is likely mediated by the activation of the Akt and ERK1/2 pathways, as determined by the effectiveness of pathway-specific inhibitors in abrogating the anti-apoptotic activity of TCDD. In conclusion, we demonstrated that TCDD promoted NNK-induced lung tumorigenesis and revealed that TCDD inhibits staurosporine-induced apoptosis, at least in part, through the Akt and ERK1/2 signaling pathways.

  2. Levodopa activates apoptosis signaling kinase 1 (ASK1) and promotes apoptosis in a neuronal model: implications for the treatment of Parkinson's disease.

    Science.gov (United States)

    Liedhegner, Elizabeth A Sabens; Steller, Kelly M; Mieyal, John J

    2011-10-17

    Oxidative stress is implicated in the etiology of Parkinson's disease (PD), the second most common neurodegenerative disease. PD is treated with chronic administration of l-3,4-dihydroxyphenylalanine (levodopa, L-DOPA), and typically, increasing doses are used during progression of the disease. Paradoxically, L-DOPA is a pro-oxidant and induces cell death in cellular models of PD through disruption of sulfhydryl homeostasis involving loss of the thiol-disulfide oxidoreductase functions of the glutaredoxin (Grx1) and thioredoxin (Trx1) enzyme systems [Sabens, E. A., Distler, A. M., and Mieyal, J. J. (2010) Biochemistry 49 (12), 2715-2724]. Considering this loss of both Grx1 and Trx1 activities upon L-DOPA treatment, we sought to elucidate the mechanism(s) of L-DOPA-induced apoptosis. In other contexts, both the NFκB (nuclear factor κB) pathway and the ASK1 (apoptosis signaling kinase 1) pathway have been shown to be regulated by both Grx1 and Trx1, and both pathways have been implicated in cell death signaling in model systems of PD. Moreover, mixed lineage kinase (MLK) has been considered as a potential therapeutic target for PD. Using SHSY5Y cells as model dopaminergic neurons, we found that NFκB activity was not altered by L-DOPA treatment, and the selective MLK inhibitor (CEP-1347) did not protect the cells from L-DOPA. In contrast, ASK1 was activated with L-DOPA treatment as indicated by phosphorylation of its downstream mitogen-activated protein kinases (MAPK), p38 and JNK. Chemical inhibition of either p38 or JNK provided protection from L-DOPA-induced apoptosis. Moreover, direct knockdown of ASK1 protected from L-DOPA-induced neuronal cell death. These results identify ASK1 as the main pro-apoptotic pathway activated in response to L-DOPA treatment, implicating it as a potential target for adjunct therapy in PD.

  3. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis.

    Science.gov (United States)

    Winter, Peter S; Sarosiek, Kristopher A; Lin, Kevin H; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony; Wood, Kris C

    2014-12-23

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2(V617F) mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2(V617F) hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways [mediated by the kinases AKT and ERK (extracellular signal-regulated kinase)] renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2(V617F) cells, a JAK2-mediated inactivating phosphorylation of the proapoptotic protein BAD [B cell lymphoma 2 (BCL-2)-associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the prosurvival protein BCL-XL (BCL-2-like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. In patients with MPNs, activating mutations in RAS co-occur with the JAK2(V617F) mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance.

  4. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    Science.gov (United States)

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer.

  5. [Rhein lysinate induces apoptosis in breast cancer SK-Br-3 cells by inhibiting HER-2 signal pathway].

    Science.gov (United States)

    Lin, Ya-Jun; Huang, Yun-Hong; Zhen, Yong-Zhan; Liu, Xiu-Jun; Zhen, Yong-Su

    2008-11-01

    This study is to investigate the effect of rhein lysinate on inducing human breast cancer cell line SK-Br-3 apoptosis and the role of HER-2 signal pathway in the apoptosis. MTT assay was used to detect SK-Br-3 cell proliferation. Cell cycle and apoptosis were analyzed by flow cytometry. The protein expression and the protein phosphorylation of HER-2 signal pathway were detected by Western blotting. The level of HER-2 mRNA was detected by RT-PCR and the level of HER-2 expression was also detected by immunofluorescence cytochemical methods. The results showed that rhein lysinate remarkably inhibited breast cancer SK-Br-3 cell proliferation. The IC50 value for 48 h treatment was 85 micromol x L(-1). Apoptosis in SK-Br-3 cells was induced by rhein lysinate in a dose dependent manner. The protein expressions of HER-2, NF-KB, and the protein phosphorylation of HER-2 were downregulated, however the protein expression of p53 and p21 was upregulated after rhein lysinate treatment. The level of HER-2 mRNA decreased by using RT-PCR assay and the level of HER-2 expression was also decreased by using immunofluorescence cytochemical assay after rhein lysinate treatment. It can be concluded that rhein lysinate could inhibit SK-Br-3 cell proliferation and induce apoptosis. HER-2/NF-kappaB/p53/p21 signal pathway might be involved in this process. Rhein lysinate has a good prospect to be an adjuvant chemotherapeutic drug.

  6. Involvement of AP-1 in p38MAPK signaling pathway in osteoblast apoptosis induced by high glucose.

    Science.gov (United States)

    Feng, Z P; Deng, H C; Jiang, R; Du, J; Cheng, D Y

    2015-04-10

    We investigated the effect of p38MAPK/AP-1 (activator protein-1) signaling on the apoptosis of osteoblasts induced by high glucose. A lentivirus vector of small hairpin RNA (shRNA) targeting p38MAPK was constructed in vitro. Osteoblasts MC3T3-E1 cultured in vitro were treated with vehicle, high glucose, p38MAPK-shRNA transfection, p38MAPK inhibitor, and unrelated shRNA transfection. Apoptosis, protein levels of p38MAPK, and activities of AP-1 in MC3T3-E1 osteoblasts were measured using TUNEL and flow cytometry, Western blot analysis, and an electrophoretic mobility shift assay. Compared with the vehicle group, high glucose induced apoptosis of MC3T3-E1 osteoblasts and activated p38MAPK and AP-1. p38MAPK-shRNA transfection blocked the effect of high glucose stimulation, and the p38MAPK inhibitor showed similar effects as those observed in p38MAPK transfection. Unrelated shRNA had no effect on these changes in MC3T3-E1 osteoblasts induced by high glucose. Therefore, our results suggest that p38MAPK-shRNA reduce apoptosis of MC3T3-E1 osteoblasts induced by high glucose by inhibiting the p38MAPK-AP-1 signaling pathway.

  7. 北京市道路信号交叉口自行车和行人的行为研究%The Behavior of Cyclists and Pedestrians at Signalized Intersections in Beijing

    Institute of Scientific and Technical Information of China (English)

    吴建平; 黄岭; 赵坚利

    2004-01-01

    Investigations have been carried out at a signalized intersection in Beijing to study the behavior of cyclists and pedestrians in mixed traffic situations. Video cameras and data analysis technologies have been used to collect and analyze image data of cyclists and pedestrians at the signalized intersection. Results are useful for understanding the performance of mixed traffic at signalized intersections, and for building microscopic simulation models for urban mixed traffic.%对北京市信号交叉口的自行车和行人在混和交通流中的微观行为进行研究分析.研究中使用视频采集技术和数据分析技术来收集和分析自行车和行人在交叉口的行为.论文的主要研究结果是信号交叉口自行车和行人的各种微观行为特征和基础行为模型,这些结果有助于理解信号交叉口混和交通流的行为,并为城市混和交通流的微观交通模拟模型提供基础数据和理论依据.

  8. Perturbation of Hoxb5 signaling in vagal and trunk neural crest cells causes apoptosis and neurocristopathies in mice.

    Science.gov (United States)

    Kam, M K M; Cheung, M C H; Zhu, J J; Cheng, W W C; Sat, E W Y; Tam, P K H; Lui, V C H

    2014-02-01

    Neural crest cells (NCCs) migrate from different regions along the anterior-posterior axis of the neural tube (NT) to form different structures. Defective NCC development causes congenital neurocristopathies affecting multiple NCC-derived tissues in human. Perturbed Hoxb5 signaling in vagal NCC causes enteric nervous system (ENS) defects. This study aims to further investigate if perturbed Hoxb5 signaling in trunk NCC contributes to defects of other NCC-derived tissues besides the ENS. We perturbed Hoxb5 signaling in NCC from the entire NT, and investigated its impact in the development of tissues derived from these cells in mice. Perturbation of Hoxb5 signaling in these NCC resulted in Sox9 downregulation, NCC apoptosis, hypoplastic sympathetic and dorsal root ganglia, hypopigmentation and ENS defects. Mutant mice with NCC-specific Sox9 deletion also displayed some of these phenotypes. In vitro and in vivo assays indicated that the Sox9 promoter was bound and trans-activated by Hoxb5. In ovo studies further revealed that Sox9 alleviated apoptosis induced by perturbed Hoxb5 signaling, and Hoxb5 induced ectopic Sox9 expression in chick NT. This study demonstrates that Hoxb5 regulates Sox9 expression in NCC and disruption of this signaling causes Sox9 downregulation, NCC apoptosis and multiple NCC-developmental defects. Phenotypes such as ENS deficiency, hypopigmentation and some of the neurological defects are reported in patients with Hirschsprung disease (HSCR). Whether dysregulation of Hoxb5 signaling and early depletion of NCC contribute to ENS defect and other neurocristopathies in HSCR patients deserves further investigation.

  9. Cryptotanshinone suppresses the proliferation and induces the apoptosis of pancreatic cancer cells via the STAT3 signaling pathway.

    Science.gov (United States)

    Ge, Yuqing; Yang, Bo; Chen, Zhe; Cheng, Rubin

    2015-11-01

    Pancreatic cancer remains a challenging disease worldwide. Cryptotanshinone (CPT) is one of the active constituents of Salvia miltiorrhiza Bunge and exhibits significant antitumor activities in several human cancer cells. However, the efficacy and molecular mechanism of CPT in pancreatic cancer remains to be elucidated. In the present study, the effect of CPT on the proliferation, apoptosis and cell cycle of human pancreatic cancer cell BxPC‑3 cells was evaluated. The results demonstrated that CPT inhibited proliferation of the BxPC‑3 cells in a concentration‑dependent manner, and significantly induced cell apoptosis and cell cycle arrest. The protein levels of cleaved caspase‑3, caspase‑9 and poly ADP ribose polymerase were upregulated, while the levels of c‑myc, survivin and cyclin D1 were downregulated following treatment with CPT. In addition, CPT decreased the activities of signal transducer and activator of transcription 3 (STAT3) and several upstream regulatory signaling pathways after 24 h. However, CPT only inhibited the phosphorylation of STAT3 Tyr705 within 30 min, without marked effects on the phosphorylation of the other proteins. These results suggested that the inhibition of STAT3 activity by CPT was directly and independent of the upstream regulators in human pancreatic cancer. The present study demonstrated that CPT exerts anticancer effects by inducing apoptosis and cell cycle arrest via inhibition of the STAT3 signaling pathway in human BxPC-3 cells.

  10. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35)

    Institute of Scientific and Technical Information of China (English)

    Huimin Liang; Yaozhou Zhang; Xiaoyan Shi; Tianxiang Wei; Jiyu Lou

    2014-01-01

    Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer’s disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25-35) (Aβ25-35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Dilfuorophen-acetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25-35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Dilfuorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25-35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related su-peroxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25-35-induced PC12 apoptosis.

  11. Midazolam Inhibits the Apoptosis of Astrocytes Induced by Oxygen Glucose Deprivation via Targeting JAK2-STAT3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Li Liu

    2015-01-01

    Full Text Available Background: There is an increasing interest in the role of astrocytes contributing to the intrinsic bioremediation of ischemic brain injury. The purpose of this study was to disclose the effects and mechanism of midazolam (MDZ on the proliferation and apoptosis of astrocytes under oxygen glucose deprivation (OGD condition. Methods: The astrocytes were assigned randomly into four groups: control group, OGD group, OGD+MDZ group, and OGD+MDZ+IL-6 group. The astrocytes were treated with MDZ at dose of 10 μmol/L in OGD+MDZ group. And in OGD+MDZ+IL-6 group, the astrocytes were treated with MDZ at dose of 10μmol/L and IL-6 at dose of 50 ng/mL. MTT assay was used to assess cell proliferation, and cell apoptosis was analyzed by TUNEL apoptosis assay kit and flow cytometry. Furthermore, the expression of JAK2, p-JAK2, STAT3, p-STAT3, Bcl-2, Bax and Caspase-3 proteins were determined by western blotting assay. Results: Astrocytes proliferation was decreased obviously in OGD group, while MDZ could increase astrocytes proliferation under OGD condition. Moreover, OGD could induce apoptosis in astrocytes and MDZ could play an anti-apoptotic role. However, IL-6, a JAK2 activator, could attenuate cell proliferation and anti-apoptotic effects of MDZ in astrocytes. In addition, the expression of Bcl-2 protein in MDZ group increased markedly, while the JAK2/STAT3 signal proteins, Bax and Caspase-3 proteins decreased relative to OGD group. But IL-6 could counteract the anti-apoptotic effects of MDZ. Conclusion: Midazolam has protective effects on the proliferation and apoptosis of astrocytes via JAK2/STAT3 signal pathway in vitro. We firstly disclose the beneficial roles of midazolam in astrocytes under ischemic condition, which may be a rational treatment selection for ischemic cerebral protection.

  12. Delay model of multi-state flow for intersection timing signal control%多态交通条件下交叉口定时控制延误模型

    Institute of Scientific and Technical Information of China (English)

    丁恒; 陈无畏; 郑小燕; 马晓

    2012-01-01

    The delay is the essential evaluation index of intersection service level, and delay model plays an important role in intersection signal timing. In the condition of multi-state traffic flow, the existing delay models possess a large error. In order to adapt to the multi-sate flow, arriving headway data of intersection is fit based on the denseness of mixture Gamma distribution, and the probability of traffic flow arriving at intersection is calculated by means of fit probability function. Furthermore, the intersections are separated into two classes with traffic flow, low saturation and over saturation, and intersection timing control delay model on the traffic flow statistic probability is put forward. Finally, a reality intersection is presented as an example, and the result shows that the delay calculated by the model based on mixture Gamma distribution is close to practice.%延误是评价交叉口服务水平的基本指标,延误模型对交叉口信号控制方案的选择意义重大.在多态交通条件下,采用现有模型分析信号控制下交叉口延误程度存在较大误差.为适应交叉口交通流的多态性,基于混合Gamma分布稠密性,准确拟合交叉口到达车头时距数据.运用拟合概率函数,统计交叉口进口到达交通量概率.将交叉口按照到达交通量大小分为欠饱和、过饱和两种状态,根据统计概率提出交叉口信号定时控制延误模型.实例分析表明.基于混合Gamma分布的延误与实际结果更为吻合.

  13. Inhibitor of Apoptosis Signal-Regulating Kinase 1 Protects Against Acetaminophen-induced Liver Injury

    Science.gov (United States)

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.; Liles, John T.; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-01-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affected the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. PMID:25818599

  14. Growth Factor Receptors and Apoptosis Regulators: Signaling Pathways, Prognosis, Chemosensitivity and Treatment Outcomes of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Siddik Sarkar

    2009-01-01

    Full Text Available Biomarkers of breast cancer are necessary for prognosis and prediction to chemotherapy. Prognostic biomarkers provide information regarding outcome irrespective of therapy, while predictive biomarkers provide information regarding response to therapy. Candidate prognostic biomarkers for breast cancers are growth factor receptors, steroid receptors, Ki-67, cyclins, urokinase plasminogen activator, p53, p21, pro- and anti-apoptotic factors, BRCA1 and BRCA2. But currently, the predictive markers are Estrogen and Progesterone receptors responding to endocrine therapy, and HER-2 responding to herceptin. But there are numerous breast cancer cases, where tamoxifen is ineffective even after estrogen receptor positivity. This lead to search of new prognostic and predictive markers and the number of potential markers is constantly increasing due to proteomics and genomics studies. However, most biomarkers individually have poor sensitivity or specificity, or other clinical value. It can be resolved by studying various biomarkers simultaneously, which will help in better prognosis and increasing sensitivity for chemotherapeutic agents. This review is focusing on growth factor receptors, apoptosis markers, signaling cascades, and their correlation with other associated biomarkers in breast cancers. As our knowledge regarding molecular biomarkers for breast cancer increases, prognostic indices will be developed that combine the predictive power of individual molecular biomarkers with specific clinical and pathologic factors. Rigorous comparison of these existing as well as emerging markers with current treatment selection is likely to see an escalation in an era of personalized medicines to ensure the breast cancer patients receive optimal treatment. This will also solve the treatment modalities and complications related to chemotherapeutic regimens.

  15. Impact of Driver Behavior on Capacity at the Signalized Intersections%驾驶者行为选择对十字路口通行能力的影响

    Institute of Scientific and Technical Information of China (English)

    吴腾宇; 徐寅峰; 张珩

    2015-01-01

    考虑通过十字路口时左转车辆和直行车辆发生路权冲突时的不同驾驶者行为,将驾驶者分为跟随型驾驶者和谦让型驾驶者,并建立了左转车辆通过十字路口的模型,研究不同的驾驶者行为选择对十字路口通行能力的影响。结果表明,随着交通流量逐渐增加,驾驶者的行为越趋向于跟随时,十字路口的通行能力将会急剧降低;而当驾驶者的行为趋向于谦让时,十字路口的通行能力甚至优于有交警指挥的情形。该结果很好地解释了在行车高峰期中国十字路口堵塞的原因,即驾驶者的行为选择,可以通过改变驾驶者的行为选择和在交通流量达到一定的饱和度时派出交警来改善十字路口的通行能力。%When the conflicts between the left-turn vehicles and the through vehicles have happened at the signal-ized intersection, we consider different driver behaviors and divide the drivers into two types:the following driver and the humility driver, and build a model of the left-turn vehicles going through the intersection.The impact on the intersection’ s capacity by the different driver behavior is studied.The results show that when all the drivers are the following drivers, with the increase of the traffic flow, the capacity of the intersection decreases sharply. When all the drivers are the humility drivers, considering the situation that the policeman directs traffic, the capacity of the intersection will be better.These results can explain the reason for the blocking of the intersec-tions at the heavy traffic time in China well.We can improve the capacity of the intersections by changing the driver behavior and by directing traffic by a policeman.

  16. Study on Control Algorithm of Traffic Signals at Intersections Based on Optimizing Sub-area Traffic Flows%基于子区域交通流优化的交叉口信号控制研究

    Institute of Scientific and Technical Information of China (English)

    臧利林; 朱文兴

    2012-01-01

    In order to reduce average delay time of passing vehicles and improve urban area traffic efficiency, considering actual geographical characteristics of intersections and sub-area traffic data, a control model for traffic signals at intersections was built based on optimizing sub-area traffic flows, and genetic algorithm was used to find out the optimal solution of the model. With traffic signals coordination of neighboring intersections considered, vehicle minimal delay time was chosen as the optimization object in the model. HCM2000 was adopted to calculate vehicle delay time and Robertson model was embedded in the optimization procedure, which ensured the proposed model to be feasible and effective. VC+ 3- 6. 0 software was applied to programm and calculate an optimal control plan for traffic signals at intersections. Finally, simulation by CORSIM was implemented to verifythe validity of the control plan. The results show that the proposed model can obtain better traffic efficiency than the coordination control method based on existing common cycle, and provides a new signal control idea at intersections for urban traffic.%为了减少车辆平均延误时间,提高城市区域交通通行效率,结合实际交叉口地理特征和区域交通流数据,建立了一种基于子区域交通流优化的交叉口信号控制模型,并应用遗传算法获得模型的最优解。在模型中,考虑相邻交叉口信号之间的协调,以车辆平均延误时间最小为优化目标,采用HCM2000延误计算方法,并在优化过程中嵌入Robertson车队离散模型,保证提出模型的可行性和有效性。在VC++6.0中编写程序,获得交叉口信号最优控制方案,最后通过CORSIM仿真证明该控制方案的优劣。结果表明:与现有基于共同周期的协调控制方法相比,所提出的模型能够获得更优的交通效益,为区域交通信号控制提供了一种新的思路。

  17. d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway

    Science.gov (United States)

    Miao, Ziwei; Yu, Fei; Ren, Yahao; Yang, Jun

    2017-01-01

    d,l-Sulforaphane (SFN), a synthetic analogue of broccoli-derived isomer l-SFN, exerts cytotoxic effects on multiple tumor cell types through different mechanisms and is more potent than the l-isomer at inhibiting cancer growth. However, the means by which SFN impairs glioblastoma (GBM) cells remains poorly understood. In this study, we investigated the anti-cancer effect of SFN in GBM cells and determined the underlying molecular mechanisms. Cell viability assays, flow cytometry, immunofluorescence, and Western blot results revealed that SFN could induced apoptosis of GBM cells in a dose- and time-dependent manner, via up-regulation of caspase-3 and Bax, and down-regulation of Bcl-2. Mechanistically, SFN treatment led to increase the intracellular reactive oxygen species (ROS) level in GBM cells. Meanwhile, SFN also suppressed both constitutive and IL-6-induced phosphorylation of STAT3, and the activation of upstream JAK2 and Src tyrosine kinases, dose- and time-dependently. Moreover, blockage of ROS production by using the ROS inhibitor N-acetyl-l-cysteine totally reversed SFN-mediated down-regulation of JAK2/Src-STAT3 signaling activation and the subsequent effects on apoptosis by blocking the induction of apoptosis-related genes in GBM cells. Taken together, our data suggests that SFN induces apoptosis in GBM cells via ROS-dependent inactivation of STAT3 phosphorylation. These findings motivate further evaluation of SFN as a cancer chemopreventive agent in GBM treatment. PMID:28054986

  18. Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway

    Indian Academy of Sciences (India)

    Di Wang; Jian Chen; Hui Chen; Zhi Duan; Qimei Xu; Meiyan Wei; Lianghua Wang; Meizuo Zhong

    2012-03-01

    Epidemiological studies have indicated that obesity is associated with colorectal cancer. The obesity hormone leptin is considered as a key mediator for cancer development and progression. The present study aims to investigate regulatory effects of leptin on colorectal carcinoma. The expression of leptin and its receptor Ob-R was examined by immunohistochemistry in 108 Chinese patients with colorectal carcinoma. The results showed that leptin/Ob-R expression was significantly associated with T stage, TNM stage, lymph node metastasis, distant metastasis, differentiation and expression of p-mTOR, p-70S6 kinase, and p-Akt. Furthermore, the effects of leptin on proliferation and apoptosis of HCT-116 colon carcinoma cells were determined. The results showed that leptin could stimulate the proliferation and inhibit the apoptosis of HCT-116 colon cells through the PI3K/Akt/mTOR pathway. Ly294002 (a PI3K inhibitor) and rapamycin (an mTOR inhibitor) could prevent the regulatory effects of leptin on the proliferation and apoptosis of HCT-116 cells via abrogating leptin-mediated PI3K/Akt/mTOR pathway. All these results indicated that leptin could regulate proliferation and apoptosis of colorectal carcinoma through the PI3K/Akt/mTOR signalling pathway.

  19. d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ziwei Miao

    2017-01-01

    Full Text Available d,l-Sulforaphane (SFN, a synthetic analogue of broccoli-derived isomer l-SFN, exerts cytotoxic effects on multiple tumor cell types through different mechanisms and is more potent than the l-isomer at inhibiting cancer growth. However, the means by which SFN impairs glioblastoma (GBM cells remains poorly understood. In this study, we investigated the anti-cancer effect of SFN in GBM cells and determined the underlying molecular mechanisms. Cell viability assays, flow cytometry, immunofluorescence, and Western blot results revealed that SFN could induced apoptosis of GBM cells in a dose- and time-dependent manner, via up-regulation of caspase-3 and Bax, and down-regulation of Bcl-2. Mechanistically, SFN treatment led to increase the intracellular reactive oxygen species (ROS level in GBM cells. Meanwhile, SFN also suppressed both constitutive and IL-6-induced phosphorylation of STAT3, and the activation of upstream JAK2 and Src tyrosine kinases, dose- and time-dependently. Moreover, blockage of ROS production by using the ROS inhibitor N-acetyl-l-cysteine totally reversed SFN-mediated down-regulation of JAK2/Src-STAT3 signaling activation and the subsequent effects on apoptosis by blocking the induction of apoptosis-related genes in GBM cells. Taken together, our data suggests that SFN induces apoptosis in GBM cells via ROS-dependent inactivation of STAT3 phosphorylation. These findings motivate further evaluation of SFN as a cancer chemopreventive agent in GBM treatment.

  20. Lymphotropic Virions Affect Chemokine Receptor-Mediated Neural Signaling and Apoptosis: Implications for Human Immunodeficiency Virus Type 1-Associated Dementia

    Science.gov (United States)

    Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.

    1999-01-01

    Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576

  1. Analysis of Drivers'Behavior at Signalized Intersection%信号交叉口驾驶员行为博弈分析

    Institute of Scientific and Technical Information of China (English)

    黄选伟; 汪晶; 张邻

    2015-01-01

    为了研究车辆通过信号交叉口时的驾驶员决策行为,从博弈角度出发,根据影响驾驶员决策行为的性格因素,以及不同策略之间的势因素,通过时间细化,建立基于重复博弈下影响驾驶员决策行为的效用函数.通过驾驶员在行进过程中的决策行为,分析驾驶员获得的效用,得到动态博弈中驾驶员的最优决策.同时通过实例验证模型的可行性.例证表明:第一,对于冲动型的驾驶员在决策初始时刻最可能选择减速策略;第二,温和型的驾驶员选择加速或减速策略;第三,谨慎型的驾驶员选择减速策略.%In order to study the decision-making behavior of drivers at the signalized intersection, this study estab-lishes a utility function of drivers' driving behavior by reference to dynamic reduplicate game theory based on the drivers'personality that affects decision-making behavior and time refinement, and the relative potential factors among different strategies . According to the drivers'decision-making behavior in the process of driving and ana-lyzing the utility of the drivers'decision-making behavior, the drivers'optimal decision behaviors in a dynamic game are obtained, and the feasibility of the model is simultaneously verified. Experiments show that during deci-sion-making①impulsive drivers are more willing to choose deceleration strategy;②mild drivers prefer accelera-tion strategy or deceleration strategy;and③cautious drivers choose deceleration strategy.

  2. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells.

    Science.gov (United States)

    Liao, Yuexia; Shen, Weigan; Kong, Guimei; Lv, Houning; Tao, Wenhua; Bo, Ping

    2014-01-01

    Apigenin is a naturally occurring plant flavonoid that possesses antioxidant, anti-cancer and anti-inflammatory properties. However, there are few reports has been done on the ability of apigenin to induce apoptosis in macrophages. In this study, mouse macrophage ANA-1 cells were incubated with different concentrations of apigenin. The cell viability was determined by an MTT assay. The cell apoptosis were analyzed by flow cytometric analysis. Apoptosis were also analyzed using a TUNEL assay and a DNA ladder. The level of intracellular ROS was detected using a dichlorofluorescein -diacetate probe. The expression levels of apoptosis-related proteins were detected by western blot analysis. The results showed that apigenin decreased the viability of ANA-1 cells and induced apoptosis in a dose- and time-dependent manner. Apigenin increased the level of intracellular ROS, downregulated the expression of Bcl-2 and upregulated the expression of caspase-3 and caspase-8 in ANA-1 cells. Furthermore, apigenin downregulated the expression of phospho-ERK and phospho-JNK, upregulated the expression of phospho-p38 and had no significant effect on the expression of Bax, ERK, JNK and p38. The results suggested that apigenin induced cell apoptosis in mouse macrophage ANA-1 cells may via increasing intracellular ROS, regulating the MAPK pathway, and then inhibiting Bcl-2 expression.

  3. FLIP switches Fas-mediated glucose signaling in human pancreatic β cells from apoptosis to cell replication

    Science.gov (United States)

    Maedler, Kathrin; Fontana, Adriano; Ris, Frédéric; Sergeev, Pavel; Toso, Christian; Oberholzer, José; Lehmann, Roger; Bachmann, Felix; Tasinato, Andrea; Spinas, Giatgen A.; Halban, Philippe A.; Donath, Marc Y.

    2002-01-01

    Type 2 diabetes mellitus results from an inadequate adaptation of the functional pancreatic β cell mass in the face of insulin resistance. Changes in the concentration of glucose play an essential role in the regulation of β cell turnover. In human islets, elevated glucose concentrations impair β cell proliferation and induce β cell apoptosis via up-regulation of the Fas receptor. Recently, it has been shown that the caspase-8 inhibitor FLIP may divert Fas-mediated death signals into those for cell proliferation in lymphatic cells. We observed expression of FLIP in human pancreatic β cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro exposure of islets from nondiabetic organ donors to high glucose levels decreased FLIP expression and increased the percentage of apoptotic terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL)-positive β cells; FLIP was no longer detectable in such TUNEL-positive β cells. Up-regulation of FLIP, by incubation with transforming growth factor β or by transfection with an expression vector coding for FLIP, protected β cells from glucose-induced apoptosis, restored β cell proliferation, and improved β cell function. The beneficial effects of FLIP overexpression were blocked by an antagonistic anti-Fas antibody, indicating their dependence on Fas receptor activation. The present data provide evidence for expression of FLIP in the human β cell and suggest a novel approach to prevent and treat diabetes by switching Fas signaling from apoptosis to proliferation. PMID:12060768

  4. Roles of Fas signaling pathway in vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells

    Institute of Scientific and Technical Information of China (English)

    Kun Wu; Yao Li; Yan Zhao; Yu-Juan Shan; Wei Xia; Wei-Ping Yu; Lan Zhao

    2002-01-01

    AIM: To investigate the roles of Fas signaling pathway in vitamin E succinate-induced apoptosis in human gastric cancer SGC-7901 cells.METHODS: Human gastric cancer SGC-7901 cells were treated with VES at 5, 10, 20 mg@L-1, succinic acid and vitamin E as vehicle control and condition media only as untreated (UT) control. Apoptotic morphology was observed by DAPI staining. Western blot analysis was applied to measure the expression of Fas, FADD and caspase-8 proteins. After the cells were transiently transfected with Fas and FADD antisense oligonucleotides, respectively, caspase-8 activity was determined by flurometric method.RESULTS: The morphologically apoptotic changes were observed after VES treatment by DAPI staining. 23.7 % and 89.6 % apoptosis occurred after 24 h and 48 h of 20 mg@L-1 VES treatment, respectively. The protein levels of Fas, FADD and caspase-8 were evidently increased in a dose-dependent manner after 24 h of VES treatment. The blockage of Fas by transfection with Fas antisense oligonucleotides obviously inhibited the expression of FADD protein. After SGC-7901 cells were transfected with Fas and FADD antisense oligonucleotides, caspase-8 activity was obviously decreased (P<0.01), whereas Fas blocked more than FADD.CONCLUSION: VES-induced apoptosis in human gastric cancer SGC-7901 cells involves Fas signaling pathway including the interaction of Fas, FADD and caspase-8.

  5. Berberine Protects Human Umbilical Vein Endothelial Cells against LPS-Induced Apoptosis by Blocking JNK-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Junping Guo

    2016-01-01

    Full Text Available Endothelial dysfunction is a critical factor during the initiation of atherosclerosis. Berberine has a beneficial effect on endothelial function; however, the underlying mechanisms remain unclear. In this study, we investigated the effects of berberine on lipopolysaccharide- (LPS- induced apoptosis in human umbilical vein endothelial cells (HUVECs and the molecular mechanisms mediating the effect. The effects of berberine on LPS-induced cell apoptosis and viability were measured with 5-ethynyl-2′-deoxyuridine staining, flow cytometry, and Cell Counting Kit-8 assays. The expression and/or activation of proapoptotic and antiapoptotic proteins or signaling pathways, including caspase-3, poly(ADP-ribose polymerase, myeloid cell leukemia-1 (MCL-1, p38 mitogen-activated protein kinase, C-Jun N-terminal kinase (JNK, and extracellular signal-regulated kinase, were determined with western blotting. The malondialdehyde levels, superoxide dismutase (SOD activity, and production of proinflammatory cytokines were measured with enzyme-linked immunosorbent assays. The results demonstrated that berberine pretreatment protected HUVECs from LPS-induced apoptosis, attenuated LPS-induced injury, inhibited LPS-induced JNK phosphorylation, increased MCL-1 expression and SOD activity, and decreased proinflammatory cytokine production. The effects of berberine on LPS-treated HUVECs were prevented by SP600125, a JNK-specific inhibitor. Thus, berberine might be a potential candidate in the treatment of endothelial cell injury-related vascular diseases.

  6. Statistical modeling of total crash frequency at highway intersections

    Directory of Open Access Journals (Sweden)

    Arash M. Roshandeh

    2016-04-01

    Full Text Available Intersection-related crashes are associated with high proportion of accidents involving drivers, occupants, pedestrians, and cyclists. In general, the purpose of intersection safety analysis is to determine the impact of safety-related variables on pedestrians, cyclists and vehicles, so as to facilitate the design of effective and efficient countermeasure strategies to improve safety at intersections. This study investigates the effects of traffic, environmental, intersection geometric and pavement-related characteristics on total crash frequencies at intersections. A random-parameter Poisson model was used with crash data from 357 signalized intersections in Chicago from 2004 to 2010. The results indicate that out of the identified factors, evening peak period traffic volume, pavement condition, and unlighted intersections have the greatest effects on crash frequencies. Overall, the results seek to suggest that, in order to improve effective highway-related safety countermeasures at intersections, significant attention must be focused on ensuring that pavements are adequately maintained and intersections should be well lighted. It needs to be mentioned that, projects could be implemented at and around the study intersections during the study period (7 years, which could affect the crash frequency over the time. This is an important variable which could be a part of the future studies to investigate the impacts of safety-related works at intersections and their marginal effects on crash frequency at signalized intersections.

  7. Signal transduction and metabolic changes during tumor cell apoptosis following phthalocyanine-sensitized photodynamic therapy

    Science.gov (United States)

    Oleinick, Nancy L.; Agarwal, Munna L.; Berger, Nathan A.; Cheng, Ming-Feng; Chatterjee, Satadel; He, Jin; Kenney, Malcolm E.; Larkin, Hedy E.; Mukhter, Hasan; Rihter, Boris D.; Zaidi, Syed I. A.

    1993-06-01

    Mechanisms of cell death have been explored in cells and tumors treated with photodynamic therapy (PDT). Photosensitizers used for these studies were Photofrin, tetrasulfonated and nonsulfonated aluminum phthalocyanine, and a new silicon phthalocyanine [SiPc(OH)OSi(CH3)2(CH2)3N(CH3)2], referred to as PcIV. In mouse lymphoma L5178Y cells, a dose of PDT sensitized by PcIV which causes a 90% loss of cell survival induces apoptosis (programmed cell death) over a several-hour time course, beginning within 10 minutes of irradiation. Apoptosis is a metabolic process initiated by PDT-induced damage to membranes and triggered by the activation of phospholipases A2 and C and the release of Ca++ from intracellular stores. An endogenous endonuclease is activated and cleaves nuclear DNA in the internucleosomal region of chromatin. Subsequent metabolic events now appear to cause the loss of cellular NAD and ATP, the former a result of the activation of a second nuclear enzyme, poly(ADP-ribose) polymerase, by the endonucleolytically generated DNA strand breaks. Loss of ATP follows upon the loss of NAD needed for energy metabolism. Although the induction of apoptosis is efficiently produced by direct PDT damage to L5178Y cells, we now find that apoptosis is also produced by treatment of certain other lymphoid-derived cells and cells of epithelial origin. Under the limited set of conditions tested, there was no evidence for PDT-induced apoptosis in a fibroblast cell line, in mouse fibrosarcoma RIF-1 and L929 cells, in human adenocarcinoma A549 cells, or in human squamous cell carcinoma cells in culture. The evidence suggests that apoptosis, a form of metabolic cell death, is an important mechanism of tumor ablation in PDT-treated tumors, and that the induction of apoptosis may involve the interaction of direct PDT damage to malignant cells with factors produced by PDT action on vascular and other host cells.

  8. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    Science.gov (United States)

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  9. IGFBP-3 inhibits TNF-α production and TNFR-2 signaling to protect against retinal endothelial cell apoptosis.

    Science.gov (United States)

    Zhang, Qiuhua; Steinle, Jena J

    2014-09-01

    In models of diabetic retinopathy, insulin-like growth factor binding protein-3 (IGFBP-3) protects against tumor necrosis factors-alpha (TNF-α)-mediated apoptosis of retinal microvascular endothelial cells (REC), but the underlying mechanisms are unclear. Our current findings suggest that at least two discrete but complimentary pathways contribute to the protective effects of IGFBP-3; 1) IGFBP-3 directly activates the c-Jun kinase/tissue inhibitor of metalloproteinase-3/TNF-α converting enzyme (c-Jun/TIMP-3/TACE), pathway, which in turn inhibits TNF-α production; 2) IGFBP-3 acts through the IGFBP-3 receptor, low-density lipoprotein receptor-related protein 1 (LRP1), to inhibit signaling of TNF-α receptor 2 (TNFR2). Combined, these two IGFBP-3 pathways substantially reduce REC apoptosis and offer potential targets for the treatment of diabetic retinopathy.

  10. 信号交叉口公交专用进口道设置条件与效果分析%Setting Condition and Effect Analysis of Bus Lanes at Signalized Intersection

    Institute of Scientific and Technical Information of China (English)

    吕斌; 牛惠民

    2011-01-01

    分析了已有公交优先策略评价与仿真方法的局限性,考虑不同的交通需求水平与信号配时参数,将车均延误、人均延误和车辆排队长作为单个信号交叉口运行评价指标,以三相位十字信号交叉口为例,利用Simio仿真分析了公交专用进口道设置前后上述评价指标的变化规律.结果可用于交叉口公交优先信号配时参数的优化.%The limitations of evaluation and simulation methods for the existed bus priority strategy are analyzed. Average vehicle delay, average delay of customers and queue length are taken as evaluation indexes. Considering different traffic demand and signal timing parameters, a simulation example of a three-phase signalized intersection is presented to experiment and analyze the change rule of evaluation index with and without bus lanes, respectively by using the object-oriented simulation software Simio. The study results can be used in optimization signal timing parameters of signalized intersection based on bus priority.

  11. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun [Department of Surgery, The Children' s Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006 (China); Wang, Rong, E-mail: wangrong2008163@163.com [Department of Ultrasonography, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province 221006 (China)

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  12. Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis

    Science.gov (United States)

    Schaaf, Kaitlyn; Smith, Samuel R.; Duverger, Alexandra; Wagner, Frederic; Wolschendorf, Frank; Westfall, Andrew O.; Kutsch, Olaf; Sun, Jim

    2017-01-01

    The ability to suppress host macrophage apoptosis is essential for M. tuberculosis (Mtb) to replicate intracellularly while protecting it from antibiotic treatment. We recently described that Mtb infection upregulated expression of the host phosphatase PPM1A, which impairs the antibacterial response of macrophages. Here we establish PPM1A as a checkpoint target used by Mtb to suppress macrophage apoptosis. Overproduction of PPM1A suppressed apoptosis of Mtb-infected macrophages by a mechanism that involves inactivation of the c-Jun N-terminal kinase (JNK). Targeted depletion of PPM1A by shRNA or inhibition of PPM1A activity by sanguinarine restored JNK activation, resulting in increased apoptosis of Mtb-infected macrophages. We also demonstrate that activation of JNK by subtoxic concentrations of anisomycin induced selective apoptotic killing of Mtb-infected human macrophages, which was completely blocked in the presence of a specific JNK inhibitor. Finally, selective killing of Mtb-infected macrophages and subsequent bacterial release enabled rifampicin to effectively kill Mtb at concentrations that were insufficient to act against intracellular Mtb, providing proof of principle for the efficacy of a “release and kill” strategy. Taken together, these findings suggest that drug-induced selective apoptosis of Mtb-infected macrophages is achievable. PMID:28176854

  13. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuchao; Ramachandran, Anup [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Breckenridge, David G.; Liles, John T. [Department of Biology, Gilead Sciences, Inc., Foster City, CA (United States); Lebofsky, Margitta [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is

  14. Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qiu-Hua; Liu, Yuan; Wu, Shan-Shan; Cui, Rong-Rong; Yuan, Ling-Qing, E-mail: allenylq@hotmail.com; Liao, Er-Yuan, E-mail: eyliao@21cn.com

    2013-11-01

    Ghrelin is a 28-amino-acid peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR) and strongly stimulates the release of growth hormone from the hypothalamus–pituitary axis. Previous studies have identified the important physiological effects of ghrelin on bone metabolism, such as regulating proliferation and differentiation of osteoblasts, independent of GH/IGF-1 axis. However, research on effects and mechanisms of ghrelin on osteoblast apoptosis is still rare. In this study, we identified expression of GHSR in MC3T3-E1 cells and determined the effects of ghrelin on the apoptosis of osteoblastic MC3T3-E1 cells and the mechanism involved. Our data demonstrated that ghrelin inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as determined by terminal deoxynucleotidyl transferase-mediated deoxyribonucleotide triphosphate nick end-labeling (TUNEL) and ELISA assays. Moreover, ghrelin upregulated Bcl-2 expression and downregulated Bax expression in a dose-dependent manner. Our study also showed decreased activated caspase-3 activity under the treatment of ghrelin. Further study suggested that ghrelin stimulated the phosphorylation of ERK and AKT. Pretreatment of cells with the ERK inhibitor PD98059, PI3K inhibitor LY294002, and GHSR-siRNA blocked the ghrelin-induced activation of ERK and AKT, respectively; however, ghrelin did not stimulate the phosphorylation of p38 or JNK. PD90859, LY294002 and GHSR-siRNA attenuated the anti-apoptosis effect of ghrelin in MC3T3-E1 cells. In conclusion, ghrelin inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, which may be mediated by activating the GHSR/ERK and GHSR/PI3K/AKT signaling pathways. - Highlights: • We explored the effects of ghrelin on serum deprivation-induced MC3T3-E1 cells apoptosis. • Both ELISA and TUNEL were used to detect the apoptosis. • The receptor of ghrelin, GHSR, was expressed in MC3T3-E1

  15. 突发事件下应急车辆单点信号优先控制研究%Signal Priority Control Strategy for Emergency Vehicles at Isolated Intersection under Unexpected Event

    Institute of Scientific and Technical Information of China (English)

    牟海波; 俞建宁; 刘林忠

    2012-01-01

    Under an unexpected event, emergency vehicles coming from different directions arrive at the same intersection simultaneously and compete for green light phase. To reduce intersection delays of emergency vehicles, taken the minimum delays of all vehicles at isolated intersection as the control target, the priority of each phase was obtained by considering expected future waiting times and emergency vehicle volume rate comprehensively. Fuzzy Petri net approach was adopted to give the most suitable green time of current phase according to the queue and the emergency vehicle volume rate of current phase and the next phase. Finally, a concrete signal priority control strategy was presented. Simulation result indicates that when the emergency vehicle volume rate increased from 0. 1 to 0. 6, the average intersection delay of emergency vehicles decreased from 22. 43 s to 20. 41 s, since the phase priority increased correspondingly and the assigned green time was close to the clearance time, some emergency vehicles can pass through the intersection directly. The strategy given here can reduce the intersection delays of emergency vehicles efficiently.%突发事件下,不同方向的应急车辆同时到达交叉口竞争绿灯相位.为减少应急车辆在交叉口的延误,以车辆总停留时间最小为目标,综合考虑各相位的期望将来停留时间和应急车流量比,得到各个相位的优先权.根据当前相位和下一相位的队长和应急车流量比,采用模糊Petri网方法确定当前相位的最佳绿灯时间,并给出了具体的信号优先控制策略.仿真结果表明,当应急车流量比由0.1增加到0.6时,由于对应相位的优先权增大,实际执行绿灯时间接近于相位清空时间,部分应急车辆可以不在交叉口停留直接通过,应急车辆的交叉口平均延误由22.43 s下降到20.41 s.可见,该方法可以有效降低应急车辆的交叉口延误.

  16. Disruption of IGF-1R signaling increases TRAIL-induced apoptosis: A new potential therapy for the treatment of melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Karasic, Thomas B.; Hei, Tom K. [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Ivanov, Vladimir N., E-mail: vni3@columbia.edu [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States)

    2010-07-15

    Resistance of cancer cells to apoptosis is dependent on a balance of multiple genetic and epigenetic mechanisms, which up-regulate efficacy of the surviving growth factor-receptor signaling pathways and suppress death-receptor signaling pathways. The Insulin-like Growth Factor-1 Receptor (IGF-1R) signaling pathway is highly active in metastatic melanoma cells by mediating downstream activation of PI3K-AKT and MAPK pathways and controlling general cell survival and proliferation. In the present study, we used human melanoma lines with established genotypes that represented different phases of cancer development: radial-growth-phase WM35, vertical-growth-phase WM793, metastatic LU1205 and WM9 [1]. All these lines have normal NRAS. WM35, WM793, LU1205 and WM9 cells have mutated BRAF (V600E). WM35 and WM9 cells express normal PTEN, while in WM793 cells PTEN expression is down-regulated; finally, in LU1205 cells PTEN is inactivated by mutation. Cyclolignan picropodophyllin (PPP), a specific inhibitor of IGF-1R kinase activity, strongly down-regulated the basal levels of AKT activity in WM9 and in WM793 cells, modestly does so in LU1205, but has no effect on AKT activity in the early stage WM35 cells that are deficient in IGF-1R. In addition, PPP partially down-regulated the basal levels of active ERK1/2 in all lines used, highlighting the role of an alternative, non-BRAF pathway in MAPK activation. The final result of PPP treatment was an induction of apoptosis in WM793, WM9 and LU1205 melanoma cells. On the other hand, dose-dependent inhibition of IGF-1R kinase activity by PPP at a relatively narrow dose range (near 500 nM) has different effects on melanoma cells versus normal cells, inducing apoptosis in cancer cells and G2/M arrest of fibroblasts. To further enhance the pro-apoptotic effects of PPP on melanoma cells, we used a combined treatment of TNF-Related Apoptosis-Inducing Ligand (TRAIL) and PPP. This combination substantially increased death by apoptosis for

  17. Quasi Lp-Intersection Bodies

    Institute of Scientific and Technical Information of China (English)

    Wu Yang YU; Dong Hua WU; Gang Song LENG

    2007-01-01

    The purpose of this paper is to generalize the notion of intersection bodies to that of quasi Lp-intersection bodies. The Lp-analogs of the Busemann intersection inequality and the Brunn Minkowski inequality for the quasi Lp-intersection bodies are obtained. The Aleksandrov-Fenchel inequality for the mixed quasi Lp-intersection bodies is also established.

  18. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunfa, E-mail: chunfa.huang@case.edu [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Bruggeman, Leslie A. [Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Hydo, Lindsey M. [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Miller, R. Tyler [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States)

    2012-06-10

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

  19. Fisetin and hesperetin induced apoptosis and cell cycle arrest in chronic myeloid leukemia cells accompanied by modulation of cellular signaling.

    Science.gov (United States)

    Adan, Aysun; Baran, Yusuf

    2016-05-01

    Fisetin and hesperetin, naturally occurring flavonoids, have been reported as novel antioxidants with chemopreventive/chemotherapeutic potential against various types of cancer. However, their mechanism of action in CML is still unknown. This particular study aims to evaluate the therapeutic potentials of fisetin and hesperetin and their effects on cell proliferation, apoptosis, and cell cycle progression in human K562 CML cells. The results indicated that fisetin and hesperetin inhibited cell proliferation and triggered programmed cell death in these cells. The latter was confırmed by mitochondrial membrane depolarization and an increase in caspase-3 activation. In addition to that, we have detected S and G2/M cell cycle arrests and G0/G1 arrest upon fisetin and hesperetin treatment, respectively. To identify the altered genes and genetic networks in response to fisetin and hesperetin, whole-genome microarray analysis was performed. The microarray gene profiling analysis revealed some important signaling pathways including JAK/STAT pathway, KIT receptor signaling, and growth hormone receptor signaling that were altered upon fisetin and hesperetin treatment. Moreover, microarray data suggested potential candidate genes for targeted CML therapy. Fisetin and hesperetin significantly modulated the expression of genes involved in cell proliferation and division, apoptosis, cell cycle regulation, and other significant cellular processes such as replication, transcription, and translation. In conclusion, our results suggest that fisetin and hesperetin as potential natural agents for CML therapy.

  20. Anti-apoptotic signaling and failure of apoptosis in the ischemic rat hippocampus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Lassmann, Hans; Johansen, Flemming Fryd

    2007-01-01

    Several anti-apoptotic proteins are induced in CA1 neurons after transient forebrain ischemia (TFI), but fail to protect the majority of these cells from demise. Correlating cell death morphologies (apoptosis-like and necrosis-like death) with immunohistochemistry (IHC), we investigated whether a...

  1. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling.

    Science.gov (United States)

    Song, Wenbin; Dang, Qiang; Xu, Defeng; Chen, Yule; Zhu, Guodong; Wu, Kaijie; Zeng, Jin; Long, Qingzhi; Wang, Xinyang; He, Dalin; Li, Lei

    2014-03-01

    Kaempferol has been shown to inhibit cell growth, induce apoptosis and cell cycle arrest in several tumors, but not in renal cell carcinoma (RCC). In the present study, we investigated the effects of kaempferol and the underlying mechanism(s) on the cell growth of RCC cells. MTT assay and colony formation assay were used to study cell growth, and flow cytometry was used to study apoptosis and cell cycles in different RCC cells treated with various doses of kaempferol. A significant inhibition on cell growth, induction of apoptosis and cell cycle arrest were observed in 786-O and 769-P cells after kaempferol treatment compared with the control group. Moreover, the results clearly showed that kaempferol causes a strong inhibition of the activation of the EGFR/p38 signaling pathways, upregulation of p21 expression and downregulation of cyclin B1 expression in human RCC cells, together with activation of PARP cleavages, induction of apoptotic death and inhibition of cell growth. Collectively, our results suggest that kaempferol may serve as a candidate for chemo-preventive or chemotherapeutic agents for RCC.

  2. Targeting miR-155 suppresses proliferation and induces apoptosis of HL-60 cells by targeting Slug/PUMA signal.

    Science.gov (United States)

    Liang, Hui; Dong, Ziyan; Liu, Jiang-Feng; Chuang, Wei; Gao, Li-Zhen; Ren, Yu-Guo

    2016-10-27

    Recent studies have shown that high miR-155 expression was associated with poor prognosis in patients with acute myelogeneous leukemia (AML). Furthermore, targeting miR-155 results in monocytic differentiation and apoptosis. However, the exact role and mechanisms of miR-155 in human AML remains speculative. HL-60 cells were treated with anti-miR-155 for 72 h. Cell growth and apoptosis in vitro were detected by MTT, BrdU proliferation, colony formation and flow cytometry assay. The effect of anti-miR-155 on growth of HL-60 cells was also evaluated in a leukemia mouse model. Slug cDNA and PUMA siRNA trannsfection was used to assess the signal pathway. Different protein expression was detected by western blot assay and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. The results shown that targeting miR-155 resulted in a 24-fold decrease of miR-155 expression compared to negative control in the HL-60 cells. Targeting miR-155 significantly downregulated Slug and upregulated PUMA expression, and decreased HL-60 cell growth by 70% , impaired colony formation by approximately 60%, and increased HL-60 cell apoptosis by 45%. Targeting PUMA reversed miR-155 sliencing-induced proliferation and apoptosis of HL-60 cells. Restoration of Slug decreased PUMA expression. In murine engraftment models of HL-60 cells, we showed that targeting miR-155 was able to reduce tumor growth. This was accompanied with decreased Slug expression and increased PUMA expression in these tumors. Collectively, our findings strongly suggest targeting miR-155 exhibited in vivo and in vitro antileukemic activities in AML through a novel mechanism resulting in inhibition of Slug expression and increase of PUMA expression.

  3. Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells.

    Science.gov (United States)

    Seo, Hye-Sook; Ku, Jin Mo; Choi, Han-Seok; Woo, Jong-Kyu; Jang, Bo-Hyoung; Go, Hoyeon; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-08-01

    Phytoestrogens have been demonstrated to inhibit tumor induction; however, their molecular mechanisms of action have remained elusive. The present study aimed to investigate the effects of a phytoestrogen, apigenin, on proliferation and apoptosis of the human epidermal growth factor receptor 2 (HER2)-expressing breast cancer cell line SKBR3. Proliferation assay, MTT assay, fluorescence-activated cell sorting analysis, western blot analysis, immunocytochemistry, reverse transcription-polymerase chain reaction and ELISA assay were used in the present study. The results of the present study indicated that apigenin inhibited the proliferation of SKBR3 cells in a dose-and time-dependent manner. This inhibition of growth was accompanied by an increase in the sub-G0/G1 apoptotic population. Furthermore, apigenin enhanced the expression levels of cleaved caspase-8 and -3, and induced the cleavage of poly(adenosine diphosphate ribose) polymerase in SKBR3 cells, confirming that apigenin promotes apoptosis via a caspase-dependent pathway. Apigenin additionally reduced the expression of phosphorylated (p)-janus kinase 2 and p-signal transducer and activator of transcription 3 (STAT3), inhibited CoCl2-induced vascular endothelial growth factor (VEGF) secretion and decreased the nuclear localization of STAT3. The STAT3 inhibitor S31-201 decreased the cellular proliferation rate and reduced the expression of p-STAT3 and VEGF. Therefore, these results suggested that apigenin induced apoptosis via the inhibition of STAT3 signaling in SKBR3 cells. In conclusion, the results of the present study indicated that apigenin may be a potentially useful compound for the prevention or treatment of HER2-overexpressing breast cancer.

  4. Isoorientin induces apoptosis, decreases invasiveness, and downregulates VEGF secretion by activating AMPK signaling in pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Ye T

    2016-12-01

    Full Text Available Tingting Ye,1 Jiadong Su,1 Chaohao Huang,1 Dinglai Yu,1 Shengjie Dai,1 Xince Huang,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Isoorientin (or homoorientin is a flavone, which is a chemical flavonoid-like compound, and a 6-C-glucoside of luteolin. Isoorientin has been demonstrated to have anti-cancer activities against various tumors, but its effects on pancreatic cancer (PC have not been studied in detail. In this study, we aim to investigate whether isoorientin has potential anti-PC effects and its underlying mechanism. In PC, isoorientin strongly inhibited the survival of the cells, induced cell apoptosis, and decreased its malignancy by reversing the expression of epithelial–mesenchymal transition and matrix metalloproteinase and decreased vascular endothelial growth factor expression. Meanwhile, we investigated the activity of the AMP-activated protein kinase (AMPK signaling pathway after isoorientin treatment, which was forcefully activated by isoorientin, as expected. In addition, in the PC cells that were transfected with lentivirus to interfere with the expression of the gene PRKAA1, there were no differences in the apoptosis rate and the expression of malignancy biomarkers in the tumors of the isoorientin-treated and untreated groups. Thus, we demonstrated that isoorientin has potential antitumor effects via the AMPK signaling pathway, and isoorientin merits further investigation. Keywords: pancreatic cancer, AMPK, isoorientin, apoptosis, invasiveness, VEGF

  5. Infection of epithelial cells with Chlamydia trachomatis inhibits TNF-induced apoptosis at the level of receptor internalization while leaving non-apoptotic TNF-signalling intact.

    Science.gov (United States)

    Waguia Kontchou, Collins; Tzivelekidis, Tina; Gentle, Ian E; Häcker, Georg

    2016-11-01

    Chlamydia trachomatis is an obligate intracellular bacterial pathogen of medical importance. C. trachomatis develops inside a membranous vacuole in the cytosol of epithelial cells but manipulates the host cell in numerous ways. One prominent effect of chlamydial infection is the inhibition of apoptosis in the host cell, but molecular aspects of this inhibition are unclear. Tumour necrosis factor (TNF) is a cytokine with important roles in immunity, which is produced by immune cells in chlamydial infection and which can have pro-apoptotic and non-apoptotic signalling activity. We here analysed the signalling through TNF in cells infected with C. trachomatis. The pro-apoptotic signal of TNF involves the activation of caspase-8 and is controlled by inhibitor of apoptosis proteins. We found that in C. trachomatis-infected cells, TNF-induced apoptosis was blocked upstream of caspase-8 activation even when inhibitor of apoptosis proteins were inhibited or the inhibitor of caspase-8 activation, cFLIP, was targeted by RNAi. However, when caspase-8 was directly activated by experimental over-expression of its upstream adapter Fas-associated protein with death domain, C. trachomatis was unable to inhibit apoptosis. Non-apoptotic TNF-signalling, particularly the activation of NF-κB, initiates at the plasma membrane, while the activation of caspase-8 and pro-apoptotic signalling occur subsequently to internalization of TNF receptor and the formation of a cytosolic signalling complex. In C. trachomatis-infected cells, NF-κB activation through TNF was unaffected, while the internalization of the TNF-TNF-receptor complex was blocked, explaining the lack of caspase-8 activation. These results identify a dichotomy of TNF signalling in C. trachomatis-infected cells: Apoptosis is blocked at the internalization of the TNF receptor, but non-apoptotic signalling through this receptor remains intact, permitting a response to this cytokine at sites of infection.

  6. Down-Regulation of AKT Signalling by Ursolic Acid Induces Intrinsic Apoptosis and Sensitization to Doxorubicin in Soft Tissue Sarcoma.

    Directory of Open Access Journals (Sweden)

    Victor Hugo Villar

    Full Text Available Several important biological activities have been attributed to the pentacyclic triterpene ursolic acid (UA, being its antitumoral effect extensively studied in human adenocarcinomas. In this work, we focused on the efficacy and molecular mechanisms involved in the antitumoral effects of UA, as single agent or combined with doxorubicin (DXR, in human soft tissue sarcoma cells. UA (5-50 μM strongly inhibited (up to 80% the viability of STS cells at 24 h and its proliferation in soft agar, with higher concentrations increasing apoptotic death up to 30%. UA treatment (6-9 h strongly blocked the survival AKT/GSK3β/β-catenin signalling pathway, which led to a concomitant reduction of the anti-apoptotic proteins c-Myc and p21, altogether resulting in the activation of intrinsic apoptosis. Interestingly, UA at low concentrations (10-15 μM enhanced the antitumoral effects of DXR by up to 2-fold, while in parallel inhibiting DXR-induced AKT activation and p21 expression, two proteins implicated in antitumoral drug resistance and cell survival. In conclusion, UA is able to induce intrinsic apoptosis in human STS cells and also to sensitize these cells to DXR by blocking the AKT signalling pathway. Therefore, UA may have beneficial effects, if used as nutraceutical adjuvant during standard chemotherapy treatment of STS.

  7. Down-Regulation of AKT Signalling by Ursolic Acid Induces Intrinsic Apoptosis and Sensitization to Doxorubicin in Soft Tissue Sarcoma

    Science.gov (United States)

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Martín-Broto, Javier; Martínez-Serra, Jordi; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2016-01-01

    Several important biological activities have been attributed to the pentacyclic triterpene ursolic acid (UA), being its antitumoral effect extensively studied in human adenocarcinomas. In this work, we focused on the efficacy and molecular mechanisms involved in the antitumoral effects of UA, as single agent or combined with doxorubicin (DXR), in human soft tissue sarcoma cells. UA (5–50 μM) strongly inhibited (up to 80%) the viability of STS cells at 24 h and its proliferation in soft agar, with higher concentrations increasing apoptotic death up to 30%. UA treatment (6–9 h) strongly blocked the survival AKT/GSK3β/β-catenin signalling pathway, which led to a concomitant reduction of the anti-apoptotic proteins c-Myc and p21, altogether resulting in the activation of intrinsic apoptosis. Interestingly, UA at low concentrations (10–15 μM) enhanced the antitumoral effects of DXR by up to 2-fold, while in parallel inhibiting DXR-induced AKT activation and p21 expression, two proteins implicated in antitumoral drug resistance and cell survival. In conclusion, UA is able to induce intrinsic apoptosis in human STS cells and also to sensitize these cells to DXR by blocking the AKT signalling pathway. Therefore, UA may have beneficial effects, if used as nutraceutical adjuvant during standard chemotherapy treatment of STS. PMID:27219337

  8. Novel multi-targeted ErbB family inhibitor afatinib blocks EGF-induced signaling and induces apoptosis in neuroblastoma.

    Science.gov (United States)

    Mao, Xinfang; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Guan, Shan; Woodfield, Sarah E; Vasudevan, Sanjeev A; Tao, Ling; Pang, Jonathan C; Lu, Jiaxiong; Zhang, Huiyuan; Zhang, Fuchun; Yang, Jianhua

    2017-01-03

    Neuroblastoma is the most common extracranial solid tumor in children. The ErbB family of proteins is a group of receptor tyrosine kinases that promote the progression of various malignant cancers including neuroblastoma. Thus, targeting them with small molecule inhibitors is a promising strategy for neuroblastoma therapy. In this study, we investigated the anti-tumor effect of afatinib, an irreversible inhibitor of members of the ErbB family, on neuroblastoma. We found that afatinib suppressed the proliferation and colony formation ability of neuroblastoma cell lines in a dose-dependent manner. Afatinib also induced apoptosis and blocked EGF-induced activation of PI3K/AKT/mTOR signaling in all neuroblastoma cell lines tested. In addition, afatinib enhanced doxorubicin-induced cytotoxicity in neuroblastoma cells, including the chemoresistant LA-N-6 cell line. Finally, afatinib exhibited antitumor efficacy in vivo by inducing apoptosis in an orthotopic xenograft neuroblastoma mouse model. Taken together, these results show that afatinib inhibits neuroblastoma growth both in vitro and in vivo by suppressing EGFR-mediated PI3K/AKT/mTOR signaling. Our study supports the idea that EGFR is a potential therapeutic target in neuroblastoma. And targeting ErbB family protein kinases with small molecule inhibitors like afatinib alone or in combination with doxorubicin is a viable option for treating neuroblastoma.

  9. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway.

    Science.gov (United States)

    Meng, Qiu-Hong; Liu, Hong-Bao; Wang, Jian-Bo

    2016-10-01

    Polydatin, a glucoside of resveratrol, recently has been demonstrated possibly to exert its biological effects by targeting sonic hedgehog (Shh). However, whether Shh signaling pathway is involved in the therapeutic effects of polydatin for renal ischemia/reperfusion (I/R) injury has not been evaluated. Our results showed that I/R induced the secretion of Shh, upregulated Patched and Smoothened, and enhanced the nuclear translocation and target gene transcription of Glioblastoma 1 in renal I/R injury models, which were further upregulated after the administration of polydatin significantly and in turn exerted prominent nephroprotective effects against cell apoptosis and oxidative stress. The treatment with cyclopamine (a specific inhibitor of Smoothened) or 5E1 (an anti-Shh antibody) not only markedly inhibited the activation of the Shh pathway, but also dramatically suppressed the nephroprotective effects of polydatin above-mentioned. These results advance our knowledge that polydatin can provide protection for kidneys against I/R injury by enhancing antioxidant capacity and decreasing cell apoptosis through activating Shh signaling pathway.

  10. Influences of driver’s attributions on signalized intersection traffic%驾驶员属性对信号灯路口交通流的影响研究

    Institute of Scientific and Technical Information of China (English)

    梅超群

    2014-01-01

    A cellular automaton model is proposed to study the traffic at signalized intersection. The driving behaviors induced by driver’s attribution (gender, driving experience, character, etc. ) are numerically analyzed. Simulation results show that the rusty driving skills or tension driving, impatient driving and so on can lead to the transition from free flow to congestion more easily, and these behaviors are the important cause for low travel efficiency at the intersection; the signal cycle is the main factor influencing traffic flux and travel time fairness.%采用元胞自动机模型研究信号灯路口的交通流特性,系统地分析了与性别、驾驶经验、性格等驾驶员属性相关的驾驶行为对交通流的影响。数值模拟发现,技术生疏或紧张驾驶、急躁行驶等驾驶行为更易引发自由流到阻塞流的相变,是路口通行低效率及事故隐患的重要原因,信号周期是影响流量与个人通行时间公平的主要因素。

  11. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis.

    Science.gov (United States)

    Qi, Runzi; An, Huazhang; Yu, Yizhi; Zhang, Minghui; Liu, Shuxun; Xu, Hongmei; Guo, Zhenghong; Cheng, Tao; Cao, Xuetao

    2003-12-01

    Notch signaling plays a critical role in maintaining the balance between cell proliferation, differentiation, and apoptosis; hence, perturbed Notch signaling may contribute to tumorigenesis. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in Africa and Asia. The mechanisms that orchestrate the multiple oncogenic insults required for initiation and progression of HCC are not clear. We constitutively overexpressed active Notch1 in human HCC to explore the effects of Notch1 signaling on HCC cell growth and to investigate the underlying molecular mechanisms. We show here that overexpression of Notch1 was able to inhibit the growth of HCC cells in vitro and in vivo. Biochemical analysis revealed the involvement of cell cycle regulated proteins in Notch1-mediated G(0)/G(1) arrest of HCC cells. Compared with green fluorescent protein (GFP) control, transient transfection of Notch1 ICN decreased expression of cyclin A (3.5-fold), cyclin D1 (2-fold), cyclin E (4.5-fold), CDK2 (2.8-fold), and the phosphorylated form of retinoblastoma protein (3-fold). Up-regulation of p21(waf/cip1) protein expression was observed in SMMC7721-ICN cells stably expressing active Notch1 but not in SMMC7721-GFP cells, which only express GFP. Furthermore, a 12-fold increase in p53 expression and an increase (4.8-fold) in Jun-NH(2)-terminal kinase activation were induced in SMMC7721-ICN cells compared with SMMC7721-GFP cells. In contrast, expression of the antiapoptotic Bcl-2 protein could not be detected in SMMC7721-ICN cells. These findings suggest that Notch1 signaling may participate in the development of HCC cells, affecting multiple pathways that control both cell proliferation and apoptosis.

  12. Polyphenols isolated from Allium cepa L. induces apoptosis by suppressing IAP-1 through inhibiting PI3K/Akt signaling pathways in human leukemic cells.

    Science.gov (United States)

    Han, Min Ho; Lee, Won Sup; Jung, Ji Hyun; Jeong, Jae-Hun; Park, Cheol; Kim, Hye Jung; Kim, GonSup; Jung, Jin-Myung; Kwon, Taeg Kyu; Kim, Gi-Young; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun

    2013-12-01

    Allium cepa Linn is commonly used as supplementary folk remedy for cancer therapy. Evidence suggests that Allium extracts have anti-cancer properties. However, the mechanisms of the anti-cancer activity of A. cepa Linn are not fully elucidated in human cancer cells. In this study, we investigated anti-cancer effects of polyphenols extracted from lyophilized A. cepa Linn (PEAL) in human leukemia cells and their mechanisms. PEAL inhibited cancer cell growth by inducing caspase-dependent apoptosis. The apoptosis was suppressed by caspase 8 and 9 inhibitors. PEAL also up-regulated TNF-related apoptosis-inducing ligand (TRAIL) receptor DR5 and down-regulated survivin and cellular inhibitor of apoptosis 1 (cIAP-1). We confirmed these findings in other leukemic cells (THP-1, K562 cells). In addition, PEAL suppressed Akt activity and the PEAL-induced apoptosis was significantly attenuated in Akt-overexpressing U937 cells. In conclusion, our data suggested that PEAL induced caspase-dependent apoptosis in several human leukemic cells including U937 cells. The apoptosis was triggered through extrinsic pathway by up-regulating DR5 modulating as well as through intrinsic pathway by modulating IAP family members. In addition, PEAL induces caspase-dependent apoptosis at least in part through the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. This study provides evidence that PEAL might be useful for the treatment of leukemia.

  13. Apoptosis induced by Fas signaling does not alter hepatic hepcidin expression

    Institute of Scientific and Technical Information of China (English)

    Sizhao; Lu; Emily; Zmijewski; John; Gollan; Duygu; Dee; Harrison-Findik

    2014-01-01

    AIM: To determine the regulation of human hepcidin(HAMP) and mouse hepcidin(hepcidin-1 and hepcidin-2) gene expression in the liver by apoptosis using in vivo and in vitro experimental models. METHODS: For the induction of the extrinsic apoptotic pathway, HepG2 cells were treated with various concentrations of CH11, an activating antibody for human Fas receptor, for 12 h. Male C57BL/6NCR and C57BL/6J strains of mice were injected intraperitoneally with sublethal doses of an activating antibody for mouse Fas receptor, Jo2. The mice were anesthetized and sacrificed 1 or 6 h after the injection. The level of apoptosis was quantified by caspase-3 activity assay. Liver injury was assessed by measuring the levels of ALT/AST enzymes in the serum. The acute phase reaction in the liver was examined by determining the expression levels of IL-6 and SAA3 genes by SYBR green quantitative real-time PCR(qPCR). The phosphorylation of transcription factors, Stat3, Smad4 and NF-κB was determined by western blotting. Hepcidin gene expression was determined by Taqman qPCR. The binding of transcription factors to hepcidin-1 promoter was studied using chromatin immunoprecipitation(ChIP) assays.RESULTS: The treatment of HepG2 cells with CH11 induced apoptosis, as shown by the significant activation of caspase-3(P < 0.001), but did not cause any significant changes in HAMP expression. Short-term(1 h) Jo2 treatment(0.2 μg/g b.w.) neither induced apoptosis and acute phase reaction nor altered mRNA expression of mouse hepcidin-1 in the livers of C57BL/6NCR mice. In contrast, 6 h after Jo2 injection, the livers of C57BL/6NCR mice exhibited a significant level of apoptosis(P < 0.001) and an increase in SAA3(P < 0.023) and IL-6(P < 0.005) expression in the liver. However, mRNA expression of hepcidin-1 in the liver was not significantly altered. Despite the Jo2-induced phosphorylation of Stat3, no occupancy of hepcidin-1 promoter by Stat3 was observed, as shown by ChIP assays. Compared to C57

  14. Study on Synergy Problem of Dynamic Lane-use Assignment and Signal Control at Intersections%交叉口动态车道功能与信号控制协同问题研究

    Institute of Scientific and Technical Information of China (English)

    曾滢; 杨晓光; 马莹莹

    2009-01-01

    基于信号控制交叉口时空关系分析,综合运用交通流理论和信号控制技术,建立了动态车道功能与信号相位组合模型,用Visual Basic语言编制程序对该模型求解.为验证模型的有效性,应用该模型对实际案例进行了优化,并通过交通仿真软件VISSIM分别对优化前后的方案进行了仿真对比分析.仿真结果表明:交叉口动态车道功能与信号控制存在协同作用,与仅改善车道功能或信号控制相比,实现两者的协同能有效提高交叉口时空资源的利用率,使关键状态参量如延误与排队长度显著降低.%Based on the analysis of space-time relation of signalized intersections,an integrated model for lane-use assignment and signal phase was established using the traffic flow theory and signal control technology synthetically.In order to solve the model,a program was developed through Visual Basic programming.Actual road intersections were optimized by the program and optimal solutions were generated.Then both the origin plan and the optimal solutions were simulated with VISSIM to verify the model.The simulation results show that there is synergetic effect between dynamic lane-use assignment and signal control.Different from improving lane-use assignment or signal plan alone,synergy cann effectively improve the utilization of space-time resources at intersections,thus reducing the key traffic state parameters such as delay and queue length.

  15. 相邻交叉口相聚度分析及应用%Intersection Signal Control Dynamic Decision-making Model and Its Optimization Method

    Institute of Scientific and Technical Information of China (English)

    首艳芳; 徐建闽; 卢凯

    2012-01-01

    The concept of meeting degree is introduced into group decision-making theory. The definition and calculation formula of adjacent intersections' meeting degree are presented through the analysis of various factors that influence the correlation between adjacent intersections. The calculation method and scientific rationality are elaborated. Furthermore, coordination control subarea division strategy based on meeting degree analysis is given. The results show that the proposed subarea division method is rational and scientific, and has practical value.%引入群决策理论中相聚度的概念,通过分析影响相邻交叉口相关性的各种因素,创造性地给出了相邻交叉口相聚度的定义及其计算公式,并对其计算方法和科学合理性进行了阐述,进一步给出了基于相聚度分析的协调控制子区划分策略.算例分析说明,基于相聚度的控制子区划分方法科学合理,具有一定的实用性.

  16. Interference of silibinin with IGF-1R signalling pathways protects human epidermoid carcinoma A431 cells from UVB-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weiwei; Otkur, Wuxiyar; Li, Lingzhi; Wang, Qiong; He, Hao; Zang, Linghe; Hayashi, Toshihiko [China–Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Tashiro, Shin-ichi [Institute for Clinical and Biomedical Sciences, Kyoto 603-8072 (Japan); Onodera, Satoshi [Department of Clinical and Biomedical Sciences, Showa Pharmaceutical University, Tokyo 194-8543 (Japan); Xia, Mingyu [China–Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China); Ikejima, Takashi, E-mail: ikejimat@vip.sina.com [China–Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2013-03-08

    Highlights: ► Silibinin protects A431 cells from UVB irradiation-induced apoptosis. ► Up-regulation of the IGF-1R-JNK/ERK pathways by UVB induces cell apoptosis. ► Silibinin inhibits IGF-1R pathways to repress caspase-8-mediated apoptosis. -- Abstract: Ultraviolet B (UVB) from sunlight is a major cause of cutaneous lesion. Silibinin, a traditional hepatic protectant, elicits protective effects against UVB-induced cellular damage. In A431 cells, the insulin-like growth factor-1 receptor (IGF-1R) was markedly up-regulated by UVB irradiation. The activation of the IGF-1R signalling pathways contributed to apoptosis of the cells rather than rescuing the cells from death. Up-regulated IGF-1R stimulated downstream mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinases (JNK) and extracellular signal-regulated protein kinases 1/2 (ERK1/2). The subsequent activation of caspase-8 and caspase-3 led to apoptosis. The activation of IGF-1R signalling pathways is the cause of A431 cell death. The pharmacological inhibitors and the small interfering RNA (siRNA) targeting IGF-1R suppressed the downstream activation of JNK/ERK-caspases to help the survival of the UVB-irradiated A431 cells. Indeed, silibinin treatment suppressed the IGF-1R-JNK/ERK pathways and thus protected the cells from UVB-induced apoptosis.

  17. AKT/mTOR signaling pathway is involved in salvianolic acid B-induced autophagy and apoptosis in hepatocellular carcinoma cells.

    Science.gov (United States)

    Gong, Ling; Di, Chunhong; Xia, Xiaofang; Wang, Jie; Chen, Gongying; Shi, Junping; Chen, Pengshuai; Xu, Hui; Zhang, Weibing

    2016-12-01

    Chinese medicines are emerging as an attractive new generation of anticancer drugs. Here, we explored the impact of salvianolic acid B (Sal B), the major water-soluble compounds of Danshen, on apoptosis and autophagy of human hepatocellular carcinoma cells (HCC). We also investigated the related molecular mechanisms. We found that Sal B exhibits potent ability to inhibit HCC cells viability in a concentration-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, Sal B could also induce autophagy. Furthermore, pretreatment with the autophagy inhibitor chloroquine or 3-methyladenine showed the potential in attenuating the apoptosis rate induced by Sal B. Mechanistically, Sal B treatment inhibited the AKT/mTOR signaling cascade in vitro. Overexpression of AKT abolished the effects of Sal B on HCC cells, suggesting a critical role of the AKT/mTOR signaling pathway in Sal B-induced biological effects. Our results indicated that the mitochondrial pathway was involved in Sal B-induced apoptosis of HCC cells. Moreover, the AKT/mTOR signaling pathway was involved in Sal B-induced autophagy, which promoted apoptosis. This study may provide a promising strategy for using Sal B as a chemotherapeutic agent for patients with HCC.

  18. Induction of apoptosis by furanodiene in HL60 leukemia cells through activation of TNFR1 signaling pathway

    Institute of Scientific and Technical Information of China (English)

    MA En-long; WANG Xiao-long; LI Yan-chun; TAI Wen-jiao; LI Te; GUO Tao

    2008-01-01

    inhibited the growth of HL60 leukemia cells via induction of apoptosis. Furanodiene-induced apoptosis in HL60 cells is mediated by upregulation of TNF receptor 1 as well as induction of TNF-α production to activate TNFR1 signaling pathway. Our research provides insight into the molecular mechanisms on furanodiene-induced cell death, and may aid to the development of furanodiene as a new anti-tumor agent.

  19. 城市灯控平面交叉口慢行交通时空违章特征研究%Slow Traffic Peccancy Character for Urban Signal Intersection

    Institute of Scientific and Technical Information of China (English)

    王庆; 陈学武; 周娇; 陈琳英

    2012-01-01

    在南京市内4个典型交叉口调查数据的基础上,通过对4 000多个行人样本数据和相应交叉口不同时间段的自行车违章数据的统计分析,得出了慢行交通的时空违章特征.行人个体违章在时空违章上有不同的表现形式,在不同交叉口存在很大的差异性;行人的违章行为与性别无关,与年龄有关,少年的违章比例最低.由于交叉口断面形式、信号配时、运行秩序、交通管制、周边环境等方面的因素,自行车的行驶方向平均违章率和违章性质平均违章率在不同交叉口存在很大的差异性.针对慢行交通违章者安全意识淡薄且违章成本较低、交叉口的设计不合理等原因,提出相应的预防和纠正违章的建议和措施.%It has been drawn out from statistical analysis on 4000 sample data of the peccancy of passerby at different intersection from the four model intersection in Nanjing that there is different behave forms in time and space for passby peccancy and great difference at each crossings. It relates to passerby age, but not to sex, e. G. The peccancy rate of teen-age is the lowest. There is great difference in peccancy of run way and behavior property by analysis on differ time sect bicycle date, which is related to some factors, such as road cross-section, traffic control, run order and surrounding environment. According to the main reason of slow traffic peccancy behavior, I. E. The actor's dim safety consciousness, low cost of peccany, srrationali intersecton design, corresponding suggestions and measures to prevent and correct traffic peccancy are proposed. The behavior character of slow traffic peccancy on the city s signal intersection would be a good reference for solving the urban signal intersection mixed traffic problems.

  20. Study on Optimization of Phase Offset at Adjacent Intersections

    Directory of Open Access Journals (Sweden)

    Yuanli GU

    2010-11-01

    Full Text Available Optimization of the phase offset at adjacent intersections is the key parameter regarding coordinated control of traffic signal for adjacent intersections, which decides the effect of the coordinated control for adjacent intersections. According to characters of saturated traffic flow of Chinese urban road, this thesis establishes a model for optimization of phase offset for adjacent interactions and finds a solution from such model by adopting genetic algorithm. The model is verified by actual traffic flow datum of two adjacent signal intersections on Changan Avenue. Then a comparison is made between the optimization result of such model and that of the existing mathematical method and SYNCHRO model, which indicates that the model established by this thesis can reduce the delay suffered by vehicles at the intersections and increase the traffic efficiency of the intersections.

  1. Intersecting Brane Worlds

    CERN Document Server

    Aldazabal, G; Ibáñez, L E; Rabadan, Raul; Uranga, Angel M

    2001-01-01

    It is known that chiral fermions naturally appear at certain intersections of branes at angles. Motivated by this fact, we propose a string scenario in which different standard model gauge interactions propagate on different (intersecting) brane worlds, partially wrapped in the extra dimensions. Quarks and leptons live at brane intersections, and are thus located at different positions in the extra dimensions. Replication of families follows naturally from the fact that the branes generically intersect at several points. Gauge and Yukawa couplings can be computed in terms of the compactification radii. Hierarchical Yukawa couplings appear naturally, since amplitudes involving three different intersections are proportional to exp(-A_{ijk}), where A_{ijk} is the area of a string world-sheet extending among the intersections. The models are non-supersymmetric but the string scale may be lowered down to 1-10 TeV. The proton is however stable due to a set of discrete symmetries arising from world-sheet selection r...

  2. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Finnson Kenneth

    2010-02-01

    Full Text Available Abstract Background Axolotls have the unique ability, among vertebrates, to perfectly regenerate complex body parts, such as limbs, after amputation. In addition, axolotls pattern developing and regenerating autopods from the anterior to posterior axis instead of posterior to anterior like all tetrapods studied to date. Sonic hedgehog is important in establishing this anterior-posterior axis of limbs in all tetrapods including axolotls. Interestingly, its expression is conserved (to the posterior side of limb buds and blastemas in axolotl limbs as in other tetrapods. It has been suggested that BMP-2 may be the secondary mediator of sonic hedgehog, although there is mounting evidence to the contrary in mice. Since BMP-2 expression is on the anterior portion of developing and regenerating limbs prior to digit patterning, opposite to the expression of sonic hedgehog, we examined whether BMP-2 expression was dependent on sonic hedgehog signaling and whether it affects patterning of the autopod during regeneration. Results The expression of BMP-2 and SOX-9 in developing and regenerating axolotl limbs corresponded to the first digits forming in the anterior portion of the autopods. The inhibition of sonic hedgehog signaling with cyclopamine caused hypomorphic limbs (during development and regeneration but did not affect the expression of BMP-2 and SOX-9. Overexpression of BMP-2 in regenerating limbs caused a loss of digits. Overexpression of Noggin (BMP inhibitor in regenerating limbs also resulted in a loss of digits. Histological analysis indicated that the loss due to BMP-2 overexpression was the result of increased cell condensation and apoptosis while the loss caused by Noggin was due to a decrease in cell division. Conclusion The expression of BMP-2 and its target SOX-9 was independent of sonic hedgehog signaling in developing and regenerating limbs. Their expression correlated with chondrogenesis and the appearance of skeletal elements has

  3. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Gui-Fen [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: shiyao_chen@163.com [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Sun, Zhi-Rong [Department of Anesthesiology, Cancer Center, Fudan University, Shanghai (China); Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Li-Li; Lian, Jing-Jing [Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Song, Dong-Li [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  4. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Directory of Open Access Journals (Sweden)

    Christelle Marchal

    Full Text Available The genome of the human immunodeficiency virus type 1 (HIV-1 encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu, in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1. Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  5. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Science.gov (United States)

    Marchal, Christelle; Vinatier, Gérald; Sanial, Matthieu; Plessis, Anne; Pret, Anne-Marie; Limbourg-Bouchon, Bernadette; Théodore, Laurent; Netter, Sophie

    2012-01-01

    The genome of the human immunodeficiency virus type 1 (HIV-1) encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu), in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs) which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1). Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK) pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  6. XIAP acts as a switch between type I and type II FAS-induced apoptosis signalling

    OpenAIRE

    Jost, Philipp J; Grabow, Stephanie; Gray, Daniel; McKenzie, Mark D.; Nachbur, Ueli; Huang, David C. S.; Bouillet, Philippe; Thomas, Helen E.; Borner, Christoph; Silke, John; Strasser, Andreas; Kaufmann, Thomas

    2009-01-01

    FAS (APO-1/CD95) and its physiological ligand, FASL, regulate apoptotic death of unwanted or dangerous cells in many tissues, functioning as a guardian against autoimmunity and cancer development1-4. Distinct cell types differ in the mechanisms by which the ‘death receptor’ FAS triggers their apoptosis1-4. In type I cells, such as lymphocytes, activation of ‘effector caspases’ by FAS-induced activation of caspase-8 suffices for cell killing whereas in type II cells, including hepatocytes and ...

  7. MEK/ERK signaling pathway in apoptosis of SW620 cell line and inhibition effect of resveratrol

    Institute of Scientific and Technical Information of China (English)

    Hao Chen; Zhi-Liang Jin; Hai Xu

    2016-01-01

    Objective: To study the involvement of MAPK MEK/ERK signaling transduction pathway in the apoptosis process of SW620 tumor cell line and the inhibition effect of resveratrol. Methods: SW620 cell lines were divided into 5 groups, namely, control group, PD98059 group, low-dose resveratrol group, mid-dose resveratrol group and high-dose resveratrol group. The inhibition rate of cell proliferation was detected by MTT method. The expression of apoptotic molecules and MEK/ERK signaling pathway related proteins were assayed by real-time PCR and Western blotting. Results: Compared with control group, the proliferation of cells treated with resveratrol was significantly inhibited. In the case of apoptotic molecules, the expression of Bax, Caspase 3 and Caspase 9 was increased significantly while the expression of anti-apoptotic molecule Bcl2 was decreased significantly in resveratrol groups with a dose-dependent manner. In the case of molecules in MEK/ERK signaling pathway, the expression of Ras, Raf, MEK and ERK1/2 was decreased significantly in resveratrol groups with a dose-dependent manner. Conclusions: PD98059 and resveratrol can effectively inhibit the proliferation of SW620 through inhibiting the MEK/ERK signaling pathway.

  8. Sedum sarmentosum Bunge extract induces apoptosis and inhibits proliferation in pancreatic cancer cells via the hedgehog signaling pathway.

    Science.gov (United States)

    Bai, Yongheng; Chen, Bicheng; Hong, Weilong; Liang, Yong; Zhou, Mengtao; Zhou, Lan

    2016-05-01

    Sedum sarmentosum Bunge, a traditional Chinese herbal medicine, has a wide range of clinical applications including antibiosis, anti-inflammation and anti-oxidation. In the present study, we identified that its extract (SSBE) exerts pancreatic anticancer activity in vitro and in vivo. In the cultured pancreatic cancer PANC-1 cell line, SSBE inhibited cell growth in a concentration-dependent manner, and it was accompanied by the downregulated expression of proliferating cell nuclear antigen (PCNA). In addition, SSBE treatment also increased cellular apoptosis in a mitochondrial-dependent manner. Moreover, SSBE induced p53 expression, reduced c-Myc expression, and inhibited epithelial-mesenchymal transition (EMT). The antiproliferative activity of SSBE in the pancreatic cancer cells was found to be closely related to cell cycle arrest at the G2/M phase by upregulating p21(Waf1/CIP1) expression. Further study showed that this inhibitory effect of SSBE was through downregulation of the activity of the proliferation-related Hedgehog signaling pathway. Exogenous recombinant protein Shh was used to activate Hedgehog signaling, thereby resulting in the abolishment of the SSBE-mediated inhibition of pancreatic cancer cell growth. In animal xenograft models of pancreatic cancer, activated Hedgehog signaling was also observed compared with the vehicle controls, but was reduced by SSBE administration. As a result, SSBE suppressed the growth of pancreatic tumors. Thus, these findings demonstrate that SSBE has therapeutic potential for pancreatic cancer, and this anticancer effect in pancreatic cancer cells is associated with inhibition of the Hedgehog signaling pathway.

  9. Goniothalamin induces apoptosis associated with autophagy activation through MAPK signaling in SK-BR-3 cells.

    Science.gov (United States)

    Innajak, Sukanda; Mahabusrakum, Wilawan; Watanapokasin, Ramida

    2016-05-01

    Goniothalamin, a plant bioactive styrly-lactone, possesses many biological activities. In the present study, the anticancer effect of goniothalamin on human breast cancer cell line SK-BR-3 was investigated. The results showed that goniothalamin induced nuclear condensation, DNA fragmentation, apoptotic bodies and mitochondrial dysfunction as determined by JC-1 staining. Goniothalamin also increased the Bax/Bcl-2 ratio and expression of cleaved caspase-7, cleaved caspase-9 and cleaved PARP, but decreased Bcl-2 expression. In addition, goniothalamin induced apoptosis via p-JNK1/2 and p-p38 upregulation and inhibited cell survival via p-ERK1/2 and p-Akt downregulation. Notably, goniothalamin induced autophagy through upregulation of Atg7, Atg12-Atg5 conjugation and LC3II. The increased p-p38 and p-JNK1/2 and decreased p-Akt may lead to autophagy induction. Therefore, goniothalamin promoted apoptosis associated with autophagy induction in SK-BR-3 cells through p-p38 and p-JNK1/2 upregulation and p-Akt downregulation. The present study indicated that goniothalamin may be further used as a potential therapeutic candidate or may offer an alternative treatment for breast cancer.

  10. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis

    Directory of Open Access Journals (Sweden)

    Fang Huang

    2016-06-01

    Full Text Available Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP. Further, pretreatment with antioxidant N-acetylcysteine (NAC effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125 and ERK1/2 inhibitor (PD98059 effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway.

  11. Ursolic acid simultaneously targets multiple signaling pathways to suppress proliferation and induce apoptosis in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Jingshu Wang

    Full Text Available Ursolic acid (UA, a natural pentacyclic triterpenoid carboxylic acid distributed in medical herbs, exerts antitumor effects and is emerging as a promising compound for cancer prevention and therapy, but its excise mechanisms of action in colon cancer cells remains largely unknown. Here, we identified the molecular mechanisms by which UA inhibited cell proliferation and induced apoptosis in human colon cancer SW480 and LoVo cells. Treatment with UA led to significant inhibitions in cell viability and clone formation and changes in cell morphology and spreading. UA also suppressed colon cancer cell migration by inhibiting MMP9 and upregulating CDH1 expression. Further studies showed that UA inhibited the phosphorylation of Akt and ERK proteins. Pretreatment with an Akt or ERK-specific inhibitor considerably abrogated the proliferation inhibition by UA. UA also significantly inhibited colon cancer cell COX-2 expression and PGE2 production. Pretreatment with a COX-2 inhibitor (celecoxib abrogated the UA-induced cell proliferation. Moreover, we found that UA effectively promoted NF-κB and p300 translocation from cell nuclei to cytoplasm, and attenuated the p300-mediated acetylation of NF-κB and CREB2. Pretreatment with a p300 inhibitor (roscovitine abrogated the UA-induced cell proliferation, which is reversed by p300 overexpression. Furthermore, UA treatment induced colon cancer cell apoptosis, increased the cleavage of PARP, caspase-3 and 9, and trigged the release of cytochrome c from mitochondrial inter-membrane space into cytosol. These results indicate that UA inhibits cell proliferation and induces apoptosis in colon cancer cells through simultaneous modulation of the multiple signaling pathways such as MMP9/CDH1, Akt/ERK, COX-2/PGE2, p300/NF-κB/CREB2, and cytochrome c/caspase pathways.

  12. Midazolam induces apoptosis in MA-10 mouse Leydig tumor cells through caspase activation and the involvement of MAPK signaling pathway

    Directory of Open Access Journals (Sweden)

    So EC

    2014-02-01

    Full Text Available Edmund Cheung So,1,2 Yu-Xuan Lin,3 Chi Hao Tseng,1 Bo-Syong Pan,3 Ka-Shun Cheng,2 Kar-Lok Wong,2 Lyh-Jyh Hao,4 Yang-Kao Wang,5 Bu-Miin Huang2 1Department of Anesthesia, Tainan Municipal An Nan Hospital, China Medical University, Tainan, Taiwan; 2Department of Anesthesia, China Medical University, Taichung, Taiwan; 3Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan; 4Department of Internal Medicine, Division of Endocrinology and Metabolism, Kaohsiung Veteran General Hospital Tainan Branch Tainan, Taiwan; 5Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan Purpose: The present study aims to investigate how midazolam, a sedative drug for clinical use with cytotoxicity on neuronal and peripheral tissues, induced apoptosis in MA-10 mouse Leydig tumor cells. Methods: The apoptotic effect and underlying mechanism of midazolam to MA-10 cells were investigated by flow cytometry assay and Western blotting methods. Results: Data showed that midazolam induced the accumulation of the MA-10 cell population in the sub-G1 phase and a reduction in the G2/M phase in a time- and dose-dependent manner, suggesting an apoptotic phenomenon. Midazolam could also induce the activation of caspase-8, -9, and -3 and poly (ADP-ribose polymerase proteins. There were no changes in the levels of Bax and cytochrome-c, whereas Bid was significantly decreased after midazolam treatment. Moreover, midazolam decreased both pAkt and Akt expression. In addition, midazolam stimulated the phosphorylation of p38 and c-Jun NH2-terminal kinase but not extracellular signal-regulated kinase. Conclusion: Midazolam could induce MA-10 cell apoptosis through the activation of caspase cascade, the inhibition of pAkt pathway, and the induction of p38 and c-Jun NH2-terminal kinase pathways. Keywords: midazolam, apoptosis, MA-10 cell, caspase, Akt, MAPKs

  13. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Ke-Wang Sun; Ying-Yu Ma; Tian-Pei Guan; Ying-Jie Xia; Chang-Ming Shao; Le-Gao Chen; Ya-Jun Ren

    2012-01-01

    AIM:To investigate the effect and mechanism of oridonin on the gastric cancer cell line HGC-27 in vitro.METHODS:The inhibitory effect of oridonin on HGC-27 cells was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay.After treatment with 10 μg/mL oridonin for 24 h and 48 h,the cells were stained with acridine orange/ethidium bromide.The morphologic changes were observed under an inverted fluorescence microscope.DNA fragmentation (a hallmark of apoptosis) and lactate dehydrogenase activity were examined using DNA ladder assay and lactate dehydrogenase-release assay.After treated with oridonin (0,1.25,2.5,5 and 10 μg/mL),HGC-27cells were collected for anexin V-phycoerythrin and 7-amino-actinomycin D double staining and tested by flow cytometric analysis,and oridonin-induced apoptosis in HGC-27 cells was detected.After treatment with oridonin for 24 h,the effects of oridonin on expression of Apaf-1,Bcl-2,Bax,caspase-3 and cytochrome c were also analyzed using reverse-transcript polymerase chain reaction (RT-PCR) and Western blotting.RESULTS:Oridonin significantly inhibited the proliferation of HGC-27 cells in a dose-and time-dependent manner.The inhibition rates of HGC-27 treated with four different concentrations of oridonin for 24 h (1.25,2.5,5 and 10 μg/mL) were 1.78% ± 0.36%,4.96% ±1.59%,10.35% ± 2.76% and 41.6% ± 4.29%,respectively,which showed a significant difference (P < 0.05).The inhibition rates of HGC-27 treated with oridonin at the four concentrations for 48 h were 14.77% ± 4.21%,21.57% ± 3.75%,30.31% ± 4.91% and 61.19% ±5.81%,with a significant difference (P < 0.05).The inhibition rates of HGC-27 treated with oridonin for 72 h at the four concentrations were 25.77% ± 4.85%,31.86% ± 3.86%,48.30% ± 4.16% and 81.80% ± 6.72%,with a significant difference (P < 0.05).Cells treated with oridonin showed typical apoptotic features with acridine orange

  14. Cbl participates in shikonin-induced apoptosis by negatively regulating phosphoinositide 3-kinase/protein kinase B signaling.

    Science.gov (United States)

    Qu, Dan; Xu, Xiao-Man; Zhang, Meng; Jiang, Ting-Shu; Zhang, Yi; Li, Sheng-Qi

    2015-07-01

    Shikonin, a naturally occurring naphthoquinone, exhibits anti-tumorigenic activity. However, its precise mechanisms of action have remained elusive. In the present study, the involvement in the action of shikonin of the ubiquitin ligases Cbl-b and c-Cbl, which are negative regulators of phosphoinositide 3-kinase (PI3K) activation, was investigated. Shikonin was observed to reduce cell viability and induce apoptosis and G2/M phase arrest in lung cancer cells. In addition, shikonin increased the protein levels of B-cell lymphoma 2 (Bcl-2)-associated X and p53 and reduced those of Bcl-2. Additionally, shikonin inhibited PI3k/Akt activity and upregulated Cbl protein expression. In addition, a specific inhibitor of PI3K, LY294002, was observed to have a synergistic effect on the proliferation inhibition and apoptotic induction of A549 cells with shikonin. In conclusion, the results of the present study suggested that Cbl proteins promote shikonin-induced apoptosis by negatively regulating PI3K/Akt signaling in lung cancer cells.

  15. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling.

    Science.gov (United States)

    Dong, Yushu; Fan, Chongxi; Hu, Wei; Jiang, Shuai; Ma, Zhiqiang; Yan, Xiaolong; Deng, Chao; Di, Shouyin; Xin, Zhenlong; Wu, Guiling; Yang, Yang; Reiter, Russel J; Liang, Guobiao

    2016-04-01

    Subarachnoid hemorrhage (SAH) is a devastating condition with high morbidity and mortality rates due to the lack of effective therapy. Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation associated with the upregulation of apoptotic signaling pathway has been implicated in various inflammatory diseases including hemorrhagic insults. Melatonin is reported to possess substantial anti-inflammatory properties, which is beneficial for early brain injury (EBI) after SAH. However, the molecular mechanisms have not been clearly identified. This study was designed to investigate the protective effects of melatonin against EBI induced by SAH and to elucidate the potential mechanisms. The adult mice were subjected to SAH. Melatonin or vehicle was injected intraperitoneally 2 hr after SAH. Melatonin was neuroprotective, as shown by increased survival rate, as well as elevated neurological score, greater survival of neurons, preserved brain glutathione levels, and reduced brain edema, malondialdehyde concentrations, apoptotic ratio, and blood-brain barrier (BBB) disruption. Melatonin also attenuated the expressions of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-1β (IL-1β), and interleukin-6 (IL-6); these changes were also associated with an increase in the anti-apoptotic factor (Bcl2) and reduction in the pro-apoptotic factor (Bim). In summary, our results demonstrate that melatonin treatment attenuates the EBI following SAH by inhibiting NLRP3 inflammasome-associated apoptosis.

  16. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Graduate School of Anhui Medical University, Hefei (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yang, Yang [Department of Hematology, General Hospital of Air Force, Beijing (China); Wang, Lu; Gao, Chun-Ji [Department of Hematology, PLA General Hospital, Beijing (China); Guo, Zi-Kuan [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wu, Chu-Tse [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Wang, Li-Sheng, E-mail: Wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China)

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.

  17. 3-Bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Liu, Zhe; Zhang, Yuan-Yuan; Zhang, Qian-Wen; Zhao, Su-Rong; Wu, Cheng-Zhu; Cheng, Xiu; Jiang, Chen-Chen; Jiang, Zhi-Wen; Liu, Hao

    2014-04-01

    The hexokinase inhibitor 3-bromopyruvate (3-BrPA) can inhibit glycolysis in tumor cells to reduce ATP production, resulting in apoptosis. However, as 3-BrPA is an alkylating agent, its cytotoxic action may be induced by other molecular mechanisms. The results presented here reveal that 3-BrPA-induced apoptosis is caspase independent. Further, 3-BrPA induces the generation of reactive oxygen species in MDA-MB-231 cells, leading to mitochondria-mediated apoptosis. These results suggest that caspase-independent apoptosis may be induced by the generation of reactive oxygen species. In this study, we also demonstrated that 3-BrPA induces apoptosis through the downregulation of myeloid cell leukemia-1 (Mcl-1) in MDA-MB-231 breast cancer cells. The results of Mcl-1 knockdown indicate that Mcl-1 plays an important role in 3-BrPA-induced apoptosis. Further, the upregulation of Mcl-1 expression in 3-BrPA-treated MDA-MB-231 cells significantly increases cell viability. In addition, 3-BrPA treatment resulted in the downregulation of p-Akt, suggesting that 3-BrPA may downregulate Mcl-1 through the phosphoinositide-3-kinase/Akt pathway. These findings indicate that 3-BrPA induces apoptosis in breast cancer cells by downregulating Mcl-1 through the phosphoinositide-3-kinase/Akt signaling pathway.

  18. Study on the Method of Reversible Approach Guidance at the Signalized Intersection Base on PARAMICS%基于PARAMICS的信号交叉口可变进口道诱导方法研究

    Institute of Scientific and Technical Information of China (English)

    张东明; 成卫; 潘云伟; 肖海承

    2011-01-01

    The rapid development of science and technology to make intelligent transportation as an effective means to solve traffic problems, for the traffic flow phenomenon of morning and afternoon peak hour traffic and the direction of imbalance at intersection,the thought of traffic guidance is induced, made use of variable approach to solve traffic congestion during peak periods at the signalized intersection ,given the way of the data acquisition and the conditions of lanes change. Variable Message Sign (VMS) is used to display the information of lanes change in a timely manner,with the actual the intersection model is established,the same time,with rich API of the microscopic traffic simulation software-paramics to achieve the model simulation, the comparison and evaluation results are presented. The results show that the using of variable approach can significantly improve the intersection level of service.%科学技术的快速发展使智能交通成为解决交通问题的有效手段.针对交叉口交通流量呈现潮汐性、方向不均衡性的现象,运用交通诱导的思想,提出利用可变进口道解决高峰时段信号交叉口交通拥堵的方法.给出了数据采集的途径和变化车道的条件.采用VMS(可变情报板)及时展示车道变化信息,结合实际,建立交叉口模型,并通过微观交通仿真软件PA-RAMICS丰富的API功能,实现对模型的仿真验证.列出对比评价结果,结果表明进行可变进口道诱导之后,交叉口的服务水平明显提高.

  19. Multi-objective optimization method for signal timing of urban traffic intersection%城市道路交叉口信号配时多目标优化方法研究

    Institute of Scientific and Technical Information of China (English)

    郭鹏飞; 徐海黎; 树爱兵; 潘腊青; 沈标

    2016-01-01

    针对目前交叉口信号配时优化目标单一、综合运行效率不高的问题,提出一种交叉口信号配时多目标优化方法。考虑绿灯时间、周期长度和饱和度等约束条件,通过加权系数法定义代价函数,使交叉口的延误时间、停车次数和通行能力在某种程度上达到最优。基于免疫克隆算法在处理多目标问题中具有最优解分布宽广性、均匀性好等特点,引入环境变异算子,提出环境变异免疫克隆算法对模型求解,增强了算法的全局搜索能力,提高了解的质量。仿真结果表明,与传统配时方法和改进粒子群算法相比,该文方法能有效减少信号交叉口的延误时间和停车次数,提高交叉口的运行效率。%To solve the problems of single optimization objective and low efficiency in signal timing,a novel multi⁃objective optimization method for signal timing of intersections is proposed. In consideration of constraint conditions of green⁃light dura⁃tion,cycle length and saturability,the cost function is defined by weighted coefficient method to make delay time,parking times and traffic capacity of intersections optimum to some extent. Based on the characteristics of uniformity and wide⁃distribu⁃tion of optimal solution while immune clone algorithm(ICA)is used to solve multi⁃objective problems,a new environment muta⁃tion operator was introduced,and the environment mutation ICA was proposed for model solution,which enhanced the global searching ability of the algorithm and improved the solution quality. The simulation results reveal that,compared with the tradi⁃tional timing method and inertia weight particle swarm algorithm,the presented method can efficiently reduce average delay, parking times of intersections,and improve the efficiency of traffic signal control.

  20. 设置导流岛的信号交叉口右转通行能力模型%Capacity Model of the Right-turn Lane at Signalized Intersection With Channelized Islands

    Institute of Scientific and Technical Information of China (English)

    赖元文; 荣建; 刘小明

    2012-01-01

    In order to estimate the capacity of right-turn lane at signalized intersections with channelized islands. Based on the gap acceptance model, this paper proposes a new approach to calculating the capacity of right-turn lane at signalized intersections with channelized islands. This model takes into account the interference of non-motorized traffic enter channelized islands. The non-motorized traffic is treated as the traffic on the major road-a crosswalk, which has great impacts on right-turn vehicles on the minor road-an exclusive right-turn lane. The basic model is modified by introducing the red light effect adjustment coefficient. The new model is calibrated and tested using the field data collected at 6 signalized intersections with ehannelized islands in 4 cities. The average relative error between the calculated value and the observed is 9.28% , which means the proposed method in this paper can better estimate the capacity of an exclusive free right-turn lane under the interference of non-motorized traffic.%为了计算在信号交叉口设置导流岛后右转车道的通行能力,以接受间隙理论模型为基础,给出了针对设置导流岛的信号交叉口右转车道通行能力计算方法.考虑到非机动车进入导流岛对右转车辆产生较大影响,确定以非机动车流为主路,提出红灯效应修正系数,对基础模型进行修正.通过4个城市6个设置导流岛的信号交叉口实测数据进行模型标定和检验.比较模型计算值与实际观测值发现,平均相对误差为9.28%,表明本文所提计算方法能较好地反映非机动车对右转车道通行能力影响的实际情况.

  1. Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Furlong, Hayley, E-mail: hayley.furlong@dit.ie [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); Mothersill, Carmel [Medical Physics and Applied Radiation Sciences, Nuclear Research Building, 1280 Hamilton, Ontario L8S 4K1 (Canada); Lyng, Fiona M. [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); Howe, Orla [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland)

    2013-01-15

    Highlights: ► Molecular mechanisms involved in the production of a radiation induced bystander effect are not well known. ► We investigate gene expression changes in apoptotic genes in both direct and bystander responses. ► We demonstrate initiation of the apoptotic cascade in a bystander response. ► Lower doses reveal a specific but differential response related to apoptosis compared to higher doses. - Abstract: It is known that ionising radiation (IR) induces a complex signalling apoptotic cascade post-exposure to low doses ultimately to remove damaged cells from a population, specifically via the intrinsic pathway. Therefore, it was hypothesised that bystander reporter cells may initiate a similar apoptotic response if exposed to low doses of IR (0.05 Gy and 0.5 Gy) and compared to directly irradiated cells. Key apoptotic genes were selected according to their role in the apoptotic cascade; tumour suppressor gene TP53, pro-apoptotic Bax and anti-apoptotic Bcl2, pro-apoptotic JNK and anti-apoptotic ERK, initiator caspase 2 and 9 and effector caspase 3, 6 and 7. The data generated consolidated the role of apoptosis following direct IR exposure for all doses and time points as pro-apoptotic genes such as Bax and JNK as well as initiator caspase 7 and effector caspase 3 and 9 were up-regulated. However, the gene expression profile for the bystander response was quite different and more complex in comparison to the direct response. The 0.05 Gy dose point had a more significant apoptosis gene expression profile compared to the 0.5 Gy dose point and genes were not always expressed within 1 h but were sometimes expressed 24 h later. The bystander data clearly demonstrates initiation of the apoptotic cascade by the up-regulation of TP53, Bax, Bcl-2, initiator caspase 2 and effector caspase 6. The effector caspases 3 and 7 of the bystander samples demonstrated down-regulation in their gene expression levels at 0.05 Gy and 0.5 Gy at both time points therefore not

  2. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer's disease model.

    Science.gov (United States)

    Yao, Yingjia; Gao, Zhong; Liang, Wenbo; Kong, Liang; Jiao, Yanan; Li, Shaoheng; Tao, Zhenyu; Yan, Yuhui; Yang, Jingxian

    2015-12-15

    Neurogenesis is the process by which neural stem cells (NSCs) proliferate and differentiate into neurons. This is diminished in several neurodegenerative disorders such as Alzheimer's disease (AD), which is characterized by the deposition of amyloid (A)β peptides and neuronal loss. Stimulating NSCs to replace lost neurons is therefore a promising approach for AD treatment. Our previous study demonstrated that osthole modulates NSC proliferation and differentiation, and may reduce Aβ protein expression in nerve cells. Here we investigated the mechanism underlying the effects of osthole on NSCs. We found that osthole enhances NSC proliferation and neuronal differentiation while suppressing apoptosis, effects that were exerted via activation of Wnt/β-catenin signaling. These results provide evidence that osthole can potentially be used as a therapeutic agent in the treatment of AD and other neurodegenerative disorders.

  3. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts.

    Directory of Open Access Journals (Sweden)

    Shuli Li

    Full Text Available Neural crest-derived (FOb and mesoderm-derived (POb calvarial osteoblasts are characterized by distinct differences in their osteogenic potential. We have previously demonstrated that enhanced activation of endogenous FGF and Wnt signaling confers greater osteogenic potential to FOb. Apoptosis, a key player in bone formation, is the main focus of this study. In the current work, we have investigated the apoptotic activity of FOb and POb cells during differentiation. We found that lower apoptosis, as measured by caspase-3 activity is a major feature of neural crest-derived osteoblast which also have higher osteogenic capacity. Further investigation indicated TGF-β signaling as main positive regulator of apoptosis in these two populations of calvarial osteoblasts, while BMP and canonical Wnt signaling negatively regulate the process. By either inducing or inhibiting these signaling pathways we could modulate apoptotic events and improve the osteogenic potential of POb. Taken together, our findings demonstrate that integration of multiple signaling pathways contribute to imparting greater osteogenic potential to FOb by decreasing apoptosis.

  4. Embelin-Induced Apoptosis of Human Prostate Cancer Cells Is Mediated through Modulation of Akt and β-Catenin Signaling.

    Directory of Open Access Journals (Sweden)

    Nahee Park

    Full Text Available There is increasing evidence that embelin, an active component of Embelia ribes, induces apoptosis in human cancer cells, but the detailed mechanisms are still unclear. Here, we have investigated the effect of embelin on the growth of human prostate cancer cells. Embelin strongly inhibited cell growth especially in human prostate cancer cell lines, including PC3, DU145, LNCaP-LN3 and normal prostate epithelial cell, RWPE-1 compared to breast cancer (MDA-MB-231, MCF-7, and T47D, hepatoma (HepG2, Hep3B, and HuH-7, or choriocarcinoma (JEG-3. We observed that embelin induced apoptosis of PC3 cells in a time-dependent manner correlated with decreased expression of Bcl-2, Bcl-xL, and Mcl-1, increased translocation of Bax into mitochondria, and a reduction in the mitochondrial membrane potential. Furthermore, embelin induced voltage-dependent anion channel (VDAC 1 expression and oligomerization, which may promote cytochrome c and AIF release. Because embelin was able to inhibit Akt activation and cyclooxygenase-2 expression, the effects on Wnt/ β-catenin signaling were determined. Embelin activated glycogen synthase kinase (GSK-3β by preventing phosphorylation and suppressed β-catenin expression. Attenuation of β-catenin-mediated TCF transcriptional activity and gene transcription, such as cyclin D1, c-myc, and matrix metalloproteinase (MMP-7, were shown in embelin-treated cells. The changes in β-catenin levels in response to embelin were blocked by lithium chloride, a GSK-3 inhibitor, indicating that embelin may decrease β-catenin expression via GSK-3β activation. Furthermore, exposure of PC3 cells to embelin resulted in a significant decrease in cell migration and invasion. In conclusion, these findings suggest that inhibition of Akt signaling and activation of GSK-3β partially contributes to the pro-apoptotic effect of embelin in prostate cancer cells.

  5. ISR Intersection 1

    CERN Multimedia

    1974-01-01

    The experimental apparatus used at intersection 1 by the CERN-Bologna Collaboration (experiment R105). It consists of two almost identical magnetic spectrometers centered at 90 degrees on opposite sides of the intersection region. In each spectrometer one can see magnetostrictive wire spark chambers, a magnet, more chambers and various hodoscopes of scintillation counters. Gas Cerenkov counters (almost invisible in the picture) are located in the gap of each magnet. On the left hand side, a matrix of 119 lead glass Cerenkov counters is located behind some concrete and iron shielding.

  6. 信号交叉口人车交互运行元胞自动机模型构建%Construction of cellular automata model of alternate operation between pedestrians and vehicles at signal intersection

    Institute of Scientific and Technical Information of China (English)

    梁国华; 邓亚娟; 韩海; 马荣国; 卢杨

    2015-01-01

    为了确定过街设施的形式,分析了十字信号交叉口行人步行速度及机动车排队净空间距、转向车头时距等交通运行特性,通过对人车冲突行为调查与分析,构建了行人过街可插间隙选择概率模型。以人车交互运行特性为理论基础,建立了双向6车道行人正向前进、避让、侧向前进和机动车停车线前慢启动跟驰、停车线后转向跟驰、目标车道选择规则,引入了人行横道处行人和机动车冲突判定选择规则,将行人过街规则和机动车通行规则进行了叠加,构建信号交叉口人车交互运行元胞自动机模型。以主主相交的双向6车道十字信号交叉口为例,分析了采用行人过街专用信号相位和立体过街设施形式的适用性。结果表明:当交通量不小于4500 pcu·h-1、右转车比例不小于70%、信号周期不小于90 s、左转相位绿信比不小于50%、行人流量不小于2700人·( h·m)-1时,应采用立体过街设施形式。%To determine the form of crossing facilities,The traffic characteristics of pedestrians’ walking speed and vehicles’ queuing spacing, headway of steering were analyzed in signalized intersection. The probabilistic model of acceptable gap choice for pedestrians crossing the intersection was constructed by survey and analysis of conflicting operations between pedestrians and vehicles. On the theoretical foundation of characteristics from alternate operations between pedestrians and vehicles, rules concerning pedestrians walking forward, avoidance, lateral walking forward, vehicles stop⁃to⁃slow following, steering following, and target lanes selection in bidirectional six lanes were established;selective rules concerning conflicts identification between pedestrians and vehicles at pedestrian crossroads were introduced. Therefore, the cellular automata model of alternate operations between pedestrians and vehicles at signal

  7. Delay Model of Signalized Intersection Based on Theory of Queuing Systems with Sever Vacations%基于休假随机服务理论的信号交叉口延误模型

    Institute of Scientific and Technical Information of China (English)

    王龙; 陈京荣

    2012-01-01

    Supposing that both arrival rata and saturation flow rata of vehicles at signalized intersection are random variables and they are suitable to Poisson distribution, the queue status at the initial time of red light is studied as the object. Theory of queuing systems with sever vacations is applied to establishing delay model for signalized intersection under non-saturated. According to the process of queue formation and dissipation at entrance lane, the formulation is analyzed and divided into addition delay and random delay, then the formulation of intersection delay is obtained. In the end, based on the analysis and comparison of surveyed data and the result of this paper and the result of literature, the conclusion shows that the model result in this paper is closer to the measured data when saturation is between 0. 4 and 0. 6.%假设信号控制交叉口上车辆的到达率和饱和流率均为服从泊松分布的随机变量,以某一相位红灯初始时刻的排队状态为研究对象,运用休假随机服务系统理论,建立了非饱和状态下的信号交叉口延误模型.根据排队形成和消散的过程,把交叉口进口道上的延误分解成附加延误和随机延误两部分,基于延误三角形和生灭过程的思想,得到了附加延误和随机延误的计算公式,并在此基础上给出了信号交叉口进口道上车辆到达率和饱和流率均服从泊松分布时的车辆平均延误计算公式.将计算结果与交通调查数据和已有文献计算结果进行对比,结果表明当饱和度介于0.4与0.6之间时,模型的计算结果更贴近实测数据.

  8. Nuclear Receptor Small Heterodimer Partner in Apoptosis Signaling and Liver Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxia; Wang, Li, E-mail: l.wang@hsc.utah.edu [Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States)

    2011-01-05

    Small heterodimer partner (SHP, NR0B2) is a unique orphan nuclear receptor that contains the dimerization and a putative ligand-binding domain, but lacks the conserved DNA binding domain. SHP exerts its physiological function as an inhibitor of gene transcription through physical interaction with multiple nuclear receptors and transcriptional factors. SHP is a critical transcriptional regulator affecting diverse biological functions, including bile acid, cholesterol and lipid metabolism, glucose and energy homeostasis, and reproductive biology. Recently, we and others have demonstrated that SHP is an epigenetically regulated transcriptional repressor that suppresses the development of liver cancer. In this review, we summarize recent major findings regarding the role of SHP in cell proliferation, apoptosis, and DNA methylation, and discuss recent progress in understanding the function of SHP as a tumor suppressor in the development of liver cancer. Future study will be focused on identifying SHP associated novel prooncogenes and anti-oncogenes in liver cancer progression and applying the knowledge gained on SHP in liver cancer prevention, diagnosis and treatment.

  9. miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Manfè, Valentina; Biskup, Edyta; Rosbjerg, Anne;

    2012-01-01

    Advanced cutaneous T-cell lymphoma (CTCL) is resistant to chemotherapy and presents a major area of medical need. In view of the known role of microRNAs (miRNAs) in the regulation of cellular signalling, we aimed to identify the functionally important miRNA species, which regulate apoptosis in CT...

  10. Brazilian Propolis Suppresses Angiogenesis by Inducing Apoptosis in Tube-Forming Endothelial Cells through Inactivation of Survival Signal ERK1/2.

    Science.gov (United States)

    Kunimasa, Kazuhiro; Ahn, Mok-Ryeon; Kobayashi, Tomomi; Eguchi, Ryoji; Kumazawa, Shigenori; Fujimori, Yoshihiro; Nakano, Takashi; Nakayama, Tsutomu; Kaji, Kazuhiko; Ohta, Toshiro

    2011-01-01

    We recently reported that propolis suppresses tumor-induced angiogenesis through tube formation inhibition and apoptosis induction in endothelial cells. However, molecular mechanisms underlying such angiogenesis suppression by propolis have not been fully elucidated. The aim of this study was to investigate the effects of ethanol extract of Brazilian propolis (EEBP) on two major survival signals, extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt, and to elucidate whether changes in these signals were actually involved in antiangiogenic effects of the propolis. Detection by western blotting revealed that EEBP suppressed phosphorylation of ERK1/2, but not that of Akt. Pharmacological inhibition by U0126 demonstrated that ERK1/2 inactivation alone was enough to inhibit tube formation and induce apoptosis. It was also shown that EEBP and U0126 similarly induced activation of caspase-3 and cleavage of poly ADP-ribose polymerase (PARP) and lamin A/C, all of which are molecular markers of apoptosis. These results indicate that inhibition of survival signal ERK1/2, and subsequent induction of apoptosis, is a critical mechanism of angiogenesis suppression by EEBP.

  11. Targeted therapy of the XIAP/proteasome pathway overcomes TRAIL-resistance in carcinoma by switching apoptosis signaling to a Bax/Bak-independent 'type I' mode.

    Science.gov (United States)

    Gillissen, B; Richter, A; Richter, A; Overkamp, T; Essmann, F; Hemmati, P G; Preissner, R; Belka, C; Daniel, P T

    2013-05-23

    TRAIL is a promising anticancer agent, capable of inducing apoptosis in a wide range of treatment-resistant tumor cells. In 'type II' cells, the death signal triggered by TRAIL requires amplification via the mitochondrial apoptosis pathway. Consequently, deregulation of the intrinsic apoptosis-signaling pathway, for example, by loss of Bax and Bak, confers TRAIL-resistance and limits its application. Here, we show that despite resistance of Bax/Bak double-deficient cells, TRAIL-treatment resulted in caspase-8 activation and complete processing of the caspase-3 proenzymes. However, active caspase-3 was degraded by the proteasome and not detectable unless the XIAP/proteasome pathway was inhibited. Direct or indirect inhibition of XIAP by RNAi, Mithramycin A or by the SMAC mimetic LBW-242 as well as inhibition of the proteasome by Bortezomib overcomes TRAIL-resistance of Bax/Bak double-deficient tumor cells. Moreover, activation and stabilization of caspase-3 becomes independent of mitochondrial death signaling, demonstrating that inhibition of the XIAP/proteasome pathway overcomes resistance by converting 'type II' to 'type I' cells. Our results further demonstrate that the E3 ubiquitin ligase XIAP is a gatekeeper critical for the 'type II' phenotype. Pharmacological manipulation of XIAP therefore is a promising strategy to sensitize cells for TRAIL and to overcome TRAIL-resistance in case of central defects in the intrinsic apoptosis-signaling pathway.

  12. Low concentration of ethanol induce apoptosis in HepG2 cells: role of various signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Francisco Castaneda, Sigrid Rosin-Steiner

    2006-01-01

    Full Text Available As we previously demonstrated in human hepatocellular carcinoma (HepG2 cells, ethanol at low concentration triggers the Fas apoptotic pathway. However, its role in other intracellular signaling pathways remains unknown. Therefore, the aim of the present study was to evaluate the role of low concentration of ethanol on different intracellular signaling pathways. For this purpose, HepG2 cells were treated with 1 mM ethanol for 10 min and the phosphorylation state of protein kinases was determined. In addition, the mRNA levels of transcription factors and genes associated with the Fas apoptotic pathway were determined. Our data demonstrated that ethanol-induced phosphorylation of protein kinases modulates both anti-apoptotic and pro-apoptotic mechanisms in HepG2 cells. Pro-apoptosis resulted mainly from the strong inhibition of the G-protein couple receptor signaling pathway. Moreover, the signal transduction initiated by ethanol-induced protein kinases phosphorylation lead to increased expression of the transcription factors with subsequent expression of genes associated with the Fas apoptotic pathway (Fas receptor, Fas ligand, FADD and caspase 8. These results indicate that low concentration of ethanol exert their effect by predominant activation of pro-apoptotic events that can be divided in two phases. An early phase characterized by a rapid transient effect on protein kinases phosphorylation, after 10 min exposure, with subsequent increased expression of transcription factors for up to 6 hr. This early phase is followed by a second phase associated with increased gene expression that began after 6 hr and persisted for more than 24 hr. This information provided a novel insight into the mechanisms of action of ethanol (1mM in human hepatocellular carcinoma cells.

  13. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Lu, Desheng; Choi, Michael Y; Yu, Jian; Castro, Januario E; Kipps, Thomas J; Carson, Dennis A

    2011-08-09

    Salinomycin, an antibiotic potassium ionophore, has been reported recently to act as a selective breast cancer stem cell inhibitor, but the biochemical basis for its anticancer effects is not clear. The Wnt/β-catenin signal transduction pathway plays a central role in stem cell development, and its aberrant activation can cause cancer. In this study, we identified salinomycin as a potent inhibitor of the Wnt signaling cascade. In Wnt-transfected HEK293 cells, salinomycin blocked the phosphorylation of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and induced its degradation. Nigericin, another potassium ionophore with activity against cancer stem cells, exerted similar effects. In otherwise unmanipulated chronic lymphocytic leukemia cells with constitutive Wnt activation nanomolar concentrations of salinomycin down-regulated the expression of Wnt target genes such as LEF1, cyclin D1, and fibronectin, depressed LRP6 levels, and limited cell survival. Normal human peripheral blood lymphocytes resisted salinomycin toxicity. These results indicate that ionic changes induced by salinomycin and related drugs inhibit proximal Wnt signaling by interfering with LPR6 phosphorylation, and thus impair the survival of cells that depend on Wnt signaling at the plasma membrane.

  14. Intersection I-2

    CERN Multimedia

    1971-01-01

    Intersection I-2 of the ISR during the installation of experiments. On the left to the crossing region can be seen the massive iron plate structure of the muon detector being used by a British collaboration in a search for the intermediate vector boson. The magnet and hodoscopes on the right are part of the spectrometer arm of the Bristish-Scandinavian Collaration.

  15. Intersectional embodiment and power

    DEFF Research Database (Denmark)

    Elg, Camilla; Jensen, Sune Qvotrup

    Through almost two decades the term ‘intersectionality' has gained influence in post colonial studies, gender studies, feminist theory and other research fields occupied with how social differences are distributed and how individuals are socially constructed  in stratified societies. The ‘interse...... differences and discuss the implications this has for our understanding of power relations....

  16. Blocking Type I Interferon Signaling Rescues Lymphocytes from Oxidative Stress, Exhaustion, and Apoptosis in a Streptozotocin-Induced Mouse Model of Type I Diabetes

    OpenAIRE

    Ibrahim, Hany M.; El-Elaimy, Ibrahim A.; Saad Eldien, Heba M.; Badr Mohamed Badr; Rabah, Danny M.; Gamal Badr

    2013-01-01

    Elevated levels of type I interferon (IFN) during type 1 diabetes mellitus (T1D) are associated with a defective immune response. In the present study, we investigated whether blocking type I IFN signaling during streptozotocin- (STZ-) induced T1D in mice improves lymphocyte proliferation and escape from continuous apoptosis. Three groups of mice were examined: diabetic mice, type I IFN signaling-incompetent diabetic mice, and control nondiabetic mice. We first found that diabetes induction w...

  17. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    Science.gov (United States)

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  18. Low-dose spiruchostatin-B, a potent histone deacetylase inhibitor enhances radiation-induced apoptosis in human lymphoma U937 cells via modulation of redox signaling.

    Science.gov (United States)

    Rehman, Mati Ur; Jawaid, Paras; Zhao, Qing Li; Li, Peng; Narita, Koichi; Katoh, Tadashi; Shimizu, Tadamichi; Kondo, Takashi

    2016-06-01

    Spiruchostatin B (SP-B), is a potent histone deacetylase (HDAC) inhibitor, in addition to HDAC inhibition, the pharmacological effects of SP-B are also attributed to its ability to produce intracellular reactive oxygen species (ROS), particularly H2O2. In this study, we investigated the effects of low dose (non-toxic) SP-B on radiation-induced apoptosis in human lymphoma U937 cells in vitro. The treatment of cells with low-dose SP-B induced the acetylation of histones, however, does not induce apoptosis. Whereas, the combined treatment with SP-B and radiation significantly enhanced the radiation-induced apoptosis, suggesting the potential role of this combined treatment for future radiation therapy. Interestingly, the enhancement of apoptosis was accompanied by significant increased in the ROS generation. Pre-treatment with an antioxidant, N-acetyl-l-cysteine (NAC) significantly inhibited the enhancement of apoptosis induced by combined treatment, indicating that ROS play an essential role. It was also found that SP-B combined with radiation caused the activation of death receptor and intrinsic apoptotic pathways, via modulation of ROS-mediated signaling. Moreover, SP-B also significantly enhanced the radiation-induced apoptosis in other lymphoma cell lines such as Molt-4 and HL-60. Taken together, our findings suggest that the low-dose SP-B enhances radiation-induced apoptosis via modulation of redox signaling because of its ability to serve as an intracellular ROS generating agent, mainly (H2O2 or [Formula: see text]). This study provides further insights into the mechanism of action of SP-B with radiation and demonstrates that SP-B can be used as a future novel sensitizer for radiation therapy.

  19. Cucurmosin induces apoptosis of BxPC-3 human pancreatic cancer cells via inactivation of the EGFR signaling pathway.

    Science.gov (United States)

    Zhang, Baoming; Huang, Heguang; Xie, Jieming; Xu, Chunsen; Chen, Minghuang; Wang, Congfei; Yang, Aiqin; Yin, Qiang

    2012-03-01

    Pancreatic cancer remains the fourth most common cause of cancer-related death in the United States. Potent therapeutic strategies are urgently needed for pancreatic cancer. Cucurmosin is a novel type 1 ribosome-inactivating protein (RIP) isolated from the sarcocarp of Cucurbita moschata (pumpkin). Due to its cytotoxicity, cucurmosin can inhibit tumor cell proliferation through induction of apoptosis on tumor cells, but the specific mechanism is still unclear. We explored the function of cucurmosin in BxPC-3 pancreatic cancer cells using multiple cellular and molecular approaches such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, reverse transcription polymerase chain reaction (RT-PCR), Western blotting and transmission electron microscopy for observing typical changes and formation of apoptotic bodies. We found that cucurmosin inhibited the proliferation of BxPC-3 cells in a time- and dose-dependent manner, and increased the cell population in the G0-G1 phase. With increasing concentration of cucurmosin, the expression of EGFR, p-PI3K, Akt, p-Akt, mTOR, p-mTOR, P70S6K-α, p-P70S6K-α, 4E-BP1 and p-4E-BP1 at the protein level was decreased, whereas the expression of p-Bad and caspase-9 was elevated. However, the mRNA expression of EGFR did not change. These findings suggest that cucurmosin can down-regulate the expression of EGFR by targeting. Cucurmosin induces the apoptosis of BxPC-3 pancreatic cancer cells via the PI3K/Akt/mTOR signaling pathway.

  20. Regulation of signaling pathways involved in lupeol induced inhibition of proliferation and induction of apoptosis in human prostate cancer cells.

    Science.gov (United States)

    Prasad, Sahdeo; Nigam, Nidhi; Kalra, Neetu; Shukla, Yogeshwer

    2008-12-01

    Prostate cancer (PCa) is the most frequently diagnosed noncutaneous cancer and the leading cause of cancer related deaths in men in the United States and many other Asian countries. Dietary factors are considered as a strategic agent to control the risk of PCa. Lupeol, a triterpene, present in fruits and medicinal plants, has been shown to possess many pharmacological properties including anticancer effects. Here, effect of lupeol on cell proliferation and cell death was evaluated using human PCa cells, PC-3. In MTT assay, lupeol inhibited the cell proliferation (12-71%) in dose (50-800 microM) and time dependent manner. Flow-cytometric analysis of cell-cycle revealed that an antiproliferative effect of lupeol (400-600 microM) is associated with an increase in G(2)/M-phase arrest (34-58%). RT-PCR analysis showed that lupeol-induced G2/M-phase arrest was mediated through the inhibition of cyclin regulated signaling pathway. Lupeol inhibited the expression of cyclin B, cdc25C, and plk1 but induced the expression of 14-3-3sigma genes. However no changes were observed in the expression of gadd45, p21(waf1/cip1) and cdc2 genes. Results of western blot showed that lupeol regulates the phosphorylation of cdc2 (Tyr15) and cdc25C (Ser198). Further, on increase of lupeol exposure to PC-3 cells an induction of apoptosis was recorded, which was associated with upregulation of bax, caspase-3, -9, and apaf1 genes and down regulation of antiapoptotic bcl-2 gene. The role of caspase-induced apoptosis was confirmed by increase in reactive oxygen species, loss of mitochondrial membrane potential followed by DNA fragmentation. Thus, our study suggests that lupeol possess novel antiproliferative and apoptotic potential against PCa.

  1. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Institute of Scientific and Technical Information of China (English)

    Yuanli Dong; Mei Li; Shaojie Wang; Yuwei Dong; Hongxia Zhao; Zhong Dai

    2015-01-01

    Background:Hypocretin (HCRT) signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy.Our previous study showed that xingshentongqiao decoction (XSTQ) is clinically effective for the treatment of narcolepsy.To determine whether XSTQ improves narcolepsy by modulating HCRT signaling,we investigated its effects on SH-SY5Y cell proliferation,apoptosis,and HCRT receptor 1/2 (orexin receptor 1 [OXl R] and orexin receptor 2 [OX2R]) expression.The signaling pathways involved in these processes were also assessed.Methods:The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays.OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis.Western blotting for mitogen-activated protein kinase (MAPK) pathway activation was performed to further assess the signaling mechanism of XSTQ.Results:XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells.This effect was accompanied by the upregulation of OX 1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk) 1/2,p38 MAPK and c-Jun N-terminal kinase (JNK).Conclusions:XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells.XSTQ also promotes OX1R and OX2R expression.These effects are associated with the repression of the Erkl/2,p38 MAPK,and JNK signaling pathways.These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation,which may explain its ability to treat narcolepsy.

  2. Intersecting M-Fluxbranes

    CERN Document Server

    Chen, C M; Sharakin, S A; Chen, Chiang-Mei; Gal'tsov, Dmitri V.; Sharakin, Sergei A.

    1999-01-01

    New solution to the six-dimensional vacuum Einstein's equations is constructed as a non-linear superposition of two five-dimensional solutions representing the Melvin-Gibbons-Maeda Universe and its S-dual. Then using duality between D=8 vacuum and a certain class of D=11 supergravity configurations we generate M2 and M5 fluxbranes as well as some of their intersections also including waves and KK-monopoles.

  3. Inhibition of aldehyde dehydrogenase 2 activity enhances antimycin-induced rat cardiomyocytes apoptosis through activation of MAPK signaling pathway.

    Science.gov (United States)

    Zhang, Peng; Xu, Danling; Wang, Shijun; Fu, Han; Wang, Keqiang; Zou, Yunzeng; Sun, Aijun; Ge, Junbo

    2011-12-01

    Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial-specific enzyme, has been proved to be involved in oxidative stress-induced cell apoptosis, while little is known in cardiomyocytes. This study was aimed at investigating the role of ALDH2 in antimycin A-induced cardiomyocytes apoptosis by suppressing ALDH2 activity with a specific ALDH2 inhibitor Daidzin. Antimycin A (40μg/ml) was used to induce neonatal cardiomyocytes apoptosis. Daidzin (60μM) effectively inhibited ALDH2 activity by 50% without own effect on cell apoptosis, and significantly enhanced antimycin A-induced cardiomyocytes apoptosis from 33.5±4.4 to 56.5±6.4% (Hochest method, pdaidzin treated cardiomyocytes compared to the cells treated with antimycin A alone. These findings indicated that modifying mitochondrial ALDH2 activity/expression might be a potential therapeutic option on reducing oxidative insults induced cardiomyocytes apoptosis.

  4. Improving the Performance of Urban Road Intersection.

    Directory of Open Access Journals (Sweden)

    Dr. Fareed M.A.Karim

    2014-03-01

    Full Text Available Road intersection is responsible for an important proportion of air pollution especially in urban areas, due to long queues of vehicles waiting for discharge. Therefore, it is necessary to quantify their emissions as accurately as possible. In this study an attempt was made to research on reducing the traffic air pollution such as CO, CO2, HC and NOx, fuel consumption and vehicle operating cost along with improving the traffic flow and delay at a road intersection. One major uncontrolled (un signalized intersection in capital city Sana'a (Yemen was chosen for the study. The traffic air pollution, fuel consumption and vehicle operating cost as well as vehicle delay was calculated for the base year 2012 using aaSIDRA 2.0 software developed in Australia. For the horizon year 2022, three scenarios were considered for investigation viz. (1 do nothing, (2 signalizing the intersection and (3 construction of flyover. The analysis shows that for the above mentioned parameters scenario (3 will be the best scenario followed by scenario (2, while worst case scenario will be do nothing.

  5. Protection from anti-TCR/CD3-induced apoptosis in immature thymocytes by a signal through thymic shared antigen-1/stem cell antigen-2.

    Science.gov (United States)

    Noda, S; Kosugi, A; Saitoh, S; Narumiya, S; Hamaoka, T

    1996-05-01

    During T cell development in the thymus, the expression of thymic shared antigen-1 (TSA-1)/stem cell antigen-2 (Sca-2), a glycosylphosphatidylinositol (GPI)-anchored differentiation antigen, is developmentally regulated. The expression level of TSA-1 is the highest in most immature CD4- CD8- thymocytes, high in CD4+ CD8+ thymocytes, but barely detectable in mature CD4+ CD8- or CD4- CD8- thymocytes and peripheral T cells. We have previously shown that surface TSA-1 expression in peripheral T cells is induced upon activation and that anti-TSA-1 mAb inhibits the T cell receptor (TCR) signaling pathway in activated T cells. In the present study, we have analyzed a role of TSA-1 in thymic selection events, especially in TCR-mediated apoptosis. In in vitro experiments, anti-TSA-1 blocked anti-CD3-induced cell death of T cell hybridomas. When anti-TSA-1 was injected into newborn mice in vivo together with anti-CD3 epsilon or anti-TCR-beta, TCR/CD3-mediated apoptosis of thymocytes was almost completely blocked. The blockade of apoptosis was defined by the inhibition of, first, the decrease in total number of thymocytes; second, the decrease in percentages of CD4+ CD8+ thymocytes; and third, the induction of DNA fragmentation. However, anti-TSA-1 did not block either steroid- or radiation-induced apoptosis, indicating that a signal via TSA-1 does not inhibit a common pathway of thymocyte apoptosis. Since TCR-mediated apoptosis is pivotal in thymic ontogeny, these results suggest that TSA-1/Sca-2 is an important cell surface molecule regulating the fate of a developing T cell.

  6. Hepatitis B Virus X Protein Modulates Apoptosis in NRK-52E Cells and Activates Fas/FasL Through the MLK3-MKK7-JNK3 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ping He

    2016-09-01

    Full Text Available Background/Aims: The hepatitis B virus X protein (HBx contributes to HBV-induced injury of renal tubular cells and induces apoptosis via Fas/FasL up-regulation. However, the mechanism of Fas/FasL activation is unknown. Recent studies indicated that HBx induction of apoptosis in hepatic cells depends on activating the MLK3-MKK7-JNKs signaling module, which then up-regulates FasL expression. In this study, we used NRK-52E cells transfected an HBx expression vector to examine the role of the MLK3-MKK7-JNKs signaling pathway on HBx-induced renal tubular cell injury. Methods: NRK-52E cells were transfected with pc-DNA3.1(+-HBx to establish an HBx over-expression model, and with pc-DNA3.1(+-HBx and pSilencer3.1-shHBx to establish an HBx low expression model. One control group was not transfected and another control group was transfected with an empty plasmid. Cell proliferation was determined by the formazan dye method (Cell Counting Kit-8 and apoptosis was measured by flow cytometry and fluorescence microscopy. Western blotting was used to measure the expression of Fas, FasL, and MLK3-MKK7-JNKs signaling pathway-related proteins. The activity of caspase-8 was measured by spectrophotometry. Results: Transfection of NRK-52E cells with pc-DNA3.1(+-HBx inhibited cell proliferation and increased apoptosis and caspase-8 activity. The expression of Fas, FasL, and MLK3-MKK7-JNKs signaling pathway-related proteins were also greater in the pc-DNA3.1(+-HBx group, but lower in RNAi group. Furthermore, the activity of MLK3-MKK7-JNKs signaling pathway, expression of Fas/FasL, and apoptosis were significantly lower in the pc-DNA3.1(+-HBx group when treated with K252a, a known inhibitor of MLK3. Conclusions: Our results show that HBx induces apoptosis in NRK-52E cells and activates Fas/FasL via the MLK3-MKK7-JNK3-c-Jun signaling pathway.

  7. Increase Signaling of Wnt/β-Catenin Pathway and Presence of Apoptosis in Cerebellum of Kindled Rats.

    Science.gov (United States)

    Rubio-Osornio, Carmen; Rosiles-Abonce, Artemio; Trejo-Solís, Cristina; Rubio-Osornio, Moisés; Mendoza, Cesar; Custodio, Verónica; Martínez-Lazcano, Juan Carlos; González, Edith; Paz, Carlos

    2017-01-17

    Epilepsy is one of the most common neurological disorders in humans, and the role of the cerebellum in its physiopathology remains the subject of study. The Purkinje cells (PC), whose axons target the dentate and interpositus nuclei, form the main cerebellar output to forebrain structures involved in epilepsy. Cerebellar atrophy related to loss of PC has been reported in chronic epilepsy although its mechanism remains unclear. Taking in account that an overexpression of β-Catenin has been related with cell death, here we present the signaling of β-Catenin and the type of PC death in cerebellum of rats with chronic seizures induced by the amygdaloid kindling model. Using an immunohistochemistry and western blot assay for β-Catenin, c-Myc, cyclin D3, TUNEL and caspase-3, in rats chronically implanted with electrodes, receiving 0, 3, 15, and 45 electrical stimuli, we found that such rats suffering a major number of stimuli showed the highest amount of marks assessed. We concluded that there is higher activity of the Wnt/β-Catenin pathway associated with increased number of stimuli may be related with the presence of apoptosis in the cerebellum treated with amygdala kindling. In this way, we suggest this pathway as one of the mechanisms by which cerebellar neurons death in generalized seizures.

  8. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  9. Bayesian parameter inference by Markov chain Monte Carlo with hybrid fitness measures: theory and test in apoptosis signal transduction network.

    Science.gov (United States)

    Murakami, Yohei; Takada, Shoji

    2013-01-01

    When model parameters in systems biology are not available from experiments, they need to be inferred so that the resulting simulation reproduces the experimentally known phenomena. For the purpose, Bayesian statistics with Markov chain Monte Carlo (MCMC) is a useful method. Conventional MCMC needs likelihood to evaluate a posterior distribution of acceptable parameters, while the approximate Bayesian computation (ABC) MCMC evaluates posterior distribution with use of qualitative fitness measure. However, none of these algorithms can deal with mixture of quantitative, i.e., likelihood, and qualitative fitness measures simultaneously. Here, to deal with this mixture, we formulated Bayesian formula for hybrid fitness measures (HFM). Then we implemented it to MCMC (MCMC-HFM). We tested MCMC-HFM first for a kinetic toy model with a positive feedback. Inferring kinetic parameters mainly related to the positive feedback, we found that MCMC-HFM reliably infer them using both qualitative and quantitative fitness measures. Then, we applied the MCMC-HFM to an apoptosis signal transduction network previously proposed. For kinetic parameters related to implicit positive feedbacks, which are important for bistability and irreversibility of the output, the MCMC-HFM reliably inferred these kinetic parameters. In particular, some kinetic parameters that have experimental estimates were inferred without using these data and the results were consistent with experiments. Moreover, for some parameters, the mixed use of quantitative and qualitative fitness measures narrowed down the acceptable range of parameters.

  10. Tyrosol, an olive oil polyphenol, inhibits ER stress-induced apoptosis in pancreatic β-cell through JNK signaling.

    Science.gov (United States)

    Lee, Hyunjung; Im, Sung Won; Jung, Chang Hwa; Jang, Young Jin; Ha, Tae Youl; Ahn, Jiyun

    2016-01-15

    Dysfunction of pancreatic β-cell is a major determinant for the development of type 2 diabetes. Because of the stimulated insulin secretion in metabolic syndrome, endoplasmic reticulum (ER) stress plays a central mediator for β-cell failure. In this study, we investigated whether an antioxidant phenolic compound, tyrosol protects against β-cell dysfunction associated with ER stress. To address this issue, we exposed pancreatic β cells, NIT-1 to tunicamycin with tyrosol. We found tyrosol diminished tunicamycin-induced cell death in a dose-dependent manner. We also detected tyrosol decreased the expressions of apoptosis-related markers. Exposure to tunicamycin evoked UPR response and co-treatment of tyrosol led to reduction of ER stress. These effects of tyrosol were mediated by the phosphorylation of JNK. Moreover, we confirmed supplement of tyrosol ameliorated β-cell loss induced by high fat feeding. Taken together, our study provides a molecular basis for signaling transduction of protective effect of tyrosol against ER stress-induced β-cell death. Therefore, we suggest tyrosol could be a potential therapeutic candidate for amelioration of type 2 diabetes.

  11. Andrographolide, a Novel NF-κB Inhibitor, Induces Vascular Smooth Muscle Cell Apoptosis via a Ceramide-p47phox-ROS Signaling Cascade

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2013-01-01

    Full Text Available Atherosclerosis is linked with the development of many cardiovascular complications. Abnormal proliferation of vascular smooth muscle cells (VSMCs plays a crucial role in the development of atherosclerosis. Accordingly, the apoptosis of VSMCs, which occurs in the progression of vascular proliferation, may provide a beneficial strategy for managing cardiovascular diseases. Andrographolide, a novel nuclear factor-κB inhibitor, is the most active and critical constituent isolated from the leaves of Andrographis paniculata. Recent studies have indicated that andrographolide is a potential therapeutic agent for treating cancer through the induction of apoptosis. In this study, the apoptosis-inducing activity and mechanisms in andrographolide-treated rat VSMCs were characterized. Andrographolide significantly induced reactive oxygen species (ROS formation, p53 activation, Bax, and active caspase-3 expression, and these phenomena were suppressed by pretreating the cells with N-acetyl-L-cysteine, a ROS scavenger, or diphenylene iodonium, a nicotinamide adenine dinucleotide phosphate (NADPH oxidase (Nox inhibitor. Furthermore, p47phox, a Nox subunit protein, was phosphorylated in andrographolide-treated rat VSMCs. However, pretreatment with 3-O-methyl-sphingomyelin, a neutral sphingomyelinase inhibitor, significantly inhibited andrographolide-induced p47phox phosphorylation as well as Bax and active caspase-3 expression. Our results collectively demonstrate that andrographolide-reduced cell viability can be attributed to apoptosis in VSMCs, and this apoptosis-inducing activity was associated with the ceramide-p47phox-ROS signaling cascade.

  12. Angiotensin Ⅱ suppresses adriamycin-induced apoptosis through activation of phosphatidylinositol 3-kinase/Akt signaling in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yanbin Zhao; Xuesong Chen; Li Cai; Yanmei Yang; Guangjie Sui; Jin Wu

    2008-01-01

    Angiotensin Ⅱ (Ang Ⅱ) stimulates tumor growth and angiogenesis in some solid cancer cells, but its anti-apoptosis role in breast cancer remains unclear. To address this issue, we investigated the effect of Ang Ⅱ on adriamycin-induced apoptosis in breast cancer MCF-7 cells. Treatment of human breast cancer MCF-7 cells with adriamycin, a DNA topoisomerase Hα inhibitor, caused apoptosis. However, cells pretreated with Ang Ⅱ were resistant to this apoptosis. Ang Ⅱ significantly reduced the ratio of apoptotic cells and stimulation of phospho-Akt-Thr308 and phospho-Akt-Ser473 in a dose-dependent and time-dependent manner. In addition, Ang Ⅱ significantly prevented apoptosis through inhibiting the cleavage of procaspase-9, a major downstream effector of Akt.The Ang Ⅱ type 1 receptor (AT1R) was responsible for these effects. Among the signaling molecules downstream of AT1R,we revealed that the phosphatidylinositol 3-kinase/Akt pathway plays a predominant role in the anti-apoptotic effect of Ang Ⅱ. Our data indicated that Ang Ⅱ plays a critical antiapoptotic role in breast cancer cells by a mechanism involving AT1R/phosphatidylinositol 3-kinase/Akt activation and the subsequent suppression of caspase-9 activation.

  13. 信号交叉口右转机动车与行人冲突运动模型%A Conflict Model Involving Right-turning Vehicles and Cross-walking Pedestrians at Signalized Intersections

    Institute of Scientific and Technical Information of China (English)

    鲍怡婷; 周竹萍; 徐永能

    2016-01-01

    Normally,the right-turning movement of vehicles at signalized intersections is not controlled.Thus, there are potential risks of conflicts between the right-turning vehicles and cross-walking pedestrians.Current studies ad-dressed on the identification and classification of such conflicts,no theoretical model is proposed to analyze such processes of conflicts.With the purpose to reduce conflicts and improve safety of pedestrians,a new simulation model to describe the conflict processes between right-turning vehicles and cross-walking pedestrians is proposed in this study.The decision-making process of right-turning vehicles is studied.Then the mechanism of conflicts between vehicles and pedestrians is analyzed.Finally,a vehicle-pedestrian conflict model is established.Meanwhile,the coefficients for this model are calibra-ted using actual data including vehicle speed and gap acceptance.A simulation study is then conducted to optimize the measurements for safety evaluation:time-to-collision (TTC),post-encroachment time (PET),safety braking decelera-tion,and gap time.The results reveal that PET is the most significant measurement to evaluate vehicle-pedestrian con-flict.The accuracy analysis results show that the deviation of vehicle speed and PET between simulation and actual data is less than 5%,which indicates the validity of this model.An implementation of sensitivity analysis shows that PET of small size intersections increases 10% compared with large size of intersections,which indicates that small intersections have the advantage to reduce the severity of conflicts.%在一些信号交叉口,右转机动车的转弯行为不受信号控制,容易与过街行人发生冲突。现有冲突研究的内容多为冲突判别和冲突分级研究,对人车冲突运动过程研究相对较少。为减少交通冲突,提高行人过街安全性,提出一种新的右转机动车与行人冲突运动过程的仿真模型。研究右转车辆的决策过程,

  14. Interorganellar Membrane Microdomains: Dynamic Platforms in the Control of Calcium Signaling and Apoptosis

    Directory of Open Access Journals (Sweden)

    Alessandra d'Azzo

    2013-08-01

    Full Text Available The dynamic interplay among intracellular organelles occurs at specific membrane tethering sites, where two organellar membranes come in close apposition but do not fuse. Such membrane microdomains allow for rapid and efficient interorganelle communication that contributes to the maintenance of cell physiology. Pathological conditions that interfere with the proper composition, number, and physical vicinity of the apposing membranes initiate a cascade of events resulting in cell death. Membrane contact sites have now been identified that tether the extensive network of the endoplasmic reticulum (ER membranes with the mitochondria, the plasma membrane (PM, the Golgi and the endosomes/lysosomes. Thus far, the most extensively studied are the MAMs, or mitochondria associated ER membranes, and the ER-PM junctions that share functional properties and crosstalk to one another. Specific molecular components that define these microdomains have been shown to promote the interaction in trans between these intracellular compartments and the transfer or exchange of Ca2+ ions, lipids, and metabolic signaling molecules that determine the fate of the cell.

  15. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells.

    Science.gov (United States)

    Seo, Hye-Sook; Jo, Jae Kyung; Ku, Jin Mo; Choi, Han-Seok; Choi, Youn Kyung; Woo, Jong-Kyu; Kim, Hyo In; Kang, Soo-Yeon; Lee, Kang Min; Nam, Koong Won; Park, Namkyu; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-10-23

    Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer.

  16. Cell surface-bound TIMP3 induces apoptosis in mesenchymal Cal78 cells through ligand-independent activation of death receptor signaling and blockade of survival pathways.

    Directory of Open Access Journals (Sweden)

    Christina Koers-Wunrau

    Full Text Available BACKGROUND: The matrix metalloproteinases (MMPs and their endogenous regulators, the tissue inhibitor of metalloproteinases (TIMPs 1-4 are responsible for the physiological remodeling of the extracellular matrix (ECM. Among all TIMPs, TIMP3 appears to play a unique role since TIMP3 is a secreted protein and, unlike the other TIMP family members, is tightly bound to the ECM. Moreover TIMP3 has been shown to be able to induce apoptotic cell death. As little is known about the underlying mechanisms, we set out to investigate the pro-apoptotic effect of TIMP3 in human mesenchymal cells. METHODOLOGY/PRINCIPAL FINDINGS: Lentiviral overexpression of TIMP3 in mesenchymal cells led to a strong dose-dependent induction of ligand-independent apoptosis as reflected by a five-fold increase in caspase 3 and 7 activity compared to control (pLenti6/V5-GW/lacZ or uninfected cells, whereas exogenous TIMP3 failed to induce apoptosis. Concordantly, increased cleavage of death substrate PARP and the caspases 3 and 7 was observed in TIMP3 overexpressing cultures. Notably, activation of caspase-8 but not caspase-9 was observed in TIMP3-overexpressing cells, indicating a death receptor-dependent mechanism. Moreover, overexpression of TIMP3 led to a further induction of apoptosis after stimulation with TNF-alpha, FasL and TRAIL. Most interestingly, TIMP3-overexpression was associated with a decrease in phosphorylation of cRaf, extracellular signal-regulated protein kinase (Erk1/2, ribosomal S6 kinase (RSK1 and Akt and serum deprivation of TIMP3-overexpressing cells resulted in a distinct enhancement of apoptosis, pointing to an impaired signaling of serum-derived survival factors. Finally, heparinase treatment of heparan sulfate proteoglycans led to the release of TIMP3 from the surface of overexpressing cells and to a significant decrease in apoptosis indicating that the binding of TIMP3 is necessary for apoptosis induction. CONCLUSION: The results demonstrate that

  17. Blocking Type I Interferon Signaling Rescues Lymphocytes from Oxidative Stress, Exhaustion, and Apoptosis in a Streptozotocin-Induced Mouse Model of Type I Diabetes

    Directory of Open Access Journals (Sweden)

    Hany M. Ibrahim

    2013-01-01

    Full Text Available Elevated levels of type I interferon (IFN during type 1 diabetes mellitus (T1D are associated with a defective immune response. In the present study, we investigated whether blocking type I IFN signaling during streptozotocin- (STZ- induced T1D in mice improves lymphocyte proliferation and escape from continuous apoptosis. Three groups of mice were examined: diabetic mice, type I IFN signaling-incompetent diabetic mice, and control nondiabetic mice. We first found that diabetes induction was accompanied by an elevation in the plasma levels of reactive oxygen species (ROS, hydroperoxide, malondialdehyde (MDN, and the proinflammatory cytokines IL-1α, IL-1β, IL-6, and CXCL10. Blocking type 1 IFN signaling in diabetic mice significantly decreased the levels of oxidative stress and proinflammatory cytokines. In addition, lymphocytes from diabetic mice exhibited a marked reduction in their proliferative capacity, increased apoptosis, upregulation of the exhaustion marker PD-1, and aberrant phosphorylation of STAT1, STAT2, AKT and IκB-α. Interestingly, following the blocking of type I IFN signaling in diabetic mice, the lymphocytes exhibited restored proliferative capacity, decreased apoptosis, normal expression of PD-1, and normal phosphorylation of STAT1, STAT2, AKT and IκB-α. Our data suggest that elevated levels of type I IFN during T1D trigger lymphocyte exhaustion and a defective lymphocyte-medicated immune response.

  18. Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat L6 skeletal muscle cells.

    Science.gov (United States)

    Yuzefovych, Larysa V; Solodushko, Viktoriya A; Wilson, Glenn L; Rachek, Lyudmila I

    2012-01-01

    Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme human 8-oxoguanine DNA glycosylase/(apurinic/apyrimidinic) lyase (hOGG1) to mitochondria in L6 myotubes. After palmitate exposure, we evaluated mtDNA damage, mitochondrial function, production of mitochondrial reactive oxygen species, apoptosis, insulin signaling pathways, and glucose uptake. Protection of mtDNA from palmitate-induced damage by overexpression of hOGG1 targeted to mitochondria significantly diminished palmitate-induced mitochondrial superoxide production, restored the decline in ATP levels, reduced activation of c-Jun N-terminal kinase (JNK) kinase, prevented cells from entering apoptosis, increased insulin-stimulated phosphorylation of serine-threonine kinase (Akt) (Ser473) and tyrosine phosphorylation of insulin receptor substrate-1, and thereby enhanced glucose transporter 4 translocation to plasma membrane, and restored insulin signaling. Addition of a specific inhibitor of JNK mimicked the effect of mitochondrial overexpression of hOGG1 and partially restored insulin sensitivity, thus confirming the involvement of mtDNA damage and subsequent increase of oxidative stress and JNK activation in insulin signaling in L6 myotubes. Our results are the first to report that mtDNA damage is the proximal cause in palmitate-induced mitochondrial dysfunction and impaired insulin signaling and provide strong evidence that targeting DNA repair enzymes into mitochondria in skeletal muscles could be a potential therapeutic treatment for insulin resistance.

  19. Fucoidan Induces ROS-Dependent Apoptosis in 5637 Human Bladder Cancer Cells by Downregulating Telomerase Activity via Inactivation of the PI3K/Akt Signaling Pathway.

    Science.gov (United States)

    Han, Min Ho; Lee, Dae-Sung; Jeong, Jin-Woo; Hong, Su-Hyun; Choi, Il-Whan; Cha, Hee-Jae; Kim, Suhkmann; Kim, Heui-Soo; Park, Cheol; Kim, Gi-Young; Moon, Sung-Kwon; Kim, Wun-Jae; Hyun Choi, Yung

    2017-02-01

    Preclinical Research Fucoidan, a sulfated polysaccharide, is a compound found in various species of seaweed that has anti-viral, anti-bacterial, anti-oxidant, anti-inflammatory, and immunomodulatory activities; however, the underlying relationship between apoptosis and anti-telomerase activity has not been investigated. Here, we report that fucoidan-induced apoptosis in 5637 human bladder cancer cells was associated with an increase in the Bax/Bcl-2 ratio, the dissipation of the mitochondrial membrane potential (MMP, Δψm), and cytosolic release of cytochrome c from the mitochondria. Under the same experimental conditions, fucoidan-treatment decreased hTERT (human telomerase reverse transcriptase) expression and the transcription factors, c-myc and Sp1. This was accompanied by decreased telomerase activity. Fucoidan-treatment also suppressed activation of the PI3K/Akt signaling pathway. Inhibition of PI3K/Akt signaling enhanced fucoidan-induced apoptosis and anti-telomerase activity. Meanwhile, fucoidan treatment increased the generation of intracellular ROS, whereas the over-elimination of ROS by N-acetylcysteine, an anti-oxidant, attenuated fucoidan-induced apoptosis, inhibition of hTERT, c-myc, and Sp1 expression, and reversed fucoidan-induced inactivation of the PI3K/Akt signaling pathway. Collectively, these data indicate that the induction of apoptosis and the inhibition of telomerase activity by fucoidan are mediated via ROS-dependent inactivation of the PI3K/Akt pathway. Drug Dev Res 78 : 37-48, 2017.   © 2016 Wiley Periodicals, Inc.

  20. Correlation between magnetic resonance T2 image signal intensity ratio and cell apoptosis in a rabbit spinal cord cervical myelopathy model

    Institute of Scientific and Technical Information of China (English)

    Ma Lei; Zhang Di; Chen Wei; Shen Yong; Zhang Yingze; Ding Wenyuan; Zhang Wei

    2014-01-01

    Background Cervical spondylotic myelopathy (CSM) is a common cause of disability in elderly patients.Previous studies have shown that spinal cord cell apoptosis due to spinal cord compression plays an important role in the pathology of myelopathy.Although changes in magnetic resonance imaging (MRI) T2 signal intensity ratio (SIR) are considered to be an indicator of CSM,little information is published supporting the correlation between changes in MRI signal and pathological changes.This study aims to testify the correlation between MRI T2 SIR changes and cell apoptosis using a CSM animal model.Methods Forty-eight rabbits were randomly assigned to four groups:one control group and three experimental chronic compression groups,with each group containing 12 animals.Chronic compression of the cervical spinal cord was implemented in the experimental groups by implanting a screw in the C3 vertebra.The control group underwent sham surgery.Experimental groups were observed for 3,6,or 9 months after surgery.MRI T2-weighted SIR Tarlov motor scores and cortical somatosensory-evoked potentials (CSEPs) were periodically monitored.At each time point,rabbits from one group were sacrificed to determine the level of apoptosis by histology (n=6) and Western blotting (n=6).Results Tarlov motor scores in the compression groups were lower at all time points than the control group scores,with the lowest score at 9 months (P <0.001).Electrophysiological testing showed a significantly prolonged latency in CSEP in the compression groups compared with the control group.All rabbits in the compression groups showed higher MRI T2 SIR in the injury epicenter compared with controls,and higher SIR was also found at 9 months compared with 3 or 6 months.Histological analysis showed significant apoptosis in the spinal cord tissue in the compression groups,but not in the control group.There were significant differences in apoptosis degree over time (P <0.001),with the 9-month group displaying the

  1. Probability-based Delay Model for Signalized Intersections with A Short Right-turn Lane%基于概率的右转短车道信号控制交叉口延误模型

    Institute of Scientific and Technical Information of China (English)

    田宗忠; 马艳; 高鸿雁; 苏洁

    2015-01-01

    This paper documents the modeling of vehicle delays at signalized intersections with a short right-turn bay which is commonly seen in urban traffic. The model is developed considering the stochastics of traffic volume variation which can result in uncertain blockage occurrences to the short right-turn bay. The proposed model enhances the existing methodologies documented in the U.S. Highway Capacity Manual 2010 (HCM 2010) which treats the short bay as an exclusive full lane. The model incorporates probabilistic theories and intersection characteristics, thus providing an improved approach to delay estimation by considering the short-bay storage length, traffic flow rate, and signal timing. The proposed model is validated using the SimTraffic microscopic simulation model, which is calibrated using field data obtained at a real-world intersection site. Based on the model, it is found that the short-bay length strongly influences the right-turn vehicle delays. In addition, allowing right-turn-on-red (RTOR) can ease the over-saturation problem and reduce the approach delay substantially, especially when the short-bay length is less than 2-vehicle storage length.%研究城市道路中常见的右转短车道信号控制交叉口车辆延误模型.该模型考虑了交通流变化随机性导致的右转短车道交通阻滞问题,改进了现行美国通行能力手册(HCM 2010)中将短车道视为独立进口车道的计算方法.本文应用概率论方法并结合交叉口特性,同时考虑了短车道、交通流率和信号配时等因素影响,提出了一种改进的交叉口延误估计方法.通过使用SimTraffic微观仿真模型,应用交叉口获得的实测数据对模型进行参数标定,验证了模型的有效性.研究结果表明,短车道对右转车辆延误有显著影响.尤其在短车道长度小于2辆标准车长的情况下,允许红灯右转(Righe-turn-on-red, RTOR)可以有效缓解过饱和交通流问题并减少交叉口实际延误.

  2. Hepatocyte Growth Factor Inhibits Apoptosis by the Profibrotic Factor Angiotensin II via Extracellular Signal-regulated Kinase 1/2 in Endothelial Cells and Tissue Explants

    Science.gov (United States)

    2010-12-01

    II via Extracellular Signal-regulated Kinase 1/2 in Endothelial Cells and Tissue Explants Young H. Lee, Ana P. Marquez , Ognoon Mungunsukh, and Regina...L., Gonzalez- Garcia , M., Page, C., Herrera, R., and Nunez, G. (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt... Marquez , A. P., and Day, R. M. (2010). Angiotensin-II-induced apoptosis requires regulation of nucleolin and Bcl-xL by SHP-2 in primary lung endothelial

  3. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling.

  4. Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Deepak Bhatia

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third leading cause of cancer-related death worldwide, and chemoprevention represents a viable approach in lowering the mortality of this disease. Pomegranate fruit, an abundant source of anti-inflammatory phytochemicals, is gaining tremendous attention for its wide-spectrum health benefits. We previously reported that a characterized pomegranate emulsion (PE prevents diethylnitrosamine (DENA-induced rat hepatocarcinogenesis though inhibition of nuclear factor-kappaB (NF-κB. Since NF-κB concurrently induces Wnt/β-catenin signaling implicated in cell proliferation, cell survival, and apoptosis evasion, we examined antiproliferative, apoptosis-inducing and Wnt/β-catenin signaling-modulatory mechanisms of PE during DENA rat hepatocarcinogenesis. PE (1 or 10 g/kg was administered 4 weeks before and 18 weeks following DENA exposure. There was a significant increase in hepatic proliferation (proliferating cell nuclear antigen and alteration in cell cycle progression (cyclin D1 due to DENA treatment, and PE dose dependently reversed these effects. PE substantially induced apoptosis by upregulating proapoptotic protein Bax and downregulating antiapoptotic protein Bcl-2. PE dose dependently reduced hepatic β-catenin and augmented glycogen synthase kinase-3β expression. Our study provides evidence that pomegranate phytochemicals exert chemoprevention of hepatic cancer through antiproliferative and proapoptotic mechanisms by modulating Wnt/β-catenin signaling. PE, thus, targets two interconnected molecular circuits (canonical NF-κB and Wnt/β-catenin pathways to exert chemoprevention of HCC.

  5. Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells.

    Science.gov (United States)

    Yuan, Li; Wang, Jing; Xiao, Haifang; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo

    2012-11-15

    Isoorientin (ISO) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum; however, its biological activity remains poorly understood. The present study investigated the effects and putative mechanism of apoptosis induced by ISO in human hepatoblastoma cancer (HepG2) cells. The results showed that ISO induced cell death in a dose-dependent manner in HepG2 cells, but no toxicity in human liver cells (HL-7702) and buffalo rat liver cells (BRL-3A) treated with ISO at the indicated concentrations. ISO-induced cell death included apoptosis which characterized by the appearance of nuclear shrinkage, the cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. ISO significantly (p<0.01) increased the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), increased the release of cytochrome c, activated caspase-3, and enhanced intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO). In addition, ISO effectively inhibited the phosphorylation of Akt and increased FoxO4 expression. The PI3K/Akt inhibitor LY294002 enhanced the apoptosis-inducing effect of ISO. However, LY294002 markedly quenched ROS and NO generation and diminished the protein expression of heme peroxidase enzyme (HO-1) and inducible nitric oxide synthase (iNOS). Furthermore, the addition of a ROS inhibitor (N-acetyl cysteine, NAC) or iNOS inhibitor (N-[3-(aminomethyl) benzyl] acetamidine, dihydrochloride, 1400W) significantly diminished the apoptosis induced by ISO and also blocked the phosphorylation of Akt. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells and indicate that this apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway, and has no toxicity in normal liver cells, suggesting that ISO may have good potential as a therapeutic and chemopreventive agent for liver cancer.

  6. Visfatin Protects Rat Pancreatic β-cells against IFN-γ-Induced Apoptosis through AMPK and ERK1/2 Signaling Pathways

    Institute of Scientific and Technical Information of China (English)

    XIANG Ruo Lan; MEIMei; SU Yun Chao; LI Li; WANG Jin Yu; WU Li Ling

    2015-01-01

    ObjectiveInterferon-γ (IFN-γ) plays an important role in apoptosis and was shown to increase the risk of diabetes.Visfatin, an adipokine, has anti-diabetic, anti-tumor, and regulating inflammatory properties. In this study we investigated the effect of visfatin on IFN-γ-induced apoptosis in rat pancreatic β-cells. MethodsThe RINm5F (rat insulinoma cell line) cells exposed to IFN-γ were treated with or without visfatin. The viability and apoptosis of the cells were assessed by using MTT and flow cytometry. The expressionsof mRNA and protein were detected by using real-time PCR and western blot analysis. ResultsThe exposure of RINm5F cells to IFN-γ for 48 h led to increased apoptosis percentage of the cells. Visfatin pretreatment significantly increased the cellviability and reduced the cell apoptosis induced by IFN-γ. IFN-γ-induced increase in expression of p53 mRNA and cytochrome c protein, decrease in mRNA and protein levels of anti-apoptotic protein Bcl-2 were attenuated by visfatin pretreatment. Visfatin alsoincreasedAMPK and ERK1/2phosphorylation and the anti-apoptotic action of visfatin was attenuated by the AMPK and ERK1/2 inhibitor. ConclusionThese results suggested that visfatin protected pancreatic islet cells against IFN-γ-induced apoptosis via mitochondria-dependent apoptotic pathway. The anti-apoptotic action of visfatin is mediated by activation of AMPK and ERK1/2 signaling molecules.

  7. Anandamide-induced endoplasmic reticulum stress and apoptosis are mediated by oxidative stress in non-melanoma skin cancer: Receptor-independent endocannabinoid signaling.

    Science.gov (United States)

    Soliman, Eman; Van Dross, Rukiyah

    2016-11-01

    Endocannabinoids are neuromodulatory lipids that regulate central and peripheral physiological functions. Endocannabinoids have emerged as effective antitumor drugs due to their ability to induce apoptosis in various cancer studies. The G-protein coupled cannabinoid receptors (CB1 and CB2) and the TRPV1 ion channel were reported to mediate the antiproliferative activity of endocannabinoids. However, receptor-independent effects also account for their activity. Our previous studies showed that the antiproliferative activity of anandamide (AEA) was regulated by cyclooxygenase-2 (COX-2) via induction of endoplasmic reticulum (ER) stress. We also determined that AEA induced oxidative stress. However, the role of oxidative stress, the cannabinoid receptors, and TRPV1 in AEA-induced ER stress-apoptosis was unclear. Therefore, the current study examines the role of oxidative stress in ER stress-apoptosis and investigates whether this effect is modulated by CB1, CB2, or TRPV1. In non-melanoma skin cancer (NMSC) cells, AEA reduced the total intracellular level of glutathione and induced oxidative stress. To evaluate the importance of oxidative stress in AEA-induced cell death, the antioxidants, N-acetylcysteine (NAC) and Trolox, were utilized. Each antioxidant ameliorated the antiproliferative effect of AEA. Furthermore, Trolox inhibited AEA-induced CHOP10 expression and caspase 3 activity, indicating that oxidative stress was required for AEA-induced ER stress-apoptosis. On the other hand, selective blockade of CB1, CB2, and TRPV1 did not inhibit AEA-induced oxidative stress or ER stress-apoptosis. These findings suggest that AEA-induced ER stress-apoptosis in NMSC cells is mediated by oxidative stress through a receptor-independent mechanism. Hence, receptor-independent AEA signaling pathways may be targeted to eliminate NMSC. © 2015 Wiley Periodicals, Inc.

  8. Oridonin induces apoptosis and autophagy in murine fibrosarcoma L929 cells partly via NO-ERK-p53 positive-feedback loop signaling pathway

    Institute of Scientific and Technical Information of China (English)

    Yuan-chao YE; Hong-ju WANG; Lei XU; Wei-wei LIU; Bin-bin LIU; Shin-lchi TASHIRO; Satoshi ONODERA; Takashi IKEJIMA

    2012-01-01

    Aim:To investigate the role of nitric oxide (NO) in oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 Cells and the underlying molecular mechanisms.Methods; Cell viability was measured using MTT assay.Intracellular NO level,SubG1 cell ratio and autophagy cell ratios were analyzed with flow cytometry after diaminofluorescein-2 diacetate (DAF-2DA),propidium iodide (PI) and monodansylcadaverine (MDC) staining,respectively.Protein expression was examined using Western blot analysis.Results:Exposure of L929 cells to oridonin (50 μmol/L) for 24 h led to intracellular NO production.Pretreatment with NOS inhibitor 1400w or L-NAME inhibited oridonin-induced apoptosis and autophagy in L929 cells.The pretreatment decreased the apoptosisrelated protein Bax translocation and cytochrome c release,increased Bcl-2 level,reversed the autophay-associated protein Beclin 1 increase and conversion of LC3 Ⅰ to LC3 Ⅱ.Furthermore,pretreatment with NO scavenger DTT completely inhibited oridonin-induced apoptosis and autophagy in L929 cells.In addition,oridonin (50 μmol/L) activated ERK and p53 in L929 cells,and the interruption of ERK and p53 activation by PD 98059,pifithrin-α,or ERK siRNA decreased oridonin-induced apoptosis and autophagy.The inhibition of NO production reduced oridonin-induced ERK and p53 activation,and NO production was down-regulated by blocking ERK and p53activation.Conclusion:NO played a pivotal role in oridonin-induced apoptosis and autophagy in L929 cells.Taken together with our previous finding that ERK contributes to p53 activation,it appears that NO,ERK,and p53 form a positive feedback loop.Consequently,we suggest that oridonin-induced apoptosis and autophagy are modulated by the NO-ERK-p53 molecular signaling mechanism in L929 cells.

  9. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward.

    Science.gov (United States)

    Silberman, Yuval; Winder, Danny G

    2013-01-01

    Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neuropeptide corticotropin releasing factor (CRF) as being critically important in BNST-mediated reinstatement behaviors. Although numerous studies indicate that the BNST is a complex brain region with multiple afferent and efferent systems and a variety of cell types, there has only been limited work to determine how CRF modulates this complex neuronal system at the circuit level. Recent work from our lab and others have begun to unravel these BNST neurocircuits and explore their roles in CRF-related reinstatement behaviors. This review will examine the role of CRF signaling in drug addiction and reinstatement with an emphasis on critical neurocircuitry within the BNST that may offer new insights into treatments for addiction.

  10. Hyperbaric oxygen protects mandibular condylar chondrocytes from interleukin-1β-induced apoptosis via the PI3K/AKT signaling pathway

    Science.gov (United States)

    Chen, Hang; Wu, Gaoyi; Sun, Qi; Dong, Yabing; Zhao, Huaqiang

    2016-01-01

    Objectives: Mandibular condylar chondrocyte apoptosis is mainly responsible for the development and progression of temporomandibular joint osteoarthritis (TMJ-OA). Interleukin-1β (IL-1β) generally serves an agent that induces chondrocyte apoptosis. Hyperbaric oxygen (HBO) treatment increases proteoglycan synthesis in vivo. We explore the protective effect of HBO on IL-1β-induced mandibular condylar chondrocyte apoptosis in rats and the potential molecular mechanisms. Methods: Chondrocytes were isolated from the TMJ of 3-4-week old Sprague-Dawley rats. The Cell Counting Kit-8 (CCK-8) assay was used to determine cell viability. The phosphorylated phosphoinositide-3 kinase (p-PI3K), phosphorylated AKT (p-Akt), type II collagen (COL2), and aggrecan (AGG) content was detected by immunofluorescence, immunocytochemistry and western blotting. The expression of Pi3k, Akt, Col2 and Agg mRNA was measured using real-time quantitative polymerase chain reaction (RT-qPCR). Results: HBO inhibited the cytotoxicity and apoptosis induced by IL-1β (10 ng/mL) in the mandibular condylar chondrocytes. HBO also decreased the IL-1β activity that decreased p-PI3K and p-AKT levels, and increased COL2 and AGG expression, with the net effect of suppressing extracellular matrix degradation. Conclusions: These data suggest that HBO may protect mandibular condylar chondrocytes against IL-1β-induced apoptosis via the PI3K/AKT signaling pathway, and that it may promote the expression of mandibular condylar chondrocyte extracellular matrix through the PI3K/AKT signaling pathway. PMID:27904712

  11. Up-regulation of Siah1 by ethanol triggers apoptosis in neural crest cells through p38 MAPK-mediated activation of p53 signaling pathway.

    Science.gov (United States)

    Yuan, Fuqiang; Chen, Xiaopan; Liu, Jie; Feng, Wenke; Wu, Xiaoyang; Chen, Shao-Yu

    2017-02-01

    Seven in absentia homolog 1 (Siah1) is one of the E3 ubiquitin ligases and plays a key role in regulating target protein degradation. This study was designed to test the hypothesis that Siah1 mediates ethanol-induced apoptosis in NCCs through p38 MAPK-mediated activation of the p53 signaling pathway. We found that exposure of NCCs to ethanol resulted in the increases in the total protein levels of p53 and the phosphorylation of p53 at serine 15. Ethanol exposure also resulted in a significant increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 dramatically reduced the ethanol-induced increase in the phosphorylation of p38 MAPK. Knock-down of Siah1 by siRNA or down-regulation of p38 MAPK by either siRNA or inhibitor significantly diminished ethanol-induced accumulations of p53 and the phosphorylation of p53. In addition, ethanol exposure resulted in a significant increase in the expression of p53 downstream targets and apoptosis in NCCs, which can be significantly diminished by down-regulation of Siah1 with siRNA. Knock-down of p38 MAPK by siRNA also dramatically reduced the ethanol-induced apoptosis. These results demonstrate that Siah1 plays a crucial role in ethanol-induced apoptosis in NCCs, and that the up-regulation of Siah1 by ethanol can trigger apoptosis through p38 MAPK-mediated activation of the p53 signaling pathway.

  12. Apoptosis Induction of Human Prostate Carcinoma DU145 Cells by Diallyl Disulfide via Modulation of JNK and PI3K/AKT Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Young Hyun Yoo

    2012-11-01

    Full Text Available Diallyl disulfide (DADS, a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound's anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4 and Fas ligand (FasL proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs, including extracellular-signal regulating kinase (ERK, p38 MAPK and c-Jun N-terminal kinase (JNK. A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059 and p38 MAPK (SB203580 had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells.

  13. Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv : sTRAIL fusion protein with specificity for human EGFR

    NARCIS (Netherlands)

    Bremer, E; Samplonius, DF; van Genne, L; Dijkstra, MH; Kroesen, BJ; de Leij, LFMH; Helfrich, W

    2005-01-01

    Epidermal growth factor receptor (EGFR) signaling inhibition by monoclonal antibodies and EGFR-specific tyrosine kinase inhibitors has shown clinical efficacy in cancer by restoring susceptibility of tumor cells to therapeutic apoptosis induction. Tumor necrosis factor-related apoptosis-inducing lig

  14. Targeting apoptosis signalling kinase-1 (ASK-1 does not prevent the development of neuropathy in streptozotocin-induced diabetic mice.

    Directory of Open Access Journals (Sweden)

    Victoria L Newton

    Full Text Available Apoptosis signal-regulating kinase-1 (ASK1 is a mitogen-activated protein 3 kinase (MAPKKK/MAP3K which lies upstream of the stress-activated MAPKs, JNK and p38. ASK1 may be activated by a variety of extracellular and intracellular stimuli. MAP kinase activation in the sensory nervous system as a result of diabetes has been shown in numerous preclinical and clinical studies. As a common upstream activator of both p38 and JNK, we hypothesised that activation of ASK1 contributes to nerve dysfunction in diabetic neuropathy. We therefore wanted to characterize the expression of ASK1 in sensory neurons, and determine whether the absence of functional ASK1 would protect against the development of neuropathy in a mouse model of experimental diabetes. ASK1 mRNA and protein is constitutively expressed by multiple populations of sensory neurons of the adult mouse lumbar DRG. Diabetes was induced in male C57BL/6 and transgenic ASK1 kinase-inactive (ASK1n mice using streptozotocin. Levels of ASK1 do not change in the DRG, spinal cord, or sciatic nerve following induction of diabetes. However, levels of ASK2 mRNA increase in the spinal cord at 4 weeks of diabetes, which could represent a future target for this field. Neither motor nerve conduction velocity deficits, nor thermal or mechanical hypoalgesia were prevented or ameliorated in diabetic ASK1n mice. These results suggest that activation of ASK1 is not responsible for the nerve deficits observed in this mouse model of diabetic neuropathy.

  15. Defective IL-4/Stat6 Signaling Correlates with Increased Apoptosis of Human EBV-lymphoblastoid B Cells and Mouse Spleen Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1Introduction IL-4-induced Stat6 (Signal transducer and activator of transcription 6) pathway is active in many cell types including cancer cells and immune cells which plays an important role in cell differenciation/growth and resistance to apoptosis~([1]). IL-4/Stat6 signaling up-regulates cell surface moleculi suchas CD23, MHC class II and IL-4Rα, and down-regulates proinflammatory cytokines,i.e, IL-12 and TNFα.Stat6 can be spontaneously activated in Hodgkin's lymphoma and other tumors, suggesting its...

  16. Apoptosis induction-related cytosolic calcium responses revealed by the dual FRET imaging of calcium signals and caspase-3 activation in a single cell.

    Science.gov (United States)

    Miyamoto, Akitoshi; Miyauchi, Hiroshi; Kogure, Takako; Miyawaki, Atsushi; Michikawa, Takayuki; Mikoshiba, Katsuhiko

    2015-04-24

    Stimulus-induced changes in the intracellular Ca(2+) concentration control cell fate decision, including apoptosis. However, the precise patterns of the cytosolic Ca(2+) signals that are associated with apoptotic induction remain unknown. We have developed a novel genetically encoded sensor of activated caspase-3 that can be applied in combination with a genetically encoded sensor of the Ca(2+) concentration and have established a dual imaging system that enables the imaging of both cytosolic Ca(2+) signals and caspase-3 activation, which is an indicator of apoptosis, in the same cell. Using this system, we identified differences in the cytosolic Ca(2+) signals of apoptotic and surviving DT40 B lymphocytes after B cell receptor (BCR) stimulation. In surviving cells, BCR stimulation evoked larger initial Ca(2+) spikes followed by a larger sustained elevation of the Ca(2+) concentration than those in apoptotic cells; BCR stimulation also resulted in repetitive transient Ca(2+) spikes, which were mediated by the influx of Ca(2+) from the extracellular space. Our results indicate that the observation of both Ca(2+) signals and cells fate in same cell is crucial to gain an accurate understanding of the function of intracellular Ca(2+) signals in apoptotic induction.

  17. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats' response to chronic mild stress and the effects of Notch signaling.

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    Full Text Available Our previous research highlighted an inconsistency with Notch1 signaling-related compensatory neurogenesis after chronic mild stress (CMS in rodents suffering from cerebral ischemia, which continue to display post-stroke depressive symptoms. Here, we hypothesize that CMS aggrandized ischemia-related apoptosis injury and worsened synaptic integrity via gamma secretase-meditated Notch1 signaling. Adult rats were exposed to a CMS paradigm after left middle cerebral artery occlusion (MCAO. Open-field and sucrose consumption testing were employed to assess depression-like behavior. Gene expression of pro-apoptotic Bax, anti-apoptotic Bcl-2, and synaptic density-related synaptophysin were measured by western blotting and real-time PCR on Day 28 after MCAO surgery. CMS induced depressive behaviors in ischemic rats, which was accompanied by an elevation in Bax/bcl-2 ratio, TUNEL staining in neurons and reduced synaptophysin expression in the dentate gyrus. These collective effects were reversed by the gamma-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl]-S-phenyl-glycine t-butyl ester. We found that post-stroke stressors made neurons in the dentate gyrus vulnerable to apoptosis, which supports a putative role for Notch signaling in neural integrity, potentially in newborn cells' synaptic deficit with regard to preexisting cells. These findings suggest that post-stroke depression therapeutically benefits from blocking gamma secretase mediated Notch signaling, and whether this signaling pathway could be a therapeutic target needs to be further investigated.

  18. Matrine-induced apoptosis of human nasopharyngeal carcinoma cells via in vitro vascular endothelial growth factor-A/extracellular signal-regulated kinase1/2 pathway inactivation.

    Science.gov (United States)

    Xie, M; He, G; Wang, R; Shi, S; Chen, J; Ye, Y; Xie, L; Yi, X; Tang, A

    2014-07-01

    Matrine, a main active extract from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines, such as malignant melanoma, breast cancer, and lung cancer. However, it is currently unclear whether matrine could also elicit an inhibitory effect on growth of nasopharyngeal carcinoma (NPC), let alone the possible molecular mechanisms. Therefore, in a previous study, we investigated matrine-induced proliferation inhibition and apoptosis in NPC cells. It was shown that proliferation of human NPC cells (CNE1 and CNE2) was significantly diminished by matrine in a dose- and time-dependent manner, and apoptosis was induced in both 2 NPC cells, particularly in CNE2 cells. Moreover, the increased apoptosis rate in matrine-treated CNE2 cells confirmed the proapoptotic activity of matrine. We further found that matrine treatment dose- and time-dependently reduced the levels of vascular endothelial growth factor-A (VEGF-A), and inactivated extracellular signal-regulated kinase1/2 (ERK1/2), followed by increased expression of downstream target caspase-3. Overall, we conclude that matrine could induce apoptosis of human NPC cells via VEGF-A/ERK1/2 pathway, which supports the potential use of matrine in clinically treating NPC.

  19. Meiotic failure in cyclin A1-deficient mouse spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 proteins

    Science.gov (United States)

    Panigrahi, Sunil K.; Manterola, Marcia; Wolgemuth, Debra J.

    2017-01-01

    Cyclin A1 (Ccna1), a member of the mammalian A type cyclins, is most abundantly expressed in spermatocytes and is essential for spermatogenesis in the mouse. Ccna1- deficient spermatocytes arrest at late meiotic prophase and undergo apoptosis. To further delineate the mechanisms and key factors involved in this process, we have examined changes in expression of genes involved in both intrinsic and extrinsic signaling pathways that trigger apoptosis in the mutant spermatocytes. Our results show that both pathways are involved, and that the factors involved in the intrinsic pathway were expressed earlier than those involved in the extrinsic pathway. We have also begun to identify in vivo Ccna1-interacting proteins, using an unbiased biochemical approach, and identified 14-3-3, a key regulator of apoptosis, as a Ccna1-interacting protein. Expression levels of 14-3-3 proteins remain unchanged between wild type and mutant testes but there were differences in the subcellular distribution. In wild type control, 14-3-3 is detected in both cytosolic and nuclear fractions whereas it is restricted to the cytoplasm in mutant testes. This differential distribution of 14-3-3 may contribute to the induction of apoptosis in Ccna1-deficient spermatocytes. These results provide insight into the apoptotic mechanisms and pathways that are triggered when progression through the meiotic cell cycle is defective in male gametogenesis. PMID:28301569

  20. Stathmin is involved in arsenic trioxide-induced apoptosis in human cervical cancer cell lines via PI3K linked signal pathway.

    Science.gov (United States)

    Wang, Xi; Ren, Ji-Hong; Lin, Fang; Wei, Jun-Xia; Long, Min; Yan, Lin; Zhang, Hui-Zhong

    2010-09-15

    Although the mechanisms of arsenic trioxide (As2O3)-induced apoptosis have been elucidated extensively in hematologic cancers, those in solid tumors have yet to be clearly defined. In the present study, we show that As2O3 triggers apoptosis through the intrinsic pathway and significantly downregulates stathmin expression. Decreased stathmin expression is necessary for the dissipation of mitochondrial membrane potential (Δ ψm), the translocation of cytochrome C from the mitochondria to the cytosol, and subsequent cell death. Overexpression of wild type stathmin effectively delays As2O3-mediated mitochondrial events. Conversely, expression of a small interfering RNA (siRNA) targeting stathmin enhances As2O3-triggered apoptosis in cell culture and in mouse models. Furthermore, we demonstrate that As2O3-induced stathmin downregulation is mediated through the phosphatidylinositol-3-kinase (PI3K) signaling pathway, and that a PI3K inhibitor effectively attenuated stathmin downregulation and cell apoptosis upon As2O3-treatment. These data support a stathmin-dependent pathway of As2O3-mediated cell death in solid tumor cells, and indicate that stathmin is a target of the PI3K/Akt pathway in cervical cancer cells. All these results may provide a rationale for improving the efficacy of As2O3 as a therapeutic agent through combination treatment with stathmin inhibition or PI3K/Akt inhibitors.

  1. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  2. Connexin43 siRNA promotes HUVEC proliferation and inhibits apoptosis induced by ox-LDL: an involvement of ERK signaling pathway.

    Science.gov (United States)

    Yin, Guotian; Yang, Xiuli; Li, Bo; Yang, Meng; Ren, Mingfen

    2014-09-01

    Oxidized low-density lipoprotein (ox-LDL), one of the most important risk factors of atherosclerosis, is a highly antigenic, potent chemoattractant that facilitates the development of atherosclerosis. Gap junctions also play an important in the development of atherosclerosis. In this study, we investigated the effects of ox-LDL on connexin43 and the mechanisms of connexin43 siRNA-inhibited apoptosis induced by ox-LDL in human umbilical vein endothelial cell (HUVEC), to clarify the role of connexin43 in atherosclerosis. Our results showed that ox-LDL significantly inhibited the growth and promoted apoptosis of HUVEC in a dose-dependent manner. Also, ox-LDL upregulated the expression of connexin43. Furthermore, knockdown connexin43 by siRNA promoted proliferation and inhibited apoptosis in ox-LDL-stimulated HUVEC. Moreover, the level of phosphor-ERK1/2 and connexin43 was remarkably attenuated by a ERK pathway inhibitor (PD98059). These results suggest that connexin43 siRNA promotes HUVEC proliferation and inhibits apoptosis induced by ox-LDL, and ERK signaling pathway appears to be involved in these processes.

  3. Neohesperidin induces cellular apoptosis in human breast adenocarcinoma MDA-MB-231 cells via activating the Bcl-2/Bax-mediated signaling pathway.

    Science.gov (United States)

    Xu, Fei; Zang, Jia; Chen, Daozhen; Zhang, Ting; Zhan, Huiying; Lu, Mudan; Zhuge, Hongxiang

    2012-11-01

    Neohesperidin, a flavonoid compound found in high amounts in Poncirus trifoliata, has free radical scavenging activity. For the first time, our study indicated that neohesperidin also induces cell apoptosis in human breast adenocarcinoma MDA-MB-231 cells, which was possibly mediated by regulating the P53/Bcl-2/Bax pathway. MDA-MB-231 cells were subjected to treatment with neohesperidin. MTT and Trypan blue exclusion assays were applied to assess the cell viability. The morphological changes of cells were observed using an inverted microscope, and cell apoptosis was detected by flow cytometric analysis. Immunoblot analysis was conducted to evaluate the protein expressions of apoptosis-related genes, including P53, Bcl-2 and Bax. Our results indicated that the proliferation of MDA-MB-231 cells was inhibited by the treatment with neohesperidin in a time- and dose-dependent manner. The IC50 values of neohesperidin at 24 and 48 h were 47.4 +/- 2.6 microM and 32.5 +/- 1.8 microM, respectively. The expressions of P53 and Bax in the neohesperidin-treated cells were significantly up-regulated, while that of Bcl-2 was down-regulated. Our study suggested that neohesperidin could induce apoptosis of MDA-MB-231 cells, a process which was associated with the activation of the Bcl-2/Bax-mediated signaling pathway.

  4. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    Endoplasmic reticulum (ER) stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR). Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha\\/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  5. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction.

    Directory of Open Access Journals (Sweden)

    Sanjeev Gupta

    Full Text Available Endoplasmic reticulum (ER stress is a feature of secretory cells and of many diseases including cancer, neurodegeneration, and diabetes. Adaptation to ER stress depends on the activation of a signal transduction pathway known as the unfolded protein response (UPR. Enhanced expression of Hsp72 has been shown to reduce tissue injury in response to stress stimuli and improve cell survival in experimental models of stroke, sepsis, renal failure, and myocardial ischemia. Hsp72 inhibits several features of the intrinsic apoptotic pathway. However, the molecular mechanisms by which Hsp72 expression inhibits ER stress-induced apoptosis are not clearly understood. Here we show that Hsp72 enhances cell survival under ER stress conditions. The UPR signals through the sensor IRE1alpha, which controls the splicing of the mRNA encoding the transcription factor XBP1. We show that Hsp72 enhances XBP1 mRNA splicing and expression of its target genes, associated with attenuated apoptosis under ER stress conditions. Inhibition of XBP1 mRNA splicing either by dominant negative IRE1alpha or by knocking down XBP1 specifically abrogated the inhibition of ER stress-induced apoptosis by Hsp72. Regulation of the UPR was associated with the formation of a stable protein complex between Hsp72 and the cytosolic domain of IRE1alpha. Finally, Hsp72 enhanced the RNase activity of recombinant IRE1alpha in vitro, suggesting a direct regulation. Our data show that binding of Hsp72 to IRE1alpha enhances IRE1alpha/XBP1 signaling at the ER and inhibits ER stress-induced apoptosis. These results provide a physical connection between cytosolic chaperones and the ER stress response.

  6. Regulator of G Protein Signaling 6 (RGS6) Induces Apoptosis via a Mitochondrial-dependent Pathway Not Involving Its GTPase-activating Protein Activity*

    Science.gov (United States)

    Maity, Biswanath; Yang, Jianqi; Huang, Jie; Askeland, Ryan W.; Bera, Soumen; Fisher, Rory A.

    2011-01-01

    Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨm) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨm was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer. PMID:21041304

  7. Regulator of G protein signaling 6 (RGS6) induces apoptosis via a mitochondrial-dependent pathway not involving its GTPase-activating protein activity.

    Science.gov (United States)

    Maity, Biswanath; Yang, Jianqi; Huang, Jie; Askeland, Ryan W; Bera, Soumen; Fisher, Rory A

    2011-01-14

    Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨ(m)) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨ(m) was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer.

  8. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  9. Lycopene attenuates inflammation and apoptosis in post-myocardial infarction remodeling by inhibiting the nuclear factor-κB signaling pathway.

    Science.gov (United States)

    He, Qin; Zhou, Wei; Xiong, Caijin; Tan, Gang; Chen, Manhua

    2015-01-01

    Inflammatory response and cardiomyocyte apoptosis are important processes in ventricular remodeling post-myocardial infarction (MI) and may form the basic mechanisms in the development of chronic heart failure. The nuclear factor κB (NF-κB) signaling pathway could promote inflammation and apoptosis and it has been demonstrated that lycopene inhibits cigarette smoke extract-mediated NF-κB activation. Therefore, it was hypothesized that the NF-κB signaling pathway may be a key target of lycopene in the reversal of ventricular remodeling post MI. An MI model was established by left anterior descending coronary artery ligation in mice. Following ligation, the mice were administered with lycopene (10 mg/kg/day) or saline. The mice underwent echocardiography and were sacrificed after 4 weeks. The mRNA expression of fibrosis markers transforming growth factor-β1 (TGF-β1), collagen I and III and inflammatory markers tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were examined by quantitative polymerase chain reaction. The protein expression of apoptotic markers, including caspase-3, -8, -9 and activation of the NF-κB signaling pathway were analyzed by western blotting. Lycopene reduced the expression of TGF-β1, collagen I, collagen III, TNF-α, IL-1β, caspase-3, -8 and -9 and inhibited the activation of the NF-κB signaling pathway. The level of ventricular remodeling post-MI was also attenuated following treatment with lycopene. Lycopene may inhibit the NF-κB signaling pathway thereby reducing the inflammatory response and cardiomyocyte apoptosis post-MI, which could be a key mechanism of lycopene in attenuating ventricular remodeling.

  10. Cardiac Shock Wave Therapy Attenuates H9c2 Myoblast Apoptosis by Activating the AKT Signal Pathway

    Directory of Open Access Journals (Sweden)

    Weiwei Yu

    2014-04-01

    Full Text Available Background: Previous studies have demonstrated that Cardiac Shock Wave Therapy (CSWT improves myocardial perfusion and cardiac function in a porcine model of chronic myocardial ischemia and also ameliorates myocardial ischemia in patients with severe coronary artery disease (CAD. Apoptosis plays a key role in ischemic myocardial pathogenesis. However, it remains unclear whether CSWT is beneficial for ischemia/hypoxia (I/H-induced myocardial cell apoptosis and by which mechanism CSWT could improve heart function. We put forward the hypothesis that CSWT might protect heart function during ischemia/hypoxia by decreasing apoptosis. Methods: We generated ischemia/hypoxia (I/H-induced apoptosis in the H9c2 myoblast cell line to examine the CSWT function and possible mechanisms. H9c2 cells were treated under hypoxic serum-starved conditions for 24 h and then treated with or without CSWT (500 shots, 0.06, 0.09, 0.12mJ/mm2. The apoptotic cell rate was determined by flow cytometry assay, cell viability was examined by the MTT assay, nuclear fragmentation was detected by Hoechst 33342 staining, and the mitochondrial-mediated intrinsic pathway of apoptosis was assessed by the expression of Bax and Bcl-2 protein and Caspase3 activation. Results: First, apoptosis could be induced by ischemia/hypoxia in H9c2 cells. Second, CSWT attenuates the cell death and decreases the H9c2 cell apoptosis rate induced by ischemia and hypoxia. Third, CSWT suppresses the expression of apoptosis molecules that regulate the intrinsic pathway of apoptosis in H9c2 cells. Fourth, CSWT increases the phosphorylation of AKT, which indicates the activation of the PI3K-AKT pathway. Conclusions: These results indicate that CSWT exerts a protective effect against I/H-induced cell death, potentially by preventing the activation of components of the mitochondrial-dependent intrinsic apoptotic pathway. We also demonstrate that the PI3K-Akt pathway may be involved in the CSWT effects on

  11. Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway.

    Science.gov (United States)

    Ko, Hyeonseok; Kim, Jee Min; Kim, Sun-Joong; Shim, So Hee; Ha, Chang Hoon; Chang, Hyo Ihl

    2015-10-01

    Natural compounds are becoming important candidates in cancer therapy due to their cytotoxic effects on cancer cells by inducing various types of programmed cell deaths. In this study, we investigated whether genipin induces programmed cell deaths and mediates in Egr1/p21 signaling pathways in gastric cancer cells. Effects of genipin in AGS cancer cell lines were observed via evaluation of cell viability, ROS generation, cell cycle arrest, and protein and RNA levels of p21, Egr1, as well as apoptotic marker genes. The cell viability of AGS cells reduced by genipin treatment via induction of the caspase 3-dependent apoptosis. Cell cycle arrest was observed at the G2/M phase along with induction of p21 and p21-dependent cyclins. As an upstream mediator of p21, the transcription factor early growth response-1 (Egr1) upregulated p21 through nuclear translocation and binding to the p21 promoter site. Silencing Egr1 expression inhibited the expression of p21 and downstream molecules involved in apoptosis. We demonstrated that genipin treatment in AGS human gastric cancer cell line induces apoptosis via p53-independent Egr1/p21 signaling pathway in a dose-dependent manner.

  12. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway.

    Science.gov (United States)

    Kang, Kyoung Ah; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Ryu, Yea Seong; Oh, Min Chang; Kwon, Taeg Kyu; Chae, Sungwook; Hyun, Jin Won

    2016-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.

  13. Blocking Epidermal Growth Factor Receptor Signaling in HTR-8/SVneo First Trimester Trophoblast Cells Results in Dephosphorylation of PKBα/AKT and Induces Apoptosis

    Directory of Open Access Journals (Sweden)

    J. Bolnick

    2011-01-01

    Full Text Available We identified a major peptide signaling target of EGF/EGFR pathway and explored the consequences of blocking or activating this pathway in the first trimester extravillous trophoblast cells, HTR-8/SVneo. A global analysis of protein phosphorylation was undertaken using novel technology (Kinexus Kinetworks that utilizes SDS-polyacrylamide minigel electrophoresis and multi-lane immunoblotting to permit specific and semiquantitative detection of multiple phosphoproteins. Forty-seven protein phosphorylation sites were queried, and the results reported based on relative phosphorylation at each site. EGF- and Iressa-(gefitinib, ZD1839, an inhibitor of EGFR treated HTR-8/SVneo cells were subjected to immunoblotting and flow cytometry to confirm the phosphoprotein screen and to assess the effects of EGF versus Iressa on cell cycle and apoptosis. EGFR mediates the phosphorylation of important signaling proteins, including PKBα/AKT. This pathway is likely to be central to EGFR-mediated trophoblast survival. Furthermore, EGF treatment induces proliferation and inhibits apoptosis, while Iressa induces apoptosis.

  14. Ranking the types of intersections for assessing the safety of pedestrians using TOPSIS method

    Directory of Open Access Journals (Sweden)

    Călin ŞERBU

    2014-11-01

    Full Text Available Every year, more than 1500 accidents with pedestrian occur in the intersections in Romania. The number of accidents involving pedestrians in roundabouts intersections type increased approximately three times in 2013 compared to 2009 in Romania. This alarming increase led to the need of assessing the safety of pedestrians in intersections with or without safety systems. The safety systems for pedestrians and drivers include: the road marking, the pedestrian crossings marking, signal intersections with road signs, traffic lights or pedestrian safety barriers. We propose to assess the types of intersections with TOPSIS method.

  15. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  16. On the Lp intersection body

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, by using the Brunn-Minkowski-Firey mixed volume theory and dual mixed volume theory, associated with Lp intersection body and dual mixed volume, some dual Brunn-Minkowski inequalities and their isolate forms are established for Lp intersection body about the normalized Lp radial addition and Lp radial linear combination. Some properties of operator Lp are given.

  17. INEQUALITIES FOR MIXED INTERSECTION BODIES

    Institute of Scientific and Technical Information of China (English)

    YUAN SHUFENG; LENG GANGSONG

    2005-01-01

    In this paper, some properties of mixed intersection bodies are given, and inequalities from the dual Brunn-Minkowski theory (such as the dual Minkowski inequality, the dual Aleksandrov-Fenchel inequalities and the. dual Brunn-Minkowski inequalities) are established for mixed intersection bodies.

  18. Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways.

    Science.gov (United States)

    Chen, Wen-Juan; Xiong, Zheng-Ai; Zhang, Min; Yao, Chen-Guo; Zhao, Zhong-Yong; Hua, Yuan-Yuan; Zhou, Wei

    2013-03-01

    The non-invasive treatment of tumors with preserved fertility holds great promise. The application of pulsed electric field (PEF) is a new biomedical engineering technique for tumor therapy. Picosecond pulsed electric fields (psPEF) can be transferred to target deep tissue non-invasively and precisely; however, research of the biological effects of psPEF on cells is limited. Electric theory predicts that when the pulse duration decreases to nanoseconds and picoseconds, it will mainly affect organelles and lead to intracellular electromanipulations. Previous studies have shown that psPEF targets the mitochondria and induces apoptosis through a mitochondrial-mediated pathway in HeLa cells. The endoplasmic reticulum is also involved in the intrinsic pathways of apoptosis. In the present study, HeLa cells were exposed to psPEF to investigate the underlying mechanisms of apoptosis. MTT assay demonstrated that psPEF displayed strong growth inhibitory effects on HeLa cells. Treatment with psPEF led to marked cell apoptosis and cell cycle arrest at the G2/M phase. In addition, psPEF affected the phosphorylation levels of endoplasmic reticulum sensors and upregulated the expression of glucose-regulated protein 78 (GRP78), glucose-regulated protein 94 (GRP94) and CCAAT enhancer-binding protein (C/EBP) homologous protein (CHOP). These changes were accompanied by the elevation of intracellular Ca2+ concentrations. Furthermore, the activation of caspase-12, -9 and -3, led to the release of cytochrome c, as well as the upregulation of Bax and the downregulation of Bcl-2, as observed in the HeLa cells. Taken together, these data suggest that psPEF is an efficient apoptosis-inducing agent for HeLa cells, which exerts its effects, at least partially, via the endoplasmic reticulum stress and caspase-dependent signaling pathways.

  19. Induction of apoptosis by lupeol in human epidermoid carcinoma A431 cells through regulation of mitochondrial, Akt/PKB and NFkappaB signaling pathways.

    Science.gov (United States)

    Prasad, Sahdeo; Madan, Esha; Nigam, Nidhi; Roy, Preeti; George, Jasmine; Shukla, Yogeshwer

    2009-09-01

    The rising incidence of skin cancer in humans makes it equivalent to malignancies of organs. Therefore, it is necessary to intensify our efforts for better understanding and development of novel treatment and preventive approaches for skin cancer. Fruits and other plant derived products have gained considerable attention as they can reduce the risk of several cancer types. Lupeol, a triterpene, present in many fruits and medicinal plants, has been shown to possess many pharmacological properties including anti-cancer effect in both in vitro and in vivo assay systems. In the present study, apoptosis inducing effects of lupeol were studied in human epidermoid carcinoma A431 cells. Cell cycle analysis showed that lupeol treatment induces apoptosis (14-37%) in a dose-dependent manner as evident by an increased sub G(1) cell population. The RT-PCR and Western blot analysis showed that lupeol-induced apoptosis was associated with caspase dependent mitochondrial cell death pathway through activation of Bax, caspases, Apaf1, decrease in Bcl-2 expression and subsequent cleavage of PARP. Lupeol treatment also inhibited Akt/PKB signaling pathway by inhibition of Bad (Ser136) phosphorylation and 14-3-3 expression. In addition, lupeol treatment inhibited cell survival by inactivation of NFkappaB through upregulation of its inhibitor Ikappabetaalpha. The Caspase mediated apoptosis was noticed by decrease in lupeol induced apoptosis by Caspase inhibitors as well as increase in reactive oxygen species generation and loss of mitochondrial membrane potential. These results suggest that lupeol could be an effective anti-cancer agent and merits further investigation.

  20. Deep sea minerals prolong life span of streptozotocin-induced diabetic rats by compensatory augmentation of the IGF-I-survival signaling and inhibition of apoptosis.

    Science.gov (United States)

    Liao, Hung-En; Shibu, Marthandam Asokan; Kuo, Wei-Wen; Pai, Pei-Ying; Ho, Tsung-Jung; Kuo, Chia-Hua; Lin, Jing-Ying; Wen, Su-Ying; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2016-07-01

    Consumption of deep sea minerals (DSM), such as magnesium, calcium, and potassium, is known to reduce hypercholesterolemia-induced myocardial hypertrophy and cardiac-apoptosis and provide protection against cardiovascular diseases. Heart diseases develop as a lethal complication among diabetic patients usually due to hyperglycemia-induced cardiac-apoptosis that causes severe cardiac-damages, heart failure, and reduced life expectancy. In this study, we investigated the potential of DSM and its related cardio-protection to increase the life expectancy in diabetic rats. In this study, a heart failure rat model was developed by using streptozotocin (65 mg kg(-1) ) IP injection. Different doses of DSM-1× (37 mg kg(-1) day(-1) ), 2× (74 mg kg(-1) day(-1) ) and 3× (111 mg kg(-1) day(-1) ), were administered to the rats through gavages for 4 weeks. The positive effects of DSM on the survival rate of diabetes rats were determined with respect to the corresponding effects of MgSO4 . Further, to understand the mechanism by which DSM enhances the survival of diabetic rats, their potential to regulate cardiac-apoptosis and control cardiac-dysfunction were examined. Echocardiogram, tissue staining, TUNEL assay, and Western blotting assay were used to investigate modulations in the myocardial contractile function and related signaling protein expression. The results showed that DSM regulate apoptosis and complement the cardiomyocyte proliferation by enhancing survival mechanisms. Moreover DSM significantly reduced the mortality rate and enhanced the survival rate of diabetic rats. Experimental results show that DSM administration can be an effective strategy to improve the life expectancy of diabetic subjects by improving cardiac-cell proliferation and by controlling cardiac-apoptosis and associated cardiac-dysfunction. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 769-781, 2016.

  1. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator of transcription 3 signalling in human hepatocellular carcinoma cell line HepG2.

    Science.gov (United States)

    Deng, Pengyi; Wang, Chen; Chen, Liulin; Wang, Cheng; Du, Yuhan; Yan, Xu; Chen, Mingjie; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Sesamin, one of the most abundant lignans in sesame seeds, has been shown to exhibit various pharmacological effects. The aim of this study was to elucidate whether sesamin promotes cell cycle arrest and induces apoptosis in HepG2 cells and further to explore the underlying molecular mechanisms. Here, we found that sesamin inhibited HepG2 cell growth by inducing G2/M phase arrest and apoptosis. Furthermore, sesamin suppressed the constitutive and interleukin (IL)-6-induced signal transducer and activator of transcription 3 (STAT3) signalling pathway in HepG2 cells, leading to regulate the downstream genes, including p53, p21, cyclin proteins and the Bcl-2 protein family. Our studies showed that STAT3 signalling played a key role in sesamin-induced G2/M phase arrest and apoptosis in HepG2 cells. These findings provided a molecular basis for understanding of the effects of sesamin in hepatocellular carcinoma tumour cell proliferation. Therefore, sesamin may thus be a potential chemotherapy drug for liver cancer.

  2. C-jun N-terminal Kinase-mediated Signaling Is Essential for Staphylococcus Aureus-induced U937 Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jia-he Wang; Bo Yu; Hui-yan Niu; Hui Li; Yi Zhang; Xin Wang; Ping He

    2009-01-01

    Objective To investigate the effect of SP600125, a specific c-jun N-terminal protein kinase (JNK) inhibitor, on Staphylococcus aureus (S. aureus)-induced U937 cell death and the underlying mechanism. Methods The human monocytic U937 cells were treated with S. aureus at different time with or without SP600125. Cell apoptosis was analyzed by flow cytometry. JNK, Bax, and caspase-3 activities were detected by Western blotting. Results S. aureus induced apoptosis in cultured U937 cells in a time-dependent manner. Expression of Bax and phospho-JNK significantly increased in S. aureus-treated U937 cells, and the level of activated caspase-3 also increased in a time-dependent manner. Inhibition of JNK with SP600125 significantly inhibited S. aureus-induced apoptosis in U937 cells. Conclusions S. aureus can induce apoptosis in U937 cells by phosphorylation of JNK and activation of Bax and caspase-3. SP600125 protects U937 cells from apoptosis induced by S. aureus via inhibiting the activity of JNK.

  3. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2'-deoxyuridine incorporated into DNA.

    Science.gov (United States)

    Zhao, Hong; Halicka, H Dorota; Li, Jiangwei; Biela, Ewa; Berniak, Krzysztof; Dobrucki, Jurek; Darzynkiewicz, Zbigniew

    2013-11-01

    The "click chemistry" approach utilizing 5-ethynyl-2'-deoxyuridine (EdU) as a DNA precursor was recently introduced to assess DNA replication and adapted to flow- and imaging-cytometry. In the present study, we observed that EdU, once incorporated into DNA, induces DNA damage signaling (DDS) such as phosphorylation of ATM on Ser1981, of histone H2AX on Ser139, of p53 on Ser15, and of Chk2 on Thr68. It also perturbs progression of cells through the cell cycle and subsequently induces apoptosis. These effects were observed in non-small cell lung adenocarcinoma A549 as well as in B-cell human lymphoblastoid TK6 and WTK1 cells, differing in the status of p53 (wt versus mutated). After 1 h EdU pulse-labeling, the most affected was cells progression through the S phase subsequent to that at which they had incorporated EdU. This indicates that DNA replication using the template containing incorporated EdU is protracted and triggers DDS. Furthermore, progression of cells having DNA pulse-labeled with EdU led to accumulation of cells in G2 , likely by activating G2 checkpoint. Consistent with the latter was activation of p53 and Chk2. Although a correlation was observed in A549 cells between the degree of EdU incorporation and the extent of γH2AX induction, such correlation was weak in TK6 and WTK1 cells. The degree of perturbation of the cell cycle kinetics by the incorporated EdU was different in the wt p53 TK6 cells as compared to their sister WTK1 cell line having mutated p53. The data are thus consistent with the role of p53 in modulating activation of cell cycle checkpoints in response to impaired DNA replication. The confocal microscopy analysis of the 3D images of cells exposed to EdU for 1 h pulse and then grown for 24 or 48 h revealed an increased number of colocalized γH2AX and p53BP1 foci considered to be markers of DNA double-strand breaks and enlarged nuclei.

  4. miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Valentina Manfè

    Full Text Available Advanced cutaneous T-cell lymphoma (CTCL is resistant to chemotherapy and presents a major area of medical need. In view of the known role of microRNAs (miRNAs in the regulation of cellular signalling, we aimed to identify the functionally important miRNA species, which regulate apoptosis in CTCL. Using a recently established model in which apoptosis of CTCL cell lines is induced by Notch-1 inhibition by γ-secretase inhibitors (GSIs, we found that miR-122 was significantly increased in the apoptotic cells. miR-122 up-regulation was not specific for GSI-1 but was also seen during apoptosis induced by chemotherapies including doxorubicin and proteasome blockers (bortezomib, MG132. miR-122 was not expressed in quiescent T-cells, but was detectable in CTCL: in lesional skin in mycosis fungoides and in Sézary cells purified from peripheral blood. In situ hybridization results showed that miR-122 was expressed in the malignant T-cell infiltrate and increased in the advanced stage mycosis fungoides. Surprisingly, miR-122 overexpression decreased the sensitivity to the chemotherapy-induced apoptosis via a signaling circuit involving the activation of Akt and inhibition of p53. We have also shown that induction of miR-122 occurred via p53 and that p53 post-transcriptionally up-regulated miR-122. miR-122 is thus an amplifier of the antiapoptotic Akt/p53 circuit and it is conceivable that a pharmacological intervention in this pathway may provide basis for novel therapies for CTCL.

  5. miR-122 Regulates p53/Akt Signalling and the Chemotherapy-Induced Apoptosis in Cutaneous T-Cell Lymphoma

    Science.gov (United States)

    Manfè, Valentina; Biskup, Edyta; Rosbjerg, Anne; Kamstrup, Maria; Skov, Anne Guldhammer; Lerche, Catharina Margrethe; Lauenborg, Britt Thyssing; Ødum, Niels; Gniadecki, Robert

    2012-01-01

    Advanced cutaneous T-cell lymphoma (CTCL) is resistant to chemotherapy and presents a major area of medical need. In view of the known role of microRNAs (miRNAs) in the regulation of cellular signalling, we aimed to identify the functionally important miRNA species, which regulate apoptosis in CTCL. Using a recently established model in which apoptosis of CTCL cell lines is induced by Notch-1 inhibition by γ-secretase inhibitors (GSIs), we found that miR-122 was significantly increased in the apoptotic cells. miR-122 up-regulation was not specific for GSI-1 but was also seen during apoptosis induced by chemotherapies including doxorubicin and proteasome blockers (bortezomib, MG132). miR-122 was not expressed in quiescent T-cells, but was detectable in CTCL: in lesional skin in mycosis fungoides and in Sézary cells purified from peripheral blood. In situ hybridization results showed that miR-122 was expressed in the malignant T-cell infiltrate and increased in the advanced stage mycosis fungoides. Surprisingly, miR-122 overexpression decreased the sensitivity to the chemotherapy-induced apoptosis via a signaling circuit involving the activation of Akt and inhibition of p53. We have also shown that induction of miR-122 occurred via p53 and that p53 post-transcriptionally up-regulated miR-122. miR-122 is thus an amplifier of the antiapoptotic Akt/p53 circuit and it is conceivable that a pharmacological intervention in this pathway may provide basis for novel therapies for CTCL. PMID:22235305

  6. RP105 Protects Against Apoptosis in Ischemia/Reperfusion-Induced Myocardial Damage in Rats by Suppressing TLR4-Mediated Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-07-01

    Full Text Available Background: Myocardial apoptosis is heavily implicated in the myocardial damage caused by ischemia-reperfusion (I/R. Toll-like receptor 4 (TLR4 is a potent inducer of these apoptotic cascades. In contrast, the radioprotective 105 kDa protein (RP105 is a specific negative regulator of TLR4 signaling pathways. However, the precise mechanisms by which RP105 inhibits myocardium apoptosis via TLR4-associated pathways during I/R is not fully understood. Methods: We utilized a rat model of myocardial ischemic reperfusion injury (MIRI. Animals were pre-treated with Ad-EGFP adenovirus, Ad-EGFP-RP105 adenovirus, saline, or nothing (sham. After three days, rats underwent a 30min left anterior descending coronary artery occlusion and a 4h reperfusion. Mycardial tissue was assessed by immunohistochemistry, TUNEL-staining, Western blot, quantitative RT-PCR, and a morphometric assay. Results: RP105 overexpression resulted in a reduction in infarct size, fewer TUNEL-positive cardiomyocytes, and a reduction in mitochondrial-associated apoptosis cascade activity. Further, RP105 overexpression repressed I/R-induced myocardial injury by attenuating myocardial apoptosis. This was mediated by inhibiting TLR4 activation and the phosphorylation of P38MAPK and the downstream transcription factor AP-1. Conclusion: RP105 overexpression leads to the de-activation of TLR4, P38MAPK, and AP-1 signaling pathways, and subsequently represses apoptotic cascades and ensuing damage of myocardial ischemic reperfusion. These findings may become the basis of a novel therapeutic approach for reducing of cardiac damage caused by MIRI.

  7. Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway.

    Science.gov (United States)

    Cao, Jinling; Chen, Jianjie; Xie, Lingtian; Wang, Jundong; Feng, Cuiping; Song, Jing

    2015-10-01

    Sesamin, a major lignan derived from sesame seeds, has been reported to have many benefits and medicinal properties. However, its protective effects against fluoride-induced injury in kidney of fish have not been clarified. Previously we found that fluoride exposure caused damage and apoptosis in the kidneys of the common carp, Cyprinus carpio. In this study, the effects of sesamin on renal oxidative stress and apoptosis in fluoride-exposed fish were determined. The results showed that sesamin alleviated significantly fluoride-induced renal damage and apoptosis of carp in a dose-dependent manner, indicated by the histopathological examination and ultrastructural observation. Moreover, treatment with sesamin also inhibited significantly fluoride-induced remarkable enhancement of reactive oxygen species (ROS) production and oxidative stress, such as the increase of lipid peroxidation level and the depletion of intracellular reduced glutathione (GSH) level in kidney. To explore the underlying mechanisms of sesamin action, we found that activities of caspase-3 were notably inhibited by treatment with sesamin in the kidney of fluoride-exposed fish. Sesamin decreased the levels of p-JNK protein in kidney, which in turn inactivated pro-apoptotic signaling events by restoring the balance between mitochondrial pro- and anti-apoptotic Bcl-2 and Bax proteins and by decreasing the release of mitochondrial cytochrome c in kidney of fluoride-exposed fish. JNK was also involved in the mitochondrial extrinsic apoptotic pathways of sesamin effects against fluoride-induced renal injury by regulating the levels of p-c-Jun, necrosis factor-alpha (TNF-α) and Bak proteins. These findings indicated that sesamin could protect kidney against fluoride-induced apoptosis by the oxidative stress downstream-mediated change in the inactivation of JNK signaling pathway. Taken together, sesamin plays an important role in maintaining renal health and preventing kidney from toxic damage induced by

  8. Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Li; Wang, Jing; Xiao, Haifang; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo, E-mail: xueboliu@yahoo.com.cn

    2012-11-15

    Isoorientin (ISO) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum; however, its biological activity remains poorly understood. The present study investigated the effects and putative mechanism of apoptosis induced by ISO in human hepatoblastoma cancer (HepG2) cells. The results showed that ISO induced cell death in a dose-dependent manner in HepG2 cells, but no toxicity in human liver cells (HL-7702) and buffalo rat liver cells (BRL-3A) treated with ISO at the indicated concentrations. ISO-induced cell death included apoptosis which characterized by the appearance of nuclear shrinkage, the cleavage of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. ISO significantly (p < 0.01) increased the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), increased the release of cytochrome c, activated caspase-3, and enhanced intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO). In addition, ISO effectively inhibited the phosphorylation of Akt and increased FoxO4 expression. The PI3K/Akt inhibitor LY294002 enhanced the apoptosis-inducing effect of ISO. However, LY294002 markedly quenched ROS and NO generation and diminished the protein expression of heme peroxidase enzyme (HO-1) and inducible nitric oxide synthase (iNOS). Furthermore, the addition of a ROS inhibitor (N-acetyl cysteine, NAC) or iNOS inhibitor (N-[3-(aminomethyl) benzyl] acetamidine, dihydrochloride, 1400W) significantly diminished the apoptosis induced by ISO and also blocked the phosphorylation of Akt. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells and indicate that this apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway, and has no toxicity in normal liver cells, suggesting that ISO may have good potential as a therapeutic and chemopreventive agent for liver cancer. Highlights:

  9. Ginsenoside Rh2 inhibits proliferation and induces apoptosis in human leukemia cells via TNF-α signaling pathway.

    Science.gov (United States)

    Huang, Jingjia; Peng, Kunjian; Wang, Linghao; Wen, Bin; Zhou, Lin; Luo, Tiao; Su, Min; Li, Jijia; Luo, Zhiyong

    2016-08-01

    Ginsenoside Rh2, a triterpene saponin extracted from Panax ginseng, exhibits pharmacological activity against multiple cancers. However, the anticancer mechanism of ginsenoside Rh2 is unclear. In this study, we found that ginsenoside Rh2 effectively inhibits growth and induces apoptosis of HL-60 cells. Using microarray technology, we found that tumor necrosis factor-α (TNF-α) is clearly up-regulated. Furthermore, anti-TNF-α antibody relieved the Rh2-induced HL-60 cell apoptosis via suppression of caspase-8, caspase-9, and caspase-3 activation. In addition, TNF-α up-regulation was also observed in other Rh2-treated cancer cell lines. These results demonstrate that TNF-α plays a key role in ginsenoside Rh2-induced cell apoptosis.

  10. Alisol B acetate induces apoptosis of SGC7901 cells via mitochondrial and phosphatidylinositol 3-kinases/Akt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Yong-Hong Xu; Li-Jie Zhao; Yan Li

    2009-01-01

    AIM: To examine the effect of alisol B acetate on the growth of human gastric cancer cell line SGC7901 and its possible mechanism of action. METHODS: The cytotoxic effect of alisol B acetate on SGC7901 cells was measured by 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Phase-contrast and electron microscopy were used to observe the morphological changes. Cell cycle and mitochondrial transmembrane potential (ΔΨm) were determined by flow cytometry. Western blotting was used to detect the expression of apoptosis-regulated gene Bcl-2, Bax, Apaf-1, caspase-3, caspase-9, Akt, P-Akt and phosphatidylinositol 3-kinases (PI3K). RESULTS: Alisol B acetate inhibited the proliferation of SGC7901 cell line in a time- and dose-dependent manner. PI staining showed that alisol B acetate can change the cell cycle distribution of SGC7901, increase the proportion of cells in G0-G1 phase and decrease the proportion of S phase cells and G2-M phase cells. Alisol B acetate at a concentration of 30 μmol/L induced apoptosis after 24, 48 and 72 h incubation, with occurrence rates of apoptotic cells of 4.36%, 14.42% and 21.16%, respectively. Phase-contrast and electron microscopy revealed that the nuclear fragmentation and chromosomal condensed, cells shrank and attachment loss appeared in the SGC7901 treated with alisol B acetate. Apoptosis of SGC7901 with alisol B acetate. Apoptosis of SGC7901 cells was associated with cell cycle arrest, caspase-3 and caspase-9 activation, loss of mitochondrial membrane potential and up-regulation of the ratio of Bax/Bcl-2 and inhibition of the PI3K/Akt. CONCLUSION: Alisol B acetate exhibits an antiproliferative effect in SGC7901 cells by inducing apoptosis. Apoptosis of SGC7901 cells involves mitochondria-caspase and PI3K/Akt dependent pathways.

  11. Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle.

    Science.gov (United States)

    Tang, Bo; Tang, Fang; Wang, Zhenran; Qi, Guangying; Liang, Xingsi; Li, Bo; Yuan, Shengguang; Liu, Jie; Yu, Shuiping; He, Songqing

    Primary liver cancer is globally the sixth most frequent cancer, and the second leading cause of cancer death and its incidence is increasing in many countries, becoming a serious threat to human health. Many researches focused on the treatment and prevention of liver cancer. However, due to the underlying molecular mechanism of liver cancer still not fully understood, the studies and development of treatments were forced to be delayed. Akt has been suggested to play an essential role in the progression of inflammation response and apoptosis. Hence, in this study, Akt-knockout mice and cells of liver cancer were used as a model to investigate the molecular mechanism of Akt-associated inflammatory and apoptotic signaling pathway linked with NF-κB and Bcl-2-associated death promoter (Bad) for the progression of liver cancer. Carnosic acid (CA), as a phenolic diterpene with anticancer, antibacterial, antidiabetic, as well as neuroprotective properties, is produced by many species from Lamiaceae family. Administration of CA nanoparticles was sufficient to lead to considerable inhibition of liver cancer progression. The results indicated that, compared to the normal liver cells, the expression of Akt was significantly higher in liver cancer cell lines. Also, we found that Akt-knockout cancer cell lines modulated inflammation response and apoptosis via inhibiting NF-κB activation and inducing apoptotic reaction. Our results indicated that the downstream signals, including cytokines regulated by NF-κB and caspase-3-activated apoptosis affected by Bad, were re-modulated for knockout of Akt. And CA nanoparticles, acting as Akt-knockout, could inhibit inflammation and accelerate apoptosis in liver cancer by altering NF-κB activation and activating caspase-3 through Bad pathway. These findings demonstrated that the nanoparticulate drug CA performed its effective role owing to its ability to reduce inflammatory action and enhance apoptosis for the overexpression of NF

  12. -Mixed Intersection Bodies and Star Duality

    Indian Academy of Sciences (India)

    Zhao Chang-jian; Wing-Sum Cheung

    2010-09-01

    The paper extends the two notions of the dual mixed volumes and -intersection body to -dual mixed volumes and -mixed intersection body, respectively. Inequalities for the star dual of -mixed intersection bodies are established.

  13. Bim regulates B-cell receptor-mediated apoptosis in the presence of CD40 signaling in CD40-pre-activated splenic B cells differentiating into plasma cells.

    Science.gov (United States)

    Gao, Yuanyuan; Kazama, Hirotaka; Yonehara, Shin

    2012-05-01

    B-cell receptor (BCR)-mediated apoptosis is critical for B-cell development and homeostasis. CD40 signaling has been shown to protect immature or mature B cells from BCR-mediated apoptosis. In this study, to understand the fate of CD40-pre-activated splenic B cells stimulated by BCR engagement in the presence of CD40 signaling, murine splenic B cells were cultured with anti-Igκ and anti-CD40 antibodies after pre-activation with anti-CD40 antibody. We found that apoptosis was induced in the cultured B cells even in the presence of CD40 signaling during the 3-4 days cultivation. We detected up-regulation of Bim expression followed by Bax activation in this apoptotic process and cessation of the apoptosis in Bim-deficient B cells, indicating that Bim is a key regulator of the BCR-mediated apoptosis in the presence of CD40 signaling in CD40-pre-activated B cells. Importantly, this BCR-mediated apoptosis in CD40-pre-activated B cells was shown to be induced at the initiation of plasma cell differentiation at around the preplasmablast stage, and Bim-deficient B cells cultured under these conditions differentiated into plasma cells. Additionally, transforming growth factor-β was found to protect CD40-pre-activated B cells from BCR-mediated apoptosis in the presence of CD40 signaling. Our identified BCR-mediated apoptosis, which is unpreventable by CD40 signaling, suggests a potential mechanism that regulates the elimination of peripheral B cells, which should be derived from nonspecific T-dependent activation of bystander B cells and continuous stimulation with antigens including self-antigens in the presence of T cell help through CD40.

  14. Intersectional perspective in elderly care

    Directory of Open Access Journals (Sweden)

    Marta Cuesta

    2016-05-01

    Full Text Available Earlier research has shown that power relationships at workplaces are constructed by power structures. Processes related to power always influence the working conditions for (in this study in elderly care the working groups involved. Power structures are central for intersectional analysis, in the sense that the intersectional perspective highlights aspects such as gender and ethnicity (subjective dimensions and interrelates them to processes of power (objective dimension. This qualitative study aims to explore in what way an intersectional perspective could contribute to increased knowledge of power structures in a nursing home where the employees were mostly immigrants from different countries. By using reflexive dialogues related to an intersectional perspective, new knowledge which contributes to the employees’ well-being could develop. Narrative analysis was the method used to conduct this study. Through a multi-stage focus group on six occasions over 6 months, the staff were engaged in intersectional and critical reflections about power relationship with the researchers, by identifying patterns in their professional activities that could be connected to their subjectivities (gender, ethnicity, etc.. The result of this study presents three themes that express the staff's experiences and connect these experiences to structural discrimination. 1 Intersectionality, knowledge, and experiences of professionalism; 2 Intersectionality, knowledge, and experiences of collaboration; and 3 Intersectionality, knowledge, and experiences of discrimination. The result demonstrates that an intersectional perspective reinforces the involved abilities, during the conversations, into being clear about, for example, their experiences of discrimination, and consequently developing a better understanding of their professionalism and collaboration. Such deeper reflections became possible through a process of consciousness raising, strengthening the employee

  15. Features under dermoscopy as well as the expression of pro-inflammatory factors, TGF-β signaling pathway and apoptosis molecules of psoriasis vulgaris

    Institute of Scientific and Technical Information of China (English)

    Fan Yang; Shi-Chao Lv

    2016-01-01

    Objective:To study the features under dermoscopy as well as the expression of pro-inflammatory factors, TGF-β signaling pathway and apoptosis molecules of psoriasis vulgaris. Methods:A total of 134 cases of skin lesion tissues diagnosed with psoriasis vulgaris in our hospital between May 2012 and December 2015 were collected as the pathological group, fresh normal limb skin tissues trimmed in the orthopaedic surgery during the same period were selected as control group, dermoscopy was used to observe the features of pathological group, and the expression levels of pro-inflammatory factors, TGF-β signal molecules and apoptosis-related molecules in pathological group and control group were determined.Results: The typical features of patients with psoriasis vulgaris under dermoscopy were pink background, dotted vascular morphology and regular vascular arrangement pattern; IFN-γ, IL-12, IL-17, IL-18, c-myc, Bcl-2 and Survivin content in pathological group were significantly higher than those in control group while IL-4, IL-10, TGF-β1, TGF-β1R-I, TGF-β1R-II, Smad2, Smad3, PTEN and CEACAM1 content were significantly lower than those in control group.Conclusions:The feature of psoriasis vulgaris under dermoscopy is regular dotted angiogenesis, and the Th1/Th2 and Th17/Treg disorder as well as abnormal apoptotic signals in skin lesion tissue are associated with the occurrence of psoriasis.

  16. Methylcobalamin promotes proliferation and migration and inhibits apoptosis of C2C12 cells via the Erk1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Michio [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tanaka, Hiroyuki, E-mail: tanahiro-osk@umin.ac.jp [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Kiyoshi [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kuroda, Yusuke [Department of Orthopaedic Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511 (Japan); Nishimoto, Shunsuke; Murase, Tsuyoshi; Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2014-01-17

    Highlights: •Methylcobalamin activated the Erk1/2 signaling pathway in C2C12 cells. •Methylcobalamin promoted the proliferation and migration in C2C12 cells. •C2C12 cell apoptosis during differentiation was inhibited by methylcobalamin. -- Abstract: Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.

  17. TNF-related apoptosis-inducing ligand cooperates with NSAIDs via activated Wnt signalling in (pre)malignant colon cells

    NARCIS (Netherlands)

    Heijink, Dianne M.; Jalving, Mathilde; Oosterhuis, Dorenda; Sloots, Ineke A.; Koster, Roelof; Hollema, Harry; Kleibeuker, Jan H.; Koornstra, Jan J.; de Vries, Elisabeth G. E.; de Jong, Steven

    2011-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) receptor agonistic agents and non-steroidal anti-inflammatory drugs (NSAIDs) are interesting agents for the chemoprevention and treatment of colorectal cancer. We investigated whether NSAIDs sensitize colon cancer and adenoma cell lines and ex vivo cultu

  18. Apoptosis induced by Aβ25-35 peptide is Ca(2+) -IP3 signaling-dependent in murine astrocytes.

    Science.gov (United States)

    Oseki, K T; Monteforte, P T; Pereira, G J S; Hirata, H; Ureshino, R P; Bincoletto, C; Hsu, Y-T; Smaili, S S

    2014-08-01

    Although the accumulation of the neurotoxic peptide β-amyloid (Aβ) in the central nervous system is a hallmark of Alzheimer's disease, whether Aβ acts in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that cytosolic Ca(2+) dysregulation, induced by a neurotoxic fragment (Aβ25-35), caused apoptosis in a concentration-dependent manner, leading to cytoplasmic Ca(2+) mobilization from extra- and intracellular sources, mainly from the endoplasmic reticulum (ER) via IP3 receptor activation. This mechanism was related to Aβ-mediated apoptosis by the intrinsic pathway because the expression of pro-apoptotic Bax was accompanied by its translocation in cells transfected with GFP-Bax. Aβ-mediated apoptosis was reduced by BAPTA-AM, a fast Ca(2+) chelator, indicating that an increase in intracellular Ca(2+) was involved in cell death. Interestingly, the Bax translocation was dependent on Ca(2+) mobilization from IP3 receptors because pre-incubation with xestospongin C, a selective IP3 receptor inhibitor, abolished this response. Taken together, these results provide evidence that Aβ dysregulation of Ca(2+) homeostasis induces ER depletion of Ca(2+) stores and leads to apoptosis; this mechanism plays a significant role in Aβ apoptotic cell death and might be a new target for neurodegeneration treatments.

  19. DNA Damage Signaling, Impairment of Cell Cycle Progression, and Apoptosis Triggered by 5-Ethynyl-2′-deoxyuridine Incorporated into DNA

    OpenAIRE

    Zhao, Hong; Halicka, H. Dorota; Li, Jiangwei; Biela, Ewa; Berniak, Krzysztof; Dobrucki, Jurek; Darzynkiewicz, Zbigniew

    2013-01-01

    The “click chemistry” approach utilizing 5-ethynyl-2′-deoxyuridine (EdU) as a DNA precursor was recently introduced to assess DNA replication and adapted to flow- and imaging-cytometry. In the present study, we observed that EdU, once incorporated into DNA, induces DNA damage signaling (DDS) such as phosphorylation of ATM on Ser1981, of histone H2AX on Ser139, of p53 on Ser15, and of Chk2 on Thr68. It also perturbs progression of cells through the cell cycle and subsequently induces apoptosis...

  20. Matrine induces mitochondrial apoptosis in cisplatin-resistant non-small cell lung cancer cells via suppression of β-catenin/survivin signaling.

    Science.gov (United States)

    Wang, Huan-Qin; Jin, Jian-Jun; Wang, Jing

    2015-05-01

    Matrine is an alkaloid isolated from Sophora flavescens and shows anticancer activities. The present study was carried out to determine the cytotoxic effects of matrine on cisplatin-resistant non-small cell lung cancer (NSCLC) cells and the associated molecular mechanisms. Parental and cisplatin-resistant A549 and H460 NSCLC cells were treated with 1 or 2 g/l of matrine for 48 h, and cell viability and apoptosis were assessed. β-catenin-mediated transcriptional activity, mitochondrial membrane potential (ΔΨm) changes, activation of caspases, and survivin expression were examined. The effect of overexpression of survivin on the anticancer activity of matrine was investigated. Compared to the parental cells, cisplatin-resistant NSCLC cells showed increased β-catenin transcriptional activity. Matrine treatment resulted in a significant reduction in β-catenin activation and survivin expression in the cisplatin-resistant cells. Matrine caused apoptotic death in the cisplatin-resistant NSCLC cells, coupled with loss of ΔΨm and activation of caspase-9 and -3. Matrine-induced apoptosis of the cisplatin-resistant NSCLC cells was significantly reversed by overexpression of survivin. In conclusion, matrine exposure induces mitochondrial apoptosis in cisplatin-resistant NSCLC cells, which is largely mediated through inactivation of β-catenin/survivin signaling. Further investigation of the therapeutic benefit of matrine in overcoming cisplatin resistance in NSCLC is warranted.

  1. Adenosine triphosphate-sensitive potassium channel opener protects PC12 cells against hypoxia-induced apoptosis through PI3K/Akt and Bcl-2 signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Chunhong Jia; Danyang Zhao; Yang Lu; Runling Wang; Jia Li

    2010-01-01

    Although previous studies have shown the neuroprotective effects of the adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener against ischemic neuronal damage, little is known about the mechanisms involved. Phosphatidylinositol-3 kinase (PI3K)/v-akt murine thy-moma viral oncogene homolog (Akt) and Bcl-2 are thought to be important factors that mediate neuroprotection. The present study investigated the effects of KATP openers on hypoxia-induced PC12 cell apoptosis, as well as mRNA and protein expression of Akt and Bcl-2. Results demon-strated that pretreatment of PC12 cells with pinacidil, a KATP opener, resulted in decreased PC12 cell apoptosis following hypoxia, as detected by Annexin-V fluorescein isothiocyanate/ propidium iodide double staining flow cytometry. In addition, mRNA and protein expression of phosphorylated Akt (p-Akt) and Bcl-2 increased, as detected by immunofluorescence, Western blot analysis, and reverse-transcription polymerase chain reaction. The protective effect of this preconditioning was attenuated by glipizide, a selective KATP blocker. These results demonstrate for the first time that the protective mechanisms of KATP openers on PC12 cell apoptosis following hypoxia could result from activation of the PI3K/Akt signaling pathway, which further activates expression of the downstream Bcl-2 gene.

  2. PI3K/Akt signaling pathway involved in regulation of T lymphocyte activation and apoptosis mediated by CD3e

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To study the expression and kinase activity of phosphatidylinositol 3′-kinase (PI3K) and protein kinase B (PKB or Akt) during activation and apoptosis of human Jurkat T lymphocytes (TJK) with stable expression of CD8e chimera fused human CD8a extracellular and transmembra-ne domains to intracellular domain of mouse CD3e, Western blot, kinase activities detection and immunoprecipitation were carried out. It was shown that Jurkat cells with expres-sion of wild type chimera CD8e died by apoptosis after con-tinuous stimulation of anti-CD8 monoclonal antibody. The expressions of PI3K and Akt, and the kinase activity of Akt remarkably increased during the process. However, this phenomenon did not occur in the Jurkat cells (T1JK) with expression of the mutant of CD8e chimera (Y170F), sug-gesting that PI3K/Akt signaling pathway is involved in acti-vation and apoptosis of T lymphocyte mediated by CD3e.

  3. Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS cells

    Directory of Open Access Journals (Sweden)

    Jian-Ming Li

    2015-12-01

    Full Text Available Human osteosarcoma is the most prevalent primary malignant bone tumor with high frequency of invasion and metastasis. Strong resistance coupled with toxicity of the currently available chemotherapeutic drugs poses challenge in treatment. The study aimed to investigate if fisetin, a dietary flavonoid induced apoptosis in human osteosarcoma (U-2 OS cells. Fisetin at 20-100 µM effectively reduced the viability of OS cells, and induced apoptosis by significantly inducing the expression of caspases (Caspases- 3,-8 and -9 and pro-apoptotic proteins (Bax and Bad with subsequent down-regulation of Bcl-xL and Bcl-2. While fisetin inhibited PI3K/Akt pathway and ERK1/2, it caused enhanced expressions of p-JNK, p-c-Jun and p-p38. Fisetin-induced ROS generation and decrease in mitochondrial membrane potential would have also contributed to rise in apoptotic cell counts. The observations suggest that fisetin was able to effectively induce apoptosis of U-2 OS cells through ROS generation and modulation of MAPK and PI3K/Akt signalling cascades.

  4. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Xu Wu

    2016-01-01

    Full Text Available Obstructive sleep apnea (OSA associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH triggered tissue damage. Receptor for advanced glycation end product (RAGE and its ligand high mobility group box 1 (HMGB1 are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE, the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1 normal air (NA, (2 CIH, (3 CIH+sRAGE, and (4 NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6, apoptotic (Bcl-2/Bax, and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.

  5. Phosphorylated extracellular signal-regulated kinase up-regulated p53 expression in shikonin-induced HeLa cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    WU Zhen; WU Li-jun; TASHIRO Shinichi; ONODERA Satoshi; IKEJIMA Takashi

    2005-01-01

    Background The role of extracellular signal-regulated kinase 1/2 (ERK1/2) in shikonin-induced HeLa cells apoptosis remains vague. This study was to investigate the activation of caspase pathways and the role of ERK1/2 in human cervical cancer cells, HeLa, by shikonin.Methods The inhibitory effect of shikonin on the growth of HeLa cells was measured by MTT assay. Fluorescent microscopic analysis of apoptotic cells stained with 4’,6’-oliiamiclino-2-phenylindole C (DAPI) and Hoechst 33258 was carried out. Caspase-3 and -8 activities were detected using caspase-3 substrate and caspase-8 substrate as substrates, respectively. The protein levels of ERK, p53 and p-ERK were determined by Western blot analysis.Results Shikonin inhibited cell growth in a time- and dose-dependent manner. Caspase-3 and caspase-8 were activated in the apoptotic process and caspase inhibitors effectively reversed shikonin-induced apoptosis. Phosphorylation of ERK resulted in up-regulation of p53 expression, which was blocked by mitogen-activated protein kinase (MEK), inhibitor PD 98059.Conclusion Shikonin induces HeLa cell apoptosis through the ERK, p53 and caspase pathways.

  6. Genistein inhibition of OGD-induced brain neuron death correlates with its modulation of apoptosis, voltage-gated potassium and sodium currents and glutamate signal pathway.

    Science.gov (United States)

    Ma, Xue-Ling; Zhang, Feng; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Liu, Yan-Qiang

    2016-07-25

    In the present study, we established an in vitro model of hypoxic-ischemia via exposing primary neurons of newborn rats to oxygen-glucose deprivation (OGD) and observing the effects of genistein, a soybean isoflavone, on hypoxic-ischemic neuron viability, apoptosis, voltage-activated potassium (Kv) and sodium (Nav) currents, and glutamate receptor subunits. The results indicated that OGD exposure reduced the viability and increased the apoptosis of brain neurons. Meanwhile, OGD exposure caused changes in the current-voltage curves and current amplitude values of voltage-activated potassium and sodium currents; OGD exposure also decreased GluR2 expression and increased NR2 expression. However, genistein at least partially reversed the effects caused by OGD. The results suggest that hypoxic-ischemia-caused neuronal apoptosis/death is related to an increase in K(+) efflux, a decrease in Na(+) influx, a down-regulation of GluR2, and an up-regulation of NR2. Genistein may exert some neuroprotective effects via the modulation of Kv and Nav currents and the glutamate signal pathway, mediated by GluR2 and NR2.

  7. MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1 Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs Transplanted into Infarcted Heart

    Directory of Open Access Journals (Sweden)

    Chang Youn Lee

    2016-10-01

    Full Text Available Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1 has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs and on rat myocardial infarction (MI models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.

  8. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    Science.gov (United States)

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  9. Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo.

    Science.gov (United States)

    Lou, Miao; Zhang, Li-Na; Ji, Pei-Gang; Feng, Fu-Qiang; Liu, Jing-Hui; Yang, Chen; Li, Bao-Fu; Wang, Liang

    2016-12-01

    Neuroglioma is a complex neuroglial tumor involving dysregulation of many biological pathways at multiple levels. Quercetin is a potent cancer therapeutic agent presented in fruit and vegetables, preventing tumor proliferation, and is a well known cancer therapeutic agent and autophagy mediator. Recent studies showed that drug delivery by nanoparticles have enhanced efficacy with reduced side effects. In this regard, gold-quercetin into poly (dl-lactide-co-glycolide) nanoparticles was examined. In the present study, quercetin nanoparticle induced cell autophagy and apoptosis in human neuroglioma cell was investigated. Quercetin nanoparticle administrated to animals displayed suppressed role in tumor growth. The cell viability was deterined through CCK8 assay. Transmission electron microscopy was utilized to observe the formation of autophagosome. The cell apoptosis was assessed by annexin V-PI staining. The protein expression of cell autophagy regulators and tumor suppressors were analyzed via western blot and RT-PCR. Treatment of human neuroglioma cell with quercetin nanoparticle induced cell death in a dose-and time-dependent manner. The flow cytometry results showed that the proportion of the apoptosis cells had gained after quercetin nanoparticle treatment compared to untreatment group. Moreover, the expression of activated PI3K/AKT and Bcl-2 were down-regulated upon quercetin nanoparticle treatment in human neuroglioma cells. The expression level of LC3 and ERK as well as cytoplasm p53, cleaved Caspase-3 and PARP was positively correlated with the concentration of quercetin nanoparticle. In addition, p-mTOR and GAIP were obviously down-regulated by quercetin nanoparticle treatment in a dose-dependent manner. These results indicated that quercetin nanoparticle could induce autophagy and apoptosis in human neuroglioma cells, the underlying molecular mechanisms, at least partly, through activation LC3/ERK/Caspase-3 and suppression AKT/mTOR signaling.

  10. Fisetin-induced apoptosis of human oral cancer SCC-4 cells through reactive oxygen species production, endoplasmic reticulum stress, caspase-, and mitochondria-dependent signaling pathways.

    Science.gov (United States)

    Su, Chen-Hsuan; Kuo, Chao-Lin; Lu, Kung-Wen; Yu, Fu-Shun; Ma, Yi-Shih; Yang, Jiun-Long; Chu, Yung-Lin; Chueh, Fu-Shin; Liu, Kuo-Ching; Chung, Jing-Gung

    2017-02-09

    Oral cancer is one of the cancer-related diseases in human populations and its incidence rates are rising worldwide. Fisetin, a flavonoid from natural products, has been shown to exhibit anticancer activities in many human cancer cell lines but the molecular mechanism of fisetin-induced apoptosis in human oral cancer cells is still unclear; thus, in this study, we investigated fisetin-induced cell death and associated signal pathways on human oral cancer SCC-4 cells in vitro. We examined cell morphological changes, total viable cells, and cell cycle distribution by phase contrast microscopy and flow cytometry assays. Reactive oxygen species (ROS), Ca(2+) , mitochondria membrane potential (ΔΨm ), and caspase-8, -9, and -3 activities were also measured by flow cytometer. Results indicate that fisetin induced cell death through the cell morphological changes, caused G2/M phase arrest, induction of apoptosis, promoted ROS and Ca(2+) production, and decreased the level of ΔΨm and increased caspase-3, -8, and -9 activities in SCC-4 cells. DAPI staining and DNA gel electrophoresis were also used to confirm fisetin-induced cell apoptosis in SCC-4 cells. Western blotting also found out that Fisetin increased the proapoptotic proteins such as Bax and Bid and decreased the antiapoptotic proteins such as Bcl-2. Furthermore, results also showed that Fisetin increased the cytochrome c, AIF, and Endo G release from mitochondria in SCC-4 cells. We also used ATF-6α, ATF-6β, GADD153, and GRP78 which indicated that fisetin induced cell death through ER stress. Based on those observations, we suggest that fisetin induced cell apoptosis through ER stress, mitochondria-, and caspase-dependent pathways.

  11. PI3K/Akt/FoxO3a signaling mediates cardioprotection of FGF-2 against hydrogen peroxide-induced apoptosis in H9c2 cells.

    Science.gov (United States)

    Liu, Mi-Hua; Li, Guo-Hua; Peng, Li-Jun; Qu, Shun-Lin; Zhang, Yuan; Peng, Juan; Luo, Xin-Yuan; Hu, Heng-Jing; Ren, Zhong; Liu, Yao; Tang, Hui; Liu, Lu-Shan; Tang, Zhi-Han; Jiang, Zhi-Sheng

    2016-03-01

    Cardiovascular disease is a growing major global public health problem. Oxidative stress is regarded as one of the key regulators of pathological physiology, which eventually leads to cardiovascular disease. However, mechanisms by which FGF-2 rescues cells from oxidative stress damage in cardiovascular disease is not fully elucidated. Herein this study was designed to investigate the protective effects of FGF-2 in H2O2-induced apoptosis of H9c2 cardiomyocytes, as well as the possible signaling pathway involved. Apoptosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using methyl thiazolyl tetrazolium assay, Hoechst, and TUNEL staining. Cells were pretreated with PI3K/Akt inhibitor LY294002 to investigate the possible PI3K/Akt pathways involved in the protection of FGF-2. The levels of p-Akt, p-FoxO3a, and Bim were detected by immunoblotting. Stimulation with H2O2 decreased the phosphorylation of Akt and FoxO3a, and induced nuclear localization of FoxO3a and apoptosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by PI3K/Akt inhibitor LY294002. In conclusion, our data suggest that FGF-2 protects against H2O2-induced apoptosis of H9c2 cardiomyocytes via activation of the PI3K/Akt/FoxO3a pathway.

  12. Inhibition of ROS production, autophagy or apoptosis signaling reversed the anticancer properties of Antrodia salmonea in triple-negative breast cancer (MDA-MB-231) cells.

    Science.gov (United States)

    Chang, Chia-Ting; Korivi, Mallikarjuna; Huang, Hui-Chi; Thiyagarajan, Varadharajan; Lin, Kai-Yuan; Huang, Pei-Jane; Liu, Jer-Yuh; Hseu, You-Cheng; Yang, Hsin-Ling

    2017-02-20

    We investigated the in vitro and in vivo anticancer properties of Antrodia salmonea (AS), a well-known edible/medicinal mushroom in Taiwan, on human triple-negative breast cancer (MDA-MB-231) cells and xenografted nude mice; and revealed the underlying molecular mechanisms involved in autophagic- and apoptotic-cell death. Treatment of MDA-MB-231 cells with fermented culture broth of AS (0-200 μg/mL) inhibited cell viability/growth. AS-induced autophagy was evidenced via increased LC3-II accumulation, GFP-LC3 puncta and AVOs formation in MDA-MB-231 cells. These events are associated with increased ATG7, decreased p-mTOR, vanished SQSTM1/p62 expressions and dysregulated Beclin-1/Bcl-2 ratio. AS-induced apoptosis/necrosis through increased DNA fragmentation, Annexin-V/PI stained cells and Bax expression. Both mitochondrial (caspase-9/caspase-3/PARP) and death-receptor (caspase-8/FasL/Fas) signaling pathways are involved in execution of apoptosis. Interestingly, blockade of AS-induced ROS production by N-acetylcysteine pretreatment substantially attenuated AS-induced autophagy, mitochondrial dysfunction and autophagic/apoptotic-cell death. Inhibition of apoptosis by Z-VAD-FMK suppressed AS-induced autophagic-death (decreased LC3-II/AVOs). Similarly, inhibition of autophagy by 3-methyladenine/chloroquine diminished AS-induced apoptosis (decreased DNA fragmentation/caspase-3) in MDA-MB-231 cells. Bioluminescence imaging further confirmed that AS inhibited breast tumor growth in living MDA-MB-231-luciferase-injected nude mice. Taken together, AS crucially involved in execution/propagation of autophagic- or apoptotic-death of MDA-MB-231 cells, and decreased tumor growth in xenografted nude mice.

  13. Homeopathic mother tincture of Phytolacca decandra induces apoptosis in skin melanoma cells by activating caspase-mediated signaling via reactive oxygen species elevation

    Institute of Scientific and Technical Information of China (English)

    Samrat Ghosh; Kausik Bishayee; Avijit Paul; Avinaba Mukherjee; Sourav Sikdar; Debrup Chakraborty; Naoual Boujedaini

    2013-01-01

    OBJECTIVE:Preventive measures against skin melanoma like chemotherapy are useful but suffer from chronic side effects and drug resistance.Ethanolic extract of Phytolacca decandra (PD),used in homeopathy for the treatment of various ailments like chronic rheumatism,regular conjunctivitis,psoriasis,and in some skin diseases was tested for its possible anticancer potential.METHODS:Cytotoxicity of the drug was tested by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on both normal (peripheral blood mononuclear cells) and A375 cells.Fluorescence microscopic study of 4',6-diamidino-2-phenylindole dihydrochloride-stained cells was conducted for DNA fragmentation assay,and changes in cellular morphology,if any,were also recorded.Lactate dehydrogenase activity assay was done to evaluate the percentages of apoptosis and necrosis.Reactive oxygen species (ROS) accumulation,if any,and expression study of apoptotic genes also were evaluated to pin-point the actual events of apoptosis.RESULTS:Results showed that PD administration caused a remarkable reduction in proliferation of A375 cells,without showing much cytotoxicity on peripheral blood mononuclear cells.Generation of ROS and DNA damage,which made the cancer cells prone to apoptosis,were found to be enhanced in PD-treated cells.These results were duly supported by the analytical data on expression of different cellular and nuclear proteins,as for example,by downregulation of Akt and Bcl-2,up-regulation of p53,Bax and caspase 3,and an increase in number of cell deaths by apoptosis in A375 cells.CONCLUSION:Overall results demonstrate anticancer potentials of PD on A375 cells through activation of caspase-mediated signaling and ROS generation.

  14. Similar to spironolactone, oxymatrine is protective in aldosterone-induced cardiomyocyte injury via inhibition of calpain and apoptosis-inducing factor signaling.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Xiao

    Full Text Available Accumulating evidence indicates that oxymatrine (OMT possesses variously pharmacological properties, especially on the cardiovascular system. We previously demonstrated that activated calpain/apoptosis-inducing factor (AIF-mediated pathway was the key molecular mechanism in aldosterone (ALD induces cardiomyocytes apoptosis. In the present study, we extended the experimentation by investigating the effect of OMT on cardiomyocytes exposed to ALD, as compared to spironolactone (Spiro, a classical ALD receptor antagonist. Cardiomyocytes were pre-incubated with OMT, Spiro or vehicle for 1 h, and then, cardiomyocytes were exposed to ALD 24 h. The cell injury was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and lactate dehydrogenase (LDH leakage ratio. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL assay, annexin V/PI staining, and relative caspase-3 activity assay. Furthermore, expression of pro-apoptotic proteins including truncated Bid (tBid, calpain and AIF were evaluated by western blot analysis. ALD stimulation increased cardiomyocytes apoptosis, caspase-3 activity and protein expression of calpain, tBid and AIF in the cytosol (p<0.05. Pre-incubated with cardiomyocytes injury and increased caspase-3 activity were significantly attenuated (p<0.05. Furthermore, OMT suppressed ALD-induced high expression of calpain and AIF. And these effects of OMT could be comparable to Spiro. These findings indicated that OMT might be a potential cardioprotective-agent against excessive ALD-induced cardiotoxicity, at least in part, mediated through inhibition of calpain/AIF signaling.

  15. Effect of orexin A on apoptosis in BGC-823 gastric cancer cells via OX1R through the AKT signaling pathway.

    Science.gov (United States)

    Wen, Jing; Zhao, Yuyan; Shen, Yang; Guo, Lei

    2015-05-01

    Orexins are a class of peptides involved in the regulation of food intake, energy homeostasis, the sleep‑wake cycle and gastrointestinal function. Recent studies have demonstrated that orexin A may influence apoptosis and proliferation in numerous types of cancer cells. However, the effect of orexin A on gastric cancer cells and its mechanisms of action remain elusive. In the present study, BGC‑823 gastric cancer cells were treated with orexin A (10‑10‑10‑6 M) in vitro and the expression levels of orexin receptor 1 (OX1R) protein in cells was then determined. The proliferation, viability and apoptosis of BGC‑823 cells were detected. In addition, BGC‑823 cells were treated with AKT inhibitor PF‑04691502 or OX1R‑specific antagonist SB334867 in combination with orexin A, in order to examine the activation of AKT and caspase‑3. The results showed that orexin A (10‑10‑10‑6 M) stimulated the OX1R protein expression in BGC‑823 cells, which improved the proliferation and viability of the cells as well as protected them from apoptosis. Phosphorylated AKT protein was significantly increased in BGC‑823 cells following treatment with orexin A. Moreover, 10‑8 M orexin A reduced the proapoptotic activity of caspase‑3 (by ≤30%). The OX1R antagonist SB334867 (10‑6 M) and AKT antagonist PF‑04691502 (10‑6 M), when used individually or in combination, abolished the effect of orexin A (10‑8 M) on BGC-823 cells. In conclusion, the results of the present study demonstrated that orexin A inhibited gastric cancer cell apoptosis via OX1R through the AKT signaling pathway.

  16. TAK-242 Protects Against Apoptosis in Coronary Microembolization-Induced Myocardial Injury in Rats by Suppressing TLR4/NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xian-tao Wang

    2017-03-01

    Full Text Available Background/Aims: Myocardial apoptosis is heavily implicated in the myocardial injury caused by coronary microembolization (CME, and toll-like receptor 4 (TLR4 is considered to be involved in this apoptotic cascade. Therefore, the present study was designed to investigate the role of TLR4/NF-κB signaling pathway regulated by TAK-242, a selective TLR4 signal transduction inhibitor, in the myocardial apoptosis after CME in rats. Methods: Forty-five rats were randomized (random number into three groups: sham, CME and CME + TAK-242 (n = 15 per group.CME was induced by injecting polyethylene microspheres (42µm into the left ventricular except the sham group. CME + TAK-242 group was treated with TAK-242 (2mg/kg via the tail vein 30 minutes before CME modeling. Cardiac function was evaluated 6 hours after operation. Tissue biopsy was stained with HBFP to measure the size of micro-infarction area. TUNEL staining was used to detect myocardial apoptosis. Western blot and qPCR were used to evaluate the expression of TLR4, MyD88, NF-κB p65, p-IκBα and Cleaved caspase-3. Results: Cardiac function in the CME group and CME + TAK-242 group were significantly decreased compared with the sham group (P < 0.05 and the micro-infarction area, the apoptotic index, the expression of TLR4, NF-κB p65, p-IκBα and Cleaved caspase-3 were increased significantly (P < 0.05. Cardiac function in the CME + TAK-242 group was significantly improved compared with the CME group (P < 0.05 and the micro-infarction area, the apoptotic index, the expression of TLR4, MyD88, NF-κB p65, p-IκBα and Cleaved caspase-3 were decreased significantly (P < 0.05. Conclusions: TAK-242 can effectively improve CME-induced cardiac dysfunction by regulating TLR4/NF-κB signaling pathway and then reducing the myocardial apoptosis.

  17. Importin β1 mediates nuclear factor-κB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis.

    Science.gov (United States)

    Yan, Wenqing; Li, Rong; He, Jie; Du, Juan; Hou, Jian

    2015-04-01

    Multiple myeloma (MM) is a plasma cell neoplasm that is currently incurable. The activation of nuclear factor-κB (NF-κB) signalling plays a crucial role in the immortalisation of MM cells. As the most important transcription factor of the canonical NF-κB pathway, the p50/p65 heterodimer requires transportation into the nucleus for its successful signal transduction. Importin β1 is the key transport receptor that mediates p50/p65 nuclear import. Currently, it remains unclear whether the regulation of importin β1 function affects the biological behaviour of MM cells. In the present study, we investigated the changes in p65 translocation and the proliferation and apoptosis of MM cells after treatment with small interfering RNA (siRNA) or an importin β1 inhibitor. The underlying mechanisms were also investigated. We found importin β1 over-expression and the excessive nuclear transport of p65 in myeloma cells. Confocal laser scanning microscopy and Western blot analysis results indicated that p65 nuclear transport was blocked after inhibiting importin β1 expression with siRNA and the importin β1-specific inhibitor importazole (IPZ). Importantly, electronic mobility shift assay results also verified that p65 nuclear transport was dramatically reduced. Moreover, the expression of the NF-κB signalling target genes involved in MM cell apoptosis, such as BCL-2, c-IAP1 and XIAP, were markedly reduced, as demonstrated by the RT-PCR results. Furthermore, the proliferation of MM cells was inhibited, as demonstrated by MTT assay results, and the MM cell apoptosis rate was higher, as demonstrated by the annexin V/propidium iodide (PI) double-staining assay results. Additionally, the percentage of S phase cells in the myeloma cell lines treated with IPZ was dramatically reduced. In conclusion, our results clearly show that importin β1 mediates the translocation of NF-κB into the nuclei of myeloma cells, thereby regulating proliferation and blocking apoptosis, which

  18. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Yuji, E-mail: ysakuma@gancen.asahi.yokohama.jp [Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama (Japan); Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei [Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  19. Effects of SOST Gene Silencing on Proliferation, Apoptosis, Invasion, and Migration of Human Osteosarcoma Cells Through the Wnt/β-Catenin Signaling Pathway.

    Science.gov (United States)

    Zou, Jian; Zhang, Wei; Li, Xiao-Lin

    2017-02-28

    Our study explored the effects of SOST gene silencing on the proliferation, apoptosis, invasion, and migration of human osteosarcoma cells through Wnt/β-catenin signaling pathway. Fresh tissues were obtained from 108 patients with osteosarcoma and 46 patients with osteochondroma. Human osteosarcoma cells (MG-63, U2-OS, HOS, and Saos-2) and normal osteoblast (hFoB1.19) were selected and cultured. Osteosarcoma cells were grouped randomly into the blank group, the scrambled control group, and the SOST-siRNA group. Cell proliferation was determined by MTT assay. Cell cycle and apoptosis were tested by flow cytometry. Transwell and scratch test were performed to determine cell invasion and migration. The qRT-PCR and Western blotting were used to detect mRNA and protein expression level of sclerostin, Wnt1, β-catenin, C-Myc, Cyclin D1, and MMP-7. The activity of caspase-3 was assessed by immunocytochemistry. Alkaline phosphatase (ALP) activity was measured using P-nitrophenylphosphate as a substrate. Low SOST mRNA and sclerostin protein expression levels were observed in osteosarcoma tissues and cells. Compared with the blank and scrambled control groups, sclerostin expression, apoptotic cells, ALP activity, and caspase-3 activity were down-regulated, while the proliferation, invasion, and migration abilities of osteosarcoma cells were evidently enhanced in the SOST-siRNA group. After SOST gene silencing, the mRNA and protein expression levels of Wnt1, β-catenin, C-Myc, Cyclin D1, and MMP-7 in osteosarcoma cells and β-catenin protein expression levels in the nucleus and cytoplasm were significantly elevated. SOST gene silencing promotes the proliferation, invasion, and migration, and inhibits apoptosis of osteosarcoma cells by activating Wnt/β-catenin signaling pathway.

  20. miR-21 Reduces Hydrogen Peroxide-Induced Apoptosis in c-kit+ Cardiac Stem Cells In Vitro through PTEN/PI3K/Akt Signaling

    Science.gov (United States)

    Wang, Yan; Long, Xianping; Zhao, Ranzun; Wang, Zhenglong; Liu, Zhijiang

    2016-01-01

    The low survival rate of cardiac stem cells (CSCs) in the infarcted myocardium hampers cell therapy for ischemic cardiomyopathy. MicroRNA-21 (miR-21) and one of its target proteins, PTEN, contribute to the survival and proliferation of many cell types, but their prosurvival effects in c-kit+ CSC remain unclear. Thus, we hypothesized that miR-21 reduces hydrogen peroxide- (H2O2-) induced apoptosis in c-kit+ CSC and estimated the contribution of PTEN/PI3K/Akt signaling to this oxidative circumstance. miR-21 mimics efficiently reduced H2O2-induced apoptosis in c-kit+ CSC, as evidenced by the downregulation of the proapoptosis proteins caspase-3 and Bax and upregulation of the antiapoptotic Bcl-2. In addition, the gain of function of miR-21 in c-kit+ CSC downregulated the protein level of PTEN although its mRNA level changed slightly; in the meantime, miR-21 overexpression also increased phospho-Akt (p-Akt). The antiapoptotic effects of miR-21 were comparable with Phen (bpV), the selective inhibitor of PTEN, while miR-21 inhibitor or PI3K's inhibitor LY294002 efficiently attenuated the antiapoptotic effect of miR-21. Taken together, these results indicate that the anti-H2O2-induced apoptosis effect of miR-21 in c-kit+ CSC is contributed by PTEN/PI3K/Akt signaling. miR-21 could be a potential molecule to facilitate the c-kit+ CSC therapy in ischemic myocardium. PMID:27803763

  1. Intracellular pH and calcium signaling as molecular targets of diclofenac-induced apoptosis against colon cancer.

    Science.gov (United States)

    Kaur, Jasmeet; Sanyal, Sankar Nath

    2011-07-01

    The role of intracellular pH and Ca2+ and their association with mitochondrial dysfunction and intracellular reactive oxygen species (ROS) are explored in the chemoprevention of colon cancer. 1,2-dimethylhydrazine dihydrochloride (DMH), a potent procarcinogen with selectivity for the colon, at a dose of 30 mg/kg body weight was used to induce initial stages of colon cancer when administered for 6 weeks in male Sprague-Dawley rats. Diclofenac, a preferential cyclooxygenase-2 inhibitor, was used at the anti-inflammatory dose (8 mg/kg body weight) for chemoprevention. The control group was administered vehicles for both DMH and diclofenac. A diclofenac-alone group with the same dose was also run simultaneously. Intracellular pH values as determined by biscarboxyethyl carboxyfluorescein fluorescence assay showed an alkaline pH in colonocytes from the DMH-treated group as compared with the control group. Moreover, the level of intracellular Ca2+ was also found to be decreased with DMH treatment, as shown by the fura-2 acetoxymethyl study and chlortetracycline assay. Apoptosis was studied by comet assay and Apaf-1 immunofluorescent expression and was found to be markedly decreased in this group, indicating that disturbances in pH and Ca2+ homeostasis promoted proliferation in colon and inhibited apoptosis. Changes in mitochondrial membrane potential and ROS levels were analyzed in isolated colonocytes by rhodamine 123 and 2,7-dichlorofluorescein diacetate labeling, respectively. DMH treatment promoted a higher mitochondrial membrane potential while reducing ROS levels. These parameters are known to be associated with pH and Ca2+ changes intracellularly and hence can be suggested to be linked with them in this study also. Diclofenac promoted apoptosis in colonocytes when coadministered with DMH and also ameliorated the changes observed in the above parameters, confirming these mechanisms as early events for the onset of apoptosis in cancer cells.

  2. ISR intersection I-2

    CERN Multimedia

    1972-01-01

    Towards the left one sees, on top of ISR beam 1, the front section of the 30-metre-long, small-angle spectrometer from the CERN-Holland-Lancaster-Manchester single-particle production experiment. It consists of two special septum magnets carrying up to 20 kA each. These magnets are necessary to force charged particles produced at small angles away from the ISR beam. They are followed by two threshold Cerenkov counters and (not visible) three more bending magnets and a 6-metre-long Cerenkov counter. Particle identification follows from the Cerenkov signals after determination of the particle trajectory through the spectrometer with magnetostrictive spark chambers. The positions of the first magnets and Cerenkov counters can be changed by remote control. In front one sees the electronics which determines the traversal of a charged particle from scintillator counter signals and gives the "fire" signal for the spark chambers.

  3. Human Chorionic Gonadotropin Protects Vascular Endothelial Cells from Oxidative Stress by Apoptosis Inhibition, Cell Survival Signalling Activation and Mitochondrial Function Protection

    Directory of Open Access Journals (Sweden)

    Daniela Surico

    2015-07-01

    Full Text Available Background/Aim: Previous reports have made it hypothetically possible that human chorionic gonadotropin (hCG could protect against the onset of pregnancy-related pathological conditions by acting as an antioxidant. In the present study we planned to examine the effects of hCG against oxidative stress in human umbilical vein endothelial cells (HUVEC. Methods: HUVEC were subjected to peroxidation by hydrogen peroxide. The modulation of nitric oxide (NO release by hCG and its effects on cell viability, glutathione (GSH levels, mitochondrial membrane potential and mitochondrial transition pore opening (MPTP were examined by specific dyes. Endothelial and inducible NO synthase (eNOS and iNOS, Akt and extracellular -signal-regulated kinases 1/2 (ERK1/2 activation and markers of apoptosis were analyzed by Western Blot. Results: In HUVEC, hCG reduced NO release by modulating eNOS and iNOS. Moreover, hCG protected HUVEC against oxidative stress by preventing GSH reduction and apoptosis, by maintaining Akt and ERK1/2 activation and by keeping mitochondrial function. Conclusion: The present results have for the first time shown protective effects exerted by hCG on vascular endothelial function, which would be achieved by modulation of NO release, antioxidant and antiapoptotic actions and activation of cell survival signalling. These findings could have clinical implications in the management of pregnancy-related disorders.

  4. Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the anti-epidermal growth factor antibody IMC-C225.

    Science.gov (United States)

    Sclabas, Guido M; Fujioka, Shuichi; Schmidt, Christian; Fan, Zhen; Evans, Douglas B; Chiao, Paul J

    2003-01-01

    We have previously demonstrated that RelA is constitutively activated in the majority of human pancreatic cancers and plays an important role in tumorigenesis and metastasis. The antiapoptotic gene bcl-xl is a downstream target of RelA, and regulation of bcl-xl transcription is mediated directly by the nuclear factor kappaB (NF-kappaB) binding sites present in the upstream promoter element of the bcl-xl gene. In this study we investigated the effects of inhibition of epidermal growth factor receptor (EGFR) signaling pathway with the anti-EGFR monoclonal antibody IMC-C225 on constitutive NF-kappaB activation and regulation of apoptosis-related genes in human pancreatic cancer cells. We found that activation of EGFR can be blocked with the anti-EGFR antibody IMC-C225 in the human pancreatic cancer cell line MDA Panc-28, leading to a marked decrease in constitutive NF-kappaB DNA binding activity. Our data also suggest that downregulation of NF-kappaB DNA binding activity by IMC-C225 leads to a decrease in bcl-xl and bfl-1 expression. Therefore, targeting the NF-kappaB signaling pathway with an anti-EGFR antibody may be one strategy to restore apoptosis in human pancreatic cancer cells, thereby enhancing the effect of chemotherapy and radiation therapy.

  5. Dietary chlorophyllin inhibits the canonical NF-κB signaling pathway and induces intrinsic apoptosis in a hamster model of oral oncogenesis.

    Science.gov (United States)

    Thiyagarajan, P; Senthil Murugan, R; Kavitha, K; Anitha, P; Prathiba, D; Nagini, S

    2012-03-01

    Chlorophyllin, a water-soluble, semi-synthetic derivative of the ubiquitous green pigment chlorophyll is shown to exert potent anticarcinogenic effects. In the present study, we investigated the chemopreventive effects of chlorophyllin on 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis by analyzing the expression of NF-κB family members and markers of intrinsic apoptosis. Dietary administration of chlorophyllin (4 mg/kg bw) suppressed the development of HBP carcinomas by inhibiting the canonical NF-κB signaling pathway by downregulating IKKβ, preventing the phosphorylation of IκB-α, and reducing the expression of nuclear NF-κB. Inactivation of NF-κB signaling by chlorophyllin was associated with the induction of intrinsic apoptosis as evidenced by modulation of Bcl-2 family proteins, enforced nuclear localization of survivin, upregulation of apoptogenic molecules, activation of caspases, and cleavage of PARP. The results of the present study demonstrate that chlorophyllin inhibits the development of DMBA-induced HBP carcinogenesis by targeting NF-κB and the intrinsic apoptotic pathway. Thus, dietary agents such as chlorophyllin that simultaneously target divergent pathways of cell survival and cell death are novel candidates for cancer chemoprevention.

  6. Down-regulation of Sonic hedgehog signaling pathway activity is involved in 5-fluorouracil-induced apoptosis and motility inhibition in Hep3B cells

    Institute of Scientific and Technical Information of China (English)

    Qiyu Wang; Shuhong Huang; Ling Yang; Ling Zhao; Yuxia Yin; Zhongzhen Liu; Zheyu Chen; Hongwei Zhang

    2008-01-01

    The Sonic hedgehog (SHh) pathway plays a critical role in normal embryogenesis and carcinogenesis, but its function in cancer cells treated with 5-fluorouracil (5-FU) remains unknown. We examined the expression of a subset of SHh signaling pathway genes, including SHh, SMO, PTC1, Su(Fu) and HIP in human hepatocellular carcinoma (HCC) cell lines,Hep3B and HepG2, treated with 5-FU by reverse transcriptionpolymerase chain reaction. Using trypan blue analysis,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling assay, we also detected the apoptosis of Hep3B cells resulting from the transfection of pCS2-Gli1 expression vector combined with 5-FU treatment.The motility of the cells was detected by scratch wound closure assay. The expression and subcellular location of PTC1 protein in Hep3B cells treated by 5-FU were also investigated by Western blot analysis and immunofluorescent microscopy. The results indicated that the expression of SHh pathway target molecules at both messenger RNA and protein levels are evidently down-regulated in Hep3B cells treated with 5-FU. The overexpression of Gli1 restores cell viability and, to some extent, the migration abilities inhibited by 5-FU.Furthermore, 5-FU treatment affects the subcellular localization of PTC1 protein, a key member in SHh signaling pathway. Our data showed that the down-regulation of SHh signaling pathway activity was involved in 5-FU-induced apoptosis and the inhibition of motility in hedgehog-activated HCC cell lines. This implies that the combination of SHh signaling pathway inhibitor and 5-FU-based chemotherapy might represent a more promising strategy against HCC.

  7. Upregulation of Akt/NF-κB-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle

    Directory of Open Access Journals (Sweden)

    Tang B

    2016-11-01

    Full Text Available Bo Tang,1,2,* Fang Tang,1,2,* Zhenran Wang,1,2,* Guangying Qi,3 Xingsi Liang,1,2 Bo Li,1,2 Shengguang Yuan,1,2 Jie Liu,1,2 Shuiping Yu,1,2 Songqing He1,2 1Department of Hepatobiliary Surgery, Guilin Medical University Affiliated Hospital, 2Laboratory of Liver Injury and Repair Molecular Medicine, Guilin Medical University, 3Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, People’s Republic of China *These authors contributed equally to this work Abstract: Primary liver cancer is globally the sixth most frequent cancer, and the second leading cause of cancer death and its incidence is increasing in many countries, becoming a serious threat to human health. Many researches focused on the treatment and prevention of liver cancer. However, due to the underlying molecular mechanism of liver cancer still not fully understood, the studies and development of treatments were forced to be delayed. Akt has been suggested to play an essential role in the progression of inflammation response and apoptosis. Hence, in this study, Akt-knockout mice and cells of liver cancer were used as a model to investigate the molecular mechanism of Akt-associated inflammatory and apoptotic signaling pathway linked with NF-κB and Bcl-2-associated death promoter (Bad for the progression of liver cancer. Carnosic acid (CA, as a phenolic diterpene with anticancer, antibacterial, antidiabetic, as well as neuroprotective properties, is produced by many species from Lamiaceae family. Administration of CA nanoparticles was sufficient to lead to considerable inhibition of liver cancer progression. The results indicated that, compared to the normal liver cells, the expression of Akt was significantly higher in liver cancer cell lines. Also, we found that Akt-knockout cancer cell lines modulated inflammation response and apoptosis via inhibiting NF-κB activation and inducing apoptotic reaction. Our results indicated that the downstream

  8. Linkage between PTK Signaling Pathway “Crosstalking” and Caspase-3/ CPP32-1ike Proteases Activation in Signaling Transduction of CD4+ T Lymphocytes Apoptosis Induced by Superantigen SEB

    Institute of Scientific and Technical Information of China (English)

    熊世勤; 朱锡华

    2003-01-01

    Exposure of naive murine CD4+ T lymphocytes to superantigen such as staphylococcal enterotoxin B (SEB) induces a strong proliferative response. Prolonged exposure or subsequent restimulation of the responding T cell population with SEB leads to the apoptotic events of activation-induced cell death (AICD). The signaling mechanism responsible for the AICD is a target of intensive investigation. However, the precise downstream signahng pathways of SEB-induced AICD remains unclear. Our results here show that the sequential activation of caspase-1/ICE-hke and caspase-3/CPP32-hke cysteine proteases probably plays a role in the signaling transduction of SEB-induced AICD, but caspase-3/CPP32-hke proteases activation does not depend on caspase-1-like proteases activation. Herbimycin A, a specific inhibitor of protein tyresine kinases,inhibit caspase-3/CPP32-1ike cysteine proteases activation. However, it does not prevent DNA fragmentation of CD4+ Tcells apoptosis induced by SEB. These results indicate that protein tyrosine kinases pathway is probably involved in the signaling transduction of CD4+ T cells apoptosis induced by SEB and “crosstalks” with the pathway of caspase-3/CPP32-1ike proteases activation.

  9. Bak compensated for Bax in p53-null cells to release cytochrome c for the initiation of mitochondrial signaling during Withanolide D-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Susmita Mondal

    Full Text Available The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD, a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53-/- cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53-/- over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53-/- cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax-Bak- reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax-Bak+/HCT116Bax+Bak- was only marginally effective after WithaD treatment. In HCT116p53-/- cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.

  10. miR-29b overexpression induces cochlear hair cell apoptosis through the regulation of SIRT1/PGC-1α signaling: Implications for age-related hearing loss

    Science.gov (United States)

    Xue, Tao; Wei, Li; Zha, Ding-Jun; Qiu, Jian-Hua; Chen, Fu-Quan; Qiao, Li; Qiu, Yang

    2016-01-01

    It has been reported that the degeneration of cochlear hair cells is the typical cause of presbycusis (or age-related hearing loss). However, the molecular mechanisms that mediate cochlear hair cell apoptosis are not yet fully understood and there is no effective treatment for this disorder. MicroRNAs (miRNAs or miRs) have been increasingly shown to be associated with age-related diseases and are emerging as promising therapeutic targets. In this study, we investigated whether miR-29b is involved in the degeneration of cochlear hair cells. To examine our hypothesis, nuclear staining and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) were used to quantify the hair cell counts. RT-qPCR and western blot analysis were used to examine miR-29b/sirtuin 1 (SIRT1)/proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in cochlear hair cells. We found that there was a significant degeneration of cochlear hair cells and a higher expression of miR-29b in aged C57BL/6 mice compared with young mice. There was also an age-related decrease in the expression of SIRT1 and PGC-1α. In the inner ear cell line, HEI-OC1, miR-29b overexpression (by transfection with miR-29b mimic) inhibited SIRT1 and PGC-1α expression, leading to an increase in mitochondrial dysfunction and apoptosis. Moreover, the inhibition of miR-29b (by transfection with miR-29b inhibitor) increased SIRT1 and PGC-1α expression, while it decreased apoptosis. Taken together, our findings support a link between age-related cochlear hair cell apoptosis and miR-29b/SIRT1/PGC-1α signaling, which may present an attractive pharmacological target for the development of novel drugs for the treatment of age-related hearing loss. PMID:27635430

  11. A small peptide modeled after the NRAGE repeat domain inhibits XIAP-TAB1-TAK1 signaling for NF-κB activation and apoptosis in P19 cells.

    Directory of Open Access Journals (Sweden)

    Jennifer A Rochira

    Full Text Available In normal growth and development, apoptosis is necessary to shape the central nervous system and to eliminate excess neurons which are not required for innervation. In some diseases, however, apoptosis can be either overactive as in some neurodegenerative disorders or severely attenuated as in the spread of certain cancers. Bone morphogenetic proteins (BMPs transmit signals for regulating cell growth, differentiation, and apoptosis. Responding to BMP receptors stimulated from BMP ligands, neurotrophin receptor-mediated MAGE homolog (NRAGE binds and functions with the XIAP-TAK1-TAB1 complex to activate p38(MAPK and induces apoptosis in cortical neural progenitors. NRAGE contains a unique repeat domain that is only found in human, mouse, and rat homologs that we theorize is pivotal in its BMP MAPK role. Previously, we showed that deletion of the repeat domain inhibits apoptosis, p38(MAPK phosphorylation, and caspase-3 cleavage in P19 neural progenitor cells. We also showed that the XIAP-TAB1-TAK1 complex is dependent on NRAGE for IKK-α/β phosphorylation and NF-κB activation. XIAP is a major inhibitor of caspases, the main executioners of apoptosis. Although it has been shown previously that NRAGE binds to the RING domain of XIAP, it has not been determined which NRAGE domain binds to XIAP. Here, we used fluorescence resonance energy transfer (FRET to determine that there is a strong likelihood of a direct interaction between NRAGE and XIAP occurring at NRAGE's unique repeat domain which we also attribute to be the domain responsible for downstream signaling of NF-κB and activating IKK subunits. From these results, we designed a small peptide modeled after the NRAGE repeat domain which we have determined inhibits NF-κB activation and apoptosis in P19 cells. These intriguing results illustrate that the paradigm of the NRAGE repeat domain may hold promising therapeutic strategies in developing pharmaceutical solutions for combating harmful

  12. The fast track to canonical Wnt signaling in MC3T3-E1 cells protected by substance P against serum deprivation-induced apoptosis.

    Science.gov (United States)

    Yang, Jianguo; Nie, Jiping; Fu, Su; Liu, Song; Wu, Jianqun; Cui, Liang; Zhang, Yongtao; Yu, Bin

    2017-01-01

    The canonical Wnt pathway is vital to bone physiology by increasing bone mass through elevated osteoblast survival. Although investigated extensively in stem cells, its role in osteoblastic MC3T3-E1 cells has not been completely determined. To explore how this pathway is regulated by different conditions, we assessed the anti-apoptotic effects of substance P on the canonical Wnt pathway in MC3T3-E1 cells by treating cells with serum deprivation or serum starving with "substance P," a neuropeptide demonstrated to promote bone growth and stimulate Wnt signaling. The results showed that serum deprivation both induced apoptosis and activated Wnt signal transduction while substance P further stimulated the Wnt pathway via the NK-1 receptor but protected the cells from apoptotic death. Fast-tracking of Wnt signaling by substance P was also noted. These results indicate that nutritional deprivation and substance P synergistically activated the canonical Wnt pathway, a finding that helps to reveal the role of Wnt signaling in bone physiology affected by nutritional deprivation and neuropeptide substance P.

  13. PI3Kδ inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma.

    Science.gov (United States)

    Meadows, Sarah A; Vega, Francisco; Kashishian, Adam; Johnson, Dave; Diehl, Volker; Miller, Langdon L; Younes, Anas; Lannutti, Brian J

    2012-02-23

    GS-1101 (CAL-101) is an oral PI3Kδ-specific inhibitor that has shown preclinical and clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. To investigate the potential role of PI3Kδ in Hodgkin lymphoma (HL), we screened 5 HL cell lines and primary samples from patients with HL for PI3Kδ isoform expression and constitutive PI3K pathway activation. Inhibition of PI3Kδ by GS-1101 resulted in the inhibition of Akt phosphorylation. Cocultures with stroma cells induced Akt activation in HL cells, and this effect was blocked by GS-1101. Conversely, production of the stroma-stimulating chemokine, CCL5, by HL cells was reduced by GS-1101. GS-1101 also induced dose-dependent apoptosis of HL cells at 48 hours. Reductions in cell viability and apoptosis were enhanced when combining GS-1101 with the mTOR inhibitor everolimus. Our findings suggest that excessive PI3Kδ activity is characteristic in HL and support clinical evaluation of GS-1101, alone and in combination, as targeted therapy for HL.

  14. Sodium orthovanadate suppresses palmitate-induced cardiomyocyte apoptosis by regulation of the JAK2/STAT3 signaling pathway.

    Science.gov (United States)

    Liu, Jing; Fu, Hui; Chang, Fen; Wang, Jinlan; Zhang, Shangli; Caudle, Yi; Zhao, Jing; Yin, Deling

    2016-05-01

    Elevated circulatory free fatty acids (FFAs) especially saturated FFAs, such as palmitate (PA), are detrimental to the heart. However, mechanisms responsible for this phenomenon remain unknown. Here, the role of JAK2/STAT3 in PA-induced cytotoxicity was investigated in cardiomyocytes. We demonstrate that PA suppressed the JAK2/STAT3 pathway by dephosphorylation of JAK2 (Y1007/1008) and STAT3 (Y705), and thus blocked the translocation of STAT3 into the nucleus. Conversely, phosphorylation of S727, another phosphorylated site of STAT3, was increased in response to PA treatment. Pretreatment of JNK inhibitor, but not p38 MAPK inhibitor, inhibited STAT3 (S727) activation induced by PA and rescued the phosphorylation of STAT3 (Y705). The data suggested that JNK may be another upstream factor regulating STAT3, and verified the important function of P-STAT3 (Y705) in PA-induced cardiomyocyte apoptosis. Sodium orthovanadate (SOV), a protein tyrosine phosphatase inhibitor, obviously inhibited PA-induced apoptosis by restoring JAK2/STAT3 pathways. This effect was diminished by STAT3 inhibitor Stattic. Collectively, our data suggested a novel mechanism that the inhibition of JAK2/STAT3 activation was responsible for palmitic lipotoxicity and SOV may act as a potential therapeutic agent by targeting JAK2/STAT3 in lipotoxic cardiomyopathy treatment.

  15. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway.

    Science.gov (United States)

    Lu, Xue-Li; Zhao, Cui-Hua; Yao, Xin-Liang; Zhang, Han

    2017-01-01

    Quercetin is a dietary flavonoid compound extracted from various plants, such as apple and onions. Previous studies have revealed its anti-inflammatory, anti-cancer, antioxidant and anti-apoptotic activities. This study investigated the ability of quercetin to inhibit high fructose feeding- or LPS-induced atherosclerosis through regulating oxidative stress, apoptosis and inflammation response in vivo and in vitro experiments. 50 and 100mg/kg quercetin were used in our study, showing significant inhibitory role in high fructose-induced atherosclerosis via reducing reactive oxygen species (ROS) levels, Caspase-3 activation, inflammatory cytokines releasing, the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and collagen contents as well as modulating apoptosis- and inflammation-related proteins expression. We also explored the protective effects of quercetin on atherosclerosis by phosphatidylinositide 3-kinases (PI3K)/Protein kinase B (AKT)-associated Bcl-2/Caspase-3 and nuclear factor kappa B (NF-κB) signal pathways activation, promoting AKT and Bcl-2 expression and reducing Caspase-3 and NF-κB activation. Quercetin reduced the atherosclerotic plaque size in vivo in high fructose feeding-induced mice assessed by oil red O. Also, in vitro experiments, quercetin displayed inhibitory role in LPS-induced ROS production, inflammatory response and apoptosis, which were linked with PI3K/AKT-regulated Caspase-3 and NF-κB activation. In conclusion, our results showed that quercetin inhibited atherosclerotic plaque development in high fructose feeding mice via PI3K/AKT activation regulated by ROS.

  16. The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks.

    Science.gov (United States)

    Adan, Aysun; Baran, Yusuf

    2015-11-01

    Fisetin and hesperetin, flavonoids from various plants, have several pharmaceutical activities including antioxidative, anti-inflammatory, and anticancer effects. However, studies elucidating the role and the mechanism(s) of action of fisetin and hesperetin in acute promyelocytic leukemia are absent. In this study, we investigated the mechanism of the antiproliferative and apoptotic actions exerted by fisetin and hesperetin on human HL60 acute promyelocytic leukemia cells. The viability of HL60 cells was evaluated using the MTT assay, apoptosis by annexin V/propidium iodide (PI) staining and cell cycle distribution using flow cytometry, and changes in caspase-3 enzyme activity and mitochondrial transmembrane potential. Moreover, we performed whole-genome microarray gene expression analysis to reveal genes affected by fisetin and hesperetin that can be important for developing of future targeted therapy. Based on data obtained from microarray analysis, we also described biological networks modulated after fisetin and hesperetin treatment by KEGG and IPA analysis. Fisetin and hesperetin treatment showed a concentration- and time-dependent inhibition of proliferation and induced G2/M arrest for both agents and G0/G1 arrest for hesperetin at only the highest concentrations. There was a disruption of mitochondrial membrane potential together with increased caspase-3 activity. Furthermore, fisetin- and hesperetin-triggered apoptosis was confirmed by annexin V/PI analysis. The microarray gene profiling analysis revealed some important biological pathways including mitogen-activated protein kinases (MAPK) and inhibitor of DNA binding (ID) signaling pathways altered by fisetin and hesperetin treatment as well as gave a list of genes modulated ≥2-fold involved in cell proliferation, cell division, and apoptosis. Altogether, data suggested that fisetin and hesperetin have anticancer properties and deserve further investigation.

  17. Chikusetsusaponin IVa Butyl Ester (CS-IVa-Be), a Novel IL6R Antagonist, Inhibits IL6/STAT3 Signaling Pathway and Induces Cancer Cell Apoptosis.

    Science.gov (United States)

    Yang, Jie; Qian, Shihui; Cai, Xueting; Lu, Wuguang; Hu, Chunping; Sun, Xiaoyan; Yang, Yang; Yu, Qiang; Gao, S Paul; Cao, Peng

    2016-06-01

    The activation of IL6/STAT3 signaling is associated with the pathogenesis of many cancers. Agents that suppress IL6/STAT3 signaling have cancer-therapeutic potential. In this study, we found that chikusetsusaponin IVa butyl ester (CS-IVa-Be), a triterpenoid saponin extracted from Acanthopanas gracilistylus W.W.Smith, induced cancer cell apoptosis. CS-IVa-Be inhibited constitutive and IL6-induced STAT3 activation, repressed STAT3 DNA-binding activity, STAT3 nuclear translocation, IL6-induced STAT3 luciferase reporter activity, IL6-induced STAT3-regulated antiapoptosis gene expression in MDA-MB-231 cells, and IL6-induced TF-1 cell proliferation. Surprisingly, CS-IVa-Be inhibited IL6 family cytokines rather than other cytokines induced STAT3 activation. Further studies indicated that CS-IVa-Be is an antagonist of IL6 receptor via directly binding to the IL6Rα with a Kd of 663 ± 74 nmol/L and the GP130 (IL6Rβ) with a Kd of 1,660 ± 243 nmol/L, interfering with the binding of IL6 to IL6R (IL6Rα and GP130) in vitro and in cancer cells. The inhibitory effect of CS-IVa-Be on the IL6-IL6Rα-GP130 interaction was relatively specific as CS-IVa-Be showed higher affinity to IL6Rα than to LIFR (Kd: 4,910 ± 1,240 nmol/L) and LeptinR (Kd: 4,990 ± 915 nmol/L). We next demonstrated that CS-IVa-Be not only directly induced cancer cell apoptosis but also sensitized MDA-MB-231 cells to TRAIL-induced apoptosis via upregulating DR5. Our findings suggest that CS-IVa-Be as a novel IL6R antagonist inhibits IL6/STAT3 signaling pathway and sensitizes the MDA-MB-231 cells to TRAIL-induced cell death. Mol Cancer Ther; 15(6); 1190-200. ©2016 AACR.

  18. Protection afforded by quercetin against H2O2-induced apoptosis on PC12 cells via activating PI3K/Akt signal pathway.

    Science.gov (United States)

    Chen, Liang; Sun, Lejin; Liu, Zhene; Wang, Hongxia; Xu, Cunli

    2016-01-01

    Cell damage and apoptosis induced by oxidative stress have been involved in various neurodegenerative diseases. This study aims to explore the neuro-protective effects of quercetin on PC12 cells apoptosis induced by hydrogen peroxide (H(2)O(2)) and the underlying mechanisms. The cell viability was detected, as well as the production of reactive oxygen species (ROS), lactate dehydrogenase (LDH) leakage, and the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and malondialdehyde (MDA) of the cells in control, H(2)O(2) and quercetin groups. It finally turned out that quercetin might protect PC12 cells against the negative effect of H(2)O(2) by decreasing of LDH release, ROS concentration and MDA level and regaining the GSH-Px and SOD activities. To investigate the mechanism, LY294002 was introduced, the phosphatidylinositol-3-kinase (PI3K) inhibitor. Bax/Bcl-2 ratio and Akt phosphorylation (p-Akt) were examined by Western blot analysis. The data showed that LY294002 almost had the same effects with H(2)O(2), which was also significantly reversed by quercetin could enhance Bax/Bcl-2 ratio and adjust the p-Akt expression, which indicated quercetin might protect PC12 cells against the negative effect of H(2)O(2) via activating the PI3K/Akt signal pathway.

  19. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment.

    Science.gov (United States)

    Nettersheim, Daniel; Jostes, Sina; Fabry, Martin; Honecker, Friedemann; Schumacher, Valerie; Kirfel, Jutta; Kristiansen, Glen; Schorle, Hubert

    2016-11-15

    In Western countries, the incidence of testicular germ cell cancers (GCC) is steadily rising over the last decades. Mostly, men between 20 and 40 years of age are affected. In general, patients suffering from GCCs are treated by orchiectomy and radio- or chemotherapy. Due to resistance mechanisms, intolerance to the therapy or denial of chemo- / radiotherapy by the patients, GCCs are still a lethal threat, highlighting the need for alternative treatment strategies.In this study, we revealed that germ cell cancer cell lines are highly sensitive to the histone deacetylase inhibitor romidepsin in vitro and in vivo, highlighting romidepsin as a potential therapeutic option for GCC patients.Romidepsin-mediated inhibition of histone deacetylases led to disturbances of the chromatin landscape. This resulted in locus-specific histone-hyper- or hypoacetylation. We found that hypoacetylation at the ARID1A promotor caused repression of the SWI/SNF-complex member ARID1A. In consequence, this resulted in upregulation of the stress-sensors and apoptosis-regulators GADD45B, DUSP1 and CDKN1A. RNAi-driven knock down of ARID1A mimicked in parts the effects of romidepsin, while CRISPR/Cas9-mediated deletion of GADD45B attenuated the romidepsin-provoked induction of apoptosis and cell cycle alterations.We propose a signaling cascade involving ARID1A, GADD45B and DUSP1 as mediators of the romidepsin effects in GCC cells.

  20. Alkaloids from beach spider lily (Hymenocallis littoralis) induce apoptosis of HepG-2 cells by the fas-signaling pathway.

    Science.gov (United States)

    Ji, Yu-Bin; Chen, Ning; Zhu, Hong-Wei; Ling, Na; Li, Wen-Lan; Song, Dong-Xue; Gao, Shi-Yong; Zhang, Wang-Cheng; Ma, Nan-Nan

    2014-01-01

    Alkaloids are the most extensively featured compounds of natural anti-tumor herbs, which have attracted much attention in pharmaceutical research. In our previous studies, a mixture of major three alkaloid components (5, 6-dihydrobicolorine, 7-deoxy-trans-dihydronarciclasine, littoraline) from Hymenocallis littoralis were extracted, analyzed and designated as AHL. In this paper, AHL extracts were added to human liver hepatocellular cells HepG-2, human gastric cancer cell SGC-7901, human breast adenocarcinoma cell MCF-7 and human umbilical vein endothelial cell EVC-304, to screen one or more AHL-sensitive tumor cell. Among these cells, HepG-2 was the most sensitive to AHL treatment, a very low dose (0.8μg/ml) significantly inhibiting proliferation . The non- tumor cell EVC-304, however, was not apparently affected. Effect of AHL on HepG-2 cells was then explored. We found that the AHL could cause HepG-2 cycle arrest at G2/M checkpoint, induce apoptosis, and interrupt polymerization of microtubules. In addition, expression of two cell cycle-regulated proteins, CyclinB1 and CDK1, was up-regulated upon AHL treatment. Up-regulation of the Fas, Fas ligand, Caspase-8 and Caspase-3 was observed as well, which might imply roles for the Fas/FsaL signaling pathway in the AHL-induced apoptosis of HepG-2 cells.

  1. Ruthenium Polypyridyl Complex Inhibits Growth and Metastasis of Breast Cancer Cells by Suppressing FAK signaling with Enhancement of TRAIL-induced Apoptosis

    Science.gov (United States)

    Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-03-01

    Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.

  2. Epstein-Barr virus encoded latent membrane protein 1 induces TRAF1 expression to promote anti-apoptosis activity via NF-κB signaling pathway in nasopharyngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    王承兴; 艾米丹; 任维; 肖绘; 李小燕; 唐发清; 顾焕华; 易薇; 翁新宪; 邓锡云; 曹亚

    2003-01-01

    Objectives To identify whether Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) can induce tumor necrosis factor receptor-associated factor 1 (TRAF1) expression and promote its anti-apoptosis activity via the NF-κB signaling pathway, and assess that LMP1 suppresses apoptosis in nasopharyngeal carcinoma (NPC). Methods A stable transfected cell line HNE2-LMP1 was established by introducing LMP1 cDNA into HNE2 cells. Transactivation of TRAF1 was determined by luciferase reporter assay, while expression of TRAF1 mRNA was detected by RT-PCR and expression of TRAF1 protein and caspase 3 by Western blot analysis. Apoptosis activity was observed through fluorescence staining. Results LMP1 induced TRAF1 expression in NPC cells and caused a decrease in apoptosis. This induction could be blocked by antisense LMP1. Moreover, LMP1-mediated induction of a TRAF1 promoter-driven reporter gene was significantly impaired when the κB site κB1 or κB5 was disrupted, whereas mutation of κB3 had only a minor effect on LMP1 dependent up-regulation of the reporter gene. Conclusion LMP1 induces TRAF1 expression and promotes its anti-apoptosis activity via the NF-κB signaling pathway, which may be one of the mechanisms that LMP1 uses to suppress apoptosis in NPC cells.

  3. Apoptosis and necrosis induced by novel realgar quantum dots in human endometrial cancer cells via endoplasmic reticulum stress signaling pathway

    Directory of Open Access Journals (Sweden)

    Wang H

    2015-08-01

    Full Text Available Huan Wang,1–3 Zhengyun Liu,4 Ying Gou,3 Yu Qin,4 Yaze Xu,5 Jie Liu,4 Jin-Zhu Wu6 1Research Center for Medicine and Biology, 2Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, 3Department of Microbiology, 4Key Lab for Basic Pharmacology of Ministry of Education, 5Pharmacy School, Zunyi Medical College, Zunyi, 6Department of Chemistry, School of Science, Harbin Institute of Technology, Harbin, People’s Republic of China Abstract: Realgar (AS4S4 has been used in traditional medicines for malignancy, but the poor water solubility is still a major hindrance to its clinical use. Realgar quantum dots (RQDs were therefore synthesized with improved water solubility and bioavailability. Human endometrial cancer JEC cells were exposed to various concentrations of RQDs to evaluate their anticancer effects and to explore mechanisms by the MTT assay, transmission electron microscopy (TEM, flow cytometry, real-time reverse transcriptase polymerase chain reaction (RT-PCR and Western blot analysis. Results revealed that the highest photoluminescence quantum yield of the prepared RQDs was up to approximately 70%, with the average size of 5.48 nm. RQDs induced antiproliferative activity against JEC cells in a concentration-dependent manner. In light microscopy and TEM examinations, RQDs induced vacuolization and endoplasmic reticulum (ER dilation in JEC cells in a concentration-dependent manner. ER stress by RQDs were further confirmed by increased expression of GADD153 and GRP78 at both mRNA and protein levels. ER stress further led to JEC cell apoptosis and necrosis, as evidenced by flow cytometry and mitochondrial membrane potential detection. Our findings demonstrated that the newly synthesized RQDs were effective against human endometrial cancer cells. The underlying mechanism appears to be, at least partly, due to ER stress leading to apoptotic cell death and necrosis. Keywords: realgar, quantum dots

  4. The clerodane diterpene casearin J induces apoptosis of T-ALL cells through SERCA inhibition, oxidative stress, and interference with Notch1 signaling.

    Science.gov (United States)

    De Ford, C; Heidersdorf, B; Haun, F; Murillo, R; Friedrich, T; Borner, C; Merfort, I

    2016-01-28

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy that preferentially affects children and adolescents. Over 50% of human T-ALLs possess activating mutations of Notch1. The clerodane diterpene casearin J (CJ) is a natural product that inhibits the sarcoendoplasmatic reticulum calcium ATPase (SERCA) pump and induces cell death in leukemia cells, but the molecular mechanism of cytotoxicity remains poorly understood. Here we show that owing to SERCA pump inhibition, CJ induces depletion of the endoplasmic reticulum calcium pools, oxidative stress, and apoptosis via the intrinsic signaling pathway. Moreover, Notch1 signaling is reduced in T-ALL cells with auto-activating mutations in the HD-domain of Notch1, but not in cells that do not depend on Notch1 signaling. CJ also provoked a slight activation of NF-κB, and consistent with this notion a combined treatment of CJ and the NF-κB inhibitor parthenolide (Pt) led to a remarkable synergistic cell death in T-ALL cells. Altogether, our data support the concept that inhibition of the SERCA pump may be a novel strategy for the treatment of T-ALL with HD-domain-mutant Notch1 receptors and that additional treatment with the NF-κB inhibitor parthenolide may have further therapeutic benefits.

  5. Derivatives containing both coumarin and benzimidazole potently induce caspase-dependent apoptosis of cancer cells through inhibition of PI3K-AKT-mTOR signaling.

    Science.gov (United States)

    Liu, Haitao; Wang, Yubin; Sharma, Ashok; Mao, Rui; Jiang, Na; Dun, Boying; She, Jin-Xiong

    2015-07-01

    Coumarins are a large family of compounds derived from a wide range of plants, fungi, and bacteria, and coumarin derivatives can have extremely variable structures and consequently diverse biological properties including antitumor activity. Compounds that bear a benzimidazole moiety are known to possess antitumor activity and a variety of other biological activities. High-throughput screening of a compound library identified a coumarin-containing and a benzimidazole-containing compound [#32, 7-(diethylamino)-3-(1-methyl-1H-benzimidazol-2-yl)-2H-chromen-2-one] that has potent anticancer activity. Evaluation of 17 additional analogs further identified three compounds with anticancer activity in 14 different human cancer cell lines. Fluorescence-activated cell sorting and western blotting analyses suggested that these compounds can induce caspase-dependent apoptosis. Real-time reverse transcriptase PCR analyses of 26 cancer-related genes revealed that seven genes (NPPB, ATF3, DDIT4, CDH10, TSPAN14, TXNIP, and AXL) were significantly upregulated and nine genes (PAGE4, LRP8, SNCAIP, IGFBP5, SLCO2A1, CLDN2, ESRRG, D2HGDH, and PDGFRA) were significantly downregulated. The most upregulated gene is natriuretic peptide precursor B (NPPB) or brain natriuretic peptide, which is increased by 7-, 27-, and 197-fold at 12, 24, and 48 h, respectively. The second most upregulated gene is ATF3, which is increased by 23-fold at the 48 h timepoint. PAGE4 and IGFBP5 are the two most downregulated genes, with a 17-fold reduction in both genes. The expression of several genes (DDIT4, PDGFRA, LRP8, IGFBP5) and western blotting data on key signaling proteins indicate that compound #32 significantly inhibits the PI3K-AKT-mTOR pathway, an intracellular signaling pathway critical in cell proliferation and apoptosis.

  6. Fra-1 is downregulated in cervical cancer tissues and promotes cervical cancer cell apoptosis by p53 signaling pathway in vitro.

    Science.gov (United States)

    Xiao, Songshu; Zhou, Yanhong; Yi, Wei; Luo, Guijuan; Jiang, Bin; Tian, Qi; Li, Yueran; Xue, Min

    2015-04-01

    Cervical cancer is a potentially preventable disease; however, it is the third most commonly diagnosed cancer and the fourth leading cause of cancer deaths in women worldwide. Cervical cancer is thought to develop through a multistep process involving virus, tumor suppressor genes, proto-oncogenes and immunological factors. It is known that human papillomavirus (HPV) infection is necessary but insufficient to cause malignancy. At present, the etiology of cervical carcinoma remains poorly understood. In this study, we found that the expression of FOS-like antigen-1 (Fra-1) gene was downregulated in cervical cancer compared with the adjacent non-cancerous tissues by RT-qPCR, immunohistochemistry (IHC) and western blotting techniques. To uncover the effect of Fra-1 on cervical cancer, we tested and confirmed that Fra-1 significantly inhibited the proliferation of HeLa cells by MMT assays in vitro. At the same time, overexpression of Fra-1 promoted apoptosis of HeLa cells. To explore the possible mechanism of Fra-1 in cervical cancer, we tested the expression levels of key molecules in p53 signaling pathway by western blotting technology. The results showed that p53 was downregulated in cervical cancer compared with the adjacent non-cancerous tissues, but MDM2 proto-oncogene, E3 ubiquitin protein ligase (MDM2) was upregulated in cervical cancer. In vitro, the p53 was upregulated and MDM2 was downregulated in HeLa cells with Fra-1 overexpression. In summary, our results suggested that Fra-1 expression is low in cervical cancer tissues and promotes apoptosis of cervical cancer cells by p53 signaling pathway.

  7. Intersectionality in European Union policymaking

    DEFF Research Database (Denmark)

    Lombardo, Emanuela; Agustin, Lise Rolandsen

    2016-01-01

    is particularly apt to deal with equality and diversity in policymaking. By analysing a selection of European Union policy documents on gender-based violence in the period 2000–2014, we attend to the question of what intersectionality can bring to policymaking in terms of strengthening inclusiveness and address...

  8. A Homogeneous Polysaccharide from Fructus Schisandra chinensis (Turz. Baill Induces Mitochondrial Apoptosis through the Hsp90/AKT Signalling Pathway in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Yonglin Chen

    2016-06-01

    Full Text Available According to the potential anti-hepatoma therapeutic effect of Schisandra chinensis polysaccharides presented in previous studies, a bioactive constituent, homogeneous Schisandra chinensis polysaccharide-0-1 (SCP-0-1, molecular weight (MW circa 69.980 kDa, was isolated and purified. We assessed the efficacy of SCP-0-1 against human hepatocellular liver carcinoma (HepG2 cells to investigate the effects of its antitumour activity and molecular mechanisms. Anticancer activity was evaluated using microscopy, 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT assay, Hoechst 33258 staining, acridine orange (AO staining, flow cytometry (FCM, and cell-cycle analysis. SCP-0-1 inhibited the HepG2 cells’ growth via inducing apoptosis and second gap/mitosis (G2/M arrest dose-dependently, with a half maximal inhibitory concentration (IC50 value of 479.63 µg/mL. Western blotting of key proteins revealed the apoptotic and autophagic potential of SCP-0-1. Besides, SCP-0-1 upregulated Bcl-2 Associated X Protein (Bax and downregulated B-cell leukemia/lymphoma 2 (Bcl-2 in the HepG2 cells. The expression of caspase-3, -8, and -9; poly (ADP-ribose polymerase (PARP; cytochrome c (Cyt C; tumor protein 53 (p53; survivin; sequestosome 1 (p62; microtubule-associated protein 1 light chain-3B (LC3B; mitogen-activated protein kinase p38 (p38; extracellular regulated protein kinases (ERK; c-Jun N-terminal kinase (JNK; protein kinase B (AKT; and heat shock protein 90 (Hsp90 were evaluated using Western blotting. Our findings demonstrate a novel mechanism through which SCP-0-1 exerts its antiproliferative activity and induces mitochondrial apoptosis rather than autophagy. The induction of mitochondrial apoptosis was attributed to the inhibition of the Hsp90/AKT signalling pathway in an extracellular signal-regulated kinase-independent manner. The results also provide initial evidence on a molecular basis that SCP-0-1 can be used as an anti

  9. A Homogeneous Polysaccharide from Fructus Schisandra chinensis (Turz.) Baill Induces Mitochondrial Apoptosis through the Hsp90/AKT Signalling Pathway in HepG2 Cells

    Science.gov (United States)

    Chen, Yonglin; Shi, Songshan; Wang, Huijun; Li, Ning; Su, Juan; Chou, Guixin; Wang, Shunchun

    2016-01-01

    According to the potential anti-hepatoma therapeutic effect of Schisandra chinensis polysaccharides presented in previous studies, a bioactive constituent, homogeneous Schisandra chinensis polysaccharide-0-1 (SCP-0-1), molecular weight (MW) circa 69.980 kDa, was isolated and purified. We assessed the efficacy of SCP-0-1 against human hepatocellular liver carcinoma (HepG2) cells to investigate the effects of its antitumour activity and molecular mechanisms. Anticancer activity was evaluated using microscopy, 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay, Hoechst 33258 staining, acridine orange (AO) staining, flow cytometry (FCM), and cell-cycle analysis. SCP-0-1 inhibited the HepG2 cells’ growth via inducing apoptosis and second gap/mitosis (G2/M) arrest dose-dependently, with a half maximal inhibitory concentration (IC50) value of 479.63 µg/mL. Western blotting of key proteins revealed the apoptotic and autophagic potential of SCP-0-1. Besides, SCP-0-1 upregulated Bcl-2 Associated X Protein (Bax) and downregulated B-cell leukemia/lymphoma 2 (Bcl-2) in the HepG2 cells. The expression of caspase-3, -8, and -9; poly (ADP-ribose) polymerase (PARP); cytochrome c (Cyt C); tumor protein 53 (p53); survivin; sequestosome 1 (p62); microtubule-associated protein 1 light chain-3B (LC3B); mitogen-activated protein kinase p38 (p38); extracellular regulated protein kinases (ERK); c-Jun N-terminal kinase (JNK); protein kinase B (AKT); and heat shock protein 90 (Hsp90) were evaluated using Western blotting. Our findings demonstrate a novel mechanism through which SCP-0-1 exerts its antiproliferative activity and induces mitochondrial apoptosis rather than autophagy. The induction of mitochondrial apoptosis was attributed to the inhibition of the Hsp90/AKT signalling pathway in an extracellular signal-regulated kinase-independent manner. The results also provide initial evidence on a molecular basis that SCP-0-1 can be used as an anti

  10. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling

    Directory of Open Access Journals (Sweden)

    Wang YY

    2015-12-01

    Full Text Available Yuanyuan Wang, Rong Wang, Yujie Wang, Ruqin Peng, Yan Wu, Yongfang Yuan Department of Pharmacy, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China Background: Liver fibrosis is the consequence of diverse liver injuries and can eventually develop into liver cirrhosis. Ginkgo biloba extract (GBE is an extract from dried ginkgo leaves that has many pharmacological effects because of its various ingredients and has been shown to be hepatoprotective. Purpose and methods: Aimed to investigate the underlying protective mechanisms of GBE on carbon tetrachloride (CCl4-induced liver fibrosis in rats. Male Sprague Dawley rats were randomly divided into four groups: control group (C, model group (M, low-dose group (L, and high-dose group (H. Liver fibrosis was induced by CCl4 groups M, L, and H: group C was administered saline. In addition, GBE at different doses was used to treat groups L and H. Results: The results of hematoxylin and eosin staining, Masson’s trichrome staining, a liver function index, and a liver fibrosis index showed that GBE application noticeably mitigated fibrosis and improved the function of the liver. The western blotting and immunohistochemistry analyses indicated that GBE reduced liver fibrosis not only by inhibiting p38 MAPK and NF-κBp65 via inhibition of IκBα degradation but also by inhibiting hepatocyte apoptosis via downregulation of Bax, upregulation of Bcl-2, and subsequent inhibition of caspase-3 activation. Inflammation-associated factors and hepatic stellate cell (HSC-activation markers further demonstrated that GBE could effectively inhibit HSC activation and inflammation as a result of its regulation of p38 MAPK and nuclear factor-kappa B/IκBα signaling. Conclusion: Our findings indicated a novel role for GBE in the treatment of liver fibrosis. The potential mechanisms may be associated with the following signaling pathways: 1 the p38 MAPK

  11. Mitigating gas emissions at signalised intersections using wireless vehicle detectors

    Directory of Open Access Journals (Sweden)

    Moses Kwasi Torkudzor

    2015-09-01

    Full Text Available Traffic congestion on roads wastes travel times and increases fuel consumption as well as gas emissions which are dangerous to human health. This has led to growing concern about environmental protection and energy conservation and a number of studies to increase fuel economy and reduce gas emissions. To increase travel times so as to reduce fuel consumption and gas emissions, traffic signals at intersections must be well implemented. It is therefore necessary to employ the current technology of wireless sensor networks to enhance the optimisation of the signalised intersections so as to address such a concern. In this study, a vehicular traffic control model was developed to optimise a signalised intersection, using wireless vehicle detectors. Real-time traffic volume gathered were analysed to obtain the peak hour traffic volume causing congestion. The intersection was modelled and simulated in Synchro7 as an actuated signalised model using results from the analysed data. The model for morning peak and evening peak periods gave optimal cycle lengths which result in the reduction of gas emissions, fuel consumption and delay at the intersection.

  12. MATLAB Simulation of Fuzzy Traffic Controller for Multilane Isolated Intersection

    Directory of Open Access Journals (Sweden)

    Azura Che Soh/Lai Guan Rhung

    2010-07-01

    Full Text Available This paper presents a MATLAB simulation of fuzzy traffic controller for controlling traffic flow at multilane isolated signalized intersection. The controller is developed based on the waiting time and vehicles queue length at current green phase, and vehicles queue lengths at the other phases. For control strategy, the controllercontrols the traffic light timings and phase sequence to ensure smooth flow of traffic with minimal waiting time, queue length and delay time. In this research, the isolated intersection model used consists of two lanes in each approach. Each approach has two different values of vehicles queue length and waiting time, respectively, at the intersection. The maximum values of vehicles queue length and waiting times are selected as the inputs to controller for optimized control of traffic flows at the intersection. A traffic model and fuzzy traffic controller are developed to evaluate the performance of traffic controllers underdifferent conditions. In the end, by comparing the experimental result obtained by the vehicle-actuated controller (VAC and fuzzy traffic controller (FTC which improves significant performance for intersections, we confirmed the efficiency of our intelligent controller based fuzzy inference system.

  13. Reconstructing surface triangulations by their intersection matrices

    OpenAIRE

    2014-01-01

    The intersection matrix of a finite simplicial complex has as each of its entries the rank of the intersection of its respective simplices. We prove that such matrix defines the triangulation of a closed connected surface up to isomorphism.

  14. The Clique Problem in Ray Intersection Graphs

    CERN Document Server

    Cabello, Sergio; Langerman, Stefan

    2011-01-01

    Ray intersection graphs are intersection graphs of rays, or halflines, in the plane. We show that any planar graph has an even subdivision whose complement is a ray intersection graph. The construction can be done in polynomial time and implies that finding a maximum clique in a segment intersection graph is NP-hard. This solves a 21-year old open problem posed by Kratochv\\'il and Ne\\v{s}et\\v{r}il.

  15. Electroacupuncture Ameliorates Learning and Memory via Activation of the CREB Signaling Pathway in the Hippocampus to Attenuate Apoptosis after Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Xiaohua Han

    2013-01-01

    Full Text Available Studies have shown that electroacupuncture (EA ameliorates learning and memory after ischemic injury. However, there have been few studies elucidating the mechanisms of EA on learning and memory in cerebral hypoperfusion. In this study, we explored the cAMP response element-binding protein (CREB signaling pathway-mediated antiapoptotic action involved in EA-induced improvement of learning and memory. EA at GV20 and GV14 acupoints was applied in cerebral hypoperfusion rats. A Morris water maze task was performed, and the immunoreactivities of pCREB, Bcl-2, and Bax in the hippocampal CA1 area were evaluated by the Western blotting technique. Our findings indicated that (1 EA ameliorated spatial learning and memory impairment in cerebral hypoperfusion rats; (2 EA increased the immunoreactivities of pCREB and Bcl-2 and decreased the immunoreactivity of Bax; (3 intracerebroventricular administration of H89 (the inhibitor of protein kinase A blocked EA-induced, pCREB-mediated antiapoptotic action and improved learning and memory. These results suggest that EA can ameliorate learning and memory via activation of the CREB signaling pathway in the hippocampus to attenuate apoptosis after cerebral hypoperfusion.

  16. Gadolinium chloride elicits apoptosis in human osteosarcoma U-2 OS cells through extrinsic signaling, intrinsic pathway and endoplasmic reticulum stress.

    Science.gov (United States)

    Tsai, Yuh-Feng; Huang, Ching-Wen; Chiang, Jo-Hua; Tsai, Fuu-Jen; Hsu, Yuan-Man; Lu, Chi-Cheng; Hsiao, Chen-Yu; Yang, Jai-Sing

    2016-12-01

    Gadolinium (Gd) compounds are important as magnetic resonance imaging (MRI) contrast agents, and are potential anticancer agents. However, no report has shown the effect of gadolinium chloride (GdCl3) on osteosarcoma in vitro. The present study investigated the apoptotic mechanism of GdCl3 on human osteosarcoma U-2 OS cells. Our results indicated that GdCl3 significantly reduced cell viability of U-2 OS cells in a concentration-dependent manner. GdCl3 led to apoptotic cell shrinkage and DNA fragmentation in U-2 OS cells as revealed by morphologic changes and TUNEL staining. Colorimetric assay analyses also showed that activities of caspase-3, caspase-8, caspase-9 and caspase-4 occurred in GdCl3-treated U-2 OS cells. Pretreatment of cells with pan-caspase inhibitor (Z-VAD-FMK) and specific inhibitors of caspase-3/-8/-9 significantly reduced cell death caused by GdCl3. The increase of cytoplasmic Ca2+ level, ROS production and the decrease of mitochondria membrane potential (ΔΨm) were observed by flow cytometric analysis in U-2 OS cells after GdCl3 exposure. Western blot analyses demonstrated that the levels of Fas, FasL, cytochrome c, Apaf-1, GADD153 and GRP78 were upregulated in GdCl3-treated U-2 OS cells. In conclusion, death receptor, mitochondria-dependent and endoplasmic reticulum (ER) stress pathways contribute to GdCl3-induced apoptosis in U-2 OS cells. GdCl3 might have potential to be used in treatment of osteosarcoma patients.

  17. Glutathione S-transferase class mu regulation of apoptosis signal-regulating kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Poulomi; Madden, Jill A. [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Sen, Nivedita; Hoyer, Patricia B. [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States)

    2013-02-15

    4-Vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-regulating kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response of Gstm mRNA and protein to VCD. Induction of Ask1 mRNA at VCD-induced follicle loss onset was determined. Ovarian GSTM:ASK1 protein complex formation was investigated and VCD exposure effects thereon evaluated. Phosphatidylinositol-3 kinase (PI3K) regulation of GSTM protein was also studied. Postnatal day (PND) 4 rat ovaries were cultured in control media ± 1) VCD (30 μM) for 2–8 days; 2) VCD (30 μM) for 2 days, followed by incubation in control media for 4 days (acute VCD exposure); or 3) LY294002 (20 μM) for 6 days. VCD exposure did not alter Gstm mRNA expression, however, GSTM protein increased (P < 0.05) after 6 days of both the acute and chronic treatments. Ask1 mRNA increased (0.33-fold; P < 0.05) relative to control after 6 days of VCD exposure. Ovarian GSTM:ASK1 protein complex formation was confirmed and, relative to control, the amount of GSTM bound to ASK1 increased 33% (P < 0.05) by chronic but with no effect of acute VCD exposure. PI3K inhibition increased (P < 0.05) GSTM protein by 40% and 71% on d4 and d6, respectively. These findings support involvement of GSTM in the ovarian response to VCD exposure, through regulation of pro-apoptotic ASK1. - Highlights: ► GSTM protein increases in response to ovarian VCD exposure. ► VCD increases Ask1 mRNA at the onset of follicle loss. ► Ovarian GSTM binds more ASK1 protein during VCD-induced ovotoxicity. ► PI3K regulates ovarian GSTM protein.

  18. MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis.

    Science.gov (United States)

    Yan, Shiju; Wang, Meng; Zhao, Jian; Zhang, Hongtao; Zhou, Chengpei; Jin, Lei; Zhang, Yinglong; Qiu, Xiuchun; Ma, Baoan; Fan, Qingyu

    2016-07-01

    Osteoarthritis (OA) is the most prevalent degenerative joint disease with multifactorial etiology caused by risk factors such as ageing, obesity and trauma. Previously, it was reported that the inhibition of microRNA-34a (miR-34a) may reduce rat chondrocyte apoptosis induced by IL-1β, whereas the molecular mechanism and the role of miR-34a in human chondrocyte as well as in OA progression remains to be determined. In the current study, using MTT, luciferase reporter assays and western blot analysis we identified that miR-34a was upregulated while silent information regulator 1 (SIRT1) was inhibited in chondrocytes from 12 OA patients compared with healthy chondrocytes from 10 trauma amputees. Overexpression of miR-34a promoted apoptosis and inhibited cell proliferation in human chondrocytes. Transfection with miR-34a mimic inhibited SIRT1 expression, which attenuated the deacetylation of p53, leading to the upregulation of Bax and downregulation of Bcl-2. Furthermore, results from the western blot analysis and luciferase reporter assay demonstrated that SIRT1 was directly regulated by miR-34a in human chondrocytes. A rat model of OA was induced through anterior cruciate ligament transection and medial meniscus resection (ACLT+MMx). The results showed that the intra‑articular injection of lentiviral vector encoding anti-miR‑34a sequence effectively ameliorated the progression of OA. The results suggest that miR-34a has a crucial role in the pathogenesis of OA through direct regulation of the SIRT1/p53 signaling pathway and serves as a potential therapeutic target of OA.

  19. Lupeol induces apoptosis and inhibits invasion in gallbladder carcinoma GBC-SD cells by suppression of EGFR/MMP-9 signaling pathway.

    Science.gov (United States)

    Liu, Yan; Bi, Tingting; Shen, Genhai; Li, Zhimin; Wu, Guoliang; Wang, Zheng; Qian, Liqiang; Gao, Quangen

    2016-01-01

    The cytostatic drug from fruits and other plant derived products have acted as a chemotherapeutic agent used in treatment of a wide variety of cancers. Lupeol, a dietary triterpene, present in many fruits and medicinal plants, has been shown to possess many pharmacological properties including anti-cancer effect in both in vitro and in vivo assay systems. However, the cancer proliferative and invasive inhibitory effects and molecular mechanisms on gallbladder carcinoma GBC-SD cells have not been studied. In the present study, GBC-SD cells were treated by lupeol and subjected to methyl thiazolyl tetrazolium analysis, Hoechst 33342 staining, annexin V/propidium iodide double-staining, transwell chamber assay and Western blot analysis. In addition, GBC-SD xenograft tumors were established in male nude BALB/c mice, and lupeol was intravenously administered to evaluate the anti-cancer capacity in vivo. Our results showed that lupeol inhibited the proliferation, migration, invasion and induced apoptosis of GBC-SD cells in a dose-dependent manner in vitro. Furthermore, the expression of p-EGFR, p-AKT and MMP-9 levels were significantly down-regulated. These protein interactions may play a pivotal role in the regulation of apoptosis and invasion. More importantly, our in vivo studies showed that administration of lupeol decreased tumor growth in a dose-dependent manner. Immunohistochemistry analysis demonstrated the down-regulation of p-EGFR and MMP-9 in tumor tissues following lupeol treatment, consistent with the in vitro results. Taken together, our findings indicated that lupeol can induce apoptotic cell death and inhibit the migration as well as invasion of GBC-SD cells. The mechanism may be associated with the suppression of EGFR/MMP-9 signaling. These results might offer a therapeutic potential advantage for human gallbladder carcinoma chemoprevention or chemotherapy.

  20. Rutin attenuates H2O2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways.

    Science.gov (United States)

    Sun, Jianhua; Wang, Heng; Liu, Bei; Shi, Wenhao; Shi, Juanzi; Zhang, Zhou; Xing, Junping

    2017-04-01

    Oxidative stress is a primary factor in the pathology of male infertility. The strong antioxidative capacity of rutin has been proven by numerous studies, but a protective role in the context of male reproduction remains to be elucidated. To explore the biological role of rutin in protecting male reproductive function and the potential underlying mechanism, H2O2-induced Leydig cells were used as a cell model of oxidation damage. Our findings showed that rutin at concentrations of 10, 20, and 40μmol/L remarkably increased cell survival rate of H2O2-induced Leydig cells to 70.1%, 86.8%, and 80.3% respectively. Next, rutin with concentrations of 10, 20, and 40μmol/L decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels but increased the levels of glutathione (GSH) and testosterone in H2O2-induced Leydig cells. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were remarkably increased by rutin treatment with concentrations of 20 and 40μmol/L, but glutathione peroxidase (GSH-Px) activity was notably decreased. Moreover, rutin with concentrations of 10, 20, and 40μmol/L increased Bcl-2 protein levels but decreased protein levels of Bax and caspase-3. Furthermore, 20μmol/L rutin significantly abrogated the decrease in levels of phosphoinositide 3-kinase (PI3K) and phosphorylated serine/threonine kinase (p-AKT) induced by H2O2. Pretreatment with LY294002, a PI3K inhibitor, antagonized protective action of 20μmol/L rutin against H2O2-induced cell activities, intracellular oxidant, testosterone, antioxidant enzyme activities, and the apoptosis related protein expression. Taken together, these results suggest that rutin attenuates H2O2-induced oxidation damage and apoptosis in Leydig cells by activating PI3K/Akt signal pathways, providing a promising strategy to decrease oxidative stress associated with male infertility.

  1. Osteopontin Promotes Cell Migration and Invasion, and Inhibits Apoptosis and Autophagy in Colorectal Cancer by activating the p38 MAPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ren-hong Huang

    2017-04-01

    Full Text Available Background: Osteopontin (OPN is highly expressed in colorectal cancer (CRC and is associated with disease progression in vivo. High levels of OPN have been demonstrated to predict low survival rates in CRC. Autophagy is a process of self-digestion, which is thought to play a significant role in carcinogenesis. However, the mechanisms of OPN's effects on CRC cell autophagy have not been elucidated. Therefore, we aimed to investigate possible mechanisms of OPN's effects on CRC autophagy. Methods: HCT116 cell proliferation, apoptosis, and migration and invasion ability were identified by cell counting k¡t-8 assay, flow cytometry, wound healing assay, and transwell chamber invasion assay, respectively. The ratios of proteins LC3-II/LC3-I, P62, and Atg7 were analyzed by Western-blot. Expressions of Beclin-1, Atg4b, Bnip3, and Vps34, both in transcriptional and translational levels, were analyzed and compared by RT-PCR and Western blot. Immunofluorescence and co-focusing experiments were used to investigate the formation of autophagosomes. Results: The results showed that OPN can promote cell proliferation, migration, and invasion, as well as inhibit cell apoptosis. It was also demonstrated that OPN could inhibit cell autophagy. Further experiments revealed that the inhibitory effect of OPN on autophagy could be reversed by blocking the p38 MAPK pathway in HCT116 cells. Conclusion: OPN is involved in HCT116 cell progression and is capable of inhibiting cell autophagy possibly by activating the p38 MAPK signaling pathway, implying that OPN could be a potential novel molecular therapeutic biomarker in patients with CRC.

  2. Electroacupuncture inhibits apoptosis of splenic lymphocytes in traumatized rats through modulation of the TNF-α/NF-κB signaling pathway.

    Science.gov (United States)

    Wang, Kun; Wu, Huaxing; Chi, Meng; Zhang, Jian; Wang, Guonian; Li, Hulun

    2015-01-01

    Surgical trauma leads to a severe deterioration of the immune system. Electroacupuncture (EA) may improve the immunodeficiency that occurs following surgery; however, the underlying signaling mechanisms require further study. In the present study, 40 rats were equally randomized into four groups: Control; Control + EA; Trauma; Trauma + EA. EA was applied at the 'Zusanli' (ST36) and 'Lanwei' (Extra37) acupoints, immediately following surgery. The splenic T cells were isolated from the rats 24 h after surgery. The apoptotic rate of the lymphocytes was measured by flow cytometric analysis, and western blotting was used to determine the protein expression levels of caspase-3, caspase-8, tumor necrosis factor (TNF)-α and TNF receptor 1 (TNFR1). The DNA binding activity of nuclear factor (NF)-κB was determined using Trans-AM® ELISA-based kits. The results of the present study showed that surgical trauma induced apoptosis of splenic lymphocytes, and significantly increased the protein expression levels of caspase-3 and caspase-8. This was accompanied by increased expression levels of TNF-α and TNFR1, and a marked reduction in the activity of NF-κB in splenic T cells. Administration of EA significantly decreased the expression levels of caspase-3, caspase-8, TNF-α and TNFR1, elevated the activity of NF-κB, and suppressed the apoptotic rate of the lymphocytes. The data suggests that EA may inhibit the apoptosis of splenic lymphocytes induced by surgical trauma, and ameliorate the postoperative immunosuppression. This may be mediated by the downregulation of TNF-α expression levels and upregulation of the activity of NF-κB.

  3. Composite fluxbranes with general intersections

    CERN Document Server

    Ivashchuk, V D

    2002-01-01

    Generalized composite fluxbrane solutions for a wide class of intersection rules are obtained. The solutions are defined on a manifold which contains a product of n Ricci-flat spaces M_1 x ... x M_n with 1-dimensional M_1. They are defined up to a set of functions H_s obeying non-linear differential equations equivalent to Toda-type equations with certain boundary conditions imposed. A conjecture on polynomial structure of governing functions H_s for intersections related to semisimple Lie algebras is suggested. This conjecture is valid for Lie algebras: A_m, C_{m+1}, m > 0. For simple Lie algebras the powers of polynomials coincide with the components of the dual Weyl vector in the basis of simple roots. Explicit formulas for A_1 + ... + A_1 (orthogonal), "block-ortogonal" and A_2 solutions are obtained. Certain examples of solutions in D = 11 and D =10 (II A) supergravities (e.g. with A_2 intersection rules) and Kaluza-Klein dyonic A_2 flux tube, are considered.

  4. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway

    Science.gov (United States)

    Tao, Shi-Cong; Yuan, Ting; Rui, Bi-Yu; Zhu, Zhen-Zhong; Guo, Shang-Chun; Zhang, Chang-Qing

    2017-01-01

    An excess of glucocorticoids (GCs) is reported to be one of the most common causes of osteonecrosis of the femoral head (ONFH). In addition, GCs can induce bone cell apoptosis through modulating endoplasmic reticulum (ER) stress. Among the three main signal pathways in ER stress, the PERK (protein kinase RNA-like ER kinase)/CHOP (CCAAT-enhancer-binding protein homologous protein) pathway has been considered to be closely associated with apoptosis. Platelet-rich plasma (PRP) has been referred to as a concentration of growth factors and the exosomes derived from PRP (PRP-Exos) have a similar effect to their parent material. The enriched growth factors can be encapsulated into PRP-Exos and activate Akt and Erk pathways to promote angiogenesis. Activation of the Akt pathway may promote the expression of anti-apoptotic proteins like Bcl-2, while CHOP can inhibit B-cell lymphoma 2 (Bcl-2) expression to increase the level of cleaved caspase-3 and lead to cell death. Consequently, we hypothesized that PRP-Exos prevent apoptosis induced by glucocorticoid-associated ER stress in rat ONFH via the Akt/Bad/Bcl-2 signal pathway. To verify this hypothesis, a dexamethasone (DEX)-treated in vitro cell model and methylprednisolone (MPS)-treated in vivo rat model were adopted. Characterization of PRP-Exos, and effects of PRP-Exos on proliferation, apoptosis, angiogenesis, and osteogenesis of cells treated with GCs in vitro and in vivo were examined. Furthermore, the mechanism by which PRP-Exos rescue the GC-induced apoptosis through the Akt/Bad/Bcl-2 pathway was also investigated. The results indicate that PRP-Exos have the capability to prevent GC-induced apoptosis in a rat model of ONFH by promoting Bcl-2 expression via the Akt/Bad/Bcl-2 signal pathway under ER stress. PMID:28255363

  5. Safety performance models for urban intersections in Brazil.

    Science.gov (United States)

    Barbosa, Heloisa; Cunto, Flávio; Bezerra, Bárbara; Nodari, Christine; Jacques, Maria Alice

    2014-09-01

    This paper presents a modeling effort for developing safety performance models (SPM) for urban intersections for three major Brazilian cities. The proposed methodology for calibrating SPM has been divided into the following steps: defining the safety study objective, choosing predictive variables and sample size, data acquisition, defining model expression and model parameters and model evaluation. Among the predictive variables explored in the calibration phase were exposure variables (AADT), number of lanes, number of approaches and central median status. SPMs were obtained for three cities: Fortaleza, Belo Horizonte and Brasília. The SPM developed for signalized intersections in Fortaleza and Belo Horizonte had the same structure and the most significant independent variables, which were AADT entering the intersection and number of lanes, and in addition, the coefficient of the best models were in the same range of values. For Brasília, because of the sample size, the signalized and unsignalized intersections were grouped, and the AADT was split in minor and major approaches, which were the most significant variables. This paper also evaluated SPM transferability to other jurisdiction. The SPM for signalized intersections from Fortaleza and Belo Horizonte have been recalibrated (in terms of the Cx) to the city of Porto Alegre. The models were adjusted following the Highway Safety Manual (HSM) calibration procedure and yielded Cx of 0.65 and 2.06 for Fortaleza and Belo Horizonte SPM respectively. This paper showed the experience and future challenges toward the initiatives on development of SPMs in Brazil, that can serve as a guide for other countries that are in the same stage in this subject.

  6. Caspases: An apoptosis mediator

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Palai

    2015-03-01

    Full Text Available The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy - dependent biochemical mechanisms. Apoptosis is a widely conserved phenomenon helping many processes, including normal cell turnover, proper development and functioning of the immune system, hormone dependent atrophy etc. Inappropriate apoptosis (either low level or high level leads to many developmental abnormalities like, neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. To use cells for therapeutic purposes through generating cell lines, it is critical to study the cell cycle machinery and signalling pathways that controls cell death and apoptosis. Apoptotic pathways provide a fundamental protective mechanism that decreases cellular sensitivity to damaging events and allow proper developmental process in multi-cellular organisms. Major mediator of apoptosis is a family of proteins known as caspases. There are mainly fourteen types of caspases but out of them only ten caspasese have got essential role in controlling the process of apoptosis. These ten caspases have been categorized into either initiator caspases (caspase 2, 8, 9, 10 or executioner caspases (caspase 3, 6, 7. Although various types of caspases have been identified so far, the exact mechanisms of action of these groups of proteins is still to be fully understood. The aim of this review is to provide a detail overview of role of different caspases in regulating the process of apoptosis.

  7. Tumor Necrosis Factor-α and Apoptosis Signal-Regulating Kinase 1 Control Reactive Oxygen Species Release, Mitochondrial Autophagy and C-Jun N-Terminal Kinase/P38 Phosphorylation During Necrotizing Enterocolitis

    Directory of Open Access Journals (Sweden)

    Naira Baregamian

    2009-01-01

    Full Text Available Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC. Tumor necrosis factor (TNFα is thought to generate reactive oxygen species (ROS and activate the apoptosis signal-regulating kinase 1 (ASK1-c-Jun N-terminal kinase (JNK/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.

  8. The Neuron-Specific Rai (ShcC) Adaptor Protein Inhibits Apoptosis by Coupling Ret to the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway

    Science.gov (United States)

    Pelicci, Giuliana; Troglio, Flavia; Bodini, Alessandra; Melillo, Rosa Marina; Pettirossi, Valentina; Coda, Laura; De Giuseppe, Antonio; Santoro, Massimo; Pelicci, Pier Giuseppe

    2002-01-01

    Rai is a recently identified member of the family of Shc-like proteins, which are cytoplasmic signal transducers characterized by the unique PTB-CH1-SH2 modular organization. Rai expression is restricted to neuronal cells and regulates in vivo the number of postmitotic sympathetic neurons. We report here that Rai is not a common substrate of receptor tyrosine kinases under physiological conditions and that among the analyzed receptors (Ret, epidermal growth factor receptor, and TrkA) it is activated specifically by Ret. Overexpression of Rai in neuronal cell lines promoted survival by reducing apoptosis both under conditions of limited availability of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) and in the absence of Ret activation. Overexpressed Rai resulted in the potentiation of the Ret-dependent activation of phosphatidylinositol 3-kinase (PI3K) and Akt. Notably, increased Akt phosphorylation and PI3K activity were also found under basal conditions, e.g., in serum-starved neuronal cells. Phosphorylated and hypophosphorylated Rai proteins form a constitutive complex with the p85 subunit of PI3K: upon Ret triggering, the Rai-PI3K complex is recruited to the tyrosine-phosphorylated Ret receptor through the binding of the Rai PTB domain to tyrosine 1062 of Ret. In neurons treated with low concentrations of GDNF, the prosurvival effect of Rai depends on Rai phosphorylation and Ret activation. In the absence of Ret activation, the prosurvival effect of Rai is, instead, phosphorylation independent. Finally, we showed that overexpression of Rai, at variance with Shc, had no effects on the early peak of mitogen-activated protein kinase (MAPK) activation, whereas it increased its activation at later time points. Phosphorylated Rai, however, was not found in complexes with Grb2. We propose that Rai potentiates the MAPK and PI3K signaling pathways and regulates Ret-dependent and -independent survival signals. PMID:12242309

  9. The newly synthesized 2-(3-hydroxy-5-methoxyphenyl)-6,7-methylenedioxyquinolin-4-one triggers cell apoptosis through induction of oxidative stress and upregulation of the p38 MAPK signaling pathway in HL-60 human leukemia cells.

    Science.gov (United States)

    Cheng, Yung-Yi; Yang, Jai-Sing; Tsai, Shih-Chang; Liaw, Chih-Chuang; Chung, Jing-Gung; Huang, Li-Jiau; Lee, Kuo-Hsiung; Lu, Chi-Cheng; Chien, Hsi-Cheng; Tsuzuki, Minoru; Kuo, Sheng-Chu

    2012-10-01

    The aim of the present study was to discover the signaling pathways associated with 2-(3-hydroxy-5-methoxy-phenyl)-6,7-methylenedioxyquinolin-4-one (YYK1)-induced apoptosis in HL-60 human leukemia cells. YYK1 induced cytotoxic effects, cell morphological changes, decreased the cell number and increased reactive oxygen species (ROS) production and loss of mitochondrial membrane potential (ΔΨm) in HL-60 cells. YYK1-induced apoptosis was confirmed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Results from colorimetric assays and western blot analysis indicated that activities of caspase-7/-3, caspase-8 and caspase-9 were increased in YYK1-treated HL-60 cells. Western blot analysis showed that the protein levels of extrinsic apoptotic proteins (Fas/CD95, FasL and FADD), intrinsic related proteins (cytochrome c, Apaf-1, AIF and Endo G), the ratio of Bax/Bcl-2 and phosphorylated p38 MAPK were increased in HL-60 cells after YYK1 treatment. Cell apoptosis was significantly reduced after pre-treatment with N-acetylcysteine (NAC; a ROS scavenger) or diphenyleneiodonium chloride (DPI; a NADPH oxidase inhibitor). Blockage of p38 MAPK signaling by SB202190 abolished YYK1-induced Fas/CD95 upregulation and apoptosis in HL-60 cells. We conclude that YYK1 induces both of extrinsic and intrinsic apoptotic pathways via ROS-mediated activation of p38 MAPK signaling in HL-60 human leukemia cells in vitro.

  10. The Role of MEKK3 Signaling Pathway in the Resistance of Breast Cancer Cells to TNF-(alpha)-Mediated Apoptosis

    Science.gov (United States)

    2005-05-01

    breast cancer cell lines and in primary breast cancer tissues (2-3). Activated signal transduction pathways including the mitogen-activated protein ...TNF-induced NF-kappaB activation. Nat Immunol 2: 620-4. 12. Qin, X.F., D.S. An, I.S. Chen, and D. Baltimore. 2003. Inhibiting HIV -1 infection in...human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5 . Proc Natl Acad Sci U S A 100: 183-8. 13. Huang, Q. Jianhua Yang

  11. IFN-γ Acts Directly on Activated CD4+ T Cells during Mycobacterial Infection to Promote Apoptosis by Inducing Components of the Intracellular Apoptosis Machinery and by Inducing Extracellular Proapoptotic Signals1

    OpenAIRE

    Li, Xujian; McKinstry, K. Kai; Swain, Susan L.; Dalton, Dyana K.

    2007-01-01

    Despite many studies, the regulation of CD4+ T cell apoptosis during the shutdown of immune responses is not fully understood. We have investigated the molecular mechanisms of IFN-γ in regulating apoptosis of CD4+ T cells during bacillus Calmette-Guérin (BCG) infection of mice. Our data provide new insight into the regulation of CD4+ T cell apoptosis by IFN-γ. As CD4+ T cells responded to BCG infection, there was a coordinated increase in IFN-γ production by effector CD4+ T cells and a coordi...

  12. ISG12a inhibits HCV replication and potentiates the anti-HCV activity of IFN-α through activation of the Jak/STAT signaling pathway independent of autophagy and apoptosis.

    Science.gov (United States)

    Chen, Yanzhao; Jiao, Baihai; Yao, Min; Shi, Xuezhen; Zheng, Zhebin; Li, Shilin; Chen, Limin

    2017-01-02

    Interferon stimulated (sensitive) genes (ISGs) are the effector molecules downstream of type I/III interferon (IFN) signaling pathways in host innate immunity. ISG12a can be induced by IFN-α. Although ISG12a has been reported to inhibit the replication of HCV, the exact mechanism remains to be determined. In this study, we investigated the possible mechanisms of ISG12a anti- HCV property by exploring the production of type I IFN and the activation of Janus kinase/signal transducer and activator of transcription (Jak/STAT) signaling pathway, apoptosis and autophagy in Huh7.5.1 cells transiently transfected with ISG12a over-expression plasmid. Interestingly, we found that ISG12a inhibited HCV replication in both Con1b replicon and the HCV JFH1-based cell culture system and potentiated the anti-HCV activity of IFN-α. ISG12a promoted the production of IFN α/β and activated the type I IFN signaling pathway as shown by increased p-STAT1 level, higher Interferon sensitive response element (ISRE) activity and up-regulated ISG levels. However, ISG12a over-expression did not affect cell autophagy and apoptosis. Data from our current study collectively indicated that ISG12a inhibited HCV replication and potentiated the anti-HCV activity of IFN-α possibly through induced production of type I IFNs and activation of Jak/STAT signaling pathway independent of autophagy and cell apoptosis.

  13. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Lee, Byung-Hoon [College of Pharmacy and Multiscreening Center for Drug Development, Seoul National University, Seoul 151-742 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: oshccw@hanmail.net [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  14. Small molecule ErbB inhibitors decrease proliferative signaling and promote apoptosis in philadelphia chromosome-positive acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Mary E Irwin

    Full Text Available The presence of the Philadelphia chromosome in patients with acute lymphoblastic leukemia (Ph(+ALL is a negative prognostic indicator. Tyrosine kinase inhibitors (TKI that target BCR/ABL, such as imatinib, have improved treatment of Ph(+ALL and are generally incorporated into induction regimens. This approach has improved clinical responses, but molecular remissions are seen in less than 50% of patients leaving few treatment options in the event of relapse. Thus, identification of additional targets for therapeutic intervention has potential to improve outcomes for Ph+ALL. The human epidermal growth factor receptor 2 (ErbB2 is expressed in ~30% of B-ALLs, and numerous small molecule inhibitors are available to prevent its activation. We analyzed a cohort of 129 ALL patient samples using reverse phase protein array (RPPA with ErbB2 and phospho-ErbB2 antibodies and found that activity of ErbB2 was elevated in 56% of Ph(+ALL as compared to just 4.8% of Ph(-ALL. In two human Ph+ALL cell lines, inhibition of ErbB kinase activity with canertinib resulted in a dose-dependent decrease in the phosphorylation of an ErbB kinase signaling target p70S6-kinase T389 (by 60% in Z119 and 39% in Z181 cells at 3 µM. Downstream, phosphorylation of S6-kinase was also diminished in both cell lines in a dose-dependent manner (by 91% in both cell lines at 3 µM. Canertinib treatment increased expression of the pro-apoptotic protein Bim by as much as 144% in Z119 cells and 49% in Z181 cells, and further produced caspase-3 activation and consequent apoptotic cell death. Both canertinib and the FDA-approved ErbB1/2-directed TKI lapatinib abrogated proliferation and increased sensitivity to BCR/ABL-directed TKIs at clinically relevant doses. Our results suggest that ErbB signaling is an additional molecular target in Ph(+ALL and encourage the development of clinical strategies combining ErbB and BCR/ABL kinase inhibitors for this subset of ALL patients.

  15. Projective modules and complete intersections

    CERN Document Server

    Mandal, Satya

    1997-01-01

    In these notes on "Projective Modules and Complete Intersections" an account on the recent developments in research on this subject is presented. The author's preference for the technique of Patching isotopic isomorphisms due to Quillen, formalized by Plumsted, over the techniques of elementary matrices is evident here. The treatment of Basic Element theory here incorporates Plumstead's idea of the "generalized dimension functions". These notes are highly selfcontained and should be accessible to any graduate student in commutative algebra or algebraic geometry. They include fully self-contained presentations of the theorems of Ferrand-Szpiro, Cowsik-Nori and the techniques of Lindel.

  16. gef Gene Expression in MCF-7 Breast Cancer Cells is Associated with a Better Prognosis and Induction of Apoptosis by p53-Mediated Signaling Pathway

    Science.gov (United States)

    Boulaiz, Houria; Álvarez, Pablo J.; Prados, Jose; Marchal, Juan; Melguizo, Consolación; Carrillo, Esmeralda; Peran, Macarena; Rodríguez, Fernando; Ramírez, Alberto; Ortíz, Raúl; Aránega, Antonia

    2011-01-01

    Breast cancer research has developed rapidly in the past few decades, leading to longer survival times for patients and opening up the possibility of developing curative treatments for advanced breast cancer. Our increasing knowledge of the biological pathways associated with the progression and development of breast cancer, alongside the failure of conventional treatments, has prompted us to explore gene therapy as an alternative therapeutic strategy. We previously reported that gef gene from E. coli has shown considerable cytotoxic effects in breast cancer cells. However, its action mechanism has not been elucidated. Indirect immunofluorescence technique using flow cytometry and immunocytochemical analysis were used to detect breast cancer markers: estrogen (ER) and progesterone (PR) hormonal receptors, human epidermal growth factor receptor-2 proto-oncogene (c-erbB-2), ki-67 antigen and p53 protein. gef gene induces an increase in ER and PR expressions and a decrease in ki-67 and c-erbB-2 gene expressions, indicating a better prognosis and response to treatment and a longer disease-free interval and survival. It also increased p53 expression, suggesting that gef-induced apoptosis is regulated by a p53-mediated signaling pathway. These findings support the hypothesis that the gef gene offers a new approach to gene therapy in breast cancer. PMID:22174609

  17. A novel synthetic Asiatic acid derivative induces apoptosis and inhibits proliferation and mobility of gastric cancer cells by suppressing STAT3 signaling pathway

    Directory of Open Access Journals (Sweden)

    Wang G

    2016-12-01

    Full Text Available Gang Wang,1 Yue Jing,2 Lingsen Cao,3 Changchang Gong,1 Zhunan Gong,1,3 Xiangrong Cao3 1Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, 2Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 3Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People’s Republic of China Abstract: Activation of the transcription factor, signal transducers and activators of transcription 3 (STAT3, has been linked to the proliferation and migration of a variety of human cancer cells. These actions occur via the upregulation or downregulation of cell survival and tumor suppressor genes, respectively. Importantly, agents that can suppress STAT3 activation have the potential for use in the prevention and treatment of various cancers. In this study, an Asiatic acid (AA derivative, N-(2α,3β,23-acetoxyurs-12-en-28-oyl-L-proline methyl ester (AA-PMe, is reported to dose dependently suppress constitutive STAT3 activation in gastric cancer cells. This inhibition was mediated by blockade of Janus-activated kinase 2. Additionally, AA-PMe regulated the expression of STAT3-modulated gene products, including cyclin D1, Bax, Bcl-2, c-Myc, and matrix metalloproteinase (MMP-2 and MMP-9. Finally, transfection with both a STAT3 mimic and an inhibitor reversed the AA-PMe-driven modulation of STAT3 downstream gene products. Overall, these results suggest that AA-PMe is a novel blocker of STAT3 activation and has the potential for the prevention and treatment of gastric cancer. Keywords: gastric cancer, signal transducer and activator of transcription 3, Asiatic acid derivative, cell cycle, apoptosis, invasion

  18. Novel ferrocenyl pyrazoles inhibit breast cancer cell viability via induction of apoptosis and inhibition of PI3K/Akt and ERK1/2 signaling.

    Science.gov (United States)

    Atmaca, Harika; Özkan, Ayşe Nur; Zora, Metin

    2017-02-01

    Despite the advances in early detection and targeted therapies, chemotherapy is still of vital importance in breast cancer treatment. However, development of drug resistance and serious side effects limits their usage. Thus, there is an urgent need for safer and more effective agents against breast cancer. We have previously described the synthesis of a number of pyrazole derivatives, and in the current study, we have investigated the effects of two different ferrocenyl pyrazole (FP) derivates, 5-ferrocenyl-1-phenyl-1H-pyrazole (FP-Ph) and 5-ferrocenyl-1H-pyrazole (FP-H), on breast cancer cells. First, we investigated the effects of both FPs on cell viability and induction of cell death in breast cancer cells and benign MCF-10A cells by XTT and DNA fragmentation assays, respectively. Morphological changes in human breast cancer cells after FPs treatment were detected by both phase contrast microscope and atomic force microscopy (AFM). Then, we tested whether FPs exert their cytotoxic effect through inhibiting PI3K/Akt and/or ERK1/2 signaling pathways by using specific inhibitors. Both FPs induced cytotoxicity in a time and concentration-dependent manner in breast cancer cells; however, MCF-10A benign breast epithelial cells were much less susceptible to the cytotoxic effect of both FPs. FPs inhibited both PI3K/Akt and ERK 1/2 signaling pathways in breast cancer cells. The ultra structure images of MCF-7 cells by AFM showed that the cell surface was smooth in untreated cells, but it was rough with protrusions in treated cells. Both FPs induced apoptotic cell death in MDA-MB-231 cells; however, necrotic cell death was induced in caspase-3 lack MCF-7 cells, which implies that the synthesized FPs may induce apoptosis through caspase-3 dependent mechanism. In summary, these results suggest that FPs might be promising agents for the breast cancer therapy.

  19. MATLAB Simulation of Fuzzy Traffic Controller for Multilane Isolated Intersection

    OpenAIRE

    2010-01-01

    This paper presents a MATLAB simulation of fuzzy traffic controller for controlling traffic flow at multilane isolated signalized intersection. The controller is developed based on the waiting time and vehicles queue length at current green phase, and vehicles queue lengths at the other phases. For control strategy, the controllercontrols the traffic light timings and phase sequence to ensure smooth flow of traffic with minimal waiting time, queue length and delay time. In this research, the ...

  20. Aconitine-induced Ca{sup 2+} overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Sun, Hong; Meng, Xiang-bao [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Hu, Jin; Zhang, Qiang; Liu, Bo [Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin 130021 (China); Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Xu, Hui-bo, E-mail: xhb_6505@163.com [Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin 130021 (China); Sun, Xiao-bo, E-mail: sun_xiaobo163@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China)

    2014-08-15

    Aconitine is a major bioactive diterpenoid alkaloid with high content derived from herbal aconitum plants. Emerging evidence indicates that voltage-dependent Na{sup +} channels have pivotal roles in the cardiotoxicity of aconitine. However, no reports are available on the role of Ca{sup 2+} in aconitine poisoning. In this study, we explored the importance of pathological Ca{sup 2+} signaling in aconitine poisoning in vitro and in vivo. We found that Ca{sup 2+} overload lead to accelerated beating rhythm in adult rat ventricular myocytes and caused arrhythmia in conscious freely moving rats. To investigate effects of aconitine on myocardial injury, we performed cytotoxicity assay in neonatal rat ventricular myocytes (NRVMs), as well as measured lactate dehydrogenase level in the culture medium of NRVMs and activities of serum cardiac enzymes in rats. The results showed that aconitine resulted in myocardial injury and reduced NRVMs viability dose-dependently. To confirm the pro-apoptotic effects, we performed flow cytometric detection, cardiac histology, transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. The results showed that aconitine stimulated apoptosis time-dependently. The expression analysis of Ca{sup 2+} handling proteins demonstrated that aconitine promoted Ca{sup 2+} overload through the expression regulation of Ca{sup 2+} handling proteins. The expression analysis of apoptosis-related proteins revealed that pro-apoptotic protein expression was upregulated, and anti-apoptotic protein BCL-2 expression was downregulated. Furthermore, increased phosphorylation of MAPK family members, especially the P-P38/P38 ratio was found in cardiac tissues. Hence, our results suggest that aconitine significantly aggravates Ca{sup 2+} overload and causes arrhythmia and finally promotes apoptotic development via phosphorylation of P38 mitogen-activated protein kinase. - Highlights: • Aconitine-induced Ca

  1. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Joydeep; Vasan, Vandana; Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  2. Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: modulation of apoptosis, cell proliferation, and {beta}-catenin/Tcf signaling

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Carmen A.; Xu Meirong; Orner, Gayle A.; Dario Diaz, G.; Li Qingjie; Dashwood, Wan Mohaiza; Bailey, George S.; Dashwood, Roderick H

    2003-03-01

    ), whereas chlorophyllin had no effect and copper promoted the number of small ACF induced by IQ. The results suggest that further investigation of the dose-response for suppression versus promotion by chlorophyll and chlorophyllin is warranted, including studies of the {beta}-catenin/Tcf signaling pathway and its influence on cell proliferation and apoptosis in the colonic crypt.

  3. Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: modulation of apoptosis, cell proliferation, and beta-catenin/Tcf signaling.

    Science.gov (United States)

    Blum, Carmen A; Xu, Meirong; Orner, Gayle A; Darío Díaz, G; Li, Qingjie; Dashwood, Wan Mohaiza; Bailey, George S; Dashwood, Roderick H

    2003-01-01

    chlorophyllin had no effect and copper promoted the number of small ACF induced by IQ. The results suggest that further investigation of the dose-response for suppression versus promotion by chlorophyll and chlorophyllin is warranted, including studies of the beta-catenin/Tcf signaling pathway and its influence on cell proliferation and apoptosis in the colonic crypt.

  4. L_p-mixed intersection bodies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper the author first introduce a new concept of Lp-dual mixed volumes of star bodies which extends the classical dual mixed volumes. Moreover, we extend the notions of Lp- intersection body to Lp-mixed intersection body. Inequalities for Lp-dual mixed volumes of Lp-mixed intersection bodies are established and the results established here provide new estimates for these type of inequalities.

  5. Caspase Family Proteases and Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ting-Jun FAN; Li-Hui HAN; Ri-Shan CONG; Jin LIANG

    2005-01-01

    Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin-1β-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regulated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain,and Ca2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.

  6. POLES OF ZETA FUNCTIONS OF COMPLETE INTERSECTIONS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A vanishing theorem is proved for -adic cohomology with compact support on an affine (singular) complete intersection. As an application, it is shown that for an affine complete intersection defined over a finite field of q elements, the reciprocal "poles" of the zeta function are always divisible by q as algebraic integers. A p-adic proof is also given, which leads to further q-divisibility of the poles or equivalently an improvement of the polar part of the AxKatz theorem for an affine complete intersection. Similar results hold for a projective complete intersection.

  7. The clique problem in ray intersection graphs

    OpenAIRE

    Langerman, Stefan; Cardinal, Jean; Cabello, Sergio

    2015-01-01

    Ray intersection graphs are intersection graphs of rays, or halflines, in the plane. We show that any planar graph has an even subdivision whose complement is a ray intersection graph. The construction can be done in polynomial time and implies that finding a maximum clique in a segment intersection graph is NP-hard. This solves a 21-year old open problem posed by Kratochvíl and Nešetřil (Comment Math Univ Carolinae 31(1):85-93, 1990).

  8. Resonant femtosecond stimulated Raman spectroscopy with an intense actinic pump pulse: Application to conical intersections

    Science.gov (United States)

    Rao, B. Jayachander; Gelin, Maxim F.; Domcke, Wolfgang

    2017-02-01

    We theoretically investigate the feasibility of characterizing conical intersections with time-resolved resonant femtosecond stimulated Raman spectroscopy (FSRS) using an intense actinic pump pulse. We perform nonperturbative numerical simulations of FSRS signals for a three-electronic-state two-vibrational-mode model, which is inspired by the S 2 ( π π * )- S 1 ( n π * ) conical intersection in pyrazine. Our results show that moderately strong actinic pulses increase the intensity of vibrational fingerprint lines in FSRS transients. They facilitate the extraction of useful spectroscopic information by enhancing peaks revealing the coupling and tuning modes of the conical intersection.

  9. The phosphatidylinositol 3-kinases (PI3K) inhibitor GS-1101 synergistically potentiates histone deacetylase inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and extracellular signal-regulated kinase pathways.

    Science.gov (United States)

    Bodo, Juraj; Zhao, Xiaoxian; Sharma, Arishya; Hill, Brian T; Portell, Craig A; Lannutti, Brian J; Almasan, Alexandru; Hsi, Eric D

    2013-10-01

    Previously, we showed that inhibition of the protein kinase C β (PKCβ)/AKT pathway augments engagement of the histone deacetylase inhibitor (HDI)-induced apoptosis in lymphoma cells. In the present study, we investigated the cytotoxicity and mechanisms of cell death induced by the delta isoform-specific phosphatidylinositide 3-kinase (PI3K) inhibitor, GS-1101, in combination with the HDI, panobinostat (LBH589) and suberoylanilide hydroxamic acid (SAHA). Lymphoma cell lines, primary non-Hodgkin Lymphoma (NHL) and chronic lymphocytic leukaemia (CLL) cells were simultaneously treated with the HDI, LBH589 and GS-1101. An interaction of the LBH589/GS-1101 combination was formally examined by using various concentrations of LBH589 and GS-1101. Combined treatment resulted in a synergistic inhibition of proliferation and showed synergistic effect on apoptotic induction in all tested cell lines and primary NHL and CLL cells. This study indicates that interference with PI3K signalling dramatically increases HDI-mediated apoptosis in malignant haematopoietic cells, possibly through both AKT-dependent or AKT- independent mechanisms. Moreover, the increase in HDI-related apoptosis observed in PI3K inhibitor-treated cells appears to be related to the disruption of the extracellular signal-regulated kinase (ERK) signalling pathway. This study provides a strong rational for testing the combination of PI3K inhibitors and HDI in the clinic.

  10. Inhibitor of apoptosis proteins and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yunbo Wei; Tingjun Fan; Miaomiao Yu

    2008-01-01

    Apoptosis is a physiological cell death process that plays a critical role in development, homeostasis, and immune defense of multicellular animals. Inhibitor of apoptosis proteins (IAPs) constitute a family of proteins that possess between one and three baculovirus IAP repeats. Some of them also have a really interesting new gene finger domain, and can prevent cell death by binding and inhibiting active caspases, but are regulated by IAP antagonists. Some evidence also indicates that IAP can modulate the cell cycle and signal transduction. The three main factors, IAPs, IAP antagonists, and caspases, are involved in regulating the progress of apoptosis in many species. Many studies and assumptions have been focused on the anfractuous interactions between these three main factors to explore their real functional model in order to develop potential anticancer drugs.In this review, we describe the classification, molecular structures, and properties of IAPs and discuss the mechanisms of apoptosis. We also discuss the promising significance of clinical applications of IAPs in the diagnosis and treatment of malignancy.

  11. Vehicular crash data used to rank intersections by injury crash frequency and severity

    OpenAIRE

    Yi Liu; Zongzhi Li; Jingxian Liu; Harshingar Patel

    2016-01-01

    This article contains data on research conducted in “A double standard model for allocating limited emergency medical service vehicle resources ensuring service reliability” (Liu et al., 2016) [1]. The crash counts were sorted out from comprehensive crash records of over one thousand major signalized intersections in the city of Chicago from 2004 to 2010. For each intersection, vehicular crashes were counted by crash severity levels, including fatal, injury Types A, B, and C for major, modera...

  12. Isoorientin induces apoptosis and autophagy simultaneously by reactive oxygen species (ROS)-related p53, PI3K/Akt, JNK, and p38 signaling pathways in HepG2 cancer cells.

    Science.gov (United States)

    Yuan, Li; Wei, Shuping; Wang, Jing; Liu, Xuebo

    2014-06-11

    Cell death is closely related to autophagy under some circumstances; however, the effect of isoorientin (ISO) on autophagy and the interplay between apoptosis and autophagy in human hepatoblastoma cancer (HepG2) cells remains poorly understood. The present study showed that ISO induced autophagy, which was correlated with the formation of autophagic vacuoles and the overexpression of Beclin-1 and LC3-II. The autophagy inhibitor 3-methyladenine (3-MA) markedly inhibited apoptosis, and the apoptosis inhibitor ZVAD-fmk also decreased ISO-induced autophagy. In addition, the PI3K/Akt inhibitor LY294002 enhanced Beclin-1, LC3-II, and poly(ADP-ribose) polymerase (PARP) cleavage levels. Also, the reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine (NAC), the JNK inhibitor SP600125, and the p38 inhibitor SB203580 efficiently downregulated the levels of these proteins. Moreover, the p53 inhibitor pifithrin-α and the nuclear factor (NF)-κB inhibitor pyrrolidinedithiocarbamic acid (PDTC) clearly suppressed Beclin-1 and LC3-II and increased cytochrome c release, caspase-3 activation, and PARP cleavage. These results demonstrated for the first time that ISO simultaneously induced apoptosis and autophagy by ROS-related p53, PI3K/Akt, JNK, and p38 signaling pathways. Furthermore, ISO-induced apoptosis by activating the Fas receptor-mediated apoptotic pathway and suppressing the p53 and PI3K/Akt-dependent NF-κB signaling pathway, with the subsequent increase in the release of cytochrome c, caspase-3 activation, and PARP cleavage.

  13. Tracks, intersections and dead ends

    DEFF Research Database (Denmark)

    Siim, Birte; Skjeie, Hege

    2008-01-01

    of organisations of civil society in political power. The second part explores the framing of the hijab as a political issue of "intersections" of gender equality versus religious belongings. The third part investigates what we see as a "dead end" in policy making to prevent violations of women's rights......The article discusses multicultural challenges to state feminism in Denmark and Norway focusing both on similarities and differences in the two countries policy responses.  In spite of important differences, we point towards similar problems and dilemmas in the public responses to multiculturalism...... and diversity among women connected to a state feminist agenda that in both countries has been rather one-sided in its conception of what women-friendliness may imply. The first part expands on institutional "tracks": (Variations in) state feminist traditions, in religious traditions, and in the inclusion...

  14. Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yu-Liang Zhao; Ling Zhang; Ying-Ying Yang; Yi Tang; Jiao-Jiao Zhou; Yu-Ying Feng; Tian-Lei Cui

    2016-01-01

    Background:Resolvin D1 (RvD1) is a newly found anti-inflammatory bioactive compound derived from polyunsaturated fatty acids.The current study aimed to explore the protective effect of RvD1 on lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and its possible mechanism.Methods:Both in vivo and in vitro studies were conducted.Male BALB/c mice were randomly divided into control group (saline),LPS group (LPS 5 mg/kg),RvD1 group (RvD1 5 μg/kg + LPS 5 mg/kg),and blockage group (Boc-MLP 5 μ g/kg + RvD1 5μg/kg + LPS 5 mg/kg).Boc-MLP is a RvD1 receptor blocker.The mice were intraperitoneally injected with these drugs and recorded for general condition for 48 h,while the blood and kidneys were harvested at 2,6,12,24,and 48 h time points,respectively (n =6 in each group at each time point).Human proximal tubule epithelial cells (HK-2) were randomly divided into control group (medium only),LPS group (LPS 5 μg/ml),RvD1 group (RvD1 10 ng/ml + LPS 5 μg/ml),and blockage group (Boc-MLP 10 ng/ml + RvD1 10 ng/ml + LPS 5 μg/ml).The cells were harvested for RNA at 2,4,6,12,and 24 h time points,respectively (n =6 in each group at each time point).Blood creatinine was tested by using an Abbott i-STAT portable blood gas analyzer.Tumor necrosis factor-α (TNF-α) level was detected by ELISA.Kidney pathology was observed under hematoxylin and eosin (HE) staining and transmission electron microscope (TEM).We hired immune-histological staining,Western blotting,and fluorescence quantitative polymerase chain reaction to detect the expression ofRvD l receptor ALX,nuclear factor-kappa B (NF-κB) signaling pathway as well as caspase-3.Kidney apoptosis was evaluated by TUNEL staining.Results:RvD1 receptor ALX was detected on renal tubular epithelials.Kaplan-Meier analysis indicated that RvD1 improved 48 h animal survival (80%) compared with LPS group (40%) and RvD1 blockage group (60%),while RvD1 also ameliorated kidney pathological injury in HE staining and TEM scan.After LPS

  15. Tetrandrine Induces Apoptosis of Human Nasopharyngeal Carcinoma NPC-TW 076 Cells through Reactive Oxygen Species Accompanied by an Endoplasmic Reticulum Stress Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ya-Jing Lin

    2016-10-01

    Full Text Available Nasopharyngeal carcinoma (NPC is an epithelial malignancy of the head and neck and the incidence is higher in Southeast Asia. Tetrandrine (TET is a bisbenzylisoquinoline alkaloid, a natural product, and exhibits biological activities including action against many human cancer cell lines. However, the molecular mechanism of TET-induced cell apoptosis in human NPC cells is still unclear. In the present study, we investigated TET-induced apoptotic cell death and associated possible signal pathways on human nasopharyngeal carcinoma NPC-TW 076 cells in vitro. Phase contrast microscopy was used to examine cell morphology and DAPI staining was used to examine chromatin condensation. Flow cytometry assay was used to measure total viable cells, cell cycle and sub-G1 phase distribution, reactive oxygen species (ROS, Ca2+, and mitochondria membrane potential (ΔΨm in NPC-TW 076 cells. Results indicate that TET induced cell death through the cell morphological changes, caused G0/G1 phase arrest, increased ROS and Ca2+ production, and finally caused apoptotic cell death in NPC-TW 076 cells. There was no influence on the level of ΔΨm after TET treatment. Western blotting indicated that TET increased endoplasmic reticulum (ER stress associated protein expression such as GADD153, GRP78, ATF-6α and ATF-6 βwhich indicated that TET induced cell death through ER stress. ER stress is a potential target in cancer treatment, so the ability of TET to induce ER stress response and to activate programming cell death in NPC-TW 076 cells make this molecule become a promising anticancer agent.

  16. EPO improves the proliferation and inhibits apoptosis of trophoblast and decidual stromal cells through activating STAT-5 and inactivating p38 signal in human early pregnancy.

    Science.gov (United States)

    Ji, Yu Qing; Zhang, Yu Quan; Li, Ming Qing; Du, Mei Rong; Wei, Wei Wei; Li, Da Jin

    2011-01-01

    The erythropoietin (EPO) belongs to the family of angiogenic factors, which is regulated by Hypoxia-inducible factor- 1α (HIF-1α). As known, EPO are expressed in human villi and decidua, but the function is not clear. In this study, we investigated the expression and roles of HIF-1α, EPO and its receptor (EPOR) in the biological functions of trophoblast and decidual stromal cell (DSC) in human early pregnancy. The expression of EPO, EPOR and HIF-1α was evaluated in the villi and deciduas by RT-PCR and immunohistochemistry. Thereafter, we silenced HIF-1α expression in HTR-8/SVneo cell line and decidual stromal cells (DSCs). The effects of EPO on the proliferation and apoptosis of trophoblasts and DSCs, and activation of signal molecules were investigated by BrdU proliferation assay, flow cytometry and western blot, respectively. We have observed that the HIF-1α silence results in the lower expression of EPO in trophoblasts and DSCs. The anti-EPO neutralizing antibody can inactivate the phosphorylation of STAT5 and activate p38 of these cells in a dosage-dependent manner. Furthermore, the expressions of EPO, EPOR and HIF-1α in the villi and decidua from the unexplained miscarriage were significantly lower than that of the normal early pregnancy. This study suggests that HIF-1α may regulate the expression of EPO, which plays a favorable regulatory role in the proliferation and survival of human first-trimester trophoblast cells and DSCs via inactivating p38 and activating STAT5 in an autocrine manner, while the inadequate EPO expression at maternal-fetal interface may lead to pregnancy wastage in humans.

  17. Endogenous neurotrophins and Trk signaling in diffuse large B cell lymphoma cell lines are involved in sensitivity to rituximab-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Cynthia Bellanger

    Full Text Available BACKGROUND: Diffuse large B-cell lymphoma (DLBCL is a common and often fatal malignancy. Immunochemotherapy, a combination of rituximab to standard chemotherapy, has resulted in improved survival. However a substantial proportion of patients still fail to reach sustained remission. We have previously demonstrated that autocrine brain-derived neurotrophic factor (BDNF production plays a function in human B cell survival, at least partly via sortilin expression. As neurotrophin receptor (Trks signaling involved activation of survival pathways that are inhibited by rituximab, we speculated that neurotrophins may provide additional support for tumour cell survival and therapeutic resistance in DLBCL. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used two DLBCL cell lines, SUDHL4 and SUDHL6, known to be respectively less and more sensitive to rituximab. We found by RT-PCR, western blotting, cytometry and confocal microscopy that both cell lines expressed, in normal culture conditions, BDNF and to a lesser extent NGF, as well as truncated TrkB and p75(NTR/sortilin death neurotrophin receptors. Furthermore, BDNF secretion was detected in cell supernatants. NGF and BDNF production and Trk receptor expression, including TrkA, are regulated by apoptotic conditions (serum deprivation or rituximab exposure. Indeed, we show for the first time that rituximab exposure of DLBCL cell lines induces NGF secretion and that differences in rituximab sensitivity are associated with differential expression patterns of neurotrophins and their receptors (TrkA. Finally, these cells are sensitive to the Trk-inhibitor, K252a, as shown by the induction of apoptosis. Furthermore, K252a exhibits additive cytotoxic effects with rituximab. CONCLUSIONS/SIGNIFICANCE: Collectively, these data strongly suggest that a neurotrophin axis, such NGF/TrkA pathway, may contribute to malignant cell survival and rituximab resistance in DLBCL.

  18. Photo-activated psoralen binds the ErbB2 catalytic kinase domain, blocking ErbB2 signaling and triggering tumor cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Wenle Xia

    Full Text Available Photo-activation of psoralen with UVA irradiation, referred to as PUVA, is used in the treatment of proliferative skin disorders. The anti-proliferative effects of PUVA have been largely attributed to psoralen intercalation of DNA, which upon UV treatment, triggers the formation of interstrand DNA crosslinks (ICL that inhibit transcription and DNA replication. Here, we show that PUVA exerts antitumor effects in models of human breast cancer that overexpress the ErbB2 receptor tyrosine kinase oncogene, through a new mechanism. Independent of ICL formation, the antitumor effects of PUVA in ErbB2+ breast cancer models can instead be mediated through inhibition of ErbB2 activation and signaling. Using a mass spectroscopy-based approach, we show for the first time that photo-activated 8MOP (8-methoxypsoralen interacts with the ErbB2 catalytic autokinase domain. Furthermore, PUVA can reverse therapeutic resistance to lapatinib and other ErbB2 targeted therapies, including resistance mediated via expression of a phosphorylated, truncated form of ErbB2 (p85(ErbB2 that is preferentially expressed in tumor cell nuclei. Current ErbB2 targeted therapies, small molecule kinase inhibitors or antibodies, do not block the phosphorylated, activated state of p85(ErbB2. Here we show that PUVA reduced p85(ErbB2 phosphorylation leading to tumor cell apoptosis. Thus, in addition to its effects on DNA and the formation of ICL, PUVA represents a novel ErbB2 targeted therapy for the treatment of ErbB2+ breast cancers, including those that have developed resistance to other ErbB2 targeted therapies.

  19. Tetrandrine Induces Apoptosis of Human Nasopharyngeal Carcinoma NPC-TW 076 Cells through Reactive Oxygen Species Accompanied by an Endoplasmic Reticulum Stress Signaling Pathway.

    Science.gov (United States)

    Lin, Ya-Jing; Peng, Shu-Fen; Lin, Meng-Liang; Kuo, Chao-Lin; Lu, Kung-Wen; Liao, Ching-Lung; Ma, Yi-Shih; Chueh, Fu-Shin; Liu, Kuo-Ching; Yu, Fu-Shun; Chung, Jing-Gung

    2016-10-12

    Nasopharyngeal carcinoma (NPC) is an epithelial malignancy of the head and neck and the incidence is higher in Southeast Asia. Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid, a natural product, and exhibits biological activities including action against many human cancer cell lines. However, the molecular mechanism of TET-induced cell apoptosis in human NPC cells is still unclear. In the present study, we investigated TET-induced apoptotic cell death and associated possible signal pathways on human nasopharyngeal carcinoma NPC-TW 076 cells in vitro. Phase contrast microscopy was used to examine cell morphology and DAPI staining was used to examine chromatin condensation. Flow cytometry assay was used to measure total viable cells, cell cycle and sub-G₁ phase distribution, reactive oxygen species (ROS), Ca(2+), and mitochondria membrane potential (ΔΨm) in NPC-TW 076 cells. Results indicate that TET induced cell death through the cell morphological changes, caused G₀/G₁ phase arrest, increased ROS and Ca(2+) production, and finally caused apoptotic cell death in NPC-TW 076 cells. There was no influence on the level of ΔΨm after TET treatment. Western blotting indicated that TET increased endoplasmic reticulum (ER) stress associated protein expression such as GADD153, GRP78, ATF-6α and ATF-6 βwhich indicated that TET induced cell death through ER stress. ER stress is a potential target in cancer treatment, so the ability of TET to induce ER stress response and to activate programming cell death in NPC-TW 076 cells make this molecule become a promising anticancer agent.

  20. Framing Gender Intersections in the European Union

    DEFF Research Database (Denmark)

    Lombardo, Emanuela; Agustin, Lise Rolandsen

    2012-01-01

    This article explores the extent to which the emergence of an antidiscrimination policy in the European Union (EU) implies a shift in EU gender equality policies towards an intersectional approach. The frame analysis of EU gender equality policy documents shows that intersectional dimensions...

  1. Computations in intersection rings of flag bundles

    CERN Document Server

    Grayson, Daniel R; Stillman, Michael E

    2012-01-01

    Intersection rings of flag varieties and of isotropic flag varieties are generated by Chern classes of the tautological bundles modulo the relations coming from multiplicativity of total Chern classes. In this paper we describe the Groebner bases of the ideals of relations and give applications to computation of intersections, as implemented in Macaulay2.

  2. An intersection algorithm based on transformation

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-xia; YONG Jun-hai; CHEN Yu-jian

    2006-01-01

    How to obtain intersection of curves and surfaces is a fundamental problem in many areas such as computer graphics,CAD/CAM,computer animation,and robotics.Especially,how to deal with singular cases,such as tangency or superposition,is a key problem in obtaining intersection results.A method for solving the intersection problem based on the coordinate transformation is presented.With the Lagrange multiplier method,the minimum distance between the center of a circle and a quadric surface is given as well.Experience shows that the coordinate transformation could significantly simplify the method for calculating intersection to the tangency condition.It can improve the stability of the intersection of given curves and surfaces in singularity cases.The new algorithm is applied in a three dimensional CAD software (GEMS),produced by Tsinghua University.

  3. A novel water-soluble benzothiazole derivative BD926 triggers ROS-mediated B lymphoma cell apoptosis via mitochondrial and endoplasmic reticulum signaling pathways.

    Science.gov (United States)

    Li, Min-Hui; Yang, Ping; Yang, Tai; Zhang, Kun; Liu, Yang; Liu, Jin; Li, Li-Mei; Luo, Xing-Yan; Yang, Shu-Xia; Zou, Qiang; Zhang, Chong-Jie

    2016-11-01

    Benzothiazole derivatives are known for various biological activities, and their potency in cancer therapy have received considerable attention in recent years. However, the poor water solubility of most benzothiazole derivatives has limited their clinical application. We developed BD926, a novel water-soluble benzothiazole derivative and showed here that it could inhibit the proliferation and induce apoptosis of human Ramos B-lymphoma cells. We further showed that BD926 triggered apoptosis through both mitochondria and endoplasmic reticulum pathways. Moreover, BD926 caused cell cycle arrest at G0/G1 stage. Furthermore, accumulation of reactive oxygen species (ROS) were observed after BD926 treatment and ROS inhibitor was able to attenuate BD926-induced apoptosis, which suggested that BD926-induced apoptosis may be due to over-producing ROS. These results demonstrate the anticancer effects of BD926 in cell models and raise the possibility for the application of BD926 in cancer therapy.

  4. Myelin-associated glycoprotein modulates apoptosis of motoneurons during early postnatal development via NgR/p75(NTR) receptor-mediated activation of RhoA signaling pathways.

    Science.gov (United States)

    Palandri, A; Salvador, V R; Wojnacki, J; Vivinetto, A L; Schnaar, R L; Lopez, P H H

    2015-09-03

    Myelin-associated glycoprotein (MAG) is a minor constituent of nervous system myelin, selectively expressed on the periaxonal myelin wrap. By engaging multiple axonal receptors, including Nogo-receptors (NgRs), MAG exerts a nurturing and protective effect the axons it ensheaths. Pharmacological activation of NgRs has a modulatory role on p75(NTR)-dependent postnatal apoptosis of motoneurons (MNs). However, it is not clear whether this reflects a physiological role of NgRs in MN development. NgRs are part of a multimeric receptor complex, which includes p75(NTR), Lingo-1 and gangliosides. Upon ligand binding, this multimeric complex activates RhoA/ROCK signaling in a p75(NTR)-dependent manner. The aim of this study was to analyze a possible modulatory role of MAG on MN apoptosis during postnatal development. A time course study showed that Mag-null mice suffer a loss of MNs during the first postnatal week. Also, these mice exhibited increased susceptibility in an animal model of p75(NTR)-dependent MN apoptosis induced by nerve-crush injury, which was prevented by treatment with a soluble form of MAG (MAG-Fc). The protective role of MAG was confirmed in in vitro models of p75(NTR)-dependent MN apoptosis using the MN1 cell line and primary cultures. Lentiviral expression of shRNA sequences targeting NgRs on these cells abolished protection by MAG-Fc. Analysis of RhoA activity using a FRET-based RhoA biosensor showed that MAG-Fc activates RhoA. Pharmacological inhibition of p75(NTR)/RhoA/ROCK pathway, or overexpression of a p75(NTR) mutant unable to activate RhoA, completely blocked MAG-Fc protection against apoptosis. The role of RhoA/ROCK signaling was further confirmed in the nerve-crush model, where pretreatment with ROCK inhibitor Y-27632 blocked the pro-survival effect of MAG-Fc. These findings identify a new protective role of MAG as a modulator of apoptosis of MNs during postnatal development by a mechanism involving the p75(NTR)/RhoA/ROCK signaling pathway