WorldWideScience

Sample records for apoptosis gene profiling

  1. Expression profiling of apoptosis-related genes in enterocytes isolated from patients with ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole H

    2013-01-01

    in normal and inflamed colonic epithelial cells. An apoptosis-specific gene array expression profiling system of 96 genes was used to determine the expression profile of apoptosis-related genes. Epithelial cells isolated from three patients with active ulcerative colitis were pooled and compared to pooled...

  2. Comparison of the expression profile of apoptosis-associated genes in rheumatoid arthritis and osteoarthritis.

    Science.gov (United States)

    Qingchun, Huang; Runyue, Huang; LiGang, Jie; Yongliang, Chu; Song, Wei; Shujing, Zhao

    2008-05-01

    The purpose of this study was to employ microarray analysis to evaluate differential gene expression in synovial tissue samples obtained from patients with rheumatoid arthritis (RA) or osteoarthritis (OA) to study the expression profile of apoptosis-associated genes in these tissues. Four samples were obtained from RA-affected patients and three from osteoarthritis patients. After total RNA was extracted from synovial tissue, the RNA was processed using two-cycle target labeling, followed by hybridization and scanning procedure. The GeneChip Human Genome U133 Plus 2.0 containing 900471 gene loci was used and eight genes associated with apoptosis were identified with a selected p value<0.05 and a twofold change in expression in rheumatoid samples compared to osteoarthritis tissues. Anti-apoptotic genes were generally upregulated whereas apoptotic genes were downregulated suggesting that these genes may play a role in the pathogenesis of RA. Furthermore, these genes may serve as novel therapeutic targets for the treatment of RA.

  3. Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets.

    Science.gov (United States)

    Wang, Lei; Qin, Wanhai; Ruidong, Zhai; Liu, Shiting; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2015-01-01

    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is the causative agent of porcine pleuropneumonia, a disease that causes serious problems for the swine industry. Successful infection by this bacterium requires breaking the first line of defence in the lungs, the primary alveolar macrophages (PAMs). Therefore, exploring A. pleuropneumoniae-PAM interactions will provide vital groundwork for the scientific control of this infectious disease, which has been little studied up to now. In this work, PAMs were isolated from piglets and co-incubated with A. pleuropneumoniae serovar 5b strain L20 in vitro, and their interaction, PAM cell death, and differential gene expression of A. pleuropneumoniae in response to PAM cell death were observed and analysed using confocal microscopy, electron microscopy, RT-PCR, Western blot, flow cytometry and the use of a gene expression profile chip. A. pleuropneumoniae quickly adhered to and invaded PAMs, inducing apoptosis, which was confirmed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The highest percentage of apoptosis in cells was confirmed using flow cytometry when the cells were infected at a multiplicity of infection (MOI) of 10 and incubated for 5 h, with higher expression of activated caspase-3 as measured by Western blot. Using microarray gene chips with 2868 probes containing nearly all of the genomic sequence of A. pleuropneumoniae serotype 5b strain L20, a total of 185 bacterial genes were found to be differentially expressed (including 92 up-regulated and 93 down-regulated genes) and involved in the process of apoptosis, as compared with the expression of control bacteria cultured without PAMs in BHI medium (mean expression ratios >1.5-fold, p pleuropneumoniae induces apoptosis of PAMs and undergoes complex changes in gene transcription, including expression changes in known and potential virulence factors. Some potentially novel virulence targets have been identified

  4. Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients

    Science.gov (United States)

    Langemeijer, Saskia MC; Knops, Ruth; Gilissen, Christian; Woestenenk, Rob; de Witte, Theo; Huls, Gerwin; van der Reijden, Bert A; Jansen, Joop H

    2016-01-01

    Although the vast majority of patients with a myelodysplastic syndrome (MDS) suffer from cytopenias, the bone marrow is usually normocellular or hypercellular. Apoptosis of hematopoietic cells in the bone marrow has been implicated in this phenomenon. However, in MDS it remains only partially elucidated which genes are involved in this process and which hematopoietic cells are mainly affected. We employed sensitive real-time PCR technology to study 93 apoptosis-related genes and gene families in sorted immature CD34+ and the differentiating erythroid (CD71+) and monomyeloid (CD13/33+) bone marrow cells. Unsupervised cluster analysis of the expression signature readily distinguished the different cellular bone marrow fractions (CD34+, CD71+ and CD13/33+) from each other, but did not discriminate patients from healthy controls. When individual genes were regarded, several were found to be differentially expressed between patients and controls. Particularly, strong over-expression of BIK (BCL2-interacting killer) was observed in erythroid progenitor cells of low- and high-risk MDS patients (both p = 0.001) and TNFRSF4 (tumor necrosis factor receptor superfamily 4) was down-regulated in immature hematopoietic cells (p = 0.0023) of low-risk MDS patients compared to healthy bone marrow. PMID:27902785

  5. Effect of thermal stress on expression profile of apoptosis related genes in peripheral blood mononuclear cells of transition Sahiwal cow

    Science.gov (United States)

    Somal, A; Aggarwal, A; Upadhyay, R.C

    2015-01-01

    The study was conducted to evaluate the effect of thermal stress on expression profile of genes related to apoptosis in peripartum Sahiwal cows. For this, twelve pregnant dry Sahiwal cows were selected from Livestock Research Centre at National Dairy Research Institute, Karnal. The cows were divided into two groups consisting of six Sahiwal cows each. Cows of group I calved during thermoneutral temperature conditions (THI=67.3) and cows of group II calved in summer season (THI=79.9). Blood samples were collected on -15, 0 and +15 days with respect to calving where day ‘0’ represents the day of calving. The peripheral blood mononuclear cells (PBMC) were separated and total RNA was isolated for the BCL-2 (B-Cell Lymphoma-2), BAX (BCL-2 antagonist killer-1), BAK (Bcl-2-associated X protein), CASP-3 (cysteine-aspartic proteases-3) and P53 (tumour protien-53) mRNAs expression. It was found that there was up regulation of CASP-3 on the day of calving during both temperature conditions. Comparison between the two temperature conditions showed that expression of CASP-3, BCL-2, BAK, P53 and ratio of BAX/BCL-2 in PBMC increased during summer as compared to thermoneutral condition suggesting the susceptibility of these cells to apoptosis. Based on the above findings it can be concluded that during calving PBMC are more susceptible to apoptosis, and summer being more stressful potentiates the apoptosis of PBMC in Sahiwal cows. PMID:27175165

  6. Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients

    NARCIS (Netherlands)

    MC Langemeijer, Saskia; Mariani, Niccolo; Knops, Ruth; Gilissen, Christian; Woestenenk, Rob; de Witte, Theo; Huls, Gerwin; van der Reijden, Bert A.; Jansen, Joop H.

    2016-01-01

    Although the vast majority of patients with a myelodysplastic syndrome (MDS) suffer from cytopenias, the bone marrow is usually normocellular or hypercellular. Apoptosis of hematopoietic cells in the bone marrow has been implicated in this phenomenon. However, in MDS it remains only partially

  7. Assessing Apoptosis Gene Expression Profiling with a PCR Array in the Hippocampus of Ts65Dn Mice

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2015-01-01

    Full Text Available It is well known that Down syndrome (DS is a condition in which extra genetic material causes delays in the way a child develops, both mentally and physically. Intellectual disability is the foremost and most debilitating trait, which caused loss of cognitive abilities and the development of early onset Alzheimer’s disease (AD. Ts65Dn mice were used in this study. We isolated the hippocampus. First, we used transmission scanning electron microscopy to directly observe the hippocampus and confirm if apoptosis had occurred. Second, we customized a PCR array with 53 genes, including several important genes related to cell apoptosis. Gene expression was detected by RT-PCR. There were varying degrees of changes characteristic of apoptosis in the hippocampus of Ts65Dn mice, which mainly included the following: nuclear membrane thinning, unevenly distributed chromosomes, the production of chromatin crescents, and pyknosis of the nuclei with some nuclear fragmentation. Meanwhile, three genes (API5, AIFM1, and NFκB1 showed changes of expression in the hippocampus of Ts65Dn mice compared with normal mice. Only NFκB1 expression was significantly increased, while the expressions of API5 and AIFM1 were notably decreased. The fold changes in the expression of API5, AIFM1, and NFκB1 were 11.55, 5.94, and 3.11, respectively. However, some well-known genes related to cell apoptosis, such as the caspase family, Bcl-2, Bad, Bid, Fas, and TNF, did not show changes in expression levels. The genes we found which were differentially expressed in the hippocampus of Ts65Dn mice may be closely related to cell apoptosis. PCR array technology can assist in the screening and identification of genes involved in apoptosis.

  8. Gene expression profiling in circulating endothelial cells from systemic sclerosis patients shows an altered control of apoptosis and angiogenesis that is modified by iloprost infusion

    Science.gov (United States)

    2010-01-01

    Introduction Circulating endothelial cells are increased in patients affected by systemic sclerosis (SSc) and their number strongly correlates with vascular damage. The effects of iloprost in systemic sclerosis are only partially known. We aimed at studying the gene expression profile of circulating endothelial cells and the effects of iloprost infusion and gene expression in patients with systemic sclerosis. Methods We enrolled 50 patients affected by systemic sclerosis, 37 patients without and 13 patients with digital ulcers. Blood samples were collected from all patients before and 72 hours after either a single day or five days eight hours iloprost infusion. Blood samples were also collected from 50 sex- and age-matched healthy controls. Circulating endothelial cells and endothelial progenitors cells were detected in the peripheral blood of patients with systemic sclerosis by flow cytometry with a four-colour panel of antibodies. Statistical analysis was performed with the SPSS 16 statistical package.Circulating endothelial cells were then isolated from peripheral blood by immunomagnetic CD45 negative selection for the gene array study. Results The number of both circulating endothelial cells and progenitors was significantly higher in patients affected by systemic sclerosis than in controls and among patients in those with digital ulcers than in patients without them. Circulating endothelial cells and progenitors number increased after iloprost infusion. Gene array analysis of endothelial cells showed a different transcriptional profile in patients compared to controls. Indeed, patients displayed an altered expression of genes involved in the control of apoptosis and angiogenesis. Iloprost infusion had a profound impact on endothelial cells gene expression since the treatment was able to modulate a very high number of transcripts. Conclusions We report here that circulating endothelial cells in patients with systemic sclerosis show an altered expression of

  9. Gene Expression Profile of Colon Mucosa after Cytotoxic Insult in wt and Apc-Mutated Pirc Rats: Possible Relation to Resistance to Apoptosis during Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Angelo Pietro Femia

    2016-01-01

    Full Text Available Apc-mutated Pirc rats, spontaneously developing intestinal tumours, are resistant to 1,2-dimethylhydrazine- (DMH- induced colon apoptosis. To understand this phenomenon, we analyzed the expression of genotoxic stress-related genes Mgmt, Gsta1, and Gstp1 in the colon of wt and Pirc rats in basal conditions and 24 h after DMH; plasmatic oxidant/antioxidant status was also evaluated. After DMH, Mgmt expression was increased in both genotypes but significantly only in wt rats; Gsta1 expression was significantly increased in both genotypes. Gstp1 expression did not vary after DMH but was lower in Pirc rats. Moreover, for each genotype, we studied by microarray technique whole gene expression profile after DMH. By unsupervised cluster analysis, 28 genes were differentially modulated between the two genotypes. Among them were interferon-induced genes Irf7, Oas1a, Oasl2, and Isg15 and the transcription factor Taf6l, overexpressed in DMH-treated wt rats and unchanged in Pirc rats. RT-PCR confirmed their overexpression in DMH-treated wt rats and showed a slighter variation in DMH-treated Pirc rats. Taken together, despite a blunted induction of Irf7, Oas1a, and Mgmt, defective apoptosis in Pirc rats 24 h after DMH is not mirrored by major differences in gene expression compared with wt rats.

  10. Apoptosis Induction and Gene Expression Profile Alterations of Cutaneous T-Cell Lymphoma Cells following Their Exposure to Bortezomib and Methotrexate

    Science.gov (United States)

    Kontsioti, Frieda; Konsta, Eugene; Vikentiou, Miriam; Spathis, Aris; Papageorgiou, Sotiris; Vasilatou, Diamantina; Gkontopoulos, Konstantinos; Mpazani, Efthimia; Karakitsos, Petros; Rigopoulos, Dimitrios; Dimitriadis, George

    2017-01-01

    Mycosis fungoides (MF) and its leukemic variant Sézary syndrome (SS) comprise the majority of CTCL, a heterogenous group of non-Hodgkins lymphomas involving the skin. The CTCL’s resistance to chemotherapy and the lack of full understanding of their pathogenesis request further investigation. With the view of a more targeted therapy, we evaluated in vitro the effectiveness of bortezomib and methotrexate, as well as their combination in CTCL cell lines, regarding apoptosis induction. Our data are of clinical value and indicate that the bortezomib/methotrexate combinational therapy has an inferior impact on the apoptosis of CTCL compared to monotherapy, with bortezomib presenting as the most efficient treatment option for SS and methotrexate for MF. Using PCR arrays technology, we also investigated the alterations in the expression profile of genes related to DNA repair pathways in CTCL cell lines after treatment with bortezomib or methotrexate. We found that both agents, but mostly bortezomib, significantly deregulate a large number of genes in SS and MF cell lines, suggesting another pathway through which these agents could induce apoptosis in CTCL. Finally, we show that SS and MF respond differently to treatment, verifying their distinct nature and further emphasizing the need for discrete treatment approaches. PMID:28107479

  11. Genomic structure, chromosomal localization and expression profile of a novel melanoma differentiation associated (mda-7) gene with cancer specific growth suppressing and apoptosis inducing properties.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, E. Y.; Madireddi, M. T.; Gopalkrishnan, R. V.; Leszczyniecka, M.; Su, Z. Z.; Lebedeva, I. V.; Kang, D. C.; Jian, H.; Lin, J. J.; Alexandre, D.; Chen, Y.; Vozhilla, N.; Mei, M. X.; Christiansen, K. A.; Sivo, F.; Goldstein, N. I.; Chada, S.; Huberman, E.; Pestka, S.; Fisher, P. B.; Biochip Technology Center; Columbia Univ.; Introgen Therapeutics Inc.; UMDNJ-Robert Wood Johnson Medical School

    2001-10-25

    Abnormalities in cellular differentiation are frequent occurrences in human cancers. Treatment of human melanoma cells with recombinant fibroblast interferon (IFN-beta) and the protein kinase C activator mezerein (MEZ) results in an irreversible loss in growth potential, suppression of tumorigenic properties and induction of terminal cell differentiation. Subtraction hybridization identified melanoma differentiation associated gene-7 (mda-7), as a gene induced during these physiological changes in human melanoma cells. Ectopic expression of mda-7 by means of a replication defective adenovirus results in growth suppression and induction of apoptosis in a broad spectrum of additional cancers, including melanoma, glioblastoma multiforme, osteosarcoma and carcinomas of the breast, cervix, colon, lung, nasopharynx and prostate. In contrast, no apparent harmful effects occur when mda-7 is expressed in normal epithelial or fibroblast cells. Human clones of mda-7 were isolated and its organization resolved in terms of intron/exon structure and chromosomal localization. Hu-mda-7 encompasses seven exons and six introns and encodes a protein with a predicted size of 23.8 kDa, consisting of 206 amino acids. Hu-mda-7 mRNA is stably expressed in the thymus, spleen and peripheral blood leukocytes. De novo mda-7 mRNA expression is also detected in human melanocytes and expression is inducible in cells of melanocyte/melanoma lineage and in certain normal and cancer cell types following treatment with a combination of IFN-beta plus MEZ. Mda-7 expression is also induced during megakaryocyte differentiation induced in human hematopoietic cells by treatment with TPA (12-O-tetradecanoyl phorbol-13-acetate). In contrast, de novo expression of mda-7 is not detected nor is it inducible by IFN-beta+MEZ in a spectrum of additional normal and cancer cells. No correlation was observed between induction of mda-7 mRNA expression and growth suppression following treatment with IFN-beta+MEZ and

  12. Ascidian gene-expression profiles

    OpenAIRE

    Jeffery, William R.

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  13. Identification of genes responsive to apoptosis in HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    Wei JIN; Le-feng QU; Ping MIN; Shan CHEN; Hong LI; He LU; Yong-tai HOU

    2004-01-01

    AIM: To identify genes responsive to apoptosis in HL-60 cells treated by homoharringtonine. METHODS: cDNA microarray technology was used to detect gene expression and the result of microarrays for genes (TIEG and VDUP1) was confirmed by Northern analysis. RESULTS: Seventy-five individual mRNAs whose mass changed significantly were identified. Among these genes (25 were up-regulated and 50 were down-regulated), most are known related to oncogenes and tumor suppressor. Some genes were involved in apoptosis signaling pathways.CONCLUSION: TGFβ and TNF apoptosis signaling pathways were initiated during apoptosis in HL-60 cells.TIEG and VDUP1 play important roles in mediating apoptosis.

  14. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-01-01

    Full Text Available Abstract Background Tanshinone IIA (Tan IIA is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. Methods The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. Results Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L- sulforaphane (L-SFN, an inhibitor of Pregnane × receptor (PXR significantly

  15. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  16. Apoptosis as a target for gene therapy in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Gabriel Adrián Rabinovich

    2000-01-01

    Full Text Available Rheumatoid arthritis (RA is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.

  17. Analysis of Gene Expression Profile in Lung Adenosquamous Carcinoma Using cDNA Microarray

    Institute of Scientific and Technical Information of China (English)

    YANG Fei; YANG Jiong; JIANG Man; YE Bo; ZHANG Yu-xia; CHEN Hong-lei; XIA Dong; LIU Ming-qiu

    2004-01-01

    Gene expression profile of the lung adenosquamous carcinoma was characterized by using cDNA microarray chip containing 4 096 human genes. Among target genes, 508 differentially expressed genes were identified in adenosquamous carcinoma of the lung, 232 genes were overexpressed and 276 genes were underexpressed. Among them, 92 genes are cell signals transduction genes, 34 genes are proto-oncogenes and tumor suppressor genes or cell cycle related genes or cell apoptosis related genes, 29 genes are cell skeleton genes, 28 genes are DNA synthesis, repair and recombination genes, 12 genes are DNA binding and transcription genes. These genes may be associated with the occurence and development of adenosquamous carinome of the lung.

  18. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  19. INHIBITION OF APOPTOSIS BY bcr-abl FUSION GENE IN K562 CELLS

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-hong; SUN Bing-zhong; YUAN Yue-chuan

    1999-01-01

    Objective: To investigate the effect of bcr-abl fusion gene on CML cell apoptosis. Methods: Apoptosis of exvivo cultured K562 cells were observed after exposure to synthetic 18 mer antisense oligodeoxynucleotide complementary to the bcr-abl junction (b3a2). Results: Apoptosis of K562 cells was significantly increased associated with inhibition of bcr-abl expression. Conclusion: bcr-abl fusion gene formation due to chromosome translocation may be the major mechanism of CML via inhibition of apoptosis.

  20. Bcl-2 gene therapy for apoptosis following traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-feng; ZHENG Xue-sheng; LIU Wei-guo; FENG Jun-feng

    2006-01-01

    Objective: To investigate the therapeutic effect of Bcl- 2 fusion protein on apoptosis in brain following traumatic brain injury.Methods: Bcl-2 gene was cloned by RT-PCR. Bcl-2 and EGFP genes were linked together and inserted into pAdeno-X vector. This recombinant vector was packaged into infectious adenovirus in HEK293 cells. Ninety Wistar rats were assigned randomly into experimental group(n=45) and control group (n=45). All rats were subjected to traumatic brain injury. Then recombinant adenovirus (for experimental group) or saline (for control group) was injected into the traumatic brain. The expression of Bcl-2 fusion protein was investigated by Western blotting, immunohistochemistry and fluorescence microscopy. Apoptosis in the injured brain was studied by TUNEL. Animals' behavior capacity was evaluated by tiltboard test.Results: In the experimental group, many fluorescent cells were found around the traumatic locus,which were also proven to be Bcl-2-positive by immunohistochemistry. On the contrary, few Bcl-2-positive cells and no fluorescent cell were detected in the control group. Bcl-2 expression of experimental group was much higher than that of control group, which was illustrated by Western blotting. The apoptosis index of experimental group was 0.027 ± 0.005, and that of control group was 0.141±0.025 (P<0.01). Two weeks after injury, animals of the experimental group behaved better than those of the control group.Conclusions: A recombinant adenovirus vector expressing Bcl-2 fusion protein has been constructed. Bcl-2 fusion protein can suppress apoptosis and promote cell survival. Moreover, the behavior recovery of the injured animal is promoted. Bcl-2 fusion protein provides a way to track the target cells in vivo.

  1. Gene expression profiles in liver cancer and normal liver tissues

    Institute of Scientific and Technical Information of China (English)

    Lian Xin Liu; Hong Chi Jiang; An Long Zhu; Jin Zhou; Xiu Qin Wang; Min Wu

    2000-01-01

    AIM To describe a liver cancer = specific gene expression profile and to identify genes that showed alteredexpression between liver cancer tissues and their adjacent nearly normal tissues.METHODS The cDNA probes which were labeled with a-32P dATP were synthesized from total RNA ofliver cancer and adjacent normal tissues and hybridized separately to two identical Atlas human cancer eDNAexpression array membranes containing 588 known genes.RESULTS Autoradiographic results were analyzed by specific Atlas ImageTM (version 1. 0) software.Among the 588 genes analyzed, 18 genes were found up-regulated in cancer, including TFDP2, Aktl, E2F-3etc, and 25 genes were down-regulated in cancer, including TDGF1, BAK, LAR, etc. Expression levels ofgenes that associated with the regulation of cell proliferation, apoptosis, differentiation, cell-cellinteraction, invasion regulators and eytokines altered mostly.CONCLUSION The result obtained from Atlas microarray provides a comprehensive liver cancer-specificexpression profile. The results can lead to the identification of liver cancer-specific biomarkers and may behelpful in early diagnosis and dentifiction of target genes for designing rational therapeutic strategies.

  2. Differential gene expression and apoptosis markers in presymptomatic scrapie affected sheep.

    Science.gov (United States)

    Hedman, Carlos; Lyahyai, Jaber; Filali, Hicham; Marín, Belén; Serrano, Carmen; Monleón, Eva; Moreno, Bernardino; Zaragoza, Pilar; Badiola, Juan José; Martín-Burriel, Inmaculada; Bolea, Rosa

    2012-09-14

    Neuronal loss is one of the characteristics of scrapie neuropathology. Previous analysis of brains from sheep naturally infected with scrapie that were in a terminal stage did not detect a clear induction of apoptosis, although molecular changes were evidenced. As neuronal death could be occurring early in scrapie, we developed a neuropathological and gene expression study of sheep infected with scrapie in a presymptomatic stage. The histopathology, immunolabelling of PrP(Sc), Bax and activated caspase-3, and the analysis of the expression of 7 genes involved in the regulation of the mitochondrial pathway of apoptosis were investigated in the following 4 central nervous system areas: medulla oblongata, diencephalon, frontal cortex and cerebellum. Moreover, TUNEL and NeuN immunolabelling was performed in the medulla oblongata. The PrP(Sc) immunolabelling in the four areas, as well as a neuropil spongiform change, were more evident in the terminal stage than in presymptomatic animals. Cytoplasmic Bax immunostaining was observed in the presymptomatic medulla oblongata. In contrast to symptomatic animals, the immunostaining was not extended to the hypothalamus, indicating the progression of Bax induction during the course of the disease. Although neither caspase-3 immunostaining nor the TUNEL technique detected neurons with apoptosis, NeuN-immunolabelled cell counting determined that presymptomatic animals have already suffered neuronal loss in a lower or equal degree than symptomatic animals. Finally, the gene expression profiles indicated that the mitochondrial pathway of apoptosis was activated with higher intensity in presymptomatic animals than in symptomatic sheep and confirmed the implication of genes such as BAX or AIF in the disease.

  3. TNF-α Gene Knockout in Triple Negative Breast Cancer Cell Line Induces Apoptosis

    Directory of Open Access Journals (Sweden)

    Valentina Pileczki

    2012-12-01

    Full Text Available Tumor necrosis factor alpha (TNF-α is a pro-inflammatory cytokine involved in the promotion and progression of cancer, including triple negative breast cancer cells. Thus, there is significant interest in understanding the molecular signaling pathways that connect TNF-α with the survival of tumor cells. In our experiments, we used as an in vitro model for triple negative breast cancer the cell line Hs578T. The purpose of this study is to determine the gene expression profiling of apoptotic signaling networks after blocking TNF-α formation by using specially designed siRNA molecules to target TNF-α messenger RNA. Knockdown of TNF-α gene was associated with cell proliferation inhibition and apoptosis, as observed by monitoring the cell index using the xCELLigence RTCA System and flow cytometry. PCR array technology was used to examine the transcript levels of 84 genes involved in apoptosis. 15 genes were found to be relevant after comparing the treated group with the untreated one of which 3 were down-regulated and 12 up-regulated. The down-regulated genes are all involved in cell survival, whereas the up-regulated ones are involved in and interact with pro-apoptotic pathways. The results described here indicate that the direct target of TNF-α in the Hs578T breast cancer cell line increases the level of certain pro-apoptotic factors that modulate different cellular networks that direct the cells towards death.

  4. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Baoman Wang

    2015-01-01

    Full Text Available Apoptosis is the process of programmed cell death (PCD that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.

  5. Effect of ARHI transfection on apoptosis and autophagy related gene expression profile of PANC1 cells%ARHI基因转染PANC1细胞后对细胞凋亡和自噬相关基因表达谱的影响

    Institute of Scientific and Technical Information of China (English)

    杨红; 路新卿; 李骥; 朱永健; 丁辉; 王健; 胡益群; 邓卫萍; 钱家鸣

    2013-01-01

    目的 观察ARHI基因转染PANC1细胞后对细胞凋亡和自噬相关基因mRNA表达谱的影响.方法 采用脂质体法将表达ARHI基因的质粒pIRES2-EGFP-ARHI、空质粒pIRES2-EGFP转染胰腺癌PANC1细胞.采用基因芯片RT2ProfilerTM PCR Array行实时定量PCR,分析转染细胞的基因表达谱,包括84个与凋亡和自噬相关基因.结果 ARHI基因转染组PANC1细胞有9个基因mRNA表达下调,38个基因mRNA表达上调,37个基因mRNA表达变化无意义.在与凋亡相关的基因中有8个促凋亡基因表达显著上调(>6倍),主要为TNFR/TRFSR家族基因(TNFSF8、TNFRSF10B、TNFRSF11B、TNFRSF9)、CIDE家族基因(DFFA)、CASP家族基因(CASP10、CASP8)和死亡结构域家族基因(DAPK1),其中以DAPK1上调尤为明显,达42.83倍;抗凋亡基因中3个基因(CD27、BCL2L10、BIRC4)表达显著上调(>6倍),3个基因(BCL2、BAD、BAG4)表达轻度上调(>2倍),1个基因(BCL2L1)表达轻度下调(<-2倍).在与自噬相关的基因中3个促自噬基因(TNFRSF10B、DAPK1、CASP10)表达显著上调(>6倍),4个基因(TNFRSF10A、FADD、TP53、TP53 BP2)表达轻度上调(>2倍);3个抑制自噬基因(BCL2、CASP8、FAS)表达轻度上调(>2倍),1个基因(MCL1)表达轻度下调(<-2倍).结论 ARHI基因显著上调细胞凋亡及自噬重要调控基因Caspase-8和DAPK1.%Objective To investigate the effect of ARHI transfection on the apoptosis and autophagy related gene expression profile of PANC1 cells.Methods Plasmids pIRES2-EGFP-ARHI which expressing ARHI and empty plasmid pIRES2-EGFP were transfected into PANC1 cells.Expression profile,including 84 apoptosis and autophagy related genes was detected by using quantitative real-time PCR based RT2Profiler TM PCR Array.Results In PANC1 cells transfected with pIRES2-EGFP-ARHI,the expression of mRNA of 9 genes were down-regulated,and 38 were up-regulated,while 37 were not significantly changed.Among the apoptosis related genes,8 pro-apoptotic genes were

  6. Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family

    Directory of Open Access Journals (Sweden)

    Rothblatt Jonathan

    2008-07-01

    Full Text Available Abstract Background In contrast to the three mammalian p53 family members, p53, which is generally involved in DNA damage responses, and p63 and p73 which are primarily needed for developmental regulation, cep-1 encodes for the single C. elegans p53-like gene. cep-1 acts as a transcription activator in a primordial p53 pathway that involves CEP-1 activation and the CEP-1 dependent transcriptional induction of the worm BH3 only domain encoding genes egl-1 and ced-13 to induce germ cell apoptosis. EGL-1 and CED-13 proteins inactivate Bcl-2 like CED-9 to trigger CED-4 and CED-3 caspase dependent germ cell apoptosis. To address the function of p53 in global transcriptional regulation we investigate genome-wide transcriptional responses upon DNA damage and cep-1 deficiency. Results Examining C. elegans expression profiles using whole genome Affymetrix GeneChip arrays, we found that 83 genes were induced more than two fold upon ionizing radiation (IR. None of these genes, with exception of an ATP ribosylase homolog, encode for known DNA repair genes. Using two independent cep-1 loss of function alleles we did not find genes regulated by cep-1 in the absence of IR. Among the IR-induced genes only three are dependent on cep-1, namely egl-1, ced-13 and a novel C. elegans specific gene. The majority of IR-induced genes appear to be involved in general stress responses, and qRT-PCR experiments indicate that they are mainly expressed in somatic tissues. Interestingly, we reveal an extensive overlap of gene expression changes occurring in response to DNA damage and in response to bacterial infection. Furthermore, many genes induced by IR are also transcriptionally regulated in longevity mutants suggesting that DNA damage and aging induce an overlapping stress response. Conclusion We performed genome-wide gene expression analyses which indicate that only a surprisingly small number of genes are regulated by CEP-1 and that DNA damage induced apoptosis via the

  7. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    Science.gov (United States)

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  8. Gene Analysis of Arsenic Trioxide—induced Apoptosis of Lymphoma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANGZidong; LIWeiyu; 等

    2002-01-01

    Objective The effect of arsenic trioxide on apoptosis gene expression of Raji cell was explored when Raji cells were incubated with 0.5μmol/L of arsenic trioxide for 6h。Methods Cell culture,extraction and isolation of mRNA,preparation of probes labeled with fluorescence,hybridization technique of DNA chip(each chip containing 200 apoptosis genes,Chinese Shanghai Biostar,In.)were used.Results Arsenic trioxide induced significant changes in 10%(20/200 genes)of the apoptosis genes:18 genes were downregulated,only two upregulated.In particular,inhibitors of apoptosis protein,such as X-linked inhibitor of apoptosis protein,were significantly downregulated.P53 and the other apoptosis genes were also downregulatec.Of the upregulated genes,high expression of heat-shock protein could promote apoptosis of Raji cells.Conclusion The inhibitors of apoptosis protein play an important role in the process of arsenic trioxide-induced apoptosis of Raji cells.

  9. Gene expression profiling of solitary fibrous tumors.

    Directory of Open Access Journals (Sweden)

    François Bertucci

    Full Text Available BACKGROUND: Solitary fibrous tumors (SFTs are rare spindle-cell tumors. Their cell-of-origin and molecular basis are poorly known. They raise several clinical problems. Differential diagnosis may be difficult, prognosis is poorly apprehended by histoclinical features, and no effective therapy exists for advanced stages. METHODS: We profiled 16 SFT samples using whole-genome DNA microarrays and analyzed their expression profiles with publicly available profiles of 36 additional SFTs and 212 soft tissue sarcomas (STSs. Immunohistochemistry was applied to validate the expression of some discriminating genes. RESULTS: SFTs displayed whole-genome expression profiles more homogeneous and different from STSs, but closer to genetically-simple than genetically-complex STSs. The SFTs/STSs comparison identified a high percentage (∼30% of genes as differentially expressed, most of them without any DNA copy number alteration. One of the genes most overexpressed in SFTs encoded the ALDH1 stem cell marker. Several upregulated genes and associated ontologies were also related to progenitor/stem cells. SFTs also overexpressed genes encoding therapeutic targets such as kinases (EGFR, ERBB2, FGFR1, JAK2, histone deacetylases, or retinoic acid receptors. Their overexpression was found in all SFTs, regardless the anatomical location. Finally, we identified a 31-gene signature associated with the mitotic count, containing many genes related to cell cycle/mitosis, including AURKA. CONCLUSION: We established a robust repertoire of genes differentially expressed in SFTs. Certain overexpressed genes could provide new diagnostic (ALDH1A1, prognostic (AURKA and/or therapeutic targets.

  10. Gene Expression Profiling in Dermatitis Herpetiformis Skin Lesions

    Directory of Open Access Journals (Sweden)

    M. Dolcino

    2012-01-01

    Full Text Available Dermatitis herpetiformis (DH is an autoimmune blistering skin disease associated with gluten-sensitive enteropathy (CD. In order to investigate the pathogenesis of skin lesions at molecular level, we analysed the gene expression profiles in skin biopsies from 6 CD patients with DH and 6 healthy controls using Affymetrix HG-U133A 2.0 arrays. 486 genes were differentially expressed in DH skin compared to normal skin: 225 were upregulated and 261 were downregulated. Consistently with the autoimmune origin of DH, functional classification of the differentially expressed genes (DEGs indicates a B- and T-cell immune response (LAG3, TRAF5, DPP4, and NT5E. In addition, gene modulation provides evidence for a local inflammatory response (IL8, PTGFR, FSTL1, IFI16, BDKRD2, and NAMPT with concomitant leukocyte recruitment (CCL5, ENPP2, endothelial cell activation, and neutrophil extravasation (SELL, SELE. DEGs also indicate overproduction of matrix proteases (MMP9, ADAM9, and ADAM19 and proteolytic enzymes (CTSG, ELA2, CPA3, TPSB2, and CMA1 that may contribute to epidermal splitting and blister formation. Finally, we observed modulation of genes involved in cell growth inhibition (CGREF1, PA2G4, and PPP2R1B, increased apoptosis (FAS, TNFSF10, and BASP1, and reduced adhesion at the dermal epidermal junction (PLEC1, ITGB4, and LAMA5. In conclusion, our results identify genes that are involved in the pathogenesis of DH skin lesions.

  11. Gene expression profiling during murine tooth development

    Directory of Open Access Journals (Sweden)

    Maria A dos Santos silva Landin

    2012-07-01

    Full Text Available The aim of this study was to describe the expression of genes, including ameloblastin (Ambn, amelogenin X chromosome (Amelx and enamelin (Enam during early (pre-secretory tooth development. The expression of these genes has predominantly been studied at post-secretory stages. Deoxyoligonucleotide microarrays were used to study gene expression during development of the murine first molar tooth germ at 24h intervals, starting at the eleventh embryonic day (E11.5 and up to the seventh day after birth (P7. The profile search function of Spotfire software was used to select genes with similar expression profile as the enamel genes (Ambn, Amelx and Enam. Microarray results where validated using real-time Reverse Transcription-Polymerase Chain Reaction (real-time RT-PCR, and translated proteins identified by Western blotting. In situ localisation of the Ambn, Amelx and Enam mRNAs were monitored from E12.5 to E17.5 using deoxyoligonucleotide probes. Bioinformatics analysis was used to associate biological functions with differentially (p ≤0.05 expressed (DE genes.Microarray results showed a total of 4362 genes including Ambn, Amelx and Enam to be significant differentially expressed throughout the time-course. The expression of the three enamel genes was low at pre-natal stages (E11.5-P0 increasing after birth (P1-P7. Profile search lead to isolation of 87 genes with significantly similar expression to the three enamel proteins. The mRNAs expressed in dental epithelium and epithelium derived cells. Although expression of Ambn, Amelx and Enam were lower during early tooth development compared to secretory stages enamel proteins were detectable by Western blotting. Bioinformatic analysis associated the 87 genes with multiple biological functions. Around thirty-five genes were associated with fifteen transcription factors.

  12. Comparative Study of Apoptosis-related Gene Loci in Human, Mouse and Rat Genomes

    Institute of Scientific and Technical Information of China (English)

    Yan-Bin YIN; Yong ZHANG; Peng YU; Jing-Chu LUO; Ying JIANG; Song-Gang LI

    2005-01-01

    Many genes are involved in mammalian cell apoptosis pathway. These apoptosis genes often contain characteristic functional domains, and can be classified into at least 15 functional groups, according to previous reports. Using an integrated bioinformatics platform for motif or domain search from three public mammalian proteomes (International Protein Index database for human, mouse, and rat), we systematically cataloged all of the proteins involved in mammalian apoptosis pathway. By localizing those proteins onto the genomes, we obtained a gene locus centric apoptosis gene catalog for human, mouse and rat.Further phylogenetic analysis showed that most of the apoptosis related gene loci are conserved among these three mammals. Interestingly, about one-third of apoptosis gene loci form gene clusters on mammal chromosomes, and exist in the three species, which indicated that mammalian apoptosis gene orders are also conserved. In addition, some tandem duplicated gene loci were revealed by comparing gene loci clusters in the three species. All data produced in this work were stored in a relational database and may be viewed at http://pcas.cbi.pku.edu.cn/database/apd.php.

  13. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  14. Gene expression profiles of the developing human retina

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; LI Huiming; LIU Wenwen; XU Ping; HU Gengxi; CHENG Yidong; JIA Libin; HUANG Qian

    2004-01-01

    Retina is a multilayer and highly specialized tissue important in converting light into neural signals. In humans, the critical period for the formation of complex multiplayer structure takes place during embryogenesis between 12 and 28 weeks. The morphologic changes during retinal development in humans have been studied but little is known about the molecular events essential for the formation of the retina. To gain further insights into this process, cDNA microarrays containing 16361 human gene probes were used to measure the gene expression levels in retinas. Of the 16361 genes, 68.7%, 71.4% and 69.7% showed positive hybridization with cDNAs made from 12-16 week fetal, 22-26 week fetal and adult retinas. A total of 814 genes showed a minimum of 3-fold changes between the lowest and highest expression levels among three time points and among them, 106 genes had expression levels with the hybridization intensity above 100 at one or more time points. The clustering analysis suggested that the majority of differentially expressed genes were down-regulated during the retinal development. The differentially expressed genes were further classified according to functions of known genes, and were ranked in decreasing order according to frequency: development, differentiation, signal transduction, protein synthesis and translation, metabolism, DNA binding and transcription, DNA synthesis-repair-recombination, immuno-response, ion channel- transport, cell receptor, cytoskeleton, cell cycle, pro-oncogene, stress and apoptosis related genes. Among these 106 differentially expressed genes, 60 are already present in NEI retina cDNA or EST Databank but the remaining 46 genes are absent and thus identified as "function unknown". To validate gene expression data from the microarray, real-time RT-PCR was performed for 46 "function unknown" genes and 6 known retina specific expression genes, and β-actin was used as internal control. Twenty-seven of these genes showed very similar

  15. The effect of heat stress on gene expression, synthesis of steroids, and apoptosis in bovine granulosa cells.

    Science.gov (United States)

    Li, Lian; Wu, Jie; Luo, Man; Sun, Yu; Wang, Genlin

    2016-05-01

    Summer heat stress (HS) is a major contributing factor in low fertility in lactating dairy cows in hot environments. Heat stress inhibits ovarian follicular development leading to diminished reproductive efficiency of dairy cows during summer. Ovarian follicle development is a complex process. During follicle development, granulosa cells (GCs) replicate, secrete hormones, and support the growth of the oocyte. To obtain an overview of the effects of heat stress on GCs, digital gene expression profiling was employed to screen and identify differentially expressed genes (DEGs; false discovery rate (FDR) ≤ 0.001, fold change ≥2) of cultured GCs during heat stress. A total of 1211 DEGs including 175 upregulated and 1036 downregulated ones were identified, of which DEGs can be classified into Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results suggested that heat stress triggers a dramatic and complex program of altered gene expression in GCs. We hypothesized that heat stress could induce the apoptosis and dysfunction of GCs. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the expression of steroidogenic genes (steroidogenic acute regulatory protein (Star), cytochrome P-450 (CYP11A1), CYP19A1, and steroidogenic factor 1 (SF-1)) and apoptosis-related genes (caspase-3, BCL-2, and BAX). Radio immunoassay (RIA) was used to analyze the level of 17β-estradiol (E2) and progesterone (P4). We also assessed the apoptosis of GCs by flow cytometry. Our data suggested that heat stress induced GC apoptosis through the BAX/BCL-2 pathway and reduced the steroidogenic gene messenger RNA (mRNA) expression and E2 synthesis. These results suggest that the decreased function of GCs may cause ovarian dysfunction and offer an improved understanding of the molecular mechanism responsible for the low fertility in cattle in summer.

  16. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  17. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.

    Science.gov (United States)

    Hirose, Osamu; Yoshida, Ryo; Imoto, Seiya; Yamaguchi, Rui; Higuchi, Tomoyuki; Charnock-Jones, D Stephen; Print, Cristin; Miyano, Satoru

    2008-04-01

    Statistical inference of gene networks by using time-course microarray gene expression profiles is an essential step towards understanding the temporal structure of gene regulatory mechanisms. Unfortunately, most of the current studies have been limited to analysing a small number of genes because the length of time-course gene expression profiles is fairly short. One promising approach to overcome such a limitation is to infer gene networks by exploring the potential transcriptional modules which are sets of genes sharing a common function or involved in the same pathway. In this article, we present a novel approach based on the state space model to identify the transcriptional modules and module-based gene networks simultaneously. The state space model has the potential to infer large-scale gene networks, e.g. of order 10(3), from time-course gene expression profiles. Particularly, we succeeded in the identification of a cell cycle system by using the gene expression profiles of Saccharomyces cerevisiae in which the length of the time-course and number of genes were 24 and 4382, respectively. However, when analysing shorter time-course data, e.g. of length 10 or less, the parameter estimations of the state space model often fail due to overfitting. To extend the applicability of the state space model, we provide an approach to use the technical replicates of gene expression profiles, which are often measured in duplicate or triplicate. The use of technical replicates is important for achieving highly-efficient inferences of gene networks with short time-course data. The potential of the proposed method has been demonstrated through the time-course analysis of the gene expression profiles of human umbilical vein endothelial cells (HUVECs) undergoing growth factor deprivation-induced apoptosis. Supplementary Information and the software (TRANS-MNET) are available at http://daweb.ism.ac.jp/~yoshidar/software/ssm/.

  18. GENE EXPRESSION PROFILING OF HUMAN PROMYELOCYTIC LEUKEMIA HL-60 CELL TREATED BY AJOENE

    Institute of Scientific and Technical Information of China (English)

    方志俊; 黄文秀; 黄明辉; 梁润松; 崔景荣; 王夔; 杨梦苏

    2002-01-01

    Objective: Ajoene, a major compound extracted from crashed garlic, has been shown to have antitumor, antimycotic, antimicrobial, antimutagenic functions in vivo or in vitro and treated as a potential antitumor drug. However, the molecular mechanisms underlying the tumor cytotoxicity of ajoene and even garlic substances are poorly defined. In the present study, we aimed to generate gene expression profiles of HL-60 cell treated by ajoene. Methods: A cDNA microarray presenting 2400 of genes amplified from human leukocyte cDNA library was constructed and the gene expression profiles of HL-60 cell induced by ajoene were generated. Results: After data analysis, 28 differentially expressed genes were identified and sequenced. These genes include 21 known genes and 7 ESTs. Most of the known genes are related to cell apoptosis, such as secretory granule (PRG1), beta-2 microglobulin (B2M), 16S ribosomal RNA gene and ribosomal protein S12. Several genes are related to cell differentiation, including the genes similar to H3 histone and ribosomal protein L31. Northern blot analysis was used to verify and quantify the expression of selected genes. Conclusion: Ajoene can induce HL-60 cell apoptosis significantly and may play a role in differentiation. cDNA microarray technology can be a valuable tool to gain insight into molecular events of pharmacological mechanism of herbal medicine.

  19. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  20. Gene expression profiles in irradiated cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C. [IBFM CNR - LATO, Cefalù, Segrate (Italy)

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  1. Gene expression profiles of human promyelocytic leukemia cell lines exposed to volatile organic compounds.

    Science.gov (United States)

    Sarma, Sailendra Nath; Kim, Youn-Jung; Ryu, Jae-Chun

    2010-05-27

    Benzene, toluene, o-xylene, ethylbenzene, trichloroethylene and dichloromethane are the most widely used volatile organic compounds (VOCs), and their toxic mechanisms are still undefined. This study analyzed the genome-wide expression profiles of human promyelocytic leukemia HL-60 cells exposed to VOCs using a 35-K whole human genome oligonucleotide microarray to ascertain potential biomarkers. Genes with a significantly increased expression levels (over 1.5-fold and p-values p53 signaling pathway, apoptosis, and natural killer cell-mediated cytotoxicity pathway. Functionally important immune response- and apoptosis-related genes were further validated by real-time RT-PCR. The results showed that IFIT1, IFIT2, IFIT3, USP18, INFGR2, PMAIP1, GADD45A, NFKBIA, TNFAIP3, and BIRC3 genes altered their expression profiles in a dose-dependent manner. Similar expressions profiles were also found in human erythromyeloblastoid leukemia K562 cells and in human leukemic monocyte lymphoma U937 cells. In conclusion, both gene expression profiles and gene ontology analysis have elucidated potential gene-based biomarkers and provided insights into the mechanism underlying the response of human leukemia cell lines to VOC exposure.

  2. Gene expression profile of sprinter's muscle.

    Science.gov (United States)

    Yoshioka, M; Tanaka, H; Shono, N; Shindo, M; St-Amand, J

    2007-12-01

    We have characterized the global gene expression profile in left vastus lateralis muscles of sprinters and sedentary men. The gene expression profile was analyzed by using serial analysis of gene expression (SAGE) method. The abundantly expressed transcripts in the sprinter's muscle were mainly involved in contraction and energy metabolism, whereas six transcripts were corresponding to potentially novel transcripts. Thirty-eight transcripts were differentially expressed between the sprinter and sedentary individuals. Moreover, sprinters showed higher expressions of both uncharacterized and potentially novel transcripts. Sprinters also highly expressed seven transcripts, such as glycine-rich protein, myosin heavy polypeptide (MYH) 2, expressed sequence tag similar to (EST) fructose-bisphosphate aldolase 1 isoform A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase and ATP synthase F0 subunit 6. On the other hand, 20 transcripts such as MYH1, tropomyosin 2 and 3, troponin C slow, C2 fast, I slow, T1 slow and T3 fast, myoglobin, creatine kinase, ALDOA, glycogen phosphorylase, cytochrome c oxidase II and III, and NADH dehydrogenase 1 and 2 showed lower expression levels in the sprinters than the sedentary controls. The current study has characterized the global gene expressions in sprinters and identified a number of transcripts that can be subjected to further mechanistic analysis.

  3. Apoptosis and the target genes of microRNA-21

    Institute of Scientific and Technical Information of China (English)

    Lindsey E. Becker Buscaglia; Yong Li

    2011-01-01

    MicroRNA-21 (miR-21) is frequently up-regulated in cancer and the majodty of its reported targets are tumor suppressors. Through functional suppression, miR-21 is implicated in practically every walk of oncogenic life: the promotion of cell proliferation, invasion and metastasis, genome instability and mutation, inflammation, replicative immortalization, abnormal metabolism, angiogenesis, and evading apoptosis, immune destruction, and growth suppressors. In particular, miR-21 is strongly involved in apoptosis. In this article, we reviewed the experimentally validated targets of miR-21 and found that two thirds are linked to intrinsic and/or extrinsic pathways of cellular apoptosis. This suggests that miR-21 is an oncogene which plays a key role in resisting programmed cell death in cancer cells and that targeting apoptosis is a viable therapeutic option against cancers expressing miR-21.

  4. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed;

    2006-01-01

    in cancer. In this regard, several studies have demonstrated an antiapoptotic effect of TIMP-1 in a number of different cell types. Since chemotherapy works by inducing apoptosis in cancer cells, we raised the hypothesis that TIMP-1 promotes resistance against chemotherapeutic drugs. In order to investigate...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...

  5. Apoptosis Gene Hunting Using Retroviral Expression Cloning: Identification of Vacuolar ATPase Subunit E

    Directory of Open Access Journals (Sweden)

    Claire L. Anderson

    2003-01-01

    Full Text Available Over the past 10-15 years there has been an explosion of interest in apoptosis. The delayed realisation that cell death is an essential part of life for any multicellular organism has meant that, despite the recent and rapid developments of the last decade, the precise biochemical pathways involved in apoptosis remain incomplete and potentially novel genes may, as yet, remain undiscovered. The hunt is therefore on to bridge the remaining gaps in our knowledge. Our contribution to this research effort utilises a functional cloning approach to isolate important regulatory genes involved in apoptosis. This mini-review focuses on the use and advantages of a retroviral expression cloning strategy and describes the isolation and identification of one such potential apoptosis regulatory gene, namely that encoding vacuolar ATPase subunit E.

  6. Gene expression profile changes in NB4 cells induced by realgar

    Institute of Scientific and Technical Information of China (English)

    王怀宇; 刘陕西; 吕晓虹; 赵晓艾; 陈思宇; 李信民

    2003-01-01

    Objectives To compare the gene expression profiles of acute promyelocytic leukemia cell line NB4 before and after 12 hours of realgar treatment using cDNA microarray.Methods Two cDNA probes were prepared through reverse transcription from mRNA of both untreated and realgar treated NB4 cells. The probes were labeled with Cy3 and Cy5 fluorescence dyes individually, hybridized with cDNA microarray representing 1003 different human genes, and scanned for fluorescent intensity. The genes were screened through the analysis of the difference in two gene expression profiles. Results The analysis of gene expression profiles indicates that 9 genes were up-regulated and 37 genes were down-regulated. Among the 9 up-regulated genes, 2 genes were involved in a proteasome degradation pathway. Some genes related to protein synthesis, signal transduction and cell receptors were down-regulated. Conclusion PSMC2 and PSMD1 genes may play an important role in the apoptosis and partial differentiation of NB4 cells.

  7. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea.

    Science.gov (United States)

    Tadros, Sherif F; D'Souza, Mary; Zhu, Xiaoxia; Frisina, Robert D

    2008-11-01

    To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Calpains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.

  8. Expression of TNF-alpha-dependent apoptosis-related genes in the peripheral blood of Malagasy subjects with tuberculosis.

    Directory of Open Access Journals (Sweden)

    Niaina Rakotosamimanana

    Full Text Available The majority of Mycobacterium tuberculosis (Mtb infections remain asymptomatic with only up to 10% progressing to clinical tuberculosis. However, the constituents of the effective "protective immunity" against tuberculosis responsible for containing most infections remain unknown. Evaluating gene transcriptional profiles in tuberculosis clinical cohorts is one approach to understanding the spectrum of tuberculosis progression. It is clear that apoptosis plays a role in the control of tuberculosis but the utility of apoptosis-related genes as surrogate markers of protection against tuberculosis has not been well investigated. To characterize potential surrogate markers that could discriminate different phases of the clinical tuberculosis spectrum, we investigated gene expression of several TNF-alpha dependent apoptotic genes (TNFR1, TNFR2, FLICE, FLIPs by real-time RT-PCR of peripheral blood cells from cohorts of individuals with active tuberculosis or potential exposure to tuberculosis. Newly diagnosed tuberculosis patients (n = 23, their close household contacts (n = 80, and community controls (n = 46 were tested at intervals over a period of up to two years. Latent infection or previous Mtb contact was assessed by ELISPOT and TST and complete blood counts were performed during the follow up. Results showed significant upregulation of FLIPs expression by infected individuals regardless of clinical status at entry to the study. A higher percentage of lymphocytes was found in the infected household contacts that remained healthy. In contrast, in individuals with active TB, a significant upregulation of TNFR2 expression, a significantly higher percentage of monocytes and a significantly decreased lymphocyte count were seen, compared to subjects that remained healthy. Moreover, the household contacts who subsequently developed signs of TB also had a significantly high number of monocytes. These data suggest tuberculosis may be

  9. Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy.

    Science.gov (United States)

    Su, David M; Zhang, Qiuyang; Wang, Xuexi; He, Ping; Zhu, Yuelin Jack; Zhao, Jianxiong; Rennert, Owen M; Su, Yan A

    2009-05-01

    Human malignant melanoma has poor prognosis because of resistance to apoptosis and therapy. We describe identification of the expression profile of 1,037 mitochondria-focused genes and 84 survival-apoptosis genes in 21 malignant melanoma cell lines and 3 normal melanocyte controls using recently developed hMitChip3 cDNA microarrays. Unsupervised hierarchical clustering analysis of 1,037 informative genes, and 84 survival-apoptosis genes, classified these malignant melanoma cell lines into type A (n = 12) and type B (n = 9). Three hundred fifty-five of 1,037 (34.2%) genes displayed significant (P ≤ 0.030; false discovery rate ≤ 3.68%) differences (± ≥ 2.0-fold) in average expression, with 197 genes higher and 158 genes lower in type A than in type B. Of 84 genes with known survival-apoptosis functions, 38 (45.2%) displayed the significant (P genes expressed at higher levels in type A than in type B, whereas the different set of antiapoptotic (PSEN1, PPP2CA, API5, PPP2R1B, PPP2R1A, and FIS1), antioxidant (HSPD1, GSS, SOD1, ATOX1, and CAT), and proapoptotic (ENDOG, BAK1, CASP2, CASP4, PDCD5, HTRA2, SEPT4, TNFSF10, and PRODH) genes expressed at lower levels in type A than in type B. Microarray data were validated by quantitative reverse transcription-PCR. These results showed the presence of two types of malignant melanoma, each with a specific set of dysregulated survival-apoptosis genes, which may prove useful for development of new molecular targets for therapeutic intervention and novel diagnostic biomarkers for treatment and prognosis of malignant melanoma.

  10. Comparative analysis of gene expression profiles of OPN signalling pathway in four kinds of liver diseases

    Indian Academy of Sciences (India)

    GAIPING WANG; SHASHA CHEN; CONGCONG ZHAO; XIAOFANG LI; WEIMING ZHAO; JING YANG; CUIFANG CHANG; CUNSHUAN XU

    2016-09-01

    To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict thefunctions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD

  11. Comparative analysis of gene expression profiles of OPN signaling pathway in four kinds of liver diseases.

    Science.gov (United States)

    Wang, Gaiping; Chen, Shasha; Zhao, Congcong; Li, Xiaofang; Zhao, Weiming; Yang, Jing; Chang, Cuifang; Xu, Cunshuan

    2016-09-01

    To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict the functions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD.

  12. [Protection of corneal endothelium from apoptosis by gene and cell therapy].

    Science.gov (United States)

    Fuchsluger, T A

    2016-06-01

    Protection of corneal endothelium from apoptosis using gene and cell therapy is in a translational phase. This approach offers advantages for eye banking and after transplantation. Safe vehicles for gene or cell therapeutic transduction of corneal endothelium with nucleic acids are available. This strategy will be further developed in consultation with the Paul Ehrlich Institute and European regulatory authorities.

  13. Gene Expression Profile Changes in Germinating Rice

    Institute of Scientific and Technical Information of China (English)

    Dongli He; Chao Han; Pingfang Yang

    2011-01-01

    Water absorption is a prerequisite for seed germination.During imbibition,water influx causes the resumption of many physiological and metabolic processes in growing seed.In order to obtain more complete knowledge about the mechanism of seed germination,two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition.Thirtynine differentially expressed proteins were identified,including 19 down-regulated and 20 up-regulated proteins.Storage proteins and some seed development- and desiccation-associated proteins were down regulated.The changed patterns of these proteins indicated extensive mobilization of seed reserves.By contrast,catabolism-associated proteins were up regulated upon imbibition.Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or upregulated proteins were also down or up regulated at mRNA level.The expression of these genes was largely consistent at mRNA and protein levels.In providing additional information concerning gene regulation in early plant life,this study will facilitate understanding of the molecular mechanisms of seed germination.

  14. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus

    2006-01-01

    , including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. 4 The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR...

  15. Gene Expression Profiling in an in Vitro Model of Angiogenesis

    OpenAIRE

    Kahn, Jeanne; Mehraban, Fuad; Ingle, Gladys; Xin, Xiaohua; Bryant, Juliet E.; Vehar, Gordon; Schoenfeld, Jill; Grimaldi, Chrisopher J.; Peale, Franklin; Draksharapu, Aparna; Lewin, David A.; Gerritsen, Mary E.

    2000-01-01

    In the present study we have used a novel, comprehensive mRNA profiling technique (GeneCalling) for determining differential gene expression profiles of human endothelial cells undergoing differentiation into tubelike structures. One hundred fifteen cDNA fragments were identified and shown to represent 90 distinct genes. Although some of the genes identified have previously been implicated in angiogenesis, potential roles for many new genes, including OX-40, white protein homolog, KIAA0188, a...

  16. Dynamic gene expression profiles during postnatal development of porcine subcutaneous adipose.

    Science.gov (United States)

    Zhang, Jie; Ma, Jideng; Long, Keren; Jin, Long; Liu, Yihui; Zhou, Chaowei; Tian, Shilin; Chen, Lei; Luo, Zonggang; Tang, Qianzi; Jiang, An'an; Wang, Xun; Wang, Dawei; Jiang, Zhi; Wang, Jinyong; Li, Xuewei; Li, Mingzhou

    2016-01-01

    A better understanding of the control of lipogenesis is of critical importance for both human and animal physiology. This requires a better knowledge of the changes of gene expression during the process of adipose tissue development. Thus, the objective of the current study was to determine the effects of development on subcutaneous adipose tissue gene expression in growing and adult pigs. Here, we present a comprehensive investigation of mRNA transcriptomes in porcine subcutaneous adipose tissue across four developmental stages using digital gene expression profiling. We identified 3,274 differential expressed genes associated with oxidative stress, immune processes, apoptosis, energy metabolism, insulin stimulus, cell cycle, angiogenesis and translation. A set of universally abundant genes (ATP8, COX2, COX3, ND1, ND2, SCD and TUBA1B) was found across all four developmental stages. This set of genes may play important roles in lipogenesis and development. We also identified development-related gene expression patterns that are linked to the different adipose phenotypes. We showed that genes enriched in significantly up-regulated profiles were associated with phosphorylation and angiogenesis. In contrast, genes enriched in significantly down-regulated profiles were related to cell cycle and cytoskeleton organization, suggesting an important role for these biological processes in adipose growth and development. These results provide a resource for studying adipose development and promote the pig as a model organism for researching the development of human obesity, as well as being used in the pig industry.

  17. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  18. Gene expression profiles in BCL11B-siRNA treated malignant T cells

    Directory of Open Access Journals (Sweden)

    Grabarczyk Piotr

    2011-05-01

    Full Text Available Abstract Background Downregulation of the B-cell chronic lymphocytic leukemia (CLL/lymphoma11B (BCL11B gene by small interfering RNA (siRNA leads to growth inhibition and apoptosis of the human T-cell acute lymphoblastic leukemia (T-ALL cell line Molt-4. To further characterize the molecular mechanism, a global gene expression profile of BCL11B-siRNA -treated Molt-4 cells was established. The expression profiles of several genes were further validated in the BCL11B-siRNA -treated Molt-4 cells and primary T-ALL cells. Results 142 genes were found to be upregulated and 109 genes downregulated in the BCL11B-siRNA -treated Molt-4 cells by microarray analysis. Among apoptosis-related genes, three pro-apoptotic genes, TNFSF10, BIK, BNIP3, were upregulated and one anti-apoptotic gene, BCL2L1 was downregulated. Moreover, the expression of SPP1 and CREBBP genes involved in the transforming growth factor (TGF-β pathway was down 16-fold. Expression levels of TNFSF10, BCL2L1, SPP1, and CREBBP were also examined by real-time PCR. A similar expression pattern of TNFSF10, BCL2L1, and SPP1 was identified. However, CREBBP was not downregulated in the BLC11B-siRNA -treated Molt-4 cells. Conclusion BCL11B-siRNA treatment altered expression profiles of TNFSF10, BCL2L1, and SPP1 in both Molt-4 T cell line and primary T-ALL cells.

  19. Restoring apoptosis as a strategy for cancer gene therapy: focus on p53 and mda-7.

    Science.gov (United States)

    Lebedeva, Irina V; Su, Zhao Zhong; Sarkar, Devanand; Fisher, Paul B

    2003-04-01

    Understanding the molecular and genetic determinants of cancer will provide unique opportunities for developing rational and effective therapies. Malignant cells are frequently resistant to chemotherapy and radiation induced programmed cell death (apoptosis). This resistance can occur by mutations in the tumor suppressor gene p53. Strategies designed to replace this defective tumor suppressor protein, as well as forced expression of a novel cancer specific apoptosis inducing gene, melanoma differentiation associated gene-7 (mda-7), offer promise for restoring apoptosis in tumor cells. Conditional-replicating viruses that selectively induce cytolysis in tumor cells provides an additional means of targeting cancer cells for destruction. Although these approaches represent works in progress, future refinements will in all likelihood result in the next generation of cancer therapies.

  20. A chemoprotective fish oil- and pectin-containing diet temporally alters gene expression profiles in exfoliated rat colonocytes throughout oncogenesis.

    Science.gov (United States)

    Cho, Youngmi; Kim, Hyemee; Turner, Nancy D; Mann, John C; Wei, Jiawei; Taddeo, Stella S; Davidson, Laurie A; Wang, Naisyin; Vannucci, Marina; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2011-06-01

    We have demonstrated that fish oil- and pectin-containing (FO/P) diets protect against colon cancer compared with corn oil and cellulose (CO/C) by upregulating apoptosis and suppressing proliferation. To elucidate the mechanisms whereby FO/P diets induce apoptosis and suppress proliferation during the tumorigenic process, we analyzed the temporal gene expression profiles from exfoliated rat colonocytes. Rats consumed diets containing FO/P or CO/C and were injected with azoxymethane (AOM; 2 times, 15 mg/kg body weight, subcutaneously). Feces collected at initiation (24 h after AOM injection) and at aberrant crypt foci (ACF) (7 wk postinjection) and tumor (28 wk postinjection) stages of colon cancer were used for poly (A)+ RNA extraction. Gene expression signatures were determined using Codelink arrays. Changes in phenotypes (ACF, apoptosis, proliferation, and tumor incidence) were measured to establish the regulatory controls contributing to the chemoprotective effects of FO/P. At initiation, FO/P downregulated the expression of 3 genes involved with cell adhesion and enhanced apoptosis compared with CO/C. At the ACF stage, the expression of genes involved in cell cycle regulation was modulated by FO/P and the zone of proliferation was reduced in FO/P rats compared with CO/C rats. FO/P also increased apoptosis and the expression of genes that promote apoptosis at the tumor endpoint compared with CO/C. We conclude that the effects of chemotherapeutic diets on epithelial cell gene expression can be monitored noninvasively throughout the tumorigenic process and that a FO/P diet is chemoprotective in part due to its ability to affect expression of genes involved in apoptosis and cell cycle regulation throughout all stages of tumorigenesis.

  1. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  2. cDNA cloning and expression of an apoptosis-related gene, human TFAR15 gene

    Institute of Scientific and Technical Information of China (English)

    王玉刚; 刘洪涛; 张颖妹; 马大龙

    1999-01-01

    By means of cDNA-RDA method. some cDNA fragments were found to have high levels of expression during deprivation of GM-CSF (granulocyte macrophage-colony stimulating factor) in a human myeloid cell line, TF-1 cells. One of these tragments was identified as a novel gene. To get the full length of cDNA, rapid amplification of cDNA ends (RACE) and expressed sequence tags (EST) overlapping fragments assembling strategies were used. The novel gene was named TRAF15 (TF-1 cell apoptosis related gene-15), which consists of 1218 nueleotides and encodes 212 amino acids. The putative protein protein product of TFAR15 is partially homologous to C. elegans protein C14A4. 11. TFAR15 mRNA is expressed in fetal liver, kidney, spleen and lung. and also in some human myeloid cell lines. Both of the TFAR15 mRNA and protein were highly expressed in TF-(?) cells after GM-CSF withdrawal. In vitro analysis showed that the recombinant TFAR15 protein co(?)ld inhibit the natural cell death of 293 cells, an embryonic kidney cell

  3. Transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xue-Nong Li; Yan-Qing Ding; Guo-Bing Liu

    2003-01-01

    AIM: To explore the transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma to understand mechanisms of the signaling pathway at so gene level.METHODS: Total RNA was isolated from human colorectal carcinoma cell line LoVo treated with HGF/SF (80 ng/L)for 48 h. Fluorescent probes were prepared from RNA labeled with cy3-dUTP for the control groups and with cy5-dUTP for the HGF/SF-treated groups through reversetranscription. The probes were mixed and hybridized on the microarray at 60 ℃ for 15-20 h, then the microarray was scanned by laser scanner (GenePix 4000B). The intensity of each spot and ratios of Cy5/Cy3 were analyzed and finally the differentially expressed genes were selected by GenePix Pro 3.0 software. 6 differential expression genes (3 up-regulated genes and 3 down-regulated genes) were selected randomly and analyzed by β-actin semiquantitative RT-PCR.RESULTS: The fluorescent intensities of built-in negative control spots were less than 200, and the fluorescent intensities of positive control spots were more than 5000.Of the 4004 human genes analyzed by microarray, 129 genes (holding 3.22 % of the investigated genes) revealed differential expression in HGF/SF-treated groups compared with the control groups, of which 61 genes were up-regulated (holding 1.52 % of the investigated genes) and 68 genes were down-regulated (holding 1.70 % of the investigated genes), which supplied abundant information about target genes of HGF/SF-met signaling.CONCLUSION: HGF/SF-met signaling may up-regulate oncogenes, signal transduction genes, apoptosis-related genes, metastasis related genes, and down-regulate a number of genes. The complexity of HGF/SF-met signaling to control the gene expression is revealed as a whole by the gene chip technology.

  4. Spatial and temporal profile of apoptosis following lateral fluid percussion brain injury

    Institute of Scientific and Technical Information of China (English)

    骆纯; 江基尧; 卢亦成; 朱诚

    2002-01-01

    Objective: To investigate the spatial and temporal profile of neural cell apoptosis following traumatic brain injury (TBI).   Methods: In addition to morphological evidence of apoptosis, TUNEL histochemistry assay was used to identify DNA fragmentation in situ at both light and electron microscopic levels, whereas characteristic internucleosomal DNA fragmentation of apoptosis was demonstrated by DNA gel electrophoresis.   Results: Using TUNEL method, we detected massive cells with extensive DNA fragmentation in different regions of the brains of rats subjected to experimental traumatic brain injury. Compared with the sham controls, in the injured cortex, the apoptotic cells were detectable for up to 24 h and reached a peak at 1 week after injury. The number of apoptotic cells in the white matter had a significant increase as early as 12 h after injury and peaked at 1 week. The number of apoptotic cells increased in the hippocampus at 72 h, whereas in the thalamus, the peak of apoptotic cells was at 2 weeks after injury. The number of apoptotic cells in most regions returned to sham values 2 months after injury. Gel electrophoresis of DNA extracted from affected areas of the injured brain revealed only internucleosomal fragmentation at 185-bp intervals, a feature originally described in apoptotic cell death. And no DNA ladder was detectable in the cortex and hippocampus contralateral to the injured hemisphere.   Conclusions: These data suggest that in addition to the well described necrotic cell death, a temporal course of apoptotic cell death is initiated after brain trauma in selected brain regions.

  5. Acceleration of Apoptosis by Transfection of Bak Gene in Multi-drug Resistant Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    LIUYing; ZENGFuqing

    2004-01-01

    To study the killing effects of bak gene on multi-drug resistant (MDR) bladder cancer cells and the mechanisms. Methods: Bak gene was transfected into MDR bladder cancer cells by liposome. The expression of bak and Bcl-2 mRNA was detected by in situ hybridization. The expression of bak and Bcl-2 proteins was detected by SABC immunohistochemistry. The growth rate of human bladder cancer cells was studied by constructing the growth curve, cell apoptosis was measured by flow cytometry, and the morphology of cells was observed by fluorescence stain. Results: The expression of bak mRNA was positive in EJ/bak cells (P<0.05). Bak protein expression of EJ/bak cells was positive and Bcl-2 protein expression was decreased (P<0.05). The growth of MDR bladder cancer cells was significantly inhibited after bak gene was transfected (P<0.05). Apoptosis cells were increased significantly. The apoptosis rate was 35%. Apoptotic bodies can be found in these cells by fluorescence stain. Conclusion: Bak gene could inhibit the growth of MDR bladder cancer cells effectively. Inducing cell apoptosis by down-regulating the expression of Bcl-2 gene might be one of its mechanisms.

  6. Exogenous PTEN Gene Induces Apoptosis in Breast Carcinoma Cell Line MDA468

    Institute of Scientific and Technical Information of China (English)

    CHEN Qingyong; WANG Chunyou; JIANG Chunfang; CHEN Daoda

    2007-01-01

    The effects and mechanisms of exogenous phosphatase and tensin homolog deleted from chromosome ten (PTEN) gene on phosphatase activity-dependent apoptosis of breast cancer cell line MDA468 were investigated. PTEN gene packaged with lipofectin was transferred into breast cancer cell line MDA468 and parental MDA468 cells served as controls. RT-PCR and Western blot were done to detect the expression of target genes. The expression of phosphospecific protein kinase B (PKB/Akt) and focal adhesion kinase (FAK) protein stimulated by epidermal growth factor (EGF) was also detected. Apoptosis was determined by flow cytometry with a double-staining method using FITC-conjugated annexin V and PI. MDA468 cells transfected with PTEN gene could express PTEN mRNA and protein. PTEN decreased the phosphorylation level of AKT protein and down-regulated FAK protein expression in MDA468 stimulated by EGF. The apoptosis rate was 21.68%. PTEN induced breast cancer apoptosis phosphatase activity-dependently. The mechanism is possibly relatedwith phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB)/AKT signaling pathway. Those results may provide new clues on the gene therapy in breast cancer.

  7. Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

    Science.gov (United States)

    Shin, Ju-Hyun

    2016-01-01

    Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery. PMID:27847434

  8. Relationship between Egr-1 gene expression and apoptosis in esophageal carcinoma and precancerous lesions

    Institute of Scientific and Technical Information of China (English)

    Ming-Yao Wu; Ying-Rui Liang; Xian-Ying Wu; Chu-Xiang Zhuang

    2002-01-01

    AIM: To study the expression of early growth response gene1 (Egr-1 gene) and Bcl-X/L protein and its relationship with the cell apoptosis in human esophageal carcinoma(EC) and precancerous lesions.METHODS: In situ hybridization(ISH), immunohistochemistry (IHC) and TUNEL method were used respectively to detect Egr-1mRNA, Egr-1 protein, apoptosis related-protein Bcl-X/L and cell apoptosis in situ from 66 cases of esophageal squamous cell carcinoma and their upper cut edge and paracancerous mucosa.RESULTS: Egr-1 gene in situ hybridization, Bcl-X/L immunohistochemistry positive products were located in the cytoplasm, while Egr-1 immunohistochemistry and TUNEL positive signal were located in the nuclei. The apoptosis index(AI) and the frequency of apoptosis occurrence were increased gradually from precancerous lesion to cancer (P<0.01) and the expression of Egr-1mRNA and Egr-1 protein in dysplasia was the highest among all specimens (P<0.01).The AI of Egr-1 positive cancer tissues was much higher than that of Egr-1 negative cancer tissues (P<0.01), while the AI of Bcl-X/L positive cancer tissues was much lower than that of Bcl-X/L negative cancer tissues (P<0.01). The AI and Egr-1 expression were not correlated with invasiveness and lymphatic metastasis in EC.CONCLUSION: Cell apoptosis was present through esophageal carcinogenesis. The expression of Egr-1 mRNA and Egr-1 protein were high in precancerous lesion of esophagus. The AI was increased significantly in Egr-1 positive squamous cell carcinoma. Egr-1 might promote apoptotic effect. Egr-1 expression and cell apoptosis may have an important biological significance in esophageal carcinogenesis.

  9. HPV16 E2 could act as down-regulator in cellular genes implicated in apoptosis, proliferation and cell differentiation

    Directory of Open Access Journals (Sweden)

    Valencia-Hernández Armando

    2011-05-01

    Full Text Available Abstract Background Human Papillomavirus (HPV E2 plays several important roles in the viral cycle, including the transcriptional regulation of the oncogenes E6 and E7, the regulation of the viral genome replication by its association with E1 helicase and participates in the viral genome segregation during mitosis by its association with the cellular protein Brd4. It has been shown that E2 protein can regulate negative or positively the activity of several cellular promoters, although the precise mechanism of this regulation is uncertain. In this work we constructed a recombinant adenoviral vector to overexpress HPV16 E2 and evaluated the global pattern of biological processes regulated by E2 using microarrays expression analysis. Results The gene expression profile was strongly modified in cells expressing HPV16 E2, finding 1048 down-regulated genes, and 581 up-regulated. The main cellular pathway modified was WNT since we found 28 genes down-regulated and 15 up-regulated. Interestingly, this pathway is a convergence point for regulating the expression of genes involved in several cellular processes, including apoptosis, proliferation and cell differentiation; MYCN, JAG1 and MAPK13 genes were selected to validate by RT-qPCR the microarray data as these genes in an altered level of expression, modify very important cellular processes. Additionally, we found that a large number of genes from pathways such as PDGF, angiogenesis and cytokines and chemokines mediated inflammation, were also modified in their expression. Conclusions Our results demonstrate that HPV16 E2 has regulatory effects on cellular gene expression in HPV negative cells, independent of the other HPV proteins, and the gene profile observed indicates that these effects could be mediated by interactions with cellular proteins. The cellular processes affected suggest that E2 expression leads to the cells in to a convenient environment for a replicative cycle of the virus.

  10. Homeodomain-containing gene 10 inhibits cell apoptosis and promotes cell invasion and migration in osteosarcoma cell lines.

    Science.gov (United States)

    Xiong, Wen; Zhou, Quan; Liu, Gang; Liu, Xiang-Sheng; Li, Xin-Yu

    2017-05-01

    Homeodomain-containing gene 10 (HOXC10) belongs to the homeobox family, which encodes a highly conserved family of transcription factors that plays an important role in morphogenesis in all multicellular organisms. Altered expressions of HOXC10 have been reported in several malignancies. This study was aimed to reveal the expression profile of HOXC10 in osteosarcoma and evaluated whether HOXC10 is a molecular target for cancer therapy. We found that HOXC10 was up-regulated in osteosarcoma tissues compared with bone cyst specimens from The Cancer Genome Atlas database. Osteosarcoma MG63 cells were infected with HOXC10 shRNA expressing vector, and 143B cells were infected with HOXC10 expressing vector. We found that reduced expression of HOXC10 markedly impaired the ability of proliferation, invasion, and migration, and promoted cell apoptosis in vitro and in vivo. Up-regulated expression of HOXC10 promoted the proliferation, invasion, and migration, and inhibited apoptosis of 143B cells. Additionally, HOXC10 regulated apoptosis and migration via modulating expression of Bax/Bcl-2, caspase-3, MMP-2/MMP-9, and E-cadherin in both MG63 and 143B cells and in vivo. These results indicated that HOXC10 might be a diagnostic marker for osteosarcoma and could be a potential molecular target for the therapy of osteosarcoma.

  11. Evaluation of immune and apoptosis related gene responses using an RNAi approach in vaccinated Penaeus monodon during oral WSSV infection

    NARCIS (Netherlands)

    Kulkarni, A.D.; Caipang, C.M.A.; Kiron, V.; Rombout, J.H.W.M.; Fernandes, J.M.O.; Brinchmann, M.

    2014-01-01

    In the present study RNA interference was used to elucidate the connection between two endogenous genes [Penaeus monodon Rab7 (PmRab7) or P. monodon inhibitor of apoptosis (PmIAP)], and selected immune/apoptosis-related genes in orally ‘vaccinated’ shrimp after white spot syndrome virus (WSSV) infec

  12. Isolation and characterization of a human apoptosis-inducing gene with yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    asy gene is a novel apoptosis-inducing gene,but its mechanism is unclear.To investigate the mechanism of asy inducing apoptosis,a novel gene encoding ASY interacting protein (asyip) is isolated from human lung cell line (WI-38) cDNA library with yeast two-hybrid system.The asyip gene is constitutively expressed as two mRNA transcripts with the size of 1.8 and 2.7 kb in various human tissues at different levels.Sequence analysis of full-length cDNA reveals that the two alternative transcripts of asyip gene contain common 5' end and different 3' end,and share a common open reading frame encoding a polypeptide of 236 amino acids.Two protein kinase C phosphorylation sites and two casein kinase II phosphorylation sites are found in ASYIP amino acid sequence.Two highly hydrophobic regions encoding potentially two transmembrane domains are present.The ASYIP protein contains a C-terminal endoplasmic reticulum retrieval signal (Lys-Lys-Lys-Ala-Glu).Immunoprecipitation assay confirmed the interaction of ASY and ASYIP in mammalian cells.Compared with asy gene,overexpression of asyip gene can inhibit growth of tumor cell Saos2 and induce cell apoptosis with a low efficiency.

  13. THE EFFECTS OF HYPERTHERMIA ON SPERMATOGENESIS, APOPTOSIS, GENE EXPRESSION AND FERTILITY IN ADULT MALE MICE

    Science.gov (United States)

    The effects of hyperthermia on spermatogenesis, apoptosis, gene expression and fertility in adult male miceJohn C. Rockett1, Faye L. Mapp1, J. Brian Garges1, J. Christopher Luft1, Chisato Mori2 and David J. Dix1.1Reproductive Toxicology Division, National Health and Envir...

  14. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.

    Directory of Open Access Journals (Sweden)

    Kamalakannan Velmurugan

    2007-07-01

    Full Text Available The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

  15. T lymphocytes from chronic HCV-infected patients are primed for activation-induced apoptosis and express unique pro-apoptotic gene signature.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Zhao

    Full Text Available Although extensive studies have demonstrated the functional impairment of antigen-specific CD4(+ and CD8(+ T-cells during chronic hepatitis C virus (HCV infection, the functional status of global CD4(+ and CD8(+ T-cells remains unclear. In this report, we recruited 42 long-term (~20 years treatment-naïve chronic HCV (CHC patients and 15 healthy donors (HDs to investigate differences in global CD4(+ and CD8(+ T-cells function. We show that CD4(+ and CD8(+ T-cells from CHC patients underwent increased apoptosis after TCR stimulation. Furthermore, IFN-γ, IL-9 and IP-10 were elevated in CHC patients' plasma and promoted activation-induced T-cells death. Global CD4(+ and CD8(+ T-cells also showed unique transcriptional profiles in the expression of apoptosis-related genes. We identified BCL2, PMAIP1, and CASP1 in CD4(+ T-cells and IER3 and BCL2A1 in CD8(+ T-cells from CHC patients as HCV-specific gene signatures. Importantly, the gene expression patterns of CD4(+ and CD8(+ T-cells from CHC patients differ from those in CD4(+ and CD8(+ T-cells from human immunodeficiency virus type 1 (HIV-1 or hepatitis B virus (HBV infected individuals. Our results indicate that chronic HCV infection causes a systemic change in cytokine levels that primes T-cells for activation-induced apoptosis. Furthermore, HCV infection programs unique apoptosis-related gene expression profiles in CD4(+ and CD8(+ T-cells, leading to their enhanced activation-induced apoptosis. These results provide novel insights to the pathogenesis of chronic HCV infection.

  16. Genes of cell-cell interactions, chemotherapy detoxification and apoptosis are induced during chemotherapy of acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Stordrange Laila

    2009-03-01

    Full Text Available Abstract Background The molecular changes in vivo in acute myeloid leukemia cells early after start of conventional genotoxic chemotherapy are incompletely understood, and it is not known if early molecular modulations reflect clinical response. Methods The gene expression was examined by whole genome 44 k oligo microarrays and 12 k cDNA microarrays in peripheral blood leukocytes collected from seven leukemia patients before treatment, 2–4 h and 18–24 h after start of chemotherapy and validated by real-time quantitative PCR. Statistically significantly upregulated genes were classified using gene ontology (GO terms. Parallel samples were examined by flow cytometry for apoptosis by annexin V-binding and the expression of selected proteins were confirmed by immunoblotting. Results Significant differential modulation of 151 genes were found at 4 h after start of induction therapy with cytarabine and anthracycline, including significant overexpression of 31 genes associated with p53 regulation. Within 4 h of chemotherapy the BCL2/BAX and BCL2/PUMA ratio were attenuated in proapoptotic direction. FLT3 mutations indicated that non-responders (5/7 patients, 8 versus 49 months survival are characterized by a unique gene response profile before and at 4 h. At 18–24 h after chemotherapy, the gene expression of p53 target genes was attenuated, while genes involved in chemoresistance, cytarabine detoxification, chemokine networks and T cell receptor were prominent. No signs of apoptosis were observed in the collected cells, suggesting the treated patients as a physiological source of pre-apoptotic cells. Conclusion Pre-apoptotic gene expression can be monitored within hours after start of chemotherapy in patients with acute myeloid leukemia, and may be useful in future determination of therapy responders. The low number of patients and the heterogeneity of acute myeloid leukemia limited the identification of gene expression predictive of therapy

  17. Profile of hepatocyte apoptosis and bile lakes before and after bile duct decompression in severe obstructive jaundice patients

    Institute of Scientific and Technical Information of China (English)

    ToarJMLalisang; RadenSjamsuhidajat; NurjatiCSiregar; AkmalTaher

    2010-01-01

    BACKGROUND: Excessive hepatocyte apoptosis and bile lakes in severe obstructive jaundice might impair liver functions. Although decompression of the bile duct has been reported to improve liver functions in animal studies, the mechanism of obstruction differs from that in humans. This study aimed to determine the profiles of hepatocyte apoptosis and bile lakes following bile duct decompression in patients with severe obstructive jaundice in the clinical setting. METHODS: We conducted a "before and after study" on severe obstructive jaundice patients as a model of inhibition of the excessive process by bile duct decompression. Specimens of liver biopsies were taken before and after decompression of the bile duct and then stained by terminal deoxynucleotide transferase-mediated dUTP nick end-labeling (TUNEL) to identify hepatocyte apoptosis and by hematoxilin-eosin (HE) to identify bile lakes. All measurements were independently done by 2 observers. RESULTS: Twenty-one severe obstructive jaundice patients were included. In all patients, excessive hepatocyte apoptosis and bile lakes were apparent. After decompression, the hepatocyte apoptosis index decreased from 53.1 (SD 105) to 11.7 (SD 13.6) (P CONCLUSION: Bile duct decompression improves hepatocyte apoptosis and bile lakes in cases of severe obstructive jaundice, similar to the findings in animal studies.

  18. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis

    Directory of Open Access Journals (Sweden)

    Schlamp Cassandra L

    2010-05-01

    Full Text Available Abstract Background Silencing of normal gene expression occurs early in the apoptosis of neurons, well before the cell is committed to the death pathway, and has been extensively characterized in injured retinal ganglion cells. The causative mechanism of this widespread change in gene expression is unknown. We investigated whether an epigenetic change in active chromatin, specifically histone H4 deacetylation, was an underlying mechanism of gene silencing in apoptotic retinal ganglion cells (RGCs following an acute injury to the optic nerve. Results Histone deacetylase 3 (HDAC3 translocates to the nuclei of dying cells shortly after lesion of the optic nerve and is associated with an increase in nuclear HDAC activity and widespread histone deacetylation. H4 in promoters of representative genes was rapidly and indiscriminately deacetylated, regardless of the gene examined. As apoptosis progressed, H4 of silenced genes remained deacetylated, while H4 of newly activated genes regained, or even increased, its acetylated state. Inhibition of retinal HDAC activity with trichostatin A (TSA was able to both preserve the expression of a representative RGC-specific gene and attenuate cell loss in response to optic nerve damage. Conclusions These data indicate that histone deacetylation plays a central role in transcriptional dysregulation in dying RGCs. The data also suggests that HDAC3, in particular, may feature heavily in apoptotic gene silencing.

  19. Gene expression profiling predicts the development of oral cancer.

    Science.gov (United States)

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K; Papadimitrakopoulou, Vassiliki A; Feng, Lei; Lee, J Jack; Kim, Edward S; Ki Hong, Waun; Mao, Li

    2011-02-01

    Patients with oral premalignant lesion (OPL) have a high risk of developing oral cancer. Although certain risk factors, such as smoking status and histology, are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develop multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinicopathologic risk factors. On the basis of the gene expression profile data, we also identified 2,182 transcripts significantly associated with oral cancer risk-associated genes (P value oral cancer risk. In multiple independent data sets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention. ©2011 AACR.

  20. Brain stem global gene expression profiles in human spina bifida embryos

    Institute of Scientific and Technical Information of China (English)

    Hong Zhao; Xiang Li; Wan-I Lie; Quanren He; Ting Zhang; Xiaoying Zheng; Ran Zhou; Jun Xie

    2011-01-01

    Environmental and genetic factors influence the occurrence of neural tube defects, such as spina bifida.Specific disease expression patterns will help to elucidate the pathogenesis of disease.However, results obtained from animal models, which often exhibit organism specificity, do not fully explain the mechanisms of human spina bifida onset.In the present study, three embryos with a gestational age of approximately 17 weeks and a confirmed diagnosis of spina bifida, as well as 3 age-matched normal embryos, were obtained from abortions.Fetal brain stem tissues were dissected for RNA isolation, and microarray analyses were conducted to examine profiles of gene expression in brain stems of spina bifida and normal embryos using Affymetrix HG-U1 33A 2.0 GeneChip arrays.Of the 14 500 gene transcripts examined, a total of 182 genes exhibited at least 2.5-fold change in expression, including 140 upregulated and 42 downregulated genes.These genes were placed into 19 main functional categories according to the Gene Ontology Consortium database for biological functions.Of the 182 altered genes, approximately 50% were involved in cellular apoptosis, growth, adhesion, cell cycle, stress, DNA replication and repair, signal transduction, nervous system development, oxidoreduction, immune responses, and regulation of gene transcription.Gene expression in multiple biological pathways was altered in the brain stem of human spina bifida embryos.

  1. Gene expression profile in osteoclasts from patients with Paget's disease of bone.

    Science.gov (United States)

    Michou, Laetitia; Chamoux, Estelle; Couture, Julie; Morissette, Jean; Brown, Jacques P; Roux, Sophie

    2010-03-01

    Paget's disease of bone (PDB) is a common metabolic bone disorder with a significant genetic component. To date, only one gene associated with PDB has been identified, the p62-Sequestosome1 gene (SQSTM1), and more than 20 mutations of this gene have been reported in PDB, the most common being the P392L substitution. In order to search for differentially expressed genes in PDB, we investigated the relative gene expression profile of candidate genes in osteoclast (OCL) cultures from 12 PDB patients and six unmatched healthy controls with known genetic status regarding p62, including healthy carriers of the P392L mutation. We selected 48 OCL-expressed candidate genes that may be involved in relevant pathways of PDB pathogenesis, such as OCL signaling, survival, bone resorption activity, or adhesion. In OCL cultures derived from peripheral blood mononuclear cells, total RNA extraction was performed, followed by real-time PCR experiments. Relative quantification analysis utilized the qBase method where relative expression levels were normalized with respect to a set of reference primer pairs for three housekeeping genes. When compared to non-mutated healthy controls, OCL cultures from PDB patients displayed a significant down-regulation in genes involved in apoptosis (CASP3 and TNFRSF10A), in cell signaling (TNFRSF11A), in the OCL bone resorbing function (ACP5 and CTSK) and in the gene coding for Tau protein (MAPT) (all comparisons, pOCL, and highlight the role of altered apoptosis pathways in these cells. They also suggest that the SQSTM1 P392L mutation plays a role in PDB pathogenesis, even at early preclinical stages in healthy carriers of the P392L mutation.

  2. Gene expression profile analysis of type 2 diabetic mouse liver.

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    Full Text Available Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases.

  3. Gene Expression Profiling of Gastric Cancer

    Science.gov (United States)

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  4. Expression Profiles and RNAi Silencing of Inhibitor of Apoptosis Transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Puglise, Jason M; Estep, Alden S; Becnel, James J

    2016-03-01

    Effective mosquito control is vital to curtail the devastating health effects of many vectored diseases. RNA interference (RNAi)-mediated control of mosquitoes is an attractive alternative to conventional chemical pesticides. Previous studies have suggested that transcripts for inhibitors of apoptosis (IAPs) may be good RNAi targets. To revisit and extend previous reports, we examined the expression of Aedes aegypti (L.) IAPs (AaeIAPs) 1, 2, 5, 6, 9, and a viral IAP-associated factor (vIAF) as well as Anopheles quadrimaculatus Say and Culex quinquefasciatus Say IAP1 homologs (AquIAP1 and CquIAP1) in adult females. Expression profiles of IAPs suggested that some older female mosquitoes had significantly higher IAP mRNA levels when compared to the youngest ones. Minor differences in expression of AaeIAPs were observed in mosquitoes that imbibed a bloodmeal, but the majority of the time points (up to 48 h) were not significantly different. Although in vitro experiments with the Ae. aegypti Aag-2 cell line demonstrated that the various AaeIAPs could be effectively knocked down within one day after dsRNA treatment, only Aag-2 cells treated with dsIAP1 displayed apoptotic morphology. Gene silencing and mortality were also evaluated after topical application and microinjection of the same dsRNAs into female Ae. aegypti. In contrast to previous reports, topical administration of dsRNA against AaeIAP1 did not yield a significant reduction in gene expression or increased mortality. Knockdown of IAP1 and other IAPs by microinjection did not result in significant mortality. In toto, our findings suggest that IAPs may not be suitable RNAi targets for controlling adult mosquito populations.

  5. Human neuronal apoptosis secondary to traumatic brain injury and the regulative role of apoptosis-related genes

    Institute of Scientific and Technical Information of China (English)

    杨树源; 雪亮

    2004-01-01

    Objective: To observe human neuronal apoptosis secondary to traumatic brain injury, and to elucidate its regulative mechanism and the change of expression of apoptosis-related genes.Methods: Specimens of brain were collected from cases of traumatic brain injury in humans. The histological and cellular morphology was examined by light and electron microscopy. The extent of DNA injury to cortical neurons was detected by using TUNEL. By in situ hybridisation and immunohistochemistry the mRNA changes and protein expression of Bcl-2, Bax, p53, and caspase 3 p20 subunit were observed.Results: Apoptotic neurons appeared following traumatic brain injury, peaked at 24 hours and lasted for 7 days. In normal brain tissue activated caspase 3 was rare,but a short time after trauma it became activated. The activity peaked at 20-28 hours and remained higher than normal for 5-7 days. There was no expression of Bcl-2 mRNA and Bcl-2 protein in normal brain tissue but 8 hours after injury their expression became evident and then increased, peaked at 2-3 days and remained higher than normal for 5-7 days. The primary expression of Bax-mRNA and Bax protein was high in normal brain tissue. At 20-28 hours they increased and remained high for 2-3 days; on the 7th days they returned to a normal level. In normal brain tissue, p53mRNA and P53 were minimally expressed.Increased expression was detected at the 8th hour, and decreased at 20-28 hours but still remained higher than normal on the 5th day.Conclusions: Following traumatic injury to the human brain, apoptotic neurons appear around the focus of trauma. The mRNA and protein expression of Bcl-2, Bax and p53 and the activity of caspase 3 enzyme are increased.

  6. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  7. Gene expression profiling of benign and malignant pheochromocytoma.

    NARCIS (Netherlands)

    Brouwers, F.M.; Elkahloun, A.G.; Munson, P.J.; Eisenhofer, G.; Barb, J.; Linehan, W.M.; Lenders, J.W.M.; Krijger, R.R. de; Mannelli, M.; Udelsman, R.; Ocal, I.T.; Shulkin, B.L.; Bornstein, S.R.; Breza, J.; Ksinantova, L.; Pacak, K.

    2006-01-01

    There are currently no reliable diagnostic and prognostic markers or effective treatments for malignant pheochromocytoma. This study used oligonucleotide microarrays to examine gene expression profiles in pheochromocytomas from 90 patients, including 20 with malignant tumors, the latter including

  8. Gene Expression Profile of Multiple Myeloma Cell Line Treated by Arsenic Trioxide

    Institute of Scientific and Technical Information of China (English)

    WANG Mengchang; LIU Shaanxi; LIU Pengbo

    2007-01-01

    cDNA microarray was used to compare the gone expression profiles of multiple myeloma cell line RPMI8226 24 h before and after treatment with arsenic trioxide. Two eDNA probes were prepared by mRNA reverse transcription of both arsenic trioxide-treated and untreated RPMI8226 cells. The probes were labeled with Cy3 and Cy5 fluorescence dyes separately, hybridized with cDNA microarray representing 4096 different human genes, and scanned for fluorescence intensity. The differences in gene expression were calculated on the basis of the ratios of signal intensity of treated and untreated samples. The up- and down-regulated genes were screened through the analysis of gene expression ratios. The results showed that 273 genes were differentially altered at mRNA level, 121 genes were up-regulated and 152 were down-regulated. It is concluded that the treatment with arsenic trioxide can induce a variety of gene changes in RPMI8226 cell line. Many genes may be involved in the pathogenesis of multiple myeloma. ALK-1 and TXNIP genes may play an impor- tant role in the apoptosis and partial differentiation of RPMI8226 cells.

  9. Gene Expression Profiling in Porcine Fetal Thymus

    Institute of Scientific and Technical Information of China (English)

    Yanjiong Chen; Shengbin Li; Lin Ye; Jianing Geng; Yajun Deng; Songnian Hu

    2003-01-01

    obtain an initial overview of gene diversity and expression pattern in porcinethymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus(FTY) were sequenced and 7,071 cleaned ESTs were used for gene expressionanalysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets wereobtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to theGene Ontology classification, 36.99% ESTs were cataloged into the gene expressiongroup, indicating that although the functional gene (18.78% in defense group) ofthymus is expressed in a certain degree, the 100-day-old porcine thymus still existsin a developmental stage. Comparative analysis showed that the gene expressionpattern of the 100-day-old porcine thymus is similar to that of the human infantthymus.

  10. Identification of specific genes and pathways involved in NSAIDs-induced apoptosis of human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Richard H Huang; Jianyuan Chai; Andrzej S Tarnawski

    2006-01-01

    AIM: To study whether indomethacin (IND), a nonselective cyclooxygenase (COX) inhibitor or NS-398(NS), a COX-2-selective inhibitor, in duces apoptosis inhuman colon cancer cells and which apoptosis-related genes and pathways are involved.METHODS: Human colon cancer Caco-2 cells were treated with either: placebo, IND (0.05-0.5 mmol/L)or NS (0.01-0.2 mmol/L) for 1, 5 and 18 h. We then studied: (1) Cell death by the TUNEL method, (2) mRNA expression of 96 apoptosis-related genes using DNA microarray, (3) expression of selected apoptosis related proteins by Western blotting.RESULTS: Both IND and NS induced apoptosis in 30%-50% of Caco-2 cells in a dose dependent manner.IND (0.1 mmol/L for 1 h) significantly up-regulated proapoptotic genes in four families: (1) TNF receptor and ligand, (2) Caspase, (3) Bcl-2 and (4) Caspase recruiting domain. NS treatment up-regulated similar pro-apoptotic genes as IND. In addition, IND also down-regulated antiapoptotic genes of the IAP family.CONCLUSION: (1) Both non-selective and COX-2-selective NSAIDs induce apoptosis in colon cancer cell sin a dose dependent manner. (2) Both NSAIDs induce apoptosis by activating two main apoptotic pathways:the death receptor pathway (involving TNF-R) and the mitochondrial pathway. (3) IND induces apoptosis by up-regulating pro-apoptotic genes and down-regulating anti-apoptotic genes, while NS only up-regulates proapoptotic genes. (4) Induction of apoptosis in colon cancer cells by NSAIDs may explain in part, their inhibitory action on colon cancer growth.

  11. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling.

  12. Bioinformatics analysis of the gene expression profile in Bladder carcinoma

    Directory of Open Access Journals (Sweden)

    Jing Xiao

    2013-01-01

    Full Text Available Bladder carcinoma, which has the ninth highest incidence among malignant tumors in the world, is a complex, multifactorial disease. The malignant transformation of bladder cells results from DNA mutations and alterations in gene expression levels. In this work, we used a bioinformatics approach to investigate the molecular mechanisms of bladder carcinoma. Biochips downloaded from the Gene Expression Omnibus (GEO were used to analyze the gene expression profile in urinary bladder cells from individuals with carcinoma. The gene expression profile of normal genomes was used as a control. The analysis of gene expression revealed important alterations in genes involved in biological processes and metabolic pathways. We also identified some small molecules capable of reversing the altered gene expression in bladder carcinoma; these molecules could provide a basis for future therapies for the treatment of this disease.

  13. Gene expression profiling and pathway analysis of hepatotoxicity induced by triptolide in Wistar rats.

    Science.gov (United States)

    Wang, Jiaying; Jiang, Zhenzhou; Ji, Jinzi; Wang, Xinzhi; Wang, Tao; Zhang, Yun; Tai, Ting; Chen, Mi; Sun, Lixin; Li, Xia; Zhang, Luyong

    2013-08-01

    Triptolide (TP), a major component of TWHF, is widely used to treat rheumatoid arthritis, systemic lupus erythematosus, nephritis and leprosy. However, its clinical use is limited by hepatotoxicity. To further elucidate the underlying mechanism of its hepatotoxic effects, hepatic gene expression profiles were analyzed. TP (1000 and 300 μg/kg) was orally administered to Wistar rats for 14 days. Current study indicated that female rats were more sensitive to TP-induced hepatotoxicity than males. Genome-wide microarray analyses identified 3329 differentially expressed genes in liver of female rats. Analyses of these genes identified over-represented functions associated with insulin signaling pathway, glucose metabolism, cell cycle, oxidative stress and apoptosis, which were consistent with the results of significant increase of Caspase-3 activity and reduction of serum glucose, GSH/GSSG ratio, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities, liver glycogen. In addition, it was observed for the first time that glucocorticoids and IGF1 might get involved in TP-induced hepatotoxicity. These data suggest that TP treatment could alter the hepatic redox status, reduce serum glucose and induce hepatocyte apoptosis, consistent with the differential expression of genes involved in insulin signaling pathway, glucose metabolism pathway and cell stress pathway, all of which might contribute to the overall TP-induced hepatotoxicity.

  14. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  15. Gene Expression Profiles of Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-11-01

    Full Text Available The simultaneous expression of 10,000 genes was measured, using Affymetrix GeneChip microarrays, in muscle specimens from 45 patients with various myopathies (dystrophy, congenital myopathy, and inflammatory myopathy examined at Brigham and Women’s Hospital, and Children’s Hospital, Harvard Medical School, Boston, MA.

  16. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    Science.gov (United States)

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  17. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2016-11-11

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies

  18. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction*

    Science.gov (United States)

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2017-01-01

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. PMID

  19. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    Science.gov (United States)

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-01-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress. PMID:27460544

  20. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    Science.gov (United States)

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-07-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress.

  1. Genome-wide microRNA profiling of rat hippocampus after status epilepticus induced by amygdala stimulation identifies modulators of neuronal apoptosis.

    Directory of Open Access Journals (Sweden)

    Zhen Sun

    Full Text Available MicroRNAs (miRNAs are small and endogenously expressed non-coding RNAs that negatively regulate the expression of protein-coding genes at the translational level. Emerging evidence suggests that miRNAs play critical roles in central nervous system under physiological and pathological conditions. However, their expression and functions in status epilepticus (SE have not been well characterized thus far. Here, by using high-throughput sequencing, we characterized miRNA expression profile in rat hippocampus at 24 hours following SE induced by amygdala stimulation. After confirmation by qRT-PCR, six miRNAs were found to be differentially expressed in brain after SE. Subsequent Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that most of the predicted target genes for these six miRNAs were related to neuronal apoptosis. We then investigated the dynamic changes of these six miRNAs at different time-point (4 hours, 24 hours, 1 week and 3 weeks after SE. Meanwhile, neuronal survival and apoptosis in the hippocampus after SE were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated dUTP end-labeling assay. We found that the expression of miR-874-3p, miR-20a-5p, miR-345-3p, miR-365-5p, and miR-764-3p were significantly increased from 24 hours to 1 week, whereas miR-99b-3p level was markedly decreased from 24 hours to 3 weeks after SE. Further analysis revealed that the levels of miR-365-5p and miR-99b-3p were significantly correlated with neuronal apoptosis after SE. Taken together, our data suggest that miRNAs are important modulators of SE-induced neuronal apoptosis. These findings also open new avenues for future studies aimed at developing strategies against neuronal apoptosis after SE.

  2. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression

    Directory of Open Access Journals (Sweden)

    Meiri Eti

    2009-02-01

    Full Text Available Abstract Background RNA interference is a gene regulatory mechanism that employs small RNA molecules such as microRNA. Previous work has shown that HIV-1 produces TAR viral microRNA. Here we describe the effects of the HIV-1 TAR derived microRNA on cellular gene expression. Results Using a variation of standard techniques we have cloned and sequenced both the 5' and 3' arms of the TAR miRNA. We show that expression of the TAR microRNA protects infected cells from apoptosis and acts by down-regulating cellular genes involved in apoptosis. Specifically, the microRNA down-regulates ERCC1 and IER3, protecting the cell from apoptosis. Comparison to our cloned sequence reveals possible target sites for the TAR miRNA as well. Conclusion The TAR microRNA is expressed in all stages of the viral life cycle, can be detected in latently infected cells, and represents a mechanism wherein the virus extends the life of the infected cell for the purpose of increasing viral replication.

  3. Gene expression profile of Bombyx mori hemocyte under the stress of destruxin A.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available Destruxin A (DA is a cyclo-peptidic mycotoxin from the entomopathogenic fungus Metarhizium anisopliae. To uncover potential genes associated with its molecular mechanisms, a digital gene expression (DGE profiling analysis was used to compare differentially expressed genes in the hemocytes of silkworm larvae treated with DA. Ten DGE libraries were constructed, sequenced, and assembled, and the unigenes with least 2.0-fold difference were further analyzed. The numbers of up-regulated genes were 10, 20, 18, 74 and 8, as well as the numbers of down-regulated genes were 0, 1, 8, 13 and 3 at 1, 4, 8, 12 and 24 h post treatment, respectively. Totally, the expression of 132 genes were significantly changed, among them, 1, 3 and 12 genes were continually up-regulated at 4, 3 and 2 different time points, respectively, while 1 gene was either up or down-regulated continually at 2 different time points. Furthermore, 68 genes were assigned to one or multiple gene ontology (GO terms and 89 genes were assigned to specific Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology. In-depth analysis identified that these genes putatively involved in insecticide resistance, cell apoptosis, and innate immune defense. Finally, twenty differentially expressed genes were randomly chosen and validated by quantitative real-time PCR (qRT-PCR. Our studies provide insights into the toxic effect of this microbial insecticide on silkworm's hemocytes, and are helpful to better understanding of the molecular mechanisms of DA as a biological insecticide.

  4. Effect of TAK1 gene silencing on the apoptosis of Kasumi-1 cells induced by arsenic trioxide

    Institute of Scientific and Technical Information of China (English)

    许锦霞

    2013-01-01

    Objective To study the effect of transforming growth factor-βactivated kinase-1 (TAK1) gene silencing on the proliferation and apoptosis of Kasumi-1 cells induced by arsenic trioxide (As2O3) .Methods Acute myeloid

  5. Gene Expression Profiling of Clostridium botulinum under Heat Shock Stress

    Directory of Open Access Journals (Sweden)

    Wan-dong Liang

    2013-01-01

    Full Text Available During growth, C. botulinum is always exposed to different environmental changes, such as temperature increase, nutrient deprivation, and pH change; however, its corresponding global transcriptional profile is uncharacterized. This study is the first description of the genome-wide gene expression profile of C. botulinum in response to heat shock stress. Under heat stress (temperature shift from 37°C to 45°C over a period of 15 min, 176 C. botulinum ATCC 3502 genes were differentially expressed. The response included overexpression of heat shock protein genes (dnaK operon, groESL, hsp20, and htpG and downregulation of aminoacyl-tRNA synthetase genes (valS, queA, tyrR, and gatAB and ribosomal and cell division protein genes (ftsZ and ftsH. In parallel, several transcriptional regulators (marR, merR, and ompR families were induced, suggesting their involvement in reshuffling of the gene expression profile. In addition, many ABC transporters (oligopeptide transport system, energy production and conversion related genes (glpA and hupL, cell wall and membrane biogenesis related genes (fabZ, fabF, and fabG, flagella-associated genes (flhA, flhM, flhJ, flhS, and motAB, and hypothetical genes also showed changed expression patterns, indicating that they may play important roles in survival under high temperatures.

  6. Changes of Gene Expression in the Apoptosis Pathway in Lncap and PC3 Cells Exposed to X-Rays or Protons

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. In our current studies, we investigated the expressions of apoptosis related gene expression profile (84 genes) in two distinct prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-) before and after exposure to X-rays or protons, using cDNA PCR arrays. In Lncap cells, 10Gy X-ray radiation significantly induced the expression of 19 out of 84 genes at 4h after irradiation. The changed genes were mostly in death and death receptor domain families, TNF ligand and receptor families, and apoptotic group of the BCL2 family, especially in P53 related genes, such as FAS, BAX, BAK1 and GADD45A. In PC3, X-rays only induced the expression of 3 genes, including an increased expression of BIRC3. There was no difference of the X-ray mediated cell killing in both cell lines using the cell cycle analysis. However, these X-ray-induced gene expression differences between PC3 and Lncap may explain the phenotype of PC3 cells that shows more tolerant not only to radiation, but also to other apoptosis inducing and sensitizing reagents. To compare the effectiveness of cell killing with X-rays, we also exposed PC3 cells to 10Gy protons at the Bragg peak region. Protons did not induce more apoptosis than X-rays for the same dose. In comparison to X-rays, protons significantly altered expressions of 13 genes in PC3, which included decreased expressions of anti-apoptosis genes (BCL2 and BCL2L2), and increased expressions of death and death receptor domain family genes, TNF ligand and receptor family and several kinases (FAS, DAPK1 and RIPK2). These data suggest that proton treatment is more effective in influencing the apoptosis pathways in PC3 cells than X-rays, thus protons may be more effective in the treatment of specific prostate tumor.

  7. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Hao Song

    2016-07-01

    Full Text Available During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.

  8. Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling.

    Science.gov (United States)

    Song, Hao; Yu, Zheng-Lin; Sun, Li-Na; Xue, Dong-Xiu; Zhang, Tao; Wang, Hai-Yan

    2016-07-07

    During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.

  9. Metabolomics profiles delineate uridine deficiency contributes to mitochondria-mediated apoptosis induced by celastrol in human acute promyelocytic leukemia cells

    Science.gov (United States)

    Li, Lei; Huan, Fei; Li, Aiping; Liu, Yanqing; Xia, Yankai; Duan, Jin-ao; Ma, Shiping

    2016-01-01

    Celastrol, extracted from “Thunder of God Vine”, is a promising anti-cancer natural product. However, its effect on acute promyelocytic leukemia (APL) and underlying molecular mechanism are poorly understood. The purpose of this study was to explore its effect on APL and underlying mechanism based on metabolomics. Firstly, multiple assays indicated that celastrol could induce apoptosis of APL cells via p53-activated mitochondrial pathway. Secondly, unbiased metabolomics revealed that uridine was the most notable changed metabolite. Further study verified that uridine could reverse the apoptosis induced by celastrol. The decreased uridine was caused by suppressing the expression of gene encoding Dihydroorotate dehydrogenase, whose inhibitor could also induce apoptosis of APL cells. At last, mouse model confirmed that celastrol inhibited tumor growth through enhanced apoptosis. Celastrol could also decrease uridine and DHODH protein level in tumor tissues. Our in vivo study also indicated that celastrol had no systemic toxicity at pharmacological dose (2 mg/kg, i.p., 21 days). Altogether, our metabolomics study firstly reveals that uridine deficiency contributes to mitochondrial apoptosis induced by celastrol in APL cells. Celastrol shows great potential for the treatment of APL. PMID:27374097

  10. Apoptosis and its pathway in X gene-transfected HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Na Lin; Hong-Ying Chen; Dan Li; Sheng-Jun Zhang; Zhi-Xin Cheng; Xiao-Zhong Wang

    2005-01-01

    AIM: To investigate the effect of hepatitis B virus (HBV) X gene on apoptosis and expressions of apoptosis factors in X gene-transfected HepG2 cells.METHODS: The HBV X gene eukaryon expression vector pcDNVA3-Xwas transiently transfected into HepG2 cells by lipid-media transfection. Untransfected HepG2 and HepG2 transfected with pcDNA3 were used as controls. Expression of HBx in HepG2 was identified by PT-PCR. MTT and TUNEL were employed to measure proliferation and apoptosis of cells in.three groups. Semi-quantified RT-PCR was used to evaluate the expression levels of Fas/FasL, Bax/Bcl-xL,and c-myc in each group.RESULTS: HBV X gene was transfected into HepG2 cells successfully. RT-PCR showed that HBx was only expressed in HepG2/pcDNA3-X cells, but not expressed in HepG2 and HepG2/pcDNA3 cells. Analyzed by MTT, cell proliferation capacity was obviously lower in HepG2/pcDNA3-X cells (0.08910±0.003164) than in HepG2 (0.14410±0.004927)and HepG2/pcDNA3 cells (0.12150±0.007159) (P<0.05and P<0.01). Analyzed by TUNEL, cell apoptosis was much more in HepG2/pcDNA3-X cells (980/2 000) than HepG2 (420/2 000), HepG2/pcDNA3 cells (520/2 000) (P<0.05 and P<0.01). Evaluated by semi-quantified RT-PCR, the expression level of Fas/FasL was significantly higher in HepG2 cells transfected with HBx than in HepG2 and HepG2/pcDNA3 cells (P<0.05 and P<0.01). Bax/Bcl-xL expression level was also elevated in HepG2/pcDNA3-X cells (P<0.05and P<0.01). Expression of c-myc was markedly higher in HepG2/pcDNA3-X cells than in HepG2 and HepG2/pcDNA3 cells (P<0.05 and P<0.01).CONCLUSION: HBV X gene can impair cell proliferation capacity, improve cell apoptosis, and upregulate expression of apoptosis factors. The intervention of HBV X gene on the expression of apoptosis factors may be a possible mechanism responsible for the change in cell apoptosis and proliferation.

  11. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    Science.gov (United States)

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  12. Doxorubicin Differentially Induces Apoptosis, Expression of Mitochondrial Apoptosis-Related Genes, and Mitochondrial Potential in BCR-ABL1-Expressing Cells Sensitive and Resistant to Imatinib

    Directory of Open Access Journals (Sweden)

    Ewelina Synowiec

    2015-01-01

    Full Text Available Imatinib resistance is an emerging problem in the therapy of chronic myeloid leukemia (CML. Because imatinib induces apoptosis, which may be coupled with mitochondria and DNA damage is a prototype apoptosis-inducing factor, we hypothesized that imatinib-sensitive and -resistant CML cells might differentially express apoptosis-related mitochondrially encoded genes in response to genotoxic stress. We investigated the effect of doxorubicin (DOX, a DNA-damaging anticancer drug, on apoptosis and the expression of the mitochondrial NADH dehydrogenase 3 (MT-ND3 and cytochrome b (MT-CYB in model CML cells showing imatinib resistance caused by Y253H mutation in the BCR-ABL1 gene (253 or culturing imatinib-sensitive (S cells in increasing concentrations of imatinib (AR. The imatinib-resistant 253 cells displayed higher sensitivity to apoptosis induced by 1 μM DOX and this was confirmed by an increased activity of executioner caspases 3 and 7 in those cells. Native mitochondrial potential was lower in imatinib-resistant cells than in their sensitive counterparts and DOX lowered it. MT-CYB mRNA expression in 253 cells was lower than that in S cells and 0.1 μM DOX kept this relationship. In conclusion, imatinib resistance may be associated with altered mitochondrial response to genotoxic stress, which may be further exploited in CML therapy in patients with imatinib resistance.

  13. Gene expression profile analysis of human intervertebral disc degeneration

    OpenAIRE

    Kai Chen; Dajiang Wu; Xiaodong Zhu; Haijian Ni; Xianzhao Wei; Ningfang Mao; Yang Xie; Yunfei Niu; Ming Li

    2013-01-01

    In this study, we used microarray analysis to investigate the biogenesis and progression of intervertebral disc degeneration. The gene expression profiles of 37 disc tissue samples obtained from patients with herniated discs and degenerative disc disease collected by the National Cancer Institute Cooperative Tissue Network were analyzed. Differentially expressed genes between more and less degenerated discs were identified by significant analysis of microarray. A total of 555 genes were signi...

  14. Gene expression profiling of mouse embryos with microarrays

    OpenAIRE

    Sharov, Alexei A; Piao, Yulan; Minoru S.H. Ko

    2010-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing s...

  15. Effects of emodin on gene expression profile in small cell lung cancer NCI-H446 cells

    Institute of Scientific and Technical Information of China (English)

    FU Zhong-yan; HAN Jin-xiang; HUANG Hai-yan

    2007-01-01

    Background The treatment of patients with small cell lung cancer (SCLC) is based on chemotherapy. However, the treatment is limited by the development of drug resistance. Emodin has been shown to exhibit an anti-cancer effect. But the molecular mechanism remains unclear. This study was conducted to investigate the effect of emodin on the gene expression profile changes in SCLC NCI-H446 cells.Methods NCI-H446 cells were treated with emodin and cell viability was determined by MTT assay. Cell apoptosis was determined by both flow cytometry and caspase-3 activity assay. The effect of emodin on the gene expression profile of NCI-H446 cells was analyzed using cDNA microarray. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to validate the microarray results.Results Emodin suppressed viability, induced apoptosis and changed cell cycle of NCI-H446 cells. Among the 1262 genes, 10 genes were up-regulated and 8 genes were down-regulated more than 2 folds in NCI-H446 cells when compared with the control cells after treatment with emodin for 12 hours, while 12 genes were up-regulated and 24 genes were down-regulated after treatment with emodin for 24 hours. These genes were involved in metabolism, signal transduction, transcription regulation, cytoskeleton organization, immune response, transport, protein synthesis, cell cycle control, cell adhesion and RNA processing. The RT-PCR results were consistent with those obtained by the microarray.Conclusions Emodin affects the expression of genes involved in various cellular functions and plays important roles in cell apoptosis, tumor metastasis and chemotherapy-resistance, which suggests emodin might become an effective chemopreventive or chemotherapeutic agent for SCLC.

  16. Isolation and characterization of a human apoptosis-inducing gene with yeast two-hybrid system

    Institute of Scientific and Technical Information of China (English)

    齐兵; 齐义鹏; Masuo; Yutsudo; 刘青珍

    2000-01-01

    asy gene is a novel apoptosis-inducing gene, but its mechanism is unclear. To investigate the mechanism of asy inducing apoptosis, a novel gene encoding ASY interacting protein (asyip) is isolated from human lung cell line (WI-38) cDNA library with yeast two-hybrid system. The asyip gene is constitutively expressed as two mRNA transcripts with the size of 1.8 and 2.7 kb in various human tissues at different levels. Sequence analysis of full-length cDNA reveals that the two alternative transcripts of asyip gene contain common 5’ end and different 3’ end, and share a common open reading frame encoding a polypeptide of 236 amino acids. Two protein kinase C phosphorylation sites and two casein kinase II phosphorylation sites are found in ASYIP amino acid sequence. Two highly hydrophobic regions encoding potentially two transmembrane domains are present. The ASYIP protein contains a C-terminal endoplasmic reticulum retrieval signal (Lys-Lys-Lys-Ala-Glu). Immunoprecipitation assay confirmed the interaction of

  17. Molecular Cloning of TSARG6 Gene Related to Apoptosis in Human Spermatogenic Cells

    Institute of Scientific and Technical Information of China (English)

    Gang LIU; Guang-Xiu LU; Xiao-Wei XING

    2004-01-01

    Beginning from a mouse EST (GenBank accession No. BE644537) which was significantly up-regulated in cryptorchidism and represented a novel gene, we cloned a new gene (GenBank accessionNo. AY138810) which is related to apoptosis in human spermatogenic cells by means of GeneScan programand PCR technology. The gene whose full cDNA length is 1875 bp containing 8 exons and 7 introns islocated in human chromosome lq13.3. Its protein containing 316 amino acid residues is a new member ofHSP40 protein family because the sequence contains the highly conserved J domain which is present in allDna J-like proteins and is considered to have a critical role in DnaJ-DnaK protein-protein interactions. TSARG6protein displays a 45% identity in a 348-amino acid overlap with DJB5_HUMAN protein. The result ofRT-PCR and Northern blot analysis showed that TSARG6 is specifically expressed in adult testis and thetranscript is 1.8 kb. Based upon all these observations, it is considered that we cloned a new gene whichprobably inhibited human testis spermatogenesis apoptosis.

  18. Possible mechanism for hepatitis B virus X gene to induce apoptosis of hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Sheng-Jun Zhang; Hong-Ying Chen; Zhi-Xin Chen; Xiao-Zhong Wang

    2005-01-01

    AIM: To investigate the possible mechanism for HBV X gene to induce apoptosis of hepatocyte HL-7702 cells.METHODS: HBV X gene eukaryon expression vector pcDNA3-X was established and transfected into HL-7702 cells by lipid-mediated transfection, including transient and stable transfection. Positive clones were screened by incubating in the selective medium with 600 μg/mLG418 and named HL-7702/HBV-encoded X protein (HBx)cells. The expressions of Fas/FasL, Bax/Bcl-2, and c-myc mRNA were measured by semi-quantitative RT-PCR in HL-7702/HBx and control group, respectively.RESULTS: RT-PCR analysis confirmed that HBV X gene was transfected into HL-7702 cells successfully. By semiquantitative RT-PCR analysis, Bax and c-myc mRNA levels in HL-7702/HBx cells of transient transfection were significantly higher than those in control, FasL and c-myc mRNA levels in HL-7702/HBx cells of stable transfection were significantly higher than those in control, whereas the Bcl-2 mRNA levels in HL-7702/HBx cells of transient and stable transfection were significantly lower than those in control.CONCLUSION: HBV X gene may promote the apoptosis of hepatocytes by regulating the expressions of Fas/FasL,Bax/Bcl-2, and c-myc gene in a dose-dependent manner.

  19. Analysis of digital gene expression profiling in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress.

    Science.gov (United States)

    Guo, Hui; Xian, Jian-An; Wang, An-Li

    2016-09-01

    Accumulation of nitrite in water is highly toxic to aquatic animals. To understand immune responses in shrimp under such environmental stress, a digital gene expression (DGE) technology was applied to detect the gene expression profile of the Litopenaeus vannamei hemocytes in response to nitrite for 48 h. A total of 1922 differently expressed unigenes were generated. Of these transcripts, 1269 and 653 genes were up- or down-regulated respectively. Functional categorization and pathways of the differentially expressed genes revealed that immune defense, xenobiotics biodegradation and metabolism, amino acid and nucleobase metabolic process, apoptosis were the differentially regulated processes occurring during nitrite stress. We selected 19 differential expression transcripts (DETs) to validate the sequencing results by real time quantitative PCR (qPCR). The Pearson's correlation coefficient (R) of the 19 DETs was 0.843, which confirmed the consistency and accuracy between these two approaches. Subsequently, we screened 10 genes to examine the changes in the time course of gene expression in more detail. The results indicated that expressions of ATP-binding cassette transporter (ABC transporter), caspase10, QM protein, C type lectin 4 (CTL4), protein disulfide isomerase (PDI), serine protease inhibitor 8 (SPI8), transglutaminase (TGase), chitinase1, inhibitors of apoptosis proteins (IAP) and cytochrome P450 enzyme (CYP450) were induced to participate in the anti-stress defense against nitrite. These results will provide a reference for follow-up study of molecular toxicology and valuable gene information for better understanding of immune response in L. vannamei under environmental stress.

  20. [Cadmium induces p53-dependent apoptosis through the inhibition of Ube2d family gene expression].

    Science.gov (United States)

    Tokumoto, Maki; Satoh, Masahiko

    2012-01-01

    Cadmium (Cd), a harmful metal, exerts severe toxic effects on various tissues such as those in the kidney, liver, lung, and bone. In particular, renal toxicity with damage to proximal tubule cells is caused by chronic exposure to Cd. However, the molecular mechanism underlying chronic Cd renal toxicity remains to be understood. In this review, we present our recent findings since we examined to search for the target molecules involved in the renal toxicity of Cd using toxicogenomics. In NRK-52E rat renal tubular epithelial cells, we found using DNA microarrays that Cd suppressed the expression of the gene encoding Ube2d4, a member of the Ube2d family. The Ube2d family consists of selective ubiquitin-conjugating enzymes associated with p53 degradation. Moreover, Cd suppressed the expressions of genes encoding all Ube2d family members (Ube2d1/2/3/4) prior to the appearance of cytotoxicity in NRK-52E cells. Cd markedly increased p53 protein level and induced p53 phosphorylation and apoptosis in the cells. In vivo studies showed that chronic Cd exposure also suppressed Ube2d family gene expression and induced p53 accumulation and apoptosis in the renal tubules of the mouse kidney. These findings suggest that Cd causes p53-dependent apoptosis due to the inhibition of p53 degradation through the down-regulation of Ube2d family genes in NRK-52E cells and mouse kidney. Thus, the Ube2d family genes may be one of the key targets of renal toxicity caused by Cd.

  1. Molecular Cloning of MSRG-11 Gene Related to Apoptosis of Mouse Spermatogenic Cells

    Institute of Scientific and Technical Information of China (English)

    Yun DENG; Dong-Song NIE; Jian WANG; Xiao-Jun TAN; Zhao-Yan NIE; Hong-Mei YANG; Liang-Sha HU; Guang-Xiu LU

    2005-01-01

    Beginning with a new contig of the expressed sequence tags (Mm.63892) obtained by comparing testis libraries with other tissue and cell line libraries using the digital differential display program,we cloned a new gene which is related to the apoptosis of mouse spermatogenic cells using the Genscan program and polymerase chain reaction (PCR) technology. The sequence data have been submitted to the GenBank database under accession number AY747687. The full cDNA length is 1074 bp, and the gene with7 exons and 6 introns is located in mouse chromosome 1 H5. The protein is recognized as a new member of calmodulin (CaM) binding protein family because the sequence contains three short calmodulin-binding motifs containing conserved Ile and Gln residues (IQ motif) and is considered to play a critical role in interactions of IQ motif-containing proteins with CaM proteins. The putative protein encoded by this gene has 192 amino acid residues with a theoretical molecular mass of 23.7 kDa and a calculated isoelectric point of 9.71. The sequence shares no significant homology with any known protein in databases. RT-PCR and Northern blot analyses revealed that 1.3 kb MSRG-11 transcript was strongly expressed in adult mouse testis but weakly expressed in the spleen and thymus. The MSRG-11 gene was expressed at various levels, faintly at two weeks postpartum and strongly from three weeks postpartum in adult testes. The green fluorescence produced by pEGFP-C2/MSRG-11 was detected in the cytoplasm of COS7 cells 24 h post-transfection. The pcDNA3. 1(-)/MSRG-11 plasmid was constructed and introduced into COS7 cells using Lipofectamine 2000transfection reagent (Invitrogen, Carlsbad, USA). MSRG-11 can accelerate COS7 cell apoptosis, which suggests that this gene may play an important role in the development of mouse testes and is a candidate gene of testis-specific apoptosis. Based on these observations, it was considered that we cloned a new gene which probably accelerates

  2. A functional profile of gene expression in ARPE-19 cells

    Directory of Open Access Journals (Sweden)

    Johnson Dianna A

    2005-11-01

    Full Text Available Abstract Background Retinal pigment epithelium cells play an important role in the pathogenesis of age related macular degeneration. Their morphological, molecular and functional phenotype changes in response to various stresses. Functional profiling of genes can provide useful information about the physiological state of cells and how this state changes in response to disease or treatment. In this study, we have constructed a functional profile of the genes expressed by the ARPE-19 cell line of retinal pigment epithelium. Methods Using Affymetrix MAS 5.0 microarray analysis, genes expressed by ARPE-19 cells were identified. Using GeneChip® annotations, these genes were classified according to their known functions to generate a functional gene expression profile. Results We have determined that of approximately 19,044 unique gene sequences represented on the HG-U133A GeneChip® , 6,438 were expressed in ARPE-19 cells irrespective of the substrate on which they were grown (plastic, fibronectin, collagen, or Matrigel. Rather than focus our subsequent analysis on the identity or level of expression of each individual gene in this large data set, we examined the number of genes expressed within 130 functional categories. These categories were selected from a library of HG-U133A GeneChip® annotations linked to the Affymetrix MAS 5.0 data sets. Using this functional classification scheme, we were able to categorize about 70% of the expressed genes and condense the original data set of over 6,000 data points into a format with 130 data points. The resulting ARPE-19 Functional Gene Expression Profile is displayed as a percentage of ARPE-19-expressed genes. Conclusion The Profile can readily be compared with equivalent microarray data from other appropriate samples in order to highlight cell-specific attributes or treatment-induced changes in gene expression. The usefulness of these analyses is based on the assumption that the numbers of genes

  3. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development.

    Directory of Open Access Journals (Sweden)

    Lisa Shaw

    Full Text Available Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.

  4. Gene expression profiles of human glioblastomas are associated with both tumor cytogenetics and histopathology.

    Science.gov (United States)

    Vital, Ana Luísa; Tabernero, Maria Dolores; Castrillo, Abel; Rebelo, Olinda; Tão, Hermínio; Gomes, Fernando; Nieto, Ana Belen; Resende Oliveira, Catarina; Lopes, Maria Celeste; Orfao, Alberto

    2010-09-01

    Despite the increasing knowledge about the genetic alterations and molecular pathways involved in gliomas, few studies have investigated the association between the gene expression profiles (GEP) and both cytogenetics and histopathology of gliomas. Here, we analyzed the GEP (U133Plus2.0 chip) of 40 gliomas (35 astrocytic tumors, 3 oligodendrogliomas, and 2 mixed tumors) and their association with tumor cytogenetics and histopathology. Unsupervised and supervised analyses showed significantly different GEP in low- vs high-grade gliomas, the most discriminating genes including genes involved in the regulation of cell proliferation, apoptosis, DNA repair, and signal transduction. In turn, among glioblastoma multiforme (GBM), 3 subgroups of tumors were identified according to their GEP, which were closely associated with the cytogenetic profile of their ancestral tumor cell clones: (i) EGFR amplification, (ii) isolated trisomy 7, and (iii) more complex karyotypes. In summary, our results show a clear association between the GEP of gliomas and tumor histopathology; additionally, among grade IV astrocytoma, GEP are significantly associated with the cytogenetic profile of the ancestral tumor cell clone. Further studies in larger series of patients are necessary to confirm our observations.

  5. Progesterone Receptor Subcellular Localization and Gene Expression Profile in Human Astrocytoma Cells Are Modified by Progesterone

    Directory of Open Access Journals (Sweden)

    Aliesha González-Arenas

    2014-11-01

    Full Text Available Intracellular progesterone receptor (PR has been identified in human astrocytomas, the most common and aggressive primary brain tumors in humans. It has been reported that PR cell distribution affects their transcriptional activity and turnover. In this work we studied by immunofluorescence the effects of estradiol and progesterone on the subcellular localization of PR in a grade III human astrocytoma derived cell line (U373. We observed that total PR was mainly distributed in the cytoplasm without hormonal treatment. Estradiol (10 nM increased PR presence in the cytoplasm of U373 cells, whereas progesterone (10 nM and RU486 (PR antagonist, 1 μM blocked this effect. To investigate the role of PR activity in the regulation of gene expression pattern of U373 cells, we evaluated by microarray analysis the profile of genes regulated by progesterone, RU486, or both steroids. We found different genes regulated by steroid treatments that encode for proteins involved in metabolism, transport, cell cycle, proliferation, metastasis, apoptosis, processing of nucleic acids and proteins, adhesion, pathogenesis, immune response, cytoskeleton, and membrane receptors. We determined that 30 genes were regulated by progesterone, 41 genes by RU486 alone, and 13 genes by the cotreatment of progesterone+RU486, suggesting that there are many genes regulated by intracellular PR or through other signaling pathways modulated by progesterone. All these data suggest that PR distribution and activity should modify astrocytomas growth.

  6. Gene expression profiling for targeted cancer treatment.

    Science.gov (United States)

    Yuryev, Anton

    2015-01-01

    There is certain degree of frustration and discontent in the area of microarray gene expression data analysis of cancer datasets. It arises from the mathematical problem called 'curse of dimensionality,' which is due to the small number of samples available in training sets, used for calculating transcriptional signatures from the large number of differentially expressed (DE) genes, measured by microarrays. The new generation of causal reasoning algorithms can provide solutions to the curse of dimensionality by transforming microarray data into activity of a small number of cancer hallmark pathways. This new approach can make feature space dimensionality optimal for mathematical signature calculations. The author reviews the reasons behind the current frustration with transcriptional signatures derived from DE genes in cancer. He also provides an overview of the novel methods for signature calculations based on differentially variable genes and expression regulators. Furthermore, the authors provide perspectives on causal reasoning algorithms that use prior knowledge about regulatory events described in scientific literature to identify expression regulators responsible for the differential expression observed in cancer samples. The author advocates causal reasoning methods to calculate cancer pathway activity signatures. The current challenge for these algorithms is in ensuring quality of the knowledgebase. Indeed, the development of cancer hallmark pathway collections, together with statistical algorithms to transform activity of expression regulators into pathway activity, are necessary for causal reasoning to be used in cancer research.

  7. BDE-209 inhibits pluripotent genes expression and induces apoptosis in human embryonic stem cells.

    Science.gov (United States)

    Du, Lili; Sun, Wen; Zhang, Huili; Chen, Dunjin

    2016-05-01

    Decabromodiphenyl ether (BDE-209) has been detected in human serum, semen, placenta, cord blood and milk worldwide. However, little is known regarding the potential effects on the early human embryonic development of BDE-209. In this study, human embryonic stem cell lines FY-hES-10 and FY-hES-26 were used to evaluate the potential effects and explore the toxification mechanisms using low-level BDE-209 exposure. Our data showed that BDE-209 exposure (1, 10 and 100 nM) reduced the expression of pluripotent genes such as OCT4, SOX2 and NANOG and induced human embryonic stem cells (hESCs) apoptosis. The downregulation of BIRC5/BCL2 and upregulation of BAX were related to apoptosis of hESCs induced by BDE-209 exposure. A mechanism study showed that OCT4 down-regulation accompanied by OCT4 promoter hypermethylation and increasing miR-145/miR-335 levels, OCT4 inhibitors. Moreover, BDE-209 could increase the generation of intracellular reactive oxygen species (ROS) and decrease SOD2 expression. The ROS increase and OCT4 downregulation after BDE-209 exposure could be reversed partly by antioxidant N-acetylcysteine supplement. These findings showed that BDE-209 exposure could decrease pluripotent genes expression via epigenetic regulation and induce apoptosis through ROS generation in human embryonic stem cells in vitro.

  8. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines.

    Science.gov (United States)

    Montazeri, Maryam; Sadeghizadeh, Majid; Pilehvar-Soltanahmadi, Yones; Zarghami, Faraz; Khodi, Samaneh; Mohaghegh, Mina; Sadeghzadeh, Hadi; Zarghami, Nosratollah

    2016-07-25

    The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment.

  9. Gene expression profiling of the rat sciatic nerve in early Wallerian degeneration after injury

    Institute of Scientific and Technical Information of China (English)

    Dengbing Yao; Meiyuan Li; Dingding Shen; Fei Ding; Shibi Lu; Qin Zhao; Xiaosong Gu

    2012-01-01

    Wallerian degeneration is an important area of research in modern neuroscience. A large number of genes are differentially regulated in the various stages of Wallerian degeneration, especially during the early response. In this study, we analyzed gene expression in early Wallerian degeneration of the distal nerve stump at 0, 0.5, 1, 6, 12 and 24 hours after rat sciatic nerve injury using gene chip microarrays. We screened for differentially-expressed genes and gene expression patterns. We examined the data for Gene Ontology, and explored the Kyoto Encyclopedia of Genes and Genomes Pathway. This allowed us to identify key regulatory factors and recurrent network motifs. We identified 1 546 differentially-expressed genes and 21 distinct patterns of gene expression in early Wallerian degeneration, and an enrichment of genes associated with the immune response, acute inflammation, apoptosis, cell adhesion, ion transport and the extracellular matrix. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed components involved in the Jak-STAT, ErbB, transforming growth factor-β, T cell receptor and calcium signaling pathways. Key factors included interleukin-6, interleukin-1, integrin, c-sarcoma, carcinoembryonic antigen-related cell adhesion molecules, chemokine (C-C motif) ligand, matrix metalloproteinase, BH3 interacting domain death agonist, baculoviral IAP repeat-containing 3 and Rac. The data were validated with real-time quantitative PCR. This study provides a global view of gene expression profiles in early Wallerian degeneration of the rat sciatic nerve. Our findings provide insight into the molecular mechanisms underlying early Wallerian degeneration, and the regulation of nerve degeneration and regeneration.

  10. Apoptosis induced by low-intensity ultrasound in vitro: Alteration of protein profile and potential molecular mechanism

    Science.gov (United States)

    Feng, Yi; Wan, Mingxi

    2017-03-01

    To analyze the potential mechanism related to the apoptosis induced by low intensity focused ultrasound, comparative proteomic method was introduced in the study. After ultrasound irradiation (3.0 W/cm2, 1 minute, 6 hours incubation post-irradiation), the human SMMC-7721 hepatocarcinoma cells were stained by trypan blue to detect the morphologic changes, and then the percentage of early apoptosis were tested by the flow cytometry with double staining of FITC-labelled Annexin V/Propidium iodide. Two-dimensional SDS polyacrylamide gel electrophoresis was used to get the protein profile and some proteins differently expressed after ultrasound irradiation were identified by MALDI-TOF mass spectrometry. It's proved early apoptosis of cells were induced by low intentisy focused ultrasound. After ultrasound irradiation, the expressing characteristics of several proteins changed, in which protein p53 and heat shock proteins are associated with apoptosis initiation. It is suggested that the low-intensity ultrasound-induced apoptotic cancer therapy has the potential application via understanding its relevant molecular signaling and key proteins. Moreover, the comparative proteomic method is proved to be useful to supply information about the protein expression to analyze the metabolic processes related to bio-effects of biomedical ultrasound.

  11. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    Energy Technology Data Exchange (ETDEWEB)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-05-18

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors.

  12. Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes

    Science.gov (United States)

    Chen, Dongquan; Stueckle, Todd A.; Luanpitpong, Sudjit; Rojanasakul, Yon; Lu, Yongju; Wang, Liying

    2015-01-01

    A rapid increase in utility of engineered nanomaterials, including carbon nanotubes (CNTs), has raised a concern over their safety. Based on recent evidence from animal studies, pulmonary exposure of CNTs may lead to nanoparticle accumulation in the deep lung without effective clearance which could interact with local lung cells for a long period of time. Physicochemical similarities of CNTs to asbestos fibers may contribute to their asbestos-like carcinogenic potential after long-term exposure, which has not been well addressed. More studies are needed to identify and predict the carcinogenic potential and mechanisms for promoting their safe use. Our previous study reported a long-term in vitro exposure model for CNT carcinogenicity and showed that 6-month sub-chronic exposure of single-walled carbon nanotubes (SWCNT) causes malignant transformation of human lung epithelial cells. In addition, the transformed cells induced tumor formation in mice and exhibited an apoptosis resistant phenotype, a key characteristic of cancer cells. Although the potential role of p53 in the transformation process was identified, the underlying mechanisms of oncogenesis remain largely undefined. Here, we further examined the gene expression profile by using genome microarrays to profile molecular mechanisms of SWCNT oncogenesis. Based on differentially expressed genes, possible mechanisms of SWCNT-associated apoptosis resistance and oncogenesis were identified, which included activation of pAkt/p53/Bcl-2 signaling axis, increased gene expression of Ras family for cell cycle control, Dsh-mediated Notch 1, and downregulation of apoptotic genes BAX and Noxa. Activated immune responses were among the major changes of biological function. Our findings shed light on potential molecular mechanisms and signaling pathways involved in SWCNT oncogenic potential.

  13. Identification of differential gene expression profiles of radioresistant lung cancer cell line established by fractionated ionizing radiation in vitro

    Institute of Scientific and Technical Information of China (English)

    XU Qing-yong; GAO Yuan; LIU Yan; YANG Wei-zhi; XU Xiang-ying

    2008-01-01

    Background Radiotherapy plays a critical role in the management of non-small cell lung cancer (NSCLC). This study was conducted to identify gene expression profiles of acquired radioresistant NSCLC cell line established by fractionated ionizing radiation (FIR) by cDNA microarray.Methods The human lung adenocarcinoma cell line Anip973 was treated with high energy X-ray to receive 60 Gy in 4 Gy fractions. The radiosensitivity of Anip973R and its parental line were measured by clonogenic assay. Gene expression profiles of Anip973R and its parental line were analyzed using cDNA microarray consisting of 21 522 human genes.Identified partly different expressive genes were validated by quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR).Results Fifty-nine upregulated and 43 downregulated genes were identified to radio-resistant Anip973R. Up-regulated genes were associated with DNA damage repair (DDB2), extracellular matrix (LOX), cell adhesion (CDH2), and apoptosis (CRYAB). Down-regulated genes were associated with angiogenesis (GBP-1), immune response (CD83), and calcium signaling pathway (TNNC1). Subsequent validation of selected eleven genes (CD24, DDB2, IGFBP3, LOX,CDH2, CRYAB, PROCR, ANXA1 DCN, GBP-1 and CD83) by Q-RT-PCR was consistent with microarray analysis.Conclusions Fractionated ionizing radiation can lead to the development of radiation resistance. Altered gene profiles of radioresistant cell line may provide new insights into mechanisms underlying clinical radioresistance for NSCLC.

  14. Altered cell cycle gene expression and apoptosis in post-implantation dog parthenotes.

    Directory of Open Access Journals (Sweden)

    Jung Eun Park

    Full Text Available Mature oocytes can be parthenogenetically activated by a variety of methods and the resulting embryos are valuable for studies of the respective roles of paternal and maternal genomes in early mammalian development. In the present study, we report the first successful development of parthenogenetic canine embryos to the post-implantation stage. Nine out of ten embryo transfer recipients became pregnant and successful in utero development of canine parthenotes was confirmed. For further evaluation of these parthenotes, their fetal development was compared with artificially inseminated controls and differentially expressed genes (DEGs were compared using ACP RT-PCR, histological analysis and immunohistochemistry. We found formation of the limb-bud and no obvious differences in histological appearance of the canine parthenote recovered before degeneration occurred; however canine parthenotes were developmentally delayed with different cell cycle regulating-, mitochondria-related and apoptosis-related gene expression patterns compared with controls. In conclusion, our protocols were suitable for activating canine oocytes artificially and supported early fetal development. We demonstrated that the developmental abnormalities in canine parthenotes may result from defective regulation of apoptosis and aberrant gene expression patterns, and provided evidence that canine parthenotes can be a useful tool for screening and for comparative studies of imprinted genes.

  15. BPH gene expression profile associated to prostate gland volume.

    Science.gov (United States)

    Descazeaud, Aurelien; Rubin, Mark A; Hofer, Matthias; Setlur, Sunita; Nikolaief, Nathalie; Vacherot, Francis; Soyeux, Pascale; Kheuang, Laurence; Abbou, Claude C; Allory, Yves; de la Taille, Alexandre

    2008-12-01

    The aim of the current study was to analyze gene expression profiles in benign prostatic hyperplasia and to compare them with phenotypic properties. Thirty-seven specimens of benign prostatic hyperplasia were obtained from symptomatic patients undergoing surgery. RNA was extracted and hybridized to Affymetrix Chips containing 54,000 gene expression probes. Gene expression profiles were analyzed using cluster, TreeView, and significance analysis of microarrays softwares. In an initial unsupervised analysis, our 37 samples clustered hierarchically in 2 groups of 18 and 19 samples, respectively. Five clinical parameters were statistically different between the 2 groups: in group 1 compared with group 2, patients had larger prostate glands, had higher prostate specific antigen levels, were more likely to be treated by alpha blockers, to be operated by prostatectomy, and to have major irritative symptoms. The sole independent parameter associated with this dichotome clustering, however, was the prostate gland volume. Therefore, the role of prostate volume was explored in a supervised analysis. Gene expression of prostate glands 60 mL were compared using significance analysis of microarrays and 227 genes were found differentially expressed between the 2 groups (>2 change and false discovery rate of <5%). Several specific pathways including growth factors genes, cell cycle genes, apoptose genes, inflammation genes, and androgen regulated genes, displayed major differences between small and large prostate glands.

  16. Effect of myeloperoxidase inhibition on gene expression profiles in HL-60 cells exposed to 1,2,4,-benzenetriol.

    Science.gov (United States)

    Miyahara, Emiko; Nishikawa, Takuro; Takeuchi, Toru; Yasuda, Kaori; Okamoto, Yasuhiro; Kawano, Yoshifumi; Horiuchi, Masahisa

    2014-03-20

    While it is known that benzene induces myeloid leukemia in humans, the mechanism has yet to be clarified. Previously, we suggested that myeloperoxidase (MPO) was the key enzyme because it promotes generation of powerful oxidant hypochlorous acid (HOCl) which, reacting with DNA, causes leukemogenesis. In this study, using a whole-human-genome oligonucleotide microarray to clarify the relationships between myelotoxicity of benzene and MPO, we analyzed the genome-wide expression profiles of HL-60 human promyelocytic cell lines exposed to 1,2,4-benzenetriol (BT) with or without MPO inhibition. The microarray analysis revealed that short (1 h) and longer (4 h) exposure to BT changed the expression in HL-60 cells of 1,213 or 1,214 genes associated with transcription, RNA metabolic processes, immune response, apoptosis, cell death, and biosynthetic processes (|Z-score|> 2.0), and that these changes were dramatically lessened by MPO-specific inhibition. The presence of functionally important genes and, specifically, genes related to apoptosis, carcinogenesis, regulation of transcription, immune responses, oxidative stress, and cell-cycle regulation were further validated by real-time RT-PCR. Gene expression profiles along with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation analysis suggest that BT-induced DNA halogenation by MPO is a primary reaction in the leukemogenesis associated with benzene.

  17. Gene expression profile of Jurkat cells exposed to high power terahertz radiation

    Science.gov (United States)

    Grundt, Jessica E.; Roth, Caleb C.; Rivest, Benjamin D.; Doroski, Michael L.; Payne, Jason; Ibey, Bennett L.; Wilmink, Gerald J.

    2011-03-01

    Terahertz (THz) radiation sources are now being used in a host of military, defense, and medical applications. Widespread employment of these applications has prompted concerns regarding the health effects associated with THz radiation. In this study, we examined the gene expression profile of mammalian cells exposed to THz radiation. We hypothesized that if THz radiation couples directly to cellular constituents, then exposed cells may express a specific gene expression profile indicative of ensuing damage. To test this hypothesis, Jurkat cells were irradiated with a molecular gas THz laser (2.52 THz, 636 mWcm-2, durations: 5, 10, 20, 30, 40, or 50 minutes). Viability was assessed 24 h post-exposure using MTT assays, and gene expression profiles were evaluated 4 h post-exposure using mRNA microarrays. Comparable analyses were also performed for hyperthermic positive controls (44°C for 40 minutes). We found that cellular temperatures increased by ~6 °C during THz exposures. We also found that cell death increased with exposure duration, and the median lethal dose (LD50) was calculated to be ~44 minutes. The microarray data showed that THz radiation induced the transcriptional activation of genes associated with cellular proliferation, differentiation, transcriptional activation, chaperone protein stabilization, and apoptosis. For most genes, we found that the magnitude of differential expression was comparable for both the THz and thermal exposure groups; however, several genes were specifically activated by the THz exposure. These results suggest that THz radiation may elicit effects that are not exclusively due to the temperature rise created during THz exposures (i.e. thermal effects). In future work, we plan to verify the results of our microarray experiments using qPCR techniques.

  18. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... and the time of event. Previous findings have shown that high expression of the lncRNA HOTAIR is correlated with poor survival in breast cancer. We validated this finding by demonstrating that high HOTAIR expression in our primary tumors was significantly associated with worse prognosis independent...

  19. Prognostic Gene Expression Profiles in Breast Cancer

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær

    Each year approximately 4,800 Danish women are diagnosed with breast cancer. Several clinical and pathological factors are used as prognostic and predictive markers to categorize the patients into groups of high or low risk. Around 90% of all patients are allocated to the high risk group...... clinical courses, and they may be useful as novel prognostic biomarkers in breast cancer. The aim of the present project was to predict the development of metastasis in lymph node negative breast cancer patients by RNA profiling. We collected and analyzed 82 primary breast tumors from patients who...... and the time of event. Previous findings have shown that high expression of the lncRNA HOTAIR is correlated with poor survival in breast cancer. We validated this finding by demonstrating that high HOTAIR expression in our primary tumors was significantly associated with worse prognosis independent...

  20. RNA amplification for successful gene profiling analysis

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-07-01

    Full Text Available Abstract The study of clinical samples is often limited by the amount of material available to study. While proteins cannot be multiplied in their natural form, DNA and RNA can be amplified from small specimens and used for high-throughput analyses. Therefore, genetic studies offer the best opportunity to screen for novel insights of human pathology when little material is available. Precise estimates of DNA copy numbers in a given specimen are necessary. However, most studies investigate static variables such as the genetic background of patients or mutations within pathological specimens without a need to assess proportionality of expression among different genes throughout the genome. Comparative genomic hybridization of DNA samples represents a crude exception to this rule since genomic amplification or deletion is compared among different specimens directly. For gene expression analysis, however, it is critical to accurately estimate the proportional expression of distinct RNA transcripts since such proportions directly govern cell function by modulating protein expression. Furthermore, comparative estimates of relative RNA expression at different time points portray the response of cells to environmental stimuli, indirectly informing about broader biological events affecting a particular tissue in physiological or pathological conditions. This cognitive reaction of cells is similar to the detection of electroencephalographic patterns which inform about the status of the brain in response to external stimuli. As our need to understand human pathophysiology at the global level increases, the development and refinement of technologies for high fidelity messenger RNA amplification have become the focus of increasing interest during the past decade. The need to increase the abundance of RNA has been met not only for gene specific amplification, but, most importantly for global transcriptome wide, unbiased amplification. Now gene

  1. Temporal gene expression profile of human precursor B leukemia cells induced by adhesion receptor: identification of pathways regulating B-cell survival.

    Science.gov (United States)

    Astier, Anne Laurence; Xu, Ronghui; Svoboda, Marek; Hinds, Esther; Munoz, Olivier; de Beaumont, Rosalie; Crean, Colin Daniel; Gabig, Theodore; Freedman, Arnold Stephen

    2003-02-01

    The physical interactions between B cells and stromal cells from the lymphoid tissue microenvironment are critical to the survival of normal and malignant B cells. They are principally mediated by integrins expressed on B cells and counterreceptors on stromal cells. Specifically, alpha4beta1 integrin engagement rescues B cells from physiological or drug-induced apoptosis. Therefore, in order to understand the mechanisms by which integrins prevent apoptosis in leukemia B cells, we compared the temporal gene expression profiles induced by beta1-integrin ligation with fibronectin (Fn) or adhesion by poly-L-Lysine in serum-starved precursor B leukemia cells. Among the 38 selected differentially expressed genes, 6 genes involved in adhesion (VAV2, EPB41L1, CORO1A), proliferation (FRAP1, CCT4), and intercellular communication (GJB3) were validated by real-time quantitative polymerase chain reaction (RT-Q-PCR). Gene expression modulation could also be validated at the protein level for 5 other genes. We show that integrin stimulation up-regulated FBI-1 expression but inhibited CD79a, Requiem, c-Fos, and caspase 7 induction when the cells underwent apoptosis. We further demonstrate that Fn stimulation also inhibits caspase 3 activation but increases XIAP and survivin expression. Moreover, integrin stimulation also prevents caspase activation induced by doxorubicin. Therefore, we identified genes modulated by adhesion of human precursor B leukemia cells that regulate proliferation and apoptosis, highlighting new pathways that might provide insights into future therapy aiming at targeting apoptosis of leukemia cells.

  2. 3p21.3 tumor suppressor gene RBM5 inhibits growth of human prostate cancer PC-3 cells through apoptosis

    Directory of Open Access Journals (Sweden)

    Zhao Lijing

    2012-11-01

    Full Text Available Abstract Background Recent studies have indicated that the nuclear RNA-binding protein RBM5 has the ability to modulate apoptosis and suppress tumor growth. The aim of this study is to investigate the expression of RBM5 in human prostate cancer and its mechanism of tumor suppression. Methods The expression of RBM5 protein in cancerous prostatic tissues and normal tissues was examined by IHC. PC-3 cell line was used to determine the apoptotic function of RBM5 in vitro. PC-3 cells were transiently transfected with pcDNA3.1-RBM5. Cell viability was determined by MTT assay. Rhodamine 123 staining and Annexin V analysis were performed to observe the apoptotic activity of PC-3 cells overexpressing RBM5. Expression of apoptosis-related genes was assessed by western blot. Results The expression of RBM5 protein was significantly decreased in cancerous prostatic tissues compared to the normal tissues. PC-3 cells overexpressing RBM5 showed not only significant growth inhibition compared with the vector controls, but also dysfunction of mitochondrial membrane potential and increased apoptotic activity. To further define RBM5 function in apoptotic pathways, we investigated differential expression profiles of various BH3-only proteins including Bid, Bad, and Bim, and apoptosis regulatory proteins include P53, cleaved caspase9, and cleaved caspase3. We found that the expression of both BH3-only proteins and apoptosis regulatory proteins was increased in RBM5 transfected cells. Conclusion The expression of RBM5 protein was significantly decreased in cancerous prostatic tissues, which suggests that RBM5 plays an important role in the pathogenesis of prostate cancer. RBM5 may induce the apoptosis of prostate cancer PC-3 cells by modulating the mitochondrial apoptotic pathway, and thus RBM5 might be a promising target for gene therapy on prostate cancer.

  3. Gene expression profiling of soft and firm Atlantic salmon fillet.

    Directory of Open Access Journals (Sweden)

    Thomas Larsson

    Full Text Available Texture of salmon fillets is an important quality trait for consumer acceptance as well as for the suitability for processing. In the present work we measured fillet firmness in a population of farmed Atlantic salmon with known pedigree and investigated the relationship between this trait and gene expression. Transcriptomic analyses performed with a 21 K oligonucleotide microarray revealed strong correlations between firmness and a large number of genes. Highly similar expression profiles were observed in several functional groups. Positive regression was found between firmness and genes encoding proteasome components (41 genes and mitochondrial proteins (129 genes, proteins involved in stress responses (12 genes, and lipid metabolism (30 genes. Coefficients of determination (R(2 were in the range of 0.64-0.74. A weaker though highly significant negative regression was seen in sugar metabolism (26 genes, R(2 = 0.66 and myofiber proteins (42 genes, R(2 = 0.54. Among individual genes that showed a strong association with firmness, there were extracellular matrix proteins (negative correlation, immune genes, and intracellular proteases (positive correlation. Several genes can be regarded as candidate markers of flesh quality (coiled-coil transcriptional coactivator b, AMP deaminase 3, and oligopeptide transporter 15 though their functional roles are unclear. To conclude, fillet firmness of Atlantic salmon depends largely on metabolic properties of the skeletal muscle; where aerobic metabolism using lipids as fuel, and the rapid removal of damaged proteins, appear to play a major role.

  4. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;

    2007-01-01

    with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  5. Gene Transcription Profile of the Detached Retina (An AOS Thesis)

    Science.gov (United States)

    Zacks, David N.

    2009-01-01

    Purpose: Separation of the neurosensory retina from the retinal pigment epithelium (RPE) yields many morphologic and functional consequences, including death of the photoreceptor cells, Müller cell hypertrophy, and inner retinal rewiring. Many of these changes are due to the separation-induced activation of specific genes. In this work, we define the gene transcription profile within the retina as a function of time after detachment. We also define the early activation of kinases that might be responsible for the detachment-induced changes in gene transcription. Methods: Separation of the retina from the RPE was induced in Brown-Norway rats by the injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested at 1, 7, and 28 days after separation. Gene transcription profiles for each time point were determined using the Affymetrix Rat 230A gene microarray chip. Transcription levels in detached retinas were compared to those of nondetached retinas with the BRB-ArrayTools Version 3.6.0 using a random variance analysis of variance (ANOVA) model. Confirmation of the significant transcriptional changes for a subset of the genes was performed using microfluidic quantitative real-time polymerase chain reaction (qRT-PCR) assays. Kinase activation was explored using Western blot analysis to look for early phosphorylation of any of the 3 main families of mitogen-activated protein kinases (MAPK): the p38 family, the Janus kinase family, and the p42/p44 family. Results: Retinas separated from the RPE showed extensive alterations in their gene transcription profile. Many of these changes were initiated as early as 1 day after separation, with significant increases by 7 days. ANOVA analysis defined 144 genes that had significantly altered transcription levels as a function of time after separation when setting a false discovery rate at ≤0.1. Confirmatory RT-PCR was performed on 51 of these 144 genes. Differential transcription detected on the microarray

  6. TXTGate: profiling gene groups with text-based information

    DEFF Research Database (Denmark)

    Glenisson, P.; Coessens, B.; Van Vooren, S.

    2004-01-01

    We implemented a framework called TXTGate that combines literature indices of selected public biological resources in a flexible text-mining system designed towards the analysis of groups of genes. By means of tailored vocabularies, term-as well as gene-centric views are offered on selected textual...... fields and MEDLINE abstracts used in LocusLink and the Saccharomyces Genome Database. Subclustering and links to external resources allow for in-depth analysis of the resulting term profiles....

  7. The molecular mechanisms and gene expression profiling for shikonin-induced apoptotic and necroptotic cell death in U937 cells.

    Science.gov (United States)

    Piao, Jin-Lan; Cui, Zheng-Guo; Furusawa, Yukihiro; Ahmed, Kanwal; Rehman, Mati Ur; Tabuchi, Yoshiaki; Kadowaki, Makoto; Kondo, Takashi

    2013-09-25

    Shikonin (SHK), a natural naphthoquinone derived from the Chinese medical herb Lithospermum erythrorhizon, induces both apoptosis and necroptosis in several cancer cell lines. However, the detailed molecular mechanisms involved in the initiation of cell death are still unclear. In the present study, caspase-dependent apoptosis was induced by SHK treatment at 1μM after 6h in U937 cells, with increase in DNA fragmentation, generation of intracellular reactive oxygen species (ROS), fraction of cells with low mitochondrial membrane potential (MMP), and in the expression of BH3 only proteins Noxa and tBid. Interestingly, caspase-independent cell death was also detected with SHK treatment at 10μM, observed as increase in SYTOX® Green staining and release of lactate dehydrogenase (LDH). Necrostatin-1 (Nec-1) completely inhibited the SHK-induced leakage of LDH and SYTOX® Green staining. Cell permeable exogenous glutathione (GSH) completely inhibited 1μM SHK-induced apoptosis and converted 10μM SHK-induced necroptosis to apoptosis. Gene expression profiling revealed that 353 genes were found to be significantly regulated by 1μM and 85 genes by 10μM of SHK treatment, respectively. Among these genes, the transcription factor 3 (ATF3) and DNA-damage-inducible transcript 3 (DDIT3) were highly expressed at 1μM of SHK treatment, while tumor necrosis factor (TNF) expression mainly increased at 10μM treatment. These findings provide novel information for the molecular mechanism of SHK-induced apoptosis and necroptosis.

  8. Metabolic profiling-based data-mining for an effective chemical combination to induce apoptosis of cancer cells.

    Science.gov (United States)

    Kumazoe, Motofumi; Fujimura, Yoshinori; Hidaka, Shiori; Kim, Yoonhee; Murayama, Kanako; Takai, Mika; Huang, Yuhui; Yamashita, Shuya; Murata, Motoki; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Tachibana, Hirofumi

    2015-03-31

    Green tea extract (GTE) induces apoptosis of cancer cells without adversely affecting normal cells. Several clinical trials reported that GTE was well tolerated and had potential anti-cancer efficacy. Epigallocatechin-3-O-gallate (EGCG) is the primary compound responsible for the anti-cancer effect of GTE; however, the effect of EGCG alone is limited. To identify GTE compounds capable of potentiating EGCG bioactivity, we performed metabolic profiling of 43 green tea cultivar panels by liquid chromatography-mass spectrometry (LC-MS). Here, we revealed the polyphenol eriodictyol significantly potentiated apoptosis induction by EGCG in vitro and in a mouse tumour model by amplifying EGCG-induced activation of the 67-kDa laminin receptor (67LR)/protein kinase B/endothelial nitric oxide synthase/protein kinase C delta/acid sphingomyelinase signalling pathway. Our results show that metabolic profiling is an effective chemical-mining approach for identifying botanical drugs with therapeutic potential against multiple myeloma. Metabolic profiling-based data mining could be an efficient strategy for screening additional bioactive compounds and identifying effective chemical combinations.

  9. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Fei Zhu

    Full Text Available BACKGROUND: Excessive mechanical loading of articular cartilage producing hydrostatic stress, tensile strain and fluid flow leads to irreversible cartilage erosion and osteoarthritic (OA disease. Since application of high fluid shear to chondrocytes recapitulates some of the earmarks of OA, we aimed to screen the gene expression profiles of shear-activated chondrocytes and assess potential similarities with OA chondrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Using a cDNA microarray technology, we screened the differentially-regulated genes in human T/C-28a2 chondrocytes subjected to high fluid shear (20 dyn/cm(2 for 48 h and 72 h relative to static controls. Confirmation of the expression patterns of select genes was obtained by qRT-PCR. Using significance analysis of microarrays with a 5% false discovery rate, 71 and 60 non-redundant transcripts were identified to be ≥2-fold up-regulated and ≤0.6-fold down-regulated, respectively, in sheared chondrocytes. Published data sets indicate that 42 of these genes, which are related to extracellular matrix/degradation, cell proliferation/differentiation, inflammation and cell survival/death, are differentially-regulated in OA chondrocytes. In view of the pivotal role of cyclooxygenase-2 (COX-2 in the pathogenesis and/or progression of OA in vivo and regulation of shear-induced inflammation and apoptosis in vitro, we identified a collection of genes that are either up- or down-regulated by shear-induced COX-2. COX-2 and L-prostaglandin D synthase (L-PGDS induce reactive oxygen species production, and negatively regulate genes of the histone and cell cycle families, which may play a critical role in chondrocyte death. CONCLUSIONS/SIGNIFICANCE: Prolonged application of high fluid shear stress to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. Our data suggest a potential link between exposure of chondrocytes/cartilage to abnormal mechanical loading and the pathogenesis

  10. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling.

    Science.gov (United States)

    Jansen, Maurice P H M; Foekens, John A; van Staveren, Iris L; Dirkzwager-Kiel, Maaike M; Ritstier, Kirsten; Look, Maxime P; Meijer-van Gelder, Marion E; Sieuwerts, Anieta M; Portengen, Henk; Dorssers, Lambert C J; Klijn, Jan G M; Berns, Els M J J

    2005-02-01

    To discover a set of markers predictive for the type of response to endocrine therapy with the antiestrogen tamoxifen using gene expression profiling. The study was performed on 112 estrogen receptor-positive primary breast carcinomas from patients with advanced disease and clearly defined types of response (ie, 52 patients with objective response v 60 patients with progressive disease) from start of first-line treatment with tamoxifen. Main clinical end points are the effects of therapy on tumor size and time until tumor progression (progression-free survival [PFS]). RNA isolated from tumor samples was amplified and hybridized to 18,000 human cDNA microarrays. Using a training set of 46 breast tumors, 81 genes were found to be differentially expressed (P tamoxifen-responsive and -resistant tumors. These genes were involved in estrogen action, apoptosis, extracellular matrix formation, and immune response. From the 81 genes, a predictive signature of 44 genes was extracted and validated on an independent set of 66 tumors. This 44-gene signature is significantly superior (odds ratio, 3.16; 95% CI, 1.10 to 9.11; P = .03) to traditional predictive factors in univariate analysis and also significantly related with a longer PFS in univariate (hazard ratio, 0.54; 95% CI, 0.31 to 0.94; P = .03) as well as in multivariate analyses (P = .03). Our data show that gene expression profiling can be used to discriminate between breast cancer patients with progressive disease and objective response to tamoxifen. Additional studies are needed to confirm if the predictive signature might allow identification of individual patients who could benefit from other (adjuvant) endocrine therapies.

  11. Flies selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Peter; Loeschcke, Volker

    2011-01-01

    differentially expressed between selected and control flies when measured at the same chronological age. The longevity-selected flies consistently showed expression profiles more similar to control flies one age class younger than control flies of the same age. This finding is in accordance with a younger gene...... the physiological age as the level of cumulative mortality. Eighty-four genes were differentially expressed between the control and longevity-selected lines at the same physiological age, and the overlap between the same chronological and physiological age gene lists included 40 candidate genes for increased...... longevity. Among these candidates were genes with roles in starvation resistance, immune response regulation, and several that have not yet been linked to longevity. Investigating these genes would provide new knowledge of the pathways that affect life span in invertebrates and, potentially, mammals....

  12. Microarray gene expression profiling and analysis in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Sadhukhan Provash

    2004-06-01

    Full Text Available Abstract Background Renal cell carcinoma (RCC is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. Methods Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. Results Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR. Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. Conclusions This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most

  13. INFLUENCE OF NEOADJUVANT INTRAARTERIAL INFUSION CHEMOTHERAPY ON APOPTOSIS AND MULTIDRUG RESISTANCE ASSOCIATED GENES OF ENDOMETRIAL CANCER

    Institute of Scientific and Technical Information of China (English)

    朱雪琼; 岳天孚; 张颖; 惠京; 王德华

    2002-01-01

    Objective: Through investigating the influence of neoadjuvant intraarterial infusion chemotherapy (NIAC) on the timing changes of apoptosis, PCNA and multiple drug resistance associated genes of endometrial cancer, to study the mechanism of chemotherapy and to define the best operation time. Methods: Twenty patients were subjected to neoadjuvant consecutive uterine arterial infusion with CDDP 100 mg and ADM 50 mg. The biopsy of endometrial tumor tissues was performed before, immediate after and 1, 2-2+3 w, 3+3-4 w after chemotherapy. Apoptosis index (AI) was estimated by a combination of histologic and TUNEL assays. Proliferative index (PI) was examined by SABC immunohistochemical staining. Expressions of multidrug resistance 1 (MDR1), multidrug resistance-associated protein (MRP) and lung resistance protein (LRP) were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The AI of endometrial cancer cells immediate after and 1, 2-2+3 w, after chemotherapy were 3.03%, 3.47% and 5.04%, respectively, much higher than that before chemotherapy which was 2.31%. After chemotherapy, AI/PI gradually increased. It was highest in 2-2+3 w, while 3+3-4 w after chemotherapy the AI and AI/PI were both significantly lower than that before chemotherapy. The expression of MDR1, MRP and LRP all decreased temporarily after chemotherapy, while 3+3-4 w after chemotherapy they all increased to levels higher than that before chemotherapy, but the difference were not significant (P>0.05). Conclusion: Neoadjuvant consecutive intra-arterial infusion chemotherapy via uterine artery can inhibit tumor cells proliferation and induce apoptosis effectively. To evaluate the response of intra-arterial chemotherapy the change of apoptosis index and cell proliferation should be analyzed. The most suitable time for the operation is 3 weeks after intra-arterial infusion chemotherapy.

  14. Low levels of Bax inhibitor-1 gene expression increase tunicamycin-induced apoptosis in human neuroblastoma SY5Y cells

    Institute of Scientific and Technical Information of China (English)

    Dan Wu; Peirong Wang; Shiyao Wang

    2012-01-01

    A human SH-SY5Y neuroblastoma cell line with a low level of Bax inhibitor-1 expression was established by lentivirus-mediated RNA interference and fluorescence-activated cell sorting. In control SH-SY5Y cells, tunicamycin treatment induced endoplasmic reticulum stress-mediated apoptosis; however, after Bax inhibitor-1 gene knockdown, cell survival rates were significantly decreased and the degree of apoptosis was significantly increased following tunicamycin treatment. In addition, chromatin condensation and apparent apoptotic phenomena, such as marginalization and cytoplasmic vesicles, were observed. Our findings indicate that Bax inhibitor-1 can delay apoptosis induced by endoplasmic reticulum stress.

  15. Effect of hepatitis B virus X gene on apoptosis and immune molecules of renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    王轩

    2013-01-01

    Objective To investigate the effect of hepatitis B virus X(HBX)gene on apoptosis and immune moleculesof human proximal renal tubular epithelial cell line(HK-2).Methods The eukaryotic vector pcDNA3.1-myc-HBX containing HBX gene was transiently transfected into

  16. Microfluidic gene arrays for rapid genomic profiling

    Science.gov (United States)

    West, Jay A.; Hukari, Kyle W.; Hux, Gary A.; Shepodd, Timothy J.

    2004-12-01

    Genomic analysis tools have recently become an indispensable tool for the evaluation of gene expression in a variety of experiment protocols. Two of the main drawbacks to this technology are the labor and time intensive process for sample preparation and the relatively long times required for target/probe hybridization. In order to overcome these two technological barriers we have developed a microfluidic chip to perform on chip sample purification and labeling, integrated with a high density genearray. Sample purification was performed using a porous polymer monolithic material functionalized with an oligo dT nucleotide sequence for the isolation of high purity mRNA. These purified mRNA"s can then rapidly labeled using a covalent fluorescent molecule which forms a selective covalent bond at the N7 position of guanine residues. These labeled mRNA"s can then released from the polymer monolith to allow for direct hybridization with oligonucletide probes deposited in microfluidic channel. To allow for rapid target/probe hybridization high density microarray were printed in microchannels. The channels can accommodate array densities as high as 4000 probes. When oligonucleotide deposition is complete, these channels are sealed using a polymer film which forms a pressure tight seal to allow sample reagent flow to the arrayed probes. This process will allow for real time target to probe hybridization monitoring using a top mounted CCD fiber bundle combination. Using this process we have been able to perform a multi-step sample preparation to labeled target/probe hybridization in less than 30 minutes. These results demonstrate the capability to perform rapid genomic screening on a high density microfluidic microarray of oligonucleotides.

  17. Relationship between suppression of E6 and E7 virus oncogenes and expression of apoptosis and cell cycle genes in cervical cancer culture.

    Science.gov (United States)

    Khokhlova, E V; Shkoporov, A N; Volodin, N N; Efimov, B A; Pavlov, K A; Kafarskaia, L I

    2010-07-01

    The effects of short interfering RNA suppressing the expression of E6 and E7 human papilloma virus (type 18) on the expression of apoptosis and cell cycle genes were studied in HeLa cells. Changes in the transcription profiles were evaluated using DNA microarray and real-time reverse-transcription PCR. Cell transfection with anti-E6 and anti-E7 short interfering RNA moderately reduced the expression of mRNA for CDC25C, GRB2, GTSE1, and PLK1 genes and induced expression of CDKN1A (p21(CIP)) gene mRNA. In addition, culture proliferation was inhibited and morphological changes characteristic of differentiation and cell aging developed.

  18. Comparative gene expression profiling of Neospora caninum strains

    Science.gov (United States)

    To understand the genetic basis of virulence, gene expression profiles of a temperature-sensitive strain (NCts-8) and its wild type (NC-1) of Neospora caninum were characterized and compared using a high-density microarray with approximately 63,000 distinct oligonucleotides. Each sequence is represe...

  19. Gene expression profiling differentiates germ cell tumors from other cancers and defines subtype-specific signatures

    Science.gov (United States)

    Juric, Dejan; Sale, Sanja; Hromas, Robert A.; Yu, Ron; Wang, Yan; Duran, George E.; Tibshirani, Robert; Einhorn, Lawrence H.; Sikic, Branimir I.

    2005-01-01

    Germ cell tumors (GCTs) of the testis are the predominant cancer among young men. We analyzed gene expression profiles of 50 GCTs of various subtypes, and we compared them with 443 other common malignant tumors of epithelial, mesenchymal, and lymphoid origins. Significant differences in gene expression were found among major histological subtypes of GCTs, and between them and other malignancies. We identified 511 genes, belonging to several critical functional groups such as cell cycle progression, cell proliferation, and apoptosis, to be significantly differentially expressed in GCTs compared with other tumor types. Sixty-five genes were sufficient for the construction of a GCT class predictor of high predictive accuracy (100% training set, 96% test set), which might be useful in the diagnosis of tumors of unknown primary origin. Previously described diagnostic and prognostic markers were found to be expressed by the appropriate GCT subtype (AFP, POU5F1, POV1, CCND2, and KIT). Several additional differentially expressed genes were identified in teratomas (EGR1 and MMP7), yolk sac tumors (PTPN13 and FN1), and seminomas (NR6A1, DPPA4, and IRX1). Dynamic computation of interaction networks and mapping to existing pathways knowledge databases revealed a potential role of EGR1 in p21-induced cell cycle arrest and intrinsic chemotherapy resistance of mature teratomas. PMID:16306258

  20. Gene expression profiles of mouse spermatogenesis during recovery from irradiation

    DEFF Research Database (Denmark)

    Shah, Fozia J; Tanaka, Masami; Nielsen, John E

    2009-01-01

    BACKGROUND: Irradiation or chemotherapy that suspend normal spermatogenesis is commonly used to treat various cancers. Fortunately, spermatogenesis in many cases can be restored after such treatments but knowledge is limited about the re-initiation process. Earlier studies have described...... the cellular changes that happen during recovery from irradiation by means of histology. We have earlier generated gene expression profiles during induction of spermatogenesis in mouse postnatal developing testes and found a correlation between profiles and the expressing cell types. The aim of the present...... work was to utilize the link between expression profile and cell types to follow the cellular changes that occur during post-irradiation recovery of spermatogenesis in order to describe recovery by means of gene expression. METHODS: Adult mouse testes were subjected to irradiation with 1 Gy...

  1. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    Science.gov (United States)

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis. PMID:28212332

  2. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis.

    Science.gov (United States)

    Størling, Joachim; Pociot, Flemming

    2017-02-16

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis.

  3. Gene expression profiles resulting from stable loss of p53 mirrors its role in tissue differentiation.

    Directory of Open Access Journals (Sweden)

    Oliver Couture

    Full Text Available The tumor suppressor gene p53 is involved in a variety of cellular activities such as cellular stress responses, cell cycle regulation and differentiation. In our previous studies we have shown p53's transcription activating role to be important in osteoblast differentiation. There is still a debate in the literature as to whether p53 inhibits or promotes differentiation. We have found p53 heterozygous mice to show a p53 dependency on some bone marker gene expression that is absent in knockout mice. Mice heterozygous for p53 also show a higher incidence of osteosarcomas than p53 knockout mice. This suggests that p53 is able to modify the environment within osteoblasts. In this study we compare changes in gene expression resulting after either a transient or stable reduction in p53. Accordingly we reduced p53 levels transiently and stably in C2C12 cells, which are capable of both myoblast and osteoblast differentiation, and compared the changes in gene expression of candidate genes regulated by the p53 pathway. Using a PCR array to assay for p53 target genes, we have found different expression profiles when comparing stable versus transient knockdown of p53. As expected, several genes with profound changes after transient p53 loss were related to apoptosis and cell cycle regulation. In contrast, stable p53 loss produced a greater change in MyoD and other transcription factors with tissue specific roles, suggesting that long term loss of p53 affects tissue homeostasis to a greater degree than changes resulting from acute loss of p53. These differences in gene expression were validated by measuring promoter activity of different pathway specific genes involved in differentiation. These studies suggest that an important role for p53 is context dependent, with a stable reduction in p53 expression affecting normal tissue physiology more than acute loss of p53.

  4. Utilization of Alternative Polyadenylation Signals in the Novel Human Apoptosis-Inducing Gene hap

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    hap, a novel human apoptosis-inducing gene which can interact with another newly discovered apoptosis-inducing gene ASY, was identified by cloning its cDNAs from human lung cell line (WI-38) cDNA library. Two major mRNA species (1.8 and 2. 7 kb in length, respectively) were previously identified by Northern blot analysis of poly(A)+ RNA from human multiple tissues using partial hap cDNA as a probe. In the present work, the molecular mechanism accounting for the generation of the two hap transcripts were investigated. The rapid amplification of cDNA 3'-ends (3'-RACE) technique and the sequential Southern blot analysis, in conjunction with the sequencing analysis demonstrated that the two hap transcripts derive from the alternative polyadenylation site selection: a AATAAA signal at position 1 528 -1 533 nt for the 1.8 kb hap mRNA; and a AATAAA signal at position 2 375 -2 380 nt for the 2. 7 kb hap mRNA. Furthermore, a number of regulatory elements within hap 3'-untranslated region (3'-UTR) were also examined.

  5. CLONING AND EXPRESSION OF A GENE MEDIATINGγ-RADIATION-INDUCED APOPTOSIS IN HL-60 CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To identify the member of the caspase family proteases involved in γ-radiation-induced apoptosis in HL-60 cells and to study the expression of the caspase gene in normal, apoptotic cells and in immortal tu mor cells. Methods By using degenerate oligonucleotide primers encoding the highly conserved peptides that were pre sent in all known caspases, we performed RT-PCR on poly(A)RNA from γ-radiation-induced apoptotic HL-60 cells. Caspase-3 mRNA in apoptotic HL-60 cells and in human tumor cell lines was analyzed by Northern blot. Results The amplified DNA fragment was identified with caspase-3 cDNA by cloning and sequencing. The Northern blot analysis of caspase-3 mRNA of different human tumor cell lines showed that the caspase-3 gene transcript was more highly ex pressed in leukemia cell lines and the SH-SY5Y cell line than in HeLa and MCF-7 cells. It was more highly expressed in the radiation-induced apoptotic HL-60 cells than in control HL-60 cells. Conclusion These results indicated that caspase-3 was involved in γ-radiation-induced apoptosis in HL-60 cells. The high level of expression of caspase-3 may aid efforts to understand the insensitivity of some tumor cells to radiation, their inherent ability to survive, and apop tosis.

  6. Requiem: a novel zinc finger gene essential for apoptosis in myeloid cells.

    Science.gov (United States)

    Gabig, T G; Mantel, P L; Rosli, R; Crean, C D

    1994-11-25

    To identify genes mediating programmed cell death triggered by interleukin 3 (IL-3)-deprivation of myeloid cells, the IL-3-dependent murine myeloid cell line FDCP-1 was used to screen a mammalian cell expression library for cDNAs that would promote survival following withdrawal of IL-3. A unique 892-base pair cDNA was cloned that prevented the programmed cell death response following IL-3 deprivation by causing antisense suppression of an endogenous 2.4-kilobase (kb) mRNA. A 2.3-kb cDNA containing the identical 892-base pair over-lapping sequence was cloned that encoded a deduced 371-amino acid protein containing a single Kruppel-type zinc finger and a cluster of 4 cysteine/histidine-rich repeats resembling atypical zinc fingers. The 2.4-kb mRNA was found to be ubiquitously expressed in murine tissues and its abundance in FDCP-1 cells was not altered in response to IL-3 deprivation. Since expression of this 2.4-kb mRNA was a prerequisite for the apoptosis response following IL-3 deprivation, the gene encoding it was named requiem. Requiem is likely to encode a transcription factor required for the apoptosis response following survival factor withdrawal from myeloid cells.

  7. Super-paramagnetic clustering of yeast gene expression profiles

    CERN Document Server

    Getz, G; Domany, E; Zhang, M Q

    2000-01-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  8. Super-paramagnetic clustering of yeast gene expression profiles

    Science.gov (United States)

    Getz, G.; Levine, E.; Domany, E.; Zhang, M. Q.

    2000-04-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, super-paramagnetic clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  9. Identification of apoptosis-related genes Bcl2 and Bax from yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to waterborne and dietborne zinc exposure.

    Science.gov (United States)

    Li, Dan-Dan; Luo, Zhi; Chen, Guang-Hui; Song, Yu-Feng; Wei, Chuan-Chuan; Pan, Ya-Xiong

    2017-10-30

    Apoptosis plays a key role in the physiology of multicellular organisms, and has been well studied in mammals, but not in teleosts. Zinc (Zn) has been shown to be an important regulator of apoptosis and apoptosis involves in the regulation of lipid metabolism. Moreover, our recent study indicated that waterborne and dietborne Zn exposure differently influenced lipid metabolism in Pelteobagrus fulvidraco, but further mechanism remained unknown. The hypothesis of the present study is that apoptosis mediated the Zn-induced changes of lipid metabolism of P. fulvidraco subjected to different exposure pathways. To this end, we cloned full-length cDNA sequences of Bcl2 and three Bax subtypes involved in apoptosis in P. fulvidraco, explored their mRNA expressions in responses to different Zn exposure pathways. Bcl2 and three Bax subtypes shared similar domain structure as typical pro- and anti-apoptotic Bcl2 family members. Their mRNAs were widely expressed among various tissues, but at variable levels. Waterborne Zn exposure down-regulated mRNA levels of Baxg and ratios of Baxa/Bcl2, and Baxg/Bcl2, but showed no significant effects on mRNA abundances of Bcl2, Baxa and Baxb, and the ratio of Baxb/Bcl2. In contrast, dietborne Zn exposure up-regulated mRNA levels of Bcl2, Baxa, Baxb and Baxg, but reduced the ratios of Baxa/Bcl2, Baxb/Bcl2, and Baxg/Bcl2. Considering their important roles of these genes in apoptosis induced by Zn, apoptosis may mediate the Zn-induced changes of hepatic lipid metabolism of Pelteobagrus fulvidraco under different Zn exposure pathways. For the first time, we characterized the full-length cDNA sequences of Bcl2 and three Bax subtypes, determined their expression profiles and transcriptional responses to different Zn exposure pathways, which would contribute to our understanding of the molecular basis of apoptosis, and also provide new insights into physiological responses to different Zn exposure pathways. Copyright © 2017 Elsevier B.V. All

  10. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  11. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  12. Gene expression profiling upon (212) Pb-TCMC-trastuzumab treatment in the LS-174T i.p. xenograft model.

    Science.gov (United States)

    Yong, Kwon J; Milenic, Diane E; Baidoo, Kwamena E; Kim, Young-Seung; Brechbiel, Martin W

    2013-10-01

    Recent studies have demonstrated that therapy with (212) Pb-TCMC-trastuzumab resulted in (1) induction of apoptosis, (2) G2/M arrest, and (3) blockage of double-strand DNA damage repair in LS-174T i.p. (intraperitoneal) xenografts. To further understand the molecular basis of the cell killing efficacy of (212) Pb-TCMC-trastuzumab, gene expression profiling was performed with LS-174T xenografts 24 h after exposure to (212) Pb-TCMC-trastuzumab. DNA damage response genes (84) were screened using a quantitative real-time polymerase chain reaction array (qRT-PCR array). Differentially regulated genes were identified following exposure to (212) Pb-TCMC-trastuzumab. These included genes involved in apoptosis (ABL, GADD45α, GADD45γ, PCBP4, and p73), cell cycle (ATM, DDIT3, GADD45α, GTSE1, MKK6, PCBP4, and SESN1), and damaged DNA binding (DDB) and repair (ATM and BTG2). The stressful growth arrest conditions provoked by (212) Pb-TCMC-trastuzumab were found to induce genes involved in apoptosis and cell cycle arrest in the G2/M phase. The expression of genes involved in DDB and single-strand DNA breaks was also enhanced by (212) Pb-TCMC-trastuzumab while no modulation of genes involved in double-strand break repair was apparent. Furthermore, the p73/GADD45 signaling pathway mediated by p38 kinase signaling may be involved in the cellular response, as evidenced by the enhanced expression of genes and proteins of this pathway. These results further support the previously described cell killing mechanism by (212) Pb-TCMC-trastuzumab in the same LS-174T i.p. xenograft. Insight into these mechanisms could lead to improved strategies for rational application of radioimmunotherapy using α-particle emitters.

  13. Gene expression profiling of mouse embryos with microarrays

    Science.gov (United States)

    Sharov, Alexei A.; Piao, Yulan; Ko, Minoru S. H.

    2011-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing similarities or differences among two or multiple cell types; (5) to find regulatory pathways and/or networks affected by gene manipulations, such as overexpression or repression of gene expression; (6) to find downstream target genes of transcription factors; (7) to find downstream target genes of cell signaling; (8) to examine the effects of environmental manipulation of cells on gene expression patterns; and (9) to find the effects of genetic manipulation in embryos and adults. Here we describe strategies for executing these experiments and monitoring changes of cell state with gene expression microarrays in application to mouse embryology. Both statistical assessment and interpretation of data are discussed. We also present a protocol for performing microarray analysis on a small amount of embryonic materials. PMID:20699157

  14. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia.

    Directory of Open Access Journals (Sweden)

    Jianping Li

    Full Text Available Aplastic anemia (AA is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs. In the present study, we comprehensively compared the biological features and gene expression profile of BM-MSCs between AA patients and healthy volunteers. In comparison with healthy controls, BM-MSCs from AA patients showed aberrant morphology, decreased proliferation and clonogenic potential and increased apoptosis. BM-MSCs from AA patients were susceptible to be induced to differentiate into adipocytes but more difficult to differentiate into osteoblasts. Consistent with abnormal biological features, a large number of genes implicated in cell cycle, cell division, proliferation, chemotaxis and hematopoietic cell lineage showed markedly decreased expression in BM-MSCs from AA patients. Conversely, more related genes with apoptosis, adipogenesis and immune response showed increased expression in BM-MSCs from AA patients. The gene expression profile of BM-MSCs further confirmed the abnormal biological properties and provided significant evidence for the possible mechanism of the destruction of the bone marrow microenvironment in AA.

  15. GeneChip expression profiling reveals the alterations of energy metabolism related genes in osteocytes under large gradient high magnetic fields.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has recently been applied in life science research. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF, which can provide three apparent gravity levels (μ-g, 1-g, and 2-g, was used to simulate a space-like gravity environment. Osteocyte, as the most important mechanosensor in bone, takes a pivotal position in mediating the mechano-induced bone remodeling. In this study, the effects of LG-HMF on gene expression profiling of osteocyte-like cell line MLO-Y4 were investigated by Affymetrix DNA microarray. LG-HMF affected osteocyte gene expression profiling. Differentially expressed genes (DEGs and data mining were further analyzed by using bioinfomatic tools, such as DAVID, iReport. 12 energy metabolism related genes (PFKL, AK4, ALDOC, COX7A1, STC1, ADM, CA9, CA12, P4HA1, APLN, GPR35 and GPR84 were further confirmed by real-time PCR. An integrated gene interaction network of 12 DEGs was constructed. Bio-data mining showed that genes involved in glucose metabolic process and apoptosis changed notablly. Our results demostrated that LG-HMF affected the expression of energy metabolism related genes in osteocyte. The identification of sensitive genes to special environments may provide some potential targets for preventing and treating bone loss or osteoporosis.

  16. Age-related vascular gene expression profiling in mice.

    Science.gov (United States)

    Rammos, Christos; Hendgen-Cotta, Ulrike B; Deenen, Rene; Pohl, Julia; Stock, Pia; Hinzmann, Christian; Kelm, Malte; Rassaf, Tienush

    2014-01-01

    Increasing age involves a number of detrimental changes in the cardiovascular system and particularly on the large arteries. It deteriorates vascular integrity and leads to increased vascular stiffness entailing hypertension with increased cardiovascular morbidity and mortality. The consequences of continuous oxidative stress and damages to biomolecules include altered gene expression, genomic instability, mutations, loss of cell division and cellular responses to increased stress. Many studies have been performed in aged C57BL/6 mice; however, analyses of the age-related changes that occur at a gene expression level and transcriptional profile in vascular tissue have not been elucidated in depth. To determine the changes of the vascular transcriptome, we conducted gene expression microarray experiments on aortas of adult and old mice, in which age-related vascular dysfunction was confirmed by increased stiffness and associated systolic hypertension. Our results highlight differentially expressed genes overrepresented in Gene Ontology categories. Molecular interaction and reaction pathways involved in vascular functions and disease, within the transforming growth factor-beta (TGF-β) pathway, the renin-angiotensin system and the detoxification systems are displayed. Our results provide insight to an altered gene expression profile related to age, thus offering useful clues to counteract or prevent vascular aging and its detrimental consequences. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Width of gene expression profile drives alternative splicing.

    Directory of Open Access Journals (Sweden)

    Daniel Wegmann

    Full Text Available Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection.

  18. Whole genome gene expression analysis reveals casiopeina-induced apoptosis pathways.

    Directory of Open Access Journals (Sweden)

    Alejandra Idan Valencia-Cruz

    Full Text Available Copper-based chemotherapeutic compounds Casiopeínas, have been presented as able to promote selective programmed cell death in cancer cells, thus being proper candidates for targeted cancer therapy. DNA fragmentation and apoptosis-in a process mediated by reactive oxygen species-for a number of tumor cells, have been argued to be the main mechanisms. However, a detailed functional mechanism (a model is still to be defined and interrogated for a wide variety of cellular conditions before establishing settings and parameters needed for their wide clinical application. In order to shorten the gap in this respect, we present a model proposal centered in the role played by intrinsic (or mitochondrial apoptosis triggered by oxidative stress caused by the chemotherapeutic agent. This model has been inferred based on genome wide expression profiling in cervix cancer (HeLa cells, as well as statistical and computational tests, validated via functional experiments (both in the same HeLa cells and also in a Neuroblastoma model, the CHP-212 cell line and assessed by means of data mining studies.

  19. Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults.

    Science.gov (United States)

    Rajaraman, Preetha; Wang, Sophia S; Rothman, Nathaniel; Brown, Merideth M; Black, Peter M; Fine, Howard A; Loeffler, Jay S; Selker, Robert G; Shapiro, William R; Chanock, Stephen J; Inskip, Peter D

    2007-08-01

    Despite the potential importance of the cell cycle and apoptosis pathways in brain tumor etiology, little has been published regarding brain tumor risk associated with common gene variants in these pathways. Using data from a hospital-based case-control study conducted by the National Cancer Institute between 1994 and 1998, we evaluated risk of glioma (n = 388), meningioma (n = 162), and acoustic neuroma (n = 73) with respect to 12 single nucleotide polymorphisms from 10 genes involved in apoptosis and cell cycle control: CASP8, CCND1, CCNH, CDKN1A, CDKN2A, CHEK1, CHEK2, MDM2, PTEN, and TP53. We observed significantly decreased risk of meningioma with the CASP8 Ex14-271A>T variant [odds ratio (OR)(AT), 0.8; 95% confidence interval (95% CI), 0.5-1.2; OR(AA), 0.5; 95% CI, 0.3-0.9; P(trend) = 0.03] and increased risk of meningioma with the CASP8 Ex13+51G>C variant (OR(GC), 1.4; 95% CI, 0.9-2.1; OR(CC), 3.6; 95% CI, 1.0-13.1; P(trend) = 0.04). The CT haplotype of the two CASP8 polymorphisms was associated with significantly increased risk of meningioma (OR, 1.7; 95% CI, 1.1-2.6), but was not associated with risk of glioma or acoustic neuroma. The CCND1 Ex4-1G>A variant was associated with increased risk for glioma, and the Ex8+49T>C variant of CCNH was associated with increased risk of glioma and acoustic neuroma. The MDM2 Ex12+162A>G variant was associated with significantly reduced risk of glioma. Our results suggest that common variants in the CASP8, CCND1, CCNH, and MDM2 genes may influence brain tumor risk. Future research in this area should include more detailed coverage of genes in the apoptosis/cell cycle control pathways.

  20. Genome-wide gene expression profiling reveals unsuspected molecular alterations in pemphigus foliaceus

    Science.gov (United States)

    Malheiros, Danielle; Panepucci, Rodrigo A; Roselino, Ana M; Araújo, Amélia G; Zago, Marco A; Petzl-Erler, Maria Luiza

    2014-01-01

    Pemphigus foliaceus (PF) is a complex autoimmune disease characterized by bullous skin lesions and the presence of antibodies against desmoglein 1. In this study we sought to contribute to a better understanding of the molecular processes in endemic PF, as the identification of factors that participate in the pathogenesis is a prerequisite for understanding its biological basis and may lead to novel therapeutic interventions. CD4+ T lymphocytes are central to the development of the disease. Therefore, we compared genome-wide gene expression profiles of peripheral CD4+ T cells of various PF patient subgroups with each other and with that of healthy individuals. The patient sample was subdivided into three groups: untreated patients with the generalized form of the disease, patients submitted to immunosuppressive treatment, and patients with the localized form of the disease. Comparisons between different subgroups resulted in 135, 54 and 64 genes differentially expressed. These genes are mainly related to lymphocyte adhesion and migration, apoptosis, cellular proliferation, cytotoxicity and antigen presentation. Several of these genes were differentially expressed when comparing lesional and uninvolved skin from the same patient. The chromosomal regions 19q13 and 12p13 concentrate differentially expressed genes and are candidate regions for PF susceptibility genes and disease markers. Our results reveal genes involved in disease severity, potential therapeutic targets and previously unsuspected processes involved in the pathogenesis. Besides, this study adds original information that will contribute to the understanding of PF's pathogenesis and of the still poorly defined in vivo functions of most of these genes. PMID:24813052

  1. Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters

    Science.gov (United States)

    Yap, Chui-Sun; Peterson, Abigail L; Castellani, Gastone

    2011-01-01

    Mammalian c-Myc is a member of a small family of three related proto-oncogenic transcription factors. c-Myc has an unusually broad array of regulatory functions, which include roles in cell cycle and apoptosis, a variety of metabolic functions, cell differentiation, senescence and stem cell maintenance. c-Myc modulates the expression of a very large number of genes, but the magnitude of the majority of the regulatory effects is only two-fold or less. c-Myc can both activate and repress the promoters of its target genes. Identification of genes directly regulated by c-Myc has been an enduring question in the field. We report here microarray expression profiling of a high resolution time course of c-Myc induction, using fibroblast cells in which c-Myc activity can be modulated from null to physiological. The c-Myc transcriptome data set presented is the largest reported to date with 4,186 differentially regulated genes (1,826 upregulated, 2,360 downregulated, 1% FDR). The gene expression patterns fit well with the known biological functions of c-Myc. We describe several novel findings and present tools for further data mining. Although the mechanisms of transcriptional activation by c-Myc are well understood, how c-Myc represses an even greater number of genes remains incompletely described. One mechanism involves the binding of c-Myc to other, positively acting transcription factors and interfering with their activities. We identified rapid-response genes likely to be direct c-Myc targets and analyzed the promoters of the repressed genes to identify transcription factors that could be targets of c-Myc repression. PMID:21623162

  2. Effects of Livin Gene RNA Interference on Apoptosis of Cervical Cancer Hela Cells and Enhanced Sensitivity to Cisplatin

    Institute of Scientific and Technical Information of China (English)

    Lili YU; Zehua WANG

    2009-01-01

    The recombinant plasmids pGenesii-1-BIRC71 and pGenesil-1-BIRC72 were transfected into Hela cells and cisplatin was added with different concentrations in order to study the inhibitory ef-fects of Livin gene, increase the apoptosis induced by cisplatin, and detect the expression of Bcl-2, Bax,caspase-3, and survivin genes. The pGenesil-1-BIRC71 and pGenesil-1-BIRC72 were transfected into Hela cells, and the expression levels of Livin, Bcl-2, Bax, caspase-3, and survivin genes were detected by using fluorescence quantitative real-time PCR. Then cisplatin at different concentrations (3.0, 6.0 and 9.9 μg/mL) was added into the transfected Hela cells, and 24, and 48 h later, the apoptosis rate was measured by flow cytometry. After transfection of pGenesil-1-BIRC71 and pGenesil-1-BIRC72 into Hela cells, the expression level of Livin gene was obviously reduced, and the apoptosis rate was sig-nificantly increased in transfection group as compared with control group (P<0.05). Cisplatin could in-crease the apoptosis rate in a dose- and time-dependent manner. After cisplatin was added, the expres-sion levels of Bcl-2 mRNA were reduced, and those of Bax, caspase-3, and survivin mRNA were in-creased in transfection group as compared with those in control group (P<0.05). It was concluded that shRNA expression vector targeting Livin gene could inhibit the expression of Livin gene in Hela cells and enhance the apoptosis induced by cisplatin, which was related to the decreased expression of Bcl-2and activation of Bax and caspase-3. Survivin might play an important role as an antagonist in the proc-ess of apoptosis induction.

  3. Expression of apoptosis-Related genes bcl-2 and bax in rat brain hippocampus, followed by intraperitoneal injection of nanosilver

    Directory of Open Access Journals (Sweden)

    Maryam Ghoshcian

    2016-05-01

    Full Text Available Background: Silver nanoparticles are small scale substance (<100 nm used in food technology and medical industry. The data suggest that nanosilver may produce neurotoxicity by generating free radical-induced oxidative stress and by altering gene expression producing apoptosis and neurotoxicity. In this study, the apoptotic effects of Nano silver on apoptosis- related genes expression bcl-2 and bax on rat hippocampus, which is involved in memory and learning, was investigated. Materials & Methods: 28 male Wistar rats were divided into four groups of control and three groups of the treatment. The control group received saline and the treatment groups received intraperitoneal injections of silver nanoparticles at doses of 100, 200 and 400ppm. Ten days after the last injection, the hippocampal region was dissected and removed and then the expression of bcl-2 and bax genes was evaluated using semi-qualitative RT-PCR and Densitometry assay. Results: The expression of anti- apoptotic b-cl2 gene was reduced in the treatment groups compared to the control group. In comparison, the expression of pro- apoptotic bax gene was increased in the treatment groups compared to the control group. This apoptotic affects was increased at higher doses. Conclusion: The data suggest that silver nanoparticles may produce apoptosis by altering apoptosis- related genes expression, in rat brain hippocampus cells.

  4. Difference of Gene Expression Profiles between Barrett's Esophagus and Cardia Intestinal Metaplasia by Gene Chip

    Institute of Scientific and Technical Information of China (English)

    CHANG Ying; LIU Bin

    2006-01-01

    The difference of gene expression profile changes in Barrettes esophagus (BE) and cardia intestinal metaplasia (CIM) epithelium was studied and the novel associated genes were screened in the early stage by cDNA microarray. The cDNA retro-transcribed from equal quantity mRNA from BE and CIM epithelial tissues were labeled with Cy3 and Cy5 fluorescence as probes. The mixed probe was hybridized with three pieces BiostarH-40s double dot human whole gene chip. The chips were scanned with a ScanArray 4000. The acquired images were analyzed using GenePix Pro 3.0 software. It was found a total of 141 genes were screened out that exhibited differentially expression more than 2 times in all three chips. It was identified that in gene expression profiles of BE, 74 genes were up-regulated and 67 down-regulated as compared with CIM. The comparison between the difference of gene expression profile changes in BE and CIM epithelia revealed that there existed the difference between BE and CIM at gene level. 141 genes with the expression more than two time were probably related to the occurrence and development of BE and the promotion or progress in adenocarcinoma.

  5. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

    Directory of Open Access Journals (Sweden)

    Weindruch Richard

    2007-03-01

    Full Text Available Abstract Background Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. Results We identified 712 transcripts that are differentially expressed in young (5 month old and old (25-month old mouse skeletal muscle. Caloric restriction (CR completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P +/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. Conclusion These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.

  6. Transfection and expression of hepatitis B virus x gene and its effect on apoptosis in HL-7702 cells

    Institute of Scientific and Technical Information of China (English)

    Hong-Ying Chen; Nan-Hong Tang; Xiu-Jin Li; Sheng-Jun Zhang; Zhi-Xin Chen; Xiao-Zhong Wang

    2004-01-01

    AIM: To investigate the effects of hepatitis B virus x gene and its protein product HBxAg on apoptosis in hepatocyte line HL-7702.METHODS: The reconstituted plasmid pcDNA3-x was established through recombination DNA technique; pcDNA3X was transfected into HL-7702 cells by lipid-mediated trasfection. Positive clones were screened by G418, and HL7702/HBx cells were analysed by the RT-PCR to confirm the steady expression of X gene in HL-7702 cells. The apoptosis rate in HL-7702 cells was determined by flow cytometry,TUNEL technology, electronic microscope. At the mean time,pcDNA3-X was transfected transiently into HL-7702 cells,and total RNA from HL-7702 cells was extracted 24, 48, 72,96 and 120 h after the transient transfection, and semiquantitative analysis was performed by RT-PCR to detect the expression of HBV X gene. Furthermore, apoptosis rate in HL-7702 cells was determined by flow cytometry analysis at the different times.RESULTS: RT-PCR analysis showed that HBV X gene could be expressed stably in HL-7702 cells. Both flow cytometry and TUNEL technology revealed that the apoptosis rates of HL-7702/HBx cells were much higher than those of HL-7702/pcDNA3 and HL-7702 cells. Furthermore, the apoptotic phenomena and apoptotic body were observed in HL-7702/HBx cells under electronic microscope, but not in HL-7702/pcDNA3 and HL-7702 cells. In the experiment of transient transfection, RT-PCR reveals that X gene was expressed most at 72 h after transfection; and the apoptosis rate reached the highest at the same time. After that, the apoptosis rate was reduced with the decrease of the X gene expression.CONCLUSION: HBV X gene and X protein can promote the apoptosis in hepatocyte. And there exist a quantity-effect relationship between the X gene expression and apoptosis rate in hepatocyte.

  7. Opposing effects of bovine papillomavirus type 1 E6 and E7 genes on Fas-mediated apoptosis.

    Science.gov (United States)

    Liu, Yun; Liu, Zhiguo; Gao, Hua; Zhou, You; Androphy, Elliot J; Chen, Jason J

    2005-06-02

    Programmed cell death (PCD), best exemplified by apoptosis, is a genetically programmed process of cellular destruction that is indispensable for normal development and homeostasis of multicellular organisms. Tumor necrosis factor alpha (TNF) and related cytokines are employed by host defenses to eliminate virally infected cells through induction of apoptosis. Many viruses have evolved specific gene products to modulate this process. We have recently shown that the bovine papillomavirus type 1 (BPV-1) E6 and E7 genes independently sensitize mouse cells to TNF-induced apoptosis. In this report, we investigated the effect of E6 and E7 expression on Fas-mediated apoptosis. In contrast to TNF-mediated apoptosis, E6 and E7 demonstrated opposite effects: while E7 potentiated apoptosis triggered by an agonistic Fas antibody, E6 attenuated the effect. The mitochondrial pathway leading to the activation of caspases appears to be involved in Fas-mediated apoptosis in C127 cells. To further explore the mechanisms by which E6 and E7 modulate Fas-mediated apoptosis, we examined the surface expression of Fas in cells expressing E6 and E7. Significantly, levels of surface Fas expression correlated with the opposing effects of E6 and E7 on Fas-mediated apoptosis. Specifically, while E7 increased the surface expression of Fas, E6 reduced surface Fas expression. Mutational analysis demonstrated a correlation of E6's ability to downregulate surface Fas expression and apoptosis. Since the tumor suppressor p53 can be targeted for degradation by human papillomavirus and has been shown to induce apoptosis by upregulating surface Fas expression, we investigated the role of p53 in BPV-1 E6 and E7 modulation of Fas-mediated apoptosis. Our results demonstrated that the modulatory effects by E6 and E7 could occur in the absence of p53. Interestingly, the reduced Fas protein level on the cell surface is not accompanied by a decrease in total Fas levels in E6-expressing cells. Instead

  8. Effects of aging on apoptosis gene expression in oral mucosal tissues.

    Science.gov (United States)

    Gonzalez, Octavio A; Novak, M John; Kirakodu, Sreenatha; Stromberg, Arnold J; Shen, Shu; Orraca, Luis; Gonzalez-Martinez, Janis; Ebersole, Jeffrey L

    2013-03-01

    Apoptotic processes are important for physiologic renewal of an intact epithelial barrier and contribute some antimicrobial resistance for bacteria and viruses, as well as anti-inflammatory effects that benefits the mucosa. The oral cavity presents a model of host-bacterial interactions at mucosal surfaces, in which a panoply of microorganisms colonizes various niches in the oral cavity and creates complex multispecies biofilms that challenge the gingival tissues. This report details gene expression in apoptotic pathways that occur in oral mucosal tissues across the lifespan, using a nonhuman primate model. Macaca mulatta primates from 2 to 23 years of age (n = 23) were used in a cross-sectional study to obtain clinical healthy gingival tissues specimens. Further, mRNA was prepared and evaluated using the Affymetrix Rhesus GeneChip and 88 apoptotic pathway genes were evaluated. The results identified significant positive correlations with age in 12 genes and negative correlations with an additional five genes. The gene effects were predicted to alter apoptosis receptor levels, extrinsic apoptotic pathways through caspases, cytokine effects on apoptotic events, Ca(+2)-induced death signaling, cell cycle checkpoints, and potential effects of survival factors. Both the positively and negatively correlated genes within the apoptotic pathways provided evidence that healthy tissues in aging animals exhibit decreased apoptotic potential compared to younger animals. The results suggested that decreased physiologic apoptotic process in the dynamic septic environment of the oral mucosal tissues could increase the risk of aging tissues to undergo destructive disease processes through dysregulated inflammatory responses to the oral microbial burden.

  9. Study on the Regulation of Bcl-2 Gene on Rat Spermatogenic Cells Apoptosis in Transcription Level

    Institute of Scientific and Technical Information of China (English)

    董强; 杨宇如; 黄明孔; 李虹; 张卫东; 徐震波

    2000-01-01

    Objective To detect the change of Bcl-2 gene expression in the apopototic process of spermatogenic cells in rat with vasoligation and vasostomy, and to find out the relationship between the transcription of Bcl-2 and the apoptosis of spermatognic cells.Materials & Methods Sixty adult male Sprague-Dawley rats in 3 groups were operated with vasoligation and vasostomy. Then hybridization in situ with hypersensitive Bcl-2 RNA probe was used to detect the change of Bcl-2 mRNA.Results The transcription of Bcl-2 gene in spermatogenic cells was obviously inhibited in the vasoligation group compared with that in the control group (P<0. 05), and the transcription in the vasostomy group showed no difference from that of the control group.Conclusion Bcl-2 gene has an anti-apoptotic effect in rats with vasostomy, and there was a transcriptional regulation of Bcl-2 gene in rat spermatogenic cell during the period of pre-vasoligation to post-vasoligation and to post-vasosotomy.

  10. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    Directory of Open Access Journals (Sweden)

    Yue-Yue Zhou

    Full Text Available D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs, reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  11. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression.

    Science.gov (United States)

    Jia, Hong-Mei; Li, Qi; Zhou, Chao; Yu, Meng; Yang, Yong; Zhang, Hong-Wu; Ding, Gang; Shang, Hai; Zou, Zhong-Mei

    2016-03-23

    Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury.

  12. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Science.gov (United States)

    Gobert, Geoffrey N; Moertel, Luke; Brindley, Paul J; McManus, Donald P

    2009-01-01

    Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae), juvenile (lung schistosomula and paired but pre-egg laying adults) and adult (paired, mature males and egg-producing females, both examined separately). Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis. PMID:19320991

  13. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    McManus Donald P

    2009-03-01

    Full Text Available Abstract Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae, juvenile (lung schistosomula and paired but pre-egg laying adults and adult (paired, mature males and egg-producing females, both examined separately. Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis.

  14. Expression Profiling Identifies Candidate Genes for Fiber Yield and Quality

    Institute of Scientific and Technical Information of China (English)

    LLEWELLYN D J; MACHADO A; AI-GHAZI Y; WU Y; DENNIS E S

    2008-01-01

    @@ Gene expression profiling at early stages (0~2 DPA) of fiber development in Gossypiurn hirsuturn identified a number of transcription factors which were down regulated in fiberless mutants relative to wild type controls and which could play a role in controlling early fiber development.Chief among these was GhMYB25,a Mixta-like MYB gene.Transgenic GhMYB25-silenced cotton showeddramatic alterations in fiber initiation and the timing of rapid fiber elongation,reduction in trichomes on other parts of the plant,a delay in lateral root growth,and a reduction in seed production due toreduced fertilization efficiency.

  15. Apoptosis, proliferation and p53 gene expression of H. pylori associated gastric epithelial lesions

    Institute of Scientific and Technical Information of China (English)

    Zhong Zhang1; Yuan Yuan; Hua Gao; Ming Dong; Lan Wang; Yue-Hua Gong

    2001-01-01

    AIM: To study the relationship between Helicobacter pylori (H. Pylori) and gastric carcinoma and its possible pathogenesis by H. Pylori. METHODS: DNEL technique and immunohistochemical technique were used to study the state of apoptosis,proliferation and p53 gene expression. A total of 100 gastric mucosal biopsy specimens, including 20 normal mucosa, 30H. Pylori-negative and 30 H. Pylorf-positive gastric precancerous lesions along with 20 gastric carcinomas were studied. RESULTS: There were several apoptotic cells in the superficial epithelium and a few proliferative cells within the neck of gastric glands, and no p53 protein expression in normal mucosa. In gastric carcinoma, there were few apoptotic cells, while there were a large number of proliferative cells, and expression of p53 protein significantly was increased. In the phase of metaplasia, the apoptotic index (Al, 4.36% ± 1.95%), proliferative index (PI, 19.11% ± 6.79%) and positivity of p53 expression (46.7%) in H. Pylori-positive group were higher than those in normal mucosa (P< 0.01). Al in H. Pylori-positive group was higher than that in H. Pylori-negative group (3.81% ±1.76%), PI in H. Pylori-positive group was higher than that in H. Pylori-negative group (12.25% ±5.63%, P<0.01 ). In the phase of dysplasia, Al (2.31% ± 1.10%) in H. Pylori-positive group was lower (3.05% ± 1.29%) than that in H. Pylori-negative group, but PI (33.89% ± 11.65%)wassignificantly higher(22.09± 8018%, P< 0.01). In phases of metaplasia, dysplasia and gastric cancer in the H. Pylori-positive group, Als had an evidently graduall decreasing trend (P < 0.01 ), while Pis had an evidently gradual increasing trend (P< 0.05 or P< 0.01), and there was also a trend of gradual increase in the expression of p53 gene. CONCLUSION: In the course of the formation of gastric carcinoma, proliferation of gastric mucosa can be greatly increased by H. Pylori, and H. Pylori can induce apoptosis in the phase of metaplasia but in the phase of

  16. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis.

    Science.gov (United States)

    Wang, Wenyu; Liu, Yang; Hao, Jingcan; Zheng, Shuyu; Wen, Yan; Xiao, Xiao; He, Awen; Fan, Qianrui; Zhang, Feng; Liu, Ruiyu

    2016-10-10

    Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA.

  17. Protein Expression of BLM Gene and Its Apoptosis Sensitivity in Hematopoietic Tumor Cell Strains

    Institute of Scientific and Technical Information of China (English)

    Xiaobei WANG; Lihua HU

    2008-01-01

    Patients with Bloom syndrome (BS) show an immunodeficiency, an enhanced sister chromatid exchanges (SCEs), a strong genetic instability and an increased predisposition to all. In order to investigate the differential expression of BLM protein in hematopoietic tumor cell strains and study the effects of BLM gene on ultraviolet (UV)- or hydroxyurea (HU)-induced apoptosis, Western blot was used to detect the expression of BLM protein in normal human bone marrow mononuclear cells and 4 kinds of hematopoietic tumor cell strains. The 4 kinds of hematopoietic tumor cells were exposed to UV light with a germicidal UV lamp or treated with 2 mmol/L hydroxyurea and the apoptotic rate was detected by using AnnexinV-FITC. The results showed that these tumor cells ex- pressed BLM protein higher than the normal human bone marrow mononuclear cells (P<0.01). In the 4 hematopoietic tumor cells, BLM protein was all specially cleaved in response to UV- or HU-induced apoptosis. The increase of BLM protein expression may play an important role in the evelopment of these tumors, and BLM proteolysis is likely to be a general feature of the apoptotic esponse.

  18. Do prion protein gene polymorphisms induce apoptosis in non-mammals?

    Indian Academy of Sciences (India)

    Tugce Birkan; Mesut Sahin; Zubeyde Oztel; Erdal Balcan

    2016-03-01

    Genetic variations such as single nucleotide polymorphisms (SNPs) in prion protein coding gene, Prnp, greatly affect susceptibility to prion diseases in mammals. Here, the coding region of Prnp was screened for polymorphisms in redeared turtle, Trachemys scripta. Four polymorphisms, L203V, N205I, V225A and M237V, were common in 15 out of 30 turtles; in one sample, three SNPs, L203V, N205I and M237V, and in the remaining 14 samples, only L203V and N205I polymorphisms, were investigated. Besides, C658T, C664T, C670A and C823A SNPs were silent mutations. To elucidate the relationship between the SNPs and apoptosis, TUNEL assays and active caspase-3 immunodetection techniques in brain sections of the polymorphic samples were performed. The results revealed that TUNEL-positive cells and active caspase-3-positive cells in the turtles with four polymorphisms were significantly increased compared with those of the turtles with two polymorphisms (P<0.01 and P<0.05, respectively). In conclusion, this study provides preliminary information about the possible relationship between SNPs within the Prnp locus and apoptosis in a non-mammalian species, Trachemys scripta, in which prion disease has never been reported.

  19. The Evaluation and Comparison of Transcriptionally Targeted Noxa and Puma Killer Genes to Initiate Apoptosis Under Cancer-Specific Promoter CXCR1 in Hepatocarcinoma Gene Therapy

    Directory of Open Access Journals (Sweden)

    Khoshtinat Nikkhoi

    2016-09-01

    Full Text Available Background Cancerous cells proliferate as fast as possible without a proper surveillance system. This rapid cell division leads to enormous mutation rates, which help a tumor establish. Objectives This study evaluated the potential of inducing apoptosis using Noxa and Puma in a hepatocarcinoma cell line. Methods The current study generated two recombinant lentiviruses, pLEX-GCN and pLEX-GCP, bearing Noxa and Puma, respectively. Transduction of both genes to hepatocarcinoma (HepG2 was verified using fluorescent microscopic analysis, western blotting, and quantitative real-time polymerase chain reaction (PCR. To evaluate the potential of Noxa and Puma to initiate apoptosis, a caspase-9 real-time, MTT assay, and a 4’, 6-diamidino-2-phenylindole (DAPI reagent were performed to stain apoptotic cells. Results The data verified successful transduction to HepG2 and HEK293T. Higher relative expression of Noxa and Puma rather than the untransduced cell line showed these genes are expressed more in HepG2 in comparison to HEK293T. The results of the real-time PCR, MTT assay, and DAPI reagent illustrated that higher cells initiated apoptosis following Puma transduction rather than Noxa. Conclusions In this approach, the suicide gene was transferred to transformed cells and ignited apoptosis to exterminate them. Puma is a more potent killer gene and has higher capabilities to start intrinsic apoptosis pathway.

  20. Gene Expression Profiling during Pregnancy in Rat Brain Tissue.

    Science.gov (United States)

    Mann, Phyllis E

    2014-03-04

    The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases "expectant brain" and "maternal brain". Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH) during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array) was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1) whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  1. Gene Expression Profiling during Pregnancy in Rat Brain Tissue

    Directory of Open Access Journals (Sweden)

    Phyllis E. Mann

    2014-03-01

    Full Text Available The neurophysiological changes that occur during pregnancy in the female mammal have led to the coining of the phrases “expectant brain” and “maternal brain”. Although much is known of the hormonal changes during pregnancy, alterations in neurotransmitter gene expression have not been well-studied. We examined gene expression in the ventromedial nucleus of the hypothalamus (VMH during pregnancy based on the fact that this nucleus not only modulates the physiological changes that occur during pregnancy but is also involved in the development of maternal behavior. This study was designed to identify genes that are differentially expressed between mid- and late-pregnancy in order to determine which genes may be associated with the onset and display of maternal behavior and the development of the maternal brain. A commercially available PCR array containing 84 neurotransmitter receptor and regulator genes (RT2 Profiler PCR array was used. Brains were harvested from rats on days 12 and 21 of gestation, frozen, and micropunched to obtain the VMH. Total RNA was extracted, cDNA prepared, and SYBR Green qPCR was performed. In the VMH, expression of five genes were reduced on day 21 of gestation compared to day 12 (Chrna6, Drd5, Gabrr2, Prokr2, and Ppyr1 whereas Chat, Chrm5, Drd4, Gabra5, Gabrg2, LOC289606, Nmu5r2, and Npy5r expression was elevated. Five genes were chosen to be validated in an additional experiment based on their known involvement in maternal behavior onset. This experiment confirmed that gene expression for both the CCK-A receptor and the GABAAR γ2 receptor increases at the end of pregnancy. In general, these results identify genes possibly involved in the establishment of the maternal brain in rats and indicate possible new genes to be investigated.

  2. Radio-sensitization of Prostate Cancer Cells by Monensin Treatment and its associated Gene Expression Profiling Changes

    Science.gov (United States)

    Zhang Ye; Rohde, Larry H.; Wu, Honglu

    2008-01-01

    Radio-resistant or recurrent prostate cancer represents a serious health risk for approximately 20%-30% of patients treated with primary radiation therapy for clinically localized prostate cancer. Here, we investigated the effect of monensin on sensitizing radiation mediated cell killing of two radio-resistant prostate cell lines Lncap (P53+ and AR+) and PC3 (P53- and AR-). Treatment with monensin alone (5 micromoles-20 micromoles) showed a significant direct cell killing of Lncap (10-30%), but not PC3 cells. Monensin was also shown to successfully sensitize Lncap cells to X-ray radiation (2Gy-10Gy) mediated cell death, up to 50% of killing with the combined treatment. To better understand the mechanisms of radio-resistance of these two cell lines and their different response to monensin, the apoptosis related gene expression profiles in both cell lines were analyzed using cDNA PCR array. Without any treatment, PC3 showed a much higher expression level of antiapoptosis genes than Lncap in the BCL2 family, the caspase/card family and the TNF ligand/receptor family. At 2 hr after 20 micormolar monensin treatment alone, only the TRAF and CIDE family showed a greater induction in Lncap cells than in PC3. Exposures to 10 Gy X-rays alone of Lncap cells significantly induced gene expression levels in the death and death receptor domain family, the TNF ligand and receptor family, and apoptotic group of BCL2 family; whereas exposures of PC3 induced only the expression of genes in the anti-apoptosis group of CASP and CARD family. Furthermore, we selectively suppressed the expression of several anti-apoptosis genes (BCL-xl, Bcl2A1, BIRC2, BIRC3 and CASP2) in PC3 cells by using the siRNA treatment. Exposure to 10Gy X-rays alone showed an enhanced cell killing (about 15%) in BCL-x1 silenced cells, but not in cells with siRNA treatment targeting other anti-apoptosis genes. We also exposed PC3 cells to protons in the Bragg peak region to compare the effectiveness of cell killing

  3. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  4. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  5. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    Directory of Open Access Journals (Sweden)

    Rizos Helen

    2011-05-01

    Full Text Available Abstract Background Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the P53 tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of P53 in melanoma is uncommon; however, its function often appears abnormal. Methods In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts. Results The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant P53 compared to those with wild-type P53, suggesting that altered expression in melanoma was not related to P53 status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation. Conclusions These results indicate that P53 target genes involved in apoptosis and cell

  6. Overcoming of multidrug resistance by introducing the apoptosis gene, bcl-Xs, into MRP-overexpressing drug resistant cells.

    Science.gov (United States)

    Ohi, Y; Kim, R; Toge, T

    2000-05-01

    Multidrug resistance associated protein (MRP) is one of drug transport membranes that confer multidrug resistance in cancer cells. Multidrug resistance has been known to be associated with resistance to apoptosis. In this study, using MRP overexpressing multidrug resistant nasopharyngeal cancer cells, we examined the expression of apoptosis related genes including p53, p21WAF1, bax and bcl-Xs between drug sensitive KB and its resistant KB/7D cells. We also examined whether the introduction of apoptosis related gene could increase the sensitivity to anticancer drugs in association with apoptotic cell death. The relative resistances to anticancer drugs in KB/7D cells evaluated by IC50 values were 3.6, 61.3, 10.4 and 10.5 to adriamycin (ADM), etoposide (VP-16), vincristine (VCR) and vindesine (VDS), respectively. The resistance to anticancer drugs in KB/7D cells was associated with the attenuation of internucleosomal DNA ladder formation in apoptosis. Of important, the mRNA expression of bcl-Xs gene in KB/7D cells was decreased in one-fourth as compared to that of KB cells among the apoptosis genes. The mRNA expression of bcl-Xs gene in a bcl-Xs transfected clone (KB/7Dbcl-Xs) was increased about 2-fold compared to that of KB/7Dneo cells, while the mRNA expression of MRP gene was not significantly different in KB/7bcl-Xs and KB/7Dneo cells. The sensitivities to anticancer drugs including ADM, VCR and VDS except VP-16 were increased in KB/7Dbcl-Xs cells, in turn, the relative resistance in KB/7Dbcl-Xs cells was decreased to 1.4, 4.0, and 3.0 in ADM, VCR and VDS, respectively, as compared to those of KB/7Dneo cells. Of interest, the studies on the accumulation of [3H]VCR showed that the decrease of [3H]VCR accumulation in KB/7Dbcl-Xs was not significantly different from that of KB/7Dneo cells. Collectively, these results indicated that the mechanism(s) of drug resistance in KB/7D cells could be explained at least by two factors: a) reduced drug accumulation mediated by

  7. Stratifying melanoma and breast cancer TCGA datasets on the basis of the CNV of transcription factor binding sites common to proliferation- and apoptosis-effector genes.

    Science.gov (United States)

    Mauro, James A; Yavorski, John M; Blanck, George

    2017-02-28

    Transcription factors that activate both proliferation- and apoptosis-effector genes, along with a number of related observations, have led to a proposal for a feed forward mechanism of activating the two gene classes, whereby a certain concentration of a transcription factor activates the proliferation-effector genes and a higher concentration of the transcription factor activates the apoptosis-effector genes. We reasoned that this paradigm of regulation could lead to, in the cancer setting, a selection for relatively reduced copy numbers of apoptosis-effector gene, transcription factor binding sites (TFBS). Thus, the aim of this investigation was to examine the DNA sequencing read depths of TFBS for a set of proliferation- and apoptosis-effector genes, normalized to the read depths found in matching blood samples, as provided by the cancer genome atlas (TCGA); and thereby document copy number differences among these TFBS. We determined that the melanoma and breast cancer, TCGA datasets could be divided into three categories: (i) no detectable copy number variation for the proliferation- and apoptosis-effector, shared TFBS; (ii) a relative increase in the copy number of proliferation-effector gene TFBS, compared with the copy number of the apoptosis-effector gene TFBS; and (iii) a relative decrease in the number of proliferation-effector gene TFBS. Thus, we conclude that changes in the relative copies of the shared TFBS, for proliferation- and apoptosis-effector genes, have the potential of impacting tumor cell proliferative and apoptotic capacities.

  8. Effect of microRNA-101 on apoptosis of rabbit condylar cartilage cells by inhibiting target gene SOX9

    Institute of Scientific and Technical Information of China (English)

    Xin Li; Zi-Xin Wang; Zi-Sheng Wang; Quan-Fang Li

    2015-01-01

    Objective:To explore the effect of microRNA-101 on apoptosis of condylar cartilage cells and the specific mechanism of molecular biology. Methods: IL-1 was used to stimulate and establish the model of apoptosis of condylar cartilage cells. The expression change of miR-101 in control group was compared with that in IL-1 stimulation group by qRT-PCR. Overexpression and down-regulation models of miR-101 were established by transfecting Mimics and Inhibitor and verified by qRT-PCR. Flow cytometry was used to detect the effect of miR-101 overexpression and down-regulation on apoptosis. Target gene of miR-101 was analyzed and calculated through bioinformatics. Western blot and Luciferase report assay were used to detect whether Sox9 could become the target gene of miR-101. Results:qRT-PCR results showed that IL-1 stimulation could cause the increase of miR-101 expression. After the transfection of rabbit condylar cartilage cells by Mimics and Inhibitor, qRT-PCR results confirmed the significant effect of miR-101 overexpression and down-regulation. It was confirmed by flow cytometry that overexpression of miR-101 could promote the apoptosis of condylar cartilage cells, and down-regulation of miR-101 could reduce the apoptosis. It was confirmed by Western blot and Luciferase report assay that Sox9 was the target gene of miR-101, and miR-101 inhibited SOX9 expression through complementary pairing with 3’UTR of Sox9 mRNA. Conclusions:miR-101 can promote the apoptosis of condylar cartilage cells through inhibiting the protein level of target gene SOX9.

  9. Global gene expression profile progression in Gaucher disease mouse models

    Directory of Open Access Journals (Sweden)

    Zhang Wujuan

    2011-01-01

    Full Text Available Abstract Background Gaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells in visceral organs and their abnormal functions are obscure. Results To elucidate this pathogenic pathway, developmental global gene expression analyses were conducted in distinct Gba1 point-mutated mice (V394L/V394L and D409 V/null. About 0.9 to 3% of genes had altered expression patterns (≥ ± 1.8 fold change, representing several categories, but particularly macrophage activation and immune response genes. Time course analyses (12 to 28 wk of INFγ-regulated pro-inflammatory (13 and IL-4-regulated anti-inflammatory (11 cytokine/mediator networks showed tissue differential profiles in the lung and liver of the Gba1 mutant mice, implying that the lipid-storage macrophages were not functionally inert. The time course alterations of the INFγ and IL-4 pathways were similar, but varied in degree in these tissues and with the Gba1 mutation. Conclusions Biochemical and pathological analyses demonstrated direct relationships between the degree of tissue glucosylceramides and the gene expression profile alterations. These analyses implicate IFNγ-regulated pro-inflammatory and IL-4-regulated anti-inflammatory networks in differential disease progression with implications for understanding the Gaucher disease course and pathophysiology.

  10. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes

    Energy Technology Data Exchange (ETDEWEB)

    Lieuallen, Kimberly; Pennacchio, Len A.; Park, Morgan; Myers, Richard M.; Lennon, Gregory G.

    2001-07-05

    Loss-of-function mutations in the cystatin B (Cstb) gene cause a neurological disorder known as Unverricht Lundborg disease (EPM1) in human patients. Mice that lack Cstb provide a mammalian model for EPM1 by displaying progressive ataxia and myoclonic seizures. We analyzed RNAs from brains of Cstb-deficient mice by using modified differential display, oligonucleotide microarray hybridization and quantitative reverse transcriptase polymerase chain reaction to examine the molecular consequences of the lack of Cstb. We identified seven genes that have consistently increased transcript levels in neurological tissues from the knockout mice. These genes are cathepsin S, C1q B-chain of complement (C1qB), beta-2-microglobulin, glial fibrillary acidic protein (Gfap), apolipoprotein D, fibronectin 1 and metallothionein II, which are expected to be involved in increased proteolysis, apoptosis and glial activation. The molecular changes in Cstb-deficient mice are consistent with the pathology found in the mouse model and may provide clues towards the identification of therapeutic points of intervention for EPM1 patients.

  11. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    Science.gov (United States)

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  12. The apoptosis linked gene ALG-2 is dysregulated in tumors of various origin and contributes to cancer cell viability

    DEFF Research Database (Denmark)

    la Cour, Jonas; Høj, Berit Rahbek; Mollerup, Jens

    2008-01-01

    The apoptosis linked gene-2 (ALG-2), discovered as a proapoptotic calcium binding protein, has recently been found upregulated in lung cancer tissue indicating that this protein may play a role in the pathology of cancer cells and/or may be a tumor marker. Using immunohistochemistry on tissue mic...

  13. Gene therapy that inhibits NF-κB results in apoptosis of human hepatocarcinoma by recombinant adenovirus

    Institute of Scientific and Technical Information of China (English)

    Tie-Jun Li; Li-Ping Jia; Xiao-Ling Gao; Ai-Long Huang

    2006-01-01

    AIM: To investigate whether the recombinant adenovirus induces the TNF-α-mediated apoptosis in vivo.METHODS: Human hepatocarcinoma cell line (HepG2)cells were transfected into BALB/c nude mice, and the tumor growth curve was drawn. We analyzed apoptosis in HepG2 cells by TUNEL, HE staining and electron microscopy.RESULTS: AdIκBαM was expressed stably and efficiently in HepG2 and could not be degraded by induction of TNF-α. Tumor growth in mice could be reduced remarkably if treated by AdIκBαM plus TNF-α. There was apoptosis of > 70% of cells treated with AdIκBαM plus TNF-α and about 50% of cells treated with AdIκBαM. In contrast, there was few cell apoptosis in HepG2 cells treated with phosphate buffered saline and AdIκBα. HepG2 cells in mice also exhibited a high level of apoptosis after in vivo injection with AdIκBαM. The tumor growth curve indicated the tumor transfected with AdIκBαM could be restrained.CONCLUSION: AdIκBαM gene therapy greatly enhances apoptosis due to inhibition of an NF-κB-mediated antiapoptosis signaling pathway.

  14. Gene Expression Profiling on Acute Rejected Transplant Kidneys with Microarray

    Institute of Scientific and Technical Information of China (English)

    Deping LI; Kang WANG; Yong DAI; Tianyu LV

    2008-01-01

    To investigate the gene expression profiles in acute allograft rejection of renal trans- plantation, and identify the markers for the early diagnosis of acute rejection, heterotopic kidney transplantation was performed by using F344 or Lewis donors and Lewis recipients. No immunosup- pressant was used. Renal grafts were harvested on days 3, 7, and 14. A commercial microarray was used to measure gene expression levels in day-7 grafts. The expression levels of 48 genes were up-regulated in the allograft in comparison with the isograft control, and interferon-y-induced GTPase gene was most significantly up-regulated in allografts. It is concluded that a variety of pathways are involved in organ transplant rejection which is dynamic and non-balanced. IFN-inducible genes, such as IGTP, may play an important role in the rejection. A lot of important factors involved in acute re- jection are unnecessary but sufficient conditions for the rejection. We are led to conclude that it is virtually impossible to make an early diagnosis based on a single gene marker, but it could he achieved on the basis of a set of markers.

  15. Rapid response to lipids profile and leukocyte gene expression after rosuvastatin administration in Chinese healthy volunteers

    Institute of Scientific and Technical Information of China (English)

    HUA Cong-xiao; LI Yi-shi; LIU Yu-qing; LIU Hong; LI Na; WU Ying; XU Li; HUANG Yi-ling

    2008-01-01

    Background Statins are potent lipid-lowering agents widely used in medicaI practice.There has been growing evidence suggesting the pleiotropic effects of statins In addition to the lipid-lowering effect.However,it is still unclear how rapidly the beneficial effects of statins occur.The transcriptome of peripheral blood cells can be used as a sensor to drug therapy.The purpose of the study was to investigate the acute effects of rosuvastatin both on lipids profile and gene expression of peripheral leukocytes following therapy with a single dose of rosuvastatin.Methods Thirty healthy Chinese male volunteers were enrolled.The serum lipids,high-sensitivity C-reactive protein,and plasma fibrinogen were determined before and 72 hours after administration of 20 mg of rosuvastatin.The differentially expressed genes of peripheral leukocytes after administration of rosuvastatin were screened using human oligonucleotide microarray gene expression chips.Then four of the differentially expressed genes including ATM,CASP8,IL8RB and S100B were verified by real-time polymerase chain reaction(PCR).Results Rosuvastatin decreased both serum total cholesterol and low-density lipoprotein cholesterol significantly 72 hours after administration of a single dose of 20 mg rosuvastatin.However,no significant changes occurred in blood high-density lipoprotein cholesterol,triglycerides,C-reactive protein and fibrinogen after the treatment.A total of 24 genes were differentially expressed after the treatment.They were involved in important cell biological processes such as cytokine-cytokine receptor interaction,apoptosis signaling,etc.Conclusions Rosuvastatin rapidly modulates the serum lipids and affects the gene expression of peripheral leukocytes in healthy volunteers.This finding provides some new clues for further studies on its potential pleiotropic effects.

  16. Profiling critical cancer gene mutations in clinical tumor samples.

    Directory of Open Access Journals (Sweden)

    Laura E MacConaill

    Full Text Available BACKGROUND: Detection of critical cancer gene mutations in clinical tumor specimens may predict patient outcomes and inform treatment options; however, high-throughput mutation profiling remains underdeveloped as a diagnostic approach. We report the implementation of a genotyping and validation algorithm that enables robust tumor mutation profiling in the clinical setting. METHODOLOGY: We developed and implemented an optimized mutation profiling platform ("OncoMap" to interrogate approximately 400 mutations in 33 known oncogenes and tumor suppressors, many of which are known to predict response or resistance to targeted therapies. The performance of OncoMap was analyzed using DNA derived from both frozen and FFPE clinical material in a diverse set of cancer types. A subsequent in-depth analysis was conducted on histologically and clinically annotated pediatric gliomas. The sensitivity and specificity of OncoMap were 93.8% and 100% in fresh frozen tissue; and 89.3% and 99.4% in FFPE-derived DNA. We detected known mutations at the expected frequencies in common cancers, as well as novel mutations in adult and pediatric cancers that are likely to predict heightened response or resistance to existing or developmental cancer therapies. OncoMap profiles also support a new molecular stratification of pediatric low-grade gliomas based on BRAF mutations that may have immediate clinical impact. CONCLUSIONS: Our results demonstrate the clinical feasibility of high-throughput mutation profiling to query a large panel of "actionable" cancer gene mutations. In the future, this type of approach may be incorporated into both cancer epidemiologic studies and clinical decision making to specify the use of many targeted anticancer agents.

  17. Knockdown of survivin gene expression by RNAi induces apoptosis in human hepatocellular carcinoma cell line SMMC-7721

    Institute of Scientific and Technical Information of China (English)

    Sheng-Quan Cheng; Wen-Liang Wang; Wei Yan; Qing-Long Li; Li Wang; Wen-Yong Wang

    2005-01-01

    AIM: To investigate the survivin gene expression in human hepatocellular carcinoma cell line SMMC-7721 and the effects of survivin gene RNA interference (RNAi) on cell apoptosis and biological behaviors of SMMC-7721 cells.METHODS: Eukaryotic expression vector of survivin gene RNAi and recombinant plasmid pSuppressorNeo-survivin (pSuNeo-SW), were constructed by ligating into the vector,pSupperssorNeo (pSuNeo) digested with restriction enzymes Xba I and Sa/I and the designed double-chain RNAi primers. A cell model of SMMC-7721 after treatment with RNAi was prepared by transfecting SMMC-7721 cells with the lipofectin transfection method. Strept-avidinbiotin-complex (SABC) immunohistochemical staining and RT-PCR were used to detect survivin gene expressions in SMMC-7721 cells. Flow cytometry was used for the cell cycle analysis. Transmission electron microscopy was performed to determine whether RNAi induced cell apoptosis, and the method of measuring the cell growth curve was utilized to study the growth of SMMC-7721 cells before and after treatment with RNAi.RESULTS: The eukaryotic expression vector of survivin gene RNAi and pSuNeo-SW, were constructed successfully. The expression level of survivin gene in SMMC-7721 cells was observed. After the treatment of RNAi, the expression of survivin gene in SMMC-7721 cells was almost absent,apoptosis index was increased by 15.6%, and the number of cells was decreased in G2/M phase and the cell growth was inhibited.CONCLUSION: RNAi can exert a knockdown of survivin gene expression in SMMC-7721 cells, and induce apoptosis and inhibit the growth of carcinoma cells.

  18. Gene expression profile differences in gastric cancer, pericancerous epithelium and normal gastric mucosa by gene chip

    Institute of Scientific and Technical Information of China (English)

    Chuan-Ding Yu; Shen-Hua Xu; Hang-Zhou Mou; Zhi-Ming Jiang; Chi-Hong Zhu; Xiang-Lin Liu

    2005-01-01

    AIM: To study the difference of gene expression in gastric cancer (T), pericancerous epithelium (P) and normal tissue of gastric mucosa (C), and to screen an associated novel gene in early gastric carcinogenesis by oligonudeotide microarray.METHODS: U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T, P and C, respectively. Bioinformatics was used to analyze the detected results.RESULTS: When gastric cancer was compared with normal gastric mucosa, 766 genes were found, with a difference of more than four times in expression levels. Of the 766 genes,530 were up-regulated (Signal Log Ratio [SLR]>2), and 236 were down-regulated (SLR<-2). When pericancerous epithelium was compared with normal gastric mucosa, 64genes were found, with a difference of more than four times in expression levels. Of the 64 genes, 50 were up-regulated (SLR>2), and 14 were down-regulated (SLR<-2). Compared with normal gastric mucosa, a total of 143 genes with a difference in expression levels (more than four times, either in cancer or in pericancerous epithelium) were found in gastric cancer (T) and pericancerous epithelium (P). Of the 143 genes, 108 were up-regulated (SLR>2), and 35were down-regulated (SLR<-2).CONCLUSION: To apply a gene chip could find 143 genes associated with the genes of gastric cancer in pericancerous epithelium, although there were no pathological changes in the tissue slices. More interesting, six genes of pericancerous epithelium were up-regulated in comparison with genes of gastric cancer and three genes were down-regulated in comparison with genes of gastric cancer. It is suggested that these genes may be related to the carcinogenesis and development of early gastric cancer.

  19. Development of a coral cDNA array to examine gene expression profiles in Montastraea faveolata exposed to environmental stress.

    Science.gov (United States)

    Edge, Sara E; Morgan, Michael B; Gleason, Daniel F; Snell, Terry W

    2005-01-01

    The development of a cDNA array of coral genes and its application to investigate changes in coral gene expression associated with stressful conditions is described. The array includes both well-characterized and previously unidentified coral genes from Acropora cervicornis and Montastraea faveolata. Corals were exposed to either natural or anthropogenic stressors to elicit the expression of stress genes for isolation and incorporation onto the array. A total of 32 genes involved in protein synthesis, apoptosis, cell signaling, metabolism, cellular defense and inflammation were included on the array. Labeled cDNA from coral (Montastraea faveolata) exposed to elevated seawater temperature, salinity and ultraviolet light was tested against the microarray to determine patterns of gene expression associated with each stressor. Carbonic anhydrase, thioredoxin, a urokinase plasminogen activator receptor (uPAR) and three ribosomal genes demonstrated differential expression across all replicates on the array and between replicate colonies. Specific gene expression patterns produced in response to different stressors demonstrate the potential for gene expression profiling in characterizing the coral stress response.

  20. Selection of suitable reference genes for quantitative real-time PCR in apoptosis-induced MCF-7 breast cancer cells.

    Science.gov (United States)

    Ferreira, Eloise; Cronjé, Marianne J

    2012-02-01

    Apoptosis is induced in MCF-7 breast cancer cells following treatment with salicylic acid (20 mM), either in the presence or absence of a heat shock (42°C for 30 min). In order to study the alterations of apoptotic genes with quantitative real-time PCR (qPCR), suitable genes with unchanged expression following the treatments is required for normalizing the gene expression levels. In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin (ACTB), Histone H2A (HIST), constitutively expressed heat shock protein 70 (HSC70) and tyrosine 3-monooxygenase/trytophan 5 monooxygenase activation protein, 14-3-3 (YWHAZ) were evaluated as appropriate reference genes. Analysis of gene expression data with one-way ANOVA, geNorm and NormFinder identified HIST and YWHAZ as the least affected during the induction of apoptosis by the different treatments, and is the most suitable gene-pair for normalization during qPCR analysis in MCF-7 breast cancer cells undergoing apoptosis following treatment with SA and/or HS.

  1. Overexpression a novel zebra fish spermatogenesis-associated gene 17 (SPATA17) induces apoptosis in GC-1 cells.

    Science.gov (United States)

    Nie, Dongsong; Liu, Y; Xiang, Y

    2011-08-01

    The spermatogenesis-associated 17 gene (SPATA17, previously named MSRG-11) was reported to be a candidate spermatocyte apoptosis-related gene which may play a critical role in human spermatogenesis, especially in meiosis. Analysis of SPATA17 expression and regulation in zebra fish may provide insight into the understanding of the complicated process of gonadogenesis and its potential function in spermatocyte cell apoptosis. In this study, we cloned and characterized the SPATA17 gene from zebra fish which consists of nine exons separated by eight introns. The consensus open reading frame (1258 bp) encodes a polypeptide of 357 amino acids which shares 44% identity with the human SPATA17 gene. Bioinformatic analysis reveals that SPATA17 protein contains three short calmodulin-binding motifs (IQ motif) and is considered to play a critical role in interactions with CaM proteins. Multi-tissue RT-PCR and Northern blot results demonstrated that the zebra fish SPATA17 gene was expressed strongly in testis and a slight amount of expression in ovary. Flow cytometry analysis and genomic DNA ladders result showed that the expression of SPATA17 protein in the GC-1 cell line could accelerate cell apoptosis. Analysis of the SPATA17 sequence and its spatial expression pattern indicate that this gene is highly conserved and may play an important role in the process of zebra fish gonadogenesis.

  2. Gene expression profiling of breast cancer in Lebanese women

    Science.gov (United States)

    Makoukji, Joelle; Makhoul, Nadine J.; Khalil, Maya; El-Sitt, Sally; Aldin, Ehab Saad; Jabbour, Mark; Boulos, Fouad; Gadaleta, Emanuela; Sangaralingam, Ajanthah; Chelala, Claude; Boustany, Rose-Mary; Tfayli, Arafat

    2016-01-01

    Breast cancer is commonest cancer in women worldwide. Elucidation of underlying biology and molecular pathways is necessary for improving therapeutic options and clinical outcomes. Molecular alterations in breast cancer are complex and involve cross-talk between multiple signaling pathways. The aim of this study is to extract a unique mRNA fingerprint of breast cancer in Lebanese women using microarray technologies. Gene-expression profiles of 94 fresh breast tissue samples (84 cancerous/10 non-tumor adjacent samples) were analyzed using GeneChip Human Genome U133 Plus 2.0 arrays. Quantitative real-time PCR was employed to validate candidate genes. Differentially expressed genes between breast cancer and non-tumor tissues were screened. Significant differences in gene expression were established for COL11A1/COL10A1/MMP1/COL6A6/DLK1/S100P/CXCL11/SOX11/LEP/ADIPOQ/OXTR/FOSL1/ACSBG1 and C21orf37. Pathways/diseases representing these genes were retrieved and linked using PANTHER®/Pathway Studio®. Many of the deregulated genes are associated with extracellular matrix, inflammation, angiogenesis, metastasis, differentiation, cell proliferation and tumorigenesis. Characteristics of breast cancers in Lebanese were compared to those of women from Western populations to explain why breast cancer is more aggressive and presents a decade earlier in Lebanese victims. Delineating molecular mechanisms of breast cancer in Lebanese women led to key genes which could serve as potential biomarkers and/or novel drug targets for breast cancer. PMID:27857161

  3. Study of the expressions of p53 and bcl-2 genes, the telomerase activity and apoptosis in GIST patients

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; You-Wei Kou

    2007-01-01

    AIM: To explore the relationship between clinicobiological behavior and the expression levels of telomerase activity,apoptosis, p53 gene and bcl-2 gene in gastrointestinal stromal tumors (GISTs).METHODS: The intensity of telomerase activity,apoptosis, p53 and bcl-2 expression in GISTs were detected by telomeric repeat amplification protocol, in situ end-labeling technique, and immunohistochemistry,respectively.RESULTS: The positive rates of telomerase activity of malignant GIST, potential malignant GIST and benign GIST were 85% (17/20), 22.8% (2/9) and 0 (0/9),respectively. The apoptosis indices of malignant GIST,potential malignant GIST, and benign GIST were 11.7 ± 5.4, 30.2 ± 5.6 and 45.2 ± 7.2, respectively. The intensity of telomerase activity and apoptosis were related to the biological characteristics of GISTs (85% vs 22.8%, 0, 0; P < 0.01 or 11.7±5.4 vs 30.2 ± 5.6, 45.2 ± 7.2, 72.1 ± 9.3; P < 0.05). The intensity of telomerase activity was negatively correlated with cellular apoptosis (22.9 ± 8.4 vs 9.5 ± 5.7, P < 0.01). The intensity of telomerase activity was positively correlated with p53,bcl-2 expression (40.0% vs 78.9%, 40.0% vs 84.2%;P < 0.05).CONCLUSION: The detection of telomerase activity,apoptosis and its control genes in GIST will be helpful for the discrimination of the malignant and benign GIST and evaluation of the prognosis.

  4. Gene expression profile after cardiopulmonary bypass and cardioplegic arrest.

    Science.gov (United States)

    Ruel, Marc; Bianchi, Cesario; Khan, Tanveer A; Xu, Shu; Liddicoat, John R; Voisine, Pierre; Araujo, Eugenio; Lyon, Helen; Kohane, Isaac S; Libermann, Towia A; Sellke, Frank W

    2003-11-01

    -related gene 2, protein phosphatase 1, regulatory subunit 3A, and growth differentiation factor-8 in skeletal muscle. By establishing a profile of the gene-expression responses to cardiopulmonary bypass and cardioplegia, this study allows a better understanding of their effects and provides a framework for the evaluation of new cardiac surgical modalities directly at the genome level.

  5. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  6. Subgingival bacterial colonization profiles correlate with gingival tissue gene expression

    Directory of Open Access Journals (Sweden)

    Handfield Martin

    2009-10-01

    Full Text Available Abstract Background Periodontitis is a chronic inflammatory disease caused by the microbiota of the periodontal pocket. We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis. A total of 120 patients undergoing periodontal surgery contributed with a minimum of two interproximal gingival papillae (range 2-4 from a maxillary posterior region. Prior to tissue harvesting, subgingival plaque samples were collected from the mesial and distal aspects of each tissue sample. Gingival tissue RNA was extracted, reverse-transcribed, labeled, and hybridized with whole-genome microarrays (310 in total. Plaque samples were analyzed using checkerboard DNA-DNA hybridizations with respect to 11 bacterial species. Random effects linear regression models considered bacterial levels as exposure and expression profiles as outcome variables. Gene Ontology analyses summarized the expression patterns into biologically relevant categories. Results Wide inter-species variation was noted in the number of differentially expressed gingival tissue genes according to subgingival bacterial levels: Using a Bonferroni correction (p -7, 9,392 probe sets were differentially associated with levels of Tannerella forsythia, 8,537 with Porphyromonas gingivalis, 6,460 with Aggregatibacter actinomycetemcomitans, 506 with Eikenella corrodens and only 8 with Actinomyces naeslundii. Cluster analysis identified commonalities and differences among tissue gene expression patterns differentially regulated according to bacterial levels. Conclusion Our findings suggest that the microbial content of the periodontal pocket is a determinant of gene expression in the gingival tissues and provide new insights into the differential ability of periodontal species to elicit a local host response.

  7. Subgingival bacterial colonization profiles correlate with gingival tissue gene expression.

    Science.gov (United States)

    Papapanou, Panos N; Behle, Jan H; Kebschull, Moritz; Celenti, Romanita; Wolf, Dana L; Handfield, Martin; Pavlidis, Paul; Demmer, Ryan T

    2009-10-18

    Periodontitis is a chronic inflammatory disease caused by the microbiota of the periodontal pocket. We investigated the association between subgingival bacterial profiles and gene expression patterns in gingival tissues of patients with periodontitis. A total of 120 patients undergoing periodontal surgery contributed with a minimum of two interproximal gingival papillae (range 2-4) from a maxillary posterior region. Prior to tissue harvesting, subgingival plaque samples were collected from the mesial and distal aspects of each tissue sample. Gingival tissue RNA was extracted, reverse-transcribed, labeled, and hybridized with whole-genome microarrays (310 in total). Plaque samples were analyzed using checkerboard DNA-DNA hybridizations with respect to 11 bacterial species. Random effects linear regression models considered bacterial levels as exposure and expression profiles as outcome variables. Gene Ontology analyses summarized the expression patterns into biologically relevant categories. Wide inter-species variation was noted in the number of differentially expressed gingival tissue genes according to subgingival bacterial levels: Using a Bonferroni correction (p < 9.15 x 10(-7)), 9,392 probe sets were differentially associated with levels of Tannerella forsythia, 8,537 with Porphyromonas gingivalis, 6,460 with Aggregatibacter actinomycetemcomitans, 506 with Eikenella corrodens and only 8 with Actinomyces naeslundii. Cluster analysis identified commonalities and differences among tissue gene expression patterns differentially regulated according to bacterial levels. Our findings suggest that the microbial content of the periodontal pocket is a determinant of gene expression in the gingival tissues and provide new insights into the differential ability of periodontal species to elicit a local host response.

  8. Profiling helper T cell subset gene expression in deer mice

    Directory of Open Access Journals (Sweden)

    Hjelle Brian

    2006-08-01

    Full Text Available Abstract Background Deer mice (Peromyscus maniculatus are the most common mammals in North America and are reservoirs for several zoonotic agents, including Sin Nombre virus (SNV, the principal etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in North America. Unlike human HCPS patients, SNV-infected deer mice show no overt pathological symptoms, despite the presence of virus in the lungs. A neutralizing IgG antibody response occurs, but the virus establishes a persistent infection. Limitations of detailed analysis of deer mouse immune responses to SNV are the lack of reagents and methods for evaluating such responses. Results We developed real-time PCR-based detection assays for several immune-related transcription factor and cytokine genes from deer mice that permit the profiling of CD4+ helper T cells, including markers of Th1 cells (T-bet, STAT4, IFNγ, TNF, LT, Th2 cells (GATA-3, STAT6, IL-4, IL-5 and regulatory T cells (Fox-p3, IL-10, TGFβ1. These assays compare the expression of in vitro antigen-stimulated and unstimulated T cells from individual deer mice. Conclusion We developed molecular methods for profiling immune gene expression in deer mice, including a multiplexed real-time PCR assay for assessing expression of several cytokine and transcription factor genes. These assays should be useful for characterizing the immune responses of experimentally- and naturally-infected deer mice.

  9. CHO gene expression profiling in biopharmaceutical process analysis and design.

    Science.gov (United States)

    Schaub, Jochen; Clemens, Christoph; Schorn, Peter; Hildebrandt, Tobias; Rust, Werner; Mennerich, Detlev; Kaufmann, Hitto; Schulz, Torsten W

    2010-02-01

    Increase in both productivity and product yields in biopharmaceutical process development with recombinant protein producing mammalian cells can be mainly attributed to the advancements in cell line development, media, and process optimization. Only recently, genome-scale technologies enable a system-level analysis to elucidate the complex biomolecular basis of protein production in mammalian cells promising an increased process understanding and the deduction of knowledge-based approaches for further process optimization. Here, the use of gene expression profiling for the analysis of a low titer (LT) and high titer (HT) fed batch process using the same IgG producing CHO cell line was investigated. We found that gene expression (i) significantly differed in HT versus LT process conditions due to differences in applied chemically defined, serum-free media, (ii) changed over the time course of the fed batch processes, and that (iii) both metabolic pathways and 14 biological functions such as cellular growth or cell death were affected. Furthermore, detailed analysis of metabolism in a standard process format revealed the potential use of transcriptomics for rational media design as is shown for the case of lipid metabolism where the product titer could be increased by about 20% based on a lipid modified basal medium. The results demonstrate that gene expression profiling can be an important tool for mammalian biopharmaceutical process analysis and optimization.

  10. Gene expression profiling of chicken primordial germ cell ESTs

    Directory of Open Access Journals (Sweden)

    Lim Dajeong

    2006-08-01

    Full Text Available Abstract Background Germ cells are the only cell type that can penetrate from one generation to next generation. At the early embryonic developmental stages, germ cells originally stem from primordial germ cells, and finally differentiate into functional gametes, sperm in male or oocyte in female, after sexual maturity. This study was conducted to investigate a large-scale expressed sequence tag (EST analysis in chicken PGCs and compare the expression of the PGC ESTs with that of embryonic gonad. Results We constructed 10,851 ESTs from a chicken cDNA library of a collection of highly separated embryonic PGCs. After chimeric and problematic sequences were filtered out using the chicken genomic sequences, there were 5,093 resulting unique sequences consisting of 156 contigs and 4,937 singlets. Pearson chi-square tests of gene ontology terms in the 2nd level between PGC and embryonic gonad set showed no significance. However, digital gene expression profiling using the Audic's test showed that there were 2 genes expressed significantly with higher number of transcripts in PGCs compared with the embryonic gonads set. On the other hand, 17 genes in embryonic gonads were up-regulated higher than those in the PGC set. Conclusion Our results in this study contribute to knowledge of mining novel transcripts and genes involved in germline cell proliferation and differentiation at the early embryonic stages.

  11. Bitumen fume-induced gene expression profile in rat lung.

    Science.gov (United States)

    Gate, Laurent; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Hervé; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stéphane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 degrees C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  12. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma.

    Science.gov (United States)

    Ellis, Leigh; Pan, Yan; Smyth, Gordon K; George, Daniel J; McCormack, Chris; Williams-Truax, Roxanne; Mita, Monica; Beck, Joachim; Burris, Howard; Ryan, Gail; Atadja, Peter; Butterfoss, Dale; Dugan, Margaret; Culver, Kenneth; Johnstone, Ricky W; Prince, H Miles

    2008-07-15

    Histone deacetylase inhibitors can alter gene expression and mediate diverse antitumor activities. Herein, we report the safety and activity of the histone deacetylase inhibitor panobinostat (LBH589) in cutaneous T-cell lymphoma (CTCL) and identify genes commonly regulated by panobinostat. Panobinostat was administered orally to patients with CTCL on Monday, Wednesday, and Friday of each week on a 28-day cycle. A dose of 30 mg was considered excessively toxic, and subsequent patients were treated at the expanded maximum tolerated dose of 20 mg. Biopsies from six patients taken 0, 4, 8, and 24 h after administration were subjected to microarray gene expression profiling and real-time quantitative PCR of selected genes. Patients attained a complete response (n = 2), attained a partial response (n = 4), achieved stable disease with ongoing improvement (n = 1), and progressed on treatment (n = 2). Microarray data showed distinct gene expression response profiles over time following panobinostat treatment, with the majority of genes being repressed. Twenty-three genes were commonly regulated by panobinostat in all patients tested. Panobinostat is well tolerated and induces clinical responses in CTCL patients. Microarray analyses of tumor samples indicate that panobinostat induces rapid changes in gene expression, and surprisingly more genes are repressed than are activated. A unique set of genes that can mediate biological responses such as apoptosis, immune regulation, and angiogenesis were commonly regulated in response to panobinostat. These genes are potential molecular biomarkers for panobinostat activity and are strong candidates for the future assessment of their functional role(s) in mediating the antitumor responses of panobinostat.

  13. Effects of AFP gene silencing on apoptosis and proliferation of a hepatocellular carcinoma cell line.

    Science.gov (United States)

    Zhang, Ling; He, Tao; Cui, Hong; Wang, Yunjian; Huang, Changshan; Han, Feng

    2012-08-01

    Alpha fetoprotein (AFP) is an oncoembryonal protein that is highly expressed in the majority of hepatocellular carcinomas. Previous studies have shown that AFP may be involved in multiple cell growth regulating, differentiating, and immunosuppressive activities. We investigated the effects of AFP gene silencing by siRNA on apoptosis and proliferation of hepatocellular carcinoma cell line EGHC-9901, which highly expresses AFP and may serve as an ideal model for investigation of AFP functions. siRNA expressing plasmid targeting the AFP gene was first established and subsequently transfected into hepatocellular carcinoma cell line EGHC-9901; cells were then divided into three groups: siRNA-afp, transfected with AFP-siRNA; siRNA-beta-actin, transfected with siRNA-beta-actin as the positive group; and vector control, transfected with empty vector as the blank control group. After G418 positive clone selection for a couple of weeks, Western blot and RT (reverse transcription)-PCR assay demonstrated that AFP expression was almost completely inhibited by siRNA-afp, which indicates that siRNA expressing plasmid targeting the AFP gene has been successfully established. Furthermore, MTT (methyl thiazolyl tetrazelium) assay showed that cells transfected with siRNA-afp proliferated at a significantly lower speed than the other two groups and flat plate clone formation assay also witnessed less clones with diameters of more than 75 μm in siRNA-afp immunofluorescence indicating that the apoptosis rate of cells transfected with siRNA-afp was significantly higher than the other two groups. Furthermore, flow cytometry manifested approximately 20% more cells of siRNA-afp within G1 phase than those of the negative group, indicating that inhibition of AFP expression may cause G1 phase arrest. Finally, Western blot and RT-PCR assay demonstrated that siRNA-afp induced a higher expression of caspase-3 than the other two groups whereas there was no difference in expression of caspase-8

  14. Gene expression profiling of tumours derived from rasV12/E1A-transformed mouse embryonic fibroblasts to identify genes required for tumour development

    Directory of Open Access Journals (Sweden)

    Dagorn Jean

    2005-01-01

    Full Text Available Abstract Background In cancer, cellular transformation is followed by tumour development. Knowledge on the mechanisms of transformation, involving activation of proto-oncogenes and inactivation of tumour-suppressor genes has considerably improved whereas tumour development remains poorly understood. An interesting way of gaining information on tumour progression mechanisms would be to identify genes whose expression is altered during tumour formation. We used the Affymetrix-based DNA microarray technology to analyze gene expression profiles of tumours derived from rasV12/E1A-transformed mouse embryo fibroblasts in order to identify the genes that could be involved in tumour development. Results Among the 12,000 genes analyzed in this study, only 489 showed altered expression during tumour development, 213 being up-regulated and 276 down-regulated. The genes differentially expressed are involved in a variety of cellular functions, including control of transcription, regulation of mRNA maturation and processing, regulation of protein translation, activation of interferon-induced genes, intracellular signalling, apoptosis, cell growth, angiogenesis, cytoskeleton, cell-to-cell interaction, extracellular matrix formation, metabolism and production of secretory factors. Conclusions Some of the genes identified in this work, whose expression is altered upon rasV12/E1A transformation of MEFs, could be new cancer therapeutic targets.

  15. Gene expression profile of cervical and skin tissues from human papillomavirus type 16 E6 transgenic mice

    Directory of Open Access Journals (Sweden)

    Lambert PF

    2008-11-01

    Full Text Available Abstract Background Although K14E6 transgenic mice develop spontaneous tumors of the skin epithelium, no spontaneous reproductive tract malignancies arise, unless the transgenic mice were treated chronically with 17β-estradiol. These findings suggest that E6 performs critical functions in normal adult cervix and skin, highlighting the need to define E6-controlled transcriptional programs in these tissues. Methods We evaluated the expression profile of 14,000 genes in skin or cervix from young K14E6 transgenic mice compared with nontransgenic. To identify differentially expressed genes a linear model was implemented using R and the LIMMA package. Two criteria were used to select the set of relevant genes. First a set of genes with a Log-odds ≥ 3 were selected. Then, a hierarchical search of genes was based on Log Fold Changes. Results Microarray analysis identified a total of 676 and 1154 genes that were significantly up and down-regulated, respectively, in skin from K14E6 transgenic mice. On the other hand, in the cervix from K14E6 transgenic mice we found that only 97 and 252 genes were significantly up and down-regulated, respectively. One of the most affected processes in the skin from K14E6 transgenic mice was the cell cycle. We also found that skin from transgenic mice showed down-regulation of pro-apoptotic genes and genes related to the immune response. In the cervix of K14E6 transgenic mice, we could not find affected any gene related to the cell cycle and apoptosis pathways but did observe alterations in the expression of immune response genes. Pathways such as angiogenesis, cell junction and epidermis development, also were altered in their gene expression profiles in both tissues. Conclusion Expression of the HPV16 E6 oncoprotein in our model alters expression of genes that fell into several functional groups providing insights into pathways by which E6 deregulate cell cycle progression, apoptosis, the host resistance to infection

  16. SHORT COMMINICATION——Involvement of gene expressions in apoptosis of vascular endothelial cells induced by rattlesnake venom

    Institute of Scientific and Technical Information of China (English)

    MIAOJUNYING; SATOHIKOARAKI; 等

    1999-01-01

    Formation of apoptotic bodies is a typical character of apoptotic cell death,but how the processes are controlled is not known.In this study,we compared two apoptosis inducing systems in vascular endothelial cells (VEC).We found that the formation of apoptotic bodies during apoptosis induced by rattlesnake venom,which is an unique and specific apoptosis inducer to vascular endothelial cells,was much faster than that induced by deprivation of survival factors(aFGF and serum).When we blocked the synthesis of mRNAs in cells treated with rattlesnake venom by DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole),an inhibitor of transcription,the formation of apoptotic bodies was dramatically inhibited.We examined the expression of P53 gene and found that its expression was much higher inapoptosis induced by rattlesnake venom that that in apoptosis induced by deprivation of aFGF and serum.Our results suggest that gene expression is important and P53 gene may play a major role in inducing the formation of apoptotic bodies in VEC.

  17. EFFECT OF ADENOVIRUS-MEDIATED p53 GENE TRANSFER ON APOPTOSIS AND RADIOSENSITIVITY OF HUMAN GASTRIC CARCINOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张珊文; 肖绍文; 吕有勇

    2003-01-01

    Objective: To evaluate the effect of adenovirus- mediated p53 gene (Adp53) on apoptosis and radiosensitivity of human gastric carcinoma cell lines. Methods: Recombinant adenovirus expressing wild-type p53 gene was transferred into four human gastric carcinoma cell lines with different p53 genetic status. p53 protein expression was detected by immunohistochemistry assay and western blot assay. Cell survival was assessed using a clonogenic assay. TUNEL assay was used in determination of apoptosis. Four human gastric carcinoma cells infected with Adp53 were irradiated with 4Gy and cell cycle distribution and Sub-G1 peak were assayed by flow cytometry. Results: G2/M arrest, apoptosis and inhibition of tumor cell proliferation were induced by infection at Adp53 at 100 MOI which caused high transfer rate of wild-type p53 and strong expression of p53 protein in four human gastric carcinoma cells. The radio-enhancement ratio of Adp53 at 4Gy were 3.0 for W cell, 3.6 for M cell, 2.2 for neo cell and 2.5 for 823 cell in vitro. Conclusion: This study demonstrated that Adp53 transfer increased cellular apoptosis and radiosensitivity of human gastric carcinoma cell lines in vitro independently on cellular intrinsic p53 status thus supporting the combination of p53 gene therapy with radiotherapy in clinical trials.

  18. Prognostic Significance of Apoptosis Related Gene Family bcl-2 in Human Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the prognostic effect of bcl-2 oncogene and its gene family members bax, bcl-x expression in breast cancer patients. Methods: expression of bcl-2, bax proteins in 91 human breast cancer tissue sections were studied by immunohistochemical method. Bcl-x1 mRNA expression in frozen tissues from 16 breast cancer patients were detected using Northern blot method. Results: bcl-2 protein positivity was found in 60/91 (65.9%) patients, and bax positivity 59/91 (64.8%). Bcl-2 and bax expression levels were associated with apoptotic index(AI), histological grade, axillary lymph node metastasis, postoperative local recurrence and metastasis. Bcl-2 expression was related to ER positivity. In univariate analysis for disease free survival (DFS), bcl-2 and bax protein levels, and Al were all found to have prognostic value. The result of Cox's model multivariate analysis showed that bcl-2 protein level was an independent prognostic factor. In 16 frozen breast cancer tissues, 8/16(50%) had higher level of bcl-x1 mRNA, which showed correlation with bcl-2 protein expression and axillary lymph node metastasis. Conclusion: The findings indicate that dysregulated expressions of bcl-2, bax and bcl-x1 apoptosis-related genes, suggestive of serious deregulation of apoptotic process, may contribute to the biologic aggressiveness of breast cancer. Bcl-2 protein is an independent indicator of prognosis in breast cancer patients.

  19. Effect of gemcitabine on the expression of apoptosis-related genes in human pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Pei-Hong Jiang; Yoshiharu Motoo; Norio Sawabu; Toshinari Minamoto

    2006-01-01

    AIM: To investigate the expression of genes involved in the gemcitabine-induced cytotoxicity in human pancreatic cancer cells.METHODS: A human pancreatic cancer cell line,PANC-1, was cultured. 1×104 PANC-1 cells were plated in 96-well microtiter plates. After being incubated for 24 h,gemcitabine was added to the medium at concentrations ranging 2.5 -1 000 mg/L. The AlamarBlue dye method was used for cell growth analysis. DNA fragmentation was quantitatively assayed using a DNA fragmentation enzyme-linked immunosorbent assay (ELISA) kit. PAP and TP53INP1 mRNA expression was determined using the reverse transcription-polymerase chain reaction with semi-quantitative analysis. The expression of GSK-3β and phospho-GSK-3β proteins was examined with Western blot analysis.RESULTS: The IC50 for the drug after a 48-h exposure to gemcitabine was 16 mg/L. The growth of PANC-1 cells was inhibited by gemcitabine in a concentrationdependent manner (P< 0.0001) and the cell growth was also inhibited throughout the time course (P<0.0001).The DNA fragmentation rate in the gemcitabine-treated group at 48 h was 44.7 %, whereas it was 25.3 % in the untreated group. The PAP mRNA expression was decreased after being treated with gemcitabine, whereas the TP53INP1 mRNA was increased by the gemcitabine treatment. Western blot analysis showed that phosphoGSK-3βser9 was induced by the gemcitabine treatment.CONCLUSION: Gemcitabine suppresses PANC-1cell proliferation and induces apoptosis. Apoptosis is considered to be associated with the inhibition of PAP and GSK-3β, and the activation of TP53INP1 and posphoGSK-33ser9 .

  20. Investigation of gene expression profiles in coronary heart disease and functional analysis of target gene

    Institute of Scientific and Technical Information of China (English)

    YIN HuiJun; MA Xiaoduan; JIANG YueRong; SHI DaZhuo; CHEN KeJi

    2009-01-01

    The research outlined here includes constitution of the differential gene expression profile by means of oligonucleotide gene microarray and functional analysis of the target gene for coronary heart disease (CHD). In a microarray screening experiment, the predominance of inflammation-and immune-related genes is presented in the expression profile of 107 differential genes based on the analysis of gene ontology and gene pathway. IL-8, an inflammatory factor, is identified as one of the genes that were markedly up-regulated in CHD. The plasma level of IL-8 is significantly raised in patients with CHD (n = 30) compared with healthy controls (n = 40), which underscores the clinical relevance of the in vitro finding. The further functional analysis shows that IL-8 affects platelet aggregation percentage, ex-pression of CD62p and platelet aggregation morphology in 12 healthy volunteers to some extent. These findings suggest the relevance of inflammation and immune responses to CHD at the DNA level. Moreover, IL-8 may be involved in the pathogenesis of CHD through the pathway of platelet activation.

  1. Profiling of differentially expressed genes in haemophilia A with inhibitor.

    Science.gov (United States)

    Hwang, S H; Lim, J A; Kim, M J; Kim, H C; Lee, H W; Yoo, K Y; You, C W; Lee, K S; Kim, H S

    2012-05-01

    Inhibitor development is the most significant complication in the therapy of haemophilia A (HA) patients. In spite of many studies, not much is known regarding the mechanism underlying inhibitor development. To understand the mechanism, we analysed profiles of differentially expressed genes (DEGs) between inhibitor and non-inhibitor HA via a microarray technique. Twenty unrelated Korean HAs were studied: 11 were non-inhibitor and nine were HA with inhibitor (≥5 BU mL(-1)). Microarray analysis was conducted using a Human Ref-8 expression Beadchip system (Illumina) and the data were analysed using Beadstudio software. We identified 545 DEGs in inhibitor HA as compared with the non-inhibitor patients; 384 genes were up-regulated and 161 genes were down-regulated. Among them, 75 genes whose expressions were altered by at least two-fold (>+2 or genes differed significantly in the two groups. For validation of the DEGs, semi-quantitative RT-PCR (semi-qRT-PCR) was conducted with the six selected DEGs. The results corresponded to the microarray data, with the exception of one gene. We also examined the expression of the genes associated with the antigen presentation process via real-time PCR. The average levels of IL10, CTLA4 and TNFα slightly reduced, whereas that of IFNγ increased in the inhibitor HA group. We are currently unable to explain whether this phenomenon is a function of the inhibitor-inducing factor or is an epiphenomenon of antibody production. Nevertheless, our results provide a possible explanation for inhibitor development. © 2011 Blackwell Publishing Ltd.

  2. Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos.

    Science.gov (United States)

    Handley-Goldstone, Heather M; Grow, Matthew W; Stegeman, John J

    2005-05-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant that causes altered heart morphology, circulatory impairment, edema, hemorrhage, and early life stage mortality in fish. TCDD toxicity is dependent, in large part, on the aryl hydrocarbon receptor (AHR), but understanding of the molecular mechanism of cardiovascular embryotoxicity remains incomplete. To identify genes potentially involved in cardiovascular effects, we constructed custom cDNA microarrays consisting of 4896 zebrafish adult heart cDNA clones and over 200 genes with known developmental, toxicological and housekeeping roles. Gene expression profiles were obtained for 3-day-old zebrafish after early embryonic exposure to either 0.5 or 5.0 nM TCDD. In all, 516 clones were significantly differentially expressed (p < 0.005) under at least one treatment condition; 123 high-priority clones were selected for further investigation. Cytochromes P450 1A and 1B1, and other members of the AHR gene battery, were strongly and dose-dependently induced by TCDD. Importantly, altered expression of cardiac sarcomere components, including cardiac troponin T2 and multiple myosin isoforms, was consistent with the hypothesis that TCDD causes dilated cardiomyopathy. Observed increases in expression levels of mitochondrial energy transfer genes also may be related to cardiomyopathy. Other TCDD-responsive genes included fatty acid and steroid metabolism enzymes, ribosomal and signal-transduction proteins, and 18 expressed sequence tags (ESTs) with no known protein homologs. As the first broad-scale study of TCDD-modulated gene expression in a non-mammalian system, this work provides an important perspective on mechanisms of TCDD toxicity.

  3. Gene Expression Profiling of Benign and Malignant Pheochromocytoma

    Science.gov (United States)

    BROUWERS, FREDERIEKE M.; ELKAHLOUN, ABDEL G.; MUNSON, PETER J.; EISENHOFER, GRAEME; BARB, JENNIFER; LINEHAN, W. MARSTON; LENDERS, JACQUES W.M.; DE KRIJGER, RONALD; MANNELLI, MASSIMO; UDELSMAN, ROBERT; OCAL, IDRIS T.; SHULKIN, BARRY L.; BORNSTEIN, STEFAN R.; BREZA, JAN; KSINANTOVA, LUCIA; PACAK, KAREL

    2016-01-01

    There are currently no reliable diagnostic and prognostic markers or effective treatments for malignant pheochromocytoma. This study used oligonucleotide microarrays to examine gene expression profiles in pheochromocytomas from 90 patients, including 20 with malignant tumors, the latter including metastases and primary tumors from which metastases developed. Other subgroups of tumors included those defined by tissue norepinephrine compared to epinephrine contents (i.e., noradrenergic versus adrenergic phenotypes), adrenal versus extra-adrenal locations, and presence of germline mutations of genes pre-disposing to the tumor. Correcting for the confounding influence of nora-drenergic versus adrenergic catecholamine phenotype by the analysis of variance revealed a larger and more accurate number of genes that discriminated benign from malignant pheochromocytomas than when the confounding influence of catecholamine phenotype was not considered. Seventy percent of these genes were underexpressed in malignant compared to benign tumors. Similarly, 89% of genes were underexpressed in malignant primary tumors compared to benign tumors, suggesting that malignant potential is largely characterized by a less-differentiated pattern of gene expression. The present database of differentially expressed genes provides a unique resource for mapping the pathways leading to malignancy and for establishing new targets for treatment and diagnostic and prognostic markers of malignant disease. The database may also be useful for examining mechanisms of tumorigenesis and genotype–phenotype relationships. Further progress on the basis of this database can be made from follow-up confirmatory studies, application of bioinformatics approaches for data mining and pathway analyses, testing in pheochromocytoma cell culture and animal model systems, and retrospective and prospective studies of diagnostic markers. PMID:17102123

  4. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea "Oriental Beauty".

    Science.gov (United States)

    Cho, Jeong-Yong; Mizutani, Masaharu; Shimizu, Bun-ichi; Kinoshita, Tomomi; Ogura, Miharu; Tokoro, Kazuhiko; Lin, Mu-Lien; Sakata, Kanzo

    2007-06-01

    Oriental Beauty, which is made from tea leaves infested by the tea green leafhopper (Jacobiasca formosana) in Taiwan, has a unique aroma like ripe fruits and honey. To determine what occurs in the tea leaves during the oolong tea manufacturing process, the gene expression profiles and the chemical profiles were investigated. Tea samples were prepared from Camellia sinensis var. sinensis cv. Chin-shin Dah-pang while the tea leaves were attacked by the insect. The main volatile compounds, such as linalool-oxides, benzyl alcohol, 2-phenylethanol, and 2,6-dimethylocta-3,7-diene-2,6-diol, increased during manufacture. The gene expression profiles during manufacture were analyzed by differential screening between fresh leaves and tea leaves of the first turn over. Many up-regulated transcripts were found to encode various proteins homologous to stress response proteins. Accordingly, the endogenous contents of abscisic acid and raffinose increased during manufacture. Thus the traditional manufacturing method is a unique process that utilizes plant defense responses to elevate the production of volatile compounds and other metabolites.

  5. Apoptosis-associated speck-like protein containing a CARD (ASC) expression profiles in familial Mediterranean fever (FMF) patients with different MEFV mutation patterns.

    Science.gov (United States)

    Nalbantoglu, S; Tanyolac, B; Berdeli, A

    2013-01-01

    The inflammasome complex and the inflammatory pathway have been implicated in the pathogenesis of the most common autoinflammatory disorder, familial Mediterranean fever (FMF). Pyrin, the protein product of the FMF gene MEFV, interacts with the inflammasome complex adaptor protein ASC/PYCARD (apoptosis-associated speck-like protein with a CARD). Pyrin and ASC can both function as either inducers or suppressors of the cellular inflammatory response. We aimed to characterize ASC-induced gene expression profiles in FMF patients with different MEFV mutation patterns. A total of 165 Caucasian patients with clinical and molecular FMF diagnoses were enrolled in the study. ASC gene expression was quantified by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). ASC mRNA expression was increased in the MEFV mutation-positive group compared to the mutation-negative group (p = 0.001). The fold changes of ASC expression in the M694V homozygous (p = 0.02), M694V heterozygous (p = 0.012), compound heterozygous (p = 0.002), and R202Q/P369S/R408Q (p = 0.00) groups relative to the MEFV mutation-negative group were +2.4, +2.7, +3, and +3.4, respectively. qRT-PCR did not reveal a significant difference in ASC mRNA expression levels among the MEFV mutation-positive groups (p > 0.05). ASC mRNA expression was up-regulated in patients carrying MEFV mutations independent of mutation type. There was no significant relationship between specific MEFV genotypes and the level of ASC expression in the patient group analysed. Thus, the findings of this work may suggest a crucial relationship between mutant MEFV/pyrin and remarkable ASC up-regulation in FMF inflammation.

  6. Gene expression profiles of adipose tissue of high-fat diet-induced obese rats by cDNA microarrays.

    Science.gov (United States)

    Qiu, Jie; Cheng, Rui; Zhou, Xiao-yu; Zhu, Jin-gai; Zhu, Chun; Qin, Da-ni; Kou, Chun-zhao; Guo, Xi-rong

    2010-12-01

    To better understand the molecular basis of dietary obesity, we examined adipose tissue genes differentially expressed in a well-characterized rat model of high-fat diet (HFD)-induced obesity using cDNA microarrays. Male Sprague-Dawley rats were fed either the HFD or the normal diet. Seven weeks later, the weights of obese models (362.92 ± 39.65 g) were significantly higher than those of normal control rats (315.22 ± 42.30 g, P obese models. cDNA microarrays containing 9 216 genes/Ests were used to investigate gene expression of adipose tissue. Autoradiographic analysis showed that 532, 154, and 22 genes were differently expressed over 2-, 3-, and 5-fold, respectively. The analysis of gene expression profiles indicated that 276 genes were up-regulated and 432 genes were down-regulated in response to HFD-induced obesity. Different clusters of genes associated with lipid metabolism, extracellular matrix, signal transduction, cytoskeleton, cell apoptosis, etc., such as VLCS-H2, DGAT, ACADVL, PHYH, SCD, ACACA, ACS, MMP-2, MMP-15, CD38, CAMK2D, CACNA1F, CAPZA2, TMOD3, ARPC2, KNS2, TPM1, MAPK8, GADD45B, DAXX, TOK-1, PRKACA, STAT6, were concerned.

  7. An analysis of growth, differentiation and apoptosis genes with risk of renal cancer.

    Directory of Open Access Journals (Sweden)

    Linda M Dong

    Full Text Available We conducted a case-control study of renal cancer (987 cases and 1298 controls in Central and Eastern Europe and analyzed genomic DNA for 319 tagging single-nucleotide polymorphisms (SNPs in 21 genes involved in cellular growth, differentiation and apoptosis using an Illumina Oligo Pool All (OPA. A haplotype-based method (sliding window analysis of consecutive SNPs was used to identify chromosome regions of interest that remained significant at a false discovery rate of 10%. Subsequently, risk estimates were generated for regions with a high level of signal and individual SNPs by unconditional logistic regression adjusting for age, gender and study center. Three regions containing genes associated with renal cancer were identified: caspase 1/5/4/12(CASP 1/5/4/12, epidermal growth factor receptor (EGFR, and insulin-like growth factor binding protein-3 (IGFBP3. We observed that individuals with CASP1/5/4/12 haplotype (spanning area upstream of CASP1 through exon 2 of CASP5 GGGCTCAGT were at higher risk of renal cancer compared to individuals with the most common haplotype (OR:1.40, 95% CI:1.10-1.78, p-value = 0.007. Analysis of EGFR revealed three strong signals within intron 1, particularly a region centered around rs759158 with a global p = 0.006 (GGG: OR:1.26, 95% CI:1.04-1.53 and ATG: OR:1.55, 95% CI:1.14-2.11. A region in IGFBP3 was also associated with increased risk (global p = 0.04. In addition, the number of statistically significant (p-value<0.05 SNP associations observed within these three genes was higher than would be expected by chance on a gene level. To our knowledge, this is the first study to evaluate these genes in relation to renal cancer and there is need to replicate and extend our findings. The specific regions associated with risk may have particular relevance for gene function and/or carcinogenesis. In conclusion, our evaluation has identified common genetic variants in CASP1, CASP5, EGFR, and IGFBP3 that could be

  8. Cytokine and apoptosis gene polymorphisms influence the outcome of hepatitis C virus infection

    Institute of Scientific and Technical Information of China (English)

    Leila Ksiaa Cheikhrouhou; Imen Sfar; Hajer Aounallah-Skhiri; Houda Aouadi; Salwa Jendoubi-Ayed; Taieb Ben Abdallah; Khaled Ayed; Yousr Lakhoua-Gorgi

    2011-01-01

    BACKGROUND: Hepatitis C virus (HCV) infection is thought to be chronic and the factors leading to viral clearance or persistence are poorly understood. This study was undertaken to investigate the possibility of a significant relationship between the spontaneous clearance or the persistence of hepatitis C virus (HCV) infection and cytokine and apoptosis gene polymorphisms in Tunisian patients on hemodialysis. METHODS: Polymorphisms of the genes IL-1 (-889 IL-1α, -511 and +3954 IL-1β, IL-1Ra), IL-18 (-137 and -607), IL-12 (-1188) and Apo1/Fas (-670) were determined by PCR-RFLP, PCR-SSP and PCR-VNTR in 100 healthy blood donors and 100 patients infected with HCV and undergoing hemodialysis. The patients were classified into two groups: G1 consisted of 76 active chronic hepatitis patients (positive for HCV RNA) and G2 consisted of 24 hemodialysed patients who spontaneously eliminated the virus (negativeforHCVRNA). RESULTS: The frequency of genotype association [-137GC/-607CA] IL-18 was higher in G2 (41.7%) than in G1 (15.8%) (P=0.008; OR=0.26; 95% CI, 0.10-0.73). We also found a higher frequency of the AA genotype of the Apo1/Fas gene in G2 (41.6%) than in G1 (17.5%) (P=0.026; OR=3.49; 95%CI, 1.13-10.69). Adjustment for known covariate factors (age, gender and genotype) confirmed these univariate findings and revealed that the genotype association GC-CA of the (-137 and -607) IL-18 gene and the AA genotype of the Apo1/Fas gene were associated with the clearance of HCV (P=0.041 and 0.017, respectively). CONCLUSION: The two genotypes GC-CA of the (-137 and-607) IL-18 polymorphism and the AA genotype of the Apo1/Fas gene influence the outcome of HCV infection in Tunisian patients on hemodialysis.

  9. Apoptosis induction and attenuation of inflammatory gene expression in murine macrophages via multitherapeutic nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Pierstorff, Erik; Krucoff, Max; Ho, Dean [Department of Biomedical Engineering, Robert R McCormick School of Engineering and Applied Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)], E-mail: e-pierstorff@northwestern.edu, E-mail: d-ho@northwestern.edu

    2008-07-02

    The realization of optimized therapeutic delivery is impaired by the challenge of localized drug activity and by the dangers of systemic cytotoxicity which often contribute to patient treatment complications. Here we demonstrate the block copolymer-mediated deposition and release of multiple therapeutics which include an LXR{alpha}/{beta} agonist 3-((4-methoxyphenyl)amino)-4-phenyl-1-(phenylmethyl)-1H-pyrrole-2,5-dione (LXRa) and doxorubicin hydrochloride (Dox) at the air-water interface via Langmuir-Blodgett deposition, as well as copolymer-mediated potent drug elution toward the Raw 264.7 murine macrophage cell line. The resultant copolymer-therapeutic hybrid serves as a localized platform that can be functionalized with virtually any drug due to the integrated hydrophilic and hydrophobic components of the polymer structure. In addition, the sequestering function of the copolymer to anchor the drugs to implant surfaces can enhance delivery specificity when compared to systemic drug administration. Confirmation of drug functionality was confirmed via suppression of the interleukin 6 (Il-6) and tumor necrosis factor alpha (TNF{alpha}) inflammatory cytokines (LXRa), as well as DNA fragmentation analysis (Dox). Furthermore, the fragmentation assays and gene expression analysis demonstrated the innate biocompatibility of the copolymeric material at the gene expression level via the confirmed absence of material-induced apoptosis and a lack of inflammatory gene expression. This modality enables layer-by-layer control of agonist and chemotherapeutic functionalization at the nanoscale for the localization of drug dosage, while simultaneously utilizing the copolymer platform as an anchoring mechanism for drug sequestering, all with an innate material thickness of 4 nm per layer, which is orders of magnitude thinner than existing commercial technologies. Furthermore, these studies comprehensively confirmed the potential translational applicability of copolymeric

  10. Effect of surgical procedures on prostate tumor gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Zhi-Hong Zhang; Chang-Jun Yin; Christian Pavlovich; Jun Luo; Robert Getzenberg; Wei Zhang

    2012-01-01

    Current surgical treatment of prostate cancer is typically accomplished by either open radical prostatectomy (ORP) or robotic-assisted laparoscopic radical prostatectomy (RALRP).Intra-operative procedural differences between the two surgical approaches may alter the molecular composition of resected surgical specimens,which are indispensable for molecular analysis and biomarker evaluation.The objective of this study is to investigate the effect of different surgical procedures on RNA quality and genome-wide expression signature.RNA integrity number (RIN) values were compared between total RNA samples extracted from consecutive LRP (n=11 ) and ORP (n=24) prostate specimens.Expression profiling was performed using the Agilent human whole-genome expression microarrays.Expression differences by surgical type were analyzed by Volcano plot analysis and gene ontology analysis.Quantitative reverse transcription (RT)-PCR was used for expression validation in an independent set of LRP (n=8) and ORP (n=8) samples.The LRP procedure did not compromise RNA integrity.Differential gene expression by surgery types was limited to a small subset of genes,the number of which was smaller than that expected by chance.Unexpectedly,this small subset of differentially expressed genes was enriched for those encoding transcription factors,oxygen transporters and other previously reported surgery-induced stress-response genes,and demonstrated unidirectional reduction in LRP specimens in comparison to ORP specimens.The effect of the LRP procedure on RNA quality and genome-wide transcript levels is negligible,supporting the suitability of LRP surgical specimens for routine molecular analysis.Blunted in vivo stress response in LRP specimens,likely mediated by CO2 insufflation but not by longer ischemia time,is manifested in the reduced expression of stress-response genes in these specimens.

  11. Gene expression profiling and endothelin in acute experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Helieh S Oz; Ying Lu; Louis P Vera-Portocarrero; Pei Ge; Ada Silos-Santiago; Karin N Westlund

    2012-01-01

    AIM:To analyze gene expression profiles in an experimental pancreatitis and provide functional reversal of hypersensitivity with candidate gene endothelin-1 antagonists.METHODS:Dibutyltin dichloride (DBTC) is a chemical used as a polyvinyl carbonate stabilizer/catalyzer,biocide in agriculture,antifouling agent in paint and fabric.DBTC induces an acute pancreatitis flare through generation of reactive oxygen species.Lewis-inbred rats received a single i.v.injection with either DBTC or vehicle.Spinal cord and dorsal root ganglia (DRG) were taken at the peak of inflammation and processed for transcriptional profiling with a cDNA microarray biased for rat brain-specific genes.In a second study,groups of animals with DBTC-induced pancreatitis were treated with endothelin (ET) receptor antagonists [ET-A (BQ123) and ET-B BQ788)].Spontaneous pain related mechanical and thermal hypersensitivity were measured.Immunohistochemical analysis was performed using anti-ET-A and ET-B antibodies on sections from pancreatic tissues and DRG of the T10-12 spinal segments.RESULTS:Animals developed acute pancreatic inflammation persisting 7-10 d as confirmed by pathological studies (edema in parenchyma,loss of pancreatic architecture and islets,infiltration of inflammatory cells,neutrophil and mononuclear cells,degeneration,vacuolization and necrosis of acinar cells) and the painrelated behaviors (cutaneous secondary mechanical and thermal hypersensitivity).Gene expression profile was different in the spinal cord from animals with pancreatitis compared to the vehicle control group.Over 260 up-regulated and 60 down-regulated unique genes could be classified into 8 functional gene families:circulatory/acute phase/immunomodulatory; extracellular matrix; structural; channel/receptor/transporter; signaling transduction; transcription/translation-related; antioxidants/chaperones/heat shock; pancreatic and other enzymes.ET-1 was among the 52 candidate genes upregulated greater than 2-fold in

  12. Fatty Acid Esters of Phloridzin Induce Apoptosis of Human Liver Cancer Cells through Altered Gene Expression

    Science.gov (United States)

    Nair, Sandhya V. G.; Ziaullah; Rupasinghe, H. P. Vasantha

    2014-01-01

    Phloridzin (phlorizin or phloretin 2′-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated

  13. Fatty acid esters of phloridzin induce apoptosis of human liver cancer cells through altered gene expression.

    Directory of Open Access Journals (Sweden)

    Sandhya V G Nair

    Full Text Available Phloridzin (phlorizin or phloretin 2'-O-glucoside is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2, growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK, cell cycle machinery (CDKs, TERT, TOP2A, TOP2B as well as epigenetics regulators (HDACs. These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects

  14. Down-regulation apoptosis signal-regulating kinase 1 gene reduced the Litopenaeus vannamei hemocyte apoptosis in WSSV infection.

    Science.gov (United States)

    Yuan, Feng-Hua; Chen, Yong-Gui; Zhang, Ze-Zhi; Yue, Hai-Tao; Bi, Hai-Tao; Yuan, Kai; Weng, Shao-Ping; He, Jian-Guo; Chen, Yi-Hong

    2016-03-01

    Apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, is crucial in various cellular responses. In the present study, we identified and characterized an ASK1 homolog from Litopenaeus vannamei (LvASK1). The full-length cDNA of LvASK1 was 5400 bp long, with an open reading frame encoding a putative 1420 amino acid protein. LvASK1 was highly expressed in muscle, hemocyte, eyestalk and heart. Real-time RT-PCR analysis showed that the expression of the LvASK1 was upregulated during the white spot syndrome virus (WSSV) challenge. The knocked-down expression of LvASK1 by RNA interference significantly reduced the apoptotic ratio of the hemocytes collected from WSSV-infected L. vannamei. Furthermore, the down-regulation of LvASK1 also decreased the cumulative mortality of WSSV-infected L. vannamei. These results suggested that down-regulation of LvASK1 decreased the apoptotic rate of hemocytes in WSSV-infected shrimp, and that it could contribute to the reduction of cumulative mortality in WSSV-infected L. vannamei.

  15. Difference of gene expression profiles between esophageal carcinoma and its pericancerous epithelium by gene chip

    Institute of Scientific and Technical Information of China (English)

    Shen-Hua Xu; Li-Juan Qian; Han-Zhou Mou; Chi-Hong Zhu; Xing-Ming Zhou; Xiang-Lin Liu; Yong Chen; Wen-Yu Bao

    2003-01-01

    AIM: To study the difference of gene expression between esophageal carcinoma and its pericancerous epithelium and to screen novel associated genes in the early stage of esophageal carcinogenesis by cDNA microarray.METHODS: Total RNA was extracted with the original single step way from esophageal carcinoma, its pericancerous epithelial tissue and normal esophageal epithelium far from the tumor. The cDNA retro-transcribed from equal quantity of mRNA was labeled with Cy5 and Cy3 fluorescence functioning as probes. The mixed probes were hybridized with two pieces of BioDoor 4 096 double dot human whole gene chip. Fluorescence signals were scanned by ScanArray 3 000 laser scanner and farther analyzed by ImaGene 3.0software with the digital computer.RESULTS: (1) A total of 135 genes were screened out, in which 85 and 50 genes whose the gene expression levels (fluorescence intensity) in esophageal carcinoma were more than 2 times and less than 0.5 times respectively compared with the normal esophageal epithelium. (2) There were also total 31 genes, among then 27 and 4 whose expressions in pericancerous tissue were 2-fold up-regulated and 0.5-fold down-regulated respectively compared with normal esophageal epithelium. (3) There were 13 genes appeared simultaneously in both pericancerous epithelium and esophageal carcinoma, while another 18 genes existed in pericancerous epithelium only.CONCLUSION: With the parallel comparison among these three gene profiles, it was shown that (1). A total of 135genes, Whose expression difference manifested as fluorescence intensity were more than 2 times between esophageal carcinoma and normal esophageal epithelium,were probably related to the occurrence and development of the esophageal carcinoma. (2). The 31 genes showing expression difference more than 2 times between pericancerous and normal esophageal epithelium might be relate to the promotion of esophageal pericancerosis and its progress. The present study illustrated that by using

  16. Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, I-Lun; Hsiao, Yueh-Chieh [Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 40201, Taiwan (China); Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan (China); Wu, Ming-Fang [Division of Chest Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan (China); School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan (China); Jan, Ming-Shiou [Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan (China); Tang, Sheau-Chung; Lin, Yu-Wen [Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 40201, Taiwan (China); Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan (China); Hsu, Chung-Ping, E-mail: cliff@vghtc.com.tw [Department of Thoracic Surgery, Veterans General Hospital—Taichung, Taichung 40705, Taiwan (China); Department of Surgery, National Yang-Ming University School of Medicine and Taipei Veterans General Hospital, Taipei 11221, Taiwan (China); Ko, Jiunn-Liang, E-mail: jlko@csmu.edu.tw [Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 40201, Taiwan (China); Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan (China); Division of Chest Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan (China)

    2012-09-15

    Endoplasmic reticulum (ER) stress is activated under severe cellular conditions. GADD153, a member of the C/EBP family, is an unfolded protein response (UPR) responsive transcription factor. Increased levels of lipocalin 2, an acute phase protein, have been found in several epithelial cancers. The aim of this study is to investigate the function of lipocalin 2 in lung cancer cells under ER stress. Treatment with thapsigargin, an ER stress activator, led to increases in cytotoxicity, ER stress, apoptosis, and lipocalin 2 expression in A549 cells. GADD153 silencing decreased lipocalin 2 expression in A549 cells. On chromatin immunoprecipitation assay, ER stress increased GADD153 DNA binding to lipocalin 2 promoter. Furthermore, silencing of lipocalin 2 mitigated ER stress-mediated apoptosis in A549 cells. Our findings demonstrated that lipocalin 2 is a new GADD153 target gene that mediates ER stress-induced apoptosis. Highlights: ► We demonstrate that Lipocalin 2 is a new GADD153 target gene. ► Lipocalin 2 mediates ER stress-induced apoptosis. ► ER stress-induced lipocalin 2 expression is calcium-independent in A549 cells. ► Lipocalin 2 dose not play a major role in ER stress-induced autophagy.

  17. Functional annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene expression profiling analysis.

    Directory of Open Access Journals (Sweden)

    Zhan-Chun Li

    Full Text Available BACKGROUND: Rheumatoid arthritis (RA and osteoarthritis (OA are two major types of joint diseases that share multiple common symptoms. However, their pathological mechanism remains largely unknown. The aim of our study is to identify RA and OA related-genes and gain an insight into the underlying genetic basis of these diseases. METHODS: We collected 11 whole genome-wide expression profiling datasets from RA and OA cohorts and performed a meta-analysis to comprehensively investigate their expression signatures. This method can avoid some pitfalls of single dataset analyses. RESULTS AND CONCLUSION: We found that several biological pathways (i.e., the immunity, inflammation and apoptosis related pathways are commonly involved in the development of both RA and OA. Whereas several other pathways (i.e., vasopressin-related pathway, regulation of autophagy, endocytosis, calcium transport and endoplasmic reticulum stress related pathways present significant difference between RA and OA. This study provides novel insights into the molecular mechanisms underlying this disease, thereby aiding the diagnosis and treatment of the disease.

  18. MicroRNA-138 enhances TRAIL-induced apoptosis through interferon-stimulated gene 15 downregulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zuo, Chaohui; Sheng, Xinyi; Liu, Zhuo; Ma, Min; Xiong, Shuhan; Deng, Hongyu; Li, Sha; Yang, Darong; Wang, Xiaohong; Xiao, Hua; Quan, Hu; Xia, Man

    2017-06-01

    Hepatocellular carcinoma is a leading cause of cancer-related mortality worldwide. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a potential target for cancer therapy. However, many cancer cells are resistant to TRAIL-induced apoptosis and its mechanism is not well understood. In this study, to identify potential therapeutic targets for TRAIL-resistant cancer cells, we compared the expression levels of interferon-stimulated gene 15 in TRAIL-sensitive and TRAIL-resistant hepatocellular carcinoma cell lines. Western blot analysis showed that interferon-stimulated gene 15 expression levels were significantly higher in resistant HLCZ01and Huh7 cells than in sensitive LH86 and SMMC-7721 cells. Interferon-stimulated gene 15 knockdown in resistance cells led to TRAIL sensitivity. Conversely, interferon-stimulated gene 15 overexpression in sensitive cells resulted in TRAIL resistance. Our bioinformatics search detected a putative target sequence for microRNA miR-138 in the 3' untranslated region of the interferon-stimulated gene 15. Real-time quantitative polymerase chain reaction analysis demonstrated that miR-138 was significantly downregulated in TRAIL-resistant cells compared to TRAIL-sensitive cells. Forced expression of miR-138 in resistant cells decreased both messenger RNA and protein levels of interferon-stimulated gene 15, and when exposed to TRAIL, activated poly(adenosine diphosphate-ribose) polymerase, indicating sensitization to TRAIL. The results suggested that miR-138 regulates the interferon-stimulated gene 15 expression by directly targeting the 3' untranslated region of interferon-stimulated gene 15 and modulates the sensitivity to TRAIL-induced apoptosis. MiR-138 may be a target for therapeutic intervention in TRAIL-based drug treatments of resistant hepatocellular carcinoma or could be a biomarker to select patients who may benefit from the treatment.

  19. Gene expression profiling in human gastric mucosa infected with Helicobacter pylori.

    Science.gov (United States)

    Hofman, Véronique J; Moreilhon, Chimène; Brest, Patrick D; Lassalle, Sandra; Le Brigand, Kevin; Sicard, Dominique; Raymond, Josette; Lamarque, Dominique; Hébuterne, Xavier A; Mari, Bernard; Barbry, Pascal Jp; Hofman, Paul M

    2007-09-01

    Pathogenic mechanisms associated with Helicobacter pylori infection enhance susceptibility of the gastric epithelium to carcinogenic conversion. We have characterized the gene expression profiles of gastric biopsies from 69 French Caucasian patients, of which 43 (62%) were infected with H. pylori. The bacterium was detected in 27 of the 42 antral biopsies examined and in 16 of the 27 fundic biopsies. Infected biopsies were selected for the presence of chronic active gastritis, in absence of metaplasia and dysplasia of the gastric mucosa. Infected antral and fundic biopsies exhibited distinct transcriptional responses. Altered responses were linked with: (1) the extent of polymorphonuclear leukocyte infiltration, (2) bacterial density, and (3) the presence of the virulence factors vacA, babA2, and cagA. Robust modulation of transcripts associated with Toll-like receptors, signal transduction, the immune response, apoptosis, and the cell cycle was consistent with expected responses to Gram-negative bacterial infection. Altered expression of interferon-regulated genes (IFITM1, IRF4, STAT6), indicative of major histocompatibility complex (MHC) II-mediated and Th1-specific responses, as well as altered expression of GATA6, have previously been described in precancerous states. Upregulation of genes abundantly expressed in cancer tissues (UBD, CXCL13, LY96, MAPK8, MMP7, RANKL, CCL18) or in stem cells (IFITM1 and WFDC2) may reveal a molecular switch towards a premalignant state in infected tissues. Tissue microarray analysis of a large number of biopsies, which were either positive or negative for the cag-A virulence factor, when compared to each other and to noninfected controls, confirmed observed gene alterations at the protein level, for eight key transcripts. This study provides 'proof-of-principle' data for identifying molecular mechanisms driving H. pylori-associated carcinogenesis before morphological evidence of changes along the neoplastic progression pathway.

  20. Gene expression profiling reveals potential key pathways involved in pyrazinamide-mediated hepatotoxicity in Wistar rats.

    Science.gov (United States)

    Zhang, Yun; Jiang, Zhenzhou; Su, Yijing; Chen, Mi; Li, Fu; Liu, Li; Sun, Lixin; Wang, Yun; Zhang, Shuang; Zhang, Luyong

    2013-08-01

    Pyrazinamide (PZA) is an important sterilizing prodrug that shortens the duration of tuberculosis therapy. However, hepatotoxicity has been reported during clinical trials investigating PZA. To determine the hepatotoxic effects of PZA in vivo and to further investigate the underlying cellular mechanism, we profiled the gene expression patterns of PZA-treated rat livers by microarray analysis. Wistar rats of both sexes were orally administered PZA at doses of 0.5, 1.0 and 2.0 g kg(-1) for 28 days. Body weight, absolute and relative liver weight, biochemical analysis, histopathology, oxidative stress parameters in liver homogenates and changes in global transcriptomic expression were evaluated to study the hepatotoxic effects of PZA. Our results confirm the dose-dependent and sex-related hepatotoxicity of PZA. Female rats were more sensitive to PZA-induced hepatotoxicity than males. Furthermore, changes in the activity of major antioxidant enzymes and nonenzymatic antioxidants (superoxide dismutase, total antioxidant capacity, glutathione and malondialdehyde), indicating the development of oxidative stress, were more significant in the PZA-treated group. PZA-induced gene expression changes were related to pathways involved in drug metabolism, peroxisome proliferator-activated receptor (PPAR) signaling, oxidative stress and apoptosis. Real-time polymerase chain reaction confirmed the regulation of selected genes involved in PZA-hepatotoxicity (Ephx1, Cyp2b1, Gstm1, Gstp1, Fabp7, Acaa1, Cpt-1b, Cyp8b1, Hmox1 and Ntrk1). We observed for the first time that these genes have effects on PZA-induced hepatotoxicity. In addition, drug metabolism and PPAR signaling pathways may play an important role in PZA hepatotoxicity. Taken together, these findings will be useful for future PZA hepatotoxicity studies.

  1. Gene expression profile in obesity and type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Rao Allam A

    2007-12-01

    Full Text Available Abstract Obesity is an important component of metabolic syndrome X and predisposes to the development of type 2 diabetes mellitus. The incidence of obesity, type 2 diabetes mellitus and metabolic syndrome X is increasing, and the cause(s for this increasing incidence is not clear. Although genetics could play an important role in the higher prevalence of these diseases, it is not clear how genetic factors interact with environmental and dietary factors to increase their incidence. We performed gene expression profile in subjects with obesity and type 2 diabetes mellitus with and without family history of these diseases. It was noted that genes involved in carbohydrate, lipid and amino acid metabolism pathways, glycan of biosynthesis, metabolism of cofactors and vitamin pathways, ubiquitin mediated proteolysis, signal transduction pathways, neuroactive ligand-receptor interaction, nervous system pathways, neurodegenerative disorders pathways are upregulated in obesity compared to healthy subjects. In contrast genes involved in cell adhesion molecules, cytokine-cytokine receptor interaction, insulin signaling and immune system pathways are downregulated in obese. Genes involved in signal transduction, regulation of actin cytoskeleton, antigen processing and presentation, complement and coagulation cascades, axon guidance and neurodegenerative disorders pathways are upregulated in subjects with type 2 diabetes with family history of diabetes compared to those who are diabetic but with no family history. Genes involved in oxidative phosphorylation, immune, nervous system, and metabolic disorders pathways are upregulated in those with diabetes with family history of diabetes compared to those with diabetes but with no family history. In contrast, genes involved in lipid and amino acid pathways, ubiquitin mediated proteolysis, signal transduction, insulin signaling and PPAR signaling pathways are downregulated in subjects with diabetes with family

  2. Multiplexed Methylation Profiles of Tumor Suppressor Genes in Bladder Cancer

    Science.gov (United States)

    Cabello, Maria José; Grau, Laura; Franco, Noreli; Orenes, Esteban; Alvarez, Miguel; Blanca, Ana; Heredero, Oscar; Palacios, Alberto; Urrutia, Manuel; Fernández, Jesus María; López-Beltrán, Antonio; Sánchez-Carbayo, Marta

    2011-01-01

    Changes in DNA methylation of tumor suppressors can occur early in carcinogenesis and are potentially important early indicators of cancer. The objective of this study was to assess the methylation of 25 tumor suppressor genes in bladder cancer using a methylation-specific (MS) multiplex ligation-dependent probe amplification assay (MLPA). Initial analyses in bladder cancer cell lines (n = 14) and fresh-frozen primary bladder tumor specimens (n = 31) supported the panel of genes selected being altered in bladder cancer. The process of MS-MLPA was optimized for its application in body fluids using two independent training and validation sets of urinary specimens (n = 146), including patients with bladder cancer (n = 96) and controls (n = 50). BRCA1 (71.0%), WT1 (38.7%), and RARB (38.7%) were the most frequently methylated genes in bladder tumors, with WT1 methylation being significantly associated with tumor stage (P = 0.011). WT1 and PAX5A were identified as methylated tumor suppressors. In addition, BRCA1, WT1, and RARB were the most frequently methylated genes in urinary specimens. Receiver operating characteristic curve analyses revealed significant diagnostic accuracies in both urinary sets for BRCA1, RARB, and WT1. The novelty of this report relates to applying MS-MLPA, a multiplexed methylation technique, for tumor suppressors in bladder cancer and body fluids. Methylation profiles of tumor suppressor genes were clinically relevant for histopathological stratification of bladder tumors and offered a noninvasive diagnostic strategy for the clinical management of patients affected with uroepithelial neoplasias. PMID:21227392

  3. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A. [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [Institute of Molecular Biology and Biophysics SB RAMS, Novosibirsk, Timakova str., 2, 630117 (Russian Federation); Novosibirsk State University, Novosibirsk, Pirogova str., 2, 630090 (Russian Federation)

    2013-09-01

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CAR and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell

  4. Combination of cold atmospheric plasma and iron nanoparticles in breast cancer: gene expression and apoptosis study

    Directory of Open Access Journals (Sweden)

    Jalili A

    2016-09-01

    Full Text Available Azam Jalili,1 Shiva Irani,1 Reza Mirfakhraie2 1Department of Biology, Science and Research Branch, Islamic Azad University, 2Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran Background: Current cancer treatments have unexpected side effects of which the death of normal cells is one. In some cancers, iron nanoparticles (NPs can be subjected to diagnosis and passive targeting treatment. Cold atmospheric plasma (CAP has a proven induction of selective cell death ability. In this study, we have attempted to analyze the synergy between CAP and iron NPs in human breast adenocarcinoma cells (MCF-7.Materials and methods: In vitro cytotoxicity of CAP treatment and NPs in cells measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and cell death was shown by 4',6-diamidino-2-phenylindole and annexin V staining. Fluctuations in BAX and BCL-2 gene expression were investigated by means of real-time polymerase chain reaction.Results: MTT assay results showed that combination of plasma and iron NPs decreased the viability of cancer cells significantly (P<0.05. Real-time analysis showed that the combination therapy induced shifting the BAX/BCL-2 ratio in favor of apoptosis.Conclusion: Our data indicate that synergy between CAP and iron NPs can be applied in breast cancer treatment selectively. Keywords: breast cancer, cold atmospheric plasma, iron nanoparticles, BAX, BCL-2

  5. Depletion of G9a gene induces cell apoptosis in human gastric carcinoma.

    Science.gov (United States)

    Lin, Xiaolei; Huang, Yiqun; Zou, Yong; Chen, Xingsheng; Ma, Xudong

    2016-05-01

    G9a is a mammalian histone methyltransferase that contributes to the epigenetic silencing of tumor suppressor genes. Evidence suggests that G9a is required to maintain the malignant phenotype, but little documentation show the role of G9a function in mediating tumor growth. We retrospectively analyzed the protein of G9a and monomethylated histone H3 lysine 9 (H3K9 me1), and dimethylated histone H3 lysine 9 (H3K9 me2) in 175 cases of gastric carcinoma by immunohistochemistry. RNAi-based inhibition of G9a in MGC803 cancer cell line was studied. G9a depletion was done by transient transfection using Lipofectamine 2000. Depletion efficiency of G9a was tested using real-time PCR and western blot analysis. Cell apoptosis and proliferation were detected by TUNEL assay and MTT, respectively. The proteins of H3K9 me1, me2, trimethylation of H3K9 (H3K9 me3), monomethylated histone H3 lysine 27 (H3K27 me1), dimethylated histone H3 lysine 27 (H3K27 me2) and histone acetylated H3, apoptotic proteins were studied by western blot analysis. G9a and H3K9 me2 expression was higher in gastric cancer cells compared to the control (pgastric carcinoma, (pgastric cancer. It might be of therapeutic benefit in gastric cancers.

  6. A paradigm linking herpesvirus immediate-early gene expression apoptosis and myalgic encephalomyelitis chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    A Martin Lerner

    2011-02-01

    Full Text Available A Martin Lerner1, Safedin Beqaj21Department of Medicine, William Beaumont Hospital, Royal Oak, MI, USA; 2DCL Medical Laboratories, Indianapolis, IN, USAAbstract: There is no accepted science to relate herpesviruses (Epstein–Barr virus [EBV], human cytomegalovirus [HCMV], and human herpesvirus 6 [HHV6] as causes of myalgic encephalomyelitis (ME/chronic fatigue syndrome (CFS. ME/CFS patients have elevated serum immunoglobulin (IgG serum antibody titers to EBV, HCMV, and HHV6, but there is no herpesvirus DNA-emia, herpesvirus antigenemia, or uniformly elevated IgM serum antibody titers to the complete virions. We propose that herpesvirus EBV, HCMV, and HHV6 immediate-early gene expression in ME/CFS patients leads to host cell dysregulation and host cell apoptosis without lytic herpesvirus replication. Specific antiviral nucleosides, which alleviate ME/CFS, namely valacyclovir for EBV ME/CFS and valganciclovir for HCMV/HHV6 ME/CFS, inhibit herpesvirus DNA polymerases and/or thymidine kinase functions, thus inhibiting lytic virus replication. New host cell recruitment thus ceases. In the absence of new herpesvirus, nonpermissive herpesvirus replication stops, and ME/CFS recovery ensues.Keywords: ME/CFS, Epstein–Barr virus (EBV, human cytomegalovirus (HCMV, HHV6, abortive replication

  7. THE EXPRESSION AND CLINICAL VALUE OF APOPTOSIS CONTROL GENE Bcl-2 AND Bax IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun; YAO Zhen-xiang; ZHANG Jing

    1999-01-01

    Objective: To study the expression and clinical value of apoptosis control gene bcl-2 and bax in breast cancer.Methods: Protein bax and bcl-2 in 41 breast cancers obtained from operations in our hospital in 1996 were detected using ABC immunohistochemical stain assay and compared with 10 cases with normal breast tissues.Results: The positive rate of bax in normal breast tissue was 90% and in breast cancer was 59%, with a significant statistical difference between them (P<0.05), but there was no statistical difference in bcl-2 protein expression. Among the 41 breast cancer, the group with lymph node metastasis (21 cases) had obviously low bax expression (43%) and high bcl-2 expression (76%), showing significant difference to the group without lymph node metastasis (P<0.05).Conclusion: The antiapoptosis function of bcl-2 was stronger than bax in breast cancer. Protein bax and bcl-2 assay may be useful in understanding the biological behaviors of breast cancer.

  8. Apoptosis-linked gene 2 promotes breast cancer growth and metastasis by regulating the cytoskeleton.

    Science.gov (United States)

    Qin, Juan; Li, Dengwen; Zhou, Yunqiang; Xie, Songbo; Du, Xin; Hao, Ziwei; Liu, Ruming; Liu, Xinqi; Liu, Min; Zhou, Jun

    2017-01-10

    Breast cancer is the most prevalent cancer in women. Although it begins as local disease, breast cancer frequently metastasizes to the lymph nodes and distant organs. Therefore, novel therapeutic targets are needed for the management of this disease. Apoptosis-linked gene 2 (ALG-2) is a calcium-binding protein crucial for diverse physiological processes and has recently been implicated in cancer development. However, it remains unclear whether this protein is involved in the pathogenesis of breast cancer. Here, we demonstrate that the expression of ALG-2 is significantly upregulated in breast cancer tissues and is correlated with clinicopathological characteristics indicative of tumor malignancy. Our data further show that ALG-2 stimulates breast cancer growth and metastasis in mice. ALG-2 also promotes breast cancer cell proliferation, survival, and motility in vitro. Mechanistic data reveal that ALG-2 disrupts the localization of centrosome proteins, resulting in spindle multipolarity and chromosome missegregation. In addition, ALG-2 drives the polarization and migration of breast cancer cells by facilitating the rearrangement of microtubules and microfilaments. These findings reveal a critical role for ALG-2 in the pathogenesis of breast cancer and have important implications for its diagnosis and therapy.

  9. PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells.

    Science.gov (United States)

    Sun, C-G; Zhuang, J; Teng, W-J; Wang, Z; Du, S-S

    2015-05-29

    We explored whether p53 upregulated modulator of apoptosis (PUMA) gene transfection could enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells. The liposome-mediated recombinant eukaryotic expression vector PU-MA-pCDNA3 and empty vector plasmid were stably transfected into MCF-7 cells. Epirubicin (0.01-100 μM) was applied to MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells for 72 h. The MTT assay was used to calculate the cell survival rate in each group, and the 50% inhibitory concentration (IC50) was calculated. The IC50 values of epirubicin in MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells were 13 ± 1.4, 1.8 ± 0.2, and 10.7 ± 1.3 μM, respectively. The sensitivity of MCF-7/PUMA cells to epirubicin increased 7.2-fold. Epirubicin induced apoptosis in MCF-7 cells dose-dependently, but MCF-7/PUMA cell-induced apoptosis was more significant compared to controls. Low concentrations of epirubicin (0.1 μM) caused low levels of apoptosis of MCF-7/pCDNA3 (1.15 ± 0.26%) and MCF-7 cells (0.9 ± 0.24%), but significantly induced apoptosis of MCF-7/PUMA cells (6.44 ± 1.46%). High epirubicin concentration (1 μM) induced apoptosis in each group, but the epirubicin MCF-7/PUMA apoptosis rate (35.47 ± 9.36%) was significantly higher than that of MCF-7 (12.6 ± 3.73%) and MCF-7/ pCDNA3 (15.2 ± 5.17%) cells (P PUMA protein expression in MCF-7/PUMA cells was significantly higher than that in MCF-7 and MCF-7/pCDNA3 cells by Western blot analysis. There-fore, stable transfection of PUMA can significantly enhance epirubicin-induced apoptosis sensitivity of MCF-7 breast cancer cells.

  10. Identification and characterization of retinoblastoma gene mutations disturbing apoptosis in human breast cancers

    Directory of Open Access Journals (Sweden)

    Berge Elisabet

    2010-07-01

    Full Text Available Abstract Background The tumor suppressor pRb plays a key role regulating cell cycle arrest, and disturbances in the RB1 gene have been reported in different cancer forms. However, the literature reports contradictory findings with respect to a pro - versus anti - apoptotic role of pRb, and the consequence of alterations in RB1 to chemotherapy sensitivity remains unclear. This study is part of a project investigating alterations in pivotal genes as predictive factors to chemotherapy sensitivity in breast cancer. Results Analyzing 73 locally advanced (stage III breast cancers, we identified two somatic and one germline single nucleotide changes, each leading to amino acid substitution in the pRb protein (Leu607Ile, Arg698Trp, and Arg621Cys, respectively. This is the first study reporting point mutations affecting RB1 in breast cancer tissue. In addition, MLPA analysis revealed two large multiexon deletions (exons 13 to 27 and exons 21 to 23 with the exons 21-23 deletion occurring in the tumor also harboring the Leu607Ile mutation. Interestingly, Leu607Ile and Arg621Cys point mutations both localize to the spacer region of the pRb protein, a region previously shown to harbor somatic and germline mutations. Multiple sequence alignment across species indicates the spacer to be evolutionary conserved. All three RB1 point mutations encoded nuclear proteins with impaired ability to induce apoptosis compared to wild-type pRb in vitro. Notably, three out of four tumors harboring RB1 mutations displayed primary resistance to treatment with either 5-FU/mitomycin or doxorubicin while only 14 out of 64 tumors without mutations were resistant (p = 0.046. Conclusions Although rare, our findings suggest RB1 mutations to be of pathological importance potentially affecting sensitivity to mitomycin/anthracycline treatment in breast cancer.

  11. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  12. Quantitative evaluation of viability- and apoptosis-related genes in Ascaris suum eggs under different culture-temperature conditions.

    Science.gov (United States)

    Yu, Yong-Man; Cho, You-Hang; Youn, Young-Nam; Quan, Juan Hua; Choi, In-Wook; Lee, Young-Ha

    2012-09-01

    Ascaris suum eggs are inactivated by composting conditions; however, it is difficult to find functional changes in heat-treated A. suum eggs. Here, unembryonated A. suum eggs were incubated at 20°C, 50°C, and 70°C in vitro, and the gene expression levels related to viability, such as eukaryotic translation initiation factor 4E (IF4E), phosphofructokinase 1 (PFK1), and thioredoxin 1 (TRX1), and to apoptosis, such as apoptosis-inducing factor 1 (AIF1) and cell death protein 6 (CDP6), were evaluated by real-time quantitative RT-PCR. No prominent morphological alterations were noted in the eggs at 20°C until day 10. In contrast, the eggs developed rapidly, and embryonated eggs and hatched larvae began to die, starting on day 2 at 50°C and day 1 at 70°C. At 20°C, IF4E, PFK1, and TRX1 mRNA expression was significantly increased from days 2-4; however, AIF1 and CDP6 mRNA expression was not changed significantly. IF4E, PFK1, and TRX1 mRNA expression was markedly decreased from day 2 at 50° and 70°C, whereas AIF1 and CDP6 mRNA expression was significantly increased. The expressions of HSP70 and HSP90 were detected for 9-10 days at 20°C, for 3-5 days at 50°C, and for 2 days at 70°C. Taken together, incremental heat increases were associated with the rapid development of A. suum eggs, decreased expression of genes related to viability, and earlier expression of apoptosis-related genes, and finally these changes of viability- and apoptosis-related genes of A. suum eggs were associated with survival of the eggs under temperature stress.

  13. Effects of MSH2 gene re-expression on estrogen induced-apoptosis of colon cancer cells LOVO

    Institute of Scientific and Technical Information of China (English)

    吕晨曦

    2014-01-01

    Objective To observe the effects of MSH2 gene reexpression on estrogen-induced apoptosis of colon cancer cells LOVO,and to explore its mechanisms.Methods According to different plasmid and whether with estradiol intervention,colon cancer LOVO cells were divided into empty plasmid with ethanol group,empty plasmid with estradiol group,MSH2 with ethanol group,MSH2 with

  14. Carbenoxolone Induces Apoptosis and Inhibits Survivin and Survivin-ΔEx3 Genes Expression in Human Leukemia K562 Cells

    Directory of Open Access Journals (Sweden)

    Z. Sanaat

    2011-12-01

    Full Text Available Background and the purpose of the study: Leukemia is a malignant disorder of the blood progenitor/stem cells which is characterized by abnormal proliferation of white blood cells. Although anti-cancer drugs induce apoptosis in cancerous cells, drug resistance is the significant problem mainly due to over-expression of inhibitors of apoptosis proteins (IAPs such as survivin. In this content, it has been reported that an anti-inflammatory drug, Carbenoxolone (CBX, could induce apoptosis and growth inhibition in several types of cancerous cells. In the present study, effects of CBX on apoptosis and level of the expression of survivin gene and its ΔEx3 splicing variant have were evaluated in K562 cells.Methods: K562 cells were cultured and treated with different concentrations of CBX (50-300 μM at different time intervals (12-48 hrs. Trypan blue exclusion test was used to evaluate cell viability. Fluorescent microscopy (Acridine Orange/Ethidium Bromide double staining and DNA fragmentation assay were used to study apoptosis. The expression level of survivin and its ΔEx3 splice variant were studied by RT- PCR.Results and Major Conclusion: It was found that both growth inhibition and apoptosis occurred in K562 cells. In addition, down-regulation of survivin and survin-ΔEx3 were observed, after 2-4 hrs treatment with 150 μM of CBX. However, the expression level of survivin and its ΔEx3 splice variant increased in subsequent time (6-12 hrs nearly to the level of control cells. From the results of this study, it may be concluded that CBX can be considered as a candidate for further studies in CML treatment, especially in the case of drug- resistant leukemia cells.

  15. Modeling Gene Networks in Saccharomyces cerevisiae Based on Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Yulin Zhang

    2015-01-01

    Full Text Available Detailed and innovative analysis of gene regulatory network structures may reveal novel insights to biological mechanisms. Here we study how gene regulatory network in Saccharomyces cerevisiae can differ under aerobic and anaerobic conditions. To achieve this, we discretized the gene expression profiles and calculated the self-entropy of down- and upregulation of gene expression as well as joint entropy. Based on these quantities the uncertainty coefficient was calculated for each gene triplet, following which, separate gene logic networks were constructed for the aerobic and anaerobic conditions. Four structural parameters such as average degree, average clustering coefficient, average shortest path, and average betweenness were used to compare the structure of the corresponding aerobic and anaerobic logic networks. Five genes were identified to be putative key components of the two energy metabolisms. Furthermore, community analysis using the Newman fast algorithm revealed two significant communities for the aerobic but only one for the anaerobic network. David Gene Functional Classification suggests that, under aerobic conditions, one such community reflects the cell cycle and cell replication, while the other one is linked to the mitochondrial respiratory chain function.

  16. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Yoshiyuki Takahara; Mitsuo Takahashi; Hiroki Wagatsuma; Fumihiko Yokoya; Qing-Wei Zhang; Mutsuyo Yamaguchi; Hiroyuki Aburatani; Norifumi Kawada

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylnitrosamine (DMN)-induced hepatic fibrosis.METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells),and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells.RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSCspecific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis,suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocytespecific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis.CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis.

  17. Gene expression profiling of human erythroid progenitors by micro-serial analysis of gene expression.

    Science.gov (United States)

    Fujishima, Naohito; Hirokawa, Makoto; Aiba, Namiko; Ichikawa, Yoshikazu; Fujishima, Masumi; Komatsuda, Atsushi; Suzuki, Yoshiko; Kawabata, Yoshinari; Miura, Ikuo; Sawada, Ken-ichi

    2004-10-01

    We compared the expression profiles of highly purified human CD34+ cells and erythroid progenitor cells by micro-serial analysis of gene expression (microSAGE). Human CD34+ cells were purified from granulocyte colony-stimulating factor-mobilized blood stem cells, and erythroid progenitors were obtained by cultivating these cells in the presence of stem cell factor, interleukin 3, and erythropoietin. Our 10,202 SAGE tags allowed us to identify 1354 different transcripts appearing more than once. Erythroid progenitor cells showed increased expression of LRBA, EEF1A1, HSPCA, PILRB, RANBP1, NACA, and SMURF. Overexpression of HSPCA was confirmed by real-time polymerase chain reaction analysis. MicroSAGE revealed an unexpected preferential expression of several genes in erythroid progenitor cells in addition to the known functional genes, including hemoglobins. Our results provide reference data for future studies of gene expression in various hematopoietic disorders, including myelodysplastic syndrome and leukemia.

  18. Ets-1 as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells.

    Science.gov (United States)

    Qiao, N; Xu, C; Zhu, Y-X; Cao, Y; Liu, D-C; Han, X

    2015-02-19

    Hypoxia complicates islet isolation for transplantation and may contribute to pancreatic β-cell failure in type 2 diabetes. Pancreatic β-cells are susceptible to hypoxia-induced apoptosis. Severe hypoxic conditions during the immediate post-transplantation period are a main non-immune factor leading to β-cell death and islet graft failure. In this study, we identified the transcription factor Ets-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Hypoxia regulates Ets-1 at multiple levels according to the degree of β-cell oxygen deprivation. Moderate hypoxia promotes Ets-1 gene transcription, whereas severe hypoxia promotes its transactivation activity, as well as its ubiquitin-proteasome mediated degradation. This degradation causes a relative insufficiency of Ets-1 activity, and limits the transactivation effect of Ets-1 on downstream hypoxic-inducible genes and its anti-apoptotic function. Overexpression of ectopic Ets-1 in MIN6 and INS-1 cells protects them from severe hypoxia-induced apoptosis in a mitochondria-dependent manner, confirming that a sufficient amount of Ets-1 activity is critical for protection of pancreatic β-cells against hypoxic injury. Targeting Ets-1 expression may be a useful strategy for islet graft protection during the immediate post-transplantation period.

  19. Post-operative infection and sepsis in humans is associated with deficient gene expression of γc cytokines and their apoptosis mediators.

    LENUS (Irish Health Repository)

    White, Mary

    2011-06-01

    Lymphocyte homeostasis is dependent on the γc cytokines. We hypothesised that sepsis in humans is associated with differential gene expression of the γc cytokines and their associated apoptosis mediators.

  20. Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures.

    Science.gov (United States)

    Abbasi, Asghar; Hauth, Melanie; Walter, Michael; Hudemann, Jens; Wank, Veit; Niess, Andreas M; Northoff, Hinnak

    2014-07-01

    Exhaustive exercise can interfere with immunity, causing transient immunosuppression and infections/inflammation in athletes. We used microarray technology to analyze the gene expression profiles of whole blood in short time (1h) LPS-stimulated and un-stimulated cultures drawn before, 30min after, 3h after and 24h after a half-marathon run. Four male and 4 female athletes participated. Exercise induced differential expression of genes known to be involved in innate immunity/inflammatory response, metabolic response, DNA methylation, apoptosis and regulation of brain function. Several genes with prominent anti-inflammatory function were up-regulated in un-stimulated cultures, including ARG-1, SOCS3, DUSP-1, ORMs, IRAK3, and GJB6. Some of these genes were also strongly up-regulated in LPS-stimulated cultures (ARG-1, ORM2, and GJB6). Some genes were strongly up-regulated through exercise in LPS-stimulated cultures, but not in un-stimulated cultures (TNIP3, PLAU, and HIVEP1). There was also a row of genes, which were strongly down-regulated by exercise in LPS-stimulated cultures, notably IFN-β1 and CXCL10. Exercise also significantly changed the expression of genes (OLIG2, TMEM106B) which are known to be related to brain function and expression of which has never been documented in peripheral blood. In summary, exhaustive exercise, in addition to modifying gene expression in un-stimulated cells, could also interfere with the early gene expression response to endotoxin. There was an anti-inflammatory bias of gene regulation by exercise, including genes involved in the negative regulation of TLRs signalling. The results of the present study demonstrate that some potentially important effects of exercise can only be detected in relation to pathogen stimulation.

  1. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  2. Gene control of acupuncture and moxibustion preconditioning on apoptosis in ischemic cardiac muscle of rats with re-perfusion

    Institute of Scientific and Technical Information of China (English)

    SUN Zhong-ren; LI Xiao-ning; ZHAO Yu-hui; TIAN Yan-yan; XU Li

    2008-01-01

    In order to explore the effect of acupuncture preconditioning on rats' cell apoptosis with cardiac muscle re-perfusion damage and bcl-2mRNA genes, we used differentiating acupuncture and moxibustion preconditioning among groups, then compared acupuncture and moxibustion preconditioning with ischemic preconditioning. The experimental results show that acupuncture and moxibustion preconditioning makes more bcl-2mRNA genes expressed and produces less cell apeptosis, furthermore, groups of acupuncture and moxibustion preconditioning for twice a day are more effective than those of ischemic preconditioning.

  3. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times

    Directory of Open Access Journals (Sweden)

    Rao Nagesha AS

    2009-09-01

    Full Text Available Abstract Background Gene expression profiling of spontaneous tumors in the dog offers a unique translational opportunity to identify prognostic biomarkers and signaling pathways that are common to both canine and human. Osteosarcoma (OS accounts for approximately 80% of all malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart with respect to histology, high metastatic rate and poor long-term survival. This study investigates the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of cross-species comparison with human OS. Results The 32 tumors were classified into two prognostic groups based on survival time (ST. They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months and long survivors (dogs with better prognosis: surviving 6 months or longer. Fifty-one transcripts were found to be differentially expressed, with common upregulation of these genes in the short survivors. The overexpressed genes in short survivors are associated with possible roles in proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as an excellent model for humans. Conclusion A molecular-based method for discrimination of outcome for short and long survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets for diagnosis and therapy. The similarities between human and canine OS makes the

  4. Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis

    Science.gov (United States)

    Shen, Ching-Ju; Chan, Te-Fu; Chen, Chien-Chung; Hsu, Yi-Chiang; Long, Cheng-Yu; Lai, Chung-Sheng

    2016-01-01

    Human umbilical cord mesenchymal stem cells (hUCMSCs) derived from the umbilical cord matrix have been reported to be used as anti-tumor gene carrier for attenuation of tumor growth, which extends the half-life and lowers the unexpected cytotoxicity of the gene in vivo. Interferon-β (IFNβ) is known to possess robust antitumor effects on different types of cancer cell lines in vitro. The present study was aimed to investigate the anti-tumor effect of IFNβ gene-transfected hUCMSCs (IFNβ-hUCMSCs) on breast cancer cells with emphasis on triple negative breast carcinoma. Our findings revealed that the co-culture of IFNβ-hUCMSCs with the human triple negative breast carcinoma cell lines MDA-MB-231 or Hs578T significantly inhibited growth of both carcinoma cells. In addition, the culture medium conditioned by these cells also significantly suppressed the growth and induced apoptosis of both carcinoma cells. Further investigation showed that the suppressed growth and the apoptosis induced by co-culture of IFNβ-hUCMSCs or conditioned medium were abolished by pretreating anti-IFNβ neutralizing antibody. These findings indicate that IFNβ-hUCMSCs triggered cell death of breast carcinoma cells through IFN-β production, thereby induced apoptosis and suppressed tumor cell growth. In conclusion, we demonstrated that IFNβ-hUCMSCs inhibited the growth of breast cancer cells through apoptosis. with potent anti-cancer activity, it represents as an anti-cancer cytotherapeutic modality against breast cancer. PMID:27129156

  5. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Science.gov (United States)

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system....

  6. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    Energy Technology Data Exchange (ETDEWEB)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com [Laboratorio de Biomedicina Molecular, Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro., México (Mexico); Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx [Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D.F., México (Mexico); Hidalgo-Miranda, Alfredo, E-mail: ahidalgo@inmegen.gob.mx [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); Romero-Córdoba, Sandra Lorena, E-mail: sromero_cordoba@hotmail.com [Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., México (Mexico); and others

    2016-01-15

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such as adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.

  7. The tumor suppressor gene RBM5 inhibits lung adenocarcinoma cell growth and induces apoptosis

    Directory of Open Access Journals (Sweden)

    Shao Chen

    2012-08-01

    Full Text Available Abstract Background The loss of tumor suppressor gene (TSG function is a critical step in the pathogenesis of human lung cancer. RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15 gene from chromosome 3p21.3 demonstrated tumor suppressor activity. However, the role of RBM5 played in the occurrence and development of lung cancer is still not well understood. Method Paired non-tumor and tumor tissues were obtained from 30 adenocarcinomas. The expression of RBM5 mRNA and protein was examined by RT-PCR and Western blot. A549 cell line was used to determine the apoptotic function of RBM5 in vitro. A549 cells were transiently transfected with pcDNA3.1-RBM5. AnnexinV analysis was performed by flow cytometry. Expression of Bcl-2, cleaved caspase-3, caspase-9 and PAPP proteins in A549 lung cancer cells and the A549 xenograft BALB/c nude mice model was determined by Western blot. Tumor suppressor activity of RBM5 was also examined in the A549 xenograft model treated with pcDNA3.1-RBM5 plasmid carried by attenuated Salmonella typhi Ty21a. Result The expression of RBM5 mRNA and protein was decreased significantly in adenocarcinoma tissues compared to that in the non-tumor tissues. In addition, as compared to the vector control, a significant growth inhibition of A549 lung cancer cells was observed when transfected with pcDNA3.1-RBM5 as determined by cell proliferation assay. We also found that overexpression of RBM5 induced both early and late apoptosis in A549 cells using AnnexinV/PI staining as determined by flow cytometry. Furthermore, the expression of Bcl-2 protein was decreased, whereas the expression of cleaved caspase-3, caspase-9 and PARP proteins was significantly increased in the RBM5 transfected cells; similarly, expression of decreased Bcl-2 and increased cleaved caspase-3 proteins was also examined in the A549 xenograft model. More importantly, we showed that accumulative and stable overexpression of RBM5 in the A549 xenograft BALB

  8. Transcriptomic analysis of Mandarin fish brain cells infected with infectious spleen and kidney necrosis virus with an emphasis on retinoic acid-inducible gene 1-like receptors and apoptosis pathways.

    Science.gov (United States)

    Hu, Xianqin; Fu, Xiaozhe; Li, Ningqiu; Dong, Xingxing; Zhao, Lijuan; Lan, Jiangfeng; Ji, Wei; Zhou, Weidong; Ai, Taoshan; Wu, Shuqin; Lin, Li

    2015-08-01

    Infectious spleen and kidney necrosis virus (ISKNV) has caused significant economic losses in the cultured Mandarin fish (Siniperca chuatsi) industry. The molecular mechanisms that underlie the pathogenesis of the viral infection remain poorly understood. In this study, deep RNA sequencing technique was used to analyze the transcriptomic profiles of Mandarin fish brain cells (CPB) at progressive time points after ISKNV infection. A total of 96,206,040 clean data from 98,235,240 sequence reads were obtained. These raw data were assembled into 66,787 unigenes. Among these unigenes, 33,225 and 29,210 had significant hit the Nr and SwissProt databases where they matched 27,537and 19,638 unique protein accessions, respectively. In the samples harvested at 24 or 72 h post of the infection, a total of 10,834 or 7584 genes were differentially expressed in infected CPB cells compared to non-infected cells, including 5445 or 3766 up-regulated genes and 5389 or 3818 down-regulated genes, respectively. In addition, 12 differentially expressed genes (DEGs) were validated by quantitative PCR. These DEGs were involved in many pathways of viral pathogenesis. Further analysis of the major DEGs genes involved in the RLRs and apoptosis pathways revealed some interesting findings. In the RLRs pathway, ISKNV infection inhibited the activation of NF-κB via over expression of the IKKB-α and IKKB-β and lessened expression of interleukin-1 receptor-associated kinase 4 (IRAK4). In the apoptosis pathway, ISKNV infection could induce apoptosis mainly via tumor necrosis factor (TNF) mediated extrinsic pathway. The cellular apoptosis induced by ISKNV infection was confirmed using annexinV-FITC/PI and DAPI staining methods.

  9. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling

    Institute of Scientific and Technical Information of China (English)

    Xiaosheng Wang

    2013-01-01

    The emergence of a huge volume of "omics" data enables a computational approach to the investigation of the biology of cancer.The cancer informatics approach is a useful supplement to the traditional experimental approach.I reviewed several reports that used a bioinformatics approach to analyze the associations among aging,stem cells,and cancer by microarray gene expression profiling.The high expression of aging-or human embryonic stem cell-related molecules in cancer suggests that certain important mechanisms are commonly underlying aging,stem cells,and cancer.These mechanisms are involved in cell cycle regulation,metabolic process,DNA damage response,apoptosis,p53 signaling pathway,immune/inflammatory response,and other processes,suggesting that cancer is a developmental and evolutional disease that is strongly related to aging.Moreover,these mechanisms demonstrate that the initiation,proliferation,and metastasis of cancer are associated with the deregulation of stem cells.These findings provide insights into the biology of cancer.Certainly,the findings that are obtained by the informatics approach should be justified by experimental validation.This review also noted that next-generation sequencing data provide enriched sources for cancer informatics study.

  10. Discovery of molecular associations among aging, stem cells, and cancer based on gene expression profiling.

    Science.gov (United States)

    Wang, Xiaosheng

    2013-04-01

    The emergence of a huge volume of "omics" data enables a computational approach to the investigation of the biology of cancer. The cancer informatics approach is a useful supplement to the traditional experimental approach. I reviewed several reports that used a bioinformatics approach to analyze the associations among aging, stem cells, and cancer by microarray gene expression profiling. The high expression of aging- or human embryonic stem cell-related molecules in cancer suggests that certain important mechanisms are commonly underlying aging, stem cells, and cancer. These mechanisms are involved in cell cycle regulation, metabolic process, DNA damage response, apoptosis, p53 signaling pathway, immune/inflammatory response, and other processes, suggesting that cancer is a developmental and evolutional disease that is strongly related to aging. Moreover, these mechanisms demonstrate that the initiation, proliferation, and metastasis of cancer are associated with the deregulation of stem cells. These findings provide insights into the biology of cancer. Certainly, the findings that are obtained by the informatics approach should be justified by experimental validation. This review also noted that next-generation sequencing data provide enriched sources for cancer informatics study.

  11. Influence of mRNA decay rates on the computational prediction of transcription rate profiles from gene expression profiles

    Indian Academy of Sciences (India)

    Chi-Fang Chin; Arthur Chun-Chieh Shih; Kuo-Chin Fan

    2007-12-01

    The abundance of an mRNA species depends not only on the transcription rate at which it is produced, but also on its decay rate, which determines how quickly it is degraded. Both transcription rate and decay rate are important factors in regulating gene expression. With the advance of the age of genomics, there are a considerable number of gene expression datasets, in which the expression profiles of tens of thousands of genes are often non-uniformly sampled. Recently, numerous studies have proposed to infer the regulatory networks from expression profiles. Nevertheless, how mRNA decay rates affect the computational prediction of transcription rate profiles from expression profiles has not been well studied. To understand the influences, we present a systematic method based on a gene dynamic regulation model by taking mRNA decay rates, expression profiles and transcription profiles into account. Generally speaking, an expression profile can be regarded as a representation of a biological condition. The rationale behind the concept is that the biological condition is reflected in the changing of gene expression profile. Basically, the biological condition is either associated to the cell cycle or associated to the environmental stresses. The expression profiles of genes that belong to the former, so-called cell cycle data, are characterized by periodicity, whereas the expression profiles of genes that belong to the latter, so-called condition-specific data, are characterized by a steep change after a specific time without periodicity. In this paper, we examine the systematic method on the simulated expression data as well as the real expression data including yeast cell cycle data and condition-specific data (glucose-limitation data). The results indicate that mRNA decay rates do not significantly influence the computational prediction of transcription-rate profiles for cell cycle data. On the contrary, the magnitudes and shapes of transcription-rate profiles for

  12. A preliminary investigation demonstrating the effect of quercetin on the expression of genes related to cell-cycle arrest, apoptosis and xenobiotic metabolism in human CO115 colon-adenocarcinoma cells using DNA microarray.

    Science.gov (United States)

    Murtaza, Imtiyaz; Marra, Giancarlo; Schlapbach, Ralph; Patrignani, Andrea; Künzli, Marzana; Wagner, Ulrich; Sabates, Jacob; Dutt, Amit

    2006-07-01

    The role of the natural dietary flavonoid chemical quercetin (an antioxidant) in the prevention and treatment of colon cancer is receiving a great deal of attention. However, little is known about the molecular mechanisms of action of this flavonoid. In the present study, whole genome DNA microarrays were used to evaluate the effect of quercetin on gene expression in the CO115 colon-adenocarcinoma cell line with the completely deleted chromosome 18 harbouring the SMAD4 tumour-suppressor gene related to colon carcinogenesis. The study demonstrated that quercetin, widely present in fruit and vegetables, inhibited the growth of CO115 cells at 100 microM concentration in both the G(1)/S and the G(2)/M phases by modulating cell-cycle and apoptosis-related genes. Differential changes in accumulation of transcripts analysed for cells treated with 100 microM quercetin for 24 and 48 h in three independent repeated experiments revealed 5060-7000 differentially expressed genes. This means that quercetin probably does have a broad modulatory effect on gene expression in colon cancer. Out of these differentially expressed genes, the expression of 35 and 23 unique set of genes involved in cell-cycle control, apoptosis and xenobiotic metabolism were significantly altered after 24 and 48 h quercetin treatment respectively. Our results represent a novel aspect of the biological profile of quercetin that induces cell-cycle arrest through modulation of cell-cycle-related and apoptosis genes. The present study demonstrates a new step in elucidating the underlying molecular mechanisms of the antitumour action of quercetin, which could become a chemopreventive or chemotherapeutic agent for colon cancer.

  13. Gene expression profiling in glomeruli of diabetic nephropathy rat.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Sun, Xiaofang; Mao, Lili; Xiang, Hongding

    2012-08-01

    Diabetic nephropathy (DN) remains the most common cause of end-stage renal disease (ESRD) as the burden of diabetes increases worldwide. To find improved intervention strategies for this disease, it is necessary to investigate the molecular mechanisms involved. To obtain more insight into processes that lead to DN, mRNA expression profiles of diabetic and normal glomeruli from rat kidneys were compared. Rats were divided into a control group and a DN group randomly. The DN group was injected with streptozotocin. Fasting blood glucose (FBG) and weight were measured monthly. On the 12th week, blood samples were collected and analyzed for plasma creatinine and blood urea nitrogen (BUN). Glomeruli were isolated and Illumina Rat Ref-12 V1.0 Expression Beadchip gene array was performed. Quantitative realtime polymerase chain reaction (Q-RT-PCR) was used to confirm the results of gene array for a selected number of genes. We found FBG, 24-h urinary albumin, serum creatinine and BUN were significantly increased, while urinary creatinine and body weight were significantly decreased in the DN group. Glomeruli from the DN group had 624 genes with differential expression. DAVID (Database for Annotation, Visualization and integrated Discovery) analysis showed that the three most enriched terms were 'cytosol' (GO:0005829), 'translational elongation' (GO:0006414) and 'mitochondion' (GO:0005739). Those genes could be mapped to eight pathways. The most common type of enriched pathway was related to 'extracellular matrix (ECM)-receptor interaction'. Other pathways included those for 'ribosome', 'focal adhesion', 'oxidative phosphorylation', 'transforming growth factor (TGF)-beta signaling pathway', 'Parkinson's disease', 'Alzheimer's disease' and 'renin-angiotensin system'. Q-RT-PCR verified that Atp5b (F1-ATPase beta subunit), Col1a1 (collagen type 1 alpha 1), Cox6c (cytochrome c oxidase subunit VIc), Ndufs3 (NADH dehydrogenase [ubiquinone] Fe-S protein 3) and Tgfb1 (transforming

  14. Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Vinod Vathipadiekal

    Full Text Available Identification of gene expression profiles of cancer stem cells may have significant implications in the understanding of tumor biology and for the design of novel treatments targeted toward these cells. Here we report a potential ovarian cancer stem cell gene expression profile from isolated side population of fresh ascites obtained from women with high-grade advanced stage papillary serous ovarian adenocarcinoma. Affymetrix U133 Plus 2.0 microarrays were used to interrogate the differentially expressed genes between side population (SP and main population (MP, and the results were analyzed by paired T-test using BRB-ArrayTools. We identified 138 up-regulated and 302 down-regulated genes that were differentially expressed between all 10 SP/MP pairs. Microarray data was validated using qRT-PCR and17/19 (89.5% genes showed robust correlations between microarray and qRT-PCR expression data. The Pathway Studio analysis identified several genes involved in cell survival, differentiation, proliferation, and apoptosis which are unique to SP cells and a mechanism for the activation of Notch signaling is identified. To validate these findings, we have identified and isolated SP cells enriched for cancer stem cells from human ovarian cancer cell lines. The SP populations were having a higher colony forming efficiency in comparison to its MP counterpart and also capable of sustained expansion and differentiation in to SP and MP phenotypes. 50,000 SP cells produced tumor in nude mice whereas the same number of MP cells failed to give any tumor at 8 weeks after injection. The SP cells demonstrated a dose dependent sensitivity to specific γ-secretase inhibitors implicating the role of Notch signaling pathway in SP cell survival. Further the generated SP gene list was found to be enriched in recurrent ovarian cancer tumors.

  15. Progress in the Study of Acupuncture in Regulating Post-Cerebral Ischemia/Reperfusion Cell-Apoptosis Related Gene Expression

    Institute of Scientific and Technical Information of China (English)

    卜渊; 耿德勤; 曾因明

    2003-01-01

    @@ Cerebralvascular disease has already become one of the serious illnesses that threatens human health. Along with the development of medicine, although the therapeutic method harvested huge progress, currently ideal therapeutic methods are lacking. The conventional acupuncture has definite therapeutic effect on cerebropathy. Clinical practice and various animal experiments confirmed that acupuncture could alleviate the pathologic damage after cerebral ischemic injury and promote the nerve function recovery. Past studies showed that the role of acupuncture in treating cerebral ischemia is realized through alleviating post-ischemic neuron necrosis, while recent study discovered that acupuncture has inhibitory effect on post-ischemia induced neuronal necrosis(1), which brought the mechanism of acupuncture in treating cerebral ischemia from the biochemical and metabolical level to the molecular biologic level. The studies revealed that after cerebral ischemia, many genes were induced to express themselves, protein product they coded directly or indirectly participated in the regulation of post-cerebral ischemia apoptosis of neuron, some promoting the apoptosis, while others inhibiting apoptosis with some of the function still unclear. The anti-apoptotic effect of acupuncture is accomplished through regulating the relevant apoptotic gene expression(2), and now it is reviewed as follows:

  16. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  17. Analysis of the retinal gene expression profile after hypoxic preconditioning identifies candidate genes for neuroprotection

    Directory of Open Access Journals (Sweden)

    Wenzel Andreas

    2008-02-01

    Full Text Available Abstract Background Retinal degeneration is a main cause of blindness in humans. Neuroprotective therapies may be used to rescue retinal cells and preserve vision. Hypoxic preconditioning stabilizes the transcription factor HIF-1α in the retina and strongly protects photoreceptors in an animal model of light-induced retinal degeneration. To address the molecular mechanisms of the protection, we analyzed the transcriptome of the hypoxic retina using microarrays and real-time PCR. Results Hypoxic exposure induced a marked alteration in the retinal transcriptome with significantly different expression levels of 431 genes immediately after hypoxic exposure. The normal expression profile was restored within 16 hours of reoxygenation. Among the differentially regulated genes, several candidates for neuroprotection were identified like metallothionein-1 and -2, the HIF-1 target gene adrenomedullin and the gene encoding the antioxidative and cytoprotective enzyme paraoxonase 1 which was previously not known to be a hypoxia responsive gene in the retina. The strongly upregulated cyclin dependent kinase inhibitor p21 was excluded from being essential for neuroprotection. Conclusion Our data suggest that neuroprotection after hypoxic preconditioning is the result of the differential expression of a multitude of genes which may act in concert to protect visual cells against a toxic insult.

  18. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Science.gov (United States)

    Seita, Jun; Sahoo, Debashis; Rossi, Derrick J; Bhattacharya, Deepta; Serwold, Thomas; Inlay, Matthew A; Ehrlich, Lauren I R; Fathman, John W; Dill, David L; Weissman, Irving L

    2012-01-01

    Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/) which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  19. Network analysis of mitonuclear GWAS reveals functional networks and tissue expression profiles of disease-associated genes.

    Science.gov (United States)

    Johnson, Simon C; Gonzalez, Brenda; Zhang, Quanwei; Milholland, Brandon; Zhang, Zhengdong; Suh, Yousin

    2017-01-01

    While mitochondria have been linked to many human diseases through genetic association and functional studies, the precise role of mitochondria in specific pathologies, such as cardiovascular, neurodegenerative, and metabolic diseases, is often unclear. Here, we take advantage of the catalog of human genome-wide associations, whole-genome tissue expression and expression quantitative trait loci datasets, and annotated mitochondrial proteome databases to examine the role of common genetic variation in mitonuclear genes in human disease. Through pathway-based analysis we identified distinct functional pathways and tissue expression profiles associated with each of the major human diseases. Among our most striking findings, we observe that mitonuclear genes associated with cancer are broadly expressed among human tissues and largely represent one functional process, intrinsic apoptosis, while mitonuclear genes associated with other diseases, such as neurodegenerative and metabolic diseases, show tissue-specific expression profiles and are associated with unique functional pathways. These results provide new insight into human diseases using unbiased genome-wide approaches.

  20. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  1. Evaluation of cell proliferation, apoptosis, and DNA-repair genes as potential biomarkers for ethanol-induced CNS alterations.

    Science.gov (United States)

    Hicks, Steven D; Lewis, Lambert; Ritchie, Julie; Burke, Patrick; Abdul-Malak, Ynesse; Adackapara, Nyssa; Canfield, Kelly; Shwarts, Erik; Gentile, Karen; Meszaros, Zsuzsa Szombathyne; Middleton, Frank A

    2012-10-25

    Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal gyrus and

  2. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis.

    Science.gov (United States)

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang

    2015-10-01

    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  3. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes.

    Science.gov (United States)

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E

    2007-01-22

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working Global System for Mobile Communication (GSM) cell phone rated at a frequency of 1900MHz. Primary cultures were exposed to cell phone emissions for 2h. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Up-regulation occurred in both "on" and "stand-by" modes in neurons, but only in "on" mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons or astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes.

  4. Differential Expression of Apoptosis Related Genes in Selected Strains of Aedes aegypti with Different Susceptibilities to Dengue Virus

    Science.gov (United States)

    Ocampo, Clara B.; Caicedo, Paola A.; Jaramillo, Gloria; Ursic Bedoya, Raul; Baron, Olga; Serrato, Idalba M.; Cooper, Dawn M.; Lowenberger, Carl

    2013-01-01

    Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain. PMID:23593426

  5. THE EXPRESSION OF APOPTOSIS RELATED GENES IN THE PROCESS OF CANCERATION OF ATYPICAL HYPERPLASIA OF MAMMARY DUCT

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To investigate the expression of apoptosis related genes p53 and bcl-2 in atypical hyperplasia of mammary duct and the relationship between the gene expression and oncogenesis of breast. Methods: mRNA of apoptosis related gene p53 and bcl-2 were detected by in situ hybridization in 44 cases of atypical ductal hyperplasia. p53 protein expression was detected by immunohistochemistry. The data were compared with those of 6 cases of benign hyperplasia and 26 cases of breast carcinoma. Results: The expression of p53 mRNA was 66.7% in benign hyperplasia, 40% in atypical ductal hyperplasia (55.6% in mild, 41.7% in medium, 26.1% in severe) and 19.2% in carcinoma (of which 21.4% were intraductal carcinoma and 16.7% were invasive). The expression of p53 protein was negative in benign hyperplasia, 24% in atypical hyperplasia (mild 11.1%, medium 25%, severe 34.8%), 38.5% in carcinoma (intraductal carcinoma 35.7%, invasive ductal carcinoma 41.7%). The expression of bcl-2 was negative in benign hyperplasia, 78.6% in intraductal carcinoma, 83.3% in invasive ductal carcinoma. Conclusion: Loss and mutation of p53 gene and excessive expression bcl-2 mRNA were detected in severe atypical ductal hyperplasia.

  6. Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus.

    Directory of Open Access Journals (Sweden)

    Clara B Ocampo

    Full Text Available Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2 and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1 and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain.

  7. Differential expression of apoptosis related genes in selected strains of Aedes aegypti with different susceptibilities to dengue virus.

    Science.gov (United States)

    Ocampo, Clara B; Caicedo, Paola A; Jaramillo, Gloria; Ursic Bedoya, Raul; Baron, Olga; Serrato, Idalba M; Cooper, Dawn M; Lowenberger, Carl

    2013-01-01

    Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53% to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain.

  8. Effects of recombinant adenoviral vector containing IRE1α gene on proliferation and apoptosis of ATDC5 stem cells

    Directory of Open Access Journals (Sweden)

    Xiang-zhu LI

    2013-09-01

    Full Text Available Objective To construct the recombinant adenoviral vector containing human IRE1α (type I transmembrane protein kinase/endoribonucleasegene, and investigate its effects on proliferation and apoptosis of ATDC5 stem cells. Methods  By using pAdEasyTM adenovirus vector system, the recombinant shuttle vectors of IRE1α full-length gene(pAdTrack-IRE1αand RNase+Kinasedomain(pAdTrack-R+Kwere constructed, and then transferred with pAdEasy-1 to generate recombinant adenovirus plasmid pAd-IRE1α and pAd-R+K by electroporation method. Subsequently, the plasmids were transfected into HEK-293 cells to pack and amplify the recombinant adenovirus Ad-IRE1α and Ad-R+K. The expression of recombinant adenovirus was detected by PCR. The ATDC5 cells wereinfected in vitro by recombinant adenovirus Ad-IRE1α and Ad-R+K, the infection efficiency of green fluorescent protein(GFPwas observed, and the influence of Ad-IRE1α and Ad-R+K on the proliferation and apoptosis of ATDC5 cells under endoplasmic reticulum stress(ERS or non-ERS was detected by flow cytometry(FCM. Results Restriction endonuclease digestion analysis and PCR indicated that the recombinant adenovirus vector Ad-IRE1α andAd-R+K was successfully constructed. FCM detection showed that under ERS conditions, the G1 phasedcreased and S phase increased in ATDC5 cells after transfected by Ad-IRE1α and Ad-R+K, meanwhile the apoptosis rate increased significantly(P<0.05. Conclusion Infection of recombinant adenovirus containing IRE1α gene may promote the proliferation and apoptosis of ATDC5cells.

  9. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti.

    Science.gov (United States)

    Eng, Matthew W; van Zuylen, Madeleine N; Severson, David W

    2016-09-01

    The mosquito Aedes aegypti is the primary urban vector for dengue virus (DENV) worldwide. Insight into interactions occurring between host and pathogen is important in understanding what factors contribute to vector competence. However, many of the molecular mechanisms for vector competence remain unknown. Our previous global transcriptional analysis suggested that differential expression of apoptotic proteins is involved in determining refractoriness vs susceptibility to DENV-2 infection in Ae. aegypti females following a DENV-infected blood meal. To determine whether DENV-refractory Ae. aegypti showed more robust apoptosis upon infection, we compared numbers of apoptotic cells from midguts of refractory and susceptible strains and observed increased numbers of apoptotic cells in only the refractory strain upon DENV-2 infection. Thereafter, we manipulated apoptosis through dsRNA interference of the initiator caspase, Aedronc. Unexpectedly, dsAedronc-treated females showed both decreased frequency of disseminated infection and decreased virus titer in infected individuals. Insect caspases have also previously been identified as regulators of the cellular recycling process known as autophagy. We observed activation of autophagy in midgut and fat body tissues following a blood meal, as well as programmed activation of several apoptosis-related genes, including the effector caspase, Casps7. To determine whether autophagy was affected by caspase knockdown, we silenced Aedronc and Casps7, and observed reduced activation of autophagy upon silencing. Our results provide evidence that apoptosis-related genes are also involved in regulating autophagy, and that Aedronc may play an important role in DENV-2 infection success in Ae. aegypti, possibly through its regulation of autophagy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mkp1 is a c-Jun target gene that antagonizes JNK-dependent apoptosis in sympathetic neurons.

    Science.gov (United States)

    Kristiansen, Mark; Hughes, Rosie; Patel, Pritika; Jacques, Thomas S; Clark, Andrew R; Ham, Jonathan

    2010-08-11

    Developing sympathetic neurons depend on NGF for survival. When sympathetic neurons are deprived of NGF in vitro, a well documented series of events, including c-Jun N-terminal kinase (JNK) pathway activation, release of cytochrome c from the mitochondria, and caspase activation, culminates in the death of the neuron by apoptosis within 24-48 h. This process requires de novo gene expression, suggesting that increased expression of specific genes activates the cell death program. Using rat gene microarrays, we found that NGF withdrawal induces the expression of many genes, including mkp1, which encodes a MAPK phosphatase that can dephosphorylate JNKs. The increase in mkp1 mRNA level requires the MLK-JNK-c-Jun pathway, and we show that Mkp1 is an important regulator of JNK-dependent apoptosis in sympathetic neurons. In microinjection experiments, Mkp1 overexpression can inhibit JNK-mediated phosphorylation of c-Jun and protect sympathetic neurons from apoptosis, while Mkp1 knockdown accelerates NGF withdrawal-induced death. Accordingly, the number of superior cervical ganglion (SCG) neurons is reduced in mkp1-/- mice at P1 during the period of developmental sympathetic neuron death. We also show that c-Jun and ATF2 bind to two conserved ATF binding sites in the mkp1 promoter in vitro and in chromatin. Both of these ATF sites contribute to basal promoter activity and are required for mkp1 promoter induction after NGF withdrawal. These results demonstrate that Mkp1 is part of a negative feedback loop induced by the MLK-JNK-c-Jun signaling pathway that modulates JNK activity and the rate of neuronal death in rat sympathetic neurons following NGF withdrawal.

  11. Effects of nitrite stress on mRNA expression of antioxidant enzymes, immune-related genes and apoptosis-related proteins in Marsupenaeus japonicus.

    Science.gov (United States)

    Zheng, Jinbin; Mao, Yong; Su, Yongquan; Wang, Jun

    2016-11-01

    Nitrite accumulation in aquaculture systems is a potential risk factor that may trigger stress responses in aquatic organisms. However, the mechanisms regulating the responses of shrimp to nitrite stress remain unclear. In this study, full-length cDNA sequences of two apoptosis-related genes, caspase-3 and defender against apoptotic death (DAD-1), were cloned from Marsupenaeus japonicus for the first time, and their expression levels and tissue distribution were analyzed by quantitative real-time PCR (qRT-PCR). The full lengths of Mjcaspase-3 and MjDAD-1 were 1203 bp and 640 bp respectively, with deduced amino acid (AA) sequences of 321 and 114 AA. Mjcaspase-3 was predominantly expressed in haemocytes and weakly expressed in the seven other tissues tested. MjDAD-1 was mainly expressed in the defense and digestive tissues, especially in the hepatopancreas and hemocytes. To explore the influence of nitrite stress on the genetic response of antioxidant enzymes, immune-related genes and apoptosis-related proteins, the mRNA expression profiles of MjCAT, MjMnSOD, Mj-ilys, Mj-sty, Mjcaspase-3 and MjDAD-1 in response to nitrite stress were analyzed by qRT-PCR. The mRNA levels of MjCAT, MjMnSOD, Mj-ilys, Mj-sty, Mjcaspase-3 and MjDAD-1 show both time- and dose-dependent changes in response to nitrite stress. The mRNA expression levels of MjCAT and MjSOD peaked at 6 h for all nitrite concentrations tested (p levels of Mj-ilys and Mj-sty gradually decreased during the experiment period. Mjcaspase-3 mRNA level reached a maximum at 6 h (p level. Copyright © 2016. Published by Elsevier Ltd.

  12. asy and asyip: A new type of apoptosis-inducing gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Apoptosis, a wide physiological process in multicellular organisms, is critical for the organ development, the cell senescence, the tissue homeostasis and the resistance to infection of virus and bacteria. Apoptosis plays a key role in the regulation of the growth cell number such as the tissue construction, the elimination of abnormal or dangerous cells. Therefore, apoptosis is a stringent and effective cell quality controlling system, which reduces the number of harmful cells to the maximum, such as auto-immunity cell, cells infected by virus, tumor cells by cell suicide[1] . Apoptosis can be initiated by a wide variety of the extracellular and intracellular stimuli, including the developmental signals, the cellular stress and the disruption of cell cycle, transduced and amplified by the second messengers, and finally finished by the activating death effector protease. This process can be called apoptosis signal network. The defective in control of the apoptotic pathways may contribute to a variety of diseases including cancer, autoimmune and neurodegenerative conditions[2,3].

  13. Anti-liver cancer activity of TNF-related apoptosis-inducing ligand gene and its bystander effects

    Institute of Scientific and Technical Information of China (English)

    Chao He; Wei-Feng Lao; Xiao-Tong Hu; Xiang-Ming Xu; Jing Xu; Bing-Liang Fang

    2004-01-01

    AIM: To observe the anti-liver cancer activity of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene and its bystander effects on hepatocellular carcinoma (HCC) cell line SMMC7721.METHODS: Full-length cDNA of human TRAIL was transferred into SMMC7721 cells with a binary adenoviral vector system.Polymerase-chain reaction following reverse transcription (RT-PCR) was used to determine the expression of TRAIL gene. Effects of the transfected gene on proliferation of SMMC7721 cells were measured by MTT assay. Its influence on apoptosis was demonstrated by fluorescence-activated cell sorting (FACS). The bystander effect was observed by co-culturing the SMNC7721 cells with and without the transfected TRAIL gene at different ratios, and the culture medium supernatant from the transfected cells was also examined for its influence on SMMC7721 cells.RESULTS: The growth-inhibition rate and apoptotic cell fraction in the cells transfected with the TRAIL gene, Bax gene or only LacZ gene were 91.2%, 48.0%, 28.8% and 29.1%, 12.5%, 6.6%, respectively. The growth-inhibition rate of transfection with these three sequences in normal human fibroblasts was 6.1%, 45.5% and 7.6%, respectively,indicating a discriminative inhibition of TRAIL transfection on the cancer cells. In the co-culturing test, addition of the transfected TRAIL to SMMC7721 cells in proportions of 5%,25%, 50%, 75% and 100%, resulted in a growth-inhibition of 15.9%, 67%, 80.2%, 86.4% and 87.7%, respectively.We failed to observe a significant growth-inhibition effect of the culture medium supernatant on SMMC7721 cells.CONCLUSION: TRAIL gene transferred by a binary adenoviral vector system can inhibit proliferation of SMMC7721 cells and induce their apoptosis. A bystander effect was observed,which seemed not to be mediated by soluble factors.

  14. Gene expression profiles of single human mature oocytes in relation to age

    DEFF Research Database (Denmark)

    Grøndahl, M L; Andersen, Claus Yding; Bogstad, J

    2010-01-01

    The development competence of human oocytes declines with increasing age. The objective of this study was to investigate the effect of age on gene expression profile in mature human oocytes.......The development competence of human oocytes declines with increasing age. The objective of this study was to investigate the effect of age on gene expression profile in mature human oocytes....

  15. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling

    NARCIS (Netherlands)

    R.G.W. Verhaak (Roel); B.J. Wouters (Bas); C.A.J. Erpelinck (Claudia); S. Abbas (Saman); H.B. Beverloo (Berna); S. Lugthart (Sanne); B. Löwenberg (Bob); H.R. Delwel (Ruud); P.J.M. Valk (Peter)

    2009-01-01

    textabstractWe examined the gene expression profiles of two independent cohorts of patients with acute myeloid leukemia [n=247 and n=214 (younger than or equal to 60 years)] to study the applicability of gene expression profiling as a single assay in prediction of acute myeloid leukemia-specific mol

  16. Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response

    Directory of Open Access Journals (Sweden)

    Hofmann Sandra L

    2007-11-01

    Full Text Available Abstract Background The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1, and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7–9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis. Results A total of 267 genes were significantly (approximately 2-fold up- or downregulated over the course of the disease. Immediate early genes (Arc, Cyr61, c-fos, jun-b, btg2, NR4A1 were among the first genes upregulated during the presymptomatic period whereas immune response genes dominated at later time points. Chemokine ligands and protease inhibitors were among the most transcriptionally responsive genes. Neuronal survival factors (IGF-1 and CNTF and a negative regulator of neuronal apoptosis (DAP kinase-1 were upregulated late in the course of the disease. Few genes were downregulated; these included the α2 subunit of the GABA-A receptor, a component of cortical and hippocampal neurons, and Hes5, a transcription factor important in neuronal differentiation. Conclusion A molecular description of gene expression changes occurring in the brain throughout the course of neuronal ceroid lipofuscinosis suggests distinct phases of disease progression, provides clues to potential markers of disease activity, and points to new targets for therapy.

  17. Gene expression profiling with principal component analysis depicts the biological continuum from essential thrombocythemia over polycythemia vera to myelofibrosis

    DEFF Research Database (Denmark)

    Skov, V.; Thomassen, Mads; Kruse, T.A.;

    2012-01-01

    expression profiling of whole blood from control subjects (n = 21) and patients with ET (n = 19), PV (n = 41), and PMF (n = 9) using DNA microarrays. Applying an unsupervised method, principal component analysis, to search for patterns in the data, we demonstrated a separation of the four groups...... with biological relevant overlaps between the different entities. Moreover, the analysis separates Janus activating kinase 2-negative ET patients from Janus activating kinase 2-positive ET patients. Functional annotation analysis demonstrates that clusters of gene ontology terms related to inflammation, immune...... system, apoptosis, RNA metabolism, and secretory system were the most significantly deregulated terms in the three different disease groups. Our results yield further support for the hypothesis of a biological continuum originating from ET over PV to PMF. Functional analysis suggests an important...

  18. Enhancement of survivin gene downregulation and cell apoptosis by a novel combination: liposome microbubbles and ultrasound exposure.

    Science.gov (United States)

    Chen, Zhiyi; Liang, Kun; Liu, Jianhua; Xie, Mingxing; Wang, Xinfang; Lü, Qing; Zhang, Jing; Fang, Lingyun

    2009-12-01

    Ultrasound-mediated microbubble destruction (sonoporation) is an efficient and safe nonviral technique for gene delivery. In the present work, we hypothesized that short hairpin RNA (shRNA) interference therapy targeting human Survivin gene could be transfected by the novel combination of ultrasound exposure (USE) and liposome microbubbles (LM). ShRNA vectors targeting Survivin were constructed and transfected under USE and LM conditions. The optimal transfection efficiency and cell injury were compared with those of polyethylenimine (PEI)-mediated transfection in different cancer cell lines (HeLa, HepG2, Ishikawa, MCF-7, and B16-F10). The effects of gene downregulation and cell apoptosis were further investigated. The results indicated that P + USE + LM group could significantly increase the gene expression as compared with plasmid group, plasmid + USE group, plasmid + LM group (P < 0.001). The transfection efficiency of the novel combination was nearly equal to PEI-mediated transfection in some cancer cell lines while the cell viability did not decrease markedly. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis also confirmed that Survivin mRNA and protein expression could be knocked down significantly by shRNA transfection under USE and LM condition (P < 0.001). This is the first study to verify the role of shRNA therapy in vitro with novel combination of USE and LM. We concluded that this nonviral technique would be valuable in the gene transfection of shRNA and Survivin gene downregulation would lead to apparent cell apoptosis.

  19. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  20. Combined expression of gastrointestinal hormone SP and anti-apoptosis geneBcl-2 in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yan Ling Feng; Qin Xian Zhang; Sheng Lei Li

    2000-01-01

    AIM To study the combined expression of gastrointestinal hormone substance P and anti-apoptosis gene Bcl-2 in gastric carcinoma and its significance.METHODS Substance P and Bcl-2 protein expression was examined by the S-P immunohistochemicalmethod in 33 cases of gastric carcinoma, 17 adjacent the carcinoma and 13 normal gastric mucoma.RESULTS Positive expression of SP in gastric carcinoma was higher than that of both adjacent and normalmucosa (P 0.05). The expression of bcl-2 both in gastric carcinoma and adjacent tissues werehigher than that of normal gastric mucosa (P< 0.05-0.01). But the positive expression of Bcl-2 had nostatistical significance between gastric carcinoma and adjacent tissues.CONCLUSION Both gastrointestinal hormone SP and Bcl-2 gene have synergistic expression in gastriccarcinoma, indicating that they all take part in the occurrence of gastric carcinoma. Abnormal expression ofBcl-2 gene occurred in benign gastric pathological changes, once they become carcinoma, the positiveexpression of cell is no more increased, possibly because that there is no more increase of the intensity of Bcl-2 inhibition of cell apoptosis.

  1. Simulated colon fiber metabolome regulates genes involved in cell cycle, apoptosis, and energy metabolism in human colon cancer cells.

    Science.gov (United States)

    Putaala, Heli; Mäkivuokko, Harri; Tiihonen, Kirsti; Rautonen, Nina

    2011-11-01

    High level of dietary fiber has been epidemiologically linked to protection against the risk for developing colon cancer. The mechanisms of this protection are not clear. Fermentation of dietary fiber in the colon results in production of for example butyrate that has drawn attention as a chemopreventive agent. Polydextrose, a soluble fiber that is only partially fermented in colon, was fermented in an in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse, and distal colon in sequence. The subsequent fermentation metabolomes were applied on colon cancer cells, and the gene expression changes studied. Polydextrose fermentation down-regulated gene ontology classes linked with cell cycle, and affected number of metabolically active cells. Furthermore, up-regulated effects on classes linked with apoptosis, with increased caspase 2 and 3 activity, implicate that polydextrose fermentation plays a role in induction of apoptosis in colon cancer cells. The up-regulated genes involved also key regulators of lipid metabolism, such as PPARα and PGC-1α. These results offer hypotheses for the mechanisms of two health benefits linked with consumption of dietary fiber, reducing risk of development of colon cancer, and dyslipidemia.

  2. Effect of TSLC1 Gene on Proliferation, Invasion and Apoptosis of Human Hepatocellular Carcinoma Cell Line HepG2

    Institute of Scientific and Technical Information of China (English)

    QIN Li; ZHU Wentao; XU Tao; HAO Youhua; ZHANG Zhengmao; TIAN Yongjun; YANG Dongliang

    2007-01-01

    The recombinant plasmid pCI-TSLC1 carrying TSLC1 gene was stably transfected into human hepatocellular carcinoma cell line HepG2. Cell proliferation was analyzed by MTT assay. The ability of migration was determined by transwell and FACSort flow cytometry was used to detect the cell cycle distribution and apoptosis. Western blotting revealed that H4 expressed higher amounts of TSLC1 protein than H15 and H0 did. The growth of TSLC1-transfected cells was significantly sup- pressed in vitro, and the ability of migration was reduced as well. The re-expression of TSLC1 could induce cell apoptosis. It was concluded that TSLC1 strongly inhibited the growth and ability of mi- gration of HepG2 cell line in vitro and also induced apoptosis, suggesting that TSLC1 could reduce the tumorigenicity of human hepatocellular carcinoma cell line HepG2 in vitro, which provided a ba-sis for further exploring the roles of TSLC1 in hepatocellular cellular carcinoma.

  3. Dynamic Expressions of Liver Tissue Apoptosis-related Genes of Vibrio Vulnificus Sepsis Rats and the Effects of Antibacterial Agents

    Institute of Scientific and Technical Information of China (English)

    Zhongqiu LU; Mengfang LI; Huan LIANG; Qiaomeng QIU; Guangtian YANG; Tieli ZHOU; Guangliang HONG

    2009-01-01

    Dynamic changes in mRNA expressions of liver tissue apoptosis-promoting genes Fas and Bax and apoptosis-inhibiting gene Bcl-2 of vibrio vulnificus sepsis rats were detected and the effects of antibacterial agents were examined.The rat model with Vibrio vulnificus sepsis (VV group) was established and some of the Vibrio vulnificus sepsis rats were treated with antibacterial agents (AA group).The mRNA expressions of Fas,Bax and Bcl-2 were measured by reverse transcription polymerase chain reaction (RT-PCR).As compared with normal control group (NC group),the expressions of Fas and Bax mRNA in liver tissue at all different time points in VV group were increased significantly (P<0.05),and the highest levels of Fas and Bax mRNA expressions were 6 and 12 h after the infection,respectively.At the same time,the expression of Bcl-2 mRNA in liver tissue at all different time points in VV group were decreased significantly (P<0.05),and the lowest level of Bcl-2 mRNA expression appeared 2 h after the infection.The mRNA expressions of Bcl-2 in liver tissue 9 and 12 h after the infection in AA group were increased significantly (P<0.05) compared with NC group,while the expressions of Fas and Bax mRNA were not significantly different from those of NC group.Compared with VV group,the expression of Fas mRNA in AA group was decreased (P<0.05) and Bax mRNA was decreased significantly 12 and 16 h after the infection (P<0.05),while the expressions of Bcl-2 mRNA were increased significantly 9,12 and 16 h after the infection (P<0.05).It is concluded that the mRNA expressions of liver tissue apoptosis-promoting genes Fas and Bax were increased remarkably in vibrio vulnificus sepsis rats,whereas the expression of apoptosis-inhibiting gene Bcl-2 mRNA was decreased obviously in sepsis rats in early stage.The treatment with cefoperazone sodium and levofloxacin lactate could inhibit the expression of Fas mR.NA and Bax mRNA and enhance the expression of Bcl-2 mRNA at the same time.

  4. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Rong Yin

    Full Text Available Bisphenol A (BPA is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  5. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Science.gov (United States)

    Yin, Rong; Gu, Liang; Li, Min; Jiang, Cizhong; Cao, Tongcheng; Zhang, Xiaobai

    2014-01-01

    Bisphenol A (BPA) is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER)-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  6. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    Directory of Open Access Journals (Sweden)

    Hummel Michael

    2010-11-01

    Full Text Available Abstract Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic

  7. Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays

    Directory of Open Access Journals (Sweden)

    Bordoni Roberta

    2007-11-01

    Full Text Available Abstract Background The Saccharopolyspora erythraea genome sequence, recently published, presents considerable divergence from those of streptomycetes in gene organization and function, confirming the remarkable potential of S. erythraea for producing many other secondary metabolites in addition to erythromycin. In order to investigate, at whole transcriptome level, how S. erythraea genes are modulated, a DNA microarray was specifically designed and constructed on the S. erythraea strain NRRL 2338 genome sequence, and the expression profiles of 6494 ORFs were monitored during growth in complex liquid medium. Results The transcriptional analysis identified a set of 404 genes, whose transcriptional signals vary during growth and characterize three distinct phases: a rapid growth until 32 h (Phase A; a growth slowdown until 52 h (Phase B; and another rapid growth phase from 56 h to 72 h (Phase C before the cells enter the stationary phase. A non-parametric statistical method, that identifies chromosomal regions with transcriptional imbalances, determined regional organization of transcription along the chromosome, highlighting differences between core and non-core regions, and strand specific patterns of expression. Microarray data were used to characterize the temporal behaviour of major functional classes and of all the gene clusters for secondary metabolism. The results confirmed that the ery cluster is up-regulated during Phase A and identified six additional clusters (for terpenes and non-ribosomal peptides that are clearly regulated in later phases. Conclusion The use of a S. erythraea DNA microarray improved specificity and sensitivity of gene expression analysis, allowing a global and at the same time detailed picture of how S. erythraea genes are modulated. This work underlines the importance of using DNA microarrays, coupled with an exhaustive statistical and bioinformatic analysis of the results, to understand the transcriptional

  8. Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes

    Indian Academy of Sciences (India)

    Prathima Arvind; Shanker Jayashree; Srikarthika Jambunathan; Jiny Nair; Vijay V. Kakkar

    2015-12-01

    Molecular mechanism underlying the patho-physiology of coronary artery disease (CAD) is complex. We used global expression profiling combined with analysis of biological network to dissect out potential genes and pathways associated with CAD in a representative case–control Asian Indian cohort. We initially performed blood transcriptomics profiling in 20 subjects, including 10 CAD patients and 10 healthy controls on the Agilent microarray platform. Data was analysed with Gene Spring Gx12.5, followed by network analysis using David v 6.7 and Reactome databases. The most significant differentially expressed genes from microarray were independently validated by real time PCR in 97 cases and 97 controls. A total of 190 gene transcripts showed significant differential expression (fold change > 2, P < 0.05) between the cases and the controls of which 142 genes were upregulated and 48 genes were downregulated. Genes associated with inflammation, immune response, cell regula- tion, proliferation and apoptotic pathways were enriched, while inflammatory and immune response genes were displayed as hubs in the network, having greater number of interactions with the neighbouring genes. Expression of 1/2/3, 8, 1, 2, 69, , , 4, 42, 58, and 42 genes were independently validated; 1/2/3 and 8 showed >8-fold higher expression in cases relative to the controls implying their important role in CAD. In conclusion, global gene expression profiling combined with network analysis can help in identifying key genes and pathways for CAD.

  9. Genome-wide transcriptional analysis of apoptosis-related genes and pathways regulated by H2AX in lung cancer A549 cells.

    Science.gov (United States)

    Lu, Chengrong; Xiong, Min; Luo, Yuan; Li, Jing; Zhang, Yanjun; Dong, Yaqiong; Zhu, Yanjun; Niu, Tianhui; Wang, Zhe; Duan, Lianning

    2013-09-01

    Histone H2AX is a novel tumor suppressor protein and plays an important role in apoptosis of cancer cells. However, the role of H2AX in lung cancer cells is unclear. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. We showed that H2AX was involved in apoptosis of lung cancer A549 cells as in other tumor cells. Knockdown of H2AX strongly suppressed apoptosis of A549 cells. We clarified the molecular mechanisms of apoptosis regulated by H2AX based on genome-wide transcriptional analysis. Microarray data analysis demonstrated that H2AX knockdown in A549 cells affected expression of 3,461 genes, including upregulation of 1,435 and downregulation of 2,026. These differentially expressed genes were subjected to bioinformatic analysis for exploring biological processes regulated by H2AX in lung cancer cells. Gene ontology analysis showed that H2AX affected expression of many genes, through which, many important functions including response to stimuli, gene expression, and apoptosis were involved in apoptotic regulation of lung cancer cells. Pathway analysis identified the mitogen-activated protein kinase signaling pathway and apoptosis as the most important pathways targeted by H2AX. Signal transduction pathway networks analysis and chromatin immunoprecipitation assay showed that two core genes, NFKB1 and JUN, were involved in apoptosis regulated by H2AX in lung cancer cells. Taken together, these data provide compelling clues for further exploration of H2AX function in cancer cells.

  10. Patterns of expression of cell cycle/apoptosis genes along the spectrum of thyroid carcinoma progression

    NARCIS (Netherlands)

    B. Saltman; B. Singh; C.V. Hedvat; V.B. Wreesmann; R. Ghossein

    2006-01-01

    Background. Genetic screening studies suggest that genetic changes underlie progression from well differentiated, to anoplastic thyroid cancers. The aim of this study is to determine to what extent cell cycle/apoptosis regulators contribute to cancer progression. Methods. Tissue microarrarys (TMAs)

  11. Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation

    Directory of Open Access Journals (Sweden)

    Breilid Harald

    2007-04-01

    distribution within the CNS, respectively. The existence of shared specialised neuronal activities in CNS is interesting in a context of potential functional redundancy, and future studies should further explore the overall characteristics of CNS-specific versus region-specific gene profiles in the brain.

  12. Apoptosis induced by short hairpin RNA-mediated STAT6 gene silencing in human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-sheng; ZHOU Yun-feng; ZHANG Wen-jie; ZHANG Xiao-lian; PAN Qin; JI Xue-mei; LUO Zhi-guo; WU Jian-ping

    2006-01-01

    Background The relationship between signal transduction and tumors has become one of the foci in cancer research. Signal transducer and activator of the transcription 6 (STAT6) signaling pathway is found to be activated in some cancer cells. But the function of the pathway in cancer cells is unknown. This study was undertaken to investigate the effect of the Stat6 signaling pathway on apoptosis in human colon cancer cells (HT-29 cells) and the possible mechanism of Stat6 by RNA interference techniques.Methods Four eukaryotic expression plasmid vectors of short hairpin RNA (shRNA) specific for the STAT6gene were designed and generated by molecular biological technology. The plasmid vectors were transfected into HT-29 cells by cation liposomes to block the Stat6 signaling pathway. The expressions of STAT6 mRNA and phosph-Stat6 protein were detected by the reverse transcriptase polymerase chain reaction (RT-PCR) method and flow cytometry respectively to screen the most effective shRNA at 72 hours after transfection. The apoptosis condition of the cells in which the expression of the STAT6 gene had been interfered was analyzed by flow cytometry and confocal microscopy. Both mRNA and protein expression of B cell lymphoma-2 (Bcl-2) and Bax were detected by RT-PCR and western blotting.Results Two effective eukaryotic expression plasmid vectors of shRNA specific for the STAT6 gene were generated successfully. One can reduce the expression of the STAT6 gene by 82.4% and the other by 56.8%(P<0.01). The apoptotic rate of colon cancer cells in which STAT6 gene expression had been interfered was significantly higher than that in controlled colon cancer cells (P<0.01). In the cells in which the Stat6 signaling pathway was blocked, the levels of mRNA and protein Bcl-2 were significantly decreased, whereas those of Bax were significantly increased (P<0.01).Conclusions The Stat6 signaling pathway can inhibit apoptosis in human colon cancer cells. The subsequent disorder of

  13. The gene expression profile of CD11c

    NARCIS (Netherlands)

    W. Beumer (Wouter); J.M.C. Welzen-Coppens (Jojanneke); C.G. van Helden-Meeuwsen; S.M. Gibney (Sinead); H.A. Drexhage (Hemmo); M.A. Versnel (Marjan)

    2014-01-01

    textabstractTwo major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α- DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c

  14. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae

    Energy Technology Data Exchange (ETDEWEB)

    Pappa, Gerlinde [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg (Germany); Lichtenberg, Maike [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg (Germany); Iori, Renato [Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Istituto Sperimentale Colture Industriali, 40129 Bologna (Italy); Barillari, Jessica [Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Istituto Sperimentale Colture Industriali, 40129 Bologna (Italy); Bartsch, Helmut [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg (Germany); Gerhaeuser, Clarissa [Division of Toxicology and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg (Germany)]. E-mail: c.gerhauser@dkfz.de

    2006-07-25

    The isothiocyanates sulforaphane and PEITC ({beta}-phenethyl isothiocyanate) as well as the indoles indole-3-carbinol and its condensation product 3,3'-diindolylmethane are known to inhibit cancer cell proliferation and induce apoptosis. In this study, we compared the cell growth inhibitory potential of the four compounds on the p53 wild type human colon cancer cell line 40-16 (p53{sup +/+}) and its p53 knockout derivative 379.2 (p53{sup -/-}) (both derived from HCT116). Using sulforhodamin B staining to assess cell proliferation, we found that the isothiocyanates were strongly cytotoxic, whereas the indoles inhibited cell growth in a cytostatic manner. Half-maximal inhibitory concentrations of all four compounds in both cell lines ranged from 5-15 {mu}M after 24, 48 and 72 h of treatment. Apoptosis induction was analyzed by immunoblotting of poly(ADP-ribose)polymerase (PARP). Treatment with sulforaphane (15 {mu}M), PEITC (10 {mu}M), indole-3-carbinol (10 {mu}M) and 3,3'-diindolylmethane (10 {mu}M) induced PARP cleavage after 24 and 48 h in both 40-16 and the 379.2 cell lines, suggestive of a p53-independent mechanism of apoptosis induction. In cultured 40-16 cells, activation of caspase-9 and -7 detected by Western blotting indicated involvement of the mitochondrial pathway. We detected time- and concentration-dependent changes in protein expression of anti-apoptotic Bcl-x{sub L} as well as pro-apoptotic Bax and Bak proteins. Of note is that for sulforaphane only, ratios of pro- to anti-apoptotic Bcl-2 family protein levels directly correlated with apoptosis induction measured by PARP cleavage. Taken together, we demonstrated that the glucosinolate breakdown products investigated in this study have distinct profiles of cell growth inhibition, potential to induce p53-independent apoptosis and to modulate Bcl-2 family protein expression in human colon cancer cell lines.

  15. A pulmonary rat gene array for screening altered expression profiles in air pollutant-induced lung injury.

    Science.gov (United States)

    Nadadur, S S; Schladweiler, M C; Kodavanti, U P

    2000-12-01

    Pulmonary tissue injury and repair processes involve complex and coordinated cellular events such as necrosis, inflammation, cell growth/differentiation, apoptosis, and remodeling of extracellular matrix. These processes are regulated by expression of multiple mediator genes. Commercially available microarray blots and slides allow screening of hundreds to thousands of genes in a given tissue or cell preparation. However, often these blots do not contain cDNAs of one's interest and are difficult to interpret. In order to analyze the tissue expression profile of a large number of genes involved in pulmonary injury and pathology, we developed a rat gene array filter using array technology. This array consisted of 27 genes representing inflammatory and anti-inflammatory cytokines, growth factors, adhesion molecules, stress proteins, transcription factors and antioxidant enzymes; 3 negative controls, and 2 blank spots. Using rat gene-specific polymerase chain reaction (PCR) primer pairs, cDNAs for these genes were amplified and cloned into a TA vector. Plasmids with recombinant cDNA inserts were purified and blotted onto a nylon membrane. Lung total RNA was isolated at 3 or 24 h following intratracheal (IT) exposure of male Sprague Dawley rats to either saline (control), residual oil fly ash (ROFA; 3.3 mg/kg) or metals found in one instillate of ROFA: nickel (NiSO(4); 1. 3 micromol/kg) or vanadium (VSO(4); 2.2 micromol/kg). (32)P-Labeled cDNA was generated from RNA samples in a reverse transcriptase reaction and subsequently hybridized to array blots. Densitometric scans of array blots revealed a twofold induction of interleukin (IL)-6 and TIMP-1 at 24 h post ROFA or Ni exposure. The pulmonary expressions of cellular fibronectin (cFn-EIIIA), ICAM-1, IL-1beta, and iNOS genes were also increased 24 h post ROFA-, V-, or Ni-exposure. Consistent hybridization of beta-actin in all array blots and absence of hybridization signals in negative controls indicated gene specific

  16. Microarray Expression Profiles of 20.000 Genes across 23 Healthy Porcine Tissues

    DEFF Research Database (Denmark)

    Hornshøj, Henrik; Conley, Lene Nagstrup; Hedegaard, Jakob

    2007-01-01

    Gene expression microarrays have been intensively applied to screen for genes involved in specific biological processes of interest such as diseases or responses to environmental stimuli. For mammalian species, cataloging of the global gene expression profiles in large tissue collections under...

  17. Transcriptional gene silencing of HPV16 E6/E7 induces growth inhibition via apoptosis in vitro and in vivo.

    Science.gov (United States)

    Zhou, Jiansong; Peng, Chanjuan; Li, Baohua; Wang, Fenfen; Zhou, Caiyun; Hong, Die; Ye, Feng; Cheng, Xiaodong; Lü, Weiguo; Xie, Xing

    2012-02-01

    Transcriptional silencing of HPV oncogenes using short interfering RNA (siRNA) blocks E6/E7 expression. Our objective was to estimate the effective value of E6/E7 specific siRNA-induced transcriptional gene silencing as a potential therapeutic strategy for cervical cancer. In vitro studies were performed by employing two categories of siRNA targeting promoter of E6/E7 gene and E7 transcript, respectively, and inhibitory effect of both siRNAs was further observed in vitro and on xenograft in BALB/c mice that were inoculated with siRNA transfected SiHa cells and parental SiHa cells followed by siRNA intratumoral injection in vivo. Tumor volume and growth curves were assessed. Furthermore, cellular proliferation and apoptosis of inoculated tumors were determined by immunohistochemistry staining and TUNEL assay. The two most active siRNA sequences specifically knockdown E6/E7 expressions at mRNA level in HPV16 positive Siha cells, increased p53 and decreased p16 expressions at protein level, inhibited cell proliferation, and induced cell apoptosis in vitro. Furthermore, both siRNAs effectively inhibited tumor formation and growth no matter in mice with siRNA transfected cells in vitro or with siRNA intratumoral injection in vivo. TUNEL staining and FCM assay consistently showed that tumor retardation was through induction of cellular apoptosis. RNAi targeting the promoter of HPV16 E6/E7 acts effectively in vitro and in vivo, especially through intratumoral delivery, and may be a candidate therapeutic strategy for cervical cancer. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  18. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  19. GENE EXPRESSION PROFILING OF GANGLIOGLIOMA MALIGNANT PROGRESSION BY cDNA ARRAY

    Institute of Scientific and Technical Information of China (English)

    ZHANG Quan-bin; HUANG Qiang; DONG Jun; WANG Ai-dong; SUN Ji-yong; LAN Qing; HU Geng-xi

    2005-01-01

    Objective: To establish gene expression profiles associated with malignant progression of ganglioglioma. Methods: The primary and two recurrent glioma specimens were collected intraoperatively from the same patient who experienced tumor transformation into anaplastic astrocytoma and glioblastoma multiform for the first and second recurrence respectively. Gene expression was assayed through cDNA array and bioinformatics analysis. Results: A total of 197 differentially expressed genes with differential ratio value more than 3 compared with normal brain tissue were obtained. Among 109 functionally denned genes, those associated with development ranked the first by frequency, followed by genes associated with metabolism, differentiation, signal transduction and so on. As a result of cluster analysis among 368 genes, eleven genes were up regulated with malignant progression, while six genes were down regulated. Conclusion: Gene expression profiles associated with malignant progression of glioma were successfully established, which provides a powerful tool for research on molecular mechanisms of malignant progression of gliomas.

  20. Investigation of candidate genes for osteoarthritis based on gene expression profiles.

    Science.gov (United States)

    Dong, Shuanghai; Xia, Tian; Wang, Lei; Zhao, Qinghua; Tian, Jiwei

    2016-12-01

    To explore the mechanism of osteoarthritis (OA) and provide valid biological information for further investigation. Gene expression profile of GSE46750 was downloaded from Gene Expression Omnibus database. The Linear Models for Microarray Data (limma) package (Bioconductor project, http://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to identify differentially expressed genes (DEGs) in inflamed OA samples. Gene Ontology function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of DEGs were performed based on Database for Annotation, Visualization and Integrated Discovery data, and protein-protein interaction (PPI) network was constructed based on the Search Tool for the Retrieval of Interacting Genes/Proteins database. Regulatory network was screened based on Encyclopedia of DNA Elements. Molecular Complex Detection was used for sub-network screening. Two sub-networks with highest node degree were integrated with transcriptional regulatory network and KEGG functional enrichment analysis was processed for 2 modules. In total, 401 up- and 196 down-regulated DEGs were obtained. Up-regulated DEGs were involved in inflammatory response, while down-regulated DEGs were involved in cell cycle. PPI network with 2392 protein interactions was constructed. Moreover, 10 genes including Interleukin 6 (IL6) and Aurora B kinase (AURKB) were found to be outstanding in PPI network. There are 214 up- and 8 down-regulated transcription factor (TF)-target pairs in the TF regulatory network. Module 1 had TFs including SPI1, PRDM1, and FOS, while module 2 contained FOSL1. The nodes in module 1 were enriched in chemokine signaling pathway, while the nodes in module 2 were mainly enriched in cell cycle. The screened DEGs including IL6, AGT, and AURKB might be potential biomarkers for gene therapy for OA by being regulated by TFs such as FOS and SPI1, and participating in the cell cycle and cytokine-cytokine receptor

  1. Gene expression profiling and gene copy-number changes in malignant mesothelioma cell lines.

    Science.gov (United States)

    Zanazzi, Claudia; Hersmus, Remko; Veltman, Imke M; Gillis, Ad J M; van Drunen, Ellen; Beverloo, H Berna; Hegmans, Joost P J J; Verweij, Marielle; Lambrecht, Bart N; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2007-10-01

    Malignant mesothelioma (MM) is an asbestos-induced tumor that acquires aneuploid DNA content during the tumorigenic process. We used instable MM cell lines as an in vitro model to study the impact of DNA copy-number changes on gene expression profiling, in the course of their chromosomal redistribution process. Two MM cell lines, PMR-MM2 (early passages of in vitro culture) and PMR-MM7 (both early and late passages of in vitro culture), were cytogenetically characterized. Genomic gains and losses were precisely defined using microarray-based comparative genomic hybridization (array-CGH), and minimal overlapping analysis led to the identification of the common unbalanced genomic regions. Using the U133Plus 2.0 Affymetrix gene chip array, we analyzed PMR-MM7 early and late passages for genome-wide gene expression, and correlated the differentially expressed genes with copy-number changes. The presence of a high number of genetic imbalances occurring from early to late culture steps reflected the tendency of MM cells toward genomic instability. The selection of specific chromosomal abnormalities observed during subsequent cultures demonstrated the spontaneous evolution of the cancer cells in an in vitro environment. MM cell lines were characterized by copy-number changes associated with the TP53 apoptotic pathway already present at the first steps of in vitro culture. Prolonged culture led to acquisition of additional chromosomal copy-number changes associated with dysregulation of genes involved in cell adhesion, regulation of mitotic cell cycle, signal transduction, carbohydrate metabolism, motor activity, glycosaminoglycan biosynthesis, protein binding activity, lipid transport, ATP synthesis, and methyltransferase activity.

  2. A brain region-specific predictive gene map for autism derived by profiling a reference gene set.

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    Full Text Available Molecular underpinnings of complex psychiatric disorders such as autism spectrum disorders (ASD remain largely unresolved. Increasingly, structural variations in discrete chromosomal loci are implicated in ASD, expanding the search space for its disease etiology. We exploited the high genetic heterogeneity of ASD to derive a predictive map of candidate genes by an integrated bioinformatics approach. Using a reference set of 84 Rare and Syndromic candidate ASD genes (AutRef84, we built a composite reference profile based on both functional and expression analyses. First, we created a functional profile of AutRef84 by performing Gene Ontology (GO enrichment analysis which encompassed three main areas: 1 neurogenesis/projection, 2 cell adhesion, and 3 ion channel activity. Second, we constructed an expression profile of AutRef84 by conducting DAVID analysis which found enrichment in brain regions critical for sensory information processing (olfactory bulb, occipital lobe, executive function (prefrontal cortex, and hormone secretion (pituitary. Disease specificity of this dual AutRef84 profile was demonstrated by comparative analysis with control, diabetes, and non-specific gene sets. We then screened the human genome with the dual AutRef84 profile to derive a set of 460 potential ASD candidate genes. Importantly, the power of our predictive gene map was demonstrated by capturing 18 existing ASD-associated genes which were not part of the AutRef84 input dataset. The remaining 442 genes are entirely novel putative ASD risk genes. Together, we used a composite ASD reference profile to generate a predictive map of novel ASD candidate genes which should be prioritized for future research.

  3. THE APOPTOSIS OF EXPERIMENTAL COLORECTAL CARCINOMA CELLS INDUCED BY PEPTIDOGLYCAN OF BIFIDOBACTERIUM AND THE EXPRESSION OF APOPTOTIC REGULATING GENES

    Institute of Scientific and Technical Information of China (English)

    WANG Li-sheng; PAN Ling-jia; SHI Li; SUN Yong; ZHANG Ya-li; ZHOU Dian-yuan

    1999-01-01

    Objective: To explore the antitumor mechanisms of whole peptidoglycan of bifidobacterium. Methods: The apoptotic cells and the positive expression of bcl-2 and bax oncoprotein were studied nude mice transplantation tumors of colorectal carcinoma by employing in situ end labeling technique and immunohistochemical staining. Results:The apoptotic cell density, the positive rate and the staining intensity of bax oncoprotein of the transplantation tumor of colorectal carcinoma in the whole peptidoglycan injection group were significantly higher when compared with the tumor control group. The positive rate of bcl-2 oncoprotein in the whole peptidoglycan injection group was obviously lower than that in the tumor control group (P<0.01).Conclusion: Whole peptidoglycan of Bifidobacterium bifidum could induce cell apoptosis of nude mice transplantation tumors of colorectal carcinoma by downregulating the expression of the bcl-2 gene and upregulating the expression of the bax gene.

  4. Cross-analysis of gene and miRNA genome-wide expression profiles in human fibroblasts at different stages of transformation.

    Science.gov (United States)

    Ostano, Paola; Bione, Silvia; Belgiovine, Cristina; Chiodi, Ilaria; Ghimenti, Chiara; Scovassi, A Ivana; Chiorino, Giovanna; Mondello, Chiara

    2012-01-01

    We have developed a cellular system constituted of human telomerase immortalized fibroblasts that gradually underwent neoplastic transformation during propagation in culture. We exploited this cellular system to investigate gene and miRNA transcriptional programs in cells at different stages of propagation, representing five different phases along the road to transformation, from non-transformed cells up to tumorigenic and metastatic ones. Here we show that gene and miRNA expression profiles were both able to divide cells according to their transformation phase. We identified more than 1,700 genes whose expression was highly modulated in cells at at least one propagation stage and we found that the number of modulated genes progressively increased at successive stages of transformation. These genes identified processes significantly deregulated in tumorigenic cells, such as cell differentiation, cell movement and extracellular matrix remodeling, cell cycle and apoptosis, together with upregulation of several cancer testis antigens. Alterations in cell cycle, apoptosis, and cancer testis antigen expression were particular hallmarks of metastatic cells. A parallel deregulation of a panel of 43 miRNAs strictly connected to the p53 and c-Myc pathways and with oncogenic/oncosuppressive functions was also found. Our results indicate that cen3tel cells can be a useful model for human fibroblast neoplastic transformation, which appears characterized by complex and peculiar alterations involving both genetic and epigenetic reprogramming, whose elucidation could provide useful insights into regulatory networks underlying cancerogenesis.

  5. Post operative infection and sepsis in humans is associated with deficient gene expression of gammac cytokines and their apoptosis mediators.

    LENUS (Irish Health Repository)

    White, Mary

    2011-06-28

    Abstract Introduction Lymphocyte homeostasis is dependent on the γc cytokines. We hypothesised that sepsis in humans is associated with differential gene expression of the γc cytokines and their associated apoptosis mediators. Methods The study population consisted of a total of 60 patients with severe sepsis, 15 with gram negative bacteraemia, 10 healthy controls and 60 patients undergoing elective lung resection surgery. Pneumonia was diagnosed by CDC NNIC criteria. Gene expression in peripheral blood leukocytes (PBLs) of interleukin (IL)-2, 7, 15 and interferon (IFN)-γ, Bax, Bim, Bcl-2 was determined by qRT-PCR and IL-2 and IL-7 serum protein levels by ELISA. Gene expression of IL-2, 7 and IFN-γ was measured in peripheral blood leukocytes (PBL), cultured in the presence of lipopolysacharide (LPS) and CD3 binding antibody (CD3ab) Results IL-2 gene expression was lower in the bacteraemia group compared with controls, and lower still in the sepsis group (P < 0.0001). IL-7 gene expression was similar in controls and bacteraemia, but lower in sepsis (P < 0.0001). IL-15 gene expression was similar in the three groups. Bcl-2 gene expression was less (P < 0.0001) and Bim gene expression was greater (P = 0.0003) in severe sepsis compared to bacteraemic and healthy controls. Bax gene expression was similar in the three groups. In lung resection surgery patients, post-operative pneumonia was associated with a perioperative decrease in IL-2 mRNA (P < 0.0001) and IL-7 mRNA (P = 0.003). IL-2 protein levels were reduced in sepsis and bacteraemia compared to controls (P = 0.02) but similar in pneumonia and non-pneumonia groups. IL-7 protein levels were similar in all groups. In cultured PBLs, IFN-γ gene expression was decreased in response to LPS and increased in response to CD3ab with sepsis: IL-7 gene expression increased in response to LPS in controls and to CD3ab with sepsis; Bcl-2 gene expression decreased in response to combined CD3ab and IL-2 with sepsis

  6. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  7. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Science.gov (United States)

    Cornen, Stéphanie; Guille, Arnaud; Adélaïde, José; Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Raynaud, Stéphane; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  8. Copy number gain of VCX, X-linked multi-copy gene, leads to cell proliferation and apoptosis during spermatogenesis

    Science.gov (United States)

    Ji, Juan; Qin, Yufeng; Wang, Rong; Huang, Zhenyao; Zhang, Yan; Zhou, Ran; Song, Ling; Ling, Xiufeng; Hu, Zhibin; Miao, Dengshun; Shen, Hongbing; Xia, Yankai; Wang, Xinru; Lu, Chuncheng

    2016-01-01

    Male factor infertility affects one-sixth of couples worldwide, and non-obstructive azoospermia (NOA) is one of the most severe forms. In recent years there has been increasing evidence to implicate the participation of X chromosome in the process of spermatogenesis. To uncover the roles of X-linked multi-copy genes in spermatogenesis, we performed systematic analysis of X-linked gene copy number variations (CNVs) and Y chromosome haplogrouping in 447 idiopathic NOA patients and 485 healthy controls. Interestingly, the frequency of individuals with abnormal level copy of Variable charge, X-linked (VCX) was significantly different between cases and controls after multiple test correction (p = 5.10 × 10−5). To discriminate the effect of gain/loss copies in these genes, we analyzed the frequency of X-linked multi-copy genes in subjects among subdivided groups. Our results demonstrated that individuals with increased copy numbers of Nuclear RNA export factor 2 (NXF2) (p = 9.21 × 10−8) and VCX (p = 1.97 × 10−4) conferred the risk of NOA. In vitro analysis demonstrated that increasing copy number of VCX could upregulate the gene expression and regulate cell proliferation and apoptosis. Our study establishes a robust association between the VCX CNVs and NOA risk. PMID:27705943

  9. Copy number gain of VCX, X-linked multi-copy gene, leads to cell proliferation and apoptosis during spermatogenesis.

    Science.gov (United States)

    Ji, Juan; Qin, Yufeng; Wang, Rong; Huang, Zhenyao; Zhang, Yan; Zhou, Ran; Song, Ling; Ling, Xiufeng; Hu, Zhibin; Miao, Dengshun; Shen, Hongbing; Xia, Yankai; Wang, Xinru; Lu, Chuncheng

    2016-11-29

    Male factor infertility affects one-sixth of couples worldwide, and non-obstructive azoospermia (NOA) is one of the most severe forms. In recent years there has been increasing evidence to implicate the participation of X chromosome in the process of spermatogenesis. To uncover the roles of X-linked multi-copy genes in spermatogenesis, we performed systematic analysis of X-linked gene copy number variations (CNVs) and Y chromosome haplogrouping in 447 idiopathic NOA patients and 485 healthy controls. Interestingly, the frequency of individuals with abnormal level copy of Variable charge, X-linked (VCX) was significantly different between cases and controls after multiple test correction (p = 5.10 × 10-5). To discriminate the effect of gain/loss copies in these genes, we analyzed the frequency of X-linked multi-copy genes in subjects among subdivided groups. Our results demonstrated that individuals with increased copy numbers of Nuclear RNA export factor 2 (NXF2) (p = 9.21 × 10-8) and VCX (p = 1.97 × 10-4) conferred the risk of NOA. In vitro analysis demonstrated that increasing copy number of VCX could upregulate the gene expression and regulate cell proliferation and apoptosis. Our study establishes a robust association between the VCX CNVs and NOA risk.

  10. Adipose Gene Expression Profile Changes With Lung Allograft Reperfusion.

    Science.gov (United States)

    Diamond, Joshua M; Arcasoy, Selim; McDonnough, Jamiela A; Sonett, Joshua R; Bacchetta, Matthew; D'Ovidio, Frank; Cantu, Edward; Bermudez, Christian A; McBurnie, Amika; Rushefski, Melanie; Kalman, Laurel H; Oyster, Michelle; D'Errico, Carly; Suzuki, Yoshikazu; Giles, Jon T; Ferrante, Anthony; Lippel, Matthew; Singh, Gopal; Lederer, David J; Christie, Jason D

    2017-01-01

    Obesity is a risk factor for primary graft dysfunction (PGD), a form of lung injury resulting from ischemia-reperfusion after lung transplantation, but the impact of ischemia-reperfusion on adipose tissue is unknown. We evaluated differential gene expression in thoracic visceral adipose tissue (VAT) before and after lung reperfusion. Total RNA was isolated from thoracic VAT sampled from six subjects enrolled in the Lung Transplant Body Composition study before and after allograft reperfusion and quantified using the Human Gene 2.0 ST array. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed enrichment for genes involved in complement and coagulation cascades and Jak-STAT signaling pathways. Overall, 72 genes were upregulated and 56 genes were downregulated in the postreperfusion time compared with baseline. Long pentraxin-3, a gene and plasma protein previously associated with PGD, was the most upregulated gene (19.5-fold increase, p = 0.04). Fibronectin leucine-rich transmembrane protein-3, a gene associated with cell adhesion and receptor signaling, was the most downregulated gene (4.3-fold decrease, p = 0.04). Ischemia-reperfusion has a demonstrable impact on gene expression in visceral adipose tissue in our pilot study of nonobese, non-PGD lung transplant recipients. Future evaluation will focus on differential adipose tissue gene expression and the development of PGD after transplant. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Autophagy and apoptosis-related genes in chronic liver disease and hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Kotsafti Andromachi

    2012-08-01

    Full Text Available Abstract Background Dysregulation of autophagy is important in the pathogenesis of many diseases, including cancer. Several aspects of the biological role of autophagy are however still unclear and the relationship between apoptosis and autophagy, particularly in the liver has yet to be thoroughly explored. In this study we evaluated the expression of Beclin 1 (one of the main autophagocytic agents, which bridges autophagy, apoptosis and both differentiation, and both pro- (Bad, Bax and anti-apoptotic (Bcl-2, Bcl-xL factors in liver samples from patients with different stages of liver disease. Methods The study concerned 93 patients from 49 cases of chronic hepatitis (CH (30 HCV and 19 HBV-related, 13 of cirrhosis (CIRR (10 HCV and 3 HBV-related, 21 of hepatocellular carcinoma (both HCC and peritumoral tissues [PHCC], and 10 controls (CONTR. Real-time PCR and Western blotting were used to measure mRNA and protein expression levels. Results Beclin 1 mRNA levels were lower in HCC than in CH (P = 0.010 or CIRR (P = 0.011, and so were the Bcl-xL transcripts (P  Conclusions High Beclin 1, Bcl-xL and Bad levels in CH and CIRR tissues suggest an interaction between autophagy and apoptosis in the early and intermediate stages of viral hepatitis. In HCC these processes seem to be downregulated, probably enabling the survival and growth of neoplastic hepatocytes.

  12. Gene expression profiling in porcine mammary gland during lactation and identification of breed- and developmental-stage-specific genes

    Institute of Scientific and Technical Information of China (English)

    SU; Zhixi; DONG; Xinjiao; ZHANG; Bing; ZENG; Yanwu; FU; Yan; YU; Jun; HU; Songnian

    2006-01-01

    A total of 28941 ESTs were sequenced from five 5(-directed non-normalized cDNA libraries, which were assembled into 2212 contigs and 5642 singlets using CAP3. These sequences were annotated and clustered into 6857 unique genes, 2072 of which having no functional annotations were considered as novel genes. These genes were further classified into Gene Ontology categories. By comparing the expression profiles, we identified some breed- and developmental-stage-specific gene groups. These genes may be relative to reproductive performance or play important roles in milk synthesis, secretion and mammary involution. The unknown EST sequences and expression profiles at different developmental stages and breeds are very important resources for further research.

  13. Prevention of beta cell dysfunction and apoptosis by adenoviral gene transfer of rat insulin-like growth factor 1

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-hong; LI Tang; CHEN Zong-bo; LUO Bing; SUN Ruo-peng

    2009-01-01

    Background Islet β-cells are almost completely destroyed when patients with type 1 diabete are diagnosed. To date, insulin substitute therapy is still one of the main treatments. The cure of type 1 diabetes requires β-cell regeneration from islet cell precursors and prevention of recurring autoimmunity, Therefore, β-cell regeneration and proliferation emerge as a new research focus on therapy for type 1 diabetes. Islet β-cell regeneration and development are controlled by many growth factors, especially insulin-like growth factor-1 (IGF-1).Methods Recombinant adenovirus encoding rat IGF-1 (rlGF-1) was constructed and transduced into rat β-cells, RINm5F cells. Western blotting analysis and ELISA were used to detect rlGF-1 protein. Streptozotocin (STZ) was used to induce RINm5F cell destruction. The level of nitric oxide (NO) was detected in cell culture supernatants by the Griess reaction. Islet cell function was evaluated by glucose-stimulated insulin production. Flow cytometry analysis was further used to investigate the apoptosis of RINm5F cells. Thiaoollyl blue viability assay was applied to determine cell viability.Results The recombined adenovirus-rlGF-1 was successfully constructed and the titer was 4.0×108pfu/ml. The rlGF-1 protein was effectively expressed in the RINm5F cells and cell culture supernatants, rlGF-1 expression remarkably inhibited STZ-induced islet cell apoptosis and significantly decreased the level of NO. Furthermore, IGF-1 expression also significantly protected insulin secretion and cell proliferation in a time-dependent manner.Conclusions Our study suggests that locally produced rlGF-1 from RINm5F cells may be beneficial in maintaining β-cell function, protecting β-cells from the destruction of apoptosis factors and promoting β-cell survival and proliferation. IGF-1 might be considered as a candidate gene in gene therapy for type 1 diabetes. In addition, it appears that the apoptosis induced by STZ may be NO-dependent.

  14. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.

    Science.gov (United States)

    Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping

    2011-10-01

    In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes.

  15. Identifying cancer genes from cancer mutation profiles by cancer functions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is of great importance to identify new cancer genes from the data of large scale genome screenings of gene mutations in cancers. Considering the alternations of some essential functions are indispensable for oncogenesis, we define them as cancer functions and select, as their approximations, a group of detailed functions in GO (Gene Ontology) highly enriched with known cancer genes. To evaluate the efficiency of using cancer functions as features to identify cancer genes, we define, in the screened genes, the known protein kinase cancer genes as gold standard positives and the other kinase genes as gold standard negatives. The results show that cancer associated functions are more efficient in identifying cancer genes than the selection pressure feature. Furthermore, combining cancer functions with the number of non-silent mutations can generate more reliable positive predictions. Finally, with precision 0.42, we suggest a list of 46 kinase genes as candidate cancer genes which are annotated to cancer functions and carry at least 3 non-silent mutations.

  16. Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray.

    Science.gov (United States)

    Shang, Hung-Sheng; Shih, Yung-Luen; Lee, Ching-Hsiao; Hsueh, Shu-Ching; Liu, Jia-You; Liao, Nien-Chieh; Chen, Yung-Liang; Huang, Yi-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2017-01-01

    Sulforaphane (SFN), one of the isothiocyanates, is a biologically active compound extracted from cruciferous vegetables, and has been shown to induce cytotoxic effects on many human cancer cells including human leukemia cells. However, the exact molecular mechanism and altered gene expression associated with apoptosis is unclear. In this study, we investigated SFN-induced cytotoxic effects and whether or not they went through cell-cycle arrest and induction of apoptosis and further examined molecular mechanism and altered gene expression in human leukemia HL-60 cells. Cell viability, cell-cycle distribution, sub-G1 (apoptosis), reactive oxygen species (ROS) and Ca(2+) production, levels of mitochondrial membrane potential (ΔΨm ), and caspase-3, -8, and -9 activities were assayed by flow cytometry. Apoptosis-associated proteins levels and gene expressions were examined by Western blotting and cDNA microarray assays, respectively. Results indicated that SFN decreased viable cells, induced G2/M phase arrest and apoptosis based on sub-G1 phase development. Furthermore, SFN increased ROS and Ca(2+) production and decreased the levels of ΔΨm and activated caspase-3, -8, and -9 activities in HL-60 cells. SFN significantly upregulated the expression of BAX, Bid, Fas, Fas-L, caspase-8, Endo G, AIF, and cytochrome c, and inhibited the antiapoptotic proteins such as Bcl-x and XIAP, that is associated with apoptosis. We also used cDNA microarray to confirm several gene expressions such as caspase -8, -3, -4, -6, and -7 that are affected by SFN. Those results indicated that SFN induced apoptosis in HL-60 cells via Fas- and mitochondria-dependent pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 311-328, 2017.

  17. Towards a Holistic, Yet Gene-Centered Analysis of Gene Expression Profiles: A Case Study of Human Lung Cancers

    OpenAIRE

    Yuchun Guo; Eichler, Gabriel S.; Ying Feng; Ingber, Donald E.; Sui Huang

    2006-01-01

    Genome-wide gene expression profile studies encompass increasingly large number of samples, posing a challenge to their presentation and interpretation without losing the notion that each transcriptome constitutes a complex biological entity. Much like pathologists who visually analyze information-rich histological sections as a whole, we propose here an integrative approach. We use a self-organizing maps -based software, the gene expression dynamics inspector (GEDI) to analyze gene expressio...

  18. Recombinant adeno-associated virus-mediated human kallikrein gene therapy protects against hypertensive target organ injuries through inhibiting cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jiang-tao YAN; Tao WANG; Dao-wen WANG

    2009-01-01

    Aim: Overexpression of human tissue kallikrein (HK), mediated by recombinant adeno-associated virus (rAAV), decreased blood pres-sure in spontaneous hypertensive rats (SHRs) and reduced injury to the heart, aorta and kidney. In this study, we used both an in vivo animal model and in vitro cell culture system to investigate whether rAAV-rnediated HK gene therapy protects against organ damage by inhibiting cell apoptosis. Methods: rAAV encoding HK(rAAV-HK) or LacZ(rAAV-lacZ) were delivered as a control to spontaneously hypertensive rats (SHRs) and cultured human embryonic kidney (HEK) 293 cells. Results: Treatment with rAAV-HK decreased cell apoptosis in the target organs of SHRs and also inhibited lipopolysaccharide (LPS)-in-duced HEK 293 apoptosis. The rAAV-HK delivery system also increased the levels of apoptosis-inhibiting proteins bcl-2 and bcl-x_L, and decreased the level of Bax and the activity of caspase 3, two promoters of apoptosis. In addition to its role in the inhibition of apopto-sis, rAAV-HK also activated the cell survival and proliferation signaling pathways ERK1/2 and PI3K/AKT. Conclusion: rAAV-mediated HK gene delivery has multiple therapeutic possibilities for treating hypertension, not only by decreasing blood pressure, but also by directly inhibiting end-organ damage.

  19. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.

    Science.gov (United States)

    Zhu, Jie; Qin, Yufang; Liu, Taigang; Wang, Jun; Zheng, Xiaoqi

    2013-01-01

    Identification of gene-phenotype relationships is a fundamental challenge in human health clinic. Based on the observation that genes causing the same or similar phenotypes tend to correlate with each other in the protein-protein interaction network, a lot of network-based approaches were proposed based on different underlying models. A recent comparative study showed that diffusion-based methods achieve the state-of-the-art predictive performance. In this paper, a new diffusion-based method was proposed to prioritize candidate disease genes. Diffusion profile of a disease was defined as the stationary distribution of candidate genes given a random walk with restart where similarities between phenotypes are incorporated. Then, candidate disease genes are prioritized by comparing their diffusion profiles with that of the disease. Finally, the effectiveness of our method was demonstrated through the leave-one-out cross-validation against control genes from artificial linkage intervals and randomly chosen genes. Comparative study showed that our method achieves improved performance compared to some classical diffusion-based methods. To further illustrate our method, we used our algorithm to predict new causing genes of 16 multifactorial diseases including Prostate cancer and Alzheimer's disease, and the top predictions were in good consistent with literature reports. Our study indicates that integration of multiple information sources, especially the phenotype similarity profile data, and introduction of global similarity measure between disease and gene diffusion profiles are helpful for prioritizing candidate disease genes. Programs and data are available upon request.

  20. Mining Gene Expression Profiles: An Integrated Implementation of Kernel Principal Component Analysis and Singular Value Decomposition

    Institute of Scientific and Technical Information of China (English)

    Ferran Reverter; Esteban Vegas; Pedro Sánchez

    2010-01-01

    The detection of genes that show similar profiles under different experimental conditions is often an initial step in inferring the biological significance of such genes.Visualization tools are used to identify genes with similar profiles in microarray studies.Given the large number of genes recorded in microarray experiments,gene expression data are generally displayed on a low dimensional plot,based on linear methods.However,microarray data show nonlinearity,due to high-order terms of interaction between genes,so alternative approaches,such as kernel methods,may be more appropriate.We introduce a technique that combines kernel principal component analysis(KPCA)and Biplot to visualize gene expression profiles.Our approach relies on the singular value decomposition of the input matrix and incorporates an additional step that involves KPCA.The main properties of our method are the extraction of nonlinear features and the preservation of the input variables(genes)in the output display.We apply this algorithm to colon tumor,leukemia and lymphoma datasets.Our approach reveals the underlying structure of the gene expression profiles and provides a more intuitive understanding of the gene and sample association.

  1. Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles.

    Science.gov (United States)

    Yang, Hong; Lin, Shan; Cui, Jingru

    2014-02-10

    Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. PULMONARY GENE EXPRESSION PROFILES OF SPONTANEOUSLY HYPERTENSIVE RATS EXPOSED TO ENVIRONMENTAL TOBACCO SMOKE (ETS)

    Science.gov (United States)

    Global gene expression profile analysis can be utilized to derive molecular footprints to understand biochemical pathways implicated in the origin and progression of disease. Functional genomics efforts with tissue-specific focused genearray appears to be the most...

  3. PULMONARY GENE EXPRESSION PROFILES OF SPONTANEOUSLY HYPERTENSIVE RATS EXPOSED TO ENVIRONMENTAL TOBACCO SMOKE (ETS)

    Science.gov (United States)

    Global gene expression profile analysis can be utilized to derive molecular footprints to understand biochemical pathways implicated in the origin and progression of disease. Functional genomics efforts with tissue-specific focused genearray appears to be the most...

  4. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    Science.gov (United States)

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray TechnologyHongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  5. [Profiles of cell proliferation and apoptosis in the mouse epithelial regeneration model K6b-E6/E7].

    Science.gov (United States)

    Bonilla-Delgado, José; Rodríguez-Uribe, Genaro; Cortés-Malagón, Enoc Mariano; Sierra Martínez, Mónica; Acosta-Altamirano, Gustavo; Gariglio-Vidal, Patricio

    2012-01-01

    Mammals have limited epithelial regeneration capacity. The K6b-E6/E7 mice model has been described as useful for the study of epithelial regeneration. The objective of this study is to compare the expression of E6/E7 oncogenes with those of cell proliferation and apoptosis during epithelization. The hypothesis of this study is that alterations in cell proliferation and apoptosis in K6b-E6/E7 mice will only occur during epithelization. Deep 2 mm punches were performed in the middle of transgenic and control mice's ears. A biopsy was collected from the epithelization zone 72 hours and 2 weeks post-injury. Assays for cell proliferation and apoptosis were carried out by immunohistochemistry and TUNEL techniques, respectively. RT-PCR in situ was performed to compare E6/E7 expressions in the areas studied. Transgenic strain K6b-E6/E7 presented more proliferative cells and less apoptotic cells in epithelizated zones. This effect was limited to suprabasal stratum only, and correlates with E6/E7 oncogenes expression. Two weeks post-injury, cell proliferation and apoptosis were similar in both samples as the E6/E7 expression went down. K6b-E6/E7 mouse model is useful for epithelial regeneration. Its mechanisms should be considered for the treatment of deep wounds.

  6. Connexin 26 gene therapy of human bladder cancer: induction of growth suppression, apoptosis, and synergy with Cisplatin.

    Science.gov (United States)

    Tanaka, M; Grossman, H B

    2001-12-10

    The connexin 26 (Cx26) gene encodes a protein involved in gap junctional intercellular communication and is a putative tumor suppressor. We constructed a Cx26 adenovirus vector (Ad-Cx26) and used it to infect human bladder cancer cell lines UM-UC-3, UM-UC-6, UM-UC-14, and T24. Infection with Ad-Cx26 suppressed the growth of these cell lines in vitro and prevented tumor formation in vivo. Cell cycle accumulation or arrest at the G(1) phase was noted in UM-UC-3 cells and at the G(2)/M phase in UM-UC-6, UM-UC-14, and T24 cells. Apoptosis was noted in UM-UC-3, UM-UC-6, and UM-UC-14 cells both in vitro and in vivo. These effects were not seen with control adenovirus (Ad-CTR) or mock infection. Ad-Cx26 did not significantly alter the growth of the immortalized normal human bladder cell line SV-HUC. Direct injection of Ad-Cx26 into established UM-UC-3 and UM-UC-14 tumors in nude mice resulted in Cx26 expression, apoptosis, and significantly decreased growth compared with Ad-CTR treated tumors. Delayed resumption of tumor growth was associated with loss of Cx26 expression. Combination therapy with Ad-Cx26 and cisplatin resulted in decreased growth in vitro compared with either agent alone. We explored combination therapy with Ad-Cx26 and cisplatin to improve the in vivo efficacy of Cx26 gene therapy. In vivo therapy with Ad-Cx26 and cisplatin resulted in long-term suppression of tumor growth. These data demonstrate that combining gene and chemotherapy can result in dramatic synergy in vivo.

  7. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius;

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  8. Gene expression profiling of placentas affected by pre-eclampsia

    DEFF Research Database (Denmark)

    Hoegh, Anne Mette; Borup, Rehannah; Nielsen, Finn Cilius

    2010-01-01

    Several studies point to the placenta as the primary cause of pre-eclampsia. Our objective was to identify placental genes that may contribute to the development of pre-eclampsia. RNA was purified from tissue biopsies from eleven pre-eclamptic placentas and eighteen normal controls. Messenger RNA...... expression from pooled samples was analysed by microarrays. Verification of the expression of selected genes was performed using real-time PCR. A surprisingly low number of genes (21 out of 15,000) were identified as differentially expressed. Among these were genes not previously associated with pre-eclampsia...... as bradykinin B1 receptor and a 14-3-3 protein, but also genes that have already been connected with pre-eclampsia, for example, inhibin beta A subunit and leptin. A low number of genes were repeatedly identified as differentially expressed, because they may represent the endpoint of a cascade of events...

  9. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS...... the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low expressers of both...

  10. Identification of a Novel Reference Gene for Apple Transcriptional Profiling under Postharvest Conditions

    Science.gov (United States)

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest. PMID:25774904

  11. p38MAPK gene transfection induced the apoptosis of rat glioma cells C6

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bi-cheng; LI Qing; YE Jing; WANG Ying-mei; LIN Sheng-cai

    2001-01-01

    To study the effect ofp38MAPK transfecfion on the biological characteristics of rat glioma cells C6. Methods: p38MAPK was transfected into C6 cells by lipofectin. Expression ofp38MAPK in C6 cells before and after transfection was detected by immunocytochemistry and Western-blot analysis. HE staining,transmission electron microscopy and flow cytometry were used to observe the cell morphology, adhesion and study the cell cycle. Results: p38MAPK expressed in C6 cells after transfection. Cell biological characteristics changed,and apoptotic cells emerged. Conclusion: Exogenous p38MAPK could induce the apoptosis of C6 cells.

  12. Mitochondrial-related gene expression profiles suggest an important role of PGC-1alpha in the compensatory mechanism of endemic dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    He, Shu-Lan [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Tan, Wu-Hong, E-mail: tanwh@mail.xjtu.edu.cn [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Zhang, Zeng-Tie; Zhang, Feng [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Qu, Cheng-Juan [Institute of Biomedicine, University of Eastern Finland, Kuopio (Finland); Lei, Yan-Xia; Zhu, Yan-He [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Yu, Han-Jie [Department of Biotechnology, Northwest University, Xi' an, Shaanxi 710069 (China); Xiang, You-Zhang [Shandong Institute for prevention and Treatment of Endemic Disease, Jinan, Shandong 250014 (China); and others

    2013-10-15

    Keshan disease (KD) is an endemic dilated cardiomyopathy with unclear etiology. In this study, we compared mitochondrial-related gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from 16 KD patients and 16 normal controls in KD areas. Total RNA was isolated, amplified, labeled and hybridized to Agilent human 4×44k whole genome microarrays. Mitochondrial-related genes were screened out by the Third-Generation Human Mitochondria-Focused cDNA Microarray (hMitChip3). Quantitative real-time PCR, immunohistochemical and biochemical parameters related mitochondrial metabolism were conducted to validate our microarray results. In KD samples, 34 up-regulated genes (ratios≥2.0) were detected by significance analysis of microarrays and ingenuity systems pathway analysis (IPA). The highest ranked molecular and cellular functions of the differentially regulated genes were closely related to amino acid metabolism, free radical scavenging, carbohydrate metabolism, and energy production. Using IPA, 40 significant pathways and four significant networks, involved mainly in apoptosis, mitochondrion dysfunction, and nuclear receptor signaling were identified. Based on our results, we suggest that PGC-1alpha regulated energy metabolism and anti-apoptosis might play an important role in the compensatory mechanism of KD. Our results may lead to the identification of potential diagnostic biomarkers for KD in PBMCs, and may help to understand the pathogenesis of KD. Highlights: • Thirty-four up-regulated genes were detected in KD versus health controls. • Forty pathways and four networks were detected in KD. • PGC-1alpha regulated energy metabolism and anti-apoptosis in KD.

  13. Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon

    Directory of Open Access Journals (Sweden)

    Schmidt Silvia

    2010-05-01

    Full Text Available Abstract Background Transcript profiling of closely related species provides a means for identifying genes potentially important in species diversification. However, the predictive value of transcript profiling for inferring downstream-physiological processes has been unclear. In the present study we use shotgun proteomics to validate inferences from microarray studies regarding physiological differences in three Pachycladon species. We compare transcript and protein profiling and evaluate their predictive value for inferring glucosinolate chemotypes characteristic of these species. Results Evidence from heterologous microarrays and shotgun proteomics revealed differential expression of genes involved in glucosinolate hydrolysis (myrosinase-associated proteins and biosynthesis (methylthioalkylmalate isomerase and dehydrogenase, the interconversion of carbon dioxide and bicarbonate (carbonic anhydrases, water use efficiency (ascorbate peroxidase, 2 cys peroxiredoxin, 20 kDa chloroplastic chaperonin, mitochondrial succinyl CoA ligase and others (glutathione-S-transferase, serine racemase, vegetative storage proteins, genes related to translation and photosynthesis. Differences in glucosinolate hydrolysis products were directly confirmed. Overall, prediction of protein abundances from transcript profiles was stronger than prediction of transcript abundance from protein profiles. Protein profiles also proved to be more accurate predictors of glucosinolate profiles than transcript profiles. The similarity of species profiles for both transcripts and proteins reflected previously inferred phylogenetic relationships while glucosinolate chemotypes did not. Conclusions We have used transcript and protein profiling to predict physiological processes that evolved differently during diversification of three Pachycladon species. This approach has also identified candidate genes potentially important in adaptation, which are now the focus of ongoing study

  14. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes

    Science.gov (United States)

    Ashkani, Jahanshah; Naidoo, Kevin J.

    2016-05-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.

  15. Influence of Ginkgo biloba extract on the proliferation, apoptosis of ACC-2 cell and Survivin gene expression in adenoid cystic carcinoma of lacrimal gland

    Institute of Scientific and Technical Information of China (English)

    Li-Xiao Zhou; Yu Zhu

    2012-01-01

    Objective: To explore the influence of extract of Ginkgo biloba (EGB) on the proliferation, apoptosis of ACC-2 cell and Survivin gene expression in adenoid cystic carcinoma (ACC) of lacrimal gland. Methods:ACC-2 cell in human with ACC of lacrimal gland was in vitro cultured. MTT method was used for cell proliferation detection. Annexin V/PI double-staining flow cytometer was used to detect cell apoptosis and cell cycle. Survivin gene expression was analyzed by RT-PCR and Western blotting. Results: EGB had inhibitory effect on the proliferation of ACC-2 cell with significant dose-effect relationship, and there was statistical difference when compared with the control group (P<0.01). The inhibitory concentration 50 % (IC50) is 88 mg/L. The flow cytometer test indicated that EGB can gradually increase ACC-2 cell in G0-G1 stage and decrease it in G2-M and S stage. With the increase of dose, the apoptosis rate of ACC-2 cell was obviously increased (P<0.05 or P<0.01). EGB had certain inhibitory effect on Survivin gene expression of ACC-2 cell, and Survivin gene expression was decreased with the increasing of the EGB concentration (P<0.01). Conclusions:EGB can effectively inhibit Survivin gene expression of ACC-2 cell in human with ACC of lacrimal gland, induce the apoptosis of ACC-2 cell and inhibit tumor cell proliferation.

  16. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.

    Science.gov (United States)

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G

    2016-02-29

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.

  17. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis.

    Science.gov (United States)

    Liu, Haidan; Li, Wei; Yu, Xinfang; Gao, Feng; Duan, Zhi; Ma, Xiaolong; Tan, Shiming; Yuan, Yunchang; Liu, Lijun; Wang, Jian; Zhou, Xinmin; Yang, Yifeng

    2016-08-30

    Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.

  18. Bioinformatic characterization and gene expression pattern of apoptosis inhibitor from Macrobrachium rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus.

    Science.gov (United States)

    Arockiaraj, Jesu; Vanaraja, Puganeshwaran; Easwvaran, Sarasvathi; Singh, Arun; Othman, Rofina Yasmin; Bhassu, Subha

    2011-12-01

    Apoptosis is genetically programmed cellular killing processes that execute unnecessary or infected cells. It plays an important role in embryogenesis, homeostasis, insect metamorphosis and immunity. Apoptosis inhibitor (MrIAP) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrIAP consisted of 1753 base pair nucleotides encoded 535 polypeptide with an estimated molecular mass of 60 kDa. MrIAP amino acid sequence contains IAP superfamily domain between 5 and 490. The deduced amino acid sequences of the MrIAP were aligned with the other IAP family members. The highest sequence similarity was observed in IAP-5 from ant Camponotus floridanus (67%) followed by IAP from body louse Pediculus humanus corporis (66%) and the lowest (62%) in IAP-5 isoform-5 from common chimpanzee Pan troglodytes and IAP-5 from Aedes aegypti. The IAP phylogenetic tree showed that MrIAP closely related to other arthropod blacklegged tick Ixodes scapularis, formed a sister group with IAP from a hemichordate acorn worm Saccoglossus kowalevskii and finally clustered together with IAPs from fish groups. The quantitative real time PCR analysis revealed that significantly (P rosenbergii challenged to infectious hypodermal and hematopoietic necrosis virus (IHHNV) was highly induced in hepatopancreas. The collective results of this study indicate that the MrIAP is an essential immune gene and influences the immune response against IHHNV infection in M. rosenbergii.

  19. Gene expression profiling of chicken intestinal host responses

    NARCIS (Netherlands)

    Hemert, van S.

    2007-01-01

    Chicken lines differ in genetic disease susceptibility. The scope of the research described in this thesis was to identify genes involved in genetic disease resistance in the chicken intestine. Therefore gene expression in the jejunum was investigated using a microarray approach. An intestine specif

  20. Expression profiles for six zebrafish genes during gonadal sex differentiation

    Directory of Open Access Journals (Sweden)

    Rasmussen Lene J

    2008-06-01

    Full Text Available Abstract Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a and high in females (fig alpha and cyp19a1a was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1 in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a. When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph was dmrt1 at 10 dph which indicates involvement of this gene

  1. Digital gene expression profiling of flax (Linum usitatissimum L.) stem peel identifies genes enriched in fiber-bearing phloem tissue.

    Science.gov (United States)

    Guo, Yuan; Qiu, Caisheng; Long, Songhua; Chen, Ping; Hao, Dongmei; Preisner, Marta; Wang, Hui; Wang, Yufu

    2017-08-30

    To better understand the molecular mechanisms and gene expression characteristics associated with development of bast fiber cell within flax stem phloem, the gene expression profiling of flax stem peels and leaves were screened, using Illumina's Digital Gene Expression (DGE) analysis. Four DGE libraries (2 for stem peel and 2 for leaf), ranging from 6.7 to 9.2 million clean reads were obtained, which produced 7.0 million and 6.8 million mapped reads for flax stem peel and leave, respectively. By differential gene expression analysis, a total of 975 genes, of which 708 (73%) genes have protein-coding annotation, were identified as phloem enriched genes putatively involved in the processes of polysaccharide and cell wall metabolism. Differential expression genes (DEGs) was validated using quantitative RT-PCR, the expression pattern of all nine genes determined by qRT-PCR fitted in well with that obtained by sequencing analysis. Cluster and Gene Ontology (GO) analysis revealed that a large number of genes related to metabolic process, catalytic activity and binding category were expressed predominantly in the stem peels. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the phloem enriched genes suggested approximately 111 biological pathways. The large number of genes and pathways produced from DGE sequencing will expand our understanding of the complex molecular and cellular events in flax bast fiber development and provide a foundation for future studies on fiber development in other bast fiber crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Altered gene expression profiles in mouse tetraploid blastocysts.

    Science.gov (United States)

    Park, Mi-Ryung; Hwang, Kyu-Chan; Bui, Hong-Thuy; Cho, Ssang-Goo; Park, Chankyu; Song, Hyuk; Oh, Jae-Wook; Kim, Jin-Hoi

    2012-01-01

    In this study, it was demonstrated that tetraploid-derived blastocyst embryos had very few Oct4-positive cells at the mid-blastocyst stage and that the inner cell mass at biomarkers Oct4, Sox2 and Klf4 was expressed at less than 10% of the level observed in diploid blastocysts. In contrast, trophectoderm-related gene transcripts showed an approximately 10 to 40% increase. Of 32,996 individual mouse genes evaluated by microarray, 50 genes were differentially expressed between tetraploid or diploid and parthenote embryos at the blastocyst stage (Ptetraploid-derived blastocysts, whereas 22 were more highly downregulated. However, some genes involved in receptor activity, cell adhesion molecule, calcium ion binding, protein biosynthesis, redox processes, transport, and transcription showed a significant decrease or increase in gene expression in the tetraploid-derived blastocyst embryos. Thus, microarray analysis can be used as a tool to screen for underlying defects responsible for the development of tetraploid-derived embryos.

  3. Expression and Identification of a Novel Apoptosis Gene Spata17 (MSRG-11)in Mouse Spermatogenic Cells

    Institute of Scientific and Technical Information of China (English)

    Yun DENG; Liang-Sha HU; Guang-Xiu LU

    2006-01-01

    In this study, anti-spermatogenesis-associated 17 (Spata17) polyclonal antibody was prepared by immunizing New Zealand white rabbits with a synthesized peptide corresponding to the amino acid sequence 7-23 of the mouse Spata17 protein. Immunohistochemical analysis revealed that Spata17 protein was most abundant in the cytoplasm of round spermatids and elongating spermatids within seminiferous tubules of the adult testis. The expression of Spata17 mRNA in cultured mouse spermatogonia (GC-1) cells was almost undetectable. In an experimental unilateral cryptorchidism model of an adult mouse, the expression of Spata17 mRNA had no obvious difference with the normal testis until postoperation day 1, but gradually decreased from day 3 and was almost undetectable on day 17. Immunohistochemical analysis revealed that the protein was almost undetectable within seminiferous tubules of an experimental unilateral cryptorchidism model of the adult testis on postoperation day 8. Flow cytometry analysis showed that the expression of Spata17 protein in the GC-1 cell line could accelerate GC-1 cell apoptosis. The effect increases with the increasing of the transfected dose of pcDNA3.1 (-)/Spata17. By Hoechst 33258 staining, a classical way of identifying apoptotic cells, we further confirmed that the apoptosis was induced by expression of Spata17 in transfected GC-1 cells.

  4. Whole genome expression profiling shows that BRG1 transcriptionally regulates UV inducible genes and other novel targets in human cells.

    Science.gov (United States)

    Zhang, Ling; Nemzow, Leah; Chen, Hua; Hu, Jennifer J; Gong, Feng

    2014-01-01

    UV irradiation is known to cause cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), and plays a large role in the development of cancer. Tumor suppression, through DNA repair and proper cell cycle regulation, is an integral factor in maintaining healthy cells and preventing development of cancer. Transcriptional regulation of the genes involved in the various tumor suppression pathways is essential for them to be expressed when needed and to function properly. BRG1, an ATPase catalytic subunit of the SWI/SNF chromatin remodeling complex, has been identified as a tumor suppressor protein, as it has been shown to play a role in Nucleotide Excision Repair (NER) of CPDs, suppress apoptosis, and restore checkpoint deficiency, in response to UV exposure. Although BRG1 has been shown to regulate transcription of some genes that are instrumental in proper DNA damage repair and cell cycle maintenance in response to UV, its role in transcriptional regulation of the whole genome in response to UV has not yet been elucidated. With whole genome expression profiling in SW13 cells, we show that upon UV induction, BRG1 regulates transcriptional expression of many genes involved in cell stress response. Additionally, our results also highlight BRG1's general role as a master regulator of the genome, as it transcriptionally regulates approximately 4.8% of the human genome, including expression of genes involved in many pathways. RT-PCR and ChIP were used to validate our genome expression analysis. Importantly, our study identifies several novel transcriptional targets of BRG1, such as ATF3. Thus, BRG1 has a larger impact on human genome expression than previously thought, and our studies will provide inroads for future analysis of BRG1's role in gene regulation.

  5. Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen.

    Science.gov (United States)

    Kok, Marleen; Linn, Sabine C; Van Laar, Ryan K; Jansen, Maurice P H M; van den Berg, Teun M; Delahaye, Leonie J M J; Glas, Annuska M; Peterse, Johannes L; Hauptmann, Michael; Foekens, John A; Klijn, Jan G M; Wessels, Lodewyk F A; Van't Veer, Laura J; Berns, Els M J J

    2009-01-01

    Molecular signatures that predict outcome in tamoxifen treated breast cancer patients have been identified. For the first time, we compared these response profiles in an independent cohort of (neo)adjuvant systemic treatment naïve breast cancer patients treated with first-line tamoxifen for metastatic disease. From a consecutive series of 246 estrogen receptor (ER) positive primary tumors, gene expression profiling was performed on available frozen tumors using 44K oligoarrays (n = 69). A 78-gene tamoxifen response profile (formerly consisting of 81 cDNA-clones), a 21-gene set (microarray-based Recurrence Score), as well as the HOXB13-IL17BR ratio (Two-Gene-Index, RT-PCR) were analyzed. Performance of signatures in relation to time to progression (TTP) was compared with standard immunohistochemical (IHC) markers: ER, progesterone receptor (PgR) and HER2. In univariate analyses, the 78-gene tamoxifen response profile, 21-gene set and HOXB13-IL17BR ratio were all significantly associated with TTP with hazard ratios of 2.2 (95% CI 1.3-3.7, P = 0.005), 2.3 (95% CI 1.3-4.0, P = 0.003) and 4.2 (95% CI 1.4-12.3, P = 0.009), respectively. The concordance among the three classifiers was relatively low, they classified only 45-61% of patients in the same category. In multivariate analyses, the association remained significant for the 78-gene profile and the 21-gene set after adjusting for ER and PgR. The 78-gene tamoxifen response profile, the 21-gene set and the HOXB13-IL17BR ratio were all significantly associated with TTP in an independent patient series treated with tamoxifen. The addition of multigene assays to ER (IHC) improves the prediction of outcome in tamoxifen treated patients and deserves incorporation in future clinical studies.

  6. [Effect of TAK1 gene silencing on the apoptosis of Kasumi-1 cells induced by arsenic trioxide].

    Science.gov (United States)

    Xu, Jin-xia; Fan, Rui-hua; Wei, Xu-dong; Yin, Qing-song; Mi, Rui-hua; Song, Yong-ping

    2013-05-01

    To study the effect of transforming growth factor-β activated kinase-1 (TAK1) gene silencing on the proliferation and apoptosis of Kasumi-1 cells induced by arsenic trioxide (As₂O₃). Acute myeloid leukemia with t(8;21) cell line Kasumi-1 cells were treated with As₂O₃ or in combination with TAK1 siRNA interference technology. The experiment was divided into four groups: Kasumi-1 cells without any treatment, TAK1 specific siRNA transfection alone, Kasumi-1 cells treated with different concentration of As₂O₃, TAK1siRNA transfection combined with As₂O₃. CCK-8 was used to detect the cell viability. The expression of phosphorylated c-Jun N-terminal kinase (P-JNK) was determined by Western Blot. Cell apoptosis and growth were examined by morphological and colony formation assay. After Kasumi-1 cells were treated with As₂O₃, the rate of cell inhibition was concentration-dependent, and the 50% inhibitory concentration was 3.5 μmol/L. The highest expression level of P-JNK appeared in 30 minutes after cells were treated with As₂O₃. The apoptosis rates of Kasumi-1 cells without any treatment, TAK1 siRNA interference alone group, As₂O₃ alone group and the combined group were (5.02 ± 1.13)%, (6.18 ± 0.28)%, (48.33 ± 2.70)% and (86.07 ± 2.21)%; colony formation rates were (73.83 ± 2.78)%, (76.03 ± 1.46)%, (55.07 ± 1.50)% and (22.20 ± 1.15)%; apoptosis rate of TAK1 siRNA group and the untreated group has no significant difference (P = 0.052); colony formation rate between TAk1 siRNA group and the untreated group has no significant difference (P = 0.179), but the difference in other groups was significant (P = 0.000). Silencing the expression of TAK1 can enhance the anti-proliferative and pro-apoptotic effect of As₂O₃ on Kasumi-1 cells, and its mechanism may be through the TAK1 downstream JNK signal pathway.

  7. Gene-gene interaction and RNA splicing profiles of MAP2K4 gene in rheumatoid arthritis.

    Science.gov (United States)

    Shchetynsky, Klementy; Protsyuk, Darya; Ronninger, Marcus; Diaz-Gallo, Lina-Marcela; Klareskog, Lars; Padyukov, Leonid

    2015-05-01

    We performed gene-gene interaction analysis, with HLA-DRB1 shared epitope (SE) alleles for 195 SNPs within immunologically important MAP2K, MAP3K and MAP4K gene families, in 2010 rheumatoid arthritis (RA) patients and 2280 healthy controls. We found a significant statistical interaction for rs10468473 with SE alleles in autoantibody-positive RA. Individuals heterozygous for rs10468473 demonstrated higher expression of total MAP2K4 mRNA in blood, compared to A-allele homozygous. We discovered a novel, putatively translated, "cassette exon" RNA splice form of MAP2K4, differentially expressed in peripheral blood mononuclear cells from 88 RA cases and controls. Within the group of RA patients, we observed a correlation of MAP2K4 isoform expression with carried SE alleles, autoantibody, and rheumatoid factor profiles. TNF-dependent modulation of isoform expression pattern was detected in the Jurkat cell line. Our data suggest a genetic interaction between MAP2K4 and HLA-DRB1, and the importance of rs10468473 and MAP2K4 splice variants in the development of autoantibody-positive RA.

  8. Polymorphism of regulators of apoptosis and growth factors genes in chronic lymphatic leukemia

    Directory of Open Access Journals (Sweden)

    Viktorova T.V.

    2011-12-01

    Full Text Available The objective of the research is to study the role of polymorphic variants of Tumor Necrosis Factor (TNF — a (TNFA, Bcl2-associated X protein (BAX p53-Binding Protein (MDM2, vascular endothelial growth factor (VEGFA and basic fibroblast growth factor (bFGF genes in chronic lymphocytic leukemia (CLL. Methods: The comparative analysis of alleles and genotypes distributions in CLL patients (N=133 and healthy individuals (N=196 from Bashkortostan Republic has been carried out. Results: Analysis of the distribution frequency of genotypes and alleles of the genes studied has showed an increase in frequency of genotypes GG and allele G polymorphic locus-308G> A TNFA gene, GG and allele G of the polymorphic locus-248G>A BAX gene, allele G of the polymorphic locus 309T> G gene MDM2 and allele С polymorphic locus 773C>T bFGF gene in patients with CLL

  9. Study on the Effects of Losartan on Cardiomyocyte Apoptosis and Gene Expression After Ischemia and Reperfusion in vivo in Rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dongqing; YANG Liming; LIU Zhengxiang; MI Shizan

    2000-01-01

    In order to study the effects of losartan on cardiomyocyte apoptosis following ischemia (0.5 h) and reperfusion (48 h) in vivo and bcl-2 and bax gene expression, TUNEL staining method, immunohistochemistry and in situ hybridization histochemistry (ISHH) were used to monitor the apoptotic cells, mRNA and protein of gene expression, respectively. Image processing system was used to quantitively dispose the positive metric substance of both immunohistochemistry and ISHH through the average optical density (OD) value. The number of the apoptotic cells were 38±9 (control group), 0-1 (sham operation group) and 9±4 (losartan-treated group) in each visual field respectively with the difference among the groups being significant (P<0.001). OD values of bcl-2 (ISHH) were 0.07425±0.02029 (control group), 0.05961±0.009932 (sham operation group) and 0. 07619±0.01445 (losartan-treated group) respectively,while OD values of bcl-2 (immunohistochemistry) were 0.1374 ±0.01367 (control group),0.08510±0.01862 (sham operation group) and 0.1252±0.02064 (losartan-treated group), bcl-2gene expression was increased significantly in the control group and losartan-treated group as compared with sham operation group (P<0.05). OD value of bax (immunohistochemistry) was09727± 0.02230 (control group), 0.06182±0.01430 (sham operation group) and 0.06213 ±0.01420 (losartan-treated group), bax gene expression was decreased very significantly in losartan-treated group and sham operation group as compared with control group (P<0. 001). Bcl-2/bax ratio was 1.413 (control group), 1.376 (sham operation group) and 2.016 (losartan-treated group) respectively. The results indicated that losartan might inhibit cardiomyocyte apoptosis following ischemia and reperfusion. The mechanism might be that bax gene expression was inhibited to increase bcl-2/bax ratio.

  10. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays

    Directory of Open Access Journals (Sweden)

    Yan-Fang Tao

    2012-09-01

    Full Text Available Abstract Background The Real-time PCR Array System is the ideal tool for analyzing the expression of a focused panel of genes. In this study, we will analyze the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Methods Real-time PCR array was designed and tested firstly. Then gene expression profile of 11 pediatric AML and 10 normal controls was analyzed with real-time PCR arrays. We analyzed the expression data with MEV (Multi Experiment View cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool. Results We designed and tested 88 real-time PCR primer pairs for a quantitative gene expression analysis of key genes involved in pediatric AML. The gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. To investigate possible biological interactions of differently regulated genes, datasets representing genes with altered expression profile were imported into the Ingenuity Pathway Analysis Tool. The results revealed 12 significant networks. Of these networks, Cellular Development, Cellular Growth and Proliferation, Tumor Morphology was the highest rated network with 36 focus molecules and the significance score of 41. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to hematological disease, cell death, cell growth and hematological system development. In the top canonical pathways, p53 and Huntington’s disease signaling came out to be the top two most significant pathways with a p value of 1.5E-8 and2.95E-7, respectively. Conclusions The present study demonstrates the gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. We

  11. APOPTOSIS SYSTEM AND ITS RELATIONS TO HEPATOCELLULAR DAMAGE AND SOME INDEXES OF LOCAL CYTOKINE PROFILE CHRONIC HCV INFECTION

    Directory of Open Access Journals (Sweden)

    L. Ph. Skljar

    2008-01-01

    Full Text Available Abstract. At present time, some conflicting data concern a possible importance of apoptosis in pathogenesis of chronic hepatitis C. A significant role is ascribed to FAS/FAS-L, as a factor of hepatocyte apoptosis. CD95+ levels at the cell surfaces were studied in liver homogenates. A significant decrease in CD95+ cells was revealed in liver samples from the patients with higher histological indexes of hepatitis activity and fibrosis. A reverse relationship between CD95+ level and local concentrations of cytokines (TNFα, IL-1, IL-10, as well as significant direct correlation with IFNγ, IL-2 values were detected, thus suggesting a failure of compensatory mechanisms of immune regulation, and predominance of anti-apoptotic viral potential over protective cellular responses. (Med. Immunol., vol. 10, N 4-5, pp 415-422.

  12. Gene expression profiles of auxin metabolism in maturing apple fruit

    Science.gov (United States)

    Variation exists among apple genotypes in fruit maturation and ripening patterns that influences at-harvest fruit firmness and postharvest storability. Based on the results from our previous large-scale transcriptome profiling on apple fruit maturation and well-documented auxin-ethylene crosstalk, t...

  13. Genotypes and enterotoxin gene profiles of Staphylococcus aureus clinical isolates from China

    Science.gov (United States)

    A total of 108 S. aureus isolates from 16 hospitals located in 14 different provinces in China were characterized for the profiles of 19 staphylococcal enterotoxin (SE) genes by PCR and genotyped by PFGE and MLST. Of these strains, 88.9% (96/108) harbored SE genes, in which tsst was the most prevale...

  14. Transcriptional profiling of tissue plasticity: Role of shifts in gene expression and technical limitations

    NARCIS (Netherlands)

    Flück, Martin; Däpp, Christoph; Schmutz, Silvia; Wit, Ernst; Hoppeler, Hans

    2005-01-01

    Reprogramming of gene expression has been recognized as a main instructive modality for the adjustments of tissues to various kinds of stress. The recent application of gene expression profiling has provided a powerful tool to elucidate the molecular pathways underlying such tissue remodeling. Howev

  15. Effects of different doses of 2-methoxy-estradiol on the proliferation, apoptosis and angiogenesis genes in malignant melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bo Tong

    2016-01-01

    Objective:To study the inhibitory effect of different doses of 2-methoxy-estradiol on the growth of malignant melanoma cells in vitro.Methods:First, melanoma B16 cells were cultured, and then 0μmol / L, 10 μmol / L, 20 μmol / L, 30umol / L and 40 umol / L of 2-ME were added. Last, cell viability was detected MTS kit, and the contents of proliferation gene, apoptosis gene and angiogenesis gene in both cells and culture medium were determined by Elisa.Results:2-ME reduced cell viability in a dose-dependent and time-dependent way. After 40 umol/L of 2-ME treatment, Mcl-1 and CYR61 contents in cells decreased significantly, while Fas and Caspase14 contents increased significantly. HIF-1α, VEGF, SDF-1 and CXCR4 decreased significantly in both cells and culture medium.Conclusions:Different doses of 2-ME can inhibit the growth of malignant melanoma cells in vitro by reducing the cell viability and inhibiting cell proliferation and angiogenesis.

  16. Ensemble attribute profile clustering: discovering and characterizing groups of genes with similar patterns of biological features

    Directory of Open Access Journals (Sweden)

    Bissell MJ

    2006-03-01

    Full Text Available Abstract Background Ensemble attribute profile clustering is a novel, text-based strategy for analyzing a user-defined list of genes and/or proteins. The strategy exploits annotation data present in gene-centered corpora and utilizes ideas from statistical information retrieval to discover and characterize properties shared by subsets of the list. The practical utility of this method is demonstrated by employing it in a retrospective study of two non-overlapping sets of genes defined by a published investigation as markers for normal human breast luminal epithelial cells and myoepithelial cells. Results Each genetic locus was characterized using a finite set of biological properties and represented as a vector of features indicating attributes associated with the locus (a gene attribute profile. In this study, the vector space models for a pre-defined list of genes were constructed from the Gene Ontology (GO terms and the Conserved Domain Database (CDD protein domain terms assigned to the loci by the gene-centered corpus LocusLink. This data set of GO- and CDD-based gene attribute profiles, vectors of binary random variables, was used to estimate multiple finite mixture models and each ensuing model utilized to partition the profiles into clusters. The resultant partitionings were combined using a unanimous voting scheme to produce consensus clusters, sets of profiles that co-occured consistently in the same cluster. Attributes that were important in defining the genes assigned to a consensus cluster were identified. The clusters and their attributes were inspected to ascertain the GO and CDD terms most associated with subsets of genes and in conjunction with external knowledge such as chromosomal location, used to gain functional insights into human breast biology. The 52 luminal epithelial cell markers and 89 myoepithelial cell markers are disjoint sets of genes. Ensemble attribute profile clustering-based analysis indicated that both lists

  17. Ageing Drosophila selected for longevity retain a young gene expression profile

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete

      We have investigated how the gene-expression profile of longevity selected lines of Drosophila melanogaster differed from control lines in young, middle-aged and old male flies. 530 genes were differentially expressed between selected and control flies at the same chronological age. We used...... these genes in an analysis of hierarchical clustering of lines and age groups. The results showed that longevity selected flies consistently clustered with control flies that were one age class younger. Most of the genes that were upregulated in old longevity selected flies compared to control flies of equal...... chronological age were downregulated with age in both control and longevity lines. This is in accordance with a younger gene expression profile of longevity selected lines. Similarly genes that were downregulated in old longevity flies compared to control flies were upregulated with older age in both control...

  18. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.)

    Indian Academy of Sciences (India)

    Fupeng Li; Chaoyun Hao; Lin Yan; Baoduo Wu; Xiaowei Qin; Jianxiong Lai; Yinghui Song

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  19. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  20. Che-1 gene silencing induces osteosarcoma cell apoptosis by inhibiting mutant p53 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Wang, Dan, E-mail: danwangwdd@163.com; Li, Ning

    2016-04-22

    The transcriptional cofactor Che-1 is an RNA polymerase II (Pol II) which is involved in tumorigenesis, such as breast cancer and multiple myeloma. Che-1 can also regulate mutant p53 expression, which plays roles in many types of cancer. In this study, we aimed to investigate the effects and specific mechanism of Che-1 in the regulation of osteosarcoma (OS) cell growth. We found that Che-1 is highly expressed in several kinds of OS cells compared with osteoblast hFOB1.19 cells. MTT and flow cytometry assays showed that Che-1 depletion by siRNA markedly suppressed MG-63 and U2OS cell proliferation and promoted apoptosis. The chromatin immunoprecipitation (ChIP) assay verified the presence of Che-1 on the p53 promoter in MG-63 and U2OS cells carrying mutant p53. Further studies showed that Che-1 depletion inhibited mutant p53 expression. Notably, our study showed that the loss of Che-1 inhibits proliferation and promotes apoptosis in MG-63 cells by decreasing the level of mutant p53. Therefore, these findings open the possibility that silencing of Che-1 will have therapeutic benefit in OS. - Highlights: • Che-1 is highly expressed in several kinds of OS cells. • Che-1 depletion suppressed MG-63 and U2OS cell growth. • Che-1 is existed in the p53 promoter in MG-63 and U2OS cells. • Che-1 depletion inhibited mutant p53 expression. • Che-1 depletion inhibits cell growth by decreasing the level of mutant p53.

  1. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish.

    Science.gov (United States)

    Félix, Luís M; Serafim, Cindy; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-09-05

    Increasing evidence supports that ketamine, a widely used anaesthetic, potentiates apoptosis during development through the mitochondrial pathway of apoptosis. Defects in the apoptotic machinery can cause or contribute to the developmental abnormalities previously described in ketamine-exposed zebrafish. The involvement of the apoptotic machinery in ketamine-induced teratogenicity was addressed by assessing the apoptotic signals at 8 and 24 hpf following 20min exposure to ketamine at three stages of early zebrafish embryo development (256 cell, 50% epiboly and 1-4 somites stages). Exposure at the 256-cell stage to ketamine induced an up-regulation of casp8 and pcna at 8 hpf while changes in pcna at the mRNA level were observed at 24 hpf. After the 50% epiboly stage exposure, the mRNA levels of casp9 were increased at 8 and 24 hpf while aifm1 was affected at 24 hpf. Both tp53 and pcna expressions were increased at 8 hpf. After exposure during the 1-4 somites stage, no meaningful changes on transcript levels were observed. The distribution of apoptotic cells and the caspase-like enzymatic activities of caspase-3 and -9 were not affected by ketamine exposure. It is proposed that ketamine exposure at the 256-cell stage induced a cooperative mechanism between proliferation and cellular death while following exposure at the 50% epiboly, a p53-dependent and -independent caspase activation may occur. Finally, at the 1-4 somites stage, the defence mechanisms are already fully in place to protect against ketamine-insult. Thus, ketamine teratogenicity seems to be dependent on the functional mechanisms present in each developmental stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. clusterProfiler: an R package for comparing biological themes among gene clusters.

    Science.gov (United States)

    Yu, Guangchuang; Wang, Li-Gen; Han, Yanyan; He, Qing-Yu

    2012-05-01

    Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.

  3. Gene Expression Profile Differences in Gastric Cancer and Normal Gastric Mucosa by Oligonucleotide Microarrays

    Institute of Scientific and Technical Information of China (English)

    Chuanding Yu; Shenhua Xu; HangZhou Mou; Zhiming Jiang; Chihong Zhu; Xianglin Liu

    2006-01-01

    OBJECTIVE To study the difference of gene expression in gastric cancer (T) and normal tissue of gastric mucosa (C), and to screen for associated novel genes in gastric cancers by oligonucleotide microarrays.METHODS U133A (Affymetrix, Santa Clara, CA) gene chip was used to detect the gene expression profile difference in T and C. Bioinformatics was used to analyze the detected results.RESULTS When gastric cancers were compared with normal gastric mucosa, a total of 270 genes were found with a difference of more than 9times in expression levels. Of the 270 genes, 157 were up-regulated (Signal Log Ratio [SLR] ≥3), and 113 were down-regulated (SLR ≤-3).Using a classification of function, the highest number of gene expression differences related to enzymes and their regulatory genes (67, 24.8%),followed by signal-transduction genes (43,15.9%). The third were nucleic acid binding genes (17, 6.3%), fourth were transporter genes (15, 5.5%)and fifth were protein binding genes (12, 4.4%). In addition there were 50genes of unknown function, accounting for 18.5%. The five above mentioned groups made up 56.9% of the total gene number.CONCLUSION The 5 gene groups (enzymes and their regulatory proteins, signal transduction proteins, nucleic acid binding proteins, transporter and protein binding) were abnormally expressed and are important genes for further study in gastric cancers.

  4. Temporal profiling of cytokine-induced genes in pancreatic β-cells by meta-analysis and network inference

    DEFF Research Database (Denmark)

    Lopes, Miguel; Kutlu, Burak; Miani, Michela;

    2014-01-01

    Type 1 Diabetes (T1D) is an autoimmune disease where local release of cytokines such as IL-1β and IFN-γ contributes to β-cell apoptosis. To identify relevant genes regulating this process we performed a meta-analysis of 8 datasets of β-cell gene expression after exposure to IL-1β and IFN-γ. Two o...

  5. Comparison of gene sets for expression profiling: prediction of metastasis from low-malignant breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Eiriksdottir, Freyja;

    2007-01-01

    -six tumors from low-risk patients and 34 low-malignant T2 tumors from patients with slightly higher risk have been examined by genome-wide gene expression analysis. Nine prognostic gene sets were tested in this data set. RESULTS: A 32-gene profile (HUMAC32) that accurately predicts metastasis has previously...... sets, mainly developed in high-risk cancers, predict metastasis from low-malignant cancer....

  6. Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling.

    Science.gov (United States)

    Luo, Q B; Song, X Y; Ji, C L; Zhang, X Q; Zhang, D X

    2014-08-10

    The process of heat regulation is complex and its exact molecular mechanism is not fully understood. In this study, to investigate the global gene regulation response to acute heat exposure, gene microarrays were exploited to analyze the effects of heat stress on three tissues (brain, liver, leg muscle) of the yellow broiler chicken (Gallus gallus). We detected 166 differentially expressed genes (DEGs) in the brain, 219 in the leg muscle and 317 in the liver. Six of these genes were differentially expressed in all three tissues and were validated by qRT-PCR, and included heat shock protein genes (HSPH1, HSP25), apoptosis-related genes (RB1CC1, BAG3), a cell proliferation and differentiation-related gene (ID1) and the hunger and energy metabolism related gene (PDK). All these genes might be important factors in chickens suffering from heat stress. We constructed gene co-expression networks using the DEGs of the brain, leg muscle and liver and two, four and two gene co-expression modules were identified in these tissues, respectively. Functional enrichment of these gene modules revealed that various functional clusters were related to the effects of heat stress, including those for cytoskeleton, extracellular space, ion binding and energy metabolism. We concluded that these genes and functional clusters might be important factors in chickens under acute heat stress. Further in-depth research on the newly discovered heat-related genes and functional clusters is required to fully understand their molecular functions in thermoregulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes

    Directory of Open Access Journals (Sweden)

    Ueno Masami

    2011-05-01

    Full Text Available Abstract Background While an increase in bone marrow adiposity is associated with age-related bone disease, the function of bone marrow adipocytes has not been studied. The aim of this study was to characterize and compare the age-related gene expression profiles in bone marrow adipocytes and epididymal adipocytes. Results A total of 3918 (13.7% genes were differentially expressed in bone marrow adipocytes compared to epididymal adipocytes. Bone marrow adipocytes revealed a distinct gene profile with low expression of adipocyte-specific genes peroxisome proliferator-activated receptor gamma (PPARγ, fatty acid binding protein 4 (FABP4, perilipin (Plin1, adipsin (CFD and high expression of genes associated with early adipocyte differentiation (CCAAT/enhancer binding protein beta (C/EBPβ, regulator of G-protein signaling 2 (RGS2. In addition, a number of genes including secreted frizzled related protein 4 (SFRP4, tumor necrosis factor α (TNFα, transforming growth factor beta 1(TGFβ1, G-protein coupled receptor 109A (GPR109A and interleukin 6 (IL-6, that could affect adipose-derived signaling to bone are markedly increased in bone marrow adipocytes. Age had a substantial effect on genes associated with mitochondria function and inflammation in bone marrow adipocytes. Twenty seven genes were significantly changed with age in both adipocyte depots. Among these genes, IL6 and GPR109A were significantly reduced with age in both adipocyte depots. Conclusions Overall, gene profiling reveals a unique phenotype for primary bone marrow adipocytes characterized by low adipose-specific gene expression and high expression of inflammatory response genes. Bone marrow and epididymal adipocytes share a common pathway in response to aging in mice, but age has a greater impact on global gene expression in epididymal than in bone marrow adipocytes. Genes that are differentially expressed at greater levels in the bone marrow are highly regulated with age.

  8. Retroviral integration profiles: their determinants and implications for gene therapy

    Directory of Open Access Journals (Sweden)

    Kwang-il Lim

    2012-04-01

    Full Text Available Retroviruses have often been used for gene therapy because oftheir capacity for the long-term expression of transgenes via stableintegration into the host genome. However, retroviral integrationcan also result in the transformation of normal cells into cancercells, as demonstrated by the incidence of leukemia in a recentretroviral gene therapy trial in Europe. This unfortunate outcomehas led to the rapid initiation of studies examining variousbiological and pathological aspects of retroviral integration. Thisreview summarizes recent findings from these studies, includingthe global integration patterns of various types of retroviruses,viral and cellular determinants of integration, implications ofintegration for gene therapy and retrovirus-mediated infectiousdiseases, and strategies to shift integration to safe host genomicloci. A more comprehensive and mechanistic understanding ofretroviral integration processes will eventually make it possible togenerate safer retroviral vector platforms in the near future. [BMBreports 2012; 45(4: 207-212

  9. Virulence gene profiles of avian pathogenic Escherichia coli isolated from chickens with colibacillosis in Bulawayo, Zimbabwe

    Directory of Open Access Journals (Sweden)

    Joshua Mbanga

    2015-02-01

    Full Text Available Colibacillosis, a disease caused by avian pathogenic Escherichia coli (APEC, is one of the main causes of economic losses in the poultry industry worldwide. This study was carried out in order to determine the APEC-associated virulence genes contained by E. coli isolates causing colibacillosis in chickens. A total of 45 E. coli isolates were obtained from the diagnostics and research branch of the Central Veterinary Laboratories, Bulawayo, Zimbabwe. These isolates were obtained from chickens with confirmed cases of colibacillosis after postmortem examination. The presence of the iutA, hlyF, ompT, frz, sitD, fimH, kpsM, sitA, sopB, uvrY, pstB and vat genes were investigated by multiplex polymerase chain reaction (PCR assay. Of the 45 isolates, 93% were positive for the presence of at least one virulence gene. The three most prevalent virulence genes were iutA (80%, fimH (33.3% and hlyF (24.4%. The kpsM, pstB and ompT genes had the lowest prevalence, having been detected in only 2.2% of the isolates. All 12 virulence genes studied were detected in the 45 APEC isolates. Virulence gene profiles were constructed for each APEC isolate from the multiplex data. The APEC isolates were profiled as 62.2% fitting profile A, 31.1% profile B and 6.7% profile C. None of the isolates had more than seven virulence genes. Virulence profiles of Zimbabwean APEC isolates are different from those previously reported. Zimbabwean APEC isolates appear to be less pathogenic and may rely on environmental factors and stress in hosts to establish infection.

  10. Microarray-based analysis for hepatocellular carcinoma: From gene expression profiling to new challenges

    Institute of Scientific and Technical Information of China (English)

    Yutaka Midorikawa; Masatoshi Makuuchi; Wei Tang; Hiroyuki Aburatani

    2007-01-01

    Accumulation of mutations and alterations in the expression of various genes result in carcinogenesis, and the development of microarray technology has enabled us to identify the comprehensive gene expression alterations in oncogenesis. Many studies have applied this technology for hepatocellular carcinoma (HCC), and identified a number of candidate genes useful as biomarkers in cancer staging, prediction of recurrence and prognosis, and treatment selection. Some of these target molecules have been used to develop new serum diagnostic markers and therapeutic targets against HCC to benefit patients. Previously, we compared gene expression profiling data with classification based on clinicopathological features, such as hepatitis viral infection or liver cancer progression. The next era of gene expression analysis will require systematic integration of expression profiles with other types of biological information, such as genomic locus, gene function, and sequence information. We have reported integration between expression profiles and locus information, which is effective in detecting structural genomic abnormalities, such as chromosomal gains and losses, in which we showed that gene expression profiles are subject to chromosomal bias. Furthermore, array-based comparative genomic hybridization analysis and allelic dosage analysis using genotyping arrays for HCC were also reviewed, with comparison of conventional methods.

  11. Thermal evolution of gene expression profiles in Drosophila subobscura

    Directory of Open Access Journals (Sweden)

    Beltran Sergi

    2007-03-01

    Full Text Available Abstract Background Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays. Results A total of 306 (6.6% cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C, also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh. On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments. Conclusion Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to

  12. Dynamic changes in the gene expression profile during rat oral carcinogenesis induced by 4-nitroquinoline 1-oxide.

    Science.gov (United States)

    Ge, Shuyun; Zhang, Ji; Du, Yanzhi; Hu, Bin; Zhou, Zengtong; Lou, Jianing

    2016-03-01

    The typical progression of oral cancer is from hyperplastic epithelial lesions through dysplasia to invasive carcinoma. It is important to investigate malignant oral cancer progression and development in order to determine useful approaches of prevention of dysplastic lesions. The present study aimed to gain insights into the underlying molecular mechanism of oral carcinogenesis by establishing a rat model of oral carcinogenesis using 4‑nitroquinoline 1‑oxide. Subsequently, transcription profile analysis using an integrating microarray was performed. The dynamic gene expression changes of the six stages of rat oral carcinogenesis (normal, mild epithelial dysplasia, moderate dysplasia, severe dysplasia, carcinoma in situ and oral squamous cell carcinomas) were analyzed using component plane presentations (CPP)‑self‑organizing map (SOM). Six genes were verified by quantitative polymerase chain reaction, immunohistochemistry and succinate dehydrogenase (SDH) activity assay kit. Numerous differentially expressed genes (DEGs) were identified during rat oral carcinogenesis. CPP‑SOM determined that these DEGs were primarily enriched during cell cycle, apoptosis, inflammatory response and tricarboxylic acid cycle, indicating the coordinated regulation of molecular networks. In addition, the expression of specific DEGs, such as janus kinase 3, cyclin‑dependent kinase A‑1, B‑cell chronic lymphocytic leukaemia/lymphoma 2‑like 2, nuclear factor‑κB, tumor necrosis factor receptor superfamily member 1A, cyclin D1 and SDH were identified to have high concordance with the results from microarray data. The current study demonstrated that oral carcinogenesis is a multi‑step and multi‑gene process, with a distinct pattern alteration along a continuum of malignant transformation. In addition, this comprehensive investigation provided a theoretical basis for the understanding of the molecular alterations associated with oral carcinogenesis.

  13. Influence of Decitabine on Demethylation of P15INK4B Gene and the Growth and Apoptosis of Burkitt Lymphoma Raji Cells

    Directory of Open Access Journals (Sweden)

    LIU Qiao

    2014-12-01

    Full Text Available Objective: To explore the methylation status of P15INK4B gene and the biochemical influence of decitabine on the demethylation of P15INK4B gene and the growth and apoptosis of Burkitt lymphoma Raji cells. Methods: Trypan blue was used to test the effects of different concentrations of decitabine on cell growth curve of Burkitt lymphoma Rajj cells. Cell apoptostic rate was detected by flow cytometry (FCM. The expression of P15INK4B gene was detected by reverse transcription-polymerase chain reaction (RT-PCR and the degree of methylation of P15INK4B gene by methylation-specific PCR (MSP. Results: Different concentrations of decitabine had an inhibiting effect on the proliferation of Raji cells, and promote the apoptosis of Raji cells. After 48-h treatment of decitabine, the mRNA expression of P15INK4B gene of Raji cells was up-regulated in a dose-dependent manner by inducing the demethylation of P15INK4B gene. . Conclusion: There exists hypermethylated P15INK4B gene in Burkitt lymphoma Raji cells which makes P15INK4B gene down-regulated. However, decitabine can up-regulate the mRNA expression of P15INK4B gene through inducing the demethylation of P15INK4B gene, thus inhibiting the proliferation of lymphoma Raji cells.

  14. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Leopold F Fröhlich

    Full Text Available The lack of knowledge about molecular pathology of uterine sarcomas with a representation of 3-7% of all malignant uterine tumors prevents the establishment of effective therapy protocols. Here, we explored advanced therapeutic options to the previously discovered antitumorigenic effects of the histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA by combined treatment with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L. In addition, we investigated the uterine sarcoma cell lines, MES-SA and ESS-1, regarding the underlying molecular mechanisms of SAHA and TRAIL-induced apoptosis and their resistance towards TRAIL. Compared to single SAHA or TRAIL treatment, the combination of SAHA with TRAIL led to complete cell death of both tumor cell lines after 24 to 48 hours. In contrast to single SAHA treatment, apoptosis occured faster and was more pronounced in ESS-1 cells than in MES-SA cells. Induction of SAHA- and TRAIL-induced apoptosis was accompanied by upregulation of the intrinsic apoptotic pathway via reduction of mitochondrial membrane potential, caspase-3, -6, and -7 activation, and PARP cleavage, but was also found to be partially caspase-independent. Apoptosis resistance was caused by reduced expression of caspase-8 and DR 4/TRAIL-R1 in ESS-1 and MES-SA cells, respectively, due to epigenetic silencing by DNA hypermethylation of gene promoter sequences. Treatment with the demethylating agent 5-Aza-2'-deoxycytidine or gene transfer therefore restored gene expression and increased the sensitivity of both cell lines against TRAIL-induced apoptosis. Our data provide evidence that deregulation of epigenetic silencing by histone acetylation and DNA hypermethylation might play a fundamental role in the origin of uterine sarcomas. Therefore, tumor growth might be efficiently overcome by a cytotoxic combinatorial treatment of HDAC inhibitors with TRAIL.

  15. Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes.

    Science.gov (United States)

    García-Valtanen, Pablo; Martínez-López, Alicia; López-Muñoz, Azucena; Bello-Perez, Melissa; Medina-Gali, Regla M; Ortega-Villaizán, María Del Mar; Varela, Monica; Figueras, Antonio; Mulero, Víctoriano; Novoa, Beatriz; Estepa, Amparo; Coll, Julio

    2017-01-01

    To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1(-/-)) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1(+/+) ), rag1(-/-) acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1(-/-) zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1(-/-) zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1(-/-) fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1(-/-) zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1(-/-) zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies, it might

  16. Comparative analysis of gene expression profiles of papillary thyroid microcarcinoma and papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Kim Hoon

    2010-01-01

    Full Text Available Purpose: Papillary thyroid carcinomas (PTCs measuring 1.0 cm or less were separately defined as papillary thyroid microcarcinomas (PTMs by the World Health Organization, emphasizing on their benign behavior. However, some reported that PTMs may have aggressive behavior, can cause regional, or even distant metastases. But till now, the characteristics of PTMs were only reviewed and described by the clinicopathological parameters, and no analysis of PTM by the gene level is available. We report on the gene expression profiles of PTMs by the oligonucleotide microarrays and the results of comparative analysis with those of PTCs. Materials and Methods: The gene expression profiles of 25 pairs of PTMs and their normal thyroid tissue counterparts, and 11 pairs of PTCs and their normal counterparts, were analyzed by Affymetrix Human Genome U133A. Data were analyzed by the SAM and the DAVID 2008 program to detect differentially expressed genes in supervised sample classification. Results: Two-hundred thirteen statistically significant up-regulated genes and -183 significant down-regulated genes of PTMs compared with their normal counterpart thyroid tissues, which were mainly cell adhesion-related genes and immune response genes, were detected. Two-hundred sixty-one up-regulated and -157 down-regulated genes of PTCs were also detected. In the comparative analyses of gene expression profiles of PTMs and PTCs, no significant difference was found. Conclusion: PTM should not be considered as the simple occult indolent thyroid cancer, but as the earlier stage of disease which eventually evolves into PTC, because the gene expression profiles of PTMs were not different from those of PTCs.

  17. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  18. Metagenomic species profiling using universal phylogenetic marker genes

    DEFF Research Database (Denmark)

    Sunagawa, Shinichi; Mende, Daniel R; Zeller, Georg;

    2013-01-01

    To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed...

  19. Gene Expression Profile Related to the Progression of Preneoplastic Nodules toward Hepatocellular Carcinoma in Rats

    Directory of Open Access Journals (Sweden)

    Julio Isael Pérez-Carréon

    2006-05-01

    Full Text Available In this study, we investigated the time course gene expression profile of preneoplastic nodules and hepatocellular carcinomas (HCC to define the genes implicated in cancer progression in a resistant hepatocyte model. Tissues that included early nodules (1 month, ENT-1, persistent nodules (5 months, ENT-5, dissected HCC (12 months, and normal livers (NIL from adult rats were analyzed by cDNA arrays including 1185 rat genes. Differential genes were derived in each type of sample (n = 3 by statistical analysis. The relationship between samples was described in a Venn diagram for 290 genes. From these, 72 genes were shared between tissues with nodules and HCC. In addition, 35 genes with statistical significance only in HCC and with extreme ratios were identified. Differential expression of 11 genes was confirmed by comparative reverse transcription-polymerase chain reaction, whereas that of 2 genes was confirmed by immunohistochemistry. Members involved in cytochrome P450 and second-phase metabolism were downregulated, whereas genes involved in glutathione metabolism were upregulated, implicating a possible role of glutathione and oxidative regulation. We provide a gene expression profile related to the progression of nodules into HCC, which contributes to the understanding of liver cancer development and offers the prospect for chemoprevention strategies or early treatment of HCC.

  20. Gene expression profiling of the response to thermal injury in human cells.

    Science.gov (United States)

    Dinh, H K; Zhao, B; Schuschereba, S T; Merrill, G; Bowman, P D

    2001-10-10

    The genetic response of human cells to sublethal thermal injury was assessed by gene expression profiling, using macroarrays containing 588 complementary known genes. At 1, 4, 8, and 24 h following thermal injury, RNA was isolated, and a cDNA copy was generated incorporating (33)P and hybridized to Atlas arrays. About one-fifth of the genes on the membrane exhibited a significant elevation or depression in expression (>/=2-fold) by 4 h posttreatment. Genes for heat shock proteins (HSPs) were upregulated as well as genes for transcription factors, growth regulation, and DNA repair. Cluster analysis was performed to assess temporal relationships between expression of genes. Translation of mRNA for some expressed genes, including HSP70 and HSP40, was corroborated by Western blotting. Gene expression profiling can be used to determine information about gene responses to thermal injury by retinal pigment epithelium cells following sublethal injury. The induction of gene expression following thermal injury involves a number of genes not previously identified as related to the stress response.

  1. Intrahepatic gene expression profiles and alpha-smooth muscle actin patterns in hepatitis C virus induced fibrosis.

    Science.gov (United States)

    Lau, Daryl T-Y; Luxon, Bruce A; Xiao, Shu-Yuan; Beard, Michael R; Lemon, Stanley M

    2005-08-01

    To gain insight into pathogenic mechanisms underlying fibrosis in hepatitis C virus (HCV)-mediated liver injury, we compared intrahepatic gene expression profiles in HCV-infected patients at different stages of fibrosis and alpha-smooth muscle actin (alpha-SMA) staining patterns. We studied 21 liver biopsy specimens: 5 had no fibrosis (Ludwig-Batts stage 0); 10 had early portal or periportal fibrosis (stages 1 and 2); and 6, advanced fibrosis (stages 3 and 4). None of the patients had hepatocellular carcinoma. Transcriptional profiles were determined by high-density oligonucleotide microarrays. ANOVA identified 157 genes for which transcript abundance was associated with fibrosis stage. These defined three distinct hierarchical clusters of patients. Patients with predominantly stage 0 fibrosis had increased abundance of mRNAs linked to glycolipid metabolism. PDGF, a potent stellate cell mitogen, was also increased. Transcripts with increased abundance in stages 1 and 2 fibrosis were associated with oxidative stress, apoptosis, inflammation, proliferation, and matrix degradation, whereas transcripts increased in stages 3 and 4 were associated with fibrogenesis and cellular proliferation. Cells staining for alpha-SMA were detectable at all stages but infrequent in advanced fibrosis without active inflammation. A high frequency of such cells was associated with mRNAs linked to glycolipid metabolism. In conclusion, the presence of alpha-SMA-positive HSCs and expression of PDGF in stage 0 fibrosis suggests that stellate cells are activated early in HCV-mediated injury, possibly in response to oxidative stress resulting from inflammation and lipid metabolism. Increased abundance of transcripts linked to cellular proliferation in advanced fibrosis is consistent with a predisposition to cancer. Supplementary material for this article can be found on the HEPATOLOGY website (http://www.interscience.wiley.com/jpages/0270-9139/suppmat/index/html).

  2. Benzene activates caspase-4 and -12 at the transcription level, without an association with apoptosis, in mouse bone marrow cells lacking the p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jung-Yeon; Han, Jeong-Hee; Yoon, Byung-Il [Kangwon National University, School of Veterinary Medicine, Chuncheon, Gangwon (Korea); Hirabayashi, Yoko; Kodama, Yukio; Kanno, Jun [National Institute of Health Sciences, Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, Tokyo (Japan); Choi, Yang-Kyu [Konkuk University, College of Veterinary Medicine, Seoul (Korea); Inoue, Tohru [National Institute of Health Sciences, Biological Safety and Research Center, Tokyo (Japan)

    2009-08-15

    Benzene is a well-known environmental pollutant that can induce hematotoxicity, aplastic anemia, acute myelogenous leukemia, and lymphoma. However, although benzene metabolites are known to induce oxidative stress and disrupt the cell cycle, the mechanism underlying lympho/leukemogenicity is not fully understood. Caspase-4 (alias caspase-11) and -12 are inflammatory caspases implicated in inflammation and endoplasmic reticulum stress-induced apoptosis. The objectives of this study were to investigate the altered expression of caspase-4 and -12 in mouse bone marrow after benzene exposure and to determine whether their alterations are associated with benzene-induced bone marrow toxicity, especially cellular apoptosis. In addition, we evaluated whether the p53 gene is involved in regulating the mechanism, using both wild-type (WT) mice and mice lacking the p53 gene. For this study, 8-week-old C57BL/6 mice [WT and p53 knockout (KO)] were administered a benzene solution (150 mg/kg diluted in corn oil) via oral gavage once daily, 5 days/week, for 1 or 2 weeks. Blood and bone marrow cells were collected and cell counts were measured using a Coulter counter. Total mRNA and protein extracts were prepared from the harvested bone marrow cells. Then qRT-PCR and Western blotting were performed to detect changes in the cas