Sample records for apomixis

  1. An Apomixis-Gene’s View on Dandelions

    NARCIS (Netherlands)

    Dijk, van P.; Jong, de J.H.S.G.M.; Vijverberg, K.; Biere, A.


    In asexual organisms, the clone constitutes a level above the individual. Most dandelions (Taraxacum officinale s.l.) reproduce asexually through apomixis, asexual reproduction through seeds. A clone can be seen as a superorganism that is born, that growths, degenerates and eventually dies. Apomixis

  2. Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations (United States)

    Hand, M L; Vít, P; Krahulcová, A; Johnson, S D; Oelkers, K; Siddons, H; Chrtek, J; Fehrer, J; Koltunow, A M G


    The Hieracium and Pilosella (Lactuceae, Asteraceae) genera of closely related hawkweeds contain species with two different modes of gametophytic apomixis (asexual seed formation). Both genera contain polyploid species, and in wild populations, sexual and apomictic species co-exist. Apomixis is known to co-exist with sexuality in apomictic Pilosella individuals, however, apomictic Hieracium have been regarded as obligate apomicts. Here, a developmental analysis of apomixis within 16 Hieracium species revealed meiosis and megaspore tetrad formation in 1 to 7% of ovules, for the first time indicating residual sexuality in this genus. Molecular markers linked to the two independent, dominant loci LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) controlling apomixis in Pilosella piloselloides subsp. praealta were screened across 20 phenotyped Hieracium individuals from natural populations, and 65 phenotyped Pilosella individuals from natural and experimental cross populations, to examine their conservation, inheritance and association with reproductive modes. All of the tested LOA and LOP-linked markers were absent in the 20 Hieracium samples irrespective of their reproductive mode. Within Pilosella, LOA and LOP-linked markers were essentially absent within the sexual plants, although they were not conserved in all apomictic individuals. Both loci appeared to be inherited independently, and evidence for additional genetic factors influencing quantitative expression of LOA and LOP was obtained. Collectively, these data suggest independent evolution of apomixis in Hieracium and Pilosella and are discussed with respect to current knowledge of the evolution of apomixis. PMID:25026970

  3. Apomixis: Engineering the Ability to Harness Hybrid Vigor in Crop Plants. (United States)

    Conner, Joann A; Ozias-Akins, Peggy


    Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.

  4. Molecular markers linked to apomixis in Panicum maximum Jacq.

    African Journals Online (AJOL)



    May 28, 2014 ... The objective of this work was to identify molecular markers linked to apomixis in ... Four RAPD markers linked to apomixis were identified and mapped in this .... Data analysis. The amplification of the potential markers was analyzed as binary, with 1 for presence and 0 for absence of the marker. The binary.

  5. Evolution of the apomixis transmitting chromosome in Pennisetum

    Directory of Open Access Journals (Sweden)

    Yamada-Akiyama Hitomi


    Full Text Available Abstract Background Apomixis is an intriguing trait in plants that results in maternal clones through seed reproduction. Apomixis is an elusive, but potentially revolutionary, trait for plant breeding and hybrid seed production. Recent studies arguing that apomicts are not evolutionary dead ends have generated further interest in the evolution of asexual flowering plants. Results In the present study, we investigate karyotypic variation in a single chromosome responsible for transmitting apomixis, the Apospory-Specific Genomic Region carrier chromosome, in relation to species phylogeny in the genera Pennisetum and Cenchrus. A 1 kb region from the 3' end of the ndhF gene and a 900 bp region from trnL-F were sequenced from 12 apomictic and eight sexual species in the genus Pennisetum and allied genus Cenchrus. An 800 bp region from the Apospory-Specific Genomic Region also was sequenced from the 12 apomicts. Molecular cytological analysis was conducted in sixteen Pennisetum and two Cenchrus species. Our results indicate that the Apospory-Specific Genomic Region is shared by all apomictic species while it is absent from all sexual species or cytotypes. Contrary to our previous observations in Pennisetum squamulatum and Cenchrus ciliaris, retrotransposon sequences of the Opie-2-like family were not closely associated with the Apospory-Specific Genomic Region in all apomictic species, suggesting that they may have been accumulated after the Apospory-Specific Genomic Region originated. Conclusions Given that phylogenetic analysis merged Cenchrus and newly investigated Pennisetum species into a single clade containing a terminal cluster of Cenchrus apomicts, the presumed monophyletic origin of Cenchrus is supported. The Apospory-Specific Genomic Region likely preceded speciation in Cenchrus and its lateral transfer through hybridization and subsequent chromosome repatterning may have contributed to further speciation in the two genera.

  6. Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations

    Czech Academy of Sciences Publication Activity Database

    Hand, M. L.; Vít, Petr; Krahulcová, Anna; Johnson, S. D.; Oelkers, K.; Siddons, H.; Chrtek, Jindřich; Fehrer, Judith; Koltunow, A. M. G.


    Roč. 114, č. 1 (2015), s. 17-26 ISSN 0018-067X R&D Projects: GA ČR GA206/08/0890; GA ČR GAP506/10/1363 Institutional support: RVO:67985939 Keywords : gametophytic apomixis * Hieracium * marker inheritance Subject RIV: EF - Botanics Impact factor: 3.801, year: 2015

  7. Molecular markers linked to apomixis in Panicum maximum Jacq ...

    African Journals Online (AJOL)

    Panicum maximum Jacq. is an important forage grass of African origin largely used in the tropics. The genetic breeding of this species is based on the hybridization of sexual and apomictic genotypes and selection of apomictic F1 hybrids. The objective of this work was to identify molecular markers linked to apomixis in P.

  8. Recombination within the apospory specific genomic region leads to the uncoupling of apomixis components in Cenchrus ciliaris. (United States)

    Conner, Joann A; Gunawan, Gunawati; Ozias-Akins, Peggy


    Apomixis enables the clonal propagation of maternal genotypes through seed. If apomixis could be harnessed via genetic engineering or introgression, it would have a major economic impact for agricultural crops. In the grass species Pennisetum squamulatum and Cenchrus ciliaris (syn. P. ciliare), apomixis is controlled by a single dominant "locus", the apospory-specific genomic region (ASGR). For P. squamulatum, 18 published sequenced characterized amplified region (SCAR) markers have been identified which always co-segregate with apospory. Six of these markers are conserved SCARs in the closely related species, C. ciliaris and co-segregate with the trait. A screen of progeny from a cross of sexual × apomictic C. ciliaris genotypes identified a plant, A8, retaining two of the six ASGR-linked SCAR markers. Additional and newly identified ASGR-linked markers were generated to help identify the extent of recombination within the ASGR. Based on analysis of missing markers, the A8 recombinant plant has lost a significant portion of the ASGR but continues to form aposporous embryo sacs. Seedlings produced from aposporous embryo sacs are 6× in ploidy level and hence the A8 recombinant does not express parthenogenesis. The recombinant A8 plant represents a step forward in reducing the complexity of the ASGR locus to determine the factor(s) required for aposporous embryo sac formation and documents the separation of expression of the two components of apomixis in C. ciliaris.

  9. Apomixis is not prevalent in subnival to nival plants of the European Alps

    Czech Academy of Sciences Publication Activity Database

    Hörandl, E.; Dobeš, C.; Suda, Jan; Vít, Petr; Urfus, Tomáš; Temsch, E. M.; Cosendai, A.-C.; Wagner, J.; Ladinig, U.


    Roč. 108, č. 2 (2011), s. 381-390 ISSN 0305-7364 Institutional research plan: CEZ:AV0Z60050516 Keywords : apomixis * endosperm * flow cytometric seed screen Subject RIV: EF - Botanics Impact factor: 4.030, year: 2011

  10. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet


    Sapkota, Sirjan; Conner, Joann A.; Hanna, Wayne W.; Simon, Bindu; Fengler, Kevin; Deschamps, St?phane; Cigan, Mark; Ozias-Akins, Peggy


    Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) a...

  11. Transient Activation of Apomixis in Sexual Neotriploids May Retain Genomically Altered States and Enhance Polyploid Establishment

    Directory of Open Access Journals (Sweden)

    Diego Hojsgaard


    Full Text Available Polyploid genomes evolve and follow a series of dynamic transfigurations along with adaptation and speciation. The initial formation of a new polyploid individual within a diploid population usually involves a triploid bridge, a two-step mechanism of cell fusions between ubiquitous (reduced and rare (unreduced gametes. The primary fusion event creates an intermediate triploid individual with unbalanced genome sets, a situation of genomic-shock characterized by gene expression dysregulation, high dosage sensitivity, disturbed cell divisions, and physiological and reproductive attributes drastically altered. This near-sterile neotriploid must produce (even eupolyploids through secondary fusion events to restore genome steadiness, meiotic balance, and fertility required for the demographic establishment of a nascent lineage. Natural conditions locate several difficulties to polyploid establishment, including the production of highly unbalanced and rarely unreduced (euploid gametes, frequency-dependent disadvantages (minority cytotype exclusion, severe fitness loss, and ecological competition with diploid parents. Persistence and adaptation of neopolyploids depend upon genetic and phenotypic novelty coupled to joint selective forces that preserve shock-induced genomic changes (subgenome homeolog partitioning and drive meiotic (reproductive stabilization and ecological diversification. Thus, polyploid establishment through the triploid bridge is a feasible but not ubiquitous process that requires a number of low-probability events and singular circumstances. Yet, frequencies of polyploids suggest that polyploid establishment is a pervasive process. To explain this disparity, and supported in experimental evidence, I propose that situations like hybridization and ploidy-state transitions associated to genomic shock and substantial developmental alterations can transiently activate apomixis as a mechanism to halt genomic instability and cancel factors

  12. Expressivity of apomixis in 2n + n hybrids from an apomictic and a sexual parent: insights into variation detected in Pilosella (Asteraceae: Lactuceae)

    Czech Academy of Sciences Publication Activity Database

    Krahulcová, Anna; Krahulec, František; Rosenbaumová, R.


    Roč. 24, č. 1 (2011), s. 263-274 ISSN 0934-0882 R&D Projects: GA ČR GA206/08/0890 Institutional research plan: CEZ:AV0Z60050516 Keywords : inheritance of apomixis * residual sexuality * unreduced hybrids Subject RIV: EF - Botanics Impact factor: 1.869, year: 2011

  13. Apomixis y su importancia en la selección y mejoramiento de gramineas forrajeras tropicales. Revisión

    Directory of Open Access Journals (Sweden)

    Adrián R. Quero Carrillo


    Hyparrhenia, Melinis, Panicum, Paspalum, Pennisetum, Setaria, Tripsacum y Urochloa, entre otros. Las especies apomícticas contienen individuos diploides y poliploides conformando "complejos agámicos", donde las barreras reproductivas quedan delimitadas por la apomixis y el nivel de ploidía, lo que tiene impacto en su aprovechamiento. Individuos diploides mantienen la sexualidad activa y estos son raros fuera del centro de origen de especie. Los individuos poliploides son apomícticos y los individuos sexuales poliploides pueden inducirse en el laboratorio, lo que permite obtener descendencia híbrida. La riqueza genética, originada del centro de diversidad es la base para superar problemas productivos y de estabilidad ecológica: producción durante la sequía, fijación de nitrógeno, calidad, resistencia a plagas y enfermedades; como se ha demostrado en casos exitosos en Brachiaria, Panicum y Cenchrus. Los avances en investigación sobre apomixis han elucidado su biología y diversas técnicas para su manejo. Sin embargo, el impacto de estos avances en la investigación sobre forrajes en México, promueve la recapitulación sobre el aprovechamiento de recursos genéticos y el interés en la generación de híbridos para las necesidades de producción en pastoreo extensivo en México.

  14. Patterns of genetic variation in Pilosella echioides and its selected relatives: results of variation in ploidy level, facultative apomixis and past and present hybridization

    Czech Academy of Sciences Publication Activity Database

    Chrtek, Jindřich; Plačková, Ivana; Dočkalová, Zuzana; Krahulcová, Anna; Trávníček, Pavel


    Roč. 300, č. 9 (2014), s. 2091-2104 ISSN 0378-2697 R&D Projects: GA ČR GAP506/10/1363; GA ČR GP13-18610P Institutional support: RVO:67985939 Keywords : Pilosella * allozymes * apomixis Subject RIV: EF - Botanics Impact factor: 1.422, year: 2014

  15. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet.

    Directory of Open Access Journals (Sweden)

    Sirjan Sapkota

    Full Text Available Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae. The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass is the apospory-specific genomic region (ASGR. Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.

  16. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet. (United States)

    Sapkota, Sirjan; Conner, Joann A; Hanna, Wayne W; Simon, Bindu; Fengler, Kevin; Deschamps, Stéphane; Cigan, Mark; Ozias-Akins, Peggy


    Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.

  17. Assembly of the Boechera retrofracta Genome and Evolutionary Analysis of Apomixis-Associated Genes

    Directory of Open Access Journals (Sweden)

    Sergei Kliver


    Full Text Available Closely related to the model plant Arabidopsis thaliana, the genus Boechera is known to contain both sexual and apomictic species or accessions. Boechera retrofracta is a diploid sexually reproducing species and is thought to be an ancestral parent species of apomictic species. Here we report the de novo assembly of the B. retrofracta genome using short Illumina and Roche reads from 1 paired-end and 3 mate pair libraries. The distribution of 23-mers from the paired end library has indicated a low level of heterozygosity and the presence of detectable duplications and triplications. The genome size was estimated to be equal 227 Mb. N50 of the assembled scaffolds was 2.3 Mb. Using a hybrid approach that combines homology-based and de novo methods 27,048 protein-coding genes were predicted. Also repeats, transfer RNA (tRNA and ribosomal RNA (rRNA genes were annotated. Finally, genes of B. retrofracta and 6 other Brassicaceae species were used for phylogenetic tree reconstruction. In addition, we explored the histidine exonuclease APOLLO locus, related to apomixis in Boechera, and proposed model of its evolution through the series of duplications. An assembled genome of B. retrofracta will help in the challenging assembly of the highly heterozygous genomes of hybrid apomictic species.

  18. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum (United States)

    Ortiz, Juan Pablo A.; Quarin, Camilo L.; Pessino, Silvina C.; Acuña, Carlos; Martínez, Eric J.; Espinoza, Francisco; Hojsgaard, Diego H.; Sartor, Maria E.; Cáceres, Maria E.; Pupilli, Fulvio


    Background Apomixis is an alternative route of plant reproduction that produces individuals genetically identical to the mother plant through seeds. Apomixis is desirable in agriculture, because it guarantees the perpetuation of superior genotypes (i.e. heterotic hybrid seeds) by self-seeding without loss of hybrid vigour. The Paspalum genus, an archetypal model system for mining apomixis gene(s), is composed of about 370 species that have extremely diverse reproductive systems, including self-incompatibility, self-fertility, full sexual reproduction, and facultative or obligate apomixis. Barriers to interspecific hybridization are relaxed in this genus, allowing the production of new hybrids from many different parental combinations. Paspalum is also tolerant to various parental genome contributions to the endosperm, allowing analyses of how sexually reproducing crop species might escape from dosage effects in the endosperm. Scope In this article, the available literature characterizing apomixis in Paspalum spp. and its use in breeding is critically reviewed. In particular, a comparison is made across species of the structure and function of the genomic region controlling apomixis in order to identify a common core region shared by all apomictic Paspalum species and where apomixis genes are likely to be localized. Candidate genes are discussed, either as possible genetic determinants (including homologs to signal transduction and RNA methylation genes) or as downstream factors (such as cell-to-cell signalling and auxin response genes) depending, respectively, on their co-segregation with apomixis or less. Strategies to validate the role of candidate genes in apomictic process are also discussed, with special emphasis on plant transformation in natural apomictic species. PMID:23864004

  19. Female parthenogenetic apomixis and androsporogenetic parthenogenesis in embryonal cells of Araucaria angustifolia: interpolation of progenesis and asexual heterospory in an artificial sporangium. (United States)

    Durzan, Don J


    Cell fate, development timing and occurrence of reproductive versus apomictic development in gymnosperms are shown to be influenced by culture conditions in vitro. In this study, female parthenogenetic apomixis (fPA), androsporogenetic parthenogenesis (mAP) and progenesis were demonstrated using embryonal initials of Araucaria angustifolia in scaled-up cell suspensions passing through a single-cell bottleneck in darkness and in an artificial sporangium (AS). Expression was based on defined nutrition, hormones and feedforward-adaptive feedback process controls at 23-25 °C and in darkness. In fPA, the nucleus of an embryonal initial undergoes endomitosis and amitosis, forming a diploid egg-equivalent and an apoptotic ventral canal nucleus in a transdifferentiated archegonial tube. Discharge of egg-equivalent cells as parthenospores and their dispersal into the aqueous culture medium were followed by free-nuclear conifer-type proembryogenesis. This replaced the plesiomorphic and central features of proembryogenesis in Araucariaceae. Protoplasmic fusions of embryonal initials were used to reconstruct heterokaryotic expressions of fPA in multiwell plates. In mAP, restitutional meiosis (automixis) was responsible for androsporogenesis and the discharge of monads, dyads, tetrads and polyads. In a display of progenesis, reproductive development was brought to an earlier ontogenetic stage and expressed by embryonal initials. Colchicine increased polyploidy, but androspore formation became aberrant and fragmented. Aberrant automixis led to the formation of chromosomal bouquets, which contributed to genomic silencing in embryonal initials, cytomixis and the formation of pycnotic micronucleated cells. Dispersal of female and male parthenospores displayed heteromorphic asexual heterospory in an aqueous environment.

  20. Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae)

    NARCIS (Netherlands)

    Aliyu, O.M.; Schranz, M.E.; Sharbel, T.F.


    • Premise of the study: The evolution of asexual seed production (apomixis) from sexual relatives is a great enigma of plant biology. The genus Boechera is ideal for studying apomixis because of its close relation to Arabidopsis and the occurrence of sexual and apomictic species at low ploidy levels

  1. A statistical design for testing apomictic diversification through linkage analysis. (United States)

    Zeng, Yanru; Hou, Wei; Song, Shuang; Feng, Sisi; Shen, Lin; Xia, Guohua; Wu, Rongling


    The capacity of apomixis to generate maternal clones through seed reproduction has made it a useful characteristic for the fixation of heterosis in plant breeding. It has been observed that apomixis displays pronounced intra- and interspecific diversification, but the genetic mechanisms underlying this diversification remains elusive, obstructing the exploitation of this phenomenon in practical breeding programs. By capitalizing on molecular information in mapping populations, we describe and assess a statistical design that deploys linkage analysis to estimate and test the pattern and extent of apomictic differences at various levels from genotypes to species. The design is based on two reciprocal crosses between two individuals each chosen from a hermaphrodite or monoecious species. A multinomial distribution likelihood is constructed by combining marker information from two crosses. The EM algorithm is implemented to estimate the rate of apomixis and test its difference between two plant populations or species as the parents. The design is validated by computer simulation. A real data analysis of two reciprocal crosses between hickory (Carya cathayensis) and pecan (C. illinoensis) demonstrates the utilization and usefulness of the design in practice. The design provides a tool to address fundamental and applied questions related to the evolution and breeding of apomixis.

  2. Molecular markers shared by diverse apomictic Pennisetum species. (United States)

    Lubbers, E L; Arthur, L; Hanna, W W; Ozias-Akins, P


    Two molecular markers, a RAPD (randomly amplified polymorphic DNA) and a RFLP/STS (restriction fragment length polymorphism/sequence-tagged site), previously were found associated with apomictic reproductive behavior in a backcross population produced to transfer apomixis from Pennisetum squamulatum to pearl millet. The occurrence of these molecular markers in a range of 29 accessions of Pennisetum comprising 11 apomictic and 8 sexual species was investigated. Both markers were specific for apomictic species in Pennisetum. The RFLP/STS marker, UGT 197, was found to be associated with all taxa that displayed apomictic reproductive behavior except those in section Brevivalvula. Neither UGT197 nor the cloned RAPD fragment OPC-04600 hybridized with any sexually reproducing representatives of the genus. The cloned C04600 was associated with 3 of the 11 apomictic species, P. ciliare, P. massaicum, and P. squamulatum. UGT197 was more consistently associated with apomictic reproductive behavior than OPC04600 or cloned C04600, thus it could be inferred that UGT197 is more closely linked to the gene(s) for apomixis than the cloned C04600. The successful use of these probes to survey other Pennisetum species indicates that apomixis is a trait that can be followed across species by using molecular means. This technique of surveying species within a genus will be useful in determining the relative importance of newly isolated markers and may facilitate the identification of the apomixis gene(s).

  3. Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage

    Czech Academy of Sciences Publication Activity Database

    Wilschut, R. A.; Oplaat, C.; Snoek, L. B.; Kirschner, Jan; Verhoeven, K. J. F.


    Roč. 25, č. 8 (2016), s. 1759-1768 ISSN 0962-1083 Institutional support: RVO:67985939 Keywords : apomixis * epigenetic s * Taraxacum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.086, year: 2016

  4. Estimating paternal efficiency in an agamic polyploid complex: pollen stainability and variation in pollen size related to reproduction mode, ploidy level and hybridogenous origin in Pilosella (Asteraceae)

    Czech Academy of Sciences Publication Activity Database

    Rotreklová, O.; Krahulcová, Anna


    Roč. 51, č. 2 (2016), s. 175-186 ISSN 1211-9520 Institutional support: RVO:67985939 Keywords : autonomous apomixis * effect of pollen parent * hybridization Subject RIV: EF - Botanics Impact factor: 1.017, year: 2016

  5. How apomictic taxa are treated in current taxonomy: A review

    Czech Academy of Sciences Publication Activity Database

    Majeský, L.; Krahulec, František; Vašut, R.J.


    Roč. 66, č. 5 (2017), s. 1017-1040 ISSN 0040-0262 Institutional support: RVO:67985939 Keywords : apomixis * hybridization * species concept Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.447, year: 2016

  6. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region

    NARCIS (Netherlands)

    Vasut, R.J.; Vijverberg, K.; Dijk, van P.J.; Jong, de J.H.S.G.M.


    Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this

  7. The Red Queen hypothesis and geographical parthenogenesis in the alpine hawkweed Hieracium alpinum (Asteraceae)

    Czech Academy of Sciences Publication Activity Database

    Hartmann, M.; Štefánek, M.; Zdvořák, P.; Heřman, P.; Chrtek, Jindřich; Mráz, P.


    Roč. 122, č. 4 (2017), s. 681-696 ISSN 0024-4066 Institutional support: RVO:67985939 Keywords : apomixis * polyploidy * Red Queen hypothesis Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.288, year: 2016

  8. Increased phylogenetic resolution using target enrichment in Rubus (United States)

    Phylogenetic analyses in Rubus L. have been challenging due to polyploidy, hybridization, and apomixis within the genus. Wide morphological diversity occurs within and between species, contributing to challenges at lower and higher systematic levels. Phylogenetic inferences to date have been based o...

  9. Taxonomic revision of Sorbus subgenus Aria occurring in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Lepší, M.; Lepší, P.; Koutecký, P.; Bílá, J.; Vít, Petr


    Roč. 87, č. 2 (2015), s. 109-162 ISSN 0032-7786 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : apomixis * DAPI flow cytometry * hybridization Subject RIV: EF - Botanics Impact factor: 2.711, year: 2015

  10. Development and characterization of nine new microsatellite markers in Taraxacum (Asteraceae).

    NARCIS (Netherlands)

    Vasut, R.; Dijk, P.J.; Falque, M.; Trávnicek, B.; Jong, de J.H.S.G.M.


    This study aims at developing and characterizing new microsatellite primer pairs in Taraxacum officinale auct. to produce polymorphic markers for genetical and evolutionary studies on apomixis in this sexual-apomictic complex. A total of 24 diploid plants were tested for allelic polymorphism and

  11. Geographical parthenogenesis, genome size variation and pollen production in the arctic-alpine species Hieracium alpinum

    Czech Academy of Sciences Publication Activity Database

    Mráz, P.; Chrtek, Jindřich; Šingliarová, B.


    Roč. 119, č. 1 (2009), s. 41-51 ISSN 0253-1453 R&D Projects: GA ČR GA206/05/0657 Institutional research plan: CEZ:AV0Z60050516 Keywords : apomixis * Compositae * polyploidy Subject RIV: EF - Botanics Impact factor: 0.900, year: 2009

  12. Genetic diversity among pentaploid buffelgrass accessions (United States)

    Buffelgrass (Pennisetum ciliare) is an important range and pasture grass that grows in the arid tropics and semi-tropics. It has excellent drought tolerance but lacks winter hardiness. Even though the grass reproduces primarily by apomixis, it is highly polymorphic. A range of chromosome numbers ...

  13. A modified method of flow cytometric seed screen simplifies the quantification of progeny classes with different ploidy levels

    Czech Academy of Sciences Publication Activity Database

    Krahulcová, Anna; Suda, Jan


    Roč. 50, č. 3 (2006), s. 457-460 ISSN 0006-3134 R&D Projects: GA AV ČR IAA6005203 Institutional research plan: CEZ:AV0Z60050516 Keywords : facultative apomixis * reproduction routes * polyhaploids Subject RIV: EF - Botanics Impact factor: 1.198, year: 2006

  14. Chromosome studies and genetic analysis of natural and synthetic apomictic model species

    NARCIS (Netherlands)

    Kantama, L.


    Some plants have gained the ability to produce seed without fertilisation. This alternative to sexual reproduction, known as apomixis occurs most frequently in species of the families of the grasses, roses and composites, and mostly in polyploids and is considered one of the ways to escape from

  15. The detection, rate and manifestation of residual sexuality in apomictic populations of Pilosella (Asteraceae, Lactuceae)

    Czech Academy of Sciences Publication Activity Database

    Krahulcová, Anna; Rotreklová, O.; Krahulec, František


    Roč. 49, č. 2 (2014), s. 239-258 ISSN 1211-9520 R&D Projects: GA ČR GAP506/10/1363 Institutional support: RVO:67985939 Keywords : facultative apomixis * haploid parthenogenesis * interspecific hybridization * Pilosella * residual sexuality Subject RIV: EF - Botanics Impact factor: 1.778, year: 2014


    Directory of Open Access Journals (Sweden)

    Miguel Ángel Hernández-Martínez


    Full Text Available El membrillo cimarrón (Amelanchier denticulata (Kunth Koch. es un arbusto frutal de la familia Rosaceae subtribu Pyrinae originario de México, del cual no existen estudios para conocer su diversidad ni su sistema reproductivo. Por estas razones y para tener un primer antecedente sobre su variabilidad morfológica, se caracterizaron seis poblaciones de A. denticulata originarias de Guanajuato, México, mediante caracteres de semilla. Todas las poblaciones presentaron alta variabilidad intra e interpoblacional. Las variables de semilla analizadas fueron discriminantes para distinguir las diferentes poblaciones, siendo las más importantes las relacionadas con las de tamaño de las semillas, seguidas de las de forma. El grado de apomixis no es claro en esta especie debido a la alta variación intrapoblacional; por lo tanto, se necesitan estudios más detallados para concluir la existencia o no de apomixis en A. denticulata.

  17. Apomictic parthenogenesis in a parasitoid wasp Meteorus pulchricornis, uncommon in the haplodiploid order Hymenoptera. (United States)

    Tsutsui, Y; Maeto, K; Hamaguchi, K; Isaki, Y; Takami, Y; Naito, T; Miura, K


    Although apomixis is the most common form of parthenogenesis in diplodiploid arthropods, it is uncommon in the haplodiploid insect order Hymenoptera. We found a new type of spontaneous apomixis in the Hymenoptera, completely lacking meiosis and the expulsion of polar bodies in egg maturation division, on the thelytokous strain of a parasitoid wasp Meteorus pulchricornis (Wesmael) (Braconidae, Euphorinae) on pest lepidopteran larvae Spodoptera litura (Fabricius) (Noctuidae). The absence of the meiotic process was consistent with a non-segregation pattern in the offspring of heterozygous females, and no positive evidence was obtained for the induction of thelytoky by any bacterial symbionts. We discuss the conditions that enable the occurrence of such rare cases of apomictic thelytoky in the Hymenoptera, suggesting the significance of fixed heterosis caused by hybridization or polyploidization, symbiosis with bacterial agents, and occasional sex. Our finding will encourage further genetic studies on parasitoid wasps to use asexual lines more wisely for biological control.

  18. Ploidy determination of buffel grass accessions in the USDA National Plant Germplasm System collection by flow cytometry (United States)

    Buffelgrass [Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.] is an important forage and range grass in many of the semi-arid tropical and subtropical regions of the world. The species reproduces primarily by apomixis but it is highly diverse because a wide array of different apomictic ecoty...

  19. Breeding system and parental effect on fruit characters of Idesia polycarpa (Flacourtiaceae), a promising plant for biodiesel, in northwest China

    International Nuclear Information System (INIS)

    Wang, S.H.; Li, Z.Q.; Xie, Q.


    Idesia polycarpa Maxim. is a promising plant for biodiesel in China. We have reported the flowering phenology, breeding system and parental effect on fruit characters of this species distributed in Qinling-Bashan Mountain (Shaanxi Province) nature reserve. As a dioecious plant, the male and female flowered almost synchronously. The anthesis was from around 10th of May and proceeded until the end of May or the beginning of June at population level. To determine the breeding system of I. polycarpa, three pollination treatments were carried out on every three female plants: natural pollination (NP), apomixy (AP) and cross pollination (CP). Reproductive success of apoximy treatment indicated that, as a dioecious plant, I. polycarpa could also reproduce by apomixis. However, the mean fruit set under apomixy treatment was markerly lower (3.6–13.33%) than that of two pollination treatments (>65.69%). Fruit quality (fruit length, fruit width, 100 fruit weight, seed production and seed germination) of the cross pollination treatment was greater than the other two treatments, suggested that pollen competition in cross pollination treatment was the most intense in three treatments. To study parental effect on fruit characters, cross pollination was carried out with three female plants and three male plants. The result showed that maternal parents (P<0.001) and parental interaction significantly affected all the fruit characters (including 100 fruit weight, pulp/fruit ratio, oil content and seed germination) while paternal parents showed significant effects on 100 fruit weight, pulp/fruit ratio and seed germination. Fruit set was only significantly affected by maternal parents (P=0.001). Our findings will facilitate future breeding programs of I. polycarpa in parental selection. (author)

  20. Use of the SSLP-based method for detection of rare apomictic events in a sexual AtSERK1 transgenic Arabidopsis population

    NARCIS (Netherlands)

    Kantama, L.; Lambert, J.M.; Hu, H.; Jong, de H.; Vries, de S.C.; Russinova, E.


    Here we present a screening method to evaluate the potential of genes to transfer aspects of apomixis into sexual crop plants. Based on the assumption that an apomictic progeny is an exact genetic replica of the mother plant we employed a set of single sequence length polymorphism (SSLP) markers to

  1. Development of innovative techniques and principles that may be used as models to improve plant performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Wayne W.; Burton, Glenn W.


    We developed fundamental methods and techniques for transferring germplasm from wild to cultivated species. Germplasm transferred included diverse cytoplasms, new genes for pest resistance, genes controlling dry matter yield and apomixis. Some of the germplasm has been shown to be valuable in plant breeding and has been incorporated into commercial cultivators.

  2. Hieracium caespitosum and Hieracium piloselloides (Asteraceae) in the Black Hills National Forest: New state records for South Dakota, U.S.A (United States)

    Brian E. Dickerson; Cheryl Mayer; Justin Ramsey; Zach Mergen; Mark Gabel


    Hieracium spp. (Asteraceae) are noted for their taxonomic complexity, frequent incidence of apomixis and polyploidy, and invasive tendencies. Here we report the Eurasian taxa, Hieracium caespitosum Dumort. and Hieracium piloselloides Vill., as recent additions to the flora of South Dakota. Plants were collected at three locations in the Black Hills during 2014 and 2015...

  3. Enriching ploidy level diversity: the role of apomictic and sexual biotypes of Hieracium subgen. Pilosella (Asteraceae) that coexist in polyploid populations

    Czech Academy of Sciences Publication Activity Database

    Krahulcová, Anna; Rotreklová, O.; Krahulec, František; Rosenbaumová, Radka; Plačková, Ivana


    Roč. 44, č. 3 (2009), s. 281-306 ISSN 1211-9520 R&D Projects: GA ČR GA206/07/0059; GA ČR GA206/08/0890 Institutional research plan: CEZ:AV0Z60050516 Keywords : facultative apomixis * genome instability * hybrid swarms * residual sexuality * unreduced gametes Subject RIV: EF - Botanics Impact factor: 1.320, year: 2009

  4. Niche dynamics of alien species do not differ among sexual and apomictic flowering plants

    Czech Academy of Sciences Publication Activity Database

    Dellinger, A. S.; Essl, F.; Hojsgaard, D.; Kirchheimer, B.; Klatt, S.; Dawson, W.; Pergl, Jan; Pyšek, Petr; van Kleunen, M.; Weber, E.; Winter, M.; Hörandl, E.; Dullinger, S.


    Roč. 209, č. 3 (2016), s. 1313-1323 ISSN 0028-646X R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : invasions * GloNAF * apomixis Subject RIV: EF - Botanics Impact factor: 7.330, year: 2016

  5. Transgenic cassava lines carrying heterologous alternative oxidase ...

    African Journals Online (AJOL)



    Jul 3, 2013 ... production of flowers, apomixis (Nassar et al., 2000; ... In order to increase the stress tolerance capacity of ... stress-related procedure due to the activities of auxin ... the evaluation of the transgenic lines for rate of OES .... Some transgenic lines carrying the 35S-AOX fragment amplified using 35S303F1 and.

  6. Isolation of candidate genes for apomictic development in buffelgrass (Pennisetum ciliare). (United States)

    Singh, Manjit; Burson, Byron L; Finlayson, Scott A


    Asexual reproduction through seeds, or apomixis, is a process that holds much promise for agricultural advances. However, the molecular mechanisms underlying apomixis are currently poorly understood. To identify genes related to female gametophyte development in apomictic ovaries of buffelgrass (Pennisetum ciliare (L.) Link), Suppression Subtractive Hybridization of ovary cDNA with leaf cDNA was performed. Through macroarray screening of subtracted cDNAs two genes were identified, Pca21 and Pca24, that showed differential expression between apomictic and sexual ovaries. Sequence analysis showed that both Pca21 and Pca24 are novel genes not previously characterized in plants. Pca21 shows homology to two wheat genes that are also expressed during reproductive development. Pca24 has similarity to coiled-coil-helix-coiled-coil-helix (CHCH) domain containing proteins from maize and sugarcane. Northern blot analysis revealed that both of these genes are expressed throughout female gametophyte development in apomictic ovaries. In situ hybridizations localized the transcript of these two genes to the developing embryo sacs in the apomictic ovaries. Based on the expression patterns it was concluded that Pca21 and Pca24 likely play a role during apomictic development in buffelgrass.

  7. Embryo sac development in some representatives of the tribe Cynodonteae (Poaceae

    Directory of Open Access Journals (Sweden)

    A. Strydom


    Full Text Available Chloris virgata Sw., Cynodon dactylon (L. Pers., Harpochloa falx (L. f. Kuntze, and Tragus berteronianus Schult. have a Polygonum type of embryo sac development. Unreduced embryo sacs were found in Eustachys paspaloides (Vahl Lanza & Mattei,  Harpochloa falx, and  Rendlia altera (Rendle Chiov. Both facultative and obligate apomixis were observed. The Hieracium type of embryo sac development was observed in the aposporic specimens.

  8. Embryo sac development in some representatives of the tribe Cynodonteae (Poaceae)


    A. Strydom; J. J. Spies


    Chloris virgata Sw., Cynodon dactylon (L.) Pers., Harpochloa falx (L. f.) Kuntze, and Tragus berteronianus Schult. have a Polygonum type of embryo sac development. Unreduced embryo sacs were found in Eustachys paspaloides (Vahl) Lanza & Mattei,  Harpochloa falx, and  Rendlia altera (Rendle) Chiov. Both facultative and obligate apomixis were observed. The Hieracium type of embryo sac development was observed in the aposporic specimens.

  9. Cultivo in vitro de anteras como estrategia para el mejoramiento genético de buffelgrass (Cenchrus ciliaris L)


    Carloni, Edgardo José


    Tesis (Doctor en Ciencias Agropecuarias)--UNC- Facultad de Ciencias Agropecuarias, 2016. Buffelgrass es una gramínea forrajera que se reproduce principalmente por apomixis. El objetivo del presente trabajo es generar variabilidad genética, mediante cultivo in vitro, en caracteres asociados a tolerancia a sequía a partir de germoplasma introducido de buffelgrass, con la finalidad de incorporarla en un programa de mejoramiento genético de esta especie....

  10. Sexual Hieracium pilosella plants are better inter-specific, while apomictic plants are better intra-specific competitors


    Sailer, Christian; Schmid, Bernhard; Stöcklin, Jürg; Grossniklaus, Ueli


    Apomixis, asexual reproduction through seeds, occurs in over 40 plant families. This widespread phenomenon can lead to the fixation of successful genotypes, resulting in a fitness advantage. On the other hand, apomicts are expected to lose their fitness advantage if the environment changes because of their limited evolutionary potential, which is due to low genetic variability and the potential accumulation of deleterious somatic mutations. Nonetheless, some apomicts have been extremely succe...

  11. Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Link. (United States)

    Vielle-Calzada, J P; Nuccio, M L; Budiman, M A; Thomas, T L; Burson, B L; Hussey, M A; Wing, R A


    Limited emphasis has been given to the molecular study of apomixis, an asexual method of reproduction where seeds are produced without fertilization. Most buffelgrass (Pennisetum ciliare (L.) Link syn = Cenchrus ciliaris L.) genotypes reproduce by obligate apomixis (apospory); however, rare sexual plants have been recovered. A modified differential display procedure was used to compare gene expression in unpollinated ovaries containing ovules with either sexual or apomictic female gametophytes. The modification incorporated end-labeled poly(A)+ anchored primers as the only isotopic source, and was a reliable and consistent approach for detecting differentially displayed transcripts. Using 20 different decamers and two anchor primers, 2268 cDNA fragments between 200 and 600 bp were displayed. From these, eight reproducible differentially displayed cDNAs were identified and cloned. Based on northern analysis, one cDNA was detected in only the sexual ovaries, two cDNAs in only apomictic ovaries and one cDNA was present in both types of ovaries. Three fragments could not be detected and one fragment was detected in ovaries, stems, and leaves. Comparison of gene expression during sexual and apomictic development in buffelgrass represents a new model system and a strategy for investigating female reproductive development in the angiosperms.

  12. Can the reproductive system of a rare and narrowly endemic plant species explain its high genetic diversity?

    Directory of Open Access Journals (Sweden)

    Daniele M. Rodrigues


    Full Text Available ABSTRACT The reproductive system of flowering plants can be highly variable, affecting their biology, gene flow and genetic variability among populations. Petunia secreta is a rare annual endemic species of Pedra do Segredo, located in the municipality of Caçapava do Sul, state of Rio Grande do Sul, Brazil. Although rare, the species possesses a high level of genetic variability. We investigated the reproductive system of P. secreta, including fruit production and seed germinability, in order to determine if its reproductive system can explain its genetic diversity. We sampled five populations and conducted five greenhouse hand-pollination treatments: 1 autonomous apomixis; 2 self-pollination; 3 hand self-pollination; 4 geitonogamy; and 5 cross-pollination. We analysed a total of 40 plants, 468 flowers, and 6,500 seeds. Only autonomous apomixis and self-pollination did not produce fruit. No differences in fruit weight were observed among pollination treatments (P > 0.05. Seeds of two colours were produced, with no differences in germinability. Considering all plants, populations, and treatments, the average germinability was 73 % (range 9 % to 100 %. These results, along with other previous studies, indicate that the reproductive systems of P. secreta, and its large effective population size, can explain its high genetic diversity.

  13. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition

    Directory of Open Access Journals (Sweden)

    Jubin N Shah


    Full Text Available Molecular dissection of apomixis - an asexual reproductive mode - is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis and parthenogenesis. Whereas previous studies reported local transcriptome changes during these events, it remained unclear whether global changes associated with hybridization, polyploidy and environmental adaptation that arose during evolution of Boechera might hint as (epigenetic regulators of early development prior apomictic initiation. To identify these signatures during vegetative stages, we compared seedling RNA-seq transcriptomes of an obligate triploid apomict and a diploid sexual, both isolated from a drought-prone habitat. Uncovered were several genes differentially expressed between sexual and apomictic seedlings, including homologues of meiotic genes ASYNAPTIC 1 (ASY1 and MULTIPOLAR SPINDLE 1 (MPS1 that were down-regulated in apomicts. An intriguing class of apomict-specific deregulated genes included several NAC transcription factors, homologues of which are known to be transcriptionally reprogrammed during abiotic stress in other plants. Deregulation of both meiotic and stress-response genes during seedling stages might possibly be important in preparation for meiotic circumvention, as similar transcriptional alteration was discernible in apomeiotic floral buds too. Furthermore, we noted that the apomict showed better tolerance to osmotic stress in vitro than the sexual, in conjunction with significant upregulation of a subset of NAC genes. In support of the current model that DNA methylation epigenetically regulates stress, ploidy, hybridization and apomixis, we noted that ASY1, MPS1 and NAC019 homologues were deregulated in Boechera seedlings upon DNA demethylation, and ASY1 in particular seems to be repressed by

  14. Molecular Evidence for Natural Hybridization between Cotoneaster dielsianus and C. glaucophyllus

    Directory of Open Access Journals (Sweden)

    Mingwan Li


    Full Text Available Hybridization accompanied by polyploidization and apomixis has been demonstrated as a driving force in the evolution and speciation of many plants. A good example to study the evolutionary process of hybridization associated with polyploidy and apomixis is the genus Cotoneaster (Rosaceae, which includes approximately 150 species, most of which are polyploid apomicts. In this study, we investigated all Cotoneaster taxa distributed in a small region of Malipo, Yunnan, China. Based on the morphological characteristics, four Cotoneaster taxa were identified and sampled: C. dielsianus, C. glaucophyllus, C. franchetii, and a putative hybrid. Flow cytometry analyses showed that C. glaucophyllus was diploid, while the other three taxa were tetraploid. A total of five low-copy nuclear genes and six chloroplast regions were sequenced to validate the status of the putative hybrid. Sequence analyses showed that C. dielsianus and C. glaucophyllus are distantly related and they could be well separated using totally 50 fixed nucleotide substitutions and four fixed indels at the 11 investigated genes. All individuals of the putative hybrid harbored identical sequences: they showed chromatogram additivity for all fixed differences between C. dielsianus and C. glaucophyllus at the five nuclear genes, and were identical with C. glaucophyllus at the six chloroplast regions. Haplotype analysis revealed that C. dielsianus possessed nine haplotypes for the 11 genes, while C. glaucophyllus had ten, and there were no shared haplotypes between the two species. The putative hybrid harbored two haplotypes for each nuclear gene: one shared with C. dielsianus and the other with C. glaucophyllus. They possessed the same chloroplast haplotype with C. glaucophyllus. Our study provided convincing evidence for natural hybridization between C. dielsianus and C. glaucophyllus, and revealed that all hybrid individuals were derivatives of one initial F1 via apomixes. C. glaucophyllus

  15. Short Communication: An apospory-specific genomic region is conserved between Buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. (United States)

    Roche; Cong; Chen; Hanna; Gustine; Sherwood; Ozias-Akins


    Twelve molecular markers linked to pseudogamous apospory, a form of gametophytic apomixis, were previously isolated from Pennisetum squamulatum Fresen. No recombination between these markers was found in a segregating population of 397 individuals (Ozias-Akins et al. 1998, Proc. Natl Acad. Sci. USA, 95, 5127-5132). The objective of the present study was to test if these markers were also linked to the aposporous mode of reproduction in two small segregating populations of Cenchrus ciliaris (= Pennisetum ciliare (L.)Link), another apomictic grass species. Among 12 markers (sequence characterized amplified regions, SCARs), six were scored as dominant markers between aposporous and sexual C. ciliaris genotypes (presence/absence, respectively). Five were always linked to apospory and one showed a low level of recombination in 84 progenies. Restriction fragment length polymorphisms (RFLPs) were observed between sexual and apomictic phenotypes for three of the six remaining SCARs from P. squamulatum when used as probes. No recombination was observed in the F1 progenies. Preliminary data from megabase DNA analysis and sequencing in both species indicate that an apospory-specific genomic region (ASGR) is highly conserved between the two species. Although C. ciliaris has a smaller genome size to P. squamulatum, a higher copy number for markers linked to apospory found in the former may impair the progress of positional cloning of gene(s) for apomixis in this species.

  16. Use of ionizing radiation in grass breeding. II

    International Nuclear Information System (INIS)

    Svetlik, V.; Indruch, I.; Fojtik, A.; Bajer, K.


    Ionizing radiation induced sexuality in this apomictic grass. Sexual strains were isolated and selected individuals were crossed. Polycross and recurrent single cross methods allowed restoring apomixis. The resulting apomictic strains showed excellent traits and transgressed hereditary potentials of parental components. The method is described of breeding and the productivity of individual breeding techniques is discussed. It is shown that the number of strains should be reduced and the most productive strains should be used for the formation of synthetic cultivars. (author)

  17. Wild cassava, Manihot spp.: Biology and potentialities for genetic improvement

    Directory of Open Access Journals (Sweden)

    Nassar Nagib M.A.


    Full Text Available Wild species of Manihot are progenitors of cassava. They constitute valuable genetic reservoirs presenting genes that show new characters. Screening of these species showed some of them to have a notably high percentage of protein combined with a low percentage of hydrocyanic acid. Study of natural habitats revealed resistance to drought and excessive soil aluminum toxicity as well as adaptation to low temperature. Some of the hybrids obtained showed high root productivity and resistance to stem borers. Apomixis was discovered in the wild and transferred successfully to the cultivate species.

  18. Biología reproductiva de Convolvulus chilensis (Convolvulaceae en una población de Aucó (centro-norte de Chile Reproductive biology of Convolvulus chilensis (Convolvulaceae in a population of Aucó (north-central Chile

    Directory of Open Access Journals (Sweden)

    Lorena H. Suárez


    Full Text Available Convolvulus chilensis es una hierba perenne, única representante endémica de la familia Convolvulaceae en Chile. Se estudió el sistema de reproducción, fenología, morfología y longevidad floral de C. chilensis en una población natural ubicada en la localidad de Aucó, dentro de la Reserva Nacional Las Chinchillas, IV Región, Chile. Se montó un experimento de polinización controlada considerando los tratamientos de polinización natural, polinización cruzada, autopolinización manual, autopolinización automática y apomixis, evaluándose su efecto sobre la formación de frutos y el número de semillas producidas por fruto. Adicionalmente, se compararon los siguientes atributos de la progenie según tipo de polinización (autopolinización o polinización cruzada: peso de semilla, germinación, altura y número de hojas de plántulas de ocho semanas en condiciones de invernadero. Se encontró que C. chilensis es una especie autocompatible, parcialmente autógama (capaz de autopolinizarse sin mediador y parcialmente apomíctica (capaz de producir semillas sin participación de gameto masculino. La longevidad floral fue estimada en 5,25 h. Durante este período, aproximadamente en 1,5 h hay disponibilidad de polen en los estambres. El período de floración se extiende por 22 semanas (agosto a enero. El tratamiento de apomixis presentó el menor porcentaje de formación de frutos y la menor cantidad de semillas por flor en comparación a los tratamientos de polinización natural, cruzada manual, autopolinización automática y autopolinización manual, los cuales no mostraron diferencias entre sí en ambos atributos. El tipo de polinización (autopolinización o polinización cruzada no afecta el desempeño de la progenie en los atributos de semilla y plántula evaluadosThe perennial herb Convolvulus chilensis is the only endemic species of the Convolvulaceae in Chile. The breeding system, phenology, morphology and floral longevity of C

  19. Development of microsatellite markers in Cordia bifurcata (Boraginaceae) and cross-species amplification in Cordia inermis and Cordia pringlei. (United States)

    Spoon, Tracey R; Kesseli, Rick V


    We developed 16 microsatellite markers in Cordia bifurcata, a Central and South American shrub. The markers show low polymorphism in C. bifurcata, a species suspected of self-fertilization or apomixis. Of four polymorphic loci, three had only two alleles. However, current research indicates that these markers hold value for interpopulational comparisons of C. bifurcata and for analyses of congeners. In Cordia inermis, a dioecious or subdioecious shrub, seven of the markers produced interpretable amplification products of which five showed polymorphism. In Cordia pringlei, a distylous shrub, nine of the markers produced interpretable amplification products of which six showed polymorphism. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  20. Intraspecific ecological niche divergence and reproductive shifts foster cytotype displacement and provide ecological opportunity to polyploids. (United States)

    Karunarathne, Piyal; Schedler, Mara; Martínez, Eric J; Honfi, Ana I; Novichkova, Anastasiia; Hojsgaard, Diego


    Niche divergence between polyploids and their lower ploidy progenitors is one of the primary mechanisms fostering polyploid establishment and adaptive divergence. However, within-species chromosomal and reproductive variability have usually been neglected in community ecology and biodiversity analyses even though they have been recognized to play a role in the adaptive diversification of lineages. We used Paspalum intermedium, a grass species with diverging genetic systems (diploidy vs. autopolyploidy, allogamy vs. autogamy and sexuality vs. apomixis), to recognize the causality of biogeographic patterns, adaptation and ecological flexibility of cytotypes. Chromosome counts and flow cytometry were used to characterize within-species genetic systems diversity. Environmental niche modelling was used to evaluate intraspecific ecological attributes associated with environmental and climatic factors and to assess correlations among ploidy, reproductive modes and ecological conditions ruling species' population dynamics, range expansion, adaptation and evolutionary history. Two dominant cytotypes non-randomly distributed along local and regional geographical scales displayed niche differentiation, a directional shift in niche optima and signs of disruptive selection on ploidy-related ecological aptitudes for the exploitation of environmental resources. Ecologically specialized allogamous sexual diploids were found in northern areas associated with higher temperature, humidity and productivity, while generalist autogamous apomictic tetraploids occurred in southern areas, occupying colder and less productive environments. Four localities with a documented shift in ploidy and four mixed populations in a zone of ecological transition revealed an uneven replacement between cytotypes. Polyploidy and contrasting reproductive traits between cytotypes have promoted shifts in niche optima, and increased ecological tolerance and niche divergence. Ecologically specialized diploids

  1. Complex Interspecific Hybridization in Barley (Hordeum vulgare L.) and the Possible Occurrence of Apomixis

    DEFF Research Database (Denmark)

    Bothmer, R. von; Bengtsson, M.; Flink, J.


    Several complex hybrids were produced from the combination [(Hordeum lechleri, 6 .times. .times. H. procerum, 6 .times.) .times. H. vulgare, 2 .times.]. Crosses with six diploid barley lines resulted in triple hybrids, most of which had a full complement of barley chromosomes (no. 1-7), but were...

  2. Evidence of Allopolyploidy in Urochloa humidicola Based on Cytological Analysis and Genetic Linkage Mapping.

    Directory of Open Access Journals (Sweden)

    Bianca B Z Vigna

    Full Text Available The African species Urochloa humidicola (Rendle Morrone & Zuloaga (syn. Brachiaria humidicola (Rendle Schweick. is an important perennial forage grass found throughout the tropics. This species is polyploid, ranging from tetra to nonaploid, and apomictic, which makes genetic studies challenging; therefore, the number of currently available genetic resources is limited. The genomic architecture and evolution of U. humidicola and the molecular markers linked to apomixis were investigated in a full-sib F1 population obtained by crossing the sexual accession H031 and the apomictic cultivar U. humidicola cv. BRS Tupi, both of which are hexaploid. A simple sequence repeat (SSR-based linkage map was constructed for the species from 102 polymorphic and specific SSR markers based on simplex and double-simplex markers. The map consisted of 49 linkage groups (LGs and had a total length of 1702.82 cM, with 89 microsatellite loci and an average map density of 10.6 cM. Eight homology groups (HGs were formed, comprising 22 LGs, and the other LGs remained ungrouped. The locus that controls apospory (apo-locus was mapped in LG02 and was located 19.4 cM from the locus Bh027.c.D2. In the cytological analyses of some hybrids, bi- to hexavalents at diakinesis were observed, as well as two nucleoli in some meiocytes, smaller chromosomes with preferential allocation within the first metaphase plate and asynchronous chromosome migration to the poles during anaphase. The linkage map and the meiocyte analyses confirm previous reports of hybridization and suggest an allopolyploid origin of the hexaploid U. humidicola. This is the first linkage map of an Urochloa species, and it will be useful for future quantitative trait locus (QTL analysis after saturation of the map and for genome assembly and evolutionary studies in Urochloa spp. Moreover, the results of the apomixis mapping are consistent with previous reports and confirm the need for additional studies to search for

  3. Chromosome engineering: power tools for plant genetics. (United States)

    Chan, Simon W L


    The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Breeding systems in some representatives of the genus Lycium (Solanaceae

    Directory of Open Access Journals (Sweden)

    L. Minne


    Full Text Available The development of the ovule and the embryo sac of five of the 17 species of Lycium and of one hybrid, recorded for southern Africa, was investigated. All specimens of four of the species and the hybrid (between a hermaphroditic and a functionally dioecious species were found to be functionally dioecious: they express only one sex, although both male and female organs are present in the same tlower. One species was hermaphroditic. The embryo sacs of all species, and of the hybrid, were of the normal eight-nucleate Polygonum type. The structure of the ovary and the development of the embryo sac are similar to those of L europaeum L. The absence of unreduced embryo sacs indicates that apomixis does not occur at any ploidy level in the species studied.

  5. Apomictic frequency in sorghum R473

    International Nuclear Information System (INIS)

    Reddy, C.S.; Schertz, K.F.; Bashaw, E.C.


    Apomixis has been reported in a few lines of sorghum, among them R473 which was originally reported to be an obligate apomict. Although this line has multiple embryo sacs, the frequency of apomictic seed formation has not been determined because a progeny test has not been possible. R473 does not cross as a female with other lines except when its own pollen is present. In the present study mutations were induced in R473 by hydrazine and irradiation. Crosses were made between male-sterile mutants as females and normal R473 as males. Plants of R473 produced F 1 hybrids sexually, thus indicating that they were not obligate apomicts. These F 1 's also reproduced sexually, as indicated by segregation for male sterility and male fertility in F 2 progenies. (orig.)

  6. Apomixis and the problem of obtaining haploids and homozygote diploids in pear (Pyrus communis L.

    Directory of Open Access Journals (Sweden)

    Є. О. Долматов


    Full Text Available The article highlights results of research over simulative apomixes in pear and its utilization for obtaining haploids and homozygote diploids. It has been established that over 50% pear varieties with failed remote hybridization are capable of generating seeds of apomictic origin producing diploid plants. Genotypes displaying maximal inclination to apomixes have been singled out. Apomictic pear seedlings obtained from foreign pollination within the limits of the same combination are inherent in profound morphological diversity. Fruit-bearing apomicts originated from one and the same maternal plant differ to the same extent as hybrid seedlings of the same family. Genetic markers have enabled to establish that these are embryo sacs in which meiosis has completed that give rise to apomictic seeds. In vitro method as used for the purpose of increasing apomictic plants output has been illustrated. The greatest induction of apomictic shoots in vitro has been reached by alternation of BAP cytokinin at concentration of 1mg/l and 2 mg/l on the background of GA3 amounting to 1,5 mg/l. Grafting with shoots in vitro on non-sterile rootstocks of pear (Pyrus communis has increased the output of plants up to 80%. A cytological assessment of 9 apomictic samples is provided. The cytological analysis of samples of apomictic forms has certified the presence of simulative haploid parthenogenesis in pear.

  7. Analysis of conserved microRNAs in floral tissues of sexual and apomictic Boechera species

    Directory of Open Access Journals (Sweden)

    Vogel Heiko


    Full Text Available Abstract Background Apomixis or asexual seed formation represents a potentially important agronomic trait whose introduction into crop plants could be an effective way to fix and perpetuate a desirable genotype through successive seed generations. However, the gene regulatory pathways underlying apomixis remain unknown. In particular, the potential function of microRNAs, which are known to play crucial roles in many aspects of plant growth and development, remains to be determined with regards to the switch from sexual to apomictic reproduction. Results Using bioinformatics and microarray validation procedures, 51 miRNA families conserved among angiosperms were identified in Boechera. Microarray assay confirmed 15 of the miRNA families that were identified by bioinformatics techniques. 30 cDNA sequences representing 26 miRNAs could fold back into stable pre-miRNAs. 19 of these pre-miRNAs had miRNAs with Boechera-specific nucleotide substitutions (NSs. Analysis of the Gibbs free energy (ΔG of these pre-miRNA stem-loops with NSs showed that the Boechera-specific miRNA NSs significantly (p ≤ 0.05 enhance the stability of stem-loops. Furthermore, six transcription factors, the Squamosa promoter binding protein like SPL6, SPL11 and SPL15, Myb domain protein 120 (MYB120, RELATED TO AP2.7 DNA binding (RAP2.7, TOE1 RAP2.7 and TCP family transcription factor 10 (TCP10 were found to be expressed in sexual or apomictic ovules. However, only SPL11 showed differential expression with significant (p ≤ 0.05 up-regulation at the megaspore mother cell (MMC stage of ovule development in apomictic genotypes. Conclusions This study constitutes the first extensive insight into the conservation and expression of microRNAs in Boechera sexual and apomictic species. The miR156/157 target squamosa promoter binding protein-like 11 (SPL11 was found differentially expressed with significant (p ≤ 0.05 up-regulation at the MMC stage of ovule development in apomictic

  8. Induced mutations in apomictic variety of maize-tripsacum hybrid

    International Nuclear Information System (INIS)

    Yudin, B.F.; Lukina, L.A.


    Three generations of six mutants obtained by γ- and x-irradiation of seeds of highly apomictic variety of 38 chromosome maize-tripsacum hybrid have been studied. Radiomutants detected in M 2 preserved the mother type and constance in M 3 and M 4 . One of the mutants, as an exception, manifested somatic splitting, which resulted in the appearance of a new apomictic clone. Irradiation and mutation in some cases were accompanied by the appearance of seedlings with high chromosome numbers in mutant posterity, including apomicts with doubled number of chromosomes, as well as the increase of total part of sexual reproduction; the latter circumstance is considered as a result of modificator balance change caused by treatments. Doubling of chromosome number in 38-chromosome apomicts, according to preliminary data, does not affect significantly the way of reproduction; 76-chromosome forms preserve a high degree of a regular apomixis

  9. [Mobile genetic elements in plant sex evolution]. (United States)

    Gerashchenkov, G A; Rozhnova, N A


    The most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated. It is shown that MGEs could act as important molecular drivers of sex evolution in plants. The involvement of MGEs in the formation of sex chromosomes and possible participation in seeds-without-sex reproduction (apomixis) is discussed. Thus, the hypothesis on the active MGE participation in sex evolution is in good agreement with the modern views on pathways and directions of sex evolution in plants.

  10. Explosive pollination mechanism in Periandra mediterranea (Vell. Taub. (Fabaceae in the Guaribas Biological Reserve, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Andressa Cavalcante Meireles


    Full Text Available Periandra mediterranea (Vell. Taub. has papilionaceous flowers with a complex pollination mechanism. This study examined pollination and reproduction in P. mediterranea from November 2009 to October 2011 at the Guaribas Biological Reserve, Paraíba, Brazil. The petals are modified in a keel that protects the stamens and stigma; two wings surround the keel, and a standard that serves as landing platform for floral visitors. Periandra mediterranea exhibits an explosive type pollination mechanism in which the bee species Xylocopa frontalis, Acanthopus excellens and Epicharis sp., land on the standard and, due to body weight, expose the reproductive organs in the wing-keel complex. As a result, the reproductive organs of the flower come into contact with the dorsal region of the bee body, depositing pollen (i.e., nototríbic pollination. Reproductive assays showed 20% fruiting in spontaneous auto-pollination, 33% in manual auto-pollination, 33% in manual cross-pollination, and 100% in the control group, with no reproductive success while in apomixis. These results demonstrate self-compatibility in this species, however it depends on pollinators to ensure reproductive success.

  11. Microsporogenesis, reproductive behavior, and fertility in five Pennisetum species

    Energy Technology Data Exchange (ETDEWEB)

    Dujardin, M.; Hanna, W.


    Microsporogenesis, reproductive behavior, pollen fertility and seed set were studied in Pennisetum basedowii Summerhayes and C. E. Hubbard, 2n=54; P. macrostachyum (Brough.) Trin., 2n=54; P. macrourum Trin., 2n=36; P. polystachion (L.) Schult, 2n=54; and P. squamulatum Fresen 2n=54. Meiosis was regular in P. basedowii with primarily bivalent pairing. As many as 54 univalents were observed at metaphase I in P. macrostachyum. A high frequency of univalents at metaphase I in P. macrourum resulted in lagging chromosomes and micronuclei at anaphase I and telophase I, respectively. Pennisetum polystachion and P. squamulatum showed frequent multivalent chromosome associations. Studies of megasporogenesis and embryo sac development in P. basedowii showed sexual reproduction. Pennisetum macrostachyum was highly male sterile with predominantly aposporous apomictic embryo sac development. Pennisetum macrourum, P. polystachion, and P. squamulatum had only aposporous embryo sac development. Pennisetum macrourum, P. polystachion, and P. squamulatum had only aposporous embryo sac development. Seed propagated progenies of these latter three species were uniform and matromorphic, confirming the obligate apomixis nature.

  12. Sexy males and sexless females: the origin of triploid apomicts. (United States)

    Muralidhar, P; Haig, D


    Apomixis and polyploidy are closely associated in angiosperms, but the evolutionary reason for this association is unknown. Taraxacum officinale, the common dandelion, exists both as diploid sexuals and triploid apomicts. Here, in the context of T. officinale, we provide a model of the evolution of triploid apomicts from diploid sexuals. We posit an apomictic allele that arrests female meiosis in diploids, so that the plant produces diploid egg cells that can develop without fertilization, but haploid pollen. We propose occasional fertilization of diploid egg cells by haploid pollen, resulting in triploid apomicts that produce triploid egg cells but largely nonfunctional pollen. The irreversibility of this process renders diploid partial apomicts evolutionarily short-lived, and results in fixation of triploid apomicts except when they suffer extreme selective disadvantages. Our model can account for the high genetic diversity found in T. officinale triploid populations, because recombinant haploid pollen produced by diploids allows the apomictic allele to spread onto many genetic backgrounds. This leads to multiple clonal lineages in the newly apomictic population, and thereby alleviates some of the usual pitfalls of asexual reproduction.

  13. Biologia floral e polinização artificial de pinhão-manso no norte de Minas Gerais Floral biology and artificial polinization in physic nut in the north of Minas Gerais state, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Cristina Pinto Juhász


    Full Text Available O objetivo deste trabalho foi avaliar alguns aspectos da biologia floral e do sistema reprodutivo de Jatropha curcas, em Janaúba, MG. Foram registrados: o número de flores femininas e masculinas; o intervalo de abertura das flores femininas; e a formação de frutos por apomixia, autofecundação, geitonogamia e xenogamia. A proporção de flores masculinas para femininas foi de 20:1. O intervalo de abertura das flores femininas variou de um a sete dias, conforme o número delas na inflorescência. No teste de apomixia, houve formação de frutos em apenas 5% das flores avaliadas. A percentagem de frutificação variou de 79 a 88% na autofecundação manual, na geitonogamia e na xenogamia. Na autofecundação sem a polinização manual a frutificação foi de 20%, e os frutos formados foram significativamente menores, com número inferior de sementes por fruto e menor índice de velocidade de emergência. As sementes foram semelhantes às formadas por polinização natural. é possível a realização de cruzamentos controlados em pinhão-manso, e não há autoincompatibilidade nesta espécie.The aim of this work was to evaluate some aspects of the floral biology and of the reproductive system of Jatropha curcas, in Janaúba county, MG, Brazil. The number of female and male flowers, the interval between the opening of female flowers, and the formation of fruits by apomixis, self-pollination, geitonogamy and by xenogamy were registered. The ratio of male to female flowers was 20:1. The interval of opening of female flowers was of one to seven days, depending on the number of female flowers in the inflorescence. On the apomixy test, the formation of fruits occurred in only 5% of the evaluated flowers. The fruit set was between 79 and 88% through the manual self-pollination, and through the geitonogamy, and the xenogamy. In the self-pollination treatment, without the hand-pollination, the fruit set was of 20%, and the fruits formed were

  14. Explosive pollination mechanism in Periandra mediterranea (Vell. Taub. (Fabaceae in the Guaribas Biological Reserve, Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Andressa Cavalcante Meireles


    Full Text Available Periandra mediterranea (Vell. Taub. has papilionaceous flowers with a complex pollination mechanism. This study examined pollination and reproduction in P. mediterranea from November 2009 to October 2011 at the Guaribas Biological Reserve, Paraíba, Brazil. The petals are modified in a keel that protects the stamens and stigma; two wings surround the keel, and a standard that serves as landing platform for floral visitors. Periandra mediterranea exhibits an explosive type pollination mechanism in which the bee species Xylocopa frontalis, Acanthopus excellens and Epicharis sp., land on the standard and, due to body weight, expose the reproductive organs in the wing-keel complex. As a result, the reproductive organs of the flower come into contact with the dorsal region of the bee body, depositing pollen (i.e., nototríbic pollination. Reproductive assays showed 20% fruiting in spontaneous auto-pollination, 33% in manual auto-pollination, 33% in manual cross-pollination, and 100% in the control group, with no reproductive success while in apomixis. These results demonstrate self-compatibility in this species, however it depends on pollinators to ensure reproductive success.

  15. Genetic diversity and population structure analysis of the tropical pasture grass Brachiaria humidicola based on microsatellites, cytogenetics, morphological traits, and geographical origin. (United States)

    Jungmann, L; Vigna, B B Z; Boldrini, K R; Sousa, A C B; do Valle, C B; Resende, R M S; Pagliarini, M S; Zucchi, M I; de Souza, A P


    Brachiaria humidicola (Rendle) Schweick. is a warm-season grass commonly used as forage in the tropics. Accessions of this species were collected in eastern Africa and massively introduced into South America in the 1980s. Several of these accessions form a germplasm collection at the Brazilian Agricultural Research Corporation. However, apomixis, ploidy, and limited knowledge of the genetic basis of this germplasm collection have constrained breeding activities. The objectives of this work were to identify genetic variability in the Brazilian B. humidicola germplasm collection using microsatellite markers and to compare the results with information on the following: (1) collection sites of the accessions; (2) reproductive mode and ploidy levels; and (3) genetic diversity revealed by morphological traits. The evaluated germplasm population is highly structured into four major groups. The sole sexual accession did not group with any of the clusters. Genetic dissimilarities did not correlate with either geographic distances or genetic distances inferred from morphological descriptors. Additionally, the genetic structure identified in this collection did not correspond to differences in ploidy level. Alleles exclusive to either sexual or apomictic accessions were identified, suggesting that further evaluation of the association of these loci with apospory should be carried out.

  16. The Full Breadth of Mendel's Genetics. (United States)

    van Dijk, Peter J; Ellis, T H Noel


    Gregor Mendel's "Experiments on Plant Hybrids" (1865/1866), published 150 years ago, is without doubt one of the most brilliant works in biology. Curiously, Mendel's later studies on Hieracium (hawkweed) are usually seen as a frustrating failure, because it is assumed that they were intended to confirm the segregation ratios he found in Pisum Had this been his intention, such a confirmation would have failed, since, unknown to Mendel, Hieracium species mostly reproduce by means of clonal seeds (apomixis). Here we show that this assumption arises from a misunderstanding that could be explained by a missing page in Mendel's first letter to Carl Nägeli. Mendel's writings clearly indicate his interest in "constant hybrids," hybrids which do not segregate, and which were "essentially different" from "variable hybrids" such as in Pisum After the Pisum studies, Mendel worked mainly on Hieracium for 7 years where he found constant hybrids and some great surprises. He also continued to explore variable hybrids; both variable and constant hybrids were of interest to Mendel with respect to inheritance and to species evolution. Mendel considered that their similarities and differences might provide deep insights and that their differing behaviors were "individual manifestations of a higher more fundamental law." Copyright © 2016 van Dijk and Ellis.

  17. Cytological and reproductive aspects in the Caespitosa group of Paspalum

    Directory of Open Access Journals (Sweden)

    Marisa Toniolo Pozzobon


    Full Text Available Somatic chromosome numbers are reported for thirty four germplasm accessions of Paspalum, Caespitosa group, representing five different species. All five species have shown x=10 as the basic chromosome number. The diploid 2n=20 chromosome number was confirmed for P. chacoense and P. indecorum, as well as sexuality for the latter. This is the first report of the chromosome number and cytological behavior for P. ligulare (2n=20 and 40, P. pleostachyum (2n=20, 30 and 40 and P. redondense (2n=20 and 40. The present results document regular meiosis in diploid accessions, with primarily bivalent pairing at diakinesis and metaphase I. Polyploids of these species had irregular meiosis, with univalent, trivalent, and quadrivalent chromosome associations. Diploid accessions of P. pleostachyum and P. ligulare have shown a single meiotic embryo-sac, indicating sexual reproduction, while the triploid and one of the tetraploid accessions of P. pleostachyum have shown aposporic embryo-sacs of nucelar origin, and a few meiotic sacs, suggesting facultative apomixis. Identification of the new diploid accessions may prove useful for phylogenetic studies of Paspalum, as well as for breeding programs focusing on the forage potential of species of the Caespitosa group.

  18. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. (United States)

    Zhang, Shu-Dong; Jin, Jian-Jun; Chen, Si-Yun; Chase, Mark W; Soltis, Douglas E; Li, Hong-Tao; Yang, Jun-Bo; Li, De-Zhu; Yi, Ting-Shuang


    Phylogenetic relationships in Rosaceae have long been problematic because of frequent hybridisation, apomixis and presumed rapid radiation, and their historical diversification has not been clarified. With 87 genera representing all subfamilies and tribes of Rosaceae and six of the other eight families of Rosales (outgroups), we analysed 130 newly sequenced plastomes together with 12 from GenBank in an attempt to reconstruct deep relationships and reveal temporal diversification of this family. Our results highlight the importance of improving sequence alignment and the use of appropriate substitution models in plastid phylogenomics. Three subfamilies and 16 tribes (as previously delimited) were strongly supported as monophyletic, and their relationships were fully resolved and strongly supported at most nodes. Rosaceae were estimated to have originated during the Late Cretaceous with evidence for rapid diversification events during several geological periods. The major lineages rapidly diversified in warm and wet habits during the Late Cretaceous, and the rapid diversification of genera from the early Oligocene onwards occurred in colder and drier environments. Plastid phylogenomics offers new and important insights into deep phylogenetic relationships and the diversification history of Rosaceae. The robust phylogenetic backbone and time estimates we provide establish a framework for future comparative studies on rosaceous evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. (United States)

    Nakano, Michiharu; Shimada, Takehiko; Endo, Tomoko; Fujii, Hiroshi; Nesumi, Hirohisa; Kita, Masayuki; Ebina, Masumi; Shimizu, Tokurou; Omura, Mitsuo


    Polyembryony, in which multiple somatic nucellar cell-derived embryos develop in addition to the zygotic embryo in a seed, is common in the genus Citrus. Previous genetic studies indicated polyembryony is mainly determined by a single locus, but the underlying molecular mechanism is still unclear. As a step towards identification and characterization of the gene or genes responsible for nucellar embryogenesis in Citrus, haplotype-specific physical maps around the polyembryony locus were constructed. By sequencing three BAC clones aligned on the polyembryony haplotype, a single contiguous draft sequence consisting of 380 kb containing 70 predicted open reading frames (ORFs) was reconstructed. Single nucleotide polymorphism genotypes detected in the sequenced genomic region showed strong association with embryo type in Citrus, indicating a common polyembryony locus is shared among widely diverse Citrus cultivars and species. The arrangement of the predicted ORFs in the characterized genomic region showed high collinearity to the genomic sequence of chromosome 4 of Vitis vinifera and linkage group VI of Populus trichocarpa, suggesting that the syntenic relationship among these species is conserved even though V. vinifera and P. trichocarpa are non-apomictic species. This is the first study to characterize in detail the genomic structure of an apomixis locus determining adventitious embryony. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Sexual polyploidization in plants--cytological mechanisms and molecular regulation. (United States)

    De Storme, Nico; Geelen, Danny


    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  1. Desynapsis and FDR 2N-megaspore formation in diploid potato : potentials and limitations for breeding and for the induction of diplosporic apomixis

    NARCIS (Netherlands)

    Jongedijk, E.


    The cultivated potato, Solanum tuberosum L., is a highly heterozygous autotetraploid (2n=4x=48) plant species, which after its introduction into Europe in the 16th century has become one of the world's major food crops. The potato has traditionally been grown from

  2. Selection of reference genes for quantitative real-time PCR expression studies of microdissected reproductive tissues in apomictic and sexual Boechera

    Directory of Open Access Journals (Sweden)

    Amiteye Samuel


    Full Text Available Abstract Background Apomixis, a natural form of asexual seed production in plants, is considered to have great biotechnological potential for agriculture. It has been hypothesised that de-regulation of the sexual developmental pathway could trigger apomictic reproduction. The genus Boechera represents an interesting model system for understanding apomixis, having both sexual and apomictic genotypes at the diploid level. Quantitative qRT-PCR is the most extensively used method for validating genome-wide gene expression analyses, but in order to obtain reliable results, suitable reference genes are necessary. In this work we have evaluated six potential reference genes isolated from a 454 (FLX derived cDNA library of Boechera. RNA from live microdissected ovules and anthers at different developmental stages, as well as vegetative tissues of apomictic and sexual Boechera, were used to validate the candidates. Results Based on homologies with Arabidopsis, six genes were selected from a 454 cDNA library of Boechera: RPS18 (Ribosomal sub protein 18, Efalpha1 (Elongation factor 1 alpha, ACT 2 (Actin2, UBQ (polyubiquitin, PEX4 (Peroxisomal ubiquitin conjugating enzyme and At1g09770.1 (Arabidopsis thaliana cell division cycle 5. Total RNA was extracted from 17 different tissues, qRT-PCRs were performed, and raw Ct values were analyzed for primer efficiencies and gene ratios. The geNorm and normFinder applications were used for selecting the most stable genes among all tissues and specific tissue groups (ovule, anthers and vegetative tissues in both apomictic and sexual plants separately. Our results show that BoechRPS18, BoechEfα1, BoechACT2 and BoechUBQ were the most stable genes. Based on geNorm, the combinations of BoechRPS18 and BoechEfα1 or BoechUBQ and BoechEfα1 were the most stable in the apomictic plant, while BoechRPS18 and BoechACT2 or BoechUBQ and BoechACT2 performed best in the sexual plant. When subgroups of tissue samples were analyzed

  3. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. (United States)

    Hojsgaard, Diego H; Martínez, Eric J; Quarin, Camilo L


    Meiotic and apomictic reproductive pathways develop simultaneously in facultative aposporous species, and compete to form a seed as a final goal. This developmental competition was evaluated in tetraploid genotypes of Paspalum malacophyllum in order to understand the low level of sexuality in facultative apomictic populations. Cyto-embryology on ovules, flow cytometry on seeds and progeny tests by DNA fingerprinting were used to measure the relative incidence of each meiotic or apomictic pathway along four different stages of the plant's life cycle, namely the beginning and end of gametogenesis, seed formation and adult offspring. A high variation in the frequencies of sexual and apomictic pathways occurred at the first two stages. A trend of radical decline in realized sexuality was then observed. Sexual and apomictic seeds were produced, but the efficiency of the sexual pathway dropped drastically, and exclusively clonal offspring remained. Both reproductive pathways are unstable at the beginning of development, and only the apomictic one remains functional. Key factors reducing sexuality are the faster growth and parthenogenetic development in the aposporous pathway, and an (epi)genetically negative background related to the extensive gene de-regulation pattern responsible for apomixis. The effects of inbreeding depression during post-fertilization development may further decrease the frequency of effective sexuality. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  4. Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules

    Directory of Open Access Journals (Sweden)

    Elliott Estella


    Full Text Available Abstract Background Genetically unreduced (2n embryo sacs (ES form in ovules of gametophytic apomicts, the 2n eggs of which develop into embryos parthenogenetically. In many apomicts, 2n ES form precociously during ovule development. Whether meiosis and sexual ES formation also occur precociously in facultative apomicts (capable of apomictic and sexual reproduction has not been studied. We determined onset timing of meiosis and sexual ES formation for 569 Sorghum bicolor genotypes, many of which produced 2n ES facultatively. Results Genotype differences for onset timing of meiosis and sexual ES formation, relative to ovule development, were highly significant. A major source of variation in timing of sexual germline development was presence or absence of apomictic ES, which formed from nucellar cells (apospory in some genotypes. Genotypes that produced these aposporous ES underwent meiosis and sexual ES formation precociously. Aposporous ES formation was most prevalent in subsp. verticilliflorum and in breeding lines of subsp. bicolor. It was uncommon in land races. Conclusions The present study adds meiosis and sexual ES formation to floral induction, apomictic ES formation, and parthenogenesis as processes observed to occur precociously in apomictic plants. The temporally diverse nature of these events suggests that an epigenetic memory of the plants' apomixis status exists throughout its life cycle, which triggers, during multiple life cycle phases, temporally distinct processes that accelerate reproduction.

  5. De novo transcriptome sequencing and assembly from apomictic and sexual Eragrostis curvula genotypes.

    Directory of Open Access Journals (Sweden)

    Ingrid Garbus

    Full Text Available A long-standing goal in plant breeding has been the ability to confer apomixis to agriculturally relevant species, which would require a deeper comprehension of the molecular basis of apomictic regulatory mechanisms. Eragrostis curvula (Schrad. Nees is a perennial grass that includes both sexual and apomictic cytotypes. The availability of a reference transcriptome for this species would constitute a very important tool toward the identification of genes controlling key steps of the apomictic pathway. Here, we used Roche/454 sequencing technologies to generate reads from inflorescences of E. curvula apomictic and sexual genotypes that were de novo assembled into a reference transcriptome. Near 90% of the 49568 assembled isotigs showed sequence similarity to sequences deposited in the public databases. A gene ontology analysis categorized 27448 isotigs into at least one of the three main GO categories. We identified 11475 SSRs, and several of them were assayed in E curvula germoplasm using SSR-based primers, providing a valuable set of molecular markers that could allow direct allele selection. The differential contribution to each library of the spliced forms of several transcripts revealed the existence of several isotigs produced via alternative splicing of single genes. The reference transcriptome presented and validated in this work will be useful for the identification of a wide range of gene(s related to agronomic traits of E. curvula, including those controlling key steps of the apomictic pathway in this species, allowing the extrapolation of the findings to other plant species.

  6. Development of innovative techniques and principles that may be used as models to improve plant performance. Technical progress report, February 1, 1990--January 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, W.W.; Burton, G.W.


    Methods and techniques for transferring germplasm from wild to cultivated species are being developed. The transferred germplasm is being shown to be valuable in plant breeding and in cultivar development. In the primary gene pool of the grassy Pennisetum glaucum subspecies monodii germplasm, some cytoplasms are being identified that appear to have significant effects on forage yields and morphological characteristics. One cytoplasm, A{sub 4}, is very stable for male sterility and fertility is not easily restored by other lines. It should be a valuable cytoplasm for producing commercial forage hybrids. Disease resistance and yield genes transferred from monodii to cultivated pearl millet lines are having a major impact on increasing production of animals grazing disease resistant Tifleaf 2 pearl millet. Genes controlling resistance to many of the world-wide diseases on pearl millet are being identified in the monodii germplasm. Valuable germplasm has been transferred from the secondary gene pool P. purpuroum) which is used as the pollinator of the first pearl millet grain hybrid in the US Production of 7-chromosome gametes in 42-chromosome interspecific hybrids appears to be genotype specific and makes possible transfer of germplasm from the secondary gene pool to cultivated diploid pearl millet. Significant progress has been made in transferring genes controlling apomixis from P. squamulatum (tertiary gene pool) to cultivated pearl millet. Highly apomictic BC{sub 4} plants have been recovered, one of which sets five times as much seed as the best BC{sub 3} plant.

  7. Pollination deficit in open-field tomato crops (Solanum lycopersicum L., Solanaceae in Rio de Janeiro state, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    Maria Cristina Gaglianone


    Full Text Available More than 70% of world’s crops benefit from biotic pollination, and bees are their main pollinators. Despite the fact that some of these insects have been broadly studied, understanding the interactions between plant crops and their pollinators with a local scale approach is necessary when aiming to apply proper protective and management measures to pollinators and their respective crops. In this context, we analyzed the pollination status of open-field tomato crops (Solanum lycopersicum L., regarding fruit-set, visitation rate and the quality of fruits. We recorded the formation of fruits through spontaneous self-pollination and open-pollination, and the occurrence of pollinators in 24 areas of open-field tomato crops. We performed experiments of apomixis, spontaneous self-pollination, manual cross pollination and supplemental cross pollination (simulating the pollinator behavior in a greenhouse. The fruit quality was evaluated according to circumference, weight, volume and number of seeds. Higher production of fruits after open-pollination compared to spontaneous self-pollination indicates the importance of pollinators to increment productivity of S. lycopersicum in the study area. The circumference and the number of seeds from tomatoes of the greenhouse plantation did not differ between spontaneous self-pollination and the manual cross pollination. In the open-field crops the number of seeds was higher for fruits resulting from open-pollination. Our results indicate that the importance of bees is mainly related to the increase in fruit production, thus incrementing the productivity of tomato crops.

  8. Pollination deficit in open-field tomato crops (Solanum lycopersicum L., Solanaceae in Rio de Janeiro state, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Scaramussa Deprá


    Full Text Available More than 70% of world’s crops benefit from biotic pollination, and bees are their main pollinators. Despite the fact that some of these insects have been broadly studied, understanding the interactions between plant crops and their pollinators with a local scale approach is necessary when aiming to apply proper protective and management measures to pollinators and their respective crops. In this context, we analyzed the pollination status of open-field tomato crops (Solanum lycopersicum L., regarding fruit-set, visitation rate and the quality of fruits. We recorded the formation of fruits through spontaneous self-pollination and open-pollination, and the occurrence of pollinators in 24 areas of open-field tomato crops. We performed experiments of apomixis, spontaneous self-pollination, manual cross pollination and supplemental cross pollination (simulating the pollinator behavior in a greenhouse. The fruit quality was evaluated according to circumference, weight, volume and number of seeds. Higher production of fruits after open-pollination compared to spontaneous self-pollination indicates the importance of pollinators to increment productivity of S. lycopersicum in the study area. The circumference and the number of seeds from tomatoes of the greenhouse plantation did not differ between spontaneous self-pollination and the manual cross pollination. In the open-field crops the number of seeds was higher for fruits resulting from open-pollination. Our results indicate that the importance of bees is mainly related to the increase in fruit production, thus incrementing the productivity of tomato crops.


    Directory of Open Access Journals (Sweden)

    Luzia Márcia de Araújo


    Full Text Available Los estudios sobre la biología reproductiva de las especies de Dorstenia son escasos. En este artículo analizamos la sexualidad, la biología floral y dispersión de las diásporas de Dorstenia arifolia y D. bonijesu, incluyendo sus sistemas reproductivos y polinizadores, en poblaciones naturales localizadas en el estado de Minas Gerais, sudeste de Brasil. Registramos, por primera vez, la presencia de cenantos unisexuales (masculinos y bisexuales en un mismo individuo de Dorstenia arifolia; en cambio, sólo se observaron cenantos bisexuales en D. bonijesu. En ambas especies los cenantos fueron de larga duración, y los cenantos bisexuales exhibieron protoginia. Registramos autocompatibilidad y miofilia en Dorstenia arifolia, que fue polinizada por pequeñas moscas de la familia Lauxaniidae. Estos insectos no solo usan el polen como alimento sino que utilizan el cenanto como sitio de oviposición, siendo este un hecho registrado por primera vez para para las especies estudiadas. Dorstenia bonijesu, aún sin visitantes florales, también produce semillas mediante apomixis, un nuevo sistema reproductivo para el género. Las dos especies estudiadas son autocóricas; sin embargo, Dorstenia bonijesu exhibió un tipo peculiar de hidrocoria. Las novedades aquí registradas indican la necesidad de estudios adicionales para mejorar la comprensión de los atributos reproductivos de las especies de Dorstenia.

  10. Cryptic sexual populations account for genetic diversity and ecological success in a widely distributed, asexual fungus-growing ant. (United States)

    Rabeling, Christian; Gonzales, Omar; Schultz, Ted R; Bacci, Maurício; Garcia, Marcos V B; Verhaagh, Manfred; Ishak, Heather D; Mueller, Ulrich G


    Sex and recombination are central processes in life generating genetic diversity. Organisms that rely on asexual propagation risk extinction due to the loss of genetic diversity and the inability to adapt to changing environmental conditions. The fungus-growing ant species Mycocepurus smithii was thought to be obligately asexual because only parthenogenetic populations have been collected from widely separated geographic localities. Nonetheless, M. smithii is ecologically successful, with the most extensive distribution and the highest population densities of any fungus-growing ant. Here we report that M. smithii actually consists of a mosaic of asexual and sexual populations that are nonrandomly distributed geographically. The sexual populations cluster along the Rio Amazonas and the Rio Negro and appear to be the source of independently evolved and widely distributed asexual lineages, or clones. Either apomixis or automixis with central fusion and low recombination rates is inferred to be the cytogenetic mechanism underlying parthenogenesis in M. smithii. Males appear to be entirely absent from asexual populations, but their existence in sexual populations is indicated by the presence of sperm in the reproductive tracts of queens. A phylogenetic analysis of the genus suggests that M. smithii is monophyletic, rendering a hybrid origin of asexuality unlikely. Instead, a mitochondrial phylogeny of sexual and asexual populations suggests multiple independent origins of asexual reproduction, and a divergence-dating analysis indicates that M. smithii evolved 0.5-1.65 million years ago. Understanding the evolutionary origin and maintenance of asexual reproduction in this species contributes to a general understanding of the adaptive significance of sex.

  11. Processes affecting altitudinal distribution of invasive Ageratina adenophora in western Himalaya: The role of local adaptation and the importance of different life-cycle stages. (United States)

    Datta, Arunava; Kühn, Ingolf; Ahmad, Mustaqeem; Michalski, Stefan; Auge, Harald


    The spread of invasive plants along elevational gradients is considered a threat to fragile mountain ecosystems, but it can also provide the opportunity to better understand some of the basic processes driving the success of invasive species. Ageratina adenophora (Asteraceae) is an invasive plant of global importance and has a broad distribution along elevational gradients in the Western Himalayas. Our study aimed at understanding the role of evolutionary processes (e.g. local adaptation and clinal differentiation) and different life history stages in shaping the distribution pattern of the invasive plant along an elevational gradient in the Western Himalaya. We carried out extensive distributional surveys, established a reciprocal transplant experiment with common gardens at three elevational levels, and measured a suite of traits related to germination, growth, reproduction and phenology. Our results showed a lack of local adaptation, and we did not find any evidence for clinal differentiation in any measured trait except a rather weak signal for plant height. We found that seed germination was the crucial life-cycle transition in determining the lower range limit while winter mortality of plants shaped the upper range limit in our study area, thus explaining the hump shaped distribution pattern. Differences in trait values between gardens for most traits indicated a high degree of phenotypic plasticity. Possible causes such as apomixis, seed dispersal among sites, and pre-adaptation might have confounded evolutionary processes to act upon. Our results suggest that the success and spread of Ageratina adenophora are dependent on different life history stages at different elevations that are controlled by abiotic conditions.


    Directory of Open Access Journals (Sweden)



    Full Text Available RESUMEN Los patrones se obtienen tradicionalmente en la citricultura a partir de semillas, seleccionándose las plantas de origen apomíctica. Sin embargo, hay riesgo de no realizarse la selección correcta, debido a la baja apomixis y la alta heterocigocidad en algunas especies o cultivares, como el mandarino ‘Sunki’. La obtención de los mismos por estaquillas solucionaría el problema. El objetivo de este trabajo fue evaluar el potencial de enraizamiento de estaquillas del mandarino ‘Sunki’ (Citrus sunki Hort. ex Tan., colectadas de matrices cultivadas en el campo o en ambiente protegido, utilizándose diferentes concentraciones del ácido indolbutírico (AIB. Las estaquillas se colectaron en el final de la primavera y se mantuvieron por 90 días en cámara de nebulización intermitente. Se adoptó el diseño experimental de bloques completos al azar, con cuatro repeticiones, en arreglo factorial 2 x 4, referente a dos condiciones de cultivo (matrices cultivadas en campo y en ambiente protegido y cuatro concentraciones del AIB (0, 750, 1.500 y 3.000 mg L-1. El enraizamiento del mandarino ‘Sunki’ fue elevado, alcanzando el 96% en las dos condiciones. La brotación (54% y la supervivencia (95% de las estacas presentaron valores satisfactorios, independientemente del AIB. El empleo del AIB solamente es necesario en estacas provenientes de plantas mantenidas en el ambiente protegido, puesto que mejora su enraizamiento y el número de raíces.

  13. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid


    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  14. Seeds of doubt: Mendel's choice of Hieracium to study inheritance, a case of right plant, wrong trait. (United States)

    Bicknell, Ross; Catanach, Andrew; Hand, Melanie; Koltunow, Anna


    In this review, we explore Gregor Mendel's hybridization experiments with Hieracium , update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops. From our perspective, it is easy to conclude that Gregor Mendel's work on pea was insightful, but his peers clearly did not regard it as being either very convincing or of much importance. One apparent criticism was that his findings only applied to pea. We know from a letter he wrote to Carl von Nägeli, a leading botanist, that he believed he needed to "verify, with other plants, the results obtained with Pisum". For this purpose, Mendel adopted Hieracium subgenus Pilosella, a phenotypically diverse taxon under botanical study at the time. What Mendel could not have known, however, is that the majority of these plants are not sexual plants like pea, but instead are facultatively apomictic. In these forms, the majority of seed arises asexually, and such progeny are, therefore, clones of the maternal parent. Mendel obtained very few hybrids in his Hieracium crosses, yet we calculate that he probably emasculated in excess of 5000 Hieracium florets to even obtain the numbers he did. Despite that effort, he was perplexed by the results, and they ultimately led him to conclude that "the hybrids of Hieracium show a behaviour exactly opposite to those of Pisum". Apomixis is now a topic of intense research interest, and in an ironic twist of history, Hieracium subgenus Pilosella has been developed as a molecular model to study this trait. In this paper, we explore further Mendel's hybridization experiments with Hieracium, update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops.

  15. New-age ideas about age-old sex: separating meiosis from mating could solve a century-old conundrum. (United States)

    Brandeis, Michael


    Ever since Darwin first addressed it, sexual reproduction reigns as the 'queen' of evolutionary questions. Multiple theories tried to explain how this apparently costly and cumbersome method has become the universal mode of eukaryote reproduction. Most theories stress the adaptive advantages of sex by generating variation, they fail however to explain the ubiquitous persistence of sexual reproduction also where adaptation is not an issue. I argue that the obstacle for comprehending the role of sex stems from the conceptual entanglement of two distinct processes - gamete production by meiosis and gamete fusion by mating (mixis). Meiosis is an ancient, highly rigid and evolutionary conserved process identical and ubiquitous in all eukaryotes. Mating, by contrast, shows tremendous evolutionary variability even in closely related clades and exhibits wonderful ecological adaptability. To appreciate the respective roles of these two processes, which are normally linked and alternating, we require cases where one takes place without the other. Such cases are rather common. The heteromorphic sex chromosomes Y and W, that do not undergo meiotic recombination are an evolutionary test case for demonstrating the role of meiosis. Substantial recent genomic evidence highlights the accelerated rates of change and attrition these chromosomes undergo in comparison to those of recombining autosomes. I thus propose that the most basic role of meiosis is conserving integrity of the genome. A reciprocal case of meiosis without bi-parental mating, is presented by self-fertilization, which is fairly common in flowering plants, as well as most types of apomixis. I argue that deconstructing sex into these two distinct processes - meiosis and mating - will greatly facilitate their analysis and promote our understanding of sexual reproduction. © 2017 Cambridge Philosophical Society.

  16. Overlapping Leaves Covering Flowers in the Alpine Species Eriophyton wallichii (Lamiaceae: Key Driving Factors and Their Potential Impact on Pollination.

    Directory of Open Access Journals (Sweden)

    De-Li Peng

    Full Text Available Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1 water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2 no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants

  17. Detection and analysis of endogenous badnaviruses in the New Zealand flora. (United States)

    Lyttle, David J; Orlovich, David A; Guy, Paul L


    Badnaviruses and their host-integrated DNA occur in tropical crops and a few northern temperate species. Following the discovery of a badnavirus on a subantarctic island with floristic links to New Zealand, we postulated that badnaviruses exist in the New Zealand flora. Badnavirus reverse transcriptase (RT) sequences consist of variable regions flanked by highly conserved regions. This study used RT sequences to detect and characterize badnavirus sequences in the New Zealand flora and to investigate their utility for the study of broader aspects of plant biology. Molecular diversity of RT sequences was analysed using polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). In a study of the genus Melicytus, internal transcribed spacer (ITS) sequences were compared with the RT data. No freely replicating badnaviruses were detected but more than half of the species (37/60) contained RT sequences. Phylogenetic analysis of 21 RT sequences formed monophyletic groups distinct from other species and from badnaviruses. No frameshift mutations occurred in any of the sequences translated in silico. More detailed study of the genus Melicytus indicated broader applications for our approach. Analysis of RT sequences revealed the presence of a previously unrecognized species (confirmed using ITS). Inheritance of DGGE profiles by Melicytus ramiflorus seedlings suggested that this species may undergo apomixis. The presence of integrated badnavirus sequences in a wide range of taxa from this Southern Hemisphere flora indicates that these sequences may be common in many temperate regions. Potential to activate viruses from these sequences should be considered when placing these species in tissue culture or under other forms of abiotic or genomic stress. Analysis of endogenous RT sequences shows potential for the study of systematics, phylogenetics and plant reproductive biology.

  18. Development of SSR Markers in Hickory (Carya cathayensis Sarg.) and Their Transferability to Other Species of Carya. (United States)

    Li, Juan; Zeng, Yanru; Shen, Dengfeng; Xia, Guohua; Huang, Yinzhi; Huang, Youjun; Chang, Jun; Huang, Jianqin; Wang, Zhengjia


    Hickory (Carya cathayensis Sarg.), an important nut-producing species in Southeastern China, has high economic value, but so far there has been no cultivar bred under species although it is mostly propagated by seeding and some elite individuals have been found. It has been found recently that this species has a certain rate of apomixis and poor knowledge of its genetic background has influenced development of a feasible breeding strategy. Here in this paper we first release SSR (Simple sequence repeat) markers developed in this species and their transferability to other three species of the same genus, Carya. A total of 311 pairs of SSR primers in hickory were developed based on sequenced cDNAs of a fruit development-associated cDNA library and RNA-seq data of developing female floral buds and could be used to distinguish hickory, C. hunanensis Cheng et R. H. Chang ex R. H. Chang et Lu, C. illinoensis K. Koch (pecan) and C. dabieshanensis M. C. Liu et Z. J. Li, but they were monomorphic in both hickory and C. hunanensis although multi-alleles have been identified in all the four species. There is a transferability rate of 63.02% observed between hickory and pecan and the markers can be applied to study genetic diversity of accessions in pecan. When used in C. dabieshanensis, it was revealed that C. dabieshanensis had the number of alleles per locus ranging from 2 to 4, observed heterozygosity from 0 to 0.6667 and expected heterozygosity from 0.333 to 0.8667, respectively, which supports the existence of C. dabieshanensis as a separate species different from hickory and indicates that there is potential for selection and breeding in this species.

  19. Cytogenetic analyses in Paspalum L. reveal new diploid species and accessions Análises citogenéticas em Paspalum L. revelam novas espécies e acessos diplóides

    Directory of Open Access Journals (Sweden)

    Marisa Toniolo Pozzobon


    Full Text Available Chromosome numbers were counted in 126 new accessions of 50 Paspalum species from Brazil, Argentina, Paraguay and Bolivia. The chromosome numbers 2n=12, 20, 24, 30, 40, 50, 60, 80 were confirmed. Chromosome numbers for P. arenarium (2n=20, P. barretoi (2n=20, P. aff. ceresia (2n=40, P. corcovadense (2n=20, P. crispulum (2n=20, P. flaccidum (2n=40, P. nummularium (2n=20, P. scalare (2n=20, P. vescum (2n=20 and P. rectum (2n=20 and a diploid cytotype of P. malacophyllum are reported for the first time. The predominance of tetraploid accessions (43.6% was confirmed, but an unusually high number of diploid species (44% and accessions (35.7% was found. These results open new perspectives for breeding programs, phylogenetic studies, and for research on apomixis control, since diploids of Paspalum are typically sexual.O número cromossômico foi determinado para 126 novos acessos de 50 espécies de Paspalum do Brasil, Argentina, Paraguai e Bolívia. Foram verificados os números somáticos 2n=12, 20, 24, 30, 40, 50, 60 e 80. Estas são as primeiras contagens para P. arenarium (2n=20, P. barretoi (2n=20, P. aff. ceresia (2n=40, P. corcovadense (2n=20, P. crispulum (2n=20, P. flaccidum (2n=40, P. nummularium (2n=20, P. scalare (2n=20, P. vescum (2n=20 e P. rectum (2n=20. O nível diplóide (2n=20 é reportado pela primeira vez para P. malacophyllum. Os dados confirmam a predominância de acessos tetraplóides (43,6% no gênero e mostram um número incomumente elevado de espécies (44% e acessos diplóides (35,7%. Estes resultados trazem novas perspectivas para programas de melhoramento, para estudos filogenéticos e para pesquisa orientada ao controle da apomixia, já que em Paspalum as plantas diplóides são tipicamente sexuais.

  20. Leaf transcriptome of two highly divergent genotypes of Urochloa humidicola (Poaceae), a tropical polyploid forage grass adapted to acidic soils and temporary flooding areas. (United States)

    Vigna, Bianca Baccili Zanotto; de Oliveira, Fernanda Ancelmo; de Toledo-Silva, Guilherme; da Silva, Carla Cristina; do Valle, Cacilda Borges; de Souza, Anete Pereira


    Urochloa humidicola (Koronivia grass) is a polyploid (6x to 9x) species that is used as forage in the tropics. Facultative apospory apomixis is present in most of the genotypes of this species, although one individual has been described as sexual. Molecular studies have been restricted to molecular marker approaches for genetic diversity estimations and linkage map construction. The objectives of the present study were to describe and compare the leaf transcriptome of two important genotypes that are highly divergent in terms of their phenotypes and reproduction modes: the sexual BH031 and the aposporous apomictic cultivar BRS Tupi. We sequenced the leaf transcriptome of Koronivia grass using an Illumina GAIIx system, which produced 13.09 Gb of data that consisted of 163,575,526 paired-end reads between the two libraries. We de novo-assembled 76,196 transcripts with an average length of 1,152 bp and filtered 35,093 non-redundant unigenes. A similarity search against the non-redundant National Center of Biotechnology Information (NCBI) protein database returned 65 % hits. We annotated 24,133 unigenes in the Phytozome database and 14,082 unigenes in the UniProtKB/Swiss-Prot database, assigned 108,334 gene ontology terms to 17,255 unigenes and identified 5,324 unigenes in 327 known metabolic pathways. Comparisons with other grasses via a reciprocal BLAST search revealed a larger number of orthologous genes for the Panicum species. The unigenes were involved in C4 photosynthesis, lignocellulose biosynthesis and flooding stress responses. A search for functional molecular markers revealed 4,489 microsatellites and 560,298 single nucleotide polymorphisms (SNPs). A quantitative real-time PCR analysis validated the RNA-seq expression analysis and allowed for the identification of transcriptomic differences between the two evaluated genotypes. Moreover, 192 unannotated sequences were classified as containing complete open reading frames, suggesting that the new

  1. Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. (United States)

    Curk, Franck; Ollitrault, Frédérique; Garcia-Lor, Andres; Luro, François; Navarro, Luis; Ollitrault, Patrick


    . meyeri). Among triploid limes, C. latifolia accessions ('Tahiti' and 'Persian' lime types) result from the fertilization of a haploid ovule of C. limon by a diploid gamete of C. aurantifolia, while C. aurantifolia triploid accessions ('Tanepao' lime types and 'Madagascar' lemon) probably result from an interspecific backcross (a diploid ovule of C. aurantifolia fertilized by C. medica). As limes and lemons were vegetatively propagated (apomixis, horticultural practices) the intra-sub-group phenotypic diversity results from asexual variations. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email:

  2. Ecologia da polinização de Raphiodon echinus (Nees & Mart. Schauer (Lamiaceae em Petrolina, PE, Brasil Pollination ecology of Raphiodon echinus (Nees & Mart. Schauer (Lamiaceae in Petrolina, Pernambuco State, Brazil

    Directory of Open Access Journals (Sweden)

    Carla Tatiana de Vasconcelos Dias


    Full Text Available Raphiodon echinus é uma espécie de hábito rasteiro, que ocorre espontaneamente em áreas de caatinga. No presente trabalho foram observados a biologia reprodutiva desta espécie com o objetivo de contribuir com informações sobre sua ecologia da polinização. As observações foram feitas em áreas de caatinga da Embrapa Semi-Árido, em Petrolina, PE. Para os experimentos de autopolinização espontânea, autopolinização manual, apomixia, geitonogamia, xenogamia, botões foram ensacados, emasculados e polinizados, quando necessário. Flores foram marcadas para estimar a polinização em condições naturais. Os visitantes florais foram observados das 7h30 min às 16h00, totalizando 45 horas de observações. As flores de R. echinus são infundibuliformes, de coloração violeta, exalam odor adocicado e estão reunidas em glomérulos. A antese é diurna, assincrônica, sendo mais freqüente no período da manhã, por volta das 07h00. A duração das flores é de aproximadamente 10 horas e cada inflorescência apresenta número variado de flores/dia. As flores são visitadas por abelhas e borboletas. Centris hyptidis foi responsável por 26% do total das visitas e, de acordo com o comportamento e freqüência de visitas, foi considerada como polinizador efetivo desta espécie. Quanto ao sistema de reprodução, R. echinus é autógama facultativa, produzindo frutos por autopolinização manual (70%, geitonogamia (63% e xenogamia (40%.Raphiodon echinus is a prostrate weedy species that occurs in the Caatinga. In this work, floral biology and reproductive system were observed in order to understand the pollination ecology of this species. Observations were made at Embrapa Semi-Árido, in Petrolina, Pernambuco. For the self-pollination, apomixis, geitonogamy and xenogamy experiments, buds were protected, emasculated, and pollinated when necessary. Flowers were tagged to estimate pollination success under natural conditions. Floral visitors

  3. Sistema reprodutivo e diversidade genética de quatro espécies de Myrciaria (Myrtaceae, jabuticabeiras Reproductive system and genetic diversity of four species of Myrciaria (Myrtaceae, jabuticabeiras

    Directory of Open Access Journals (Sweden)

    Regina Célia Freitas Vilela


    cross-pollination treatments between M. trunciflora x M. cauliflora and M. jaboticaba x M. coronata in order to identify possible postzygotic reproductive isolation mechanisms, and c relate the genetic distance of these species and 14 other taxa preserved ex situ, by RAPD molecular markers. The reproductive treatments showed that jaboticaba are self-compatible species and no apomixis was found in these species. The bi-directional cross-pollinations between M. trunciflora x M. cauliflora, and between M. jaboticaba x M. coronata, generated fruit production that ranged from 22 to 27%, and their seeds produced healthy plants, demonstrating the lack of genetic barriers between these species, as well as immature fruit dropping. Such compatibility of interbreeding can be explored in genetic improvements aimed at the transfer of traits of interest in agronomically superior genotypes. A low degree of genetic differentiation was found among the different taxa, suggesting that the genetic similarity observed is not compatible with the morphological similarity and the main taxonomic characters are polymorphic within the genus.

  4. Complex history of admixture during citrus domestication revealed by genome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G. Albert; Prochnik, Simon; Jenkins, Jerry; Salse, Jerome; Hellsten, Uffe; Murat, Florent; Perrier, Xavier; Ruiz, Manuel; Scalabrin, Simone; Terol, Javier; Takita, Marco Aur& #233; lio,; Labadie, Karine; Poulain, Julie; Couloux, Arnaud; Jabbari, Kamel; Cattonaro, Federica; Fabbro, Cristian Del; Pinosio, Sara; Zuccolo, Andrea; Chapman, Jarrod; Grimwood, Jane; Tadeo, Francisco; Estornell, Leandro H.; Mu?oz-Sanz, Juan V.; Ibanez, Victoria; Herrero-Ortega, Amparo; Aleza, Pablo; P& #233; rez, Juli& #225; n P& #233; rez,; Ramon, Daniel; Brunel, Dominique; Luro, Francois; Chen, Chunxian; Farmerie, William G.; Desany, Brian; Kodira, Chinnappa; Mohiuddin, Mohammed; Harkins, Tim; Fredrikson, Karin; Burns, Paul; Lomsadze, Alexandre; Borodovsky, Mark; Reforgiato, Giuseppe; Freitas-Astua, Juliana; Quetier, Francis; Navarro, Luis; Roose, Mikeal; Wincker, Patrick; Schmutz, Jeremy; Morgante, Michele; Machado, Marcos Antonio; Talon, Manuel; Jaillon, Olivier; Ollitrault, Patrick; Gmitter, Frederick; Rokhsar, Daniel


    vulnerable to disease outbreaks, including citrus greening disease (also known as Huanglongbing) that is rapidly spreading throughout the world's major citrus producing regions1. Understanding the population genomics and domestication of citrus will enable strategies for improvements to citrus including resistance to greening and other diseases. The domestication and distribution of edible citrus types began several thousand years ago in Southeast Asia and spread globally following ancient land and sea routes. The lineages that gave rise to most modern cultivated varieties, however, are lost in undocumented antiquity, and their identities remain controversial2, 3. Several features of Citrus biology and cultivation make deciphering these origins difficult. Cultivated varieties are typically propagated clonally by grafting and through asexual seed production (apomixis via nucellar polyembryony) to maintain desirable combinations of traits (Fig. 1). Thus many important cultivar groups have characteristic basic genotypes that presumably arose through interspecific hybridization and/or successive introgressive hybridizations of wild ancestral species. These domestication events predated the global expansion of citrus cultivation by hundreds or perhaps thousands of years, with no record of the domestication process. Diversity within such groups arises through accumulated somatic mutations, generally without sexual recombination, either as limb sports on trees or variants among apomictic seedling progeny. Two wild species are believed to have contributed to domesticated pummelos, mandarins and oranges. Based on morphology and genetic markers, pummelos have generally been identified with the wild species C. maxima (Burm.) Merrill that is indigenous to Southeast Asia. Although mandarins are similarly widely identified with the species C. reticulata Blanco 4-6, wild populations of C. reticulata have not been definitively described. Various authors have taken dif